WO2018066122A1 - 焼却装置 - Google Patents

焼却装置 Download PDF

Info

Publication number
WO2018066122A1
WO2018066122A1 PCT/JP2016/079931 JP2016079931W WO2018066122A1 WO 2018066122 A1 WO2018066122 A1 WO 2018066122A1 JP 2016079931 W JP2016079931 W JP 2016079931W WO 2018066122 A1 WO2018066122 A1 WO 2018066122A1
Authority
WO
WIPO (PCT)
Prior art keywords
flame
incineration chamber
incineration
incinerated
end side
Prior art date
Application number
PCT/JP2016/079931
Other languages
English (en)
French (fr)
Inventor
▲たか▼男 上嶋
雅美 上嶋
蔦 茂治
Original Assignee
株式会社エバーグリーン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社エバーグリーン filed Critical 株式会社エバーグリーン
Priority to PCT/JP2016/079931 priority Critical patent/WO2018066122A1/ja
Publication of WO2018066122A1 publication Critical patent/WO2018066122A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23BMETHODS OR APPARATUS FOR COMBUSTION USING ONLY SOLID FUEL
    • F23B10/00Combustion apparatus characterised by the combination of two or more combustion chambers
    • F23B10/02Combustion apparatus characterised by the combination of two or more combustion chambers including separate secondary combustion chambers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C6/00Combustion apparatus characterised by the combination of two or more combustion chambers or combustion zones, e.g. for staged combustion
    • F23C6/04Combustion apparatus characterised by the combination of two or more combustion chambers or combustion zones, e.g. for staged combustion in series connection
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G5/00Incineration of waste; Incinerator constructions; Details, accessories or control therefor
    • F23G5/08Incineration of waste; Incinerator constructions; Details, accessories or control therefor having supplementary heating
    • F23G5/14Incineration of waste; Incinerator constructions; Details, accessories or control therefor having supplementary heating including secondary combustion
    • F23G5/16Incineration of waste; Incinerator constructions; Details, accessories or control therefor having supplementary heating including secondary combustion in a separate combustion chamber
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G5/00Incineration of waste; Incinerator constructions; Details, accessories or control therefor
    • F23G5/44Details; Accessories
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G7/00Incinerators or other apparatus for consuming industrial waste, e.g. chemicals

