WO2018062712A1 - 역삼투압 필터 모듈 - Google Patents

역삼투압 필터 모듈 Download PDF

Info

Publication number
WO2018062712A1
WO2018062712A1 PCT/KR2017/009754 KR2017009754W WO2018062712A1 WO 2018062712 A1 WO2018062712 A1 WO 2018062712A1 KR 2017009754 W KR2017009754 W KR 2017009754W WO 2018062712 A1 WO2018062712 A1 WO 2018062712A1
Authority
WO
WIPO (PCT)
Prior art keywords
reverse osmosis
filter module
filament
osmosis filter
spacer
Prior art date
Application number
PCT/KR2017/009754
Other languages
English (en)
French (fr)
Inventor
최준원
임예훈
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to JP2018549347A priority Critical patent/JP6693027B2/ja
Priority to EP17856598.2A priority patent/EP3415224B1/en
Priority to US16/086,565 priority patent/US20190091633A1/en
Priority to CN201780023113.5A priority patent/CN108883367B/zh
Publication of WO2018062712A1 publication Critical patent/WO2018062712A1/ko

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D65/00Accessories or auxiliary operations, in general, for separation processes or apparatus using semi-permeable membranes
    • B01D65/08Prevention of membrane fouling or of concentration polarisation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/02Reverse osmosis; Hyperfiltration ; Nanofiltration
    • B01D61/025Reverse osmosis; Hyperfiltration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D63/00Apparatus in general for separation processes using semi-permeable membranes
    • B01D63/10Spiral-wound membrane modules
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D63/00Apparatus in general for separation processes using semi-permeable membranes
    • B01D63/10Spiral-wound membrane modules
    • B01D63/101Spiral winding
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • C02F1/441Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis by reverse osmosis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2313/00Details relating to membrane modules or apparatus
    • B01D2313/14Specific spacers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2313/00Details relating to membrane modules or apparatus
    • B01D2313/14Specific spacers
    • B01D2313/143Specific spacers on the feed side
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/08Seawater, e.g. for desalination

