WO2018064919A1 - 一种骨内植入物及其制法 - Google Patents

一种骨内植入物及其制法 Download PDF

Info

Publication number
WO2018064919A1
WO2018064919A1 PCT/CN2017/096309 CN2017096309W WO2018064919A1 WO 2018064919 A1 WO2018064919 A1 WO 2018064919A1 CN 2017096309 W CN2017096309 W CN 2017096309W WO 2018064919 A1 WO2018064919 A1 WO 2018064919A1
Authority
WO
WIPO (PCT)
Prior art keywords
implant
alveolar bone
bone defect
porous
implanted
Prior art date
Application number
PCT/CN2017/096309
Other languages
English (en)
French (fr)
Inventor
王志光
潘力诚
戴宜均
邓富元
何美泠
Original Assignee
高雄医学大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 高雄医学大学 filed Critical 高雄医学大学
Publication of WO2018064919A1 publication Critical patent/WO2018064919A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61CDENTISTRY; APPARATUS OR METHODS FOR ORAL OR DENTAL HYGIENE
    • A61C5/00Filling or capping teeth

Definitions

  • the present invention provides an intraosseous implant that is individually designed according to the patient's alveolar bone defect pattern and fabricated by 3D printing.
  • the intraosseous implant provides a new way of guiding bone regeneration to physiologically reshape the amount and quality of the alveolar bone, and by implanting the implant simultaneously, to facilitate the convenience of the surgical procedure, and to reduce the number of times The inconvenience caused by surgery.
  • the alveolar bone resorption is a must be overcome when performing dental implant treatment.
  • the problem There are two solutions to this problem in the clinic. One is to change the design of the implant, and the other is the alveolar bone regeneration.
  • Traditional bone regeneration is the use of allogeneic bone powder or autologous bone mass to increase bone mass or reconstruct the shape of the alveolar bone.
  • autologous bone mass the use of patient autologous bone can reduce immune rejection, but it will cause additional wounds outside the patient, and it is also difficult to control the shape and size of the autologous bone taken.
  • the alternative method is to use artificial bone powder, which can reduce the extra wound of bone extraction, and can also be used on large-scale bone defects, but the operation of artificial bone powder is not easy, and the difficulty in controlling the shape of the regenerated bone is also an application problem.
  • the present invention provides a novel intraosseous implant comprising a porous matrix to fill the alveolar bone defect and serve as a three-dimensional space scaffold for guiding bone regeneration to address the osteogenesis height of the combined bone formation surgery and implant surgery. It is difficult to predict, and the configuration is difficult to maintain; the intraosseous implant also has a sleeve for the insertion of the implant.
  • the present invention also provides a method of making the intraosseous implant to improve the convenience of the surgical operation and to reduce the surgical procedure. effect.
  • the tooth bone portion of the patient to be implanted is first scanned by a computed tomography to obtain a stereoscopic image, and the alveolar bone defect type is reconstructed according to the stereoscopic image.
  • State and design a digital stereo model that conforms to the shape of the alveolar bone defect.
  • the model is converted into a printable 3D image file and then printed into a green embryo by a temperature sensitive water gel system, such as p(NiPAAm) or p(NiPAAm-MAA), and the composite bioceramic printing material is obtained by high temperature sintering.
  • the porous matrix has an interpenetrating pore design, which can effectively guide the cells to grow upwards for bone regeneration in the bone defect region, thereby promoting the transformation of the porous matrix into autologous bone.
  • the operation is not easy and the bone powder filler is easily deformed, has a fixed pattern, and undergoes a sintering process, and has higher mechanical strength than the conventional bone powder for the support of the implant.
  • the traditional bone powder alveolar bone regeneration operation it takes 3 to 6 months to convert the bone powder filler into the autogenous bone, and the implant can be locked.
  • the porous matrix can achieve the effect of locking into the implant at one time, and the effect is also reduced.
  • the subsequent crown installation can be evaluated four to eight weeks after the operation, and the execution time of the alveolar bone filling and the implant locking is significantly shortened.