Definitions

  • This invention is an industrial waste such as PCB, flammable waste, raw garbage, sludge, sewage, manure, waste oil, waste liquid, paint, tire, synthetic resin molded product, firewood, okara, and wood chips (including wood chips).
  • the present invention relates to an incinerator used for incinerating an object or an incinerated object such as a used syringe, a gauze, a bandage or the like.
  • the exhaust gas generated when incineration of the above-mentioned incineration materials contains environmental pollutants such as PCB, dioxin, dust, and components that cause bad odors. It is necessary to incinerate at a high temperature so that environmental pollutants are completely burned.
  • Patent Document 1 A number of various devices have been proposed for incineration of the above-mentioned incineration object, and the incineration device disclosed in Patent Document 1 is one of such incineration devices.
  • the incinerator of patent document 1 incinerates the to-be-incinerated material supplied in an incineration chamber with the flame injected from a burner, it is difficult to incinerate at a temperature higher than the flame injected from a burner.
  • An object of the present invention is to provide an incinerator capable of incinerating an object to be incinerated with a flame having a temperature higher than that of the flame injected from the flame injection means.
  • the present invention includes a first incineration chamber that incinerates an incinerated object with a flame, and a substantially cylindrical second incinerator that incinerates the exhaust gas generated when the incinerated object is incinerated in a spiral direction.
  • the first incineration chamber is continuously arranged so as to be in contact with the peripheral wall on one end side in the second incineration chamber, and the flame is blown from the first incineration chamber toward the second incineration chamber.
  • a blowing port capable of exhausting the exhaust gas from the second incineration chamber to the outside of the second incineration chamber.
  • An incineration opening in the wall on the other end side in the second incineration chamber Characterized in that it is a device.
  • the above-mentioned incinerated materials include, for example, PCB (polychlorinated biphenyl), flammable waste, garbage, sludge, sewage, manure, waste oil, coal, coal waste water, paint, tire, synthetic resin molding , Waste generated when whitening grains such as rice and brown rice, oats when squeezing soy milk, and industrial waste such as wood chips (including wood chips) generated when processing wood, Or you may comprise with medical wastes, such as a used syringe, gauze, and a bandage.
  • PCB polychlorinated biphenyl
  • flammable waste garbage, sludge, sewage, manure, waste oil, coal, coal waste water, paint, tire, synthetic resin molding
  • Waste generated when whitening grains such as rice and brown rice
  • oats when squeezing soy milk and industrial waste
  • wood chips including wood chips
  • the above-mentioned incinerated material supply means is constituted by, for example, a hopper type charging unit into which the incinerated material is charged, and a screw conveyor or a belt conveyor that supplies the incinerated material charged into the hopper to the first incineration chamber. Also good.
  • the flame injection means may be constituted by a flame injection device including, for example, a discharge pipe for discharging fuel, an injection nozzle for injecting fuel, an ignition device for igniting the fuel, and the like.
  • the incineration object can be incinerated with a flame having a temperature higher than that of the flame injected from the flame injection means.
  • the flame injected from the flame injecting means is blown toward the bottom of the first incineration chamber, The flame blown toward the bottom and the flame blown back against the bottom in the first incineration chamber collide with each other to generate a vortex of the flame in the first incineration chamber.
  • the second incineration Incineration is performed while turning from one end side toward the other end side along the inner wall surface of the chamber, and exhaust gas is exhausted from the outlet toward the outside of the chamber.
  • the incinerated object supplied into the first incineration chamber is injected from the flame injection means. Can be incinerated with a flame at a higher temperature than the flame.
  • the incinerated object can be incinerated at a high temperature at which, for example, environmental pollutants are completely combusted, and the amount of incinerated ash generated when incinerated can be reduced.
  • the incinerated material supplied from the incinerated material supply means is continuously used as the fire vortex generated in the first incineration chamber. And can be incinerated.
  • the blowing port is opened in a tangential direction of the inner wall surface or the outer wall surface of the peripheral wall on one end side in the second incineration chamber, and from the outer diagonally lower side to the inner diagonally upper side of the second incineration chamber. You may form diagonally upwards.
  • the present invention it is possible to reliably incinerate the unburned incinerated substances contained in the flame and the exhaust gas generated when the incinerated substances are incinerated.
  • the flame that is injected from the flame injection means and the flame that is generated when the incineration object is incinerated in the first incineration chamber are directed from the first incineration chamber to the second incineration chamber through the blow-in port.
  • blowing in the tangential direction it is possible to generate a spiral swirl of flame and air that rotates around the axis centering on the axial center passing through the radial center in the second incineration chamber.
  • the unburned incineration material contained in the flame and the exhaust gas generated when the incineration material is incinerated are transferred into the second incineration chamber by the transfer force of the spiral vortex generated in the second incineration chamber. It can be positively transferred toward the outlet on the other end side while rotating in a spiral direction from one end side to the other end side along the wall surface. As a result, it is possible to ensure a sufficient processing time for incineration of the unburned incinerated material contained in the flame and the exhaust gas generated when the incinerated material is incinerated.
  • the unburned incinerated material contained in the flame and the exhaust gas generated when the incinerated material is incinerated are spirally directed from one end side to the other end side along the inner wall surface of the second incineration chamber. Therefore, for example, a rotating device that rotates the entire second incineration chamber is unnecessary, and the entire configuration of the incinerator can be simplified and downsized.
  • a hole portion that communicates the first incineration chamber and the second incineration chamber is provided in a peripheral wall below the blowing port in the second incineration chamber, and the hole portion is A plurality may be arranged at a predetermined interval with respect to the peripheral wall of the portion corresponding to the blowing port.
  • the incinerated object can be reliably incinerated with a higher temperature flame.
  • the first incineration is performed from the second incineration chamber through a plurality of holes provided in a peripheral wall below the blowing port, with a part of the flame swirling in a spiral direction along the inner wall surface of the second incineration chamber. It blows out toward the chamber and collides with the swirling flame generated in the first incineration chamber.
  • the flame blown out from the second incineration chamber toward the first incineration chamber is made to be incinerated with the flame injected toward the bottom of the second incineration chamber. Since the temperature of the swirling flame generated in the first incineration chamber becomes higher when colliding with the swirling flame generated in the above, the incinerated object can be incinerated more reliably.
  • the incinerated object can be incinerated more reliably in the first incineration chamber, and a high-temperature flame necessary for incinerating the incinerated object can be more reliably generated.
  • the flame injection means is configured to discharge air at a high pressure supplied from an air supply source toward the bottom of the first incineration chamber, and air discharged from the air discharge pipe.
  • a fuel discharge pipe that discharges the fuel supplied from the fuel supply source, and an ignition means that ignites the fuel diffused in the form of mist by the discharge force of the air discharged from the air discharge pipe. You may comprise.
  • the above-mentioned intersection is a concept including, for example, a state in which the discharge directions of both the air discharge pipe and the fuel discharge pipe intersect obliquely and a state in which both discharge directions are orthogonal to each other.
  • the air discharge pipe and the fuel discharge pipe may be constituted by, for example, a discharge pipe formed in a substantially cylindrical shape, or a one-hole type or two-hole type injection nozzle provided with injection holes.
  • the ignition means may be constituted by, for example, a piezoelectric ignition device or a heater.
  • the fuel may be composed of, for example, petroleum (heavy oil, light oil, kerosene, etc.), a mixed fuel obtained by mixing water and petroleum, or a waste liquid discharged when coal is washed with water.
  • the fuel discharged from the fuel discharge pipe can be completely burned reliably. Specifically, since the fuel discharged from the fuel discharge pipe is diffused in the form of a mist by the discharge force of the air discharged from the air discharge pipe, the mixing ratio of fuel and air is optimal for complete combustion of the fuel. It becomes a state.
  • the fuel discharged from the fuel discharge pipe can be efficiently and completely burned by igniting the fuel diffused in the form of mist by the ignition means.
  • the ignition means As a result, it is possible to reliably generate a flame with the thermal power necessary for incineration of the incinerated object, and to prevent occurrence of defective combustion and insufficient thermal power.
  • the outlet is provided concentrically with the second incineration chamber with respect to the radial center portion on the other end side in the second incineration chamber, and has a smaller diameter than the inner diameter of the second incineration chamber. It may be formed.
  • exhaust gas generated when an incineration object is incinerated can be more reliably burned completely.
  • incompletely combusted exhaust gas for example, particles or pieces larger than dust
  • the exhausted exhaust gas has a higher specific gravity than the exhausted exhaust gas, and is given when turning in a spiral direction. Since centrifugal force actively accumulates from the center of the spiral vortex toward the outer periphery, it is possible to prevent exhaust gas from incomplete combustion from being exhausted from the outlet.
  • exhaust gas that has been completely burned for example, harmless gas, fine dust, etc.
  • the incompletely combusted exhaust gas swirls in the spiral direction along the inner wall surface of the second incineration chamber while being accumulated from the central part of the spiral vortex to the outer peripheral part until it has a specific gravity substantially equal to that of the exhausted exhaust gas. Is done. Thereby, since it heats continuously by the high temperature flame blown into a 2nd incineration chamber, sufficient processing time can be ensured to incinerate the exhaust gas of incomplete combustion.