Definitions

  • the present invention relates to a reverse osmosis filter module comprising an improved feed spacer, and more particularly, to a reverse osmosis of the flow of the liquid supplied to the feed spacer by the spirally filament is repeatedly positioned to form a feed spacer
  • a reverse osmosis filter module comprising an improved feed spacer capable of concentrating on the membrane surface to effectively mitigate concentration polarization.
  • the reverse osmosis membrane permeated water by the reverse osmosis membrane is pure water or almost unlimited water, and is used in various fields such as medical sterile water, purified dialysis water for dialysis, or water for manufacturing semiconductors in the electronic industry.
  • the reverse osmosis filter module includes a central tube, a feed spacer, a reverse osmosis membrane, a tricot filtrate, and the like.
  • the supply spacer serves as a passage through which raw water flows.
  • the differential pressure is generated due to the flow interruption by the feed spacer, which leads to an increase in the energy cost
  • the lower the differential pressure the higher the efficiency of the reverse osmosis filter module.
  • the present invention has been made to solve the above-described problems, an object of the present invention, by increasing the cross-sectional area of the flow path to reduce the differential pressure while repeatedly placing the spiral filament to concentrate the vortex flow of the raw water on the surface of the reverse osmosis membrane It is to provide a reverse osmosis filter module with a feed spacer.
  • Reverse osmosis filter module includes a tube including an opening for receiving the permeate along the longitudinal direction; One or more reverse osmosis membranes extending outwardly from the tube and wound around the tube; And a supply spacer in contact with the at least one reverse osmosis membrane and wound around the tube, wherein the supply spacer is formed by repeatedly placing a spiral filament.
  • the feed spacer is characterized in that it is formed by providing one filament to reciprocate between one side and the other side in the plane.
  • the filament is characterized in that the diameter is 0.2 to 0.5mm.
  • the filament is characterized in that the pitch of 780 to 3,120 ⁇ m.
  • the filaments are formed using an extrusion molding method.
  • the reverse osmosis filter module is characterized in that the vortex of the liquid supplied to the supply spacer is formed on the top and bottom of the filament.
  • the spiral filaments are repeatedly positioned to form feed spacers, thereby increasing the cross-sectional area of the flow path to lower the differential pressure, and concentrating the vortex of the raw water to the reverse osmosis membrane surface to mitigate concentration polarization. do.
  • the effect of the above-described effect can be increased to increase the efficiency of the reverse osmosis filter module.
  • FIG. 1 is a perspective view of a reverse osmosis filter module for water treatment according to an embodiment of the present invention.
  • Figure 2 is a perspective view of the feed spacer used in the reverse osmosis filter module for water treatment according to an embodiment of the present invention.
  • Figure 3 is a perspective view of the filament used in the reverse osmosis filter module for water treatment according to an embodiment of the present invention.
  • FIG. 1 is a perspective view of a reverse osmosis filter module 100 for water treatment according to an embodiment of the present invention
  • Figure 2 is a supply spacer used in the reverse osmosis filter module 100 for water treatment according to an embodiment of the present invention
  • 20 is a perspective view
  • Figure 3 is a perspective view of the filament 21 used in the reverse osmosis filter module 100 for water treatment according to an embodiment of the present invention.
  • Reverse osmosis filter module 100 is a component of the membrane separation device that serves to purify the water actually supplied using the reverse osmosis principle.
  • the reverse osmosis filter module 100 includes a reverse osmosis membrane 10, a supply spacer 20, a tricot filtration channel 30, and an opening (not shown) for receiving a permeate along the length direction. It may include a tube 40 to.
  • the anti-telescopng device may further include a pair (anti-telescopng device), but a detailed description thereof will be omitted.
  • the at least one reverse osmosis membrane 10 filters the foreign matter contained in the water by using an osmosis phenomenon, and at the same time serves as a flow path for the purified water to flow effectively.
  • the one or more reverse osmosis membranes 10 extend outwardly from the tube 40 and are wound around the tub 40.
  • the supply spacer 20 forms a passage through which raw water flows from the outside, and serves to maintain a gap between one reverse osmosis membrane 10 and the other reverse osmosis membrane 10.
  • the feed spacer 20 is configured to be in contact with the one or more reverse osmosis membranes 10 above and below and to be wound around the tube 40 like the one or more reverse osmosis membranes 10.
  • the material of the supply spacer 20 is not particularly limited, but is preferably composed of any one of polyethylene, polyvinyl chloride, polyester, and polypropylene.
  • the tricot filtered water channel 30 generally has a structure in the form of a fabric, and serves as a flow path for creating a space through which the purified water can flow through the reverse osmosis membrane 10.
  • the tricot filtration channel 30 generally has a structure in the form of a fabric, and serves as a flow path for creating a space through which the purified water can flow through the reverse osmosis membrane 10.
  • the tube 40 is located at the center of the reverse osmosis filter module 100 for water treatment, and serves as a passage through which filtered water is introduced and discharged.
  • a gap (or opening) of a predetermined size is formed outside the tube 40 so that filtered water flows in. At this time, it is preferable that one or more pores are formed so that the filtered water can be introduced more efficiently.