  • the temperature sensitive water gel solution for making the alveolar bone filled porous matrix can adjust the viscosity, concentration and addition ratio according to the ceramic powder. Since the temperature sensitive water glue solution can effectively increase the uniform shrinkage between the ceramic powders by controlling the temperature, the cost and time of the current ceramic production by mechanical force extrusion can be saved, and the shape is affected by the temperature sensitive water gel property. Unconstrained by the mold, and regular interpenetrating holes enhance the diversification of its molding method and style, break through the limitations of traditional bioceramic production, and follow the development of 3D printing technology.
  • the porous matrix further comprises a drillable cavity design, which provides a positioning function when implanting the implant, avoiding nerve damage and position. Good and poor healing problems.
  • the cavity may be combined with a sleeve that is locked by the implant implant, and has the effect of protecting the substrate from the application of external stress when the implant is locked.
  • the height and shape of bone formation can be accurately predicted, the alveolar bone defect pattern can be reconstructed, and the implant can be implanted to solve the physiological remodeling of the amount and quality of the alveolar bone, and inappropriate
  • the relationship between the crown and the length of the implant and the excessive bite force, etc., and the effect of the porcelain block filling and the insertion point of the implant can be achieved by one-time operation.
  • an intraosseous implant having a configuration comprising: (a) a porous matrix comprising a a first surface facing the implanted periodontal alveolar bone defect and conforming to a shape and a shape of the implanted periodontal alveolar bone defect; a second surface located relative to the first surface a cavity having an opening on the second surface; and (b) a sleeve including an upper end for inserting an implant; and a lower end for placing the a cavity contained in the porous substrate; and a hole for receiving the implant.
  • the configuration of the porous substrate of the present invention is based on computed tomography images of the implanted periodontal alveolar bone defect site.
  • the porous basis system of the present invention is formed using a 3D printing technique.
  • the porous matrix system of the present invention is comprised of a non-metallic material.
  • the non-metallic material is a porous ceramic. More preferably, the porous ceramic is composed of a temperature sensitive water gel and a bioceramic powder.
  • the temperature sensitive water gel is formed by mixing p(NiPAAm) or p(NiPAAm-MAA) or a combination thereof with water.
  • the p(NiPAAm) or p(NiPAAm-MAA) or a combination thereof is mixed with the aqueous system in a weight ratio ranging from 1:1 to 1:5.
  • the bioceramic powder of the present invention is calcium phosphate.
  • the temperature sensitive water gel of the present invention is mixed with the bioceramic powder in a weight ratio ranging from 1:1 to 1:2.
  • the sleeve of the present invention is constructed of a non-metallic material.
  • the non-metallic material is a polymer material.
  • the present invention also provides a method of making an intraosseous implant, the method comprising: obtaining a stereoscopic image of a periodontal alveolar bone defect site to be implanted into the intraosseous implant; establishing a stereo image according to the stereoscopic image a three-dimensional model; a porous substrate having a configuration and an anastomosis of a size and a shape of the periodontal alveolar bone defect portion according to the digital three-dimensional model, the porous substrate comprising a first surface facing Implanting a periodontal alveolar bone defect and conforming to a shape and a shape of the implanted periodontal alveolar bone defect; a second surface located at a position relative to the first surface; a cavity having a cavity An opening is located on the second surface; and a sleeve is placed in the cavity contained in the porous substrate, the sleeve includes an upper end for placing an implant; It is used to insert a cavity contained in the porous substrate; and a hole
  • the stereoscopic image of the periodontal alveolar bone defect site of the present invention is obtained by computerized tomography.