  • the incineration object when the incineration object is incinerated, it is possible to more reliably prevent exhaust gas that affects the natural environment from being exhausted outside the room. Moreover, when exhaust gas is exhausted from the outlet to the room, the exhaust gas flow rate is limited and the flow rate is increased, so that the exhaust gas is efficiently exhausted from the other outlet side without remaining in the second incineration chamber. In addition, the incineration efficiency of the incinerated object can be further improved.
  • a spiral vortex guideway for inducing exhaust gas generated when the incineration object is incinerated is provided from one end side of the second incineration chamber along the inner wall surface of the second incineration chamber. You may provide toward an end side. According to the present invention, it is possible to more surely secure a transfer distance and an incineration time sufficient to incinerate exhaust gas generated when an incineration object is incinerated.
  • spiral vortex swirling around the axis can be efficiently generated around the axial center passing through the radial center in the second incineration chamber.
  • the incineration object in the middle of incineration and the incinerated exhaust gas are smoothly swirled in the spiral direction from one end side to the other end side along the inner wall surface of the second incineration chamber by the transfer force of the spiral vortex. Can be transported.
  • a cylindrical flame blowing cylinder in which an upper end side corresponding to the flame injection means is opened at a center portion in the first incineration chamber and a lower end side corresponding to the bottom portion in the first incineration chamber is closed.
  • a plurality of flame blowing holes are provided on the outer peripheral surface of the flame blowing cylinder to blow out the flame blown toward the inside of the flame blowing cylinder toward the radially outer side of the flame blowing cylinder.
  • the flame injected from the flame injection means can be completely burned in the flame blowing cylinder. Specifically, a flame obtained by burning the fuel injected from the flame injection means is blown into the flame blowing cylinder, blown to the closed portion on the lower end side of the flame blowing cylinder and diffused radially outward, The diffused flame is caused to flow backward toward the upper end side along the inner peripheral surface of the flame blowing cylinder.
  • the flame completely burned in the flame blowing cylinder is blown out radially outward from the flame blowing hole provided on the peripheral surface of the flame blowing cylinder.
  • the fuel supplied from the fuel supply source is continuously burned, for example, using the vortex flow of the flame generated in the flame blowing cylinder as a fire type. be able to.
  • an incinerator that can incinerate an object to be incinerated with a flame having a temperature higher than that of the flame injected from the flame injection means.
  • vertical with respect to the longitudinal direction Sectional drawing which cut
  • FIG. 1 is a cross-sectional view of the incinerator 1 of Example 1 divided by a plane perpendicular to the longitudinal direction L
  • FIG. 2 is a cross-sectional view of the incinerator 1 shown in FIG. is there.
  • the longitudinal direction L in the following description is a direction that coincides with the longitudinal direction of the incinerator 1
  • the short-side direction W is a cross-sectional direction parallel to a plane perpendicular to the longitudinal direction L in the planar direction. is there.
  • the side corresponding to the blowing port 3a in the incinerator 1 is set as one end side
  • the side corresponding to the blowing port 3b is set as the other end side.
  • the incinerator 1 of Example 1 incinerates the first incineration chamber 2 that incinerates the incinerator D with the flame Fi, and the exhaust gas Da generated when the incinerator D is incinerated in a spiral direction.
  • the first incineration chamber 2 is a vertical type incineration chamber formed of a metal having heat resistance and fire resistance, and is in contact with a left peripheral wall (left side in FIG. 1) on one end side in the second incineration chamber 3. As shown in the diagram. Above the portion in contact with the second incineration chamber 3 in the first incineration chamber 2, a flame injection device 5 for injecting a flame Fi vertically toward the bottom in the first incineration chamber 2 is disposed (FIG. 1).
  • a discharge port 2 a for discharging the incineration ash Db generated when the incineration object D is incinerated.
  • a grate-type shutter 2b is provided at the discharge port 2a so as to be freely opened and closed.
  • a plurality of holes 2c through which unburned incineration material D is blocked and through which incineration ash Db can pass are provided at predetermined intervals (see FIG. 1). Note that the incinerated ash Db that has passed through the hole 2c of the shutter 2b and accumulated in the accumulation portion below the discharge port 2a is taken out from a take-out port (not shown) and periodically discarded.
  • the second incineration chamber 3 is a horizontal type incineration chamber formed in a substantially cylindrical shape with a metal having heat resistance and fire resistance, and one end side in the longitudinal direction L of the second incineration chamber 3 is closed. .
  • a blow-in port 3a through which a flame Fi can be blown from the first incineration chamber 2 toward the second incineration chamber 3 is opened on the left peripheral wall on one end side in contact with the first incineration chamber 2 in the second incineration chamber 3. (See FIG. 1).
  • the blow-in port 3a opens from the vertical axis V passing through the radial center of the second incineration chamber 3 to the left peripheral wall in FIG. 1 toward the tangential direction Ta of the inner wall surface or the outer wall surface in the second incineration chamber 3.
  • the second incineration chamber 3 is opened obliquely upward from the obliquely lower outer side toward the obliquely upper inner side (see FIG. 1).
  • the second incineration chamber 3 has a blowout port 3b capable of exhausting the exhaust gas Da generated when the incineration object D is incinerated to the wall portion on the other end side in the longitudinal direction L. .
  • the blowout port 3 b is formed in the radial center portion on the other end side in the second incineration chamber 3, is provided concentrically with the second incineration chamber 3, and has a smaller diameter than the inner diameter of the second incineration chamber 3.
  • An exhaust duct 3d is connected to the outlet 3b (see FIGS. 1 and 2).
  • a hole 3 c communicating with the second incineration chamber 3 and the first incineration chamber 2 is provided in the peripheral wall below the inlet 3 a in the radial direction.
  • a plurality of holes 3c are arranged at predetermined intervals with respect to the peripheral wall of the portion corresponding to the blowing port 3a (see FIGS. 1 and 2).
  • the hole 3c can positively blow out the flame Fi from the second incineration chamber 3 toward the first incineration chamber 2 rather than blowing in the flame Fi from the first incineration chamber 2 toward the second incineration chamber 3. It is formed to be possible.
  • the incinerator supply device 4 includes a cylindrical portion 4a installed horizontally with respect to the upper end on the one end side of the second incineration chamber 3, and a hopper type charging portion 4b provided on the upper end on the one end side of the cylindrical portion 4a. And a transfer screw 4c rotatably supported with respect to the inside of the cylindrical portion 4a (see FIG. 1).
  • the cylindrical portion 4 a is installed perpendicular to the longitudinal direction L with respect to the upper peripheral wall on one end side in the second incineration chamber 3.
  • the introduction part 4b is provided in the upper part of the one end side on the opposite side to the 1st incineration chamber 2 in the cylindrical part 4a.
  • a motor 4d with a reduction gear fixed to one end of the cylindrical portion 4a is directly connected to one end of the transfer screw 4c.
  • an extrusion port 4e for extruding the incinerated object D is opened.
  • the extrusion port 4e is provided at an angle and a length at which the incineration object D is supplied into the first incineration chamber 2.
  • the flame injection device 5 includes an air discharge pipe 5a that discharges air Ar pressurized at a high pressure supplied from an air supply source AA vertically toward the bottom of the first incineration chamber 2, and an air discharge pipe 5a.
  • the fuel discharge pipe 5b that discharges the liquid fuel Fu supplied from the fuel supply source FF and the fuel Fu diffused in a mist form by the discharge force of the air Ar are ignited perpendicularly to the discharge direction of the air Ar.
  • an ignition device 5c (see FIG. 1).
  • An air supply source AA for supplying high-pressure pressurized air Ar is connected to one end of the air discharge pipe 5a via a flow rate adjusting valve 5a1 and an air supply path 5a2.
  • the other end of the air discharge pipe 5a is provided with a discharge port 5aa for discharging high-pressure air Ar supplied from the air supply source AA.
  • the discharge port 5aa of the air discharge pipe 5a is provided in a discharge direction in which the air Ar discharged from the discharge port 5aa is discharged vertically downward.
  • a fuel supply source FF that supplies liquid fuel Fu is connected to one end of the fuel discharge pipe 5b via a fuel supply pump 5b1, a fuel adjustment valve 5b2, and a fuel supply path 5b3.
  • the other end of the fuel discharge pipe 5b is provided with a discharge port 5bb for discharging the fuel Fu supplied from the fuel supply source FF.
  • the discharge port 5bb of the fuel discharge tube 5b is provided below the discharge port 5aa of the air discharge tube 5a, and is arranged at a predetermined interval with respect to the discharge port 5aa of the air discharge tube 5a.
  • the discharge direction of the fuel Fu discharged from the discharge port 5bb of the fuel discharge pipe 5b intersects with a discharge angle of the air Ar discharged from the discharge port 5aa of the air discharge pipe 5a (specifically, orthogonal). (See FIG. 1).
  • the ignition device 5c is composed of a piezoelectric ignition device that generates sparks, and is disposed below the discharge port 5bb of the fuel discharge pipe 5b, and is fogged by the air Ar discharged from the discharge port 5aa of the air discharge pipe 5a. It arrange
  • the liquid fuel Fu discharged from the discharge port 5bb of the fuel discharge pipe 5b is diffused into the air Ar because it is diffused in the form of mist by the discharge force of the air Ar discharged from the discharge port 5aa of the air discharge pipe 5a.
  • the concentration of the fuel Fu is extremely low, and a mist-like fuel Fu that is easy to ignite and burn can be generated.
  • the liquid fuel Fu discharged from the discharge port 5bb of the fuel discharge pipe 5b is forcibly sucked, and the liquid fuel Fu is diffused in the air Ar in the form of a mist.
  • a flame Fi ignited by the ignition device 5c and burned to the fuel Fu diffused in the form of mist is sprayed toward the bottom of the first incineration chamber 2, and is sprayed toward the bottom of the first incineration chamber 2.