  • the supply spacer 20 may be formed by repeatedly placing the filament 21 of the spiral shape. Furthermore, the supply spacer 20 may be formed by providing one filament 21 to reciprocate between one side and the other side in a plane. For example, by extruding a spiral filament 21 through an extrusion method, and repeatedly folding the extruded filament 21 in a 'Z' or ' ⁇ ' shape, the supply spacer 20 of the two-dimensional plane ) Can be formed.
  • connection portion on one side and the other side of the listed filaments 21 (Not shown) may be bonded to fix the filament 21 to form the supply spacers 20.
  • the connection of the connection portion is located on one side of the first filament and one side of the second filament, and the other side of the second filament and the third filament, it is possible to join the connection portion and the filament 21 by the zigzag method.
  • the connecting portion may be formed by an extrusion molding method.
  • the filament 21 has a plurality of circular flow paths formed by a spiral shape, the diameter of the circular flow path may be formed to 0.2 to 0.5mm, preferably, the diameter of the flow path may be formed to 0.47mm.
  • the diameter of the flow path is 0.2 mm or less, the flow pressure may be increased when raw water is introduced, and when the diameter of the flow path is 0.5 mm or more, a vortex does not occur in the supply spacer 20, so that a concentration polarization phenomenon may occur and thus reverse osmosis membrane 10.
  • the osmotic pressure is increased on the surface thereof may cause a problem that the water transmittance of the reverse osmosis filter module 100 is lowered.
  • the filament 21 may be formed with a pitch of 780 to 3,120 ⁇ m, where the pitch is less than 780 ⁇ m by a distance between the plurality of circular flow path formed by the spiral filament 21 interferes with the flow of raw water Increasing the differential pressure may increase the energy cost, and if it exceeds 3,120 ⁇ m may cause a problem that is difficult to generate a sufficient vortex flow.
  • the filament 21 is spirally extruded and repeatedly positioned on a two-dimensional plane, whereby the vortex of the raw water supplied to the feed spacer 20 is filamented. Concentration is concentrated on the upper and lower portions of (21), thereby reducing the differential pressure and concentrating the vortex on the surface of the reverse osmosis membrane 10, thereby making it possible to efficiently reduce concentration polarization.
  • the differential pressure ( ⁇ P [Pa]) and the membrane surface salinity average mass fraction performance were compared using conventional feed spacers used in the reverse osmosis filter module and the feed spacer 20 according to an embodiment of the present invention.
  • Comparative Examples 1 to 3 used feed spacers in which two filaments intersect to form a flow path
  • Comparative Example 1 used feed spacers having a lattice length of 2750 ⁇ m
  • Comparative Example 2 used lattice It is a case where the supply spacer of 5000 micrometers in length is used
  • the comparative example 3 is a case where the supply spacer of 1500 micrometers in length is used.
  • Embodiments 1 to 4 are used when the supply spacer 20 according to the present invention
  • Example 1 is used when the supply spacer made of a filament of the spiral form, the interval between the flow path, that is, the pitch is 1560 ⁇ m
  • Example 2 Is a case where a feed spacer made of helical filaments having a pitch of 780 ⁇ is used
  • Example 3 is a case where a feed spacer made of a helical filament having a pitch of 1984 ⁇ is used
  • Example 4 has a pitch of 3120 ⁇ . In the case of using a feed spacer made of a spiral filament.
  • Comparative Example 1 had a differential pressure of 1032 Pa, a membrane surface salt average mass fraction of 0.0332, Comparative Example 2 a differential pressure of 730 Pa, a membrane surface salt average mass fraction of 0.0335, Comparative Example 3
  • the differential pressure is 1705 Pa and the membrane surface salinity average mass fraction is 0.0332.
  • Example 1 shows a differential pressure of 682 Pa, a membrane surface salinity average mass fraction of 0.0329
  • Example 2 shows a differential pressure of 1131 Pa, a membrane surface salinity average mass fraction of 0.0329
  • Example 3 has a differential pressure of 538 Pa. It can be seen that the membrane surface salinity average mass fraction is 0.0331, and Example 4 has a differential pressure of 379 Pa and the membrane surface salinity average mass fraction is 0.0333.
  • Examples 1 to 4 using the supply spacer according to the present invention is lower than the differential pressure than Comparative Examples 1 to 3 using the supply spacer according to the present invention is advantageous to smooth the flow flow and to secure the flow path It was confirmed that. More specifically, when comparing Comparative Example 1 and Example 4, Comparative Example 1 has an average mass fraction of the salinity of the membrane surface of 0.0332, and Example 4 has a similar value of 0.0333, but in the case of differential pressure Comparative Example 1 is 1032 And Example 4 is 379, indicating that Example 4 is significantly lower. Therefore, when the membrane surface salinity average mass fraction is the same, it can be determined that the feed spacer made of the spiral filament has a smoother flow flow than the lattice feed spacer.
  • Examples 1 to 4 using the feed spacer according to the present invention was found to concentrate the vortex on the membrane surface, so that the movement of salt near the reverse osmosis membrane It was confirmed to be smooth.
  • the feed spacer formed of the spiral filament can smooth the flow of salt through the reverse osmosis membrane by smoothly flowing the flow of the flow path and concentrating the vortex formed in the feed spacer to the reverse osmosis membranes located at the upper and lower portions.
  • the supply spacer minimizes the differential pressure by changing the shape of the filaments (or strands) having the same maximum and minimum diameters, and concentrates the occurrence of the vortex on the surface of the reverse osmosis membrane so that It can be seen that by reducing the average mass fraction, the performance of the reverse osmosis filter module is improved.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Water Supply & Treatment (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Organic Chemistry (AREA)
  • Nanotechnology (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