  • the porous basis system is fabricated by 3D printing technology. More preferably, the porous basis system consists of Made up of non-metallic materials.
  • the non-metallic material is a porous ceramic.
  • the porous ceramic is composed of a temperature sensitive water gel and a bioceramic powder.
  • the temperature sensitive water gel is formed by mixing p(NiPAAm) or p(NiPAAm-MAA) or a combination thereof with water.
  • the p(NiPAAm) or p(NiPAAm-MAA) or a combination thereof is mixed with the water system in a weight ratio ranging from 1:1 to 1:5.
  • the bioceramic powder of the present invention is calcium phosphate.
  • the temperature sensitive water gel of the present invention is mixed with the bioceramic powder in a weight ratio ranging from 1:1 to 1:2.
  • the sleeve of the present invention is constructed of a non-metallic material.
  • the non-metallic material of the present invention is a polymeric material.
  • the present invention also provides a 3D printing material for making an aggregate, which comprises a temperature sensitive water gel and a bioceramic powder.
  • the temperature sensitive water gel of the present invention is formed by mixing p(NiPAAm) or p(NiPAAm-MAA) or a combination thereof with water.
  • p(NiPAAm) or p(NiPAAm-MAA) or a combination thereof is mixed with the aqueous system in a weight ratio ranging from 1:1 to 1:5.
  • the bioceramic powder of the present invention is calcium phosphate.
  • the temperature sensitive water gel of the present invention is mixed with the bioceramic powder in a weight ratio ranging from 1:1 to 1:2.
  • Figure 1 is a schematic view of an embodiment of an intraosseous implant
  • Figure 2 is a 3D design drawing design designed to print out the form
  • Figure 3 is a finished product of a porous substrate after solid printing
  • Figure 4 is a view showing a combination of a sleeve and a porous substrate
  • Figure 5 is a test result of a pig animal using a porous matrix and conventional bone powder for alveolar bone filling.
  • the intraosseous implant provides a new surgical approach to guide bone regeneration to physiologically reshape the amount and quality of the alveolar bone, and to facilitate the ease of operation and reduce the number of implants by simultaneously implanting the implant. The inconvenience caused by the second operation.
  • FIG. 1 A schematic view of an embodiment of an intraosseous implant 100 made in accordance with the present invention is shown in FIG. 1.
  • the configuration includes: (a) a porous substrate 101 comprising a first surface 1011 oriented toward the periodontal alveolar implant a bone defect portion and a shape conforming to a size and a shape of the implanted periodontal alveolar bone defect; a second surface 1012 located at a position relative to the first surface 1011; a cavity 1013 having an opening The second surface 1012; and (b) a sleeve 102 comprising an upper end 1021 for inserting an implant; a lower end 1022 for inserting the porous substrate a cavity; and a hole 1023 for receiving the implant.
  • the preparation steps are as follows: a.
  • the colloidal solution of step c and the bioceramic powder (calcium phosphate used in this embodiment) are mixed in a weight ratio ranging from 1:1 to 1:2 to form a slurry. e.
  • step d Using the digital stereo model of step b as the material of step d, using a negative temperature gel deposition molding 3D printer to produce a matrix green embryo; and f. feeding the raw embryo of step e into a high temperature furnace Sintering was carried out at 600 ° C to 1350 ° C to obtain a porous substrate 101, and the finished product is shown in FIG.
  • the sleeve 10 is made by adding the polymer material to the cavity 1013.
  • the sleeve 102 is designed to effectively protect the substrate from being cracked by the application of external stress when the implant is locked. It can achieve one-time locking into the implant. Due to the high absorbability of the material, the strength is high, so the operation time is also short. The subsequent crown installation can be evaluated four to eight weeks after the operation.
  • Porcine animal test results using a porous matrix and conventional bone powder for alveolar bone filling As shown in Figure 5, the results of the two groups of pig animals showed that the porous matrix had a fixed pattern and higher strength than the conventional bone powder filling. Less susceptible to deformation.