  • the flame Fi and the flame Fi blown back against the bottom in the first incineration chamber 2 collide with each other to generate a vortex of the flame Fi near the bottom in the first incineration chamber 2 (see FIG. 1).
  • a part of the flame Fi swirling in the spiral direction along the inner wall surface of the second incineration chamber 3 is removed from the second incineration chamber 3 through a plurality of holes 3c provided in the peripheral wall below the blowing port 3a. It blows out toward the 1 incineration chamber 2, and it collides with the swirling flame Fi generated in the 1st incineration chamber 2 (refer FIG. 1).
  • the unburned incineration material D contained in the flame Fi and the exhaust gas Da generated when the incineration material D is incinerated are directed from one end side to the other end side along the inner wall surface of the second incineration chamber 3. Incineration is performed while swirling in the spiral direction, and the air is exhausted from the outlet 3b to the outside through the exhaust duct 3d.
  • the incinerated material D can be incinerated at a high temperature at which environmental pollutants (for example, PCB) completely burn, and the amount of incinerated ash Db generated when incinerated is reduced. Can do.
  • the vortex flow of the flame Fi generated in the first incineration chamber 2 is used as the fire type to be supplied from the incinerator supply device 4. Since the incineration object D can be continuously incinerated, the consumption amount of the fuel Fu discharged from the fuel discharge pipe 5b can be minimized.
  • the unburned incinerated material D contained in the flame Fi and the exhaust gas Da generated when the incinerated material D is incinerated are transferred by the transfer force of the spiral vortex Sp generated in the second incineration chamber 3. Since the incineration process is performed while turning in the spiral direction from one end side toward the other end side along the inner wall surface of the second incineration chamber 3, a rotating device that rotates the entire second incineration chamber 3 is unnecessary.
  • the entire configuration of the incinerator 1 can be simplified and downsized.
  • the incompletely combusted exhaust gas Da (for example, particles and pieces larger than dust) generated when the incineration object D is incinerated has a higher specific gravity than the completely combusted exhaust gas Da.
  • the completely combusted exhaust gas Da When swirling along the wall surface in the spiral direction, it is positively accumulated from the center of the spiral vortex Sp toward the outer periphery by centrifugal force. Thereby, it is possible to prevent incompletely combusted exhaust gas Da from being exhausted from the outlet 3b.
  • the completely burned exhaust gas Da (for example, harmless gas, fine dust, etc.) has a lighter specific gravity than the incompletely burnt exhaust gas Da and is actively accumulated toward the center of the spiral vortex Sp.
  • the exhaust can be efficiently exhausted from the outlet 3b of the incineration chamber 3 toward the outside of the room.
  • the incompletely combusted exhaust gas Da is accumulated along the inner wall surface of the second incineration chamber 3 while being accumulated on the outer periphery from the central portion of the spiral vortex Sp until the exhaust gas Da has substantially the same specific gravity as the completely combusted exhaust gas Da. And is subsequently heated by the high-temperature flame Fi blown into the second incineration chamber 3.
  • the incineration object D transferred through the cylindrical portion 4a of the incineration object supply device 4 is heated with heat radiated from the second incineration chamber 3 and continuously supplied into the first incineration chamber 2. Therefore, the heating time for heating the incinerated material D to the temperature at which it is burned in the first incineration chamber 2 is short, and the incinerated material D can be efficiently incinerated in a shorter time.
  • the incinerated object D can be incinerated at a high temperature at which the environmental pollutants are completely combusted, so that the amount of exhaust gas Da generated when the incinerated object D is incinerated is reduced.
  • the heat resistance and fire resistance of the incinerator 1 are improved, and an incineration function for incinerating the incinerated material D at a high temperature can be obtained stably over a long period of time.
  • the hydrophilic inorganic polymer solution contained in the heat-resistant cement 6 contains abundant sodium (Na) and has the property of capturing chlorine generated during incineration and substituting it with sodium chloride. A suppressing effect is also obtained.
  • FIG. 3 is a cross-sectional view of the incinerator 1 of Example 2 cut at the center in the short direction W.
  • a spiral vortex guide path 7 for guiding the spiral vortex flow Sp is provided along the inner wall surface of the second incineration chamber 3, and the second incineration chamber 3 is matched with the swirling direction of the spiral vortex flow Sp. These are arranged in a spiral shape from one end side to the other end side (see FIG. 3).
  • the spiral vortex flow Sp composed of the flame Fi and the air Ar is directed from one end side to the other end side of the second incineration chamber 3 along the spiral vortex guide path 7 provided on the inner wall surface of the second incineration chamber 3. Since the guide is guided in the spiral direction, a spiral vortex Sp that rotates around the axis can be efficiently generated around the axial center C passing through the radial center portion in the second incineration chamber 3 (see FIG. 3).
  • the incinerated substance D in the middle of incineration or the exhausted gas Da that has been incinerated can be efficiently incinerated without remaining in the second incineration chamber 3, and can be completely burned with little influence on the natural environment. Since the exhaust gas Da can be more reliably exhausted from the outlet 3b to the outside of the room, the effects and effects added to the first embodiment can be achieved.
  • Example 3 In the above-described first embodiment, the incinerator 1 that blows the flame Fi injected from the flame injector 5 toward the first incinerator 2 has been described. In the third embodiment, as shown in FIG. The incinerator 1 that blows the flame Fi injected from the apparatus 5 toward the inside of the cylindrical flame blowing cylinder 30 will be described.
  • FIG. 4 is a cross-sectional view of the incinerator 1 of Example 3 cut at the center in the short direction W.
  • the flame blowing cylinder 30 is formed in a substantially cylindrical shape with a metal having heat resistance and fire resistance, and is supported vertically with respect to the central portion in the first incineration chamber 2 by a plurality of pillars not shown. At the same time, the flame injection device 5 is disposed below the ignition device 5c.
  • an opening 32 capable of blowing flame Fi, air Ar and incinerated material D is opened.
  • the lower end side in the axial direction of the flame blowing cylinder 30 is closed by a closing portion 31 that prevents the flame Fi from blowing out.
  • a number of flame blowing holes 33 are provided on the outer peripheral surface of the flame blowing cylinder 30 other than the closing portion 31 to blow the flame Fi supplied from the flame injection device 5 toward the radially outer side of the flame blowing cylinder 30. Yes.
  • the flame blowing holes 33 are formed so as to penetrate in the radial direction of the flame blowing cylinder 30, and are arranged at predetermined intervals in the circumferential direction X and the axial direction along the outer peripheral surface of the flame blowing cylinder 30 other than the closing portion 31. is doing.
  • a plurality of discharge ports 34 for discharging the incinerated ash Db are provided on the outer peripheral surface of the flame blowing cylinder 30 on the closing portion 31 side.
  • the flame Fi injected from the flame injection device 5 can be completely burned in the flame blowing cylinder 30.
  • the incinerator 1 of Example 3 blows the flame Fi injected from the flame injection device 5 toward the inside of the flame blowing cylinder 30 and blows it toward the closed portion 31 on the lower end side of the flame blowing cylinder 30 toward the radially outer side. While diffusing, the diffused flame Fi is caused to flow back toward the upper end side along the inner peripheral surface of the flame blowing cylinder 30.
  • the flame Fi is circulated to the outside, and the vortex of the flame Fi is generated in the flame blowing cylinder 30.
  • the flame Fi completely burned in the flame blow-out cylinder 30 is blown out radially outward from a flame blow-out hole 33 provided on the peripheral surface of the flame blow-out pipe 30, and the first incineration chamber through the blow-in port 3a. 2 is blown in the tangential direction Tr toward the second incineration chamber 3.
  • the flame Fi is turbulent in the flame blowout cylinder 30 to generate a vortex flow.
  • the combustion time for burning in the flame blowing cylinder 30 becomes longer.
  • the flame Fi injected from the flame injection device 5 can be completely burned in the flame blowing cylinder 30 to generate a desired heating power and a high-temperature flame Fi, so that it is supplied into the first incineration chamber 2.
  • To be incinerated can be reliably incinerated with a flame Fi having a temperature higher than that of the flame Fi injected from the flame injection device 5.
  • the vortex flow of the flame Fi generated in the flame blowing cylinder 30 is used as the fire type to be supplied from the incinerator supply device 4. Since the incinerated material D can be continuously burned, the effects and effects added to the first embodiment can be achieved.
  • the incinerator supply means of this invention corresponds to the incinerator supply device 4 of the embodiment
  • the flame injection means corresponds to the flame injection device 5
  • the present invention is not limited to the configuration of the above-described embodiment, but can be applied based on the technical idea shown in the claims, and many embodiments can be obtained.
  • the incineration apparatus 1 that performs incineration processing in one second incineration chamber 3 has been described.
  • a second second incineration chamber is provided on the outlet 3b side of the second incineration chamber 3. 3 may be provided continuously. In this case, since the transfer distance and incineration time of the incineration object D can be made longer, the incineration object D can be incinerated more reliably.
  • the number of second incineration chambers 3 provided is not limited to two, but two or more may be provided continuously.
  • the transfer distance and incineration time of the incineration object D can be changed according to the number of the second incineration chambers 3 provided in series.
  • a heat exchange pipe for heat exchange (not shown) is piped around the outer circumference (or inner circumference) of the second incineration chamber 3, and the heat conduction pipe is heated by the heat generated when the incineration object D is incinerated. If the flowing medium (specifically, liquid) is heated to evaporate and the steam turbine for power generation is driven using the pressure of the steam, the incinerator 1 of the first and second embodiments generates power other than incineration. Can also be used.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Environmental & Geological Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)

Abstract

【課題】この発明は、被焼却物を火炎噴射手段から噴射される火炎より高い温度の火炎にて焼却処理することができる焼却装置の提供を目的とする。 【解決手段】本発明の焼却装置1は、被焼却物Dを火炎Fiにて焼却処理する第1焼却室2と、被焼却物Dを焼却処理した際に発生する排ガスDaを螺旋方向に旋回させながら焼却処理する第2焼却室3と、被焼却物Dを第1焼却室2内に供給する被焼却物供給装置4と、第1焼却室2内の底部に向けて火炎Fiを噴射する火炎噴射装置5とを備えている。第1焼却室2から第2焼却室3に向けて火炎Fiを吹き込むための吹込み口3aを、第2焼却室3における第1焼却室2と接する一端側周壁に開口している。被焼却物Dを焼却処理した際に発生する排ガスDaを排気するための吹出し口3bを、第2焼却室3における他端側壁部に開口している。

Description

焼却装置
 この発明は、例えばPCB、可燃性廃棄物、生ゴミ、汚泥、汚水、糞尿、廃油、廃液、塗料、タイヤ、合成樹脂成形品、糠、おから、木製チップ(木屑を含む)などの産業廃棄物、あるいは、使用済み注射器、ガーゼ、包帯などの医療廃棄物等の被焼却物を焼却処理する際に用いられる焼却装置に関する。
 従来、上述のような被焼却物を焼却処理した際に発生する排ガスには、例えばPCBやダイオキシン、煤塵、悪臭の元となる成分等の環境汚染物質が含まれているため、被焼却物を環境汚染物質が完全燃焼するような高い温度にて焼却処理する必要がある。
 上述の被焼却物を焼却処理する装置として、様々なものが多数提案されており、特許文献1に開示の焼却装置も、このような焼却装置の一つである。特許文献1の焼却装置は、焼却室内に供給される被焼却物を、バーナーから噴射される火炎で焼却処理するが、バーナーから噴射される火炎より高い温度で焼却処理することが難しい。
特開2004-132567号公報
 この発明は、被焼却物を火炎噴射手段から噴射される火炎より高い温度の火炎にて焼却処理することができる焼却装置を提供することを目的とする。
 この発明は、被焼却物を火炎にて焼却処理する第1焼却室と、前記被焼却物を焼却処理した際に発生する排ガスを螺旋方向に旋回させながら焼却処理する略円筒状の第2焼却室と、前記被焼却物を前記第1焼却室内に供給する被焼却物供給手段と、前記火炎を前記第1焼却室内の上部から該第1焼却室内の底部に向けて噴射する火炎噴射手段とを備え、前記第1焼却室を、前記第2焼却室における一端側の周壁に対して接するように連設し、前記第1焼却室から前記第2焼却室に向けて前記火炎を吹き込ませることが可能な吹込み口を、前記第2焼却室における前記第1焼却室と接する一端側の周壁に開口し、前記第2焼却室内から前記排ガスを室外へ排気することが可能な吹出し口を、前記第2焼却室における他端側の壁部に開口した焼却装置であることを特徴とする。
 上述の被焼却物は、例えばPCB(ポリ塩化ビフェニル)、可燃性廃棄物、生ゴミ、汚泥、汚水、糞尿、廃油、石炭、石炭を水で洗浄した際の廃液、塗料、タイヤ、合成樹脂成形品、米や玄米などの穀物を精白する際に発生する糠、豆乳を絞った際のかすであるおから、木材を加工する際に発生する木製チップ(木屑を含む)などの産業廃棄物、あるいは、使用済み注射器、ガーゼ、包帯などの医療廃棄物等で構成してもよい。
 上述の被焼却物供給手段は、例えば被焼却物が投入されるホッパ型の投入部と、ホッパに投入された被焼却物を第1焼却室へ供給するスクリュコンベアやベルトコンベア等で構成してもよい。火炎噴射手段は、例えば燃料を吐出する吐出管、燃料を噴射する噴射ノズル、燃料に着火する着火装置等を備えた火炎噴射装置で構成してもよい。
 この発明によれば、被焼却物を火炎噴射手段から噴射される火炎より高い温度の火炎にて焼却処理することができる。 
 詳しくは、被焼却物を被焼却物供給手段により第1焼却室内へ供給する際に、火炎噴射手段から噴射される火炎を、第1焼却室内の底部に向けて吹き付けるとともに、第1焼却室内の底部に向けて吹き付けられる火炎と、第1焼却室内の底部に当たって吹き返される火炎とを互いにぶつかり合わせて、火炎の渦流を第1焼却室内に発生させる。
 火炎噴射手段から噴射される火炎や、被焼却物を焼却処理した際に発生する火炎及び排ガスを、吹込み口を介して第1焼却室から第2焼却室に向けて吹き込むとともに、第2焼却室の内壁面に沿って一端側から他端側に向けて旋回させながら焼却処理して、吹出し口から室外に向けて排ガスを排気する。
 つまり、火炎噴射手段から噴射される火炎よりも、第1焼却室内に発生させた渦巻く火炎の温度が高温となるため、第1焼却室内に供給される被焼却物を、火炎噴射手段から噴射される火炎より高い温度の火炎にて焼却処理することができる。
 この結果、被焼却物を、例えば環境汚染物質が完全燃焼するような高い温度にて焼却処理することができるとともに、焼却処理した際に発生する焼却灰の量を少なくすることができる。
 しかも、燃料吐出管から吐出される燃料の吐出動作を停止又は休止しても、第1焼却室内に発生させた火炎の渦流を火種として、被焼却物供給手段から供給される被焼却物を連続して焼却処理することができる。
 これにより、例えば火炎噴射手段から噴射される燃料に着火して燃焼させて火炎を第1焼却室内の底部に向けて吹き付ける場合、火炎噴射手段から噴射される燃料の消費量を必要最小限に抑えることができる。
 この発明の態様として、前記吹込み口を、前記第2焼却室における一端側の周壁の内壁面又は外壁面の接線方向に開口するとともに、該第2焼却室の外側斜め下方から内側斜め上方に向けて斜め上向きに形成してもよい。
 この発明によれば、火炎中に含まれる未燃焼の被焼却物や、被焼却物を焼却処理した際に発生する排ガスを確実に焼却処理することができる。 
 詳しくは、火炎噴射手段から噴射される火炎や、被焼却物を第1焼却室内で焼却処理した際に発生する火炎を、吹込み口を介して第1焼却室から第2焼却室に向けて接線方向に吹き込ませることにより、第2焼却室における径方向中心部を通る軸芯を中心として、軸回りに旋回する火炎及び空気の螺旋渦流を発生させることができる。
 これにより、火炎中に含まれる未燃焼の被焼却物や、被焼却物を焼却処理した際に発生する排ガスを、第2焼却室内に発生する螺旋渦流の移送力によって、第2焼却室の内壁面に沿って一端側から他端側に向けて螺旋方向に旋回させながら、他端側の吹出し口に向けて積極的に移送することができる。 
 この結果、火炎中に含まれる未燃焼の被焼却物や、被焼却物を焼却処理した際に発生する排ガスを焼却処理するのに十分な処理時間を確保することができる。
 しかも、火炎中に含まれる未燃焼の被焼却物や、被焼却物を焼却処理した際に発生する排ガスを、第2焼却室の内壁面に沿って一端側から他端側に向けて螺旋方向に旋回させながら焼却処理するため、例えば第2焼却室全体を回転させるような回転装置が不要であり、焼却装置全体の構成を簡素化して、小型化することができる。
 またこの発明の態様として、前記第1焼却室と前記第2焼却室とを連通する孔部を、前記第2焼却室における前記吹込み口より下方の周壁に設けるとともに、前記孔部を、前記吹込み口と対応する部分の前記周壁に対して所定間隔を隔てて複数配列してもよい。
 この発明によれば、被焼却物をより高い温度の火炎にて確実に焼却処理することができる。 
 詳しくは、第2焼却室の内壁面に沿って螺旋方向に旋回する一部の火炎を、吹込み口より下方の周壁に設けた複数の孔部を介して、第2焼却室から第1焼却室に向けて吹き出させるとともに、第1焼却室内に発生させた渦巻く火炎にぶつかり合わせる。
 これにより、被焼却物を、第2焼却室内の底部に向けて噴射される火炎で焼却処理するよりも、第2焼却室から第1焼却室に向けて吹き出される火炎を、第1焼却室内に発生させた渦巻く火炎にぶつかり合わせた方が、第1焼却室内に発生する渦巻く火炎の温度がより高温となるため、被焼却物をより確実に焼却処理することができる。
 この結果、被焼却物を第1焼却室内にてより確実に焼却処理することができるとともに、被焼却物を焼却処理するのに必要な高い温度の火炎をより確実に発生させることができる。
 またこの発明の態様として、前記火炎噴射手段を、前記第1焼却室内の底部に向けて空気供給源から供給される高圧の空気を吐出する空気吐出管と、前記空気吐出管から吐出される空気の吐出方向と交差して、燃料供給源から供給される燃料を吐出する燃料吐出管と、前記空気吐出管から吐出される空気の吐出力によって霧状に拡散された燃料に着火する着火手段とで構成してもよい。
 上述の交差とは、例えば空気吐出管及び燃料吐出管における双方の吐出方向が斜めに交差する状態と、双方の吐出方向が直交する状態とを含む概念である。空気吐出管及び燃料吐出管は、例えば略筒状に形成された吐出管、あるいは、噴射孔を備えた1穴式や2穴式の噴射ノズル等で構成してもよい。着火手段は、例えば圧電点火装置やヒーター等で構成してもよい。燃料は、例えば石油(重油、軽油、灯油等)、あるいは、水及び石油を混合した混合燃料、あるいは、石炭を水で洗浄した際に排出される廃液等で構成してもよい。
 この発明によれば、燃料吐出管から吐出される燃料を確実に完全燃焼させることができる。 
 詳しくは、空気吐出管から吐出される空気の吐出力によって、燃料吐出管から吐出される燃料を霧状に拡散させるため、燃料と空気との混合比が、燃料を完全燃焼させるのに最適な状態となる。
 これにより、霧状に拡散された燃料に着火手段で着火することにより、燃料吐出管から吐出される燃料を効率よく完全燃焼させることができる。 
 この結果、被焼却物を焼却処理するのに必要な火力の火炎を確実に発生させることができるとともに、燃焼不良や火力不足が起きることを防止できる。
 またこの発明の態様として、前記吹出し口を、前記第2焼却室における他端側の径方向中心部に対して該第2焼却室と同心円に設けるとともに、該第2焼却室の内径より小径に形成してもよい。
 この発明によれば、被焼却物を焼却処理した際に発生する排ガスをより確実に完全燃焼させることができる。 
 詳しくは、被焼却物を焼却処理した際に発生する未完全燃焼の排ガス(例えば塵より大きい粒や片等)は、完全燃焼した排ガスより比重が重く、螺旋方向に旋回する際に付与される遠心力によって、螺旋渦流の中心部より外周部に向けて積極的に集積されるため、未完全燃焼の排ガスが吹出し口から排気されることを防止することができる。
 一方、完全燃焼した排ガス(例えば無害なガスや微細な塵等)は、未完全燃焼の排ガスより比重が軽く、螺旋渦流の中心部に向けて積極的に集積されるため、第2焼却室の吹出し口から室外に向けて効率よく排気することができる。
 つまり、未完全燃焼の排ガスは、完全燃焼した排ガスと略同等の比重になるまで、螺旋渦流の中心部より外周部に集積されたまま、第2焼却室の内壁面に沿って螺旋方向に旋回される。 
 これにより、第2焼却室に吹き込まれる高温の火炎によって引き続き加熱されるため、未完全燃焼の排ガスを焼却処理するのに十分な処理時間を確保することができる。
 この結果、被焼却物を焼却処理する際に、自然環境に影響を及ぼすような排ガスが室外へ排気されることをより確実に防止することができる。 
 しかも、排ガスを吹出し口から室外へ排気する際に、排ガスの流量が制限され流速が速くなるため、排ガスを第2焼却室内に留まらせることなく、他端側の吹出し口から効率よく排気することができるとともに、被焼却物の焼却効率をより向上することができる。
 またこの発明の態様として、前記被焼却物を焼却処理した際に発生する排ガスを誘導する螺旋渦流誘導路を、前記第2焼却室の内壁面に沿って該第2焼却室の一端側から他端側に向けて設けてもよい。 