본 발명은 개선된 공급 스페이서를 포함하는 역삼투압 필터 모듈에 관한 것으로써, 보다 상세하게는, 나선형 형태의 필라멘트가 반복적으로 위치하여 공급 스페이서를 형성함으로써, 공급 스페이서에 공급되는 액체의 흐름을 역삼투압막 표면으로 집중시켜 효과적으로 농도 분극 현상을 완화할 수 있는 개선된 공급 스페이서를 포함하는 역삼투압 필터 모듈에 관한 것이다.

Description

역삼투압 필터 모듈
본 명세서는 2016년 09월 28일 한국 특허청에 제출된 한국 특허 출원 제10-2016-0124788호에 기초한 우선권의 이익을 주장하며, 해당 한국 특허 출원의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다.
본 발명은 개선된 공급 스페이서를 포함하는 역삼투압 필터 모듈에 관한 것으로써, 보다 상세하게는, 나선형 형태의 필라멘트가 반복적으로 위치하여 공급 스페이서를 형성함으로써, 공급 스페이서에 공급되는 액체의 흐름을 역삼투압막 표면으로 집중시켜 효과적으로 농도 분극 현상을 완화할 수 있는 개선된 공급 스페이서를 포함하는 역삼투압 필터 모듈에 관한 것이다.
전 세계적으로 지구온난화에 따른 물 부족 현상이 심화되고 있는 가운데 대체 수자원 확보기술인 물 정화 기술이 주목을 받고 있다.
따라서, 해수담수화, 물의 재이용 등 대체 수자원을 활용한 차세대 수도사업의 핵심기술인 역삼투막(Reverse osmosis membrane)을 이용한 수처리 공정이 물 산업 시장을 주도할 것으로 예상되고 있다.
이러한 역삼투막에 의한 역삼투막 투과수는 순수한 물 내지 한없이 순수한 물에 가까운 물이 되어 의료용의 무균수나 인구 투석용 정제수, 혹은 전자 산업의 반도체의 제조용 물 등 다양한 분야에서 이용되고 있다.
여기서, 역삼투란 농도차가 있는 두 용액을 반투막으로 분리하고 일정 시간이 지나면 농도가 낮은 용액이 농도가 높은 쪽으로 이동하면서 일정한 수위차를 발생시키는데 이를 삼투 현상이라고 한다. 아울러 이 과정에서 발생하는 수위의 차이를 역삼투압이라고 한다. 이 원리를 이용해 물 분자만 반투막을 통과시켜 물을 정화하는 장치를 역삼투압 설비라고 하며, 여기에 들어가는 반투막이 역삼투압 필터 모듈이다.
이러한 역삼투압 필터 모듈은 중앙 튜브, 공급 스페이서(Feed spacer), 역삼투막(RO membrane), 트리코트 여과수로 등을 포함하여 구성된다.
이 중, 공급 스페이서는 원수가 유입되는 통로 역할을 수행한다. 원수가 공급 스페이서를 통하여 유입되는 경우에 공급 스페이서에 의한 흐름 방해로 차압이 발생하게 되면 이는 에너지 비용의 증가로 귀결되기 때문에, 이러한 차압은 낮을수록 역삼투압 필터 모듈의 효율을 증가시키게 된다.
한편, 수투과 플럭스에 의해 필연적으로 역삼투막 근처에서는 농도 분극 현상이 발생하게 되며 이러한 현상이 심해질수록 역삼투막 근처에서 삼투압이 높아져 수투과율이 저하되게 된다.
이와 관련하여, 차압의 발생을 감소시키며 농도 분극 현상을 완화시킴으로써 역삼투압 필터 모듈의 효율을 증가시킬 수 있는 공급 스페이서가 필요한 실정이다.
본 발명은 상술된 문제점을 해결하기 위해 안출된 것으로, 본 발명의 목적은, 유로의 단면적을 증가시켜 차압을 낮추면서 역삼투막 표면에 원수의 소용돌이 흐름을 집중시키기 위해 나선형 형태의 필라멘트를 반복적으로 위치시켜 공급 스페이서가 형성된 역삼투압 필터 모듈을 제공하는 것이다.
본 발명에 따른 역삼투압 필터 모듈은 길이 방향을 따라 투과액을 수용하는 개구를 포함하는 튜브; 상기 튜브로부터 외측 방향으로 연장되고 상기 튜브 둘래로 권취되는 하나 이상의 역삼투막; 및 상기 하나 이상의 역삼투막과 접촉하며, 상기 튜브 둘레로 권취되는 공급 스페이서;를 포함하고, 상기 공급 스페이서는, 나선형 형태의 필라멘트가 반복적으로 위치하여 형성되는 것을 특징으로 한다.
바람직하게는, 상기 공급 스페이서는, 하나의 필라멘트가 평면상에서 일측 및 타측 사이를 왕복하도록 제공됨으로써 형성되는 것을 특징으로 한다.
바람직하게는, 상기 필라멘트는, 직경이 0.2 내지 0.5㎜인 것을 특징으로 한다.
바람직하게는, 상기 필라멘트는, 피치가 780 내지 3,120㎛인 것을 특징으로 한다.
바람직하게는, 상기 필라멘트는, 압출 성형 방식을 이용하여 형성되는 것을 특징으로 한다.
바람직하게는, 상기 역삼투압 필터 모듈은, 상기 공급 스페이서에 공급되는 액체의 소용돌이가 상기 필라멘트의 상부 및 하부에 형성되는 것을 특징으로 한다.
본 발명에 따르면, 나선형 형태의 필라멘트가 반복적으로 위치되어 공급 스페이서를 형성함으로써, 유로의 단면적을 증가시켜 차압을 낮출 수 있고, 또한, 원수의 소용돌이를 역삼투막 표면으로 집중시켜 농도 분극을 완화할 수 있게 된다.
아울러, 상술된 효과로 인하여 역삼투압 필터 모듈의 효율을 보다 증가시킬 수 있다는 효과가 발생하게 된다.
도 1은 본 발명의 일 실시예에 따른 수처리용 역삼투압 필터 모듈의 사시도이다.
도 2는 본 발명의 일 실시예에 따른 수처리용 역삼투압 필터 모듈에서 사용되는 공급 스페이서의 사시도이다.
도 3은 본 발명의 일 실시예에 따른 수처리용 역삼투압 필터 모듈에서 사용되는 필라멘트의 사시도이다.
본 발명을 첨부된 도면을 참조하여 상세히 설명하면 다음과 같다. 여기서, 반복되는 설명, 본 발명의 요지를 불필요하게 흐릴 수 있는 공지 기능 및 구성에 대한 상세한 설명은 생략한다. 본 발명의 실시형태는 당 업계에서 평균적인 지식을 가진 자에게 본 발명을 완전하게 설명하기 위해서 제공되는 것이다. 따라서, 도면에서의 요소들의 형상 및 크기 등은 보다 명확한 설명을 위하여 과장될 수 있다.