Landscapes

  • Health & Medical Sciences (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Dentistry (AREA)
  • Epidemiology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Prostheses (AREA)
  • Materials For Medical Uses (AREA)

Abstract

一种骨内植入物(100),其构型包含一多孔性基体(101)以及一管套(102)。并提供一种用于植入骨内植入物(100)的方法,包含:取得所欲植入骨内植入物(100)的牙周齿槽骨缺损部位立体影像;建立一数位立体模型;依据数位立体模型制作一构型吻合所植入牙周齿槽骨缺损部位的尺寸与型态的多孔性基体(101);以及置入一管套(102)于多孔性基体(101)所含的空腔(1013)。

Description

一种骨内植入物及其制法 技术领域
本发明提供一种骨内植入物,其系依据患者齿槽骨缺损型态个别设计,并借由3D打印制作。所述骨内植入物提供了一个引导骨再生以生理性重塑齿槽骨的量与质的新方式,并借由同时植入植体,以增进手术操作的便利性,以及减少多次手术所带来的不便。
背景技术
齿槽骨在拔牙之后,不可避免地会产生一连串的生理性骨重塑,此时齿槽骨的量和质变会快速改变而减少,齿槽骨吸收便是一个在执行植牙处置时必须克服的问题。在临床上针对此项问题而有两方面的解决方式,一是改变植体的设计,另一个是齿槽骨再生手术。
由于颚骨有解剖学上的限制,在下颚骨会面临有可能破坏下齿槽神经的风险,而上颚骨则会有上颚窦感染疑虑。在临床上有许多的方式来解决这个骨量不足的问题,有使用不同植体长度,如使用颧骨植体或是短植体,来克服颚骨解剖学上的限制。然而,这些设计便可能产生如不适当的牙冠与植体长度比例及过重的咬合力所造成的问题。
传统的骨再生术式,是运用异体骨粉或是自体骨块来增加骨量或是重建齿槽骨形状。使用自体骨块时,运用患者自体骨可以减少免疫排斥,但会造成患者另外的伤口之外,也较难以控制所取的自体骨的形状和大小。取代的方式是使用人工骨粉,可以减少取骨的额外伤口,也可以使用在大规模的骨缺损上,但是人工骨粉的操作不易,且在再生骨形状控制困难也是运用上的问题。此外,常常必须先施行骨再生手术之后,才施行植牙处置,因而患者需要经历多重手术,过程繁复而不便。
发明内容
本发明提供了一种新式骨内植入物,包含一多孔性基体以填充齿槽骨缺损部位并作为引导骨再生的三维空间支架,以解决合并骨生成手术及植牙手术的骨生成高度不易预测,以及构型难以维持的问题;所述骨内植入物并同时具有一管套以供植体的锁入。本发明并提供一种制作所述骨内植入物的方法,以达到增进手术操作的便利性以及减化手术流程的 效果。
为建立型态符合齿槽骨缺损形状的多孔性基体以填充齿槽骨,首先利用计算机断层扫描欲植牙患者的齿槽骨部位以取得立体影像,依所述立体影像重建齿槽骨缺损型态并设计出符合齿槽骨缺损形状的数位立体模型。将所述模型转换为可打印的3D图档后以温感性水胶系统,如p(NiPAAm)或p(NiPAAm-MAA),复合生物陶瓷打印材料打印制作成生胚,经高温烧结后可获得一尺寸外型与临床应用上相符的齿槽骨填充多孔性基体。
所述多孔性基体具有互穿性孔洞的设计,可有效引导细胞向上生长,以供骨缺损区域的骨再生,进而促使多孔性基体转化为自体骨。
相较于传统骨粉填充法的操作不易以及骨粉填充物容易变形,具有固定型态,并经过烧结过程,相较于传统骨粉具有更高的机械强度以供植体支撑。此外,进行传统骨粉齿槽骨再生手术后尚需3至6个月使骨粉填充物转换为自体骨后方可进行植体锁入,多孔性基体可以达到一次性锁入植体的效果,亦减少了传统骨粉填充法中等待骨粉转换为自体骨的时间,于手术术后四至八周即可评估进行后续牙冠安装,显著缩短齿槽骨填充及植体锁入的执行时间。