 この発明によれば、被焼却物を焼却処理した際に発生する排ガスを焼却処理するのに十分な移送距離及び焼却時間をより確実に確保することができる。
 詳しくは、火炎及び空気からなる螺旋渦流を、第2焼却室の内壁面に設けた螺旋渦流誘導路に沿って、第2焼却室の一端側から他端側に向けて螺旋方向に誘導するため、第2焼却室における径方向中心部を通る軸芯を中心として、軸回りに旋回する螺旋渦流を効率よく発生させることができる。
 これにより、焼却途中の被焼却物や焼却済みの排ガスを、螺旋渦流の移送力によって、第2焼却室の内壁面に沿って一端側から他端側に向けて螺旋方向に旋回させながらスムースに移送することができる。
 この結果、焼却途中の被焼却物や焼却済みの排ガスを、第2焼却室内に留まらせることなく略均一に効率よく焼却処理することができるとともに、自然環境に対する影響が少ない完全燃焼された排ガスを室外へ排気することができる。
 またこの発明の態様として、前記第1焼却室内の中央部に、前記火炎噴射手段と対応する上端側が開口され、前記第1焼却室内の底部と対応する下端側が閉塞された筒状の火炎吹出し筒を垂直に配置し、前記火炎吹出し筒の外周面に、該火炎吹出し筒内に向けて吹き込まれる火炎を、該火炎吹出し筒の径方向外側に向けて吹き出させる複数の火炎吹出し孔を設けてもよい。
 この発明によれば、火炎噴射手段から噴射される火炎を火炎吹出し筒内で完全燃焼させることができる。 
 詳しくは、火炎噴射手段から噴射される燃料を燃焼させた火炎を火炎吹出し筒内に向けて吹き込み、火炎吹出し筒における下端側の閉塞された部分に吹き付けて径方向外側に向けて拡散させるとともに、拡散された火炎を、火炎吹出し筒の内周面に沿って上端側に向けて逆流させる。
 火炎吹出し筒の上端側に向けて逆流する火炎と、火炎噴射手段から噴射される火炎とを、火炎吹出し筒内でぶつかり合わせて入り乱れさせるとともに、径方向外側に向けて拡散された火炎を外側に回り込ませて、火炎の渦流を火炎吹出し筒内に発生させる。火炎吹出し筒内で完全燃焼させた火炎は、火炎吹出し筒の周面に設けた火炎吹出し孔から径方向外側に向けて吹き出させる。
 これにより、火炎噴射手段から噴射される火炎を火炎吹出し筒の火炎吹出し孔から径方向外側に向けて吹き出させるのに比べて、火炎吹出し筒内にて入り乱れさせて渦流を発生させた方が、火炎吹出し筒内で燃焼する燃焼時間が長くなる。 
 この結果、火炎噴射手段から噴射される火炎を火炎吹出し筒内で完全燃焼させて、所望する火力及び高温の火炎を発生させることができる。
 しかも、火炎噴射手段から噴射される火炎の噴射を停止又は休止しても、火炎吹出し筒内に発生させた火炎の渦流を火種として、例えば燃料供給源から供給される燃料を継続して燃焼させることができる。
 この発明によれば、被焼却物を火炎噴射手段から噴射される火炎より高い温度の火炎にて焼却処理することができる焼却装置を提供することができる。
実施例1の焼却装置を長手方向に対して垂直な面で分断した断面図。 図1に示す焼却装置を短手方向の中央部で分断した断面図。 実施例2の焼却装置を短手方向の中央部で分断した断面図。 実施例3の焼却装置を短手方向の中央部で分断した断面図。
 この発明の一実施形態を以下図面に基づいて詳述する。 
 (実施例1) 
 図1は実施例1の焼却装置1を長手方向Lに対して垂直な面で分断した断面図、図2は図1に示す焼却装置1を短手方向Wの中央部で分断した断面図である。 
 なお、以下の説明における長手方向Lとは、焼却装置1の長手方向と一致する方向であり、短手方向Wとは、平面方向において長手方向Lに対して垂直な面と平行する断面方向である。また、焼却装置1における吹込み口3aと対応する側を一端側とし、吹出し口3bと対応する側を他端側としている。
 実施例1の焼却装置1は、被焼却物Dを火炎Fiにて焼却処理する第1焼却室2と、被焼却物Dを焼却処理した際に発生する排ガスDaを螺旋方向に旋回させながら焼却処理する略円筒状の第2焼却室3と、被焼却物Dを第1焼却室2内に供給する被焼却物供給装置4と、第1焼却室2内の底部に向けて火炎Fiを噴射する火炎噴射装置5とを備えている(図1参照)。
 第1焼却室2は、耐熱性及び耐火性を有する金属にて形成された縦置き型の焼却室であり、第2焼却室3における一端側の左側周壁(図1中左側)に対して接するように連設している。第1焼却室2における第2焼却室3と接する部分より上部には、第1焼却室2内の底部に向けて火炎Fiを垂直に噴射するための火炎噴射装置5を配置している(図1参照)。
 第1焼却室2の底部には、被焼却物Dを焼却処理した際に発生する焼却灰Dbを排出するための排出口2aを設けている。排出口2aには、火格子型のシャッター2bを開閉自在に設けている。シャッター2bの上面には、未燃焼の被焼却物Dの通過が阻止され、焼却灰Dbを通過することが可能な孔部2cが所定間隔を隔てて複数設けられている(図1参照)。 
 なお、シャッター2bの孔部2cを通過し、排出口2aより下方の集積部に集積された焼却灰Dbは、図示しない取出し口から室外へ取り出され、定期的に廃棄処理される。
 第2焼却室3は、耐熱性及び耐火性を有する金属にて略円筒状に形成された横置き型の焼却室であり、第2焼却室3における長手方向Lの一端側は閉塞している。第2焼却室3における第1焼却室2と接する一端側の左側周壁には、第1焼却室2から第2焼却室3に向けて火炎Fiを吹き込むことが可能な吹込み口3aを開口している(図1参照)。
 吹込み口3aは、第2焼却室3の径方向中心部を通る縦軸Vより図1中左側の周壁に、第2焼却室3における内壁面又は外壁面の接線方向Taに向けて開口するとともに、第2焼却室3の外側斜め下方から内側斜め上方に向けて斜め上向きに開口している(図1参照)。
 第2焼却室3における長手方向Lの他端側の壁部には、被焼却物Dを焼却処理した際に発生する排ガスDaを室外へ排気することが可能な吹出し口3bを開口している。吹出し口3bは、第2焼却室3における他端側の径方向中心部に形成され、第2焼却室3と同心円に設けるとともに、第2焼却室3の内径より小径に形成している。吹出し口3bには排気ダクト3dを連設している(図1、図2参照)。
 第2焼却室3における吹込み口3aより下方の周壁には、第2焼却室3と第1焼却室2とを連通する孔部3cを径方向に貫通して設けている。孔部3cは、吹込み口3aと対応する部分の周壁に対して所定間隔を隔てて複数配列している(図1、図2参照)。
 孔部3cは、第1焼却室2から第2焼却室3に向けて火炎Fiを吹き込むよりも、第2焼却室3から第1焼却室2に向けて火炎Fiを積極的に吹き出させることが可能となるように形成している。
 被焼却物供給装置4は、第2焼却室3の一端側上部に対して水平に設置された筒状部4aと、筒状部4aの一端側上部に設けられたホッパ型の投入部4bと、筒状部4aの内部に対して回転可能に軸支された移送スクリュ4cとを備えている(図1参照)。
 筒状部4aは、第2焼却室3における一端側の上部周壁に対して長手方向Lと直交して設置している。投入部4bは、筒状部4aにおける第1焼却室2と反対側の一端側上部に設けている。移送スクリュ4cの一端には、筒状部4aの一端側に固定された減速機付きモータ4dを直結している。
 筒状部4aにおける第1焼却室2と対応する他端側には、被焼却物Dを押し出すための押出口4eを開口している。押出口4eは、第1焼却室2内に向けて被焼却物Dが供給される角度及び長さに設けている。
 火炎噴射装置5は、空気供給源AAから供給される高圧に加圧された空気Arを第1焼却室2内の底部に向けて垂直に吐出する空気吐出管5aと、空気吐出管5aから吐出される空気Arの吐出方向と直交して、燃料供給源FFから供給される液状の燃料Fuを吐出する燃料吐出管5bと、空気Arの吐出力によって霧状に拡散された燃料Fuに着火する着火装置5cとを備えている(図1参照)。
 空気吐出管5aの一端には、流量調整バルブ5a1及び空気供給路5a2を介して、高圧に加圧された空気Arを供給する空気供給源AAを接続している。空気吐出管5aの他端には、空気供給源AAから供給される高圧の空気Arを吐出する吐出口5aaを設けている。 
 空気吐出管5aの吐出口5aaは、吐出口5aaから吐出される空気Arが下方に向けて垂直に吐出される吐出方向に設けている。
 燃料吐出管5bの一端には、燃料供給ポンプ5b1、燃料調整バルブ5b2及び燃料供給路5b3を介して、液状の燃料Fuを供給する燃料供給源FFを接続している。燃料吐出管5bの他端には、燃料供給源FFから供給される燃料Fuを吐出する吐出口5bbを設けている。 
 燃料吐出管5bの吐出口5bbは、空気吐出管5aの吐出口5aaより下方に設けるとともに、空気吐出管5aの吐出口5aaに対して所定間隔を隔てて配置している。
 燃料吐出管5bの吐出口5bbから吐出される燃料Fuの吐出方向は、空気吐出管5aの吐出口5aaから吐出される空気Arの吐出方向に対して所定角度に交差(具体的には直交)している(図1参照)。
 着火装置5cは、火花(スパーク)を発生する圧電点火装置で構成され、燃料吐出管5bの吐出口5bbより下方に配置するとともに、空気吐出管5aの吐出口5aaから吐出される空気Arによって霧状に拡散された燃料Fuに対して着火可能な位置に配置している。
 燃料吐出管5bの吐出口5bbから吐出される液状の燃料Fuは、空気吐出管5aの吐出口5aaから吐出される空気Arの吐出力によって霧状に拡散されるため、空気Ar中に拡散された燃料Fuの濃度が極めて薄く、着火及び燃焼しやすい霧状の燃料Fuを生成することができる。
 また、第1焼却室2、第2焼却室3、後述する火炎吹出し筒30における火炎Fiにて加熱される部分は、親水性無機高分子溶液(具体的には、商品名=MSL「メタル・シリコン・リキッド」)を加えてなる耐熱セメント6にて覆っている。
 上述の焼却装置1を用いて、被焼却物Dを焼却処理する際の焼却方法について説明する。 
 被焼却物供給装置4の投入部4bに投入された被焼却物Dを、移送スクリュ4cの回転により第1焼却室2内へ供給する際に、空気吐出管5aの吐出口5aaから吐出される高圧の空気Arを、燃料吐出管5bの吐出口5bbの先端付近に向けて垂直に吐出し、燃料吐出管5bの吐出口5bbの先端付近に負圧を発生させる(図1参照)。
 これにより、燃料吐出管5bの吐出口5bbから吐出される液状の燃料Fuを強制的に吸引するとともに、液状の燃料Fuを空気Ar中に対して霧状に拡散させる。
 霧状に拡散された燃料Fuに着火装置5cで着火して燃焼させた火炎Fiを、第1焼却室2内の底部に向けて吹き付けるとともに、第1焼却室2内の底部に向けて吹き付けられる火炎Fiと、第1焼却室2内の底部に当たって吹き返される火炎Fiとを互いにぶつかり合わせて、火炎Fiの渦流を第1焼却室2内の底部付近に発生させる(図1参照)。
 燃料吐出管5bから吐出される燃料Fuを燃焼させた火炎Fiや、被焼却物Dを焼却処理した際に発生する火炎Fi及び排ガスDaを、吹込み口3aを介して第1焼却室2から第2焼却室3に向けて接線方向Trに吹き込むとともに、第2焼却室3における径方向中心部を通る軸芯Cを中心として、軸回りに旋回する火炎Fi及び空気Arの螺旋渦流Spを発生させる(図2参照)。
 第2焼却室3の内壁面に沿って螺旋方向に旋回する一部の火炎Fiを、吹込み口3aより下方の周壁に設けた複数の孔部3cを介して、第2焼却室3から第1焼却室2に向けて吹き出させるとともに、第1焼却室2内に発生させた渦巻く火炎Fiにぶつかり合わせる(図1参照)。
 すなわち、火炎噴射装置5から噴射される火炎Fiで被焼却物Dを焼却処理するよりも、複数の孔部3cを介して第2焼却室3から第1焼却室2に向けて吹き出させた火炎Fiを、第1焼却室2内に発生させた渦巻く火炎Fiとぶつかり合わせた方が、渦巻く火炎Fiの温度がより高温となる。 
 これにより、第1焼却室2内に供給される被焼却物Dを、火炎噴射装置5から噴射される火炎Fiより高い温度の火炎Fiにて確実に焼却処理することができる。
 火炎Fi中に含まれる未燃焼の被焼却物Dや、被焼却物Dを焼却処理した際に発生する排ガスDaは、第2焼却室3の内壁面に沿って一端側から他端側に向けて螺旋方向に旋回させながら焼却処理し、吹出し口3bから排気ダクト3dを介して室外へ排気する。 
 この結果、被焼却物Dを、環境汚染物質(例えばPCB)が完全燃焼するような高い温度にて焼却処理することができるとともに、焼却処理した際に発生する焼却灰Dbの量を少なくすることができる。
 しかも、燃料吐出管5bから吐出される燃料の吐出動作を停止又は休止しても、第1焼却室2内に発生させた火炎Fiの渦流を火種として、被焼却物供給装置4から供給される被焼却物Dを連続して焼却処理することができるため、燃料吐出管5bから吐出される燃料Fuの消費量を必要最小限に抑えることができる。
 さらに、火炎Fi中に含まれる未燃焼の被焼却物Dや、被焼却物Dを焼却処理した際に発生する排ガスDaを、第2焼却室3内に発生する螺旋渦流Spの移送力によって、第2焼却室3の内壁面に沿って一端側から他端側に向けて螺旋方向に旋回させながら焼却処理するため、第2焼却室3の全体を回転させるような回転装置が不要であり、焼却装置1の全体の構成を簡素化して、小型化することができる。
 さらにまた、被焼却物Dを焼却処理した際に発生する未完全燃焼の排ガスDa(例えば塵より大きい粒や片等)は、完全燃焼した排ガスDaより比重が重く、第2焼却室3の内壁面に沿って螺旋方向に旋回させる際に、遠心力によって螺旋渦流Spの中心部より外周部に向けて積極的に集積される。 
 これにより、未完全燃焼の排ガスDaが吹出し口3bから排気されることを防止することができる。
 一方、完全燃焼した排ガスDa(例えば無害なガスや微細な塵等)は、未完全燃焼の排ガスDaより比重が軽く、螺旋渦流Spの中心部に向けて積極的に集積されるため、第2焼却室3の吹出し口3bから室外に向けて効率よく排気することができる。
 未完全燃焼の排ガスDaは、完全燃焼した排ガスDaと略同等の比重になるまで、螺旋渦流Spの中心部より外周部に集積されたまま、第2焼却室3の内壁面に沿って螺旋方向に旋回され、第2焼却室3内に吹き込まれる高温の火炎Fiによって引き続き加熱される。
 これにより、未完全燃焼の排ガスDaを焼却処理するのに十分な処理時間を確保することができるとともに、被焼却物Dを焼却処理する際に、自然環境に影響を及ぼすような排ガスDaが室外へ排気されることをより確実に防止することができる。
 排ガスDaを小径の吹出し口3bから室外へ排気する際に、排ガスDaの流量が制限され流速が速くなるため、排ガスDaを第2焼却室3内に留まらせることなく、他端側の吹出し口3bから効率よく排気することができるとともに、被焼却物Dの焼却効率をより向上することができる。
 さらにまた、被焼却物供給装置4の筒状部4aを移送される被焼却物Dを、第2焼却室3から放熱される熱で加熱して第1焼却室2内に連続して供給するため、被焼却物Dを第1焼却室2内にて燃焼する温度に加熱する際の加熱時間が短くて済み、被焼却物Dをより短い時間で効率よく焼却処理することができる。
 さらにまた、第2焼却室3における火炎Fiにて加熱される部分を、親水性無機高分子溶液(具体的には、商品名=MSL「メタル・シリコン・リキッド」)を加えてなる耐熱セメント6にて覆っているため、被焼却物Dを、環境汚染物質が燃焼するような高い温度にて焼却処理する際に、第2焼却室3自体が溶解することを防止できる。
 これにより、被焼却物Dを、環境汚染物質が完全燃焼するような高い温度にて焼却処理することができるため、被焼却物Dを焼却した際に発生する排ガスDaの量をより少なくすることができるとともに、焼却装置1の耐熱性、及び耐火性が向上し、被焼却物Dを高い温度にて焼却する焼却機能が長期に亘り安定して得られる。
 さらにまた、耐熱セメント6に含まれる親水性無機高分子溶液はナトリウム(Na)を豊富に含んでおり、焼却時に発生する塩素を捕獲して塩化ナトリウムに置換する特性を有するため、ダイオキシンの発生を抑制する効果も得られる。
 以下、上述の焼却装置1における第2焼却室3のその他の例について説明する。この説明において、前記構成と同一または同等の部位については同一の符号を記してその詳しい説明を省略する。
 (実施例2) 
 上述の実施例1では、被焼却物Dを螺旋渦流Spにより螺旋方向へ移送する焼却装置1について説明したが、実施例2では、図3に示すように、螺旋渦流Spを誘導する螺旋渦流誘導路7を備えた焼却装置1について説明する。 
 図3は実施例2の焼却装置1を短手方向Wの中央部で分断した断面図である。
 実施例2の焼却装置1は、螺旋渦流Spを誘導する螺旋渦流誘導路7を第2焼却室3の内壁面に沿って設けるとともに、螺旋渦流Spの旋回方向と一致させて第2焼却室3の一端側から他端側に向けて螺旋状に配置している(図3参照)。
 詳しくは、火炎Fi及び空気Arからなる螺旋渦流Spを、第2焼却室3の内壁面に設けた螺旋渦流誘導路7に沿って、第2焼却室3の一端側から他端側に向けて螺旋方向に誘導するため、第2焼却室3における径方向中心部を通る軸芯Cを中心として、軸回りに旋回する螺旋渦流Spを効率よく発生させることができる(図3参照)。
 これにより、火炎Fi中に含まれる未燃焼の被焼却物Dや、被焼却物Dを焼却処理した際に発生する排ガスDaを、螺旋渦流Spにより第2焼却室3の内壁面に沿って第2焼却室3の一端側から他端側に向けて螺旋方向に旋回させながらスムースに移送することができるため、被焼却物Dを焼却処理するのに十分な移送距離及び焼却時間をより確実に確保することができる。
 この結果、焼却途中の被焼却物D、あるいは焼却済みの排ガスDaを、第2焼却室3内に留まらせることなく効率よく焼却処理することができるとともに、自然環境に対する影響が少ない完全燃焼させた排ガスDaを吹出し口3bから室外へより確実に排気することができるため、実施例1に加えた作用及び効果を奏することができる。
 (実施例3) 
 上述の実施例1では、火炎噴射装置5から噴射される火炎Fiを第1焼却室2内に向けて吹き付ける焼却装置1について説明したが、実施例3では、図4に示すように、火炎噴射装置5から噴射される火炎Fiを筒状の火炎吹出し筒30内に向けて吹き付ける焼却装置1について説明する。 
 図4は実施例3の焼却装置1を短手方向Wの中央部で分断した断面図である。
 詳しくは、火炎吹出し筒30は、耐熱性及び耐火性を有する金属にて略円筒状に形成されており、図示しない複数の支柱により第1焼却室2内の中央部に対して垂直に支持するとともに、火炎噴射装置5の着火装置5cより下方に配置している。
 火炎吹出し筒30における軸方向の上端側には、火炎Fi、空気Ar及び被焼却物Dの吹き込みが可能な開口部32を開口している。火炎吹出し筒30における軸方向の下端側は、火炎Fiの吹き出しを阻止する閉塞部31にて閉塞している。
 火炎吹出し筒30における閉塞部31以外の外周面には、火炎噴射装置5から供給される火炎Fiを、火炎吹出し筒30の径方向外側に向けて吹き出させるための火炎吹出し孔33を多数設けている。
 火炎吹出し孔33は、火炎吹出し筒30の径方向に貫通して形成するとともに、火炎吹出し筒30における閉塞部31以外の外周面に沿って周方向X、及び軸方向に所定間隔を隔てて配置している。火炎吹出し筒30における閉塞部31側の外周面には、焼却灰Dbを排出するための排出口34を複数設けている。
 この発明によれば、火炎噴射装置5から噴射される火炎Fiを火炎吹出し筒30内で完全燃焼させることができる。 
 実施例3の焼却装置1は、火炎噴射装置5から噴射される火炎Fiを火炎吹出し筒30内に向けて吹き込み、火炎吹出し筒30における下端側の閉塞部31に吹き付けて径方向外側に向けて拡散させるとともに、拡散された火炎Fiを、火炎吹出し筒30の内周面に沿って上端側に向けて逆流させる。
 火炎吹出し筒30の上端側に向けて逆流する火炎Fiと、火炎噴射装置5から噴射される火炎Fiとを、火炎吹出し筒30内でぶつかり合わせて入り乱れさせるとともに、径方向外側に向けて拡散された火炎Fiを外側に回り込ませて、火炎Fiの渦流を火炎吹出し筒30内に発生させる。
 火炎吹出し筒30内で完全燃焼させた火炎Fiは、火炎吹出し筒30の周面に設けた火炎吹出し孔33から径方向外側に向けて吹き出させるとともに、吹込み口3aを介して第1焼却室2から第2焼却室3に向けて接線方向Trに吹き込む。
 これにより、火炎噴射装置5から噴射される火炎Fiを火炎吹出し筒30の火炎吹出し孔33から径方向外側に向けて吹き出させるのに比べて、火炎吹出し筒30内にて入り乱れさせて渦流を発生させた方が、火炎吹出し筒30内で燃焼する燃焼時間が長くなる。
 この結果、火炎噴射装置5から噴射される火炎Fiを火炎吹出し筒30内で完全燃焼させて、所望する火力及び高温の火炎Fiを発生させることができるため、第1焼却室2内に供給される被焼却物Dを、火炎噴射装置5から噴射される火炎Fiより高い温度の火炎Fiにて確実に焼却処理することができる。
 しかも、火炎噴射装置5から噴射される火炎Fiの噴射を停止又は休止しても、火炎吹出し筒30内に発生させた火炎Fiの渦流を火種として、被焼却物供給装置4から供給される被焼却物Dを継続して燃焼させることができるため、実施例1に加えた作用及び効果を奏することができる。
 この発明の構成と、前記実施形態との対応において、 
 この発明の被焼却物供給手段は、実施形態の被焼却物供給装置4に対応し、 
 以下同様に、 
 火炎噴射手段は、火炎噴射装置5に対応するも、 
 この発明は、上述の実施形態の構成のみに限定されるものではなく、請求項に示される技術思想に基づいて応用することができ、多くの実施の形態を得ることができる。
 上述の実施例1,2では、1基の第2焼却室3にて焼却処理する焼却装置1について説明したが、例えば第2焼却室3の吹出し口3b側に2基目の第2焼却室3を連設してもよい。この場合、被焼却物Dの移送距離及び焼却時間をより長くすることができるため、被焼却物Dをより確実に焼却処理することができる。
 なお、第2焼却室3の連設数は2基のみに限定されるものではなく、2基以上連設してもよい。第2焼却室3の連設数に応じて被焼却物Dの移送距離及び焼却時間を変更することができる。
 また、例えば図示しない熱交換用の熱伝導管を、第2焼却室3の外周(或いは内周)に配管して、被焼却物Dを焼却処理する際に発生する熱により、熱伝導管内を流動する媒体(具体的には液体)を加熱して蒸発気化させ、その蒸気の圧力を利用して発電用蒸気タービンを駆動すれば、実施例1,2の焼却装置1を焼却処理以外の発電にも用いることができる。
 Ar…空気
 Fu…燃料
 Fi…火炎
 D…被焼却物
 Da…排ガス
 Ta…接線方向
 Sp…螺旋渦流
 1…焼却装置
 2…第1焼却室
 3…第2焼却室
 3a…吹込み口
 3b…吹出し口
 3c…孔部
 4…被焼却物供給装置
 5…火炎噴射装置
 5a…空気吐出管
 5b…燃料吐出管
 5c…着火装置
 6…耐熱セメント
 7…螺旋渦流誘導路
 30…火炎吹出し筒
 31…閉塞部
 32…開口部
 33…火炎吹出し孔