명세서 전체에서, 어떤 부분이 어떤 구성 요소를 "포함"한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성 요소를 제외하는 것이 아니라 다른 구성 요소를 더 포함할 수 있는 것을 의미한다.
이하, 본 발명의 이해를 돕기 위하여 바람직한 실시예를 제시한다. 그러나 하기의 실시예는 본 발명을 보다 용이하게 이해하기 위하여 제공되는 것일 뿐, 실시예에 의해 본 발명의 내용이 한정되는 것은 아니다.
<역삼투압 필터 모듈>
도 1은 본 발명의 일 실시예에 따른 수처리용 역삼투압 필터 모듈(100)의 사시도이며, 도 2는 본 발명의 일 실시예에 따른 수처리용 역삼투압 필터 모듈(100)에서 사용되는 공급 스페이서(20)의 사시도이고, 도 3은 본 발명의 일 실시예에 따른 수처리용 역삼투압 필터 모듈(100)에서 사용되는 필라멘트(21)의 사시도이다.
이하, 도 1 내지 도 3을 참고하여 본 발명의 일 실시예에 따른 수처리용 역삼투압 필터 모듈(100)을 구체적으로 설명하기로 한다.
역삼투압 필터 모듈(100)은 실제적으로 공급되는 물을 역삼투압 원리를 이용하여 정화하는 역할을 수행하는 멤브레인 분리 장치의 구성 요소이다.
도 1을 참조하면, 이러한 역삼투압 필터 모듈(100)은 역삼투막(10), 공급 스페이서(20), 트리코트 여과수로(30) 및 길이 방향을 따라 투과액을 수용하는 개구(도시 안됨)를 포함하는 튜브(40)를 포함할 수 있다. 또한, 도면에 도시되지는 않았지만, 한 쌍의 텔레스코핑 방지 장치(anti-telescopng device)를 더 포함할 수 있으나 이에 대한 구체적인 설명은 생략하기로 한다.
하나 이상의 역삼투막(10)은 삼투 현상을 이용하여 물에 포함된 이물질을 여과시키는 동시에, 정제수가 효과적으로 흘러가도록 유로의 역할을 수행한다.
이러한 하나 이상의 역삼투막(10)은 튜브(40)로부터 외측 방향으로 연장되고 튜부(40) 둘레로 권취되게 된다.
공급 스페이서(20)는 외부로부터 원수가 유입되는 통로를 형성하며, 하나의 역삼투막(10)과 다른 하나의 역삼투막(10)의 사이의 간격을 유지시키는 역할을 수행한다. 이를 위해, 공급 스페이서(20)는 하나 이상의 역삼투막(10)과 상측 및 하측에서 접촉하며 하나 이상의 역삼투막(10)과 마찬가지로 튜브(40) 둘레로 권취되도록 구성된다.
여기서, 공급 스페이서(20)의 재질은 특별히 한정하지 않지만, 폴리에틸렌(Polyethylene), 폴리염화 비닐(Polyvinyl chloride), 폴리에스테르(Polyseter) 및 폴리프로필렌(Polypropylene) 중 어느 하나로 구성되는 것이 바람직하다.
한편, 공급 스페이서(20)의 구체적인 구성은 후술하기로 한다.
트리코트 여과수로(30)는 일반적으로 직물 형태의 구조를 가지며, 역삼투막(10)을 통해 정제된 물이 흘러나갈 수 있는 공간을 만들어 주는 유로 역할을 수행하게 된다.
이때, 트리코트 여과수로(30)는 일반적으로 직물 형태의 구조를 가지며, 역삼투막(10)을 통해 정제된 물이 흘러나갈 수 있는 공간을 만들어 주는 유로 역할을 수행하게 된다.
튜브(40)는 수처리용 역삼투압 필터 모듈(100)의 중심에 위치하며, 여과된 물이 유입되어 배출되는 통로 역할을 수행한다.
이를 위해, 튜브(40)의 외측에는 여과된 물이 유입되도록 소정 크기의 공극(혹은 개구)이 형성되는 것이 바람직하다. 이때, 공극은 여과된 물이 보다 효율적으로 유입될 수 있도록 하나 이상 형성되는 것이 바람직하다.
한편, 본 발명의 일 실시예에 따른 공급 스페이서(20)는 나선형 형태의 필라멘트(21)가 반복적으로 위치하여 형성될 수 있다. 나아가, 공급 스페이서(20)는 하나의 필라멘트(21)가 평면상에서 일측 및 타측 사이를 왕복하도록 제공됨으로써 형성될 수 있다. 예를 들어, 압출 성형 방식을 통해 나선형 모양의 필라멘트(21)를 압출하고, 압출된 필라멘트(21)를 ‘Z’또는 ‘ㄹ’자 형태로 반복적으로 폴딩함으로써, 2차원 평면의 공급 스페이서(20)를 형성할 수 있다. 또한, 공급 스페이서는(20) 압출 성형 방식에 의해 나선형 모양의 필라멘트(21)를 복수 개 제조한 후, 복수의 필라멘트(21)를 평행하게 나열하고, 나열된 필라멘트(21)의 일측 및 타측에 연결부(도시되지 않음)를 접합시켜 필라멘트(21)를 고정하여 공급 스페이서(20)를 형성할 수 있다. 여기서, 연결부의 접합은 1번째 필라멘트 일측과 2번째 필라멘트 일측에 위치시키고, 2번째 필라멘트와 3번째 필라멘트 타측에 위치시킴으로써, 지그재그 방식에 의해 연결부와 필라멘트(21)를 접합시킬 수 있다. 또한, 연결부는 압출 성형 방식에 의해 형성될 수 있다.
필라멘트(21)는 나선형 형상에 의해 복수 개의 원형 유로가 형성되고, 원형 유로의 직경은 0.2 내지 0.5㎜로 형성될 수 있고, 바람직하게는, 유로의 직경이 0.47㎜로 형성될 수 있다. 유로의 직경이 0.2㎜이하일 경우, 원수가 투입될 때 흐름 방해가 일어나 차압이 증가 될 수 있고, 0.5㎜이상일 경우, 공급 스페이서(20)에 소용돌이가 발생 되지 않아 농도 분극 현상이 발생하여 역삼투막(10) 표면에 삼투압이 높아져 역삼투압 필터 모듈(100)의 수투과율이 저하되는 문제점이 있을 수 있다.
또한, 필라멘트(21)는 피치가 780 내지 3,120㎛로 형성될 수 있는데, 여기서, 피치는 나선형에 의해 형성된 복수 개의 원형 유로 사이 거리로 780㎛ 보다 작을 경우 필라멘트(21)가 원수의 흐름을 방해하여 차압이 증가함으로써 에너지 비용이 증가될 수 있고, 3,120㎛를 초과하는 경우 소용돌이 흐름을 충분히 발생시키기 어려운 문제점이 발생할 수 있다.