制作齿槽骨填充多孔性基体的温感性水胶溶液可依陶瓷粉末的不同,调整其黏度、浓度及添加比例。由于温感性水胶溶液可借由控制温度来有效提高陶瓷粉末间均匀收缩,可节省现行多通过机械力挤压定型的陶瓷制作的成本与时间,并因温感性水胶特性,使其形态上不受模具限制,且具有规则性的互穿性孔洞提升其成型方式与样式的多元,突破传统生物陶瓷制作上限制,并跟进3D打印技术发展脚步。
为便于之后植牙时植体的锁入,所述多孔性基体更包含一可钻入的空腔设计,所述设计并提供了植入植体时的定位功能,避免神经受损、位置不佳及愈合不良的问题。所述空腔更可与一管套结合,所述管套系供植牙用植体的锁入,具有在植体锁入时保护基体不被外应力的施加导致崩裂的效果。
借由施用所述新式三维空间支架,可精确预测骨生成的高度及形状,重建齿槽骨缺损型态,同时植入植体以解决生理性重塑齿槽骨的量和质,和不适当的牙冠与植体长度比例及过重的咬合力等的相关问题,并得以于一次性手术即达成瓷块填补及提供植体锁入点的效果。
本发明的目的是提供一种骨内植入物,其构型包含:(a)一多孔性基体,其包含有一 第一表面,其朝向所植入牙周齿槽骨缺损部位且形状吻合所述所植入牙周齿槽骨缺损部位的尺寸与型态;一第二表面,其位于相对于第一表面的位置;一空腔,其具一开口位于所述第二表面;以及(b)一管套,其包含有一上端,其系用以置入一植体;一下端,其系用以置入所述多孔性基体所含的空腔;以及一孔洞,其系用以容纳所述植体。
在一实施例中,本发明所述的多孔性基体的构型系根据所植入牙周齿槽骨缺损部位的计算机断层扫描影像所建立。
在一实施例中,本发明所述的多孔性基体系以3D打印技术而成。
在一实施例中,本发明所述的多孔性基体系由非金属材料所构成。较佳地,所述非金属材料为多孔性陶瓷。更佳地,所述多孔性陶瓷系为温感性水胶以及生物陶瓷粉末所构成。
更佳地,所述温感性水胶系由p(NiPAAm)或p(NiPAAm-MAA)或其组合与水混合而成。
更佳地,所述p(NiPAAm)或p(NiPAAm-MAA)或其组合与水系以重量百分比范围1∶1到1∶5的比例混合而成。
在另一实施例中,本发明所述的生物陶瓷粉末为磷酸钙。
在另一实施例中,本发明所述的温感性水胶与所述生物陶瓷粉末以重量百分比范围1∶1到1∶2的比例混合。
在一实施例中,本发明所述的管套由非金属材料所构成。较佳地,所述非金属材料为高分子材料。
本发明并提供一种制作骨内植入物的方法,所述方法包含:取得欲植入所述骨内植入物的牙周齿槽骨缺损部位的立体影像;依据所述立体影像建立一数位立体模型;依据所述数位立体模型制作一构型吻合所述牙周齿槽骨缺损部位的尺寸与型态的一多孔性基体,所述多孔性基体包含有一第一表面,其朝向所植入牙周齿槽骨缺损部位且形状吻合所述所植入牙周齿槽骨缺损部位的尺寸与型态;一第二表面,其位于相对于第一表面的位置;一空腔,其具一开口位于所述第二表面;以及置入一管套于所述多孔性基体所含的所述空腔,所述管套包含有一上端,其系用以置入一植体;一下端,其系用以置入所述多孔性基体所含的空腔;以及延伸自上端至下端的一孔洞,其系用以容纳所述植体。
在一实施例中,本发明所述的牙周齿槽骨缺损部位的立体影像系通过计算机断层扫瞄取得。较佳地,所述多孔性基体系以3D打印技术制作而成。更佳地,所述多孔性基体系由 非金属材料所构成。
更佳地,所述非金属材料为多孔性陶瓷。
更佳地,所述多孔性陶瓷系为温感性水胶以及生物陶瓷粉末所构成。
更佳地,所述温感性水胶系由p(NiPAAm)或p(NiPAAm-MAA)或其组合与水混合而成。
更佳地,所述p(NiPAAm)或p(NiPAAm-MAA)或其组合与所述水系以重量百分比范围1∶1到1∶5的比例混合而成。
在另一实施例中,本发明所述的生物陶瓷粉末为磷酸钙。
在另一实施例中,本发明所述的温感性水胶与所述生物陶瓷粉末系以重量百分比范围1∶1到1∶2的比例混合。
在一实施例中,本发明所述的管套系由非金属材料所构成。
在一实施例中,本发明所述的非金属材料为高分子材料。
本发明同时更提供一种用于制作骨材的3D打印材料,其系包含温感性水胶以及生物陶瓷粉末。
在一实施例中,本发明所述的温感性水胶系由p(NiPAAm)或p(NiPAAm-MAA)或其组合与水混合而成。较佳地,其中p(NiPAAm)或p(NiPAAm-MAA)或其组合与水系以重量百分比范围1∶1到1∶5的比例混合而成。
在另一实施例中,本发明所述的生物陶瓷粉末为磷酸钙。
在另一实施例中,本发明所述的温感性水胶与所述生物陶瓷粉末以重量百分比范围1∶1到1∶2的比例混合。
附图说明
图1是骨内植入物实施例示意图;
图2是3D设计绘图设计所设计欲打印出型态;
图3是实体打印烧结后多孔性基体成品;
图4是管套与多孔性基体结合图;
图5是使用多孔性基体与传统骨粉进行齿槽骨填充的猪只动物试验结果。
具体实施方式
本发明的目的是提供一种骨内植入物,其系依据患者齿槽骨缺损型态个别设计,并借由3D打印制作。所述骨内植入物提供了一个引导骨再生以生理性重塑齿槽骨的量与质的手术新方式,并借由同时植入植体,以增进手术操作的便利性,以及减少多次手术所带来的不便。
以下的实施例非为限定用途,仅用以呈现此发明的多种面向。
实施例一
本发明所制作的骨内植入物100实施例示意图如图1,其构型包含:(a)一多孔性基体101,其包含有一第一表面1011,其朝向所植入牙周齿槽骨缺损部位且形状吻合所述所植入牙周齿槽骨缺损部位的尺寸与型态;一第二表面1012,其位于相对于第一表面1011的位置;一空腔1013,其具一开口位于所述第二表面1012;以及(b)一管套102,其包含有一上端1021,其系用以置入一植体;一下端1022,其系用以置入所述多孔性基体所含的空腔;以及一孔洞1023,其系用以容纳所述植体。其制备步骤如下:a.以计算机断层扫描取得齿槽骨缺损部位的立体影像;b.依据步骤a的立体影像设计一用于填充齿槽骨的基体的数位立体模型,如图2;c.混合p(NiPAAm)或p(NiPAAm-MAA)与水以得出胶体溶液,其中p(NiPAAm)或p(NiPAAm-MAA)与水的体积比例范围系从1∶1到1∶5,而以1∶5为最佳;d.将步骤c的胶体溶液与生物陶瓷粉末(于此实施例中使用的是磷酸钙)以重量比例范围从1∶1到1∶2的比例混合而成浆体;e.将步骤b的数位立体模型以步骤d的浆体为材料,利用负温感凝胶沉积成型3D打印机制作出基体生胚;及f.将步骤e的生胚送入高温炉内以600℃至1350℃进行烧结,以得出多孔性基体101,成品如图3所示。
实施例二
将空腔1013中加入高分子材料所制作的管套102,如图4所示,其管套102设计可以有效在植体锁入时保护基体不被外应力的施加导致崩裂,此项组合设计可以达到一次性锁入植体,由于材料微生物可吸收性,其强度高,因此手术方便时间也较短,可于术后四至八周评估进行后续牙冠安装。
实施例三
使用多孔性基体与传统骨粉进行齿槽骨填充的猪只动物试验结果。如图5所示,2组猪只动物试验结果均显示,相较于传统骨粉填充,多孔性基体具有固定型态以及更高的强度, 较不易变形。
为使此发明所属技术领域中具有通常知识者得以了解制作以及使用这项技艺的方法,此发明已描述并已充分详细举例说明,然而,各式各样的变体,修改或改进应被视为无异于此项发明的精神与范围。
本发明所属技术领域中具有通常知识者易于理解并实现本发明的目的,并获得先前所提到的结果及优点。本发明所使用的动物,材料以及生产它们的过程和方法乃代表最佳实施例,乃示例性质,而不作为限制本发明的范围用途。本领域的技术人员与制作或使用此项技艺时所将产生的修改或其他用途皆涵盖于本发明的精神内,并且由权利要求所限定。