Claims (7)

  1.  被焼却物を火炎にて焼却処理する第1焼却室と、
    前記被焼却物を焼却処理した際に発生する排ガスを螺旋方向に旋回させながら焼却処理する略円筒状の第2焼却室と、
    前記被焼却物を前記第1焼却室内に供給する被焼却物供給手段と、
    前記火炎を前記第1焼却室内の上部から該第1焼却室内の底部に向けて噴射する火炎噴射手段と、が備えられ、
    前記第1焼却室が、
    前記第2焼却室における一端側の周壁に対して接するように連設され、
    前記第1焼却室から前記第2焼却室に向けて前記火炎を吹き込ませることが可能な吹込み口が、
    前記第2焼却室における前記第1焼却室と接する一端側の周壁に開口され、
    前記第2焼却室内から前記排ガスを室外へ排気することが可能な吹出し口が、
    前記第2焼却室における他端側の壁部に開口された
    焼却装置。
  2.  前記吹込み口が、
    前記第2焼却室における一端側の周壁の内壁面又は外壁面の接線方向に開口されるとともに、該第2焼却室の外側斜め下方から内側斜め上方に向けて斜め上向きに形成された
    請求項1に記載の焼却装置。
  3.  前記第1焼却室と前記第2焼却室とを連通する孔部が、
    前記第2焼却室における前記吹込み口より下方の周壁に設けられ、
    前記孔部が、
    前記吹込み口と対応する部分の前記周壁に対して所定間隔を隔てて複数配列された
    請求項1又は2に記載の焼却装置。
  4.  前記火炎噴射手段が、
    前記第1焼却室内の底部に向けて空気供給源から供給される高圧の空気を吐出する空気吐出管と、
    前記空気吐出管から吐出される空気の吐出方向と交差して、燃料供給源から供給される燃料を吐出する燃料吐出管と、
    前記空気吐出管から吐出される空気の吐出力によって霧状に拡散された燃料に着火する着火手段とで構成された
    請求項1~3のいずれか一つに記載の焼却装置。
  5.  前記吹出し口が、
    前記第2焼却室における他端側の径方向中心部に対して該第2焼却室と同心円に設けられるとともに、該第2焼却室の内径より小径に形成された
    請求項1~4のいずれか一つに記載の焼却装置。
  6.  前記被焼却物を焼却処理した際に発生する排ガスを誘導する螺旋渦流誘導路が、
    前記第2焼却室の内壁面に沿って該第2焼却室の一端側から他端側に向けて設けられた
    請求項1~5のいずれか一つに記載の焼却装置。
  7.  前記第1焼却室内の中央部に、
    前記火炎噴射手段と対応する上端側が開口され、前記第1焼却室内の底部と対応する下端側が閉塞された筒状の火炎吹出し筒が垂直に配置され、
    前記火炎吹出し筒の外周面に、
    該火炎吹出し筒内に向けて吹き込まれる火炎を、該火炎吹出し筒の径方向外側に向けて吹き出させる複数の火炎吹出し孔が設けられた
    請求項1~6のいずれか一つに記載の焼却装置。
PCT/JP2016/079931 2016-10-07 2016-10-07 焼却装置 WO2018066122A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/079931 WO2018066122A1 (ja) 2016-10-07 2016-10-07 焼却装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/079931 WO2018066122A1 (ja) 2016-10-07 2016-10-07 焼却装置

Publications (1)

Publication Number Publication Date
WO2018066122A1 true WO2018066122A1 (ja) 2018-04-12

Family

ID=61830913

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/079931 WO2018066122A1 (ja) 2016-10-07 2016-10-07 焼却装置

Country Status (1)

Country Link
WO (1) WO2018066122A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021057199A1 (zh) * 2019-09-23 2021-04-01 闵鑫沛 烟气高温过滤消烟杀菌焚烧炉

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05296427A (ja) * 1992-04-17 1993-11-09 Kinsei Sangyo:Kk 廃棄物の乾留ガス化焼却処理装置
JPH1144409A (ja) * 1997-07-23 1999-02-16 Kozo Sekimoto 燃焼炉
JP2004132567A (ja) * 2002-10-08 2004-04-30 Hokuriku Soken:Kk 燃焼炉
JP2004301353A (ja) * 2003-03-28 2004-10-28 Hiroshi Murakami 焼却炉及び焼却方法
JP2005095749A (ja) * 2003-09-24 2005-04-14 Ishikawajima Harima Heavy Ind Co Ltd 溶融スラグ水砕水の処理方法及び装置
JP2012017872A (ja) * 2010-07-06 2012-01-26 Sakae Murata 焼却装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05296427A (ja) * 1992-04-17 1993-11-09 Kinsei Sangyo:Kk 廃棄物の乾留ガス化焼却処理装置
JPH1144409A (ja) * 1997-07-23 1999-02-16 Kozo Sekimoto 燃焼炉
JP2004132567A (ja) * 2002-10-08 2004-04-30 Hokuriku Soken:Kk 燃焼炉
JP2004301353A (ja) * 2003-03-28 2004-10-28 Hiroshi Murakami 焼却炉及び焼却方法
JP2005095749A (ja) * 2003-09-24 2005-04-14 Ishikawajima Harima Heavy Ind Co Ltd 溶融スラグ水砕水の処理方法及び装置
JP2012017872A (ja) * 2010-07-06 2012-01-26 Sakae Murata 焼却装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021057199A1 (zh) * 2019-09-23 2021-04-01 闵鑫沛 烟气高温过滤消烟杀菌焚烧炉

Similar Documents

Publication Publication Date Title
KR101055854B1 (ko) 폐기물 건류 소각장치
JP4789916B2 (ja) 燃焼炉
KR100821124B1 (ko) 열회수용 연소장치
JP5091612B2 (ja) バーナ
KR101736838B1 (ko) 물과 연소공기의 열분해를 이용한 하이브리드형 연소장치
KR101928762B1 (ko) 하이브리드 고온 사이클론 연소기
KR100938555B1 (ko) 소각장치
WO2018066122A1 (ja) 焼却装置
KR100413188B1 (ko) 가연성 분체연료 연소기
KR100562374B1 (ko) 보조 소각로
JP5490956B1 (ja) 焼却装置
JP5509397B1 (ja) 燃焼装置
KR200408326Y1 (ko) 연소기의 연소실 내 공기 공급장치
KR20030076268A (ko) 폐플라스틱 고형연료 연소 버너
KR200157672Y1 (ko) 소각기
KR100476997B1 (ko) 가연성 분체 연료 연소기 장치
KR100666043B1 (ko) 연소기의 연소실 내 공기 공급장치
KR101967117B1 (ko) 사이클론 연소구조의 폐기물 소각장치
JPH10185115A (ja) 産業廃棄物焼却炉の粉体燃焼用バ−ナ
JP5681319B1 (ja) 燃焼装置
KR20190098343A (ko) 온수 및 열풍용 소각 장치
KR102407771B1 (ko) 고온열분해 연소기
KR20040107168A (ko) Rdf(고형연료)를 활용한 연속식 소각보일러
KR101923548B1 (ko) 무정지 금속용해로
JP2005155982A (ja) 燃焼炉

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16918318

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16918318

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP

NENP Non-entry into the national phase

Ref country code: JP