이러한 구성으로 인하여, 본 발명에 따른 공급 스페이서(20)의 경우에는 필라멘트(21)가 나선형으로 압출되고, 2차원 평면상에 반복적으로 위치됨으로써, 공급 스페이서(20)에 공급되는 원수의 소용돌이가 필라멘트(21)의 상부 및 하부에 집중되고, 따라서 차압을 감소시키고, 소용돌이를 역삼투막(10) 표면에 집중시켜 효율적으로 농도 분극을 완화할 수 있게 된다.
<실험예>
역삼투압 필터 모듈에서 사용되는 종래의 공급 스페이서들과 본 발명의 일 실시예에 따른 공급 스페이서(20)를 이용하여 차압(ΔP[Pa]) 및 막표면 염분 평균 질량 분율 성능을 비교하였다.
이를 위해, 종래의 공급 스페이서 3개와 본 발명의 일 실시예에 따른 공급 스페이서 4개의 제품에 대하여, 기타 다른 조건을 동일하게 유지하고 공급 스페이서들의 피치(L1) 값만 상이하게 설정한 상태로 상술된 차압 및 막표면 염분 평균 질량 분율 성능을 비교하였고, 이 결과를 표 1에 기재하였다. 아래는 실험 영역에 대한 설명이다.
*가로 X 세로 X 높이(두께) : 7.75㎜ X 15.55㎜ X 0.47㎜
*입구 속도 : 0.3m/s
Pitch ΔP[Pa] 막 표면 염분 평균 질량 분율
비교예 1 2750㎛ 1032 0.0332
비교예 2 5000㎛ 730 0.0335
비교예 3 1500㎛ 1705 0.0332
실시예 1 1560㎛ 682 0.0329
실시예 2 780㎛ 1131 0.0329
실시예 3 1984㎛ 538 0.0331
실시예 4 3120㎛ 379 0.0333
상술된 바와 같이, 비교예 1 내지 3은 두 개의 필라멘트가 교차되어 유로를 형성하는 공급 스페이서를 사용한 경우로, 비교예 1은 격자 길이가 2750㎛인 공급 스페이서를 사용한 경우이고, 비교예 2는 격자 길이가 5000㎛인 공급 스페이서를 사용한 경우이며, 비교예 3은 격자 길이가 1500㎛인 공급 스페이서를 사용한 경우이다. 실시예 1 내지 4는 본 발명에 따른 공급 스페이서(20)를 사용한 경우로, 실시예 1은 유로 사이 간격, 즉 피치가 1560㎛인 나선형 형태의 필라멘트로 이루어진 공급 스페이서를 사용한 경우이고, 실시예 2는 피치가 780㎛인 나선형 형태의 필라멘트로 이루어진 공급 스페이서를 사용한 경우이며, 실시예 3은 피치가 1984㎛인 나선형 형태의 필라멘트로 이루어진 공급 스페이서를 사용한 경우이고, 실시예 4는 피치가 3120㎛인 나선형 형태의 필라멘트로 이루어진 공급 스페이서를 사용한 경우이다.
표 1을 참고하면, 비교예 1은 차압이 1032Pa이고, 막 표면 염분 평균 질량 분율이 0.0332를 나타내며, 비교예 2는 차압이 730Pa이고, 막 표면 염분 평균 질량 분율이 0.0335를 나타내며, 비교예 3은 차압이 1705Pa이고, 막 표면 염분 평균 질량 분율이 0.0332를 나타낸다. 그리고, 실시예 1은 차압이 682Pa이고, 막 표면 염분 평균 질량 분율이 0.0329를 나타내며, 실시예 2는 차압이 1131Pa이고, 막 표면 염분 평균 질량 분율이 0.0329를 나타내며, 실시예 3은 차압이 538Pa이고, 막 표면 염분 평균 질량 분율이 0.0331을 나타내며, 실시예 4는 차압이 379Pa이고, 막 표면 염분 평균 질량 분율이 0.0333을 나타냄을 알 수 있다.
이 때, 차압이 낮을수록 유동 측면에서 유리한 구조라는 점을 고려하면, 본 발명에 따른 공급 스페이서를 사용한 실시예 1 내지 4가 비교예 1 내지 3보다 차압이 낮아 유동 흐름이 원활하고 유로 확보에 유리한 것으로 확인되었다. 좀 더 상세하게는, 비교예 1과 실시예 4를 비교하면, 비교예 1은 막 표면 염분 평균 질량 분율이 0.0332이고, 실시예 4는 0.0333으로 수치가 유사하나, 차압의 경우 비교예 1은 1032이고 실시예 4는 379로 실시예 4가 현저하게 낮은 것으로 나타난다. 따라서, 막 표면 염분 평균 질량 분율이 동일할 경우, 나선형의 필라멘트로 이루어진 공급 스페이서가 격자 무늬 공급 스페이서보다 유동 흐름이 원활한 것으로 판단할 수 있다.
또한, 막 표면에 소용돌이가 집중될수록 농도 분극 현상이 완화된다는 점을 고려하면, 본 발명에 따른 공급 스페이서를 사용한 실시예 1 내지 4가 막 표면에 소용돌이를 집중시키는 것으로 확인되어 역삼투막 근처의 염의 이동이 원활해지는 것으로 확인되었다. 즉, 비교예 3과 실시예 1을 비교하면, 유로와 유로간의 간격이 유사할 경우, 필라멘트가 나선형으로 형성되어 나선형의 유로가 형성된 공급 스페이서가 차압 및 막 표면 염분 평균 질량 분율이 더 낮은 것으로 나타남으로써, 나선형의 필라멘트로 형성된 공급 스페이서는 유로의 원수 흐름이 원활하고 공급 스페이서에 형성되는 소용돌이를 상부 및 하부에 위치되는 역삼투막으로 집중시켜 역삼투막을 통한 염의 이동을 원활하게 할 수 있다.
결과적으로, 이를 토대로 판단하면, 본 발명에 따른 공급 스페이서는 동일한 최대 및 최소 직경을 가지는 필라멘트들(혹은 스트랜드)의 형상 변경을 통하여 차압을 최소화하고 소용돌이의 발생 정도를 역삼투막 표면으로 집중시켜 막 표면 염분 평균 질량 분율을 감소시킴으로써 역삼투압 필터 모듈의 성능이 향상됨을 알 수 있다.
상기 본 발명의 바람직한 실시예를 참조하여 설명하였지만, 당업계에서 통상의 지식을 가진 자라면 이하의 특허 청구범위에 기재된 본 발명의 사상 및 영역을 벗어나지 않는 범위 내에서 본 발명을 다양하게 수정 및 변경시킬 수 있음을 이해할 수 있을 것이다.