Claims (10)

  1. 一种骨内植入物,其构型包含:
    (a)一多孔性基体,其包含有一第一表面,其朝向所植入牙周齿槽骨缺损部位且形状吻合所述所植入牙周齿槽骨缺损部位的尺寸与型态;一第二表面,其位于相对于第一表面的位置;一空腔,其具一开口位于所述第二表面;以及
    (b)一管套,其包含有一上端,其系用以置入一植体;一下端,其系用以置入所述多孔性基体所含的空腔;以及一孔洞,其系用以容纳所述植体。
  2. 如权利要求1所述的骨内植入物,其中所述多孔性基体的构型系根据所植入牙周齿槽骨缺损部位的计算机断层扫描影像所建立。
  3. 如权利要求2所述的骨内植入物,其中所述多孔性基体系以3D打印技术而成。
  4. 如权利要求3所述的骨内植入物,其中所述多孔性基体系由非金属材料所构成。
  5. 如权利要求1所述的骨内植入物,其中所述管套系由非金属材料所构成。
  6. 一种制作骨内植入物的方法,所述方法包含:
    取得欲植入所述骨内植入物的牙周齿槽骨缺损部位的立体影像;
    依据所述立体影像建立一数位立体模型;
    依据所述数位立体模型制作一构型吻合所述牙周齿槽骨缺损部位的尺寸与型态的一多孔性基体,所述多孔性基体包含有一第一表面,其朝向所植入牙周齿槽骨缺损部位且形状吻合所述所植入牙周齿槽骨缺损部位的尺寸与型态;一第二表面,其位于相对于第一表面的位置;一空腔,其具一开口位于前述的第二表面;以及
    置入一管套于所述多孔性基体所含的所述空腔,所述管套包含有一上端,其系用以置入一植体;一下端,其系用以植入前述多孔性基体所含的空腔;以及延伸自上端至下端的一孔洞,其系用以容纳所述植体。
  7. 如权利要求6所述的方法,其中所述牙周齿槽骨缺损部位的立体影像系通过计算机断层扫瞄取得。
  8. 如权利要求7所述的方法,其中所述多孔性基体系以3D打印技术制作而成。
  9. 如权利要求8所述的方法,其中所述多孔性基体系由非金属材料所构成。
  10. 如权利要求9所述的方法,其中所述管套系由非金属材料所构成。
PCT/CN2017/096309 2016-10-06 2017-08-07 一种骨内植入物及其制法 WO2018064919A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201662404783P 2016-10-06 2016-10-06
US62/404,783 2016-10-06

Publications (1)

Publication Number Publication Date
WO2018064919A1 true WO2018064919A1 (zh) 2018-04-12

Family

ID=61831630

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/096309 WO2018064919A1 (zh) 2016-10-06 2017-08-07 一种骨内植入物及其制法

Country Status (2)

Country Link
TW (1) TWI663965B (zh)
WO (1) WO2018064919A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2301535A (en) * 1995-05-30 1996-12-11 Asahi Optical Co Ltd Anchor for fixing a screw in bone
US20050079469A1 (en) * 2003-08-21 2005-04-14 Yasumasa Akagawa Method for fixing an implant, fixing member for the implant and implant composite
US20090004627A1 (en) * 2005-12-16 2009-01-01 Mitsunori Ishimoto Dental Material And Composite Dental Material Formed By Using Hydroxy Apatite
CN104055594A (zh) * 2013-09-24 2014-09-24 广州中国科学院先进技术研究所 具有多孔支架式结构的牙种植体
CN104083226A (zh) * 2014-07-11 2014-10-08 福建中科康钛材料科技有限公司 个性化基台组件及其制备方法
WO2015167050A1 (ko) * 2014-04-30 2015-11-05 주식회사 이덴테크 임플란트용 차폐막

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2301535A (en) * 1995-05-30 1996-12-11 Asahi Optical Co Ltd Anchor for fixing a screw in bone
US20050079469A1 (en) * 2003-08-21 2005-04-14 Yasumasa Akagawa Method for fixing an implant, fixing member for the implant and implant composite
US20090004627A1 (en) * 2005-12-16 2009-01-01 Mitsunori Ishimoto Dental Material And Composite Dental Material Formed By Using Hydroxy Apatite
CN104055594A (zh) * 2013-09-24 2014-09-24 广州中国科学院先进技术研究所 具有多孔支架式结构的牙种植体
WO2015167050A1 (ko) * 2014-04-30 2015-11-05 주식회사 이덴테크 임플란트용 차폐막
CN104083226A (zh) * 2014-07-11 2014-10-08 福建中科康钛材料科技有限公司 个性化基台组件及其制备方法

Also Published As

Publication number Publication date
TWI663965B (zh) 2019-07-01
TW201813594A (zh) 2018-04-16

Similar Documents

Publication Publication Date Title
US10579755B2 (en) Method for 3-D printing a custom bone graft
CN107500758B (zh) 一种ZrO2基全瓷种植牙及其制备方法
Mangano et al. Custom-made, root-analogue direct laser metal forming implant: a case report
CN107805066B (zh) 基于激光选区烧结的生物陶瓷零件的加工方法
JP2007530202A (ja) 骨組織再生用生物活性人工器官装置の製造方法およびその人工器官装置
CN105919683A (zh) 一种基于3d打印的仿生假牙及其制造方法
CN110314004B (zh) 数字化备牙及种植联合手术导板的制作方法及手术导板
CN106859817B (zh) 一种3d打印个性化笼状牙科植骨导板
WO2021169063A1 (zh) 一种直接种植的个性化牙槽骨修复假体及其制备方法
CN104905882A (zh) 牙科全瓷修复体的铣磨成形制作方法
PT1261293E (pt) Processo para a preparação de dentes
KR20100003649A (ko) 치아 보철물 가공 방법
CN106822990A (zh) 多孔异形人工眼眶骨制备方法
CN207286182U (zh) 修复大型下颌骨缺损的钛网-钛板复合体
CN107007888B (zh) 一种基于光固化3d打印技术个体化定制型的二氧化锆多孔生物骨修复支架及其制备方法
CN106073916A (zh) 可控式膨胀型生物活性玻璃陶瓷种植牙及其制备方法
WO2018064919A1 (zh) 一种骨内植入物及其制法
KR101652673B1 (ko) 임시치아 제조형틀 및 그 형틀에 의해서 제조된 임시치아 시술방법
CN107280789B (zh) 一种牙种植体
CN106175947A (zh) 一种用于全口义齿种植用导板的制作方法
TWI566920B (zh) A Method of Making Biodegradable Calcium Silicate Medical Ceramics by Three - dimensional Printing Technology
KR101898413B1 (ko) 팩톤을 이용한 임플란트용 어버트먼트 및 그 제조방법
US20160338801A1 (en) Implantable replica of natural tooth
US20110111359A1 (en) Dental extracted tooth replacement method
RU2556526C1 (ru) Штифтовая культевая вкладка

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17857800

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17857800

Country of ref document: EP

Kind code of ref document: A1