Claims (6)

  1. 길이 방향을 따라 투과액을 수용하는 개구를 포함하는 튜브;
    상기 튜브로부터 외측 방향으로 연장되고 상기 튜브 둘래로 권취되는 하나 이상의 역삼투막; 및
    상기 하나 이상의 역삼투막과 접촉하며, 상기 튜브 둘레로 권취되는 공급 스페이서;를 포함하고,
    상기 공급 스페이서는, 나선형 형태의 필라멘트가 반복적으로 위치하여 형성되는 것을 특징으로 하는,
    역삼투압 필터 모듈.
  2. 제1항에 있어서,
    상기 공급 스페이서는,
    하나의 필라멘트가 평면상에서 일측 및 타측 사이를 왕복하도록 제공됨으로써 형성되는 것을 특징으로 하는,
    역삼투압 필터 모듈.
  3. 제1항에 있어서,
    상기 필라멘트는,
    직경이 0.2 내지 0.5㎜인 것을 특징으로 하는, 역삼투압 필터 모듈.
  4. 제1항에 있어서,
    상기 필라멘트는,
    피치가 780 내지 3,120㎛인 것을 특징으로 하는, 역삼투압 필터 모듈.
  5. 제1항에 있어서,
    상기 필라멘트는,
    압출 성형 방식을 이용하여 형성되는 것을 특징으로 하는, 역삼투압 필터 모듈.
  6. 제1항에 있어서,
    상기 역삼투압 필터 모듈은,
    상기 공급 스페이서에 공급되는 액체의 소용돌이가 상기 필라멘트의 상부 및 하부에 형성되는 것을 특징으로 하는, 역삼투압 필터 모듈.
PCT/KR2017/009754 2016-09-28 2017-09-06 역삼투압 필터 모듈 WO2018062712A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2018549347A JP6693027B2 (ja) 2016-09-28 2017-09-06 逆浸透フィルタモジュール
EP17856598.2A EP3415224B1 (en) 2016-09-28 2017-09-06 Reverse osmosis filter module
US16/086,565 US20190091633A1 (en) 2016-09-28 2017-09-06 Reverse osmosis filter module
CN201780023113.5A CN108883367B (zh) 2016-09-28 2017-09-06 反渗透过滤器模块

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2016-0124788 2016-09-28
KR1020160124788A KR102046688B1 (ko) 2016-09-28 2016-09-28 역삼투압 필터 모듈

Publications (1)

Publication Number Publication Date
WO2018062712A1 true WO2018062712A1 (ko) 2018-04-05

Family

ID=61759949

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/009754 WO2018062712A1 (ko) 2016-09-28 2017-09-06 역삼투압 필터 모듈

Country Status (6)

Country Link
US (1) US20190091633A1 (ko)
EP (1) EP3415224B1 (ko)
JP (1) JP6693027B2 (ko)
KR (1) KR102046688B1 (ko)
CN (1) CN108883367B (ko)
WO (1) WO2018062712A1 (ko)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102166477B1 (ko) 2017-11-03 2020-10-16 주식회사 엘지화학 수처리 필터 모듈용 헬리컬 스트랜드의 제조장치 및 제조방법

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030205520A1 (en) * 2002-05-02 2003-11-06 Johnson Jon E. Spiral wound element with improved feed space
KR20040086835A (ko) * 2003-04-03 2004-10-12 닛토덴코 가부시키가이샤 스파이럴형 분리막 요소
KR100842074B1 (ko) * 2007-03-14 2008-06-30 (주)세프라텍 중공사 내부 투입용 중공사막
KR20100109156A (ko) * 2009-03-31 2010-10-08 웅진코웨이주식회사 경도성 물질의 제거가 가능한 멤브레인 필터

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1322407A4 (en) * 2000-09-05 2004-07-28 Miox Corp REVERSE OSMOSIS MEMBRANE AND MANUFACTURING METHOD THEREOF
JP2004050005A (ja) * 2002-07-18 2004-02-19 Japan Organo Co Ltd スパイラル型膜エレメント、逆浸透膜モジュール及び逆浸透膜装置
EP1625885A1 (en) * 2004-08-11 2006-02-15 Vlaamse Instelling Voor Technologisch Onderzoek (Vito) Integrated permeate channel membrane
JP5616894B2 (ja) * 2008-09-29 2014-10-29 スコット・ピー・イェーガー 螺旋巻きクロスフローフィルタ、及び流体をろ過するための方法
WO2011094236A2 (en) * 2010-02-01 2011-08-04 Rodney Herrington Systems and methods for filtration
US20130146532A1 (en) * 2011-12-09 2013-06-13 General Electric Company Feed spacer for spiral wound membrane element
KR101988694B1 (ko) * 2012-06-28 2019-06-12 도레이 카부시키가이샤 분리막 엘리먼트
CN203710924U (zh) * 2013-10-31 2014-07-16 贵阳时代沃顿科技有限公司 一种卷式反渗透膜元件
US9452383B2 (en) * 2014-04-30 2016-09-27 Uop Llc Membrane separation element and process relating thereto

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030205520A1 (en) * 2002-05-02 2003-11-06 Johnson Jon E. Spiral wound element with improved feed space
KR20040086835A (ko) * 2003-04-03 2004-10-12 닛토덴코 가부시키가이샤 스파이럴형 분리막 요소
KR100842074B1 (ko) * 2007-03-14 2008-06-30 (주)세프라텍 중공사 내부 투입용 중공사막
KR20100109156A (ko) * 2009-03-31 2010-10-08 웅진코웨이주식회사 경도성 물질의 제거가 가능한 멤브레인 필터

Also Published As

Publication number Publication date
CN108883367B (zh) 2021-08-27
JP6693027B2 (ja) 2020-05-13
EP3415224A1 (en) 2018-12-19
JP2019514665A (ja) 2019-06-06
EP3415224B1 (en) 2021-07-14
US20190091633A1 (en) 2019-03-28
KR20180034934A (ko) 2018-04-05
CN108883367A (zh) 2018-11-23
EP3415224A4 (en) 2019-04-03
KR102046688B1 (ko) 2019-12-02

Similar Documents

Publication Publication Date Title
KR102046685B1 (ko) 역삼투압 필터 모듈
WO2019078604A1 (ko) 3층 구조의 공급 스페이서 및 이를 포함하는 역삼투막 필터 모듈
WO2018062712A1 (ko) 역삼투압 필터 모듈
WO2017057833A1 (ko) 역삼투압 필터 모듈
KR102104160B1 (ko) 4층 구조의 공급 스페이서
WO2019117479A1 (ko) 공급 스페이서 및 이를 포함하는 역삼투압 필터 모듈
JP2013212456A (ja) 中空糸膜モジュール
WO2022177284A1 (ko) 3층 구조의 공급 스페이서 및 이를 포함하는 역삼투막 필터 모듈
WO2020197141A1 (ko) 역삼투 엘리먼트 차압 감소 피드 스페이서 및 형성 노즐
KR20170023625A (ko) 수처리용 역삼투압막 및 이를 포함하는 수처리용 역삼투압 필터 모듈
WO2020197164A1 (ko) 고회수율 역삼투 스페이서 및 엘리먼트
CN110662596B (zh) 供给间隔件和包括其的反渗透过滤模块
EP3040111A1 (en) Spiral aerator and hollow fiber membrane module having same
WO2020032577A1 (ko) 수처리용 필터 집합체 및 이를 포함하는 수처리용 필터 모듈

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2017856598

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2018549347

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2017856598

Country of ref document: EP

Effective date: 20180913

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17856598

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE