WO2018062652A1 - Photosensitive resin composition, cured film formed therefrom, and electronic device having cured film - Google Patents

Photosensitive resin composition, cured film formed therefrom, and electronic device having cured film Download PDF

Info

Publication number
WO2018062652A1
WO2018062652A1 PCT/KR2017/003499 KR2017003499W WO2018062652A1 WO 2018062652 A1 WO2018062652 A1 WO 2018062652A1 KR 2017003499 W KR2017003499 W KR 2017003499W WO 2018062652 A1 WO2018062652 A1 WO 2018062652A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
substituted
unsubstituted
resin composition
photosensitive resin
Prior art date
Application number
PCT/KR2017/003499
Other languages
French (fr)
Korean (ko)
Inventor
백택진
김태수
박종희
신동주
안치원
유홍정
Original Assignee
삼성에스디아이 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 삼성에스디아이 주식회사 filed Critical 삼성에스디아이 주식회사
Priority to CN201780059584.1A priority Critical patent/CN109791360B/en
Priority to JP2019516137A priority patent/JP6826193B2/en
Publication of WO2018062652A1 publication Critical patent/WO2018062652A1/en

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/0048Photosensitive materials characterised by the solvents or agents facilitating spreading, e.g. tensio-active agents
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/022Quinonediazides
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/075Silicon-containing compounds
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/16Coating processes; Apparatus therefor
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/16Coating processes; Apparatus therefor
    • G03F7/168Finishing the coated layer, e.g. drying, baking, soaking
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/708Construction of apparatus, e.g. environment aspects, hygiene aspects or materials
    • G03F7/7095Materials, e.g. materials for housing, stage or other support having particular properties, e.g. weight, strength, conductivity, thermal expansion coefficient
    • G03F7/70958Optical materials or coatings, e.g. with particular transmittance, reflectance or anti-reflection properties

Definitions

  • An electronic device having a photosensitive resin composition, a cured film formed therefrom, and the cured film
  • the present substrate relates to a photosensitive resin composition, a cured film formed therefrom, and an electronic device including the cured film.
  • the aperture ratio of the display device In order to achieve more accurate and higher resolution in liquid crystal displays and organic EL displays, the aperture ratio of the display device must be increased. To this end, a transparent flattening film is provided as a protective film on the TFT substrate to overlap the C data line and the pixel electrode, thereby increasing the high aperture ratio. There is a way to make this possible.
  • a material for forming the organic insulating film for the TFT substrate As a material for forming the organic insulating film for the TFT substrate, a material having high heat resistance, high transparency, high temperature crack resistance, low dielectric constant, chemical resistance, and the like is required, and to secure the conduction between the TFT substrate electrode and the IT0 electrode. It is necessary to form a hole pattern on the order of 50 to several mils.
  • the material which combined phenolic resin and a numone diazide compound, or the photosensitive resin composition which combined an acryl-type resin and a numone diazide compound has been mainly used.
  • these materials are not rapidly deteriorated at a high temperature of 2 (xrc or higher, but are gradually decomposed at 230 ° C or higher, and a problem of deterioration in film thickness or cracking occurs, or transparent treatment due to high temperature treatment of the substrate.
  • the membrane is colored and the transmittance is lowered.
  • an organic EL element cracks and decomposition products generated from the above materials are not optimal materials for use because they adversely affect the luminous efficiency and lifetime of the organic EL element.
  • the acrylic material imparted heat resistance may cause a crack phenomenon at 300 ° C or more, otherwise the dielectric constant is generally high. Therefore, the parasitic capacitance caused by the insulating film is increased due to the high dielectric constant, which causes a problem in the quality of the image quality due to the increased power consumption or the delay of the liquid crystal element drive signal.
  • the capacity can be reduced by increasing the film thickness, but it is generally difficult to form a uniform thick film, and the amount of material used is not preferable.
  • silsesquioxane is known as a high heat resistant and high transparency material.
  • the photosensitive composition which consists of an acryl-type copolymer and the quinonediazide compound which copolymerized the silsesquioxane compound which provided the acryl group to specific silsesquioxane, the unsaturated compound containing unsaturated carboxylic acid and an epoxy group, and an olefinic unsaturated compound. And the like have been proposed.
  • these compounds also have a high thermal content of organic compounds and decompose after high temperature curing at 250 ° C.
  • the system which combined the quinonediazide compound in order to give positive photosensitive property to a siloxane polymer The material which combined the siloxane polymer and quinonediazide compound which have a phenolic hydroxyl group at the terminal, and the phenolic hydroxyl group by cyclic heat addition reaction, Materials in which a siloxane polymer to which a carboxyl group or the like is added and a quinonediazide compound are combined are known.
  • these materials contain large amounts of quinonediazide compounds, or because phenolic hydroxyl groups are present in the siloxane polymer, This coating film tends to occur whitening or coloring during heat curing, in the above 300 ° C acrid high temperatures can cause the cracking and thus can not be utilized permeability 'and due to the decrease as a transparent material according to.
  • these materials have a problem of low sensitivity at the time of pattern formation because of their low transparency.
  • thermosetting When the photosensitive composition material which consists only of polysiloxane and a quinone diazide compound is thermoset, crosslinking and high molecular weight generate
  • the film is melted by the low viscosity of the film by high temperature, and the patterns such as holes and lines obtained after development flow. As a result, a crack does not occur, but a "pattern" deterioration occurs in which the resolution decreases, which must be prevented.
  • insoluble polysiloxane a combination of the insoluble polysiloxane, the soluble polysiloxane system, and the quinone diazide compound is combined with the developer, and during heat curing, a pattern such as a hole or a line obtained after development collapses, resulting in a "pattern sagging" that results in a decrease in resolution.
  • a photosensitive composition which prevents is proposed.
  • insoluble polysiloxane when used in the developing solution, it melts after development, but causes a development pattern defect to occur due to re-adhesion of residues or difficult-to-melt materials that start to melt.
  • the photosensitive material is low in sensitivity and high reaction energy is required.
  • the residual film ratio is also not divided, resulting in a large loss of material.
  • cracks margin is improved to provide a photosensitive resin composition which is easy to adjust the thickness.
  • Another embodiment is to provide a cured film obtained by curing the photosensitive resin composition.
  • Another embodiment is to provide an electronic device including the cured film.
  • TMAH tetramethylammonium hydroxide
  • X 1 is a C1 to C6 alkoxy group, a hydroxy group, a halogen, a carboxyl group, or any combination thereof 0 igo,
  • a 0 ⁇ a ⁇ 4
  • R 1 is hydrogen, C1 to C10 alkyl group, C2 to C10 alkenyl group, C6 to C16 aryl group, or a combination thereof
  • X 1 is C1 to C6 alkoxy group, hydroxy group, halogen, or a combination thereof May be a combination.
  • R 1 is a methyl group or a phenyl group, a may be 1.
  • the polysiloxane polymer (A) is a silane compound represented by the following formula (2) It may be further included hydrolyzed and condensation.
  • Y 1 is a single bond, oxygen, substituted or unsubstituted C1 to C20 alkylene group, substituted or unsubstituted C3 to C30 cycloalkalene group, substituted or unsubstituted C6 to C30 arylene group, substituted or unsubstituted C2 to A C30 heteroarylene group, a substituted or unsubstituted C2 to C30 alkenylene group, a substituted or unsubstituted C2 to C20 alkynylene group, or a combination thereof,
  • X 2 and X 3 are each independently a C1 to C6 alkoxy group, a hydroxy group, a halogen, a carboxyl group, or a combination thereof.
  • Y 1 may be a C1 to C10 alkylene group, a C3 to C10 cycloalkylene group, a C6 to C12 arylene group, or a combination thereof, and X 2 and X 3 may be a C1 to C6 alkoxy group.
  • the film after prebaking of the photosensitive resin composition may be insoluble in a 2.38 wt% TMAH aqueous solution and the dissolution rate in the 5 wt% TMAH aqueous solution may be 50 A / sec or less.
  • the polysiloxane polymer (A) is prepared by hydrolyzing and condensing the silane compound represented by Formula 1 to 80 mol% to 97 mol3 ⁇ 4> and 3 to 20 mol% of the silane compound represented by Formula 2 together. can do.
  • At least 70% of the total silicon atoms of the polysiloxane polymer (A) may be substituted by phenyl groups.
  • the photosensitive resin composition may further include (C) an additive capable of generating an acid or a base with heat or light, (D) a quinonediazide compound, or a combination thereof.
  • the refractive index of the photosensitive resin composition may be at least 1.50.
  • Another embodiment provides a cured film prepared by curing the photosensitive resin composition.
  • the cured film may have a light transmittance of 98% or more at a 400 nm wavelength.
  • Another embodiment provides an electronic device including the cured film.
  • the photosensitive resin composition according to an embodiment may have excellent chemical resistance, have high light transmittance and crack resistance after high silver curing, and may provide a cured film having an improved crack margin.
  • the cured film may be usefully used for manufacturing a planarization film for a thin film transistor (TF) substrate, an interlayer insulating film of a semiconductor device, and the like.
  • TF thin film transistor
  • 'substituted' means that a hydrogen atom in a compound is a halogen atom (F, Br, C1, or 1), a hydroxyl group, an alkoxy group, a nitro group, a cyano group, an amino group, an azido group, an amino group Dino group, hydrazino group, hydrazono group, carbonyl group, carbamyl group, thiol group, ester group, carboxyl group or salt thereof, sulfonic acid group or salt thereof, phosphoric acid or salt thereof, C1 to C20 alkyl group, C2 to C20 alkenyl group, C2 C20 to C20 alkynyl group, C6 to C30 aryl group, C7 to C30 arylalkyl group, C1 to C30 alkoxy group, C1 to C20 heteroalkyl group, C3 to C20 heteroarylalkyl group, C3 to C30 cycloalkyl group, C
  • hetero means containing at least one hetero atom selected from N, 0, S and P.
  • 'combination' means a combination or copolymerization.
  • the photosensitive resin composition according to one embodiment is formed by (A) hydrolyzing and condensing at least one silane compound represented by Formula 1 below, and a polysiloxane polymer in which at least 65% of all silicon atoms are substituted by phenyl groups And (B) a solvent, wherein the membrane after prebaking is insoluble in a 2.38 wt% tetramethylammonium hydroxide (TMAH) water ' solution and the dissolution rate in a 5 wt% TMAH aqueous solution is 100 A / sec or less:
  • TMAH tetramethylammonium hydroxide
  • X 1 is a C1 to C6 alkoxy group, a hydroxy group, a halogen, a carboxyl group, or a combination thereof,
  • n 0 ⁇ n ⁇ 4.
  • the photosensitive resin composition according to the embodiment includes a polysiloxane polymer prepared by hydrolyzing and condensing at least one silane compound represented by Chemical Formula 1, thereby having excellent chemical resistance, and having a high tangerine index having a refractive index of 1.5 or more. It provides a resin composition. Accordingly, the photosensitive resin composition according to the embodiment has a high light transmittance at high temperature curing, the crack margin is improved to exhibit an easy thickness control of the insulating film.
  • R 1 of Formula 1 may be hydrogen, C1 to C10 alkyl group, C2 to C10 alkenyl group, C6 to C16 aryl group, or a combination thereof, X 1 is C1 to C6 alkoxy group, hydroxy group, halogen , Or a combination thereof, and n in Formula 1 may be 0 or 1.
  • R 1 is a methyl group or a phenyl group
  • a may be 1.
  • the polysiloxane polymer (A) according to the embodiment may further be hydrolyzed and condensation-polymerized further comprising a silane compound represented by the following formula (2):
  • Y 1 is a single bond, oxygen, substituted or unsubstituted C1 to C20 alkylene group, substituted or unsubstituted C3 to C30 cycloalkylene group substituted or unsubstituted C6 to C30 arylene group, substituted or unsubstituted C2 to C30 hetero
  • X 2 and X 3 are each independently a C1 to C6 alkoxy group, a hydroxy group, a halogen, a carboxyl group, or a combination thereof.
  • Y 1 may be C1 to C10 alkylene group, C3 to C10 cycloalkylene group, C6 to C12 arylene group, or a combination thereof
  • X 2 and X 3 may be C1 to C6 alkoxy. It may be a flag.
  • the photosensitive resin composition is hydrolyzed and condensed at least one type represented by the formula (1) and 80 mol% to 97 mol% of the silane compound, and 3 mol% to 20 mol% of the silane compound represented by Chemical Formula 2 It can be prepared by reaction.
  • the photosensitive resin composition has a refractive index of 1.50 or more, for example, 1.51 or more, for example, 1.52 or more, 1.53 or more, for example, 1.54 or more, for example, 1.55 or more.
  • the photosensitive resin composition according to the embodiment has a high refractive index of 1.50 or more, crack margin is improved to control the thickness of the insulating film. It shows an easy effect.
  • the molecular weight of the polysiloxane polymer (A) formed by hydrolysis and polycondensation has a weight average molecular weight of 1,000 to 500,000 in terms of polystyrene standard measured by Gel Permeation Chromatography (GPC), for example 1,000 To 100,000, for example, 1,000 to 50,000, for example, 1,000 to 30,000, for example, 1,000 to 20,000, for example, 1,000 to 15,000, for example, 1,000 to 10,000, for example 1,000 to 8,000, for example, 1,000 to 6,000, for example, 1,000 to 5,000, for example, 2,000 to 5,000.
  • GPC Gel Permeation Chromatography
  • the weight average molecular weight of the compound is ⁇ , ⁇ or more, it is possible to implement the desired thickness of the cured film without causing cracks on the surface during curing.
  • the weight average molecular weight is 500,000 or less, it is possible to improve the surface planarity while maintaining the viscosity required for coating.
  • the polysiloxane polymer (A) is a compound in which the membrane after prebaking is insoluble in an aqueous 2.38 wt% TMAH solution and has a dissolution rate of 100 A / sec or less in a 5 wt% TMAH aqueous solution.
  • the polysiloxane polymer (A) is a compound in which the film after prebaking is insoluble in a 2.38 wt% TMAH aqueous solution and has a dissolution rate of 50 A / sec or less in a 5 wt% aqueous TMAH solution.
  • the cured film obtained by curing the composition has a crack free thickness margin of 3.0 or more, for example, 3.2 m or more.
  • the cured film obtained by hardening the said photosensitive resin composition is very high crack resistance in silver.
  • Thickness change rate (w (film thickness after chemical resistance evaluation-film thickness before chemical resistance evaluation) / film thickness before chemical resistance evaluation x ioo
  • the content of phenyl groups substituted for all silicon atoms in the polysiloxane copolymer, or the membrane prepared from the composition comprising the copolymer does not meet the above dissolution rate range for TMAH.
  • the cured film cured from such a composition does not have the above crack resistance and chemical resistance.
  • the content of a phenyl group substituted in the polysiloxane polymer (A) is at least 65%, for example at least 70%, based on the number of all Si atoms.
  • the photosensitive resin composition comprising the polysiloxane polymer substituted with the phenyl group of the above content can significantly reduce the crack incidence upon curing at high temperature. If the content of phenyl groups in the polysiloxane polymer (A) is less than 65%, for example less than 60%, for example less than 55%, based on the number of all Si atoms, the photosensitive resin composition prepared therefrom is cured at high temperatures. The incidence of stacks may increase.
  • the curable film may be used as a protective film or an insulating film of a display display device.
  • the conventional positive photosensitive resin composition is low in refractive index, and it became a cause which lowered the efficiency and thermal stability of an electronic device, for example, a 0LED light emitting element.
  • the photosensitive resin composition includes a polysiloxane polymer formed by hydrolysis and polycondensation of a silane compound represented by Chemical Formula 1 and / or Chemical Formula 2 to form a surface protective film and an interlayer insulating film of a display device by increasing the refractive index. It can be usefully used.
  • the photosensitive resin composition according to one embodiment contains a solvent (B).
  • the solvent which can be used Preferably the compound which has an alcoholic hydroxyl group, and / or the cyclic compound which has a carbonyl group is used.
  • the silane compound is uniformly dissolved to form a film after application of the composition. High transparency can be achieved without whitening of the temporal membrane.
  • the compound having an alcoholic hydroxyl group can be preferably used for a boiling point of 110 ° C to 250 ° C under atmospheric pressure compound. If the boiling point is higher than 25CTC, the amount of remaining solvent in the film increases, and the film shrinks during curing, thereby making it impossible to obtain good flatness. If the boiling point is lower than 110 ° C, the coating film becomes too dry and the film surface becomes rough, resulting in poor coating properties.
  • the compound having an alcoholic hydroxyl group examples include ace, 3-hydroxy-3-methyl-2-butanone, 4-hydroxy-3-methyl-2—butanone and 5-hydroxy-2-pentanone. , 4-hydroxy-4-methyl-2-pentanone (diacetone alcohol), ethyl lactate, butyl lactate, propylene glycol mono methyl ether, propylene glycol mono ethyl ether, propylene glycol mono n-propyl ether, propylene glycol mono n-butyl ether, propylene glycol mono t-butyl ether, 3-methoxy-1-butanol, 3-methyl-3- methoxy-1-butanol, and the like.
  • diacetone alcohol is particularly preferably used.
  • a cyclic compound having a carbonyl group preferably may be under atmospheric pressure boiling point of the phosphorus compound to 150 ° C 25CTC. If the boiling point is higher than 250 ° C., the amount of residual solvent in the film increases, the film shrinkage during curing increases, and good elasticity cannot be obtained. If the boiling point is lower than 15 CTC, the coating film properties become poor due to too fast drying during coating.
  • cyclic compound having a carbonyl group examples include ⁇ -butyrolactone, ⁇ -valerlactone, ⁇ -valerolactone, propylene carbonate, ⁇ -methyl pyridone, cyclonucleanone, cycloheptanone, and the like. .
  • ⁇ -butyrolactone may be preferably used.
  • the compound having an alcoholic hydroxyl group and the cyclic compound having a carbonyl group may be used alone or in combination with each other. When used in combination, although there is no restriction
  • the compound having an alcoholic hydroxyl group is more than 99% by weight (the cyclic compound having a carbonyl group is less than 1% by weight)
  • the compatibility of the silane compound of Formula 1 may be deteriorated, the cured film may be whitened, and transparency may be decreased.
  • the condensation reaction of unreacted silanol groups in the silane compound of Formula 1 may easily occur, leading to poor storage stability. have.
  • the photosensitive resin composition according to the above embodiment may further include other solvents in a range that does not impair the effects of the present invention.
  • Other solvents include ethyl acetate, n-propyl acetate, isopropyl acetate, n-butyl acetate, isobutyl acetate, propylene glycol mono methyl ether acetate, 3-methoxy-1-butyl acetate, 3-methyl-3-medium when 1-ester such as butyl acetate, methyl isobutyl ketone, diisopropyl ketone, diisobutyl ketone, ketones such as acetyl acetone, diethyl ether, diisopropyl ether, di-n - butyl ether, diphenyl ether Ethers such as : c.
  • a solvent Preferably it can be used in the range of 100-1, 000 weight% with respect to 100 weight% of said silane compounds of the said Formula (1).
  • the solvent may be included so that the solid content is 10 to 50 wt% based on the total weight of the photosensitive resin composition.
  • the said solid content means the composition component except a solvent in the resin composition of this invention.
  • the photosensitive resin composition according to the embodiment may contain an additive capable of generating an acid or a base with (C) heat or light.
  • an additive capable of generating an acid or a base with (C) heat or light.
  • it may be a thermal acid generator, a photoacid generator, a thermal base generator or a photoacid generator, for example, may be a thermal acid generator.
  • Such (C) additive can improve the resolution by strengthening the shape of the pattern during the manufacture of the cured film, or by increasing the contrast of development,
  • Photosensitive resin composition according to an embodiment is the (A) polysiloxane polymer 100
  • the (C) additive may include 0.001 to 10.0 parts by weight, for example, 0.01 to 5.0 parts by weight.
  • thermal acid generator examples include various aliphatic sulfonic acids and salts thereof, various aliphatic carboxylic acids such as citric acid, acetic acid and maleic acid, salts thereof, various aromatic carboxylic acids such as benzoic acid and phthalic acid, salts thereof, aromatic sulfonic acids and ammonium salts, and various amines. Salts, aromatic diazonium salts, phosphonic acids, and salts thereof; salts and esters for generating organic acids;
  • the thermal acid generator in one embodiment may be a salt consisting of an organic acid and an organic base, or a salt consisting of a sulfonic acid and an organic base, but is not limited thereto.
  • a thermal acid generator containing sulfonic acid may be P-luenesulfonic acid, benzenesulfonic acid, P-dodecylbenzenesulfonic acid, 1,4-naphthalenedisulfonic acid, methanesulfonic acid ⁇ , or a combination thereof.
  • P-luenesulfonic acid benzenesulfonic acid
  • P-dodecylbenzenesulfonic acid 1,4-naphthalenedisulfonic acid
  • methanesulfonic acid ⁇ or a combination thereof.
  • photoacid generator examples include diazomethane compounds, diphenyl iodonium salts, triphenylsulfonium salts, sulfonium salts, ammonium salts, phosphonium salts, sulfonimide compounds and the like.
  • the structure of these photo-acid generators can be represented by General formula (3).
  • R + is hydrogen, substituted or unsubstituted alkyl group, aryl group, alkenyl group, acyl group, alkoxyl group, etc.
  • X— is, BF 4 " , PIV, Sbl, SCN-, (CF 3 S0 2 ) 2 N 1, carboxylic acid ions, sulfonium ions and the like.
  • Examples of the photobase generator may include a polysubstituted amide compound having an amide group, a lactam, an imide compound, and the like.
  • Examples of the thermal base generator include N- (2-nitrobenzyloxycarbonyl) imidazole, N -(3-nitrobenzyloxycarbonyl) imidazole, N- (4-nitrobenzyloxycarbonyl) imidazole, N- (5-methyl-2-nitrobenzyloxycarbonyl) imidazole, N- (4- Imidazole derivatives such as chloro-2-nitrobenzyloxycarbonyl) imidazole, 1,8- Diazabicyclo (5, 4, 0) undecene-7, tertiary amines, quaternary ammonium salts, or combinations thereof.
  • the photosensitive resin composition according to the embodiment may include (D) a quinonediazide compound.
  • (D) The photosensitive resin composition containing a mundone diazide compound forms the positive type by which an exposure part is removed with a developing solution.
  • the quinonediazide compound which can be used is not particularly limited, but for example, a compound obtained by ester bonding of naphthozinone diazide sulfonic acid to a compound having a phenolic hydroxyl group can be used, and the ortho position of the phenolic hydroxyl group of the compound; and Each of the para positions may independently be hydrogen, or a compound having any one of substituents represented by the following general formula (5):
  • R 12 , R 13 , and R 14 each independently represent any of C1 to C10 alkyl, carboxyl, phenyl and substituted phenyl groups, and R 12 , R 13 , and R 14 together form a ring. You may.
  • the alkyl group may be any of unsubstituted or substituted.
  • the alkyl group include methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, t-butyl group, n-nuclear group, cyclonuclear group, n-heptyl group and n-octyl group And trifluoromethyl group and 2-carboxyethyl group.
  • the substituted phenyl group includes a phenyl group substituted with a hydroxy group.
  • R 12 , R 13 , and R 14 may form a ring together, and specific examples thereof include a cyclopentane ring, a cyclonucleic acid ring, an adamantane ring, and a fluorene ring.
  • Ortho position of a phenolic hydroxyl group, and a para position the group of that excepting the above, for example
  • oxidative decomposition occurs by thermosetting, and the conjugated compound represented by a quinoid structure is formed, a cured film is colored and colorless transparency falls.
  • These quinonediazide compounds can be synthesized by a known esterification reaction of a compound having a phenolic hydroxyl group with naphthoquinone diazide sulfonic acid chloride.
  • a specific example of a compound which has a phenolic hydroxyl group the following compounds are mentioned (all are the products of Unshu Chemical Co., Ltd.).
  • 4-naphthoquinone diazide sulfonic acid or 5-naphthoquinone diazide sulfonic acid can be used as a naphthoquinone diazide sulfonic acid.
  • the 4-naphthoquinone diazide sulfone acid ester compound is suitable for i-ray exposure because it has absorption in the i-ray (wavelength 365 nm) region.
  • the 5-naphthoquinone diazide sulfonic acid ester compound is suitable for exposure at a wide range of wavelengths because absorption occurs in a wide range of wavelengths.
  • 4-naphthozinone diazide sulfonic acid ester compound or 5-naphthoquinone diazide sulfonic acid ester compound can be selected.
  • the 4-naphthoquinone diazide sulfonic acid ester compound and the 5-naphthoquinone diazide sulfonic acid ester compound can also be used in combination.
  • 0.1-15 weight part for example, 1-10 weight part can be used with respect to 100 weight part of said siloxane compounds of the said Formula (1).
  • 0.1 weight part of addition amount of a quinonediazide compound When less, the melt
  • 1 weight part or more is preferable in order to acquire more favorable melt contrast.
  • the amount of the quinone diazide compound is more than 15 parts by weight, the compatibility between the siloxane compound and the quinone diazide compound is deteriorated, so that whitening of the coating film occurs or coloring due to decomposition of the quinone diazide compound occurs during thermal curing. Since it becomes, the colorless transparency of a cured film falls. Moreover, in order to obtain a more transparent film, it is preferable to use a quinonediazide compound at 10 weight part or less.
  • the photosensitive resin composition according to the above embodiment may further include additional components conventionally used in the photosensitive resin composition, for example, a silane coupling agent, a surfactant, and the like, as necessary.
  • a silane coupling agent is added in order to improve the adhesiveness of the cured film formed and a board
  • the functional silane compound which has a semi-aromatic substituent can be used.
  • the semi-aromatic substituent include carboxyl group, methacryloyl group, isocyanate group, epoxy group and the like.
  • silane coupling agent examples include trimethoxysilylbenzoic acid, Y-methacryloxypropyltrimethoxysilane, vinyltriacexoxysilane, vinyltrimethoxysilane, Y-isocyanatopropyltriethoxysilane, Y One or more selected from -glycidoxypropyltrimethoxysilane, ⁇ -glycidoxypropyltriethoxysilane, and ⁇ - (3,4-epoxycyclonucleosil) ethyltrimethoxysilane can be used, preferably Glycidoxypropyltriethoxysilane and / or glycidoxypropyltrimethoxysilane having an epoxy group may be used in view of the residual film ratio and the adhesion between the substrate, but the present invention is not limited thereto.
  • the silane coupling agent may be included in the range of 0.01 to 10 parts by weight, for example, 0.01 to 5 parts by weight, based on 100 parts by weight (based on the solid content) of the compound represented by Formula 1 in the photosensitive composition.
  • the content of the silane coupling agent is 0.01 parts by weight or more, the adhesion to the substrate is improved, when the content is less than 10 parts by weight, the thermal stability is improved at high temperatures, and staining after development can be prevented. have.
  • the photosensitive resin composition according to the present invention may further include a surfactant to improve coating performance.
  • surfactants include fluorine-based surfactants, silicone-based surfactants, nonionic surfactants, and other surfactants.
  • the surfactant for example, FZ2122 Dow Corning Toray Corporation), BM-1000, BM-
  • the surfactant may be used in the range of 0.05 to 10 parts by weight, for example, 0.01 to 5 parts by weight, based on 100 parts by weight of the compound represented by Formula 1 (based on the solid content).
  • content of the surfactant is 0.05 parts by weight or more, the applicability is improved and cracks do not occur on the coated surface, and when it is 10 parts by weight or less, it is advantageous in terms of price.
  • the photosensitive resin composition according to one embodiment in addition to the components, is typically in the thermosetting resin composition and / or photosensitive resin composition, if necessary It may further comprise additional ingredients used.
  • the photosensitive resin composition according to the above embodiment may contain additives such as a dissolution accelerator, a dissolution inhibitor, a surfactant, a stabilizer, and an antifoaming agent, as necessary.
  • the photosensitive resin composition according to the above embodiment is applied onto the base substrate by a known method such as spinner, dipping, slit or the like, and prebaked with a heating device such as a hot plate or an oven.
  • Prebaking is carried out in the range of 50 ° C to 150 ° C for 30 seconds to 30 minutes, the film thickness after prebaking can be 0.1 [M to 15.
  • ultraviolet light exposure devices such as stepper, mirror projection mask aligner (MPA) and paratel light mask aligner (PLA) are used to detect 10 mJ / cin in the wavelength range of 2Q0 nm to 450 nm .
  • the exposure may be performed at an exposure amount of from 500 mJ / cin 2 .
  • the exposed portion is dissolved by development, and a positive pattern can be obtained.
  • the developing method it is preferably immersed in the developing solution for 5 seconds to 10 minutes by a method such as showering, dipping, paddle or the like.
  • a well-known alkali developing solution can be used as a developing solution. Specific examples include inorganic alkalis such as hydroxides, carbonates, phosphates, silicates and borates of alkali metals, amines such as 2-diethylamino ethanol, monoethanol amines and diethan amines, tetramethylammonium hydroxide and choline.
  • the aqueous solution containing 1 type, or 2 or more types of ammonium salts is mentioned.
  • a drying bake may be performed in a range of 50 ° C. to 150 ° C. with a heating device such as a hot plate or an oven.
  • soft bake in a range of 50 ° C to 150 ° C with a heating apparatus such as a hot plate or an oven, and then in a range of 150 ° C to 450 ° C with a heating apparatus such as a hot plate, an oven, for example, 10
  • the desired cured film can be prepared by post-baking for minutes to 5 hours.
  • the cured film has high crack resistance and chemical resistance and is excellent in light transmittance. Therefore, the cured film is a thin film transistor (TFT) substrate It can be effectively used for planarization film, interlayer insulation film of semiconductor element and the like.
  • TFT thin film transistor
  • the cured film according to the embodiment manufactured as described above in the case of a cured film of 2 urn thickness, high light of 903 ⁇ 4> or more, for example, 95% or more, for example, 983 ⁇ 4> or more in the 400 nm wavelength range Has transmittance.
  • Conventional acrylic insulating film has a problem that yellowing at 250 ° C or more due to the low heat resistance characteristics, the transmittance is reduced and the polymer is decomposed to reduce the chemical resistance, silsesquioxane containing acrylic group or epoxy group is more heat resistant than acrylic insulating film This improved but the transmittance was still low at high temperatures and there was a problem of low residual film after development.
  • the photosensitive resin composition comprising a polysiloxane copolymer synthesized by hydrolyzing and condensing the silane compound represented by 2, and a solvent may be used as a cross l inker of a carbosilane structural unit in the siloxane compound to form a cured film prepared therefrom.
  • the hardness can be easily adjusted to form a high hardness coating film, thereby improving the high temperature crack resistance.
  • the organic solvent and the like can be effectively prevented from penetrating through the cured film.
  • the cured film prepared by curing the composition solves the problem of the residual film rate, in which the film thickness is reduced after development, thereby failing to form a flat film, and also does not have a pattern collapse phenomenon due to excellent chemical resistance after curing.
  • the conventional acrylic copolymer or silsesquioxane copolymerized with the organic compound has a high heat resistance, it does not discolor at a curing temperature of 300 ° C or more.
  • the cured film may be a planarization film for a thin film transistor (TFT) substrate such as a liquid crystal display device or an organic EL display device, a protective or insulating film such as a touch panel sensor element, an interlayer insulation film for a semiconductor device, a planarization film for a solid-state imaging device, and a microlens array. It can be used as a core or clad material of an optical waveguide such as a pattern or an optical semiconductor element.
  • TFT thin film transistor
  • an electronic device including the cured film is provided.
  • the device is a liquid crystal comprising the cured film as a flattening film of a TFT substrate. It can be a display element, an organic EL element, a semiconductor device, a solid-state image sensor, etc., It is not limited to these.
  • phenyltrimethoxysilane and methyltrimethoxysilane which are silane compounds represented by Chemical Formula 1
  • 1,2-bistriethoxysilylethane represented by Chemical Formula 2
  • the refractive index exhibits a high refractive index of 1.50 or more.
  • the polysiloxane copolymer prepared in Synthesis Example 7 in which only 50% of the total silicon atoms in the polysiloxane copolymer were substituted with phenyl groups was insoluble in 2.38% aqueous TMAH solution and had a dissolution rate of 45 A / sec for 5.0% TMAH aqueous solution. Even, the refractive index was lower than 1.50.
  • the refractive index was lower than 1.50.
  • the MultiSpec-1500 (trade name, manufactured by SHIMADZU Corporation), first, the light transmittance of only the glass substrate was measured, and this ultraviolet visible absorption spectrum was used as a reference. Subsequently, a cured film of the photosensitive resin composition was formed (the pattern exposure was not performed) on the glass substrate, the sample was measured by a single beam, and a light transmittance having a wavelength of 400 nm per 1 was obtained to determine the difference from the reference. It was set as transmittance
  • Example 1 Preparation and Evaluation of Cured Film 3 parts by weight of the thermal acid generator are added to 100 parts by weight of the polysiloxane copolymer obtained in Synthesis Example 1. After adding the solvent which mixed PGMEA and GBL to this, it mixed and stirred to make a homogeneous solution, and it filtered with the filter of 0.2 Pa, and prepared the resin composition. The composition was spin-coated with a spin coater (Mikasa Corporat ion) in a 10 ⁇ 10 class and then prebaked at 140 ° C. for 120 seconds using a hot plate (SCW-636 from Dainippon Screen Mfg. Co., Ltd.). To adjust the film thickness to 2.7.
  • a spin coater Moikasa Corporat ion
  • Example 2 Preparation and Evaluation of Cured Film A resin composition was prepared in the same manner as in Example 1, except that 100 parts by weight of the polysiloxane copolymer obtained in Synthesis Example 2 was used, and a cured film was prepared in the same manner. As a result of hardening, an insulating film with high temperature crack resistance and chemical resistance maintained at a transmittance of 98% and a crack-free thickness margin of 3.2 zm was obtained.
  • Example 3 Preparation and Evaluation of Cured Film
  • a resin composition was prepared in the same manner as in Example 1, except that 100 parts by weight of the polysiloxane copolymer obtained in Synthesis Example 3 was used, and a cured film was prepared in the same manner.
  • an insulating film having high transmittance of 98% and a crack-free thickness margin of 3.5 kPa having high temperature crack resistance and chemical resistance was obtained.
  • Example 4 Preparation of cured film prepared and evaluated, except that with the polysiloxane 100 parts by weight of copolymer obtained in Synthesis Example 4 and Example 1 to produce the resin composition in the same manner, and using this, was' prepared cured film in the same manner .
  • Example 5 Preparation and Evaluation of Cured Film A resin composition was prepared in the same manner as in Example 1, except that 100 parts by weight of the polysiloxane copolymer obtained in Synthesis Example 5 was used, and a cured film was prepared in the same manner. As a result of curing, an insulating film having a high permeability and chemical resistance of 98% in transmittance and no crack generation thickness margin of 4.0 was obtained.
  • Example 6 Preparation and Evaluation of Cured Film A resin composition was prepared in the same manner as in Example 1, except that 100 weight% of the polysiloxane copolymer obtained in Synthesis Example 6 was used, and a cured film was prepared in the same manner. . As a result of curing, an insulating film having a high permeability and chemical resistance of 98% having a transmittance and no crack generation thickness margin of 4.5 was obtained. Comparative Example 1: Preparation and Evaluation of Cured Film A resin composition was prepared in the same manner as in Example 1, except that 100 parts by weight of the polysiloxane copolymer obtained in Synthesis Example 7 was used, and a cured film was prepared in the same manner.
  • Comparative Example 2 Preparation and Evaluation of Cured Film A resin composition was prepared in the same manner as in Example 1, except that 100 parts by weight of the polysiloxane copolymer obtained in Synthesis Example 8 was used, and a cured film was prepared in the same manner. As a result of curing, an insulating film having a transmittance of 97% and a crack-free thickness margin of 2.5 was obtained.
  • the cured film manufactured from the photosensitive resin composition which is insoluble in a 38 weight% TMAH aqueous solution and has a dissolution rate of 100 A / sec or less for a 5.0 weight% -TMAH aqueous solution has a thickness of 2. There is no cracking at 3 and no crack-free thickness margin that maintains a light transmittance of 98% for 400 nm wavelength. It can be seen that it has excellent anti-tacktack and a high light transmittance of 2 i or more. Moreover, the rate of change of the thickness of the cured film with respect to the chemical resistance evaluation solvent is 5% or less, and the chemical resistance is also very excellent.
  • the photosensitive resin composition according to Comparative Example 1 and Comparative Example 2 comprising the polysiloxane co-polymer prepared in Synthesis Example 7 and Synthesis Example 8, in which only 50% of all silicon atoms in the polysiloxane copolymer were substituted with phenyl groups, had a thickness after curing. Both cracks occurred, and the crack-free thickness margin maintaining 97% light transmittance for the 400 nm wavelength was 2. 5 j ⁇ , it can be seen that it is significantly lower than the crack resistance of the cured film according to Examples 1 to 6.
  • the photosensitive resin composition according to the embodiment has excellent crack resistance and chemical resistance after curing of the cured film prepared therefrom, maintains high light transmittance, and can increase the crack margin to easily control the thickness of the cured film. It can be seen that.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Epidemiology (AREA)
  • Public Health (AREA)
  • Materials For Photolithography (AREA)
  • Silicon Polymers (AREA)

Abstract

Provided are a photosensitive resin composition, a cured film produced by curing the photosensitive resin composition, and an electronic device comprising the cured film, the photosensitive resin composition comprising (A) a polysiloxane polymer and (B) a solvent, wherein the (A) polysiloxane polymer is formed by subjecting at least one type of a silane compound, represented by chemical formula 1 below, to hydrolysis and a condensation reaction, wherein a prebaked film is insoluble in an aqueous 2.38 wt% tetramethylammonium hydroxide (TMAH) solution and has a dissolution rate of 100Å/sec or lower in an aqueous 5 wt% TMAH solution: [chemical formula 1] (R1)aSiX1 4-a, wherein R1, X1 and a are as defined in the specification.

Description

【명세서】  【Specification】
【발명의 명칭】  [Name of invention]
감광성 수지 조성물, 그로부터 형성된 경화막, 및 상기 경화막을 갖는 전자 장치  An electronic device having a photosensitive resin composition, a cured film formed therefrom, and the cured film
【기술분야】  Technical Field
본 기재는 감광성 수지 조성물, 그로부터 형성된 경화막, 및 상기 경화막을 포함하는 전자 장치에 관한 것이다.  The present substrate relates to a photosensitive resin composition, a cured film formed therefrom, and an electronic device including the cured film.
【배경기술】  Background Art
액정 디스플레이나 유기 EL 디스플레이 등에 있어서 한층 더 정밀하고 높은 해상도를 실현하기 위해서는 표시 장치의 개구율을 높여야 하며, 이를 위해 TFT 기판 상부에 투명한 평탄화 막을 보호막으로 설치함으로씨 데이터 라인과 화소 전극을 오버랩시켜 고개구율을 가능하게 하는 방법이 있다.  In order to achieve more accurate and higher resolution in liquid crystal displays and organic EL displays, the aperture ratio of the display device must be increased. To this end, a transparent flattening film is provided as a protective film on the TFT substrate to overlap the C data line and the pixel electrode, thereby increasing the high aperture ratio. There is a way to make this possible.
이러한 TFT 기판용 유기 절연막을 형성하기 위한 재료로는 고내열성, 고투명성, 고온 내크랙성, 저유전율성, 내화학성 등을 갖는 재료가 필요하며, TFT기판 전극과 IT0 전극과의 도통 확보를 위해 50 내지 수 Mil 정도의 홀 패턴 형성을 할 필요가 있다.  As a material for forming the organic insulating film for the TFT substrate, a material having high heat resistance, high transparency, high temperature crack resistance, low dielectric constant, chemical resistance, and the like is required, and to secure the conduction between the TFT substrate electrode and the IT0 electrode. It is necessary to form a hole pattern on the order of 50 to several mils.
종래에는 페놀계 수지와 쥐논디아지드 화합물을 조합한 재료, 또는 아크릴계 수지와 쥐논디아지드 화합물을 조합한 광감성 수지 조성물이 주로 사용되어 왔다. 그라나, 이들 재료는 2(xrc 이상의 고온에서 재료 특성이 급격히 열화하는 것은 아니지만 230°C 이상에서는 서서히 분해가 시작되고, 막 두께의 저하나 크랙 현상이 발생하는 문제, 또는 기판을 고온 처리함에 의해 투명막이 착색되어 투과율이 저하되는 문제가 있다. Conventionally, the material which combined phenolic resin and a numone diazide compound, or the photosensitive resin composition which combined an acryl-type resin and a numone diazide compound has been mainly used. However, these materials are not rapidly deteriorated at a high temperature of 2 (xrc or higher, but are gradually decomposed at 230 ° C or higher, and a problem of deterioration in film thickness or cracking occurs, or transparent treatment due to high temperature treatment of the substrate. There is a problem that the membrane is colored and the transmittance is lowered.
또한, 최근 액정 디스플레이 등에 있어서 터치 패널이 채용되고 있지만, 터치 패널의 투명성이나 기능성 향상을 위해, 투명 전극 부재인 ITO의 고 투명성과 고 도전성을 목적으로, 보다 높은 온도에서의 열처리나 제막을 행하는 시도가 이루어지고 있다. 그에 수반하여, 투명 전극 부재의 보호막이나 절연막에도 고온 처리에 대한 내열성이 요구되고 있다. 그러나, 아크릴 수지는 내열성이나 내약품성이 불층분하여, 기판의 고온 처리나 투명 전극 등의 고온 제막, 또는 각종 에칭 약액 처리에 의해 경화막이 착색되어 투명성이 저하하거나, 또는 고온 제막 중에서의 탈가스에 의해 전극의 도전율이 저하하는 문제가 있다. 따라서, 당해 투명막 재료 위에 PE-CVD 등의 장치를 사용하여 고온에서 막을 형성하는 것 같은 프로세스에는사용할 수 없다. In addition, in recent years, touch panels have been adopted in liquid crystal displays and the like. However, in order to improve the transparency and functionality of the touch panels, attempts have been made to perform heat treatment or film formation at higher temperatures for the purpose of high transparency and high conductivity of the transparent electrode member ITO. Is being done. Along with this, heat resistance to high temperature treatment is also required for the protective film and the insulating film of the transparent electrode member. However, acrylic resins are unsatisfactory in heat resistance and chemical resistance, such as high temperature treatment of substrates and high temperature of transparent electrodes. There exists a problem that a cured film is colored by film forming or various etching chemical processing, and transparency falls, or electroconductivity of an electrode falls by degassing in high temperature film forming. Therefore, it cannot be used for the process of forming a film | membrane at high temperature using apparatuses, such as PE-CVD, on this transparent film material.
그리고 유기 EL 소자에 있어서도, 상기 재료들로부터 발생한 크랙이나 분해물은 유기 EL 소자의 발광 효율이나 수명에 대해 악영향을 주기 때문에 사용하기에 최적의 재료라고 할 수 없다. 또한, 내열성을 부여한 아크릴 재료도 300 °C 이상에서 크랙 현상이 발생할 수 있으며, 그렇지 않은 경우 일반적으로 유전율이 높아진다. 따라서 고유전율 때문에 절연막에 의한 기생 용량이 커짐으로써, 소비 전력이 커지거나, 액정 소자 구동 신호의 지연 등으로 화질의 품질에 문제를 일으킨다. 또한 유전율이 높은 절연 재료의 경우도, 예를 들어, 막 두께를 크게 함으로써 용량을 작게 할 수는 있으나, 균일한 후막 형성이 일반적으로 곤란하고, 재료 사용량도 많아져 바람직하지 않다. Also in an organic EL element, cracks and decomposition products generated from the above materials are not optimal materials for use because they adversely affect the luminous efficiency and lifetime of the organic EL element. In addition, the acrylic material imparted heat resistance may cause a crack phenomenon at 300 ° C or more, otherwise the dielectric constant is generally high. Therefore, the parasitic capacitance caused by the insulating film is increased due to the high dielectric constant, which causes a problem in the quality of the image quality due to the increased power consumption or the delay of the liquid crystal element drive signal. In addition, in the case of an insulating material having a high dielectric constant, for example, the capacity can be reduced by increasing the film thickness, but it is generally difficult to form a uniform thick film, and the amount of material used is not preferable.
한편, 고내열, 고투명성 재료로서 실세스퀴옥산이 알려져 있다. 특히, 특정 실세스퀴옥산에 아크릴기를 부여한 실세스퀴옥산 화합물과, 불포화 카르복실산 및 에폭시기를 함유한 불포화 화합물, 및 올레핀계 불포화 화합물을 공중합시킨 아크릴계 공중합체와 퀴논디아지드 화합물로 이루어진 감광성 조성물 등이 제안되어 있다. 하지만, 이들 화합물 역시 유기 화합물의 함유량이 높아 250 °C 이상의 고온 경화 후 분해되면서 노랗게 착색되어 투과도가 떨어지는 내열성 문제가 있으며, 현상 후 잔막률이 떨어져 평탄한 막을 이루지 못하거나, 또는 NMP (N-methyl-2-pyrrol idone) , 테트라메틸암모늄하이드록사이드 (TMAH) 용액, 10% NaOH 등의 용매에 대한 내화학성도 저감되는 문제점이 있다. On the other hand, silsesquioxane is known as a high heat resistant and high transparency material. In particular, the photosensitive composition which consists of an acryl-type copolymer and the quinonediazide compound which copolymerized the silsesquioxane compound which provided the acryl group to specific silsesquioxane, the unsaturated compound containing unsaturated carboxylic acid and an epoxy group, and an olefinic unsaturated compound. And the like have been proposed. However, these compounds also have a high thermal content of organic compounds and decompose after high temperature curing at 250 ° C. or higher, resulting in a heat resistance problem that is poor in permeability, and results in a residual film that is not developed to form a flat film, or NMP (N-methyl-). 2-pyrrol idone), tetramethylammonium hydroxide (TMAH) solution, 10% NaOH and other chemical resistance to the solvent is also reduced.
또한, 실록산 중합체에 포지티브형 감광성를 부여하기 위해 퀴논디아지드 화합물을 조합한 계로서, 페놀성 수산기를 말단에 갖는 실록산 중합체와 퀴논디아지드 화합물을 조합한 재료, 환화 열 부가 반웅에 의해 페놀성 수산기나 카르복실기 등을 부가시킨 실록산 중합체와 퀴논디아지드 화합물을 조합한 재료 등이 알려져 있다. 그러나, 이들 재료는 다량의 퀴논디아지드 화합물을 함유하고 있거나, 또는 실록산 중합체 중에 페놀성 수산기가 존재하기 때문에, 도포막의 백화나 열경화시 착색이 일어나기 쉽고, 300 °C 이상의 가흑한 고온 조건에서는 크랙이 발생할 수 있어, 이에 따른 투과도 '저하로 인해 고투명성 재료로서 이용할 수 없다. 또한, 이들 재료는 투명성이 낮기 때문에 패턴 형성 시 감도가 낮다는 문제도 있다. Moreover, the system which combined the quinonediazide compound in order to give positive photosensitive property to a siloxane polymer, The material which combined the siloxane polymer and quinonediazide compound which have a phenolic hydroxyl group at the terminal, and the phenolic hydroxyl group by cyclic heat addition reaction, Materials in which a siloxane polymer to which a carboxyl group or the like is added and a quinonediazide compound are combined are known. However, these materials contain large amounts of quinonediazide compounds, or because phenolic hydroxyl groups are present in the siloxane polymer, This coating film tends to occur whitening or coloring during heat curing, in the above 300 ° C acrid high temperatures can cause the cracking and thus can not be utilized permeability 'and due to the decrease as a transparent material according to. In addition, these materials have a problem of low sensitivity at the time of pattern formation because of their low transparency.
폴리실록산과 퀴논디아지드 화합물만으로 이루어진 감광성 조성물 재료가 열경화되는 경우, 폴리실록산 중의 실라놀기의 탈수축합에 의해 가교, 고분자량화가 일어난다. 이 열경화 과정에서는, 패턴의 열경화가 층분히 진행되기 전에 고온에 의한 막의 저점도화로 용융되고, 현상 후 수득된 홀이나 라인 등의 패턴이 플로우하게 된다. 결과적으로, 크랙 현상은 일어나지 않지만 해상도가 저하하는 「패턴」 열화가 일어나며, 이를 방지하지 않으면 안 된다. 또한, 현상액에 불용인 폴리실록산과 가용인 폴리실록산의 계와 퀴논디아지드 화합물을 조합하고, 이를 가열 경화 시, 현상 후 수득된 홀이나 라인 등의 패턴이 무너져 결과적으로 해상도가 저하하는 "패턴 늘어짐" 을 방지하는 감광성 조성물이 제안되어 있다. 하지만, 현상액에 불용인 폴리실록산을 사용하면, 현상 후 녹다 만 잔여물이나 녹기 시작한 난용물이 재부착함으로써 현상 패턴 결함이 발생하는 원인이 된다. 또, 패턴 열화를 방지하기 위해서는 실록산의 분자량을 층분히 높일 필요가 있다. 그 결과, 감광성 재료로서는 감도가 낮아, 높은 반웅 에너지가 필요하게 된다. 또한, 잔막률도 층분하지 않아 재료의 손실이 크다는 결점이 있다.  When the photosensitive composition material which consists only of polysiloxane and a quinone diazide compound is thermoset, crosslinking and high molecular weight generate | occur | produce by dehydration of the silanol group in polysiloxane. In this thermosetting process, before the thermosetting of the pattern proceeds sufficiently, the film is melted by the low viscosity of the film by high temperature, and the patterns such as holes and lines obtained after development flow. As a result, a crack does not occur, but a "pattern" deterioration occurs in which the resolution decreases, which must be prevented. In addition, a combination of the insoluble polysiloxane, the soluble polysiloxane system, and the quinone diazide compound is combined with the developer, and during heat curing, a pattern such as a hole or a line obtained after development collapses, resulting in a "pattern sagging" that results in a decrease in resolution. A photosensitive composition which prevents is proposed. However, when insoluble polysiloxane is used in the developing solution, it melts after development, but causes a development pattern defect to occur due to re-adhesion of residues or difficult-to-melt materials that start to melt. In addition, in order to prevent pattern deterioration, it is necessary to increase the molecular weight of siloxane sufficiently. As a result, the photosensitive material is low in sensitivity and high reaction energy is required. In addition, there is a drawback that the residual film ratio is also not divided, resulting in a large loss of material.
【발명의 상세한 설명】  [Detailed Description of the Invention]
【기술적 과제】  [Technical problem]
일 구현'예는, 내화학성이 우수하고, 고온 경화 후 높은 광 투과율과 내크랙성을 가지며, 크랙마진이 향상되어 두께 조절이 용이한 감광성 수지 조성물을 제공하기 위한 것이다. In some embodiments, for example, after high temperature curing is excellent in chemical resistance, and has high light transmittance and crack resistance, cracks margin is improved to provide a photosensitive resin composition which is easy to adjust the thickness.
다른 구현예는 상기 감광성 수지 조성물을 경화하여 얻은 경화막를 제공하기 위한 것이다.  Another embodiment is to provide a cured film obtained by curing the photosensitive resin composition.
또 다른 구현예는 상기 경화막을 포함하는 전자 장치를 제공하기 위한 것이다. 【기술적 해결방법】 Another embodiment is to provide an electronic device including the cured film. Technical Solution
일 구현예는, (A) 하기 화학식 1로 표시되는, 적어도 1종의 실란 화합물을 가수분해 및 축합반응시켜 형성되고, 전체 실리콘 원자의 65% 이상이 페닐기에 의해 치환된 폴리실록산 중합체와, (B) 용매를 포함하는 감광성 수지 조성물로서, 프리베이크 후 막이 2.38 중량 % 테트라메틸암모늄하이드록사이드 (TMAH) 수용액에는 불용이고 5 중량 % TMAH 수용액에서의 용해 속도는 100 A/초 이하인 감광성 수지 조성물을 제공한다:  In one embodiment, (A) a polysiloxane polymer formed by hydrolysis and condensation reaction of at least one silane compound represented by the following Chemical Formula 1, wherein at least 65% of all silicon atoms are substituted by a phenyl group, (B A photosensitive resin composition comprising a solvent, wherein the film after prebaking is insoluble in a 2.38% by weight aqueous solution of tetramethylammonium hydroxide (TMAH) and the dissolution rate in a 5% by weight solution of TMAH is 100 A / sec or less. do:
[화학식 1]  [Formula 1]
4一 a  4 一 a
상기 화학식 1에서,  In Chemical Formula 1,
R1 은 수소, 하이드록시, 할로겐, 치환 또는 비치환된 C1 내지 C30 알킬기, 치환 또는 비치환된 C3 내지 C30 사이클로알킬기, 치환 또는 비치환된 C6 내지 C30 아릴기, 치환 또는 비치환된 C7 내지 C30 아릴알킬기, 치환 또는 비치환된 C1 내지 C30 헤테로알킬기, 치환 또는 비치환된 C2 내지 C30 헤테로사이클로알킬기, 치환 또는 비치환된 C1 내지 C30 헤테로아릴기, 치환 또는 비치환된 C2 내지 C30 알케닐기, 치환 또는 비치환된 C2 내지 C30 알키닐기, R0- , R(C=0)- (여기서, R은 치환 또는 비치환된 C1 내지 C30의 알킬기, 치환 또는 비치환된 C3 내지 C30의 사이클로알킬기, 치환 또는 비치환된 C6 내지 C30의 아릴기, 또는 치환 또는 비치환된 C7 내지 C30의 아릴알킬기), 또는 이들의 조합이고, R 1 is hydrogen, hydroxy, halogen, substituted or unsubstituted C1 to C30 alkyl group, substituted or unsubstituted C3 to C30 cycloalkyl group, substituted or unsubstituted C6 to C30 aryl group, substituted or unsubstituted C7 to C30 Arylalkyl group, substituted or unsubstituted C1 to C30 heteroalkyl group, substituted or unsubstituted C2 to C30 heterocycloalkyl group, substituted or unsubstituted C1 to C30 heteroaryl group, substituted or unsubstituted C2 to C30 alkenyl group, substituted Or an unsubstituted C2 to C30 alkynyl group, R0-, R (C = 0)-(where R is a substituted or unsubstituted C1 to C30 alkyl group, a substituted or unsubstituted C3 to C30 cycloalkyl group, a substituted or Unsubstituted C6 to C30 aryl group, or substituted or unsubstituted C7 to C30 arylalkyl group), or a combination thereof,
X1은 C1 내지 C6 알콕시기, 히드록시기, 할로겐, 카르복실기, 또는 이들의 조합0ᅵ고, X 1 is a C1 to C6 alkoxy group, a hydroxy group, a halogen, a carboxyl group, or any combination thereof 0 igo,
a는 0 < a<4 이다.  a is 0 <a <4
상기 화학식 1에서, R1 은 수소, C1 내지 C10 알킬기, C2 내지 C10 알케닐기, C6 내지 C16의 아릴기, 또는 이들의 조합이고, X1은 C1 내지 C6 알콕시기, 히드록시기, 할로겐, 또는 이들의 조합일 수 있다. In Formula 1, R 1 is hydrogen, C1 to C10 alkyl group, C2 to C10 alkenyl group, C6 to C16 aryl group, or a combination thereof, X 1 is C1 to C6 alkoxy group, hydroxy group, halogen, or a combination thereof May be a combination.
상기 화학식 1에서, R1 은 메틸기 또는 페닐기이고, a는 1일 수 있다. In Formula 1, R 1 is a methyl group or a phenyl group, a may be 1.
상기 폴리실록산 중합체 (A)는 하기 화학식 2로 표시되는 실란 화합물을 더 포함하여 가수분해 및 축합증합된 것일 수 있다. The polysiloxane polymer (A) is a silane compound represented by the following formula (2) It may be further included hydrolyzed and condensation.
[화학식 2]  [Formula 2]
X^Si -Y^SiX^ . X ^ Si -Y ^ SiX ^ .
상기 화학식 2에서,  In Chemical Formula 2,
Y1은 단일결합, 산소, 치환 또는 비치환된 C1 내지 C20 알킬렌기, 치환 또는 비치환된 C3 내지 C30 사이클로알칼렌기, 치환 또는 비치환된 C6 내지 C30 아릴렌기, 치환 또는 비치환된 C2 내지 C30 헤테로아릴렌기, 치환 또는 비치환된 C2 내지 C30 알케닐렌기, 치환 또는 비치환된 C2 내지 C20 알키닐렌기, 또는 이들의 조합이고, Y 1 is a single bond, oxygen, substituted or unsubstituted C1 to C20 alkylene group, substituted or unsubstituted C3 to C30 cycloalkalene group, substituted or unsubstituted C6 to C30 arylene group, substituted or unsubstituted C2 to A C30 heteroarylene group, a substituted or unsubstituted C2 to C30 alkenylene group, a substituted or unsubstituted C2 to C20 alkynylene group, or a combination thereof,
X2및 X3은, 각각 독립적으로, C1 내지 C6 알콕시기, 히드록시기, 할로겐, 카르복실기, 또는 이들의 조합이다. X 2 and X 3 are each independently a C1 to C6 alkoxy group, a hydroxy group, a halogen, a carboxyl group, or a combination thereof.
상기 화학식 2에서, 상기 Y1 은 C1 .내지 C10 알킬렌기, C3 내지 C10 사이클로알킬렌기 , C6 내지 C12 아릴렌기, 또는 이들의 조합이고, 상기 X2및 X3 은 C1 내지 C6 알콕시기일 수 있다. In Formula 2, Y 1 may be a C1 to C10 alkylene group, a C3 to C10 cycloalkylene group, a C6 to C12 arylene group, or a combination thereof, and X 2 and X 3 may be a C1 to C6 alkoxy group.
상기 감광성 수지 조성물의 프리베이크 후 막은 2.38 중량 % TMAH 수용액에 불용이고 5 중량 % TMAH 수용액에서의 용해 속도는 50A/초 이하일 수 있다.  The film after prebaking of the photosensitive resin composition may be insoluble in a 2.38 wt% TMAH aqueous solution and the dissolution rate in the 5 wt% TMAH aqueous solution may be 50 A / sec or less.
상기 폴리실록산 중합체 (A)는, 상기 화학식 1로 표시되는 실란 화합물 80 몰% 내지 97 몰¾>와, 상기 화학식 2로 표시되는 실란 화합물 3 몰% 내지 20 몰%를 함께 가수분해 및 축합반웅시켜 제조할 수 있다.  The polysiloxane polymer (A) is prepared by hydrolyzing and condensing the silane compound represented by Formula 1 to 80 mol% to 97 mol¾> and 3 to 20 mol% of the silane compound represented by Formula 2 together. can do.
상기 폴리실록산 중합체 (A)의 전체 실리콘 원자의 70% 이상이 페닐 (phenyl )기에 의해 치환될 수 있다.  At least 70% of the total silicon atoms of the polysiloxane polymer (A) may be substituted by phenyl groups.
상기 감광성 수지 조성물은 (C) 열 또는 빛으로 산 또는 염기를 발생시킬 수 있는 첨가제, (D) 퀴논디아지드 화합물, 또는 이들의 조합을 더 포함할 수 있다. - 상기 감광성 수지 조성물의 굴절율은 1 .50 이상일 수 있다.  The photosensitive resin composition may further include (C) an additive capable of generating an acid or a base with heat or light, (D) a quinonediazide compound, or a combination thereof. The refractive index of the photosensitive resin composition may be at least 1.50.
다른 구현예는 상기 감광성 수지 조성물을 경화시켜 제조된 경화막을 제공한다. 상기 경화막은 400 nm 파장에서의 광 투과율이 98 % 이상일 수 있다. 다른 구현예는 상기 경화막을 포함하는 전자 장치를 제공한다 . 【발명의 효과】 Another embodiment provides a cured film prepared by curing the photosensitive resin composition. The cured film may have a light transmittance of 98% or more at a 400 nm wavelength. Another embodiment provides an electronic device including the cured film. 【Effects of the Invention】
일 구현예에 따른 광감성 수지 조성물은 내화학성이 우수하고, 고은 경화 후 높은 광투과율과 내크랙성을 가지며, 크랙 마진이 향상되어 두께 조절이 용이한 경화막을 제공할 수 있다.  The photosensitive resin composition according to an embodiment may have excellent chemical resistance, have high light transmittance and crack resistance after high silver curing, and may provide a cured film having an improved crack margin.
상기 경화막은 박막형 트랜지스터 (TF ) 기판용 평탄화 막, 반도체 소자의 층간 절연막 등의 제조에 유용하게 사용될 수 있다.  The cured film may be usefully used for manufacturing a planarization film for a thin film transistor (TF) substrate, an interlayer insulating film of a semiconductor device, and the like.
【발명의 실시를 위한 최선의 형태】  [Best form for implementation of the invention]
이하, 본 발명의 구현예에 대하여 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 상세히 설명한다. 그러나 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 구현예에 한정되지 않는다.  Hereinafter, embodiments of the present invention will be described in detail so that those skilled in the art can easily practice. As those skilled in the art would realize, the described embodiments may be modified in various different ways, all without departing from the spirit or scope of the present invention.
본 명세서에서 별도의 정의가 없는 한, '치환된'이란, 화합물 중의 수소 원자가 할로겐 원자 (F , Br , C1 , 또는 1 ), 히드록시기, 알콕시기, 니트로기, 시아노기, 아미노기, 아지도기, 아미디노기, 히드라지노기, 히드라조노기, 카르보닐기, 카르바밀기, 티올기, 에스테르기, 카르복실기나 그의 염, 술폰산기나 그의 염, 인산이나 그의 염, C1 내지 C20 알킬기, C2 내지 C20 알케닐기, C2 내지 C20 알키닐기, C6 내지 C30 아릴기, C7 내지 C30 아릴알킬기, C1 내지 C30 알콕시기, C1 내지 C20 헤테로알킬기, C3 내지 C20 헤테로아릴알킬기, C3 내지 C30 사이클로알킬기, C3 내지 C15의 사이클로알케닐기, C6 내지 C15 사이클로알키닐기, C3 내지 C30 헤테로사이클로알킬기 및 이들의 조합에서 선택된 치환기로 치환된 것을 의미한다.  Unless otherwise defined herein, 'substituted' means that a hydrogen atom in a compound is a halogen atom (F, Br, C1, or 1), a hydroxyl group, an alkoxy group, a nitro group, a cyano group, an amino group, an azido group, an amino group Dino group, hydrazino group, hydrazono group, carbonyl group, carbamyl group, thiol group, ester group, carboxyl group or salt thereof, sulfonic acid group or salt thereof, phosphoric acid or salt thereof, C1 to C20 alkyl group, C2 to C20 alkenyl group, C2 C20 to C20 alkynyl group, C6 to C30 aryl group, C7 to C30 arylalkyl group, C1 to C30 alkoxy group, C1 to C20 heteroalkyl group, C3 to C20 heteroarylalkyl group, C3 to C30 cycloalkyl group, C3 to C15 cycloalkenyl group, It means substituted with a substituent selected from C6 to C15 cycloalkynyl group, C3 to C30 heterocycloalkyl group and combinations thereof.
또한, 본 명세서에서 별도의 정의가 없는 한, '헤테로'란, N, 0, S 및 P에서 선택된 헤테로 원자를 적어도 하나 포함한 것을 의미한다.  In addition, unless otherwise defined herein, "hetero" means containing at least one hetero atom selected from N, 0, S and P.
본 명세서에서 특별한 언급이 없는 한, '조합' 이란 흔합 또는 공중합을 의미한다.  Unless otherwise specified herein, 'combination' means a combination or copolymerization.
이하, 일 구현예에 따른 감광성 수지 조성물에 대하여 설명한다. 일 구현예에 따른 감광성 수지 조성물은 (A) 하기 화학식 1로 표시되는, 적어도 1종의 실란 화합물을 가수분해 및 축합반웅시켜 형성되고, 전체 실리콘 원자의 65% 이상이 페닐기에 의해 치환된 폴리실록산 중합체와, (B) 용매를 포함하며, 프리베이크 후의 막이 2.38중량% 테트라메틸암모늄하이드록사이드 (TMAH) 수'용액에는 불용이고 5중량 % TMAH 수용액에서의 용해 속도는 100 A/초 이하이다: Hereinafter, a photosensitive resin composition according to an embodiment will be described. The photosensitive resin composition according to one embodiment is formed by (A) hydrolyzing and condensing at least one silane compound represented by Formula 1 below, and a polysiloxane polymer in which at least 65% of all silicon atoms are substituted by phenyl groups And (B) a solvent, wherein the membrane after prebaking is insoluble in a 2.38 wt% tetramethylammonium hydroxide (TMAH) water ' solution and the dissolution rate in a 5 wt% TMAH aqueous solution is 100 A / sec or less:
[화학식 1]  [Formula 1]
4-a  4-a
상기 화학식 1에서,  In Chemical Formula 1,
R1 은 수소, 하이드록시, 할로겐, 치환 또는 비치환된 C1 내지 C30 알킬기, 치환 또는 비치환된 C3 내지 C30 사이클로알킬기, 치환 또는 비치환된 C6 내지 C30 아릴기, 치환 또는 비치환된 C7 내지 C30 아릴알킬기, 치환 또는 비치환된 C1 내지 C30 헤테로알킬기, 치환 또는 비치환된 C2 내지 C30 헤테로사이클로알킬기, ' 치환 또는 비치환된 C1 내지 C30 헤테로아릴기, 치환 또는 비치환된 C2 내지 C30 알케닐기, 치환 또는 비치환된 C2 내지 C30 알키닐기, R0- , R(C=0)- (여기서, R은 치환 또는 비치환된 C1 내지 C30의 알킬기, 치환 또는 비치환된 C3 내지 C30의 사이클로알킬기, 치환 또는 비치환된 C6 내지 C30의 아릴기, 또는 치환 또는 비치환된 C7 내지 C30의 아릴알킬기), 또는 이들의 조합이고, R 1 is hydrogen, hydroxy, halogen, substituted or unsubstituted C1 to C30 alkyl group, substituted or unsubstituted C3 to C30 cycloalkyl group, substituted or unsubstituted C6 to C30 aryl group, substituted or unsubstituted C7 to C30 Arylalkyl group, substituted or unsubstituted C1 to C30 heteroalkyl group, substituted or unsubstituted C2 to C30 heterocycloalkyl group, ' substituted or unsubstituted C1 to C30 heteroaryl group, substituted or unsubstituted C2 to C30 alkenyl group, Substituted or unsubstituted C2 to C30 alkynyl group, R0-, R (C = 0)-(where R is substituted or unsubstituted C1 to C30 alkyl group, substituted or unsubstituted C3 to C30 cycloalkyl group, substituted Or an unsubstituted C6 to C30 aryl group, or a substituted or unsubstituted C7 to C30 arylalkyl group, or a combination thereof,
X1 은 C1 내지 C6 알콕시기, 히드록시기, 할로겐, 카르복실기, 또는 이들의 조합이고, X 1 is a C1 to C6 alkoxy group, a hydroxy group, a halogen, a carboxyl group, or a combination thereof,
n은 0 < n<4 이다.  n is 0 <n <4.
상기 구현예에 따른 감광성 수지 조성물은 상기 화학식 1로 표시한 적어도 1종의 실란 화합물을 가수분해 및 축합반웅시켜 제조되는 폴리실록산 중합체를 포함함으로써, 내화학성이 우수하고, 굴절율 1.5 이상의 고귤절율을 가지는 감광성 수지 조성물을 제공한다. 이에 따라, 일 구현예에 따른 감광성 수지 조성물은 고온 경화 시 높은 광 투과율을 가지며, 크랙 마진이 향상되어 절연막으로 두께 조절이 용이한 특성을 나타낸다. 일 예로, 상기 화학식 1의 R1 은 수소, C1 내지 C10 알킬기, C2 내지 C10 알케닐기, C6 내지 C16의 아릴기, 또는 이들의 조합일 수 있고, X1은 C1 내지 C6 알콕시기, 히드록시기, 할로겐, 또는 이들의 조합일 수 있고, 상기 화학식 1의 n은 0 또는 1 일 수 있다. The photosensitive resin composition according to the embodiment includes a polysiloxane polymer prepared by hydrolyzing and condensing at least one silane compound represented by Chemical Formula 1, thereby having excellent chemical resistance, and having a high tangerine index having a refractive index of 1.5 or more. It provides a resin composition. Accordingly, the photosensitive resin composition according to the embodiment has a high light transmittance at high temperature curing, the crack margin is improved to exhibit an easy thickness control of the insulating film. For example, R 1 of Formula 1 may be hydrogen, C1 to C10 alkyl group, C2 to C10 alkenyl group, C6 to C16 aryl group, or a combination thereof, X 1 is C1 to C6 alkoxy group, hydroxy group, halogen , Or a combination thereof, and n in Formula 1 may be 0 or 1.
일 실시예에서, 상기 R1 은 메틸기 또는 페닐기이고, a는 1일 수 있다. 구현예에 따른 상기 폴리실록산 중합체 (A)는 하기 화학식 2로 표시되는 실란 화합물을 더 포함하여 가수분해 및 축합중합된 것일 수 있다: In one embodiment, R 1 is a methyl group or a phenyl group, a may be 1. The polysiloxane polymer (A) according to the embodiment may further be hydrolyzed and condensation-polymerized further comprising a silane compound represented by the following formula (2):
[화학식 2]  [Formula 2]
X^Si-Y^SiX^  X ^ Si-Y ^ SiX ^
상기 화학식 2에서,  In Chemical Formula 2,
Y1 은 단일결합, 산소, 치환 또는 비치환된 C1 내지 C20 알킬렌기, 치환 또는 비치환된 C3 내지 C30 사이클로알킬렌기 치환 또는 비치환된 C6 내지 C30 아릴렌기, 치환 또는 비치환된 C2 내지 C30 헤테로아릴렌기, 치환 또는 비치환된 C2 내지 C30 알케닐렌기, 치환 또는 비치환된 C2 내지 C20 알키닐렌기, 또는 이들의 조합이고, Y 1 is a single bond, oxygen, substituted or unsubstituted C1 to C20 alkylene group, substituted or unsubstituted C3 to C30 cycloalkylene group substituted or unsubstituted C6 to C30 arylene group, substituted or unsubstituted C2 to C30 hetero An arylene group, a substituted or unsubstituted C2 to C30 alkenylene group, a substituted or unsubstituted C2 to C20 alkynylene group, or a combination thereof,
X2및 X3은, 각각 독립적으로, C1 내지 C6 알콕시기, 히드록시기, 할로겐, 카르복실기, 또는 이들의 조합이다. X 2 and X 3 are each independently a C1 to C6 alkoxy group, a hydroxy group, a halogen, a carboxyl group, or a combination thereof.
일 예로, 상기 화학식 2에서, 상기 Y1 은 C1 내지 C10 알킬렌기, C3 내지 C10 사이클로알킬렌기, C6 내지 C12 아릴렌기, 또는 이들의 조합일 수 있고, 상기 X2및 X3은 C1 내지 C6 알콕시기일 수 있다. 일 실시예에서, 상기 감광성 수지 조성물은 상기 화학식 1로 표시되는 1종 이상와 실란 화합물 80 몰% 내지 97 몰%와, 상가화학식 2로 표시되는 실란 화합물 3 몰% 내지 20 몰%를 가수분해 및 축합반웅시켜 제조할 수 있다. 상기 화학식 1 및 화학식 2로 표시되는 실란 화합물을 상기 범위로 가수분해 및 축합반응시켜 제조되는 폴리실록산 공중합체를 포함하는 경우, 상기 감광성 수지 조성물은 굴절를이 1.50 이상, 예를 들어, 1.51 이상, 예를 들어, 1.52 이상, 1.53 이상, 예를 들어, 1.54 이상, 예를 들어, 1.55 이상일 수 있다. 일 실시예에 따른 감광성 수지 조성물이 1.50 이상의 높은 굴절율 가짐으로써, 크랙마진이 향상되어 절연막으로의 두께 조절이 용이한 효과를 나타낸다. For example, in Formula 2, Y 1 may be C1 to C10 alkylene group, C3 to C10 cycloalkylene group, C6 to C12 arylene group, or a combination thereof, and X 2 and X 3 may be C1 to C6 alkoxy. It may be a flag. In one embodiment, the photosensitive resin composition is hydrolyzed and condensed at least one type represented by the formula (1) and 80 mol% to 97 mol% of the silane compound, and 3 mol% to 20 mol% of the silane compound represented by Chemical Formula 2 It can be prepared by reaction. When the polysiloxane copolymer prepared by hydrolyzing and condensing the silane compound represented by Formula 1 and Formula 2 in the above range, the photosensitive resin composition has a refractive index of 1.50 or more, for example, 1.51 or more, for example For example, 1.52 or more, 1.53 or more, for example, 1.54 or more, for example, 1.55 or more. As the photosensitive resin composition according to the embodiment has a high refractive index of 1.50 or more, crack margin is improved to control the thickness of the insulating film. It shows an easy effect.
가수분해 및 축중합에 의해 형성된 폴리실록산 중합체 (A)의 분자량은 겔투과크로마토그래피 (GPC: Gel Permeation Chromatography)에 의해 측정한 폴리스티렌 표준시료로 환산한 중량평균 분자량이 1,000 내지 500,000, 예를 들어, 1,000 내지 100,000, 예를 들어, 1,000 내지 50,000, 예를 들어, 1,000 내지 30,000, 예를 들어, 1,000 내지 20,000, 예를 들어, 1,000 내지 15,000, 예를 들어, 1,000 내지 10,000, 예를 들어, 1,000 내지 8,000, 예를 들어, 1,000 내지 6,000, 예를 들어, 1,000 내지 5,000, 예를 들어, 2,000 내지 5,000 일 수 있다.  The molecular weight of the polysiloxane polymer (A) formed by hydrolysis and polycondensation has a weight average molecular weight of 1,000 to 500,000 in terms of polystyrene standard measured by Gel Permeation Chromatography (GPC), for example 1,000 To 100,000, for example, 1,000 to 50,000, for example, 1,000 to 30,000, for example, 1,000 to 20,000, for example, 1,000 to 15,000, for example, 1,000 to 10,000, for example 1,000 to 8,000, for example, 1,000 to 6,000, for example, 1,000 to 5,000, for example, 2,000 to 5,000.
상기 화합물의 중량평균분자량이 ι,οοο 이상인 경우, 경화시 표면에 크랙이 발생하지 않고 바람직한 경화막의 두께를 구현할 수 있다. 또한 중량평균분자량이 500,000 이하일 때, 코팅에 필요한 점도를 유지하면서 표면 평탄화성을 개선할 수 있다.  When the weight average molecular weight of the compound is ι, οοο or more, it is possible to implement the desired thickness of the cured film without causing cracks on the surface during curing. In addition, when the weight average molecular weight is 500,000 or less, it is possible to improve the surface planarity while maintaining the viscosity required for coating.
상기한 바와 같이, 일 구현예에 따른 폴리실록산 중합체 (A)는 프리베이크 후 막이 2.38 중량 % TMAH 수용액에 불용이고 5 중량 % TMAH 수용액에서 용해 속도가 100 A/초 이하인 화합물이다. 예를 들어, 상기 폴리실록산 중합체 (A)는 프리베이크 후 막이 2.38중량 % TMAH 수용액에 불용이고 5중량 % TMAH수용액에서 용해 속도가 50 A/초 이하인 화합물이다. 상기 폴리실록산 중합체를 포함하는 상기 조성물을 프리베이크한 후 막의 TMAH 수용액에 대한 용해 속도가 상기 범위 내에 있는 경우, 상기 조성물을 경화시켜 얻은 경화막은 3.0 이상, 예를 들어, 3.2 m 이상의 크랙 미발생 두께 마진을 나타내며, 상기 감광성 수지 조성물을 경화시켜 얻은 경화막은 고은에서의 내크랙성이 매우 높다.  As described above, the polysiloxane polymer (A) according to one embodiment is a compound in which the membrane after prebaking is insoluble in an aqueous 2.38 wt% TMAH solution and has a dissolution rate of 100 A / sec or less in a 5 wt% TMAH aqueous solution. For example, the polysiloxane polymer (A) is a compound in which the film after prebaking is insoluble in a 2.38 wt% TMAH aqueous solution and has a dissolution rate of 50 A / sec or less in a 5 wt% aqueous TMAH solution. After prebaking the composition comprising the polysiloxane polymer and the dissolution rate in the TMAH aqueous solution of the film is within the above range, the cured film obtained by curing the composition has a crack free thickness margin of 3.0 or more, for example, 3.2 m or more. The cured film obtained by hardening the said photosensitive resin composition is very high crack resistance in silver.
또한, 상기 감광성 수지 조성물을 경화 후 두께를 2.5 士 0.1 /朋 가 되도록 10 X 10 글래스 기판에 시편을 제작하고, 시편 가운데 부분의 두께를 측정 후 내화학성 용매에 5 분간 담근 후 두께 변화를 확인한 경우, 5% 미만의 두께 변화율을 나타냈다. 이를 통해, 일 구현예에 따른 감광성 수지 조성물로부터 제조된 경화막은 상대적으로 우수한 내화학성을 가짐을 알 수 있다. 두께 변화율은 하기 수학식 1로부터 계산할 수 있다: In addition, after curing the photosensitive resin composition to produce a specimen on a 10 X 10 glass substrate so that the thickness is 2.5 sul 0.1 / ,, and after measuring the thickness of the center portion of the specimen and soaked in a chemical-resistant solvent for 5 minutes and the thickness change is confirmed , Exhibited a thickness change rate of less than 5%. Through this, it can be seen that the cured film prepared from the photosensitive resin composition according to the embodiment has a relatively excellent chemical resistance. The rate of change of thickness can be calculated from Equation 1:
[수학식 1]  [Equation 1]
두께 변화율 (w= (내화학성 평가 후 막 두께 - 내화학성 평가 전 막 두께) / 내화학성 평가 전 막 두께 x ioo  Thickness change rate (w = (film thickness after chemical resistance evaluation-film thickness before chemical resistance evaluation) / film thickness before chemical resistance evaluation x ioo
반면, 후술하는 비교예로부터 알 수 있는 것처럼, 폴리실록산 공중합체 내 모든 실리콘 원자에 치환되는 페닐기의 함량, 또는 상기 공중합체를 포함하는 조성물로부터 제조되는 막이 상기한 TMAH에 대한 용해 속도 범위를 충족하지 못하는 경우, 그러한 조성물로부터 경화되는 경화막은 상기한 내크랙성 및 내화학성을 가지지 못한다.  On the other hand, as can be seen from the comparative examples described below, the content of phenyl groups substituted for all silicon atoms in the polysiloxane copolymer, or the membrane prepared from the composition comprising the copolymer does not meet the above dissolution rate range for TMAH. In this case, the cured film cured from such a composition does not have the above crack resistance and chemical resistance.
상기 폴리실록산 중합체 (A)에 치환되는 페닐 (phenyl )기의 함량은 모든 Si 원자의 수를 기준으로 65% 이상, 예를 들어, 70% 이상이다. 상기 함량의 페닐기로 치환된 폴리실록산 중합체를 포함하는 감광성 수지 조성물은 고온에서 경화시 크랙 발생률을 현저히 감소시킬 수 있다. 폴리실록산 중합체 (A) 내 페닐기의 함량이 모든 Si 원자의 수를 기준으로, 65% 미만, 예를 들어 60% 미만, 예를 들어, 55% 미만인 경우, 그로부터 제조되는 감광성 수지 조성물은 고온에서 경화시 크택 발생률이 증가할 수 있다.  The content of a phenyl group substituted in the polysiloxane polymer (A) is at least 65%, for example at least 70%, based on the number of all Si atoms. The photosensitive resin composition comprising the polysiloxane polymer substituted with the phenyl group of the above content can significantly reduce the crack incidence upon curing at high temperature. If the content of phenyl groups in the polysiloxane polymer (A) is less than 65%, for example less than 60%, for example less than 55%, based on the number of all Si atoms, the photosensitive resin composition prepared therefrom is cured at high temperatures. The incidence of stacks may increase.
일반적으로, 감광성 수지 조성물, 예를 들어 포지티브형 감광성 수지 조성물의 경우, 경화막 제조를 통해 디스플레이 표시 소자의 보호막이나 절연막 등으로 사용될 수 있다. 그런데, 종래의 포지티브형 감광성 수지 조성물은 굴절률이 낮아 전자 장치, 예컨대 0LED 발광 소자 등의 효율 및 열안정성을 저하시키는 원인이 되었다. 일 구현예에 따른 감광성 수지 조성물은 상기 화학식 1 및 /또는 화학식 2로 표시되는 실란 화합물을 가수분해 및 축중합하여 형성된 폴리실록산 중합체를 포함함으로써, 굴절률을 높여 표시 장치의 표면 보호막 및 층간 절연막 등을 형성하는데 유용하게 사용될 수 있다.  In general, in the case of a photosensitive resin composition, for example, a positive photosensitive resin composition, the curable film may be used as a protective film or an insulating film of a display display device. By the way, the conventional positive photosensitive resin composition is low in refractive index, and it became a cause which lowered the efficiency and thermal stability of an electronic device, for example, a 0LED light emitting element. The photosensitive resin composition includes a polysiloxane polymer formed by hydrolysis and polycondensation of a silane compound represented by Chemical Formula 1 and / or Chemical Formula 2 to form a surface protective film and an interlayer insulating film of a display device by increasing the refractive index. It can be usefully used.
일 구현예에 따른 감광성 수지 조성물은 (B) 용매를 함유한다.  The photosensitive resin composition according to one embodiment contains a solvent (B).
사용 가능한 용매에 특별히 제한은 없지만, 바람직하게는 알코올성 수산기를 갖는 화합물, 및 /또는 카르보닐기를 가지는 환상 화합물이 사용된다. 이들 용매를 사용하면, 실란 화합물아균일하게 용해하여 조성물의 도포 후 성막 시 막의 백탁화가 일어나지 않고 고투명성을 달성할 수 있다. Although there is no restriction | limiting in particular in the solvent which can be used, Preferably the compound which has an alcoholic hydroxyl group, and / or the cyclic compound which has a carbonyl group is used. When these solvents are used, the silane compound is uniformly dissolved to form a film after application of the composition. High transparency can be achieved without whitening of the temporal membrane.
알코올성 수산기를 가지는 화합물에 특별히 제한은 없지만, 바람직하게는 대기압 하에서 비점이 110°C 내지 250°C인 화합물을 사용할 수 있다. 비점이 25CTC보다 높으면 막 중 잔존 용매량이 많아져 경화 시 막 수축를이 커져 양호한 평탄성을 얻을 수 없게 된다. 비점이 110°C보다 낮으면 도막 시 건조가 너무 빨라 막 표면이 거칠어지는 등 도막성이 나빠진다. Particularly limited, but the compound having an alcoholic hydroxyl group, can be preferably used for a boiling point of 110 ° C to 250 ° C under atmospheric pressure compound. If the boiling point is higher than 25CTC, the amount of remaining solvent in the film increases, and the film shrinks during curing, thereby making it impossible to obtain good flatness. If the boiling point is lower than 110 ° C, the coating film becomes too dry and the film surface becomes rough, resulting in poor coating properties.
알코올성 수산기를 갖는 화합물의 구체적인 예로는, 아세를, 3- 하이드록시 -3-메틸 -2-부타논, 4-하이드록시 -3-메틸 -2—부타논, 5-하이드록시 -2- 펜타논, 4-하이드록시 -4—메틸 -2-펜타논 (디아세톤알코올), 유산 에틸, 젖산 뷰틸, 프로필렌글리콜 모노 메틸에테르, 프로필렌글리콜 모노 에틸에테르, 프로필렌글리클 모노 n-프로필 에테르, 프로필렌글리콜 모노 n-부틸 에테르, 프로필렌글리콜 모노 t-부틸 에테르, 3-메특시 -1-부탄올, 3-메틸 -3-메록시 -1- 부탄올 등을 들 수 있다. 이중에서도, 특히 카르보닐기를 가지는 화합물이 바람직하고, 특히 디아세톤 알코올이 바람직하게 이용될 수 있다. 또한, 이들 알코올성 수산기를 가지는 화합물은 단독, 흑은 2 종 이상 조합하여 사용해도 된다.  Specific examples of the compound having an alcoholic hydroxyl group include ace, 3-hydroxy-3-methyl-2-butanone, 4-hydroxy-3-methyl-2—butanone and 5-hydroxy-2-pentanone. , 4-hydroxy-4-methyl-2-pentanone (diacetone alcohol), ethyl lactate, butyl lactate, propylene glycol mono methyl ether, propylene glycol mono ethyl ether, propylene glycol mono n-propyl ether, propylene glycol mono n-butyl ether, propylene glycol mono t-butyl ether, 3-methoxy-1-butanol, 3-methyl-3- methoxy-1-butanol, and the like. Among these, especially compounds having a carbonyl group are preferable, and diacetone alcohol is particularly preferably used. In addition, you may use the compound which has these alcoholic hydroxyl groups individually or in combination of 2 or more types.
카르보닐기를 가지는 환상 화합물에 특히 제한은 없지만, 바람직하게는 대기압 하 비점이 150°C 내지 25CTC인 화합물을 사용할 수 있다. 비점이 250°C보다 높으면, 막 중 잔존 용매량이 많아져 경화시 막 수축이 커져 양호한 탄성을 얻을 수 없다. 비점이 15CTC보다 낮으면, 도막 시 건조가 너무 빨라 막 표면이 거칠어지는 등 도막성이 나빠진다. In particular restriction on a cyclic compound having a carbonyl group, but, preferably may be under atmospheric pressure boiling point of the phosphorus compound to 150 ° C 25CTC. If the boiling point is higher than 250 ° C., the amount of residual solvent in the film increases, the film shrinkage during curing increases, and good elasticity cannot be obtained. If the boiling point is lower than 15 CTC, the coating film properties become poor due to too fast drying during coating.
카르보닐기를 가지는 환상 화합물의 구체 예로는, γ -부티로락톤, γ - 발레를락톤, δ -발레롤락톤, 탄산 프로필렌, Ν-메틸 피를리돈, 사이클로핵사논, 사이클로헵타논 등을 들 수 있다. 이중에서도, 특히 γ -부티로락톤이 바람직하게 이용될 수 있다. 또한, 이들 카르보닐기를 가지는 환상 화합물은 단독, 혹은 2 종 이상 조합하여 사용해도 좋다. Specific examples of the cyclic compound having a carbonyl group include γ -butyrolactone, γ -valerlactone, δ-valerolactone, propylene carbonate, Ν-methyl pyridone, cyclonucleanone, cycloheptanone, and the like. . In particular, γ -butyrolactone may be preferably used. In addition, you may use these cyclic compounds which have a carbonyl group individually or in combination of 2 or more types.
상기한 알코올성 수산기를 가지는 화합물과 카르보닐기를 가지는 환상 화합물은 단독으로, 혹은 서로 흔합하여 사용해도 좋다. 흔합하여 사용할 경우, 그 중량 비율에 특히 제한은 없지만, 바람직하게는 알코을성 수산기를 가지는 화합물과 카르보닐기를 가지는 환상 화합물의 비가 99 내지 50 : 1 내지 50, 또는, 예를 들어, 97 내지 60 : 3 내지 40이다. 알코을성 수산기를 가지는 화합물이 99 중량 % 보다 많은 (카르보닐기를 가지는 환상화합물이 1 중량 % 보다 적은) 경우, 화학식 1의 실란 화합물의 상용성이 나빠지고, 경화막이 백화하고 투명성이 저하할 수 있다. 또, 알코을성 수산기를 가지는 화합물이 50 중량 % 보다 적은 (카르보닐기를 가지는 환상 화합물이 50 중량 % 보다 많은) 경우, 화학식 1의 실란 화합물 중의 미반응 실라놀기의 축합 반웅이 일어나기 쉬워 저장 안정성이 나빠질 수 있다. The compound having an alcoholic hydroxyl group and the cyclic compound having a carbonyl group may be used alone or in combination with each other. When used in combination, Although there is no restriction | limiting in particular in the weight ratio, Preferably, the ratio of the compound which has an alcoholic hydroxyl group, and the cyclic compound which has a carbonyl group is 99-50: 1-50, or, for example, 97-60: 3-40. When the compound having an alcoholic hydroxyl group is more than 99% by weight (the cyclic compound having a carbonyl group is less than 1% by weight), the compatibility of the silane compound of Formula 1 may be deteriorated, the cured film may be whitened, and transparency may be decreased. In addition, when the compound having an alcoholic hydroxyl group is less than 50% by weight (the cyclic compound having a carbonyl group is more than 50% by weight), the condensation reaction of unreacted silanol groups in the silane compound of Formula 1 may easily occur, leading to poor storage stability. have.
상기 구현예에 따른 감광성 수지 조성물은 본 발명의 효과를 손상시키지 않는 범위에서 기타 용매를 더 포함할 수도 있다. 기타 용매로는, 초산에틸, 초산 n-프로필, 초산 이소프로필, 초산 n-부틸, 초산 이소부틸, 프로필렌글리콜 모노 메틸에테르 아세테이트, 3-메록시 -1-부틸 아세테이트, 3-메틸 -3-메특시 -1- 부틸 아세테이트 등의 에스테르류, 메틸 이소부틸 케톤, 디이소프로필 케톤, 디이소부틸 케톤, 아세틸아세톤 등의 케톤류, 디에틸 에테르, 디이소프로필 에테르, 디 n-부틸 에테르, 디페닐 에테르 등의 에테르류를 들 수 었::다. The photosensitive resin composition according to the above embodiment may further include other solvents in a range that does not impair the effects of the present invention. Other solvents include ethyl acetate, n-propyl acetate, isopropyl acetate, n-butyl acetate, isobutyl acetate, propylene glycol mono methyl ether acetate, 3-methoxy-1-butyl acetate, 3-methyl-3-medium when 1-ester such as butyl acetate, methyl isobutyl ketone, diisopropyl ketone, diisobutyl ketone, ketones such as acetyl acetone, diethyl ether, diisopropyl ether, di-n - butyl ether, diphenyl ether Ethers such as : c.
용매의 첨가량에 특히 제한은 없지만, 바람직하게는 상기 화학식 1의 실란 화합물 100 중량 %에 대해 100 내지 1 , 000 중량 %의 범위로 사용할 수 있다. 또는 용매는 상기 감광성 수지 조성물의 총 중량을 기준으로 고형분 함량이 10 내지 50 중량 %가 되도록 포함될 수 있다. 상기 고형분은 본 발명의 수지 조성물 중에서 용매를 제외한 조성 성분을 의미한다.  Although there is no restriction | limiting in particular in the addition amount of a solvent, Preferably it can be used in the range of 100-1, 000 weight% with respect to 100 weight% of said silane compounds of the said Formula (1). Alternatively, the solvent may be included so that the solid content is 10 to 50 wt% based on the total weight of the photosensitive resin composition. The said solid content means the composition component except a solvent in the resin composition of this invention.
또한, 상기 구현예에 따른 감광성 수지 조성물은 (C) 열 또는 빛으로, 산 또는 염기를 발생시킬 수 있는 첨가제를 함유할 수 있다. 예를 들어, 열산 발생제, 광산 발생제, 열염기 발생제 또는 광산 발생제일 수 있고, 예를 들어, 열산 발생제일 수 있다. 이러한 상기 (C) 첨가제는 경화막 제조시 패턴의 형상을 강고하게 하거나, 또는 현상의 콘트라스트를 높임으로써 해상도를 개량할 수 있다,  In addition, the photosensitive resin composition according to the embodiment may contain an additive capable of generating an acid or a base with (C) heat or light. For example, it may be a thermal acid generator, a photoacid generator, a thermal base generator or a photoacid generator, for example, may be a thermal acid generator. Such (C) additive can improve the resolution by strengthening the shape of the pattern during the manufacture of the cured film, or by increasing the contrast of development,
일 실시예에 따른 감광성 수지 조성물은 상기 (A) 폴리실록산 중합체 100 중량부에 대하여, 상기 (C) 첨가제 0.001 내지 10.0 중량부, 예를 들어, 0.01 내지 5.0 중량부를 포함될 수 있다. Photosensitive resin composition according to an embodiment is the (A) polysiloxane polymer 100 With respect to parts by weight, the (C) additive may include 0.001 to 10.0 parts by weight, for example, 0.01 to 5.0 parts by weight.
일 실시예에서, 상기 (C) 첨가제가 상기 범위 내로 포함된 경우, 경화막 제조 시 크랙 및 착색이 발생하지 않는다.  In one embodiment, when the (C) additive is included in the above range, cracks and coloring does not occur when the cured film is manufactured.
상기 열산 발생제의 예로는, 각종 지방족 설폰산과 그 염, 시트르산, 아세트산, 말레산 등의 각종 지방족 카복실산과 그 염, 벤조산, 프탈산 등의 각종 방향족 카복실산과 그 염, 방향족 설폰산과 그 암모늄염, 각종 아민염, 방향족 디아조늄염 및 포스폰산과 그 염 등, 유기산을 발생시키는 염이나 에스테르 등을 들 수 있다. 예를 들어, 일 실시예에서의 열산 발생제는 유기산과 유기 염기로 이루어진 염, 또는 설폰산과 유기 염기로 이루어진 염일 수 있으나, 이에 제한되는 것은 아니다.  Examples of the thermal acid generator include various aliphatic sulfonic acids and salts thereof, various aliphatic carboxylic acids such as citric acid, acetic acid and maleic acid, salts thereof, various aromatic carboxylic acids such as benzoic acid and phthalic acid, salts thereof, aromatic sulfonic acids and ammonium salts, and various amines. Salts, aromatic diazonium salts, phosphonic acids, and salts thereof; salts and esters for generating organic acids; For example, the thermal acid generator in one embodiment may be a salt consisting of an organic acid and an organic base, or a salt consisting of a sulfonic acid and an organic base, but is not limited thereto.
예를 들어, 설폰산을 함유하는 열산 발생제로는, P-를루엔설폰산, 벤젠설폰산, P-도데실벤젠설폰산, 1 , 4-나프탈렌디설폰산, 메탄설폰산 Γ 또는 이들의 조합일 수 있다. For example, a thermal acid generator containing sulfonic acid may be P-luenesulfonic acid, benzenesulfonic acid, P-dodecylbenzenesulfonic acid, 1,4-naphthalenedisulfonic acid, methanesulfonic acid Γ, or a combination thereof. Can be.
상기 광산 발생제의 예로는, 디아조메탄 화합물, 디페닐요오드늄염, 트리페닐설포늄염, 설포늄염, 암모늄염, 포스포늄염, 설폰이미드 화합물 등을 들 수 있다. 이들 광산 발생제의 구조는, 화학식 3으로 표시할 수 있다.  Examples of the photoacid generator include diazomethane compounds, diphenyl iodonium salts, triphenylsulfonium salts, sulfonium salts, ammonium salts, phosphonium salts, sulfonimide compounds and the like. The structure of these photo-acid generators can be represented by General formula (3).
[화학식 3] [Formula 3]
+X" + X "
상기 화학식 3에서, R+은 수소, 치환 또는 비치환된 알킬기, 아릴기, 알케닐기, 아실기, 알콕실기 등이고, X—는, BF4 " , PIV , Sbl , SCN -, (CF3S02)2N一, 카복실산 이온, 설포늄 이온 등이다. In Formula 3, R + is hydrogen, substituted or unsubstituted alkyl group, aryl group, alkenyl group, acyl group, alkoxyl group, etc., X— is, BF 4 " , PIV, Sbl, SCN-, (CF 3 S0 2 ) 2 N 1, carboxylic acid ions, sulfonium ions and the like.
상기 광염기 발생제의 예로는, 아미드기를 갖는 다치환 아미드 화합물, 락탐, 이미드 화합물 등일 수 있고, 상기 열염기 발생제의 예로는, N-(2- 니트로벤질옥시카르보닐)이미다졸, N-(3-니트로벤질옥시카르보닐)이미다졸, N- (4-니트로벤질옥시카르보닐)이미다졸, N-(5-메틸 -2- 니트로벤질옥시카르보닐)이미다졸, N-(4-클로로 -2- 니트로벤질옥시카르보닐)이미다졸 등의 이미다졸 유도체, 1,8- 디아자비사이클로 (5,4,0)운데센 -7, 제 3급 아민류, 제 4급 암모늄염, 또는 이들의 조합일 수 있다. Examples of the photobase generator may include a polysubstituted amide compound having an amide group, a lactam, an imide compound, and the like. Examples of the thermal base generator include N- (2-nitrobenzyloxycarbonyl) imidazole, N -(3-nitrobenzyloxycarbonyl) imidazole, N- (4-nitrobenzyloxycarbonyl) imidazole, N- (5-methyl-2-nitrobenzyloxycarbonyl) imidazole, N- (4- Imidazole derivatives such as chloro-2-nitrobenzyloxycarbonyl) imidazole, 1,8- Diazabicyclo (5, 4, 0) undecene-7, tertiary amines, quaternary ammonium salts, or combinations thereof.
상기 구현예에 따른 감광성 수지 조성물은 (D) 퀴논디아지드 화합물을 포함할 수 있다. (D) 쥐논디아지드 화합물을 포함하는 감광성 수지 조성물은 노광부가 현상액으로 제거되는 포지티브형을 형성한다. 사용할 수 있는 퀴논디아지드 화합물은, 특별히 제한은 없지만, 예를 들어, 페놀성 수산기를 가지는 화합물에 나프토쥐논디아지드술폰산이 에스테르 결합한 화합물을 사용할 수 있고 당해 화합물의 페놀성 수산기의 오르토 위치, 및 파라 위치가, 각각 독립적으로, 수소, 또는 하기 화학식 5로 표시되는 치환기 중 어느 하나인 화합물을 사용할 수 있다:  The photosensitive resin composition according to the embodiment may include (D) a quinonediazide compound. (D) The photosensitive resin composition containing a mundone diazide compound forms the positive type by which an exposure part is removed with a developing solution. The quinonediazide compound which can be used is not particularly limited, but for example, a compound obtained by ester bonding of naphthozinone diazide sulfonic acid to a compound having a phenolic hydroxyl group can be used, and the ortho position of the phenolic hydroxyl group of the compound; and Each of the para positions may independently be hydrogen, or a compound having any one of substituents represented by the following general formula (5):
(화학식
Figure imgf000015_0001
상기 화학식 5에서,
Formula
Figure imgf000015_0001
In Chemical Formula 5,
R12 , R13 , 및 R14는, 각각 독립적으로, C1 내지 C10의 알킬기, 카르복실기, 페닐기, 치환된 페닐기 중 어느 하나를 나타내고, 또한, R12 , R13 , 및 R14는 함께 환을 형성할 수도 있다. R 12 , R 13 , and R 14 each independently represent any of C1 to C10 alkyl, carboxyl, phenyl and substituted phenyl groups, and R 12 , R 13 , and R 14 together form a ring. You may.
상기 화학식 5로 표시되는 기의 R12 , R13 , 및 R14에 있어서, 상기 알킬기는 비치환 또는 치환된 것 중 어떤 것이라도 사용할 수 있다. 알킬기의 구체적인 예로는 메틸기, 에틸기, n-프로필기, 이소프로필기, n-부틸기, 이소부틸기, t- 부틸기, n-핵실기, 사이클로핵실기, n-헵틸기, n-옥틸기, 트리플루오로메틸기, 2- 카르복시에틸기를 들 수 있다. 또한, 상기 치환된 페닐기는 하드록시기로 치환된 페닐기를 들 수 있다. 또, R12 , R13 , 및 R14는 함께 환을 형성할수 있고, 구체적인 예로서, 사이클로펜탄환, 사이클로핵산환, 아다만탄환, 플루오렌 ( f luorene) 환 등을 들 수 있다. In R 12 , R 13 , and R 14 of the group represented by Formula 5 , the alkyl group may be any of unsubstituted or substituted. Specific examples of the alkyl group include methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, t-butyl group, n-nuclear group, cyclonuclear group, n-heptyl group and n-octyl group And trifluoromethyl group and 2-carboxyethyl group. In addition, the substituted phenyl group includes a phenyl group substituted with a hydroxy group. In addition, R 12 , R 13 , and R 14 may form a ring together, and specific examples thereof include a cyclopentane ring, a cyclonucleic acid ring, an adamantane ring, and a fluorene ring.
페놀성 수산기의 오르토 위치, 및 파라 위치가, 상기 이외의 기, 예를 들면 메탈기인 경우, 열경화에 의해 산화 분해가 일어나, 퀴노이드 구조로 대표되는 공액계 화합물이 형성되어 경화막이 착색하고 무색 투명성이 저하된다. 이들 퀴논디아지드 화합물은 페놀성 수산기를 가지는 화합물과 나프토퀴논디아지드술폰산 클로라이드와의 공지의 에스테르화 반웅에 의해 합성할 수 있다. 페놀성 수산기를 가지는 화합물의 구체적인 예로는, 이하의 화합물들을 들 수 있다 (모두 흔슈 화학공업 (주) 제품) . Ortho position of a phenolic hydroxyl group, and a para position, the group of that excepting the above, for example For example, in the case of a metal group, oxidative decomposition occurs by thermosetting, and the conjugated compound represented by a quinoid structure is formed, a cured film is colored and colorless transparency falls. These quinonediazide compounds can be synthesized by a known esterification reaction of a compound having a phenolic hydroxyl group with naphthoquinone diazide sulfonic acid chloride. As a specific example of a compound which has a phenolic hydroxyl group, the following compounds are mentioned (all are the products of Unshu Chemical Co., Ltd.).
Figure imgf000017_0001
Figure imgf000017_0001
TrisP-HAP
Figure imgf000017_0002
Figure imgf000018_0001
TrisP-HAP
Figure imgf000017_0002
Figure imgf000018_0001
BisOTBP-2 BisP-FL  BisOTBP-2 BisP-FL
Figure imgf000018_0002
Figure imgf000018_0002
TrisP-TC  TrisP-TC
나프토퀴논디아지드술폰산으로는 4-나프토퀴논디아지드술폰산 혹은 5- 나프토퀴논디아지드술폰산을 이용할 수 있다. 4-나프토퀴논디아지드술폰 산 에스테르 화합물은 i선 (파장 365nm) 영역에서 흡수를 가지기 때문에 i선 노광에 적합하다. 또한, 5-나프토퀴논디아지드술폰산 에스테르 화합물은 광범위한 파장 영역에서 흡수가 일어나기 때문에 광범위한 파장에서의 노광에 적합하다. 노광 파장에 따라 4-나프토쥐논디아지드술폰산 에스테르 화합물, 또는 5- 나프토퀴논디아지드술폰산 에스테르 화합물을 선택할 수 있다. 4- 나프토퀴논디아지드술폰산 에스테르 화합물과 5-나프토퀴논디아지드술폰산 에스테르 화합물을 흔합하여 사용할 수도 있다.  4-naphthoquinone diazide sulfonic acid or 5-naphthoquinone diazide sulfonic acid can be used as a naphthoquinone diazide sulfonic acid. The 4-naphthoquinone diazide sulfone acid ester compound is suitable for i-ray exposure because it has absorption in the i-ray (wavelength 365 nm) region. In addition, the 5-naphthoquinone diazide sulfonic acid ester compound is suitable for exposure at a wide range of wavelengths because absorption occurs in a wide range of wavelengths. Depending on the exposure wavelength, 4-naphthozinone diazide sulfonic acid ester compound or 5-naphthoquinone diazide sulfonic acid ester compound can be selected. The 4-naphthoquinone diazide sulfonic acid ester compound and the 5-naphthoquinone diazide sulfonic acid ester compound can also be used in combination.
퀴논디아지드 화합물의 첨가량에 특히 제한은 없지만, 예를 들어, 상기 화학식 1의 실록산 화합물 100 중량부에 대해 0. 1 내지 15 중량부, 예를 들어, 1 내지 10 중량부 사용할 수 있다. 퀴논디아지드 화합물의 첨가량이 0. 1 중량부 보다 적은 경우, 노광부와 비노광부와의 용해 콘트라스트가 너무 낮아 현실적으로 감광성을 갖지 않는다. 또한, 더욱 양호한 용해 콘트라스트를 얻기 위해서는 1 중량부 이상이 바람직하다. 퀴논디아지드 화합물의 첨가량이 15 중량부 보다 많은 경우, 실록산 화합물과 퀴논디아지드 화합물과의 상용성이 나빠짐으로써 도포막의 백화가 일어나거나, 열경화시 일어나는 퀴논디아지드 화합물의 분해에 의한 착색이 현저해지므로, 경화막의 무색 투명성이 저하한다. 또, 보다 고투명성의 막을 얻기 위해서는 퀴논디아지드 화합물은 10 중량부 이하로 사용하는 것이 바람직하다. Although there is no restriction | limiting in particular in the addition amount of a quinonediazide compound, For example, 0.1-15 weight part, for example, 1-10 weight part can be used with respect to 100 weight part of said siloxane compounds of the said Formula (1). 0.1 weight part of addition amount of a quinonediazide compound When less, the melt | dissolution contrast of an exposure part and a non-exposure part is too low, and it does not have photosensitivity realistically. Moreover, 1 weight part or more is preferable in order to acquire more favorable melt contrast. When the amount of the quinone diazide compound is more than 15 parts by weight, the compatibility between the siloxane compound and the quinone diazide compound is deteriorated, so that whitening of the coating film occurs or coloring due to decomposition of the quinone diazide compound occurs during thermal curing. Since it becomes, the colorless transparency of a cured film falls. Moreover, in order to obtain a more transparent film, it is preferable to use a quinonediazide compound at 10 weight part or less.
상기 구현예에 따른 감광성 수지 조성물은 필요에 따라 감광성 수지 조성물에 통상적으로 사용되는 추가의 성분, 예를 들어, 실란계 커플링제, 계면활성제 등을 더 포함할 수도 있다.  The photosensitive resin composition according to the above embodiment may further include additional components conventionally used in the photosensitive resin composition, for example, a silane coupling agent, a surfactant, and the like, as necessary.
실란계 커플링제는 형성되는 경화막과 기판과의 밀착성을 향상시키기 위해 첨가하는 것으로, 공지의 실란계 커플링제로서 반웅성 치환기를 갖는 관능성 실란 화합물을 사용 ¾ 수 있다. 상기 반웅성 치환기의 예로는 카르복실기, 메타크릴로일기, 이소시아네이트기, 에폭시기 등을 들 수 있다.  A silane coupling agent is added in order to improve the adhesiveness of the cured film formed and a board | substrate, As a well-known silane coupling agent, the functional silane compound which has a semi-aromatic substituent can be used. Examples of the semi-aromatic substituent include carboxyl group, methacryloyl group, isocyanate group, epoxy group and the like.
실란계 커플링제의 구체적인 예로는 트리메톡시실릴벤조산, Y - 메타크릴옥시프로필트리메록시실란, 비닐트리아세록시실란, 비닐트리메록시실란, Y -이소시아네이토프로필트리에톡시실란, Y -글리시독시프로필트리메톡시실란, γ -글리시독시프로필트리에톡시실란, β -(3 , 4- 에폭시시클로핵실)에틸트리메특시실란 중에서 선택된 1종 이상을 사용할 수 있고, 바람직하게는 잔막률과 기판과의 접착성 면에서, 에폭시기를 갖는 글리시독시프로필트리에톡시실란 및 (또는) 글리시독시프로필트리메록시실란을 사용할 수 있으나, 본 발명은 이들에 제한되지 않는다. Specific examples of the silane coupling agent include trimethoxysilylbenzoic acid, Y-methacryloxypropyltrimethoxysilane, vinyltriacexoxysilane, vinyltrimethoxysilane, Y-isocyanatopropyltriethoxysilane, Y One or more selected from -glycidoxypropyltrimethoxysilane, γ -glycidoxypropyltriethoxysilane, and β- (3,4-epoxycyclonucleosil) ethyltrimethoxysilane can be used, preferably Glycidoxypropyltriethoxysilane and / or glycidoxypropyltrimethoxysilane having an epoxy group may be used in view of the residual film ratio and the adhesion between the substrate, but the present invention is not limited thereto.
' 실란계 커플링제는 상기 감광성 조성물 내 화학식 1로 표시되는 화합물 100 중량부 (고형분 함량 기준)에 대하여 0.01 내지 10 중량부의 범위, 예를 들어, 0. 1 내지 5 중량부의 범위로 포함될 수 있다. 실란계 커플링제의 함량이 0.01 중량부 이상일 때 기판에 대한 접착성이 향상되고, 10 중량부 이하일 때 고온에서 열 안정성이 개선되고, 현상 이후 얼룩이 발생하는 현상을 방지할 수 있다. The silane coupling agent may be included in the range of 0.01 to 10 parts by weight, for example, 0.01 to 5 parts by weight, based on 100 parts by weight (based on the solid content) of the compound represented by Formula 1 in the photosensitive composition. When the content of the silane coupling agent is 0.01 parts by weight or more, the adhesion to the substrate is improved, when the content is less than 10 parts by weight, the thermal stability is improved at high temperatures, and staining after development can be prevented. have.
본 발명에 따른 감광성 수지 조성물은 도포 성능을 향상시키기 위해 계면활성제를 더 포함할 수 있다. 이러한 계면활성제로는 불소계 계면활성게, 실리콘계 계면활성제, 비이온계 계면활성제, 그 밖의 계면활성제를 들 수 있다. 계면활성제로서, 예를 들면, FZ2122 다우 코닝 도레이사), BM-1000 , BM- The photosensitive resin composition according to the present invention may further include a surfactant to improve coating performance. Such surfactants include fluorine-based surfactants, silicone-based surfactants, nonionic surfactants, and other surfactants. As the surfactant, for example, FZ2122 Dow Corning Toray Corporation), BM-1000, BM-
1100 (BM CHEMIE사 제조), 메가팩 F142 D , 동 F172 , 동 F173 , 동 F183 (다이 닛뽄 잉크 가가꾸 고교 가부시키 가이샤 제조), 플로라드 FC-135 , 동 FC-170 C, 동 FC-430 , 동 FC-431 (스미또모 쓰리엠 리미티드 제조), 서프론 S-112 , 동 S— 113 , 동 S-131 , 동 S— 141, 동 S-145 , 동 S-382 , 동 SC— 101, 동 SC-102 , 동 SC- 103, 동 SC-104 , 동 SC-105 , 동 SC-106 (아사히 가라스 가부시키 가이샤 제조), 에프톱 EF301 , 동 303, 동 352 (신아끼다 가세이 가부시키 가이샤 제조), SH-28 PA, SH-190 , SH-193 , SZ-6032 , SF-8428 , DC-57 , DC- 190 (도레이 실리콘 가부시키 가이샤 제조) 등의 불소계 및 실리콘계 계면활성제; 폴리옥시에틸렌라우릴에테르, 플리옥시에틸렌스테아릴에테르, 폴리옥시에틸렌올레일에테르 등의 폴리옥시에틸렌알킬에테르류, 플리옥시에틸렌옥틸페닐에테르, 폴리옥시에틸렌노닐페닐에테르 등의 폴리옥시에틸렌아릴에테르류, 폴리옥시에틸렌디라우레이트, 폴리옥시에틸렌디스테아레이트 등의 폴리옥시에틸렌디알킬에스테르류 등의 비이온계 계면활성제; 유기실록산 폴리머 KP341 (신에쓰 가가꾸 고교 가부시키 가이샤 제조), 또는 (메트)아크릴산계 공중합체 폴리플로우 No .57 , 95 (교에이샤 유지 가가꾸 고교 가부시키 가이샤 제조)를 단독으로 또는 2 종 이상 병행하여 사용할 수 있다. 1100 (manufactured by BM CHEMIE Co., Ltd.), Mega Pack F142 D, Copper F172, Copper F173, Copper F183 (Dai Nippon Ink Chemical Co., Ltd.), Flora FC-135, Copper FC-170 C, Copper FC-430 , Copper FC-431 (manufactured by Sumitomo 3M Limited), Supron S-112, Copper S- 113, Copper S-131, Copper S- 141, Copper S-145, Copper S-382, Copper SC- 101, Copper SC-102, East SC-103, East SC-104, East SC-105, East SC-106 (manufactured by Asahi Glass Co., Ltd.), F-Top EF301, East 303, East 352 (manufactured by Shinagawa Kasei Co., Ltd.) ), Fluorine-based and silicone-based surfactants such as SH-28 PA, SH-190, SH-193, SZ-6032, SF-8428, DC-57, DC-190 (manufactured by Toray Silicone Co., Ltd.); Polyoxyethylene aryl ethers such as polyoxyethylene alkyl ethers such as polyoxyethylene lauryl ether, polyoxyethylene stearyl ether, polyoxyethylene oleyl ether, polyoxyethylene octyl phenyl ether, polyoxyethylene nonyl phenyl ether Nonionic surfactants such as polyoxyethylene dialkyl esters such as polyoxyethylene dilaurate and polyoxyethylene distearate; Organosiloxane polymer KP341 (manufactured by Shin-Etsu Chemical Co., Ltd.) or (meth) acrylic acid-based copolymer polyflow Nos. 57, 95 (manufactured by Kyoeisha Chemical Co., Ltd.) is used alone or in combination. The above can be used in parallel.
상기 계면활성제는 상기 화학식 1로 표시되는 화합물 100 중량부 (고형분 함량 기준)에 대하여 0.05 내지 10 중량부, 예를 들어, 0. 1 내지 5 중량부 범위로 사용할 수 있다. 계면활성제의 함량이 0.05 중량부 이상일 때 도포성이 향상되고 도포된 표면에 크랙이 발생하지 않으며, 10 중량부 이하일 때 가격적 측면에서 유리하다.  The surfactant may be used in the range of 0.05 to 10 parts by weight, for example, 0.01 to 5 parts by weight, based on 100 parts by weight of the compound represented by Formula 1 (based on the solid content). When the content of the surfactant is 0.05 parts by weight or more, the applicability is improved and cracks do not occur on the coated surface, and when it is 10 parts by weight or less, it is advantageous in terms of price.
일 구현예에 따른 상기 감광성 수지 조성물은, 상기 성분들 외에도 , 필요에 따라 열 경화성 수지 조성물 및 /또는 감광성 수지 조성물에 통상적으로 사용되는 추가의 성분을 더 포함할 수 있다. 예를 들어, 상기 구현예에 따른 감광성 수지 조성물은, 필요에 따라, 용해 촉진제, 용해 억제제, 경계면 활성제, 안정제, 소포제 등의 첨가제를 함유할 수도 있다. The photosensitive resin composition according to one embodiment, in addition to the components, is typically in the thermosetting resin composition and / or photosensitive resin composition, if necessary It may further comprise additional ingredients used. For example, the photosensitive resin composition according to the above embodiment may contain additives such as a dissolution accelerator, a dissolution inhibitor, a surfactant, a stabilizer, and an antifoaming agent, as necessary.
이하, 상기 구현예에 따른 감광성 수지 조성물을 이용한 경화막의 형성 방법에 대해서 설명한다.  Hereinafter, the formation method of the cured film using the photosensitive resin composition which concerns on the said Example is demonstrated.
상기 구현예에 따른 감광성 수지 조성물을 스피너, 디핑, 슬릿 등의 공지의 방법에 의해서 기초 기판 상에 도포하고, 핫 플레이트 , 오븐 등의 가열 장치로 프리베이크 한다. 프리베이크는 50 °C 내지 150 °C의 범위에서 30초 내지 30분간 수행하고, 프리베이크 후 막 두께는 0. 1 [M 내지 15 로 할 수 있다. 프리베이크 후, 스테퍼, 미러 프로젝션 마스크 얼라이너 (MPA) , 패러텔 라이트 마스크 얼라이너 (PLA) 등의 자외 가시 노광기를 이용해 2Q0 nm 내지 450 nm의 파장 대에서 10 mJ/cin! 내지 500 mJ/cin2의 노광량으로 노광을 수행할 수 있다. 노광 후, 현상에 의해 노광부가 용해하고, 포지티브형의 패턴을 얻을 수 있다. 현상 방법으로는, 샤워, 디핑, 패들 등의 방법으로 현상액에 5 초 내지 10 분간 침지하는 것이 바람직하다. 현상액으로는 공지의 알칼리 현상액을 이용할 수 있다. 구체적인 예로서, 알칼리 금속의 수산화물, 탄산염, 인산염, 규산염, 붕산염 등의 무기 알칼리, 2—디에틸 아미노 에탄올, 모노에탄올 아민, 디에탄을 아민 등의 아민류, 수산화 테트라메틸암모늄, 콜린 등의 4 급 암모늄염을 1종 혹은 2 종 이상 포함한 수용액 등을 들 수 있다. The photosensitive resin composition according to the above embodiment is applied onto the base substrate by a known method such as spinner, dipping, slit or the like, and prebaked with a heating device such as a hot plate or an oven. Prebaking is carried out in the range of 50 ° C to 150 ° C for 30 seconds to 30 minutes, the film thickness after prebaking can be 0.1 [M to 15. After prebaking, ultraviolet light exposure devices such as stepper, mirror projection mask aligner (MPA) and paratel light mask aligner (PLA) are used to detect 10 mJ / cin in the wavelength range of 2Q0 nm to 450 nm . The exposure may be performed at an exposure amount of from 500 mJ / cin 2 . After the exposure, the exposed portion is dissolved by development, and a positive pattern can be obtained. As the developing method, it is preferably immersed in the developing solution for 5 seconds to 10 minutes by a method such as showering, dipping, paddle or the like. A well-known alkali developing solution can be used as a developing solution. Specific examples include inorganic alkalis such as hydroxides, carbonates, phosphates, silicates and borates of alkali metals, amines such as 2-diethylamino ethanol, monoethanol amines and diethan amines, tetramethylammonium hydroxide and choline. The aqueous solution containing 1 type, or 2 or more types of ammonium salts is mentioned.
현상 후, 물로 린스하는 것이 바람직하다. 또한, 필요하면, 핫 플레이트, 오븐 등의 가열 장치로 50 °C 내지 150 °C의 범위에서 건조 베이크를 수행할 수도 있다. ' It is preferable to rinse with water after image development. In addition, if necessary, a drying bake may be performed in a range of 50 ° C. to 150 ° C. with a heating device such as a hot plate or an oven. '
필요하면 핫 플레이트, 오븐 등의 가열 장치로 50 °C 내지 150 °C의 범위에서 소프트 베이크를 수행한 후, 핫 플레이트, 오븐 등의 가열 장치로 150 °C 내지 450 °C의 범위에서, 예컨대 10 분 내지 5 시간 동안 후경화 (post- bake)함으로써 목적하는 경화막을 제조할 수 있다. If necessary, soft bake in a range of 50 ° C to 150 ° C with a heating apparatus such as a hot plate or an oven, and then in a range of 150 ° C to 450 ° C with a heating apparatus such as a hot plate, an oven, for example, 10 The desired cured film can be prepared by post-baking for minutes to 5 hours.
상기한 경화막은, 상술한 바와 같이, 내크랙성 및 내화학성이 높고, 광투과율이 우수하다. 따라서, 상기 경화막은 박막형 트랜지스터 (TFT) 기판용 평탄화 막, 반도체 소자의 층간 절연막 등에 효과적으로 사용될 수 있다. As mentioned above, the cured film has high crack resistance and chemical resistance and is excellent in light transmittance. Therefore, the cured film is a thin film transistor (TFT) substrate It can be effectively used for planarization film, interlayer insulation film of semiconductor element and the like.
예를 들어, 상기와 같이 제조되는 일 구현예에 따른 경화막은, 2 urn 두께의 경화막의 경우 400 nm 파장 범위에서 90¾> 이상, 예를 들어, 95% 이상, 예를 들어, 98¾> 이상의 높은 광 투과율을 가진다.  For example, the cured film according to the embodiment manufactured as described above, in the case of a cured film of 2 urn thickness, high light of 90¾> or more, for example, 95% or more, for example, 98¾> or more in the 400 nm wavelength range Has transmittance.
기존의 아크릴계 절연막은 저내열 특성으로 인해 250°C 이상에서 황변하여 투과율이 감소하고 고분자가 분해하여 내화학성이 저하되는 문제점이 있었고, 아크릴기 또는 에폭시기를 포함하는 실세스퀴옥산은 아크릴계 절연막 보다는 내열성이 향상되나 고온에서 여전히 투과율이 저하하고 현상 후 잔막를이 낮은 문제가 있었다. Conventional acrylic insulating film has a problem that yellowing at 250 ° C or more due to the low heat resistance characteristics, the transmittance is reduced and the polymer is decomposed to reduce the chemical resistance, silsesquioxane containing acrylic group or epoxy group is more heat resistant than acrylic insulating film This improved but the transmittance was still low at high temperatures and there was a problem of low residual film after development.
일 구현예에 따른 화학식 1로 표시되는 1종 이상의 실란 화합물과 화학식 At least one silane compound represented by Formula 1 and a formula according to one embodiment
2로 표시되는 실란 화합물을 가수분해 및 축합시켜 합성되는 폴리실록산 공중합체, 및 용매를 포함하는 감광성 수지 조성물은 실록산 화합물 내 카보실란 구조단위의 가교제 (cross l inker) 역할을 통해, 그로부터 제조되는 경화막의 경도 조절이 용이하여 고경도의 도막을 형성할 수 있고, 그에 따라 고온 내크랙성이 개선된다. 또한 상기 경화막을 통해 유기 용매 등이 침투하는 것을 효과적으로 막아줄 수 있다. 이에 따라, 상기 조성물을 경화시켜 제조한 경화막은 현상 후 막 두께가 감소되어 평탄한 막을 이루지 못하는 잔막률 문제를 해결하고, 또한 경화 후 내화학성이 우수하여 패턴 무너짐 현상 등이 없다. 또한, 기존의 아크릴계 공중합체 또는 유기 화합물과 공중합된 실세스퀴옥산에 비해서도 높은 내열성을 가짐으로써, 300°C 이상의 경화 온도에서도 변색되지 않는 특성을 보인다. The photosensitive resin composition comprising a polysiloxane copolymer synthesized by hydrolyzing and condensing the silane compound represented by 2, and a solvent may be used as a cross l inker of a carbosilane structural unit in the siloxane compound to form a cured film prepared therefrom. The hardness can be easily adjusted to form a high hardness coating film, thereby improving the high temperature crack resistance. In addition, the organic solvent and the like can be effectively prevented from penetrating through the cured film. Accordingly, the cured film prepared by curing the composition solves the problem of the residual film rate, in which the film thickness is reduced after development, thereby failing to form a flat film, and also does not have a pattern collapse phenomenon due to excellent chemical resistance after curing. In addition, as compared to the conventional acrylic copolymer or silsesquioxane copolymerized with the organic compound has a high heat resistance, it does not discolor at a curing temperature of 300 ° C or more.
상기 경화막은 액정 표시 소자나 유기 EL 표시 소자 등의 박막 트랜지스터 (TFT) 기판용 평탄화 막, 터치 패널 센서 소자 등의 보호구막 또는 절연막, 반도체 소자의 층간 절연막, 고체 촬상 소자용 평탄화 막, 마이크로 렌즈 어레이 패턴, 또는 광 반도체 소자 등의 광 도파로의 코어나 클래드 재료로서 사용될 수 있다.  The cured film may be a planarization film for a thin film transistor (TFT) substrate such as a liquid crystal display device or an organic EL display device, a protective or insulating film such as a touch panel sensor element, an interlayer insulation film for a semiconductor device, a planarization film for a solid-state imaging device, and a microlens array. It can be used as a core or clad material of an optical waveguide such as a pattern or an optical semiconductor element.
또 다른 구현예에 따르면, 상기 경화막을 포함하는 전자 장치를 제공한다. 상기 소자는 상기 경화막을 TFT 기판의 평탄화 막으로서 포함하는 액정 표시 소자, 유기 EL 소자, 반도체 장치, 고체 촬상 소자 등일 수 있고, 이들에 제한되지 않는다. According to another embodiment, an electronic device including the cured film is provided. The device is a liquid crystal comprising the cured film as a flattening film of a TFT substrate. It can be a display element, an organic EL element, a semiconductor device, a solid-state image sensor, etc., It is not limited to these.
【발명의 실시를 위한 형태】  [Form for implementation of invention]
이하 실시예를 통하여 상술한 본 발명의 구현예를 보다 상세하게 설명한다. 다만 하기의 실시예는 단지 설명의 목적을 위한 것이며 본 발명의 범위를 제한하는 것은 아니다.  Through the following examples will be described in more detail the embodiment of the present invention. However, the following examples are merely for illustrative purposes and do not limit the scope of the present invention.
(실시예)  (Example)
합성예 1내지 8: 폴리실록산공중합체의 제조  Synthesis Examples 1 to 8: Preparation of Polysiloxane Copolymer
합성예 1: 폴리실록산공중합체의 제조  Synthesis Example 1 Preparation of Polysiloxane Copolymer
500 ml 의 3 구 플라스크에 페닐트리메특시실란 (실란 화합물 1) 57.74 g(0.70mol ) , 메틸트리메록시실란 (실란 화합물 2) 14. 17 g(0.25mol ) , 및 1 , 2- 비스트리에록시실릴에탄 (실란 화합물 3) 7.38 g(0.05 mol )과 프로필렌글리콜모노메틸에테르아세테이트 (PGMEA) 168.78 g 을 투입하고, 실온에서 교반하면서 물 48.54 g 에 질산 180 ppm 을 녹인 질산수용액을 10 분에 걸쳐 첨가했다. 그 후, 플라스크를 25°C의 오일 베스에 담그고 120 분간 교반한 후, 오일 베스를 60 분간 걸쳐 110°C까지 승온시켰다. 이로부터 8 시간 가열 교반하여 (내부온도는 100~11(TC ) 폴리실록산 공중합체 용액을 얻었다. 반응물 중 부생성물인 메탄올과 물은 합계 43.6 g 유출되었다. 상기 얻어진 폴리실록산 공중합체 용액의 고형분 농도는 40 중량 ¾이었다. 수득된 폴리실록산 공중합체의 분자량 (폴리스티렌 환산)은 중량 평균 분자량 (Mw)= 3 , 825 이었다. 수득된 수지 용액을 실리콘 웨이퍼에 프리베이크 후 막 두께가 2 卿가 되도록 도포하고, 5% TMAH 수용액에 대한 용해 속도를 측정한 결과, 40A/sec 였다. 합성예 2: 폴리실록산공중합체의 제조 In a 500 ml three-necked flask, 57.74 g (0.70 mol) of phenyltrimethoxysilane (silane compound 1), 14.17 g (0.25 mol) of methyltrimethoxysilane (silane compound 2), and 1, 2-bistrie 7.38 g (0.05 mol) of oxysilylethane (silane compound 3) and 168.78 g of propylene glycol monomethyl ether acetate (PGMEA) were added, and a nitric acid solution in which 180 ppm of nitric acid was dissolved in 48.54 g of water was stirred at room temperature for 10 minutes. Added. Thereafter, the flask was immersed in an oil bath at 25 ° C. and stirred for 120 minutes, and then the oil bath was heated to 110 ° C over 60 minutes. From this, the mixture was heated and stirred for 8 hours to obtain a polysiloxane copolymer solution having an internal temperature of 100 to 11 (TC). A total of 43.6 g of methanol and water, which were by-products of the reaction product, was flowed out. The solid content concentration of the obtained polysiloxane copolymer solution was 40%. Weight ¾ The molecular weight (polystyrene equivalent) of the obtained polysiloxane copolymer was weight average molecular weight (Mw) = 3, 825. The obtained resin solution was applied to a silicon wafer so as to have a film thickness of 2 卿 after prebaking, 5 The dissolution rate in the% TMAH aqueous solution was measured and found to be 40 A / sec Synthesis Example 2 Preparation of Polysiloxane Copolymer
500 ml 의 3 구 플라스크에 페닐트리메특시실란 61.72 g(0.75mol ) , 메틸트리메록시실란 11.31 g(0.20mol ) , 및 1 , 2-비스트리에특시실릴에탄 7.36 g(0.05 mol )과 PGMEA 168.38 g을 투입하고, 실온에서 교반하면서 물 48.42 g 에 질산 180 ppm 을 녹인 질산수용액을 10 분간 걸쳐 첨가했다. 그 후, 플라스크를 25 °C의 오일 베스에 담그고 120 분간 교반한 후, 오일 베스를 60 분에 걸쳐 licrc까지 승온시켰다. 이로부터 8 시간 가열 교반하여 (내부온도는 ioo~iio°c ) 폴리실록산 공중합체 용액을 얻었다. 반웅물 중 부생성물인 메탄을과 물은 합계 43.4 g유출되었다. 상기 얻어진 폴리실록산 공중합체 용액의 고형분 농도는 40 중량%이었다. 수득된 폴리실록산 공중합체의 분자량 (폴리스티렌 환산)은 중량 평균 분자량 (Mw)=3 , 650 이었다. 수득된 수지 용액을 실리콘 웨이퍼에 프리베이크 후 막 두께가 2 가 되도록 도포하고, 5¾> TMAH 수용액에 대한용해 속도를 측정한 결과, 35A/sec 였다. 합성예 3: 폴리실록산공중합체의 제조 In a 500 ml three-necked flask, 61.72 g (0.75 mol) of phenyltrimethoxysilane, 11.31 g (0.20 mol) of methyltrimethoxysilane, and 7.36 g (0.05 mol) of 1,2-bistrisuccixysilylethane and PGMEA 168.38 g was added to 48.42 g of water with stirring at room temperature. An aqueous solution of nitric acid in which 180 ppm of nitric acid was dissolved was added over 10 minutes. The flask was then immersed in an oil bath at 25 ° C. and stirred for 120 minutes, and then the oil bath was heated to licrc over 60 minutes. It heated and stirred for 8 hours from this (internal temperature is ioo-iio ° C), and obtained the polysiloxane copolymer solution. A total of 43.4 g of the byproduct methane and water were discharged. Solid content concentration of the obtained polysiloxane copolymer solution was 40 weight%. The molecular weight (polystyrene conversion) of the obtained polysiloxane copolymer was weight average molecular weight (Mw) = 3,650. The obtained resin solution was applied to a silicon wafer so as to have a film thickness of 2 after prebaking, and the dissolution rate of the 5¾> TMAH aqueous solution was measured, and found to be 35 A / sec. Synthesis Example 3 Preparation of Polysiloxane Copolymer
500 ml 의 3 구 플라스크에 페닐트리메톡시실란 65.67 g(0.80mol ) , 메틸트리메록시실란 8 .46 g(0. 15mol ) , 1,2-비스트리에톡시실릴에탄 7.34 g(0.05 mol )과 PGMEA 167.97 g 을 투입하고, 실온에서 교반하면서 물 48.31 g 에 질산 180 ppm 을 녹인 질산수용액을 10 분간 걸쳐 첨가했다. 그 후, 플라스크를 25 °C의 오일 베스에 담그고 120 분간 교반한 후, 오일 베스를 60 분에 걸쳐 110 °C까지 승온시켰다. 이로부터 8 시간 가열 교반하여 (내부온도는 100~110 °C ) 폴리실록산 공중합체 용액을 얻었다. 반웅물 중 부생성물인 메탄올과 물은 합계 43.3 g 유출되었다. 상기 얻어진 폴리실록산 공중합체 용액의 고형분 농도는 40 중량 >이었다. 수득된 폴리실록산 공중합체의 분자량 (폴리스티렌 환산)은 중량 평균 분자량 (Mw)= 3 , 500 이었다. 수득된 수지 용액을 실리콘 웨이퍼에 프리베이크 후 막 두께가 2 가 되도록 도포하고, 5¾» TMAH 수용액에 대한 용해 속도를 측정한 결과, 45A/sec 였다. 합성예 4: 폴리실록산공중합체의 제조 500 ml 의 3 구 플라스크에 페닐트리메록시실란 69.53 g(0.85mol ) , 메틸트리메톡시실란 5.62 g(O . lOmol ) , 1,2-비스트리에톡시실릴에탄 7.31 g(0.05 mol )과 PGMEA 167.36 g 을 투입하고, 실온에서 교반하면서 물 48. 13 g 에 질산 180 ppm 을 녹인 질산수용액을 10 분간 걸쳐 첨가했다. 그 후, 플라스크를 25°C의 오일 베스에 담그고 120 분간 교반한 후, 오일 베스를 60 분에 걸쳐 110°C까지 승온시켰다. 이로부터 8 시간 가열 교반하여 (내부온도는 100~110°C ) 폴리실록산 공중합체 용액을 얻었다. 반응물 중 부생성물인 메탄을과 물은 합계 43.2 g유출되었다. 상기 얻어진 폴리실록산 공중합체 용액의 고형분 농도는 40 중량 %이었다. 수득된 폴리실록산 공중합체의 분자량 (폴리스티렌 환산)은 중량 평균 분자량 (Mw)= 3 , 364 이었다. 수득된 수지 용액을 실리콘 웨이퍼에 프리베이크 후 막 두께가 2 가 되、도록 도포하고, 5% TMAH 수용액에 대한 용해 속도를 측정한 결과, 32A/sec 였다. 합성예 5: 폴리실록산공중합체의 제조 In a 500 ml three-necked flask, 65.67 g (0.80 mol) of phenyltrimethoxysilane, 8.46 g (0.15 mol) of methyltrimethoxysilane, 7.34 g (0.05 mol) of 1,2-bistriethoxysilylethane, 167.97 g of PGMEA was added, and a nitric acid aqueous solution in which 180 ppm of nitric acid was dissolved in 48.31 g of water was added over 10 minutes while stirring at room temperature. The flask was then immersed in an oil bath at 25 ° C. and stirred for 120 minutes, and then the oil bath was heated to 110 ° C. over 60 minutes. By heating and stirring for 8 hours (internal temperature is 100 ~ 110 ° C) to obtain a polysiloxane copolymer solution. As a by-product, methanol and water in the reaction product flowed out in total 43.3 g . Solid content concentration of the obtained polysiloxane copolymer solution was 40 weight>. The molecular weight (polystyrene equivalent) of the obtained polysiloxane copolymer was weight average molecular weight (Mw) = 3, 500. It was 45 A / sec when the obtained resin solution was apply | coated so that the film thickness might become 2 after prebaking on a silicon wafer, and the dissolution rate with respect to 5¾ »TMAH aqueous solution was measured. Synthesis Example 4 Preparation of Polysiloxane Copolymer In a 500 ml three-necked flask, 69.53 g (0.85 mol) of phenyltrimethoxysilane, 5.62 g (Omol) of methyltrimethoxysilane, 7.31 g (0.05 mol) of 1,2-bistriethoxysilylethane and PGMEA 167.36 g was added, and a nitric acid solution in which 180 ppm of nitric acid was dissolved in 48.13 g of water was added over 10 minutes while stirring at room temperature. The flask was then immersed in an oil bath at 25 ° C. and stirred for 120 minutes, after which the oil bath was heated to 110 ° C. over 60 minutes. By heating and stirring for 8 hours (internal temperature is 100 ~ 110 ° C) to obtain a polysiloxane copolymer solution. In total, 43.2 g of the byproduct methane and water were discharged. Solid content concentration of the obtained polysiloxane copolymer solution was 40 weight%. The molecular weight (polystyrene conversion) of the obtained polysiloxane copolymer was weight average molecular weight (Mw) = 3,364. The obtained resin solution was applied to a silicon wafer so as to have a film thickness of 2 after prebaking, and the dissolution rate in the 5% TMAH aqueous solution was measured to be 32 A / sec. Synthesis Example 5 Preparation of Polysiloxane Copolymer
500 ml 의 3 구 플라스크에 페닐트리메특시실란 73.44 g(0.90mol ) , 메틸트리메특시실란 2.8 g(0.05mol ) , 1,2-비스트리에록시실릴에탄 7.30g(0.05 mol )과 PGMEA 166.96 g 을 투입하고, 실온에서 교반하면서 물 48.01 g 에 질산 180 ppm 을 녹인 질산수용액을 10 분간 걸쳐 첨가했다. 그 후, 플라스크를 25°C의 오일 베스에 담그고 120 분간 교반한 후, 오일 베스를 60 분에 걸쳐 110°C까지 승온시켰다. 이로부터 8 시간 가열 교반하여 (내부온도는 100~110°C ) 폴리실록산 공중합체 용액을 얻었다. 반웅물 중 부생성물안 메탄을과 물은 합계 43. 1 g 유출되었다. 상기 얻어진 폴리실록산 공중합체 용액의 고형분 농도는 40 중량 %이었다. 수득된 폴리실록산 공증합체의 분자량 (폴리스티렌 환산)은 증량 평균 분자량 (Mw)= 3 , 195 이었다. 수득된 수지 용액을 실리콘 웨이퍼에 프리베이크 후 막 두께가 2 가 되도록 도포하고, 5% TMAH 수용액에 대한 용해 속도를 측정한 결과, 25A/sec 였다. 합성예 6 : 폴리실록산공중합체의 제조 In a 500 ml three-necked flask, 73.44 g (0.90 mol) of phenyltrimethoxysilane, 2.8 g (0.05 mol) of methyltrimethoxysilane, 7.30 g (0.05 mol) of 1,2-bistrioxyoxysilylethane and 166.96 g of PGMEA Was added, and an aqueous nitric acid solution in which 180 ppm of nitric acid was dissolved in 48.01 g of water was added over 10 minutes while stirring at room temperature. Thereafter, the flask was immersed in an oil bath at 25 ° C. and stirred for 120 minutes, and then the oil bath was heated to 110 ° C over 60 minutes. By heating and stirring for 8 hours (internal temperature is 100 ~ 110 ° C) to obtain a polysiloxane copolymer solution. A total of 43. 1 g of methane and water were spilled in the byproduct. Solid content concentration of the obtained polysiloxane copolymer solution was 40 weight%. The molecular weight (polystyrene equivalent) of the obtained polysiloxane co-polymer was extended average molecular weight (Mw) = 3, 195. It was 25 A / sec when the obtained resin solution was apply | coated so that the film thickness might become 2 after prebaking to a silicon wafer, and the dissolution rate with respect to 5% TMAH aqueous solution was measured. Synthesis Example 6 Preparation of Polysiloxane Copolymer
500 ml 의 3 구 플라스크에 페닐트리메록시실란 77.29 g(0.95mol ) , 1 , 2- 비스트리에록시실릴에탄 7.27g(0.05 mol )과 PGMEA 166.47 g 을 투입하고, 실온에서 교반하면서 물 47.87 g 에 질산 180 ppm 을 녹인 질산수용액을 10 분에 걸쳐 첨가했다. 그 후, 플라스크를 25°C의 오일 베스에 담그고 120 분간 교반한 후, 오일 베스를 60 분에 걸쳐 1K C까지 승온시켰다. 이로부터 8 시간 가열 교반하여 (내부온도는 100~11( C ) 폴리실록산 공중합체 용액을 얻었다. 반웅물 중 부생성물인 메탄올과 물은 합계 43.0 g 유출되었다. 상기 얻어진 폴리실록산 공중합체 용액의 고형분 농도는 40 중량 %이었다. ' 수득된 폴리실록산 공중합체의 분자량 (폴리스티렌 환산)은 중량 평균 분자량 (Mw)= 3170 이었다. 수득된 수지 용액을 실리콘 웨이퍼에 프리베이크 후 막 두께가 2 가 되도록 도포하고, TMAH 수용액에 대한 용해 속도를 측정한 결과, 20A/sec 였다. 합성예 7: 폴리실록산공중합체의 제조 Into a 500 ml three-necked flask, 77.29 g (0.95 mol) of phenyltrimethoxysilane, 7.27 g (0.05 mol) of 1,2-bistrioxyoxysilylethane and 166.47 g of PGMEA were added to 47.87 g of water with stirring at room temperature. A nitric acid solution in which 180 ppm of nitric acid was dissolved was added over 10 minutes. Thereafter, the flask was immersed in an oil bath at 25 ° C. and stirred for 120 minutes, and then the oil bath was heated to 1 K C over 60 minutes. The mixture was heated and stirred for 8 hours to obtain a polysiloxane copolymer solution having an internal temperature of 100 to 11 (C). A total of 43.0 g of methanol and water, which were by-products in the reaction product, were flowed out. The solid content concentration of the obtained polysiloxane copolymer solution 40 weight% ' The molecular weight (polystyrene equivalent) of the obtained polysiloxane copolymer was weight average molecular weight (Mw) = 3170. The obtained resin solution was applied to a silicon wafer so as to have a film thickness of 2 after prebaking, and a TMAH aqueous solution. It was 20 A / sec as a result of measuring the dissolution rate with respect to Synthesis Example 7: Preparation of polysiloxane copolymer
500 ml 의 3 구 플라스크에 페닐트리메록시실란 41.74 g(0.50mol ) , 메틸트리메록시실란 25.81 g(0.45mol ) , 1 , 2-비스트리에록시실릴에탄 7.46 g(0.05 mol )과 PGMEA 170.81 g 을 투입하고, 실온에서 교반하면서 물 49. 12 g 에 질산 180 ppm 을 녹인 질산수용액을 10 분간 걸쳐 첨가했다. 그 후, 플라스크를 25°C의 오일 베스에 담그고 120 분간 교반한 후, 오일 베스를 60 분에 걸쳐 1KTC까지 승온시켰다. 이로부터 8 시간 가열 교반하여 (내부온도는 100~110°C ) 폴리실록산 공중합체 용액을 얻었다. 반웅물 중 부생성물인 메탄을과 물은 합계 44. 1 g 유출되었다. 상기 얻어진 폴리실록산 공중합체 용액의 고형분 농도는 40 중량%이었다. 수득된 폴리실록산 공중합체의 분자량 (폴리스티렌 환산)은 중량 평균 분자량 (Mw)= 3 , 150 이었다. 수득된 수지 용액을 실리콘 웨이퍼에 프리베이크 후 막 두께가 2 가 되도록 도포하고, 5% TMAH 수용액에 대한 용해 속도를 측정한 결과, 45A/sec 였다. 합성예 8 : 폴리실록산공중합체의 제조 In a 500 ml three-necked flask, 41.74 g (0.50 mol) of phenyltrimethoxysilane, 25.81 g (0.45 mol) of methyltrimethoxysilane, 7.46 g (0.05 mol) of 1,2-bistriethoxysilylethane and 170.81 g of PGMEA Was added, and an aqueous nitric acid solution in which 180 ppm of nitric acid was dissolved in 49.12 g of water was stirred for 10 minutes while stirring at room temperature. The flask was then immersed in an oil bath at 25 ° C. and stirred for 120 minutes, and then the oil bath was heated to 1KTC over 60 minutes. By heating and stirring for 8 hours (internal temperature is 100 ~ 110 ° C) to obtain a polysiloxane copolymer solution. In the reaction product, methane and water, a by-product, were discharged in total 44.1 g. Solid content concentration of the obtained polysiloxane copolymer solution was 40 weight%. The molecular weight (polystyrene conversion) of the obtained polysiloxane copolymer was weight average molecular weight (Mw) = 3,150. It was 45 A / sec when the obtained resin solution was apply | coated so that the film thickness might become 2 after prebaking on a silicon wafer, and the dissolution rate with respect to 5% TMAH aqueous solution was measured. Synthesis Example 8 Preparation of Polysiloxane Copolymer
500 ml 의 3 구 플라스크에 페닐트리메톡시실란 41.74 g(0.50mol ) , 메틸트리메록시실란 25.81 g(0.45mol ) , 1 , 2-비스트리에록시실릴에탄 7.46 g(0.05 mol )과 PGMEA 170.81 g 을 투입하고, 실온에서 교반하면서 물 49. 12 g 에 질산 180 ppm 을 녹인 질산수용액을 10 분간 걸쳐 첨가했다. 그 후, 플라스크를 25°C의 오일 베스에 담그고 120 분간 교반한. 후, 오일 베스를 60 분에 걸쳐 11CTC까지 승온시켰다. 이로부터 4 시간 가열 교반하여 (내부온도는 100~110°C ) 폴리실록산 공중합체 용액을 얻었다. 반웅물 중 부생성물인 메탄을과 물은 합계 43. 1 g 유출되었다. 상기 얻어진 폴리실록산 공중합체 용액의 고형분 농도는 40 중량%이었다. 수득된 폴리실록산 공중합체의 분자량 (폴리스티렌 환산)은 중량 평균 분자량 (Mw)= 2 , 850 이었다. 수득된 수지 용액을 실리콘 웨이퍼에 프리베이크 후 막 두께가 2 가 되도록 도포하고, 2.38% TMAH 수용액에 대한 용해 속도를 측정한 결과, 200A/sec 였다. 상기 합성예 1 내지 8 에서 제조된 폴리실록산 공중합체 용액의 조성, 분자량, Abbe 굴절률계를 사용하여 D-l ine(589nm) 파장 하에서 측정한 굴절율, 및 프리베이크 후 TMAH 수용액에 대한 용해 속도를 하기 표 1에 나타내었다. In a 500 ml three-necked flask, 41.74 g (0.50 mol) of phenyltrimethoxysilane, 25.81 g (0.45 mol) of methyltrimethoxysilane, 7.46 g (0.05 mol) of 1,2-bistriethoxysilylethane and 170.81 g of PGMEA Was added, and an aqueous nitric acid solution in which 180 ppm of nitric acid was dissolved in 49.12 g of water was stirred for 10 minutes while stirring at room temperature. After that, the flask was immersed in an oil bath at 25 ° C and stirred for 120 minutes. After that, the oil bath was heated to 11 CTC over 60 minutes. By heating and stirring for 4 hours (internal temperature is 100-110 ° C.) to obtain a polysiloxane copolymer solution. A total of 43. 1 g of the byproduct methane and water were spilled. Solid content concentration of the obtained polysiloxane copolymer solution was 40 weight%. The molecular weight (polystyrene conversion) of the obtained polysiloxane copolymer was weight average molecular weight (Mw) = 2,850. The obtained resin solution was applied to a silicon wafer so as to have a film thickness of 2 after prebaking, and the dissolution rate in the 2.38% TMAH aqueous solution was measured, which was 200 A / sec. The composition of the polysiloxane copolymer solution prepared in Synthesis Examples 1 to 8, the molecular weight, the refractive index measured under the wavelength Dl ine (589 nm) using an Abbe refractive index, and the dissolution rate for the TMAH aqueous solution after prebaking in Table 1 Indicated.
[표 1] TABLE 1
Figure imgf000027_0001
합성예 5 90 5 5 1.57 3 , 195 0 25 합성예 6 95 - 5 1.59 3 , 170 0 20 합성예 7 50 45 5 1.45 3 , 150 0 45 합성예 8 50 45 5 1.46 2 , 850 200 -
Figure imgf000027_0001
Synthesis Example 5 90 5 5 1.57 3, 195 0 25 Synthesis Example 6 95-5 1.59 3, 170 0 20 Synthesis Example 7 50 45 5 1.45 3, 150 0 45 Synthesis Example 8 50 45 5 1.46 2, 850 200-
상기 표 1를 참조하면, 일 구현예에 따라 상기 화학식 1로 표시되는 실란 화합물인 페닐트리메특시실란 및 메틸트리메특시실란과 상기 화학식 2 로 표시되는 1,2-비스트리에록시실릴에탄을 가수분해 및 축합반응시켜 형성되고, 전체 실리콘 원자의 65% 이상이 페닐기에 의해 치환된 합성예 1 내지 6 에서 제조된 폴리실록산 공중합체의 경우, 굴절율이 1.50 이상으로 고굴절율을 나타내는 것을 확인하였다. 반면, 폴리실록산 공중합체 내 전체 실리콘 원자의 50%만 페닐기로 치환된 합성예 7 에서 제조된 폴리실록산 공중합체는 2.38% TMAH 수용액에 불용이고, 5.0% TMAH 수용액에 대한 용해속도가 45 A/sec 인 경우에도, 굴절율이 1.50 미만으로 낮게 나타났다. 또한, 폴리실록산 공중합체 내 전체 실리콘 원자의 50%만 페닐기로 치환되고 TMAH 수용액에 대한 용해 속도도 일 구현예를 벗어나는 합성예 8 에서 제조된 폴리실록산 공중합체의 경우에도, 굴절율이 1.50 미만으로 낮게 나타났다. Referring to Table 1, according to one embodiment, phenyltrimethoxysilane and methyltrimethoxysilane, which are silane compounds represented by Chemical Formula 1, and 1,2-bistriethoxysilylethane represented by Chemical Formula 2, In the case of the polysiloxane copolymer formed by the decomposition and condensation reaction and 65% or more of the total silicon atoms substituted by the phenyl group, it was confirmed that the refractive index exhibits a high refractive index of 1.50 or more. On the other hand, the polysiloxane copolymer prepared in Synthesis Example 7 in which only 50% of the total silicon atoms in the polysiloxane copolymer were substituted with phenyl groups was insoluble in 2.38% aqueous TMAH solution and had a dissolution rate of 45 A / sec for 5.0% TMAH aqueous solution. Even, the refractive index was lower than 1.50. In addition, even in the case of the polysiloxane copolymer prepared in Synthesis Example 8 in which only 50% of the total silicon atoms in the polysiloxane copolymer were substituted with phenyl groups and the dissolution rate in the TMAH aqueous solution was also one embodiment, the refractive index was lower than 1.50.
실시예 및 평가: 감광성 수지 조성물 및 경화막의 제조. 및 평가 상기 합성예에서 제조된 각 폴리실록산 공중합체와 열산 발생제, 및 용매를 흔합, 교반하여 각각 균일 용액으로 제조한 후, 0.2 의 필터로 여과하여, 하기 실시예 및 비교예에 따른 감광성 수지 조성물을 제조한다. Examples and Evaluations: Preparation of the photosensitive resin composition and the cured film. And evaluation Each of the polysiloxane copolymer, the thermal acid generator, and the solvent prepared in the above synthesis example were mixed and stirred to prepare a homogeneous solution, respectively, and filtered through a filter of 0.2. The photosensitive resin composition according to the following Examples and Comparative Examples To prepare.
상기 제조된 실시예 및 비교예에 따른 감광성 수지 조성물을 각각 10 X 10 클래스에 스핀 코터 (Mikasa Corporation)를 이용해 스핀 도포하고, 핫 플레이트 (Dainippon Screen Mfg. Co., Ltd. 제품의 SCW—636)를 이용하여 140 °C에서 120 초간 프리베이크하여, 각각 2.7 卿의 막 두께가 되도록 조정한다. 그 후, 38C C에서 소성 경화를 실시하여 투과도를 측정하고, 막 표면의 형상을 관찰한다. 그리고 열층격 챔버에서 경화 싸이클을 시행하여 크랙 발생 여부를 확인한다. 10 X 10 to the photosensitive resin composition according to the Examples and Comparative Examples prepared above Spin-coated to a class using a spin coater (Mikasa Corporation), prebaked at 140 ° C. for 120 seconds using a hot plate (SCW—636 from Dainippon Screen Mfg. Co., Ltd.), each of 2.7 mm 2 membranes. Adjust to thickness. Thereafter, plastic curing is carried out at 38 C C to measure the transmittance and to observe the shape of the film surface. Then, check the occurrence of cracks by performing a curing cycle in the thermal barrier chamber.
상기 각 측정은 다음 방법으로 시행하고, 결과는 하기 표 2에 나타낸다: Each measurement was carried out by the following method, the results are shown in Table 2 below:
(1) 크랙 발생 확인 경화후 두께가 2.5 士 0.1 IM 되도록 10 X 10 글래스 기판에 시편을 제작한다. 경화후 시편의 표면을 광학 현미경으로 확인하여 크랙발생 유 /무를 판단한다. (1) Confirmation of crack generation After the hardening, prepare a specimen on a 10 X 10 glass substrate so that the thickness is 2.5 cm 0.1 IM. After curing, check the surface of the specimen with an optical microscope to determine the presence or absence of cracking.
(2) 광투과율 측정 (2) Light transmittance measurement
MultiSpec-1500(상품명, SHIMADZU Corporation 제품)을 이용하고, 우선 글래스 기판만의 광투과율을 측정하여 이 자외가시 흡수스펙트럼을 레퍼런스로 했다. 이어서 , 글래스 기판 상에 감광성 수지 조성물의 경화막을 형성 (패턴 노광은 실시하지 않음)하고, 이 샘플을 싱글 빔으로 측정하여, 1 당 파장 400 nm의 광투과율을 구해 레퍼런스와의 차를 경화막의 광투과율로 했다. Using the MultiSpec-1500 (trade name, manufactured by SHIMADZU Corporation), first, the light transmittance of only the glass substrate was measured, and this ultraviolet visible absorption spectrum was used as a reference. Subsequently, a cured film of the photosensitive resin composition was formed (the pattern exposure was not performed) on the glass substrate, the sample was measured by a single beam, and a light transmittance having a wavelength of 400 nm per 1 was obtained to determine the difference from the reference. It was set as transmittance | permeability.
(3) 내화학성 측정 경화후 두께가 2.5 /皿 士 0.1 이 되도록, 10 X 10 글래스 기판에 시편을 제작하고, 이를 5 X 5 로 글래스 시편으로 자른다. 이어서, 가운데 부분의 두께를 측정 후 내화학성 용매에 5 분간 담근 후 수세하여 두께 변화를 확인한다. 두께 변화율 (%)= (내화학성 평가 후 막 두께 - 내화학성 평가 전 막 두께) / 내화학성 평가 전 막 두께 X100. 이하는 각 실시예 및 비교예에 따른 감광성 수지 조성물 및 그로부터 제조되는 경화막과, 해당 경화막의 특징을 기재한 것이다. 실시예 1: 경화막의 제조 및 평가 합성예 1 에서 얻어진 폴리실록산 공중합체 100 중량부에 열산발생제 3 중량부를 첨가한다. 여기에, PGMEA 와 GBL 을 흔합한 용매를 첨가하여 흔합, 교반하여 균일 용액으로 한 후, 0.2 卿의 필터로 여과하여 수지 조성물을 조제했다. 상기 조성물을 10 X 10 클래스에 스핀 코터 (Mikasa Corporat ion)를 이용해 스핀 도포한 후, 핫 플레이트 (Dainippon Screen Mfg . Co . , Ltd. 제품의 SCW- 636)를 이용해 140 °C에서 120 초간 프리베이크하여 2.7 의 막 두께가 되도록 조정하였다. 프리베이크 후, 380°C에서 소성 경화를 실시하여, 투과도 98%를 유지하고 크랙 미발생 두께 진이 3.2 인 고온 내크랙성 및 내화학성이 향상된 절연막을 얻었다. 실시예 2: 경화막의 제조 및 평가 합성예 2 에서 얻어진 폴리실록산 공중합체 100 중량부를 사용한 점을 제외하고, 실시예 1 과 동일한 방법으로 수지 조성물을 제조하고, 이를 사용하여 동일한 방법으로 경화막을 제조하였다. 경화를 실시한 결과, 투과도 98%를 유지하고 크랙 미발생 두께 마진이 3.2 zm인 고온 내크랙성 및 내화학성이 향상된 절연막을 얻었다. 실시예 3: 경화막의 제조 및 평가 합성예 3 에서 얻어진 폴리실록산 공중합체 100 중량부를 사용한 점을 제외하고, 실시예 1 과 동일한 방법으로 수지 조성물을 제조하고, 이를 사용하여 동일한 방법으로 경화막을 제조하였다. 경화를 실시한 결과, 투과도 98%를 유자하고 크랙 미발생 두께 마진이 3.5皿인 고온 내크랙성 및 내화학성이 향상된 절연막을 얻었다. 실시예 4: 경화막의 제조 및 평가 합성예 4 에서 얻어진 폴리실록산 공중합체 100 중량부를 사용한 점을 제외하고, 실시예 1 과 동일한 방법으로 수지 조성물을 제조하고, 이를 사용하여 동일한 방법으로 경화막을 '제조하였다. 경화를 실시한 결과, 투과도 98%를 유지하고 크랙 미발생 두께 마진이 3.5 인 고온 내크랙성 및 내화학성이 향상된 절연막을 얻었다. 실시예 5: 경화막의 제조 및 평가 합성예 5 에서 얻어진 폴리실록산 공중합체 100 중량부를 사용한 점을 제외하고, 실시예 1 과 동일한 방법으로 수지 조성물을 제조하고, 이를 사용하여 동일한 방법으로 경화막을 제조하였다. 경화를 실시한 결과, 투과도 98%를 유지하고 크랙 미발생 두께 마진이 4.0 인 고온 내크랙성 및 내화학성이 향상된 절연막을 얻었다. 실시예 6: 경화막의 제조 및 평가 합성예 6 에서 얻어진 폴리실록산 공중합체 100 중량 % 를 사용한 점을 제외하고, 실시예 1 과 동일한 방법으로 수지 조성물을 제조하고, 이를 사용하여 동일한 방법으로 경화막을 제조하였다. 경화를 실시한 결과, 투과도 98%를 유지하고 크랙 미발생 두께 마진이 4.5 인 고온 내크랙성 및 내화학성이 향상된 절연막을 얻었다. 비교예 1: 경화막의 제조 및 평가 합성예 7 에서 얻어진 폴리실록산 공중합체 100 중량부를 사용한 점을 제외하고, 실시예 1 과 동일한 방법으로 수지 조성물을 제조하고, 이를 사용하여 동일한 방법으로 경화막을 제조하였다. 경화를 실시한 결과, 투과도 97%를 유지하고 크랙 미발생 두께 마진이 2.5 /m인 절연막을 얻었다. 비교예 2: 경화막의 제조 및 평가 합성예 8 에서 얻어진 폴리실록산 공중합체 100 중량부를 사용한 점을 제외하고, 실시예 1 과 동일한 방법으로 수지 조성물을 제조하고, 이를 사용하여 동일한 방법으로 경화막을 제조하였다. 경화를 실시한 결과, 투과도 97%를 유지하고 크랙 미발생 두께 마진이 2.5 인 절연막을 얻었다. (3) Measurement of chemical resistance After the curing, the specimen was prepared on a 10 X 10 glass substrate so as to have a thickness of 2.5 / 皿 皿 0.1, cut into 5 X 5 glass specimens. Subsequently, after measuring the thickness of the center part, it is immersed in chemical-resistant solvent for 5 minutes, and washed with water, and the thickness change is confirmed. Thickness change rate (%) = (film thickness after chemical resistance evaluation-film thickness before chemical resistance evaluation) / film thickness before chemical resistance evaluation X100. The following describes the photosensitive resin composition and the cured film produced therefrom according to each Example and Comparative Example, and the characteristics of the cured film. Example 1 Preparation and Evaluation of Cured Film 3 parts by weight of the thermal acid generator are added to 100 parts by weight of the polysiloxane copolymer obtained in Synthesis Example 1. After adding the solvent which mixed PGMEA and GBL to this, it mixed and stirred to make a homogeneous solution, and it filtered with the filter of 0.2 Pa, and prepared the resin composition. The composition was spin-coated with a spin coater (Mikasa Corporat ion) in a 10 × 10 class and then prebaked at 140 ° C. for 120 seconds using a hot plate (SCW-636 from Dainippon Screen Mfg. Co., Ltd.). To adjust the film thickness to 2.7. After prebaking, plastic curing was carried out at 380 ° C. to obtain an insulating film having improved high temperature crack resistance and chemical resistance with maintaining a transmittance of 98% and a crack free thickness of 3.2. Example 2: Preparation and Evaluation of Cured Film A resin composition was prepared in the same manner as in Example 1, except that 100 parts by weight of the polysiloxane copolymer obtained in Synthesis Example 2 was used, and a cured film was prepared in the same manner. As a result of hardening, an insulating film with high temperature crack resistance and chemical resistance maintained at a transmittance of 98% and a crack-free thickness margin of 3.2 zm was obtained. Example 3 Preparation and Evaluation of Cured Film A resin composition was prepared in the same manner as in Example 1, except that 100 parts by weight of the polysiloxane copolymer obtained in Synthesis Example 3 was used, and a cured film was prepared in the same manner. As a result of curing, an insulating film having high transmittance of 98% and a crack-free thickness margin of 3.5 kPa having high temperature crack resistance and chemical resistance was obtained. Example 4: Preparation of cured film prepared and evaluated, except that with the polysiloxane 100 parts by weight of copolymer obtained in Synthesis Example 4 and Example 1 to produce the resin composition in the same manner, and using this, was' prepared cured film in the same manner . As a result of curing, an insulating film having improved high-temperature crack resistance and chemical resistance with a transmittance of 98% and a crack-free thickness margin of 3.5 was obtained. Example 5 Preparation and Evaluation of Cured Film A resin composition was prepared in the same manner as in Example 1, except that 100 parts by weight of the polysiloxane copolymer obtained in Synthesis Example 5 was used, and a cured film was prepared in the same manner. As a result of curing, an insulating film having a high permeability and chemical resistance of 98% in transmittance and no crack generation thickness margin of 4.0 was obtained. Example 6 Preparation and Evaluation of Cured Film A resin composition was prepared in the same manner as in Example 1, except that 100 weight% of the polysiloxane copolymer obtained in Synthesis Example 6 was used, and a cured film was prepared in the same manner. . As a result of curing, an insulating film having a high permeability and chemical resistance of 98% having a transmittance and no crack generation thickness margin of 4.5 was obtained. Comparative Example 1: Preparation and Evaluation of Cured Film A resin composition was prepared in the same manner as in Example 1, except that 100 parts by weight of the polysiloxane copolymer obtained in Synthesis Example 7 was used, and a cured film was prepared in the same manner. As a result of curing, an insulating film having a transmittance of 97% and a crack-free thickness margin of 2.5 / m was obtained. Comparative Example 2: Preparation and Evaluation of Cured Film A resin composition was prepared in the same manner as in Example 1, except that 100 parts by weight of the polysiloxane copolymer obtained in Synthesis Example 8 was used, and a cured film was prepared in the same manner. As a result of curing, an insulating film having a transmittance of 97% and a crack-free thickness margin of 2.5 was obtained.
[표 2] TABLE 2
Figure imgf000032_0001
Figure imgf000032_0001
* 50 °C MEA :DMS0 (monoethanol amine : Dimethyl sul foxide)=7 : 3 용액에 . 5 분간 침지한후 수세하여 측정한 경화막의 두께 변화율 0 * 50 ° C MEA: DMS0 (monoethanol amine: Dimethyl sul foxide) = 7: 3 in solution. Thickness change rate of cured film measured by washing after immersion for 5 minutes 0
** 50 °C NMP 용액에 5 분간 침지한 후 수세하여 측정한 경화막의 두께 변화율 (¾>) 상기 표 2 로부터 알 수 있는 것처럼, 일 구현예에 따라 화학식 1 로 표시되는 실란 화합물 및 화학식 2 로 표시되는 실란 화합물을 가수분해 및 축중합시켜 제조되고 전체 '실리콘 원자의 수를 기준으로 65% 이상이 페닐기로 치환된 폴리실록산 공중합체를 포함하고, 프리베이크 후 막이 2 . 38 중량 % TMAH 수용액에는 불용이고, 5.0 중량 %- TMAH 수용액에 대해서는 용해 속도가 100 A /초 이하인 감광성 수지 조성물로부터 제조되는 경화막은 두께 2 . 에서 크랙이 발생하지 않고, 400 nm 파장에 대한 광투과율 98%를 유지하는 크랙 미발생 두께 마진이 3 . 2 i 이상으로 내크택성이 우수하고 또한 높은 광 투과율을 가짐을 알ᅳ 수 있다. 또한, 내화학성 평가 용매에 대한 경화막의.두께 변화율이 5 % 이하로, 내화학성도 매우 우수하다. 반면, 폴리실록산 공중합체 내 전체 실리콘 원자의 50%만 페닐기로 치환된 합성예 7 과 합성예 8 에서 제조된 폴리실록산 공증합체를 포함하는 비교예 1 및 -비교예 2 에 따른 감광성 수지 조성물은 경화 후 두께 2 에서 모두 크랙이 발생하였고, 400 nm 파장에 대한 광투과율 97%를 유지하는 크랙 미발생 두께 마진이 각각 2 . 5 j ^로, 실시예 1 내지 6 에 따른 경화막의 내크랙성에 비해 현저히 낮음을 알 수 있다. 또한, 내화학성 용액, 즉 MEA : DMS0=7 : 3 용액 및 NMP 용액에 각각 5 분간 침지 후 측정한 두께 변화율이 모두 5 % 이상으로, 내화학성도 매우 낮음을 알 수 있다. 결론적으로, 일 구현예에 따른 감광성 수지 조성물은 그로부터 제조되는 경화막의 경화 후 내크랙성 및 내화학성이 우수하고, 높은 광 투과율을 유지하며,, 크랙마진이 증가하여 경화막의 두께를 용이하게 조절할 수 있음을 알 수 있다. 이상 본 발명의 바람직한 실시예들에 대해 상세히 설명하였지만, 본 발명의 권리 범위는 이에 한정되는 것이 아니고, 다음의 특허청구범위에서 정의하고 있는 본 발명의 기본 개념을 이용한 당업자의 여러 변형 및 개량 형태 또한 본 발명의 권리 범위에 속하는 것이다. ** Thickness change rate of cured film measured by immersion in 50 ° C NMP solution for 5 minutes and washed with water (¾>) As can be seen from Table 2, one embodiment for the decomposition of a silane compound represented by the silane compound and formula (2) represented by the general formula (1) according to artists, and condensation polymerization was made and the entire "65% or more based on the number of silicon atoms A polysiloxane copolymer substituted with this phenyl group, and the film after prebaking is 2. The cured film manufactured from the photosensitive resin composition which is insoluble in a 38 weight% TMAH aqueous solution and has a dissolution rate of 100 A / sec or less for a 5.0 weight% -TMAH aqueous solution has a thickness of 2. There is no cracking at 3 and no crack-free thickness margin that maintains a light transmittance of 98% for 400 nm wavelength. It can be seen that it has excellent anti-tacktack and a high light transmittance of 2 i or more. Moreover, the rate of change of the thickness of the cured film with respect to the chemical resistance evaluation solvent is 5% or less, and the chemical resistance is also very excellent. On the other hand, the photosensitive resin composition according to Comparative Example 1 and Comparative Example 2 comprising the polysiloxane co-polymer prepared in Synthesis Example 7 and Synthesis Example 8, in which only 50% of all silicon atoms in the polysiloxane copolymer were substituted with phenyl groups, had a thickness after curing. Both cracks occurred, and the crack-free thickness margin maintaining 97% light transmittance for the 400 nm wavelength was 2. 5 j ^, it can be seen that it is significantly lower than the crack resistance of the cured film according to Examples 1 to 6. In addition, it can be seen that the thickness change rate measured after 5 minutes of immersion in a chemical resistant solution, that is, a MEA: DMS0 = 7: 3 solution and an NMP solution, respectively, is 5% or more, and the chemical resistance is also very low. In conclusion, the photosensitive resin composition according to the embodiment has excellent crack resistance and chemical resistance after curing of the cured film prepared therefrom, maintains high light transmittance, and can increase the crack margin to easily control the thickness of the cured film. It can be seen that. Although the preferred embodiments of the present invention have been described in detail above, the scope of the present invention is not limited thereto, and various modifications and improvements of those skilled in the art using the basic concept of the present invention defined in the following claims are also provided. It belongs to the scope of the present invention.

Claims

【청구의 범위】  [Range of request]
【청구항 1】 [Claim 1]
(A) 하기 화학식 1로 표시되는, 적어도 1종의 실란 화합물을 가수분해 및 축합반웅시켜 형성되고, 전체 실리콘 원자의 65% 이상이 페닐기에 의해 치환된 폴리실록산 중합체와, (B) 용매를 포함하는 감광성 수지 조성물로서 ,  (A) A polysiloxane polymer formed by hydrolysis and condensation reaction of at least one silane compound represented by the following formula (1), wherein at least 65% of all silicon atoms are substituted with a phenyl group, and (B) a solvent. As the photosensitive resin composition,
프리베이크 후 막이 2.38 중량 ¾> 테트라메틸암모늄하이드록사이드 (TMAH) 수용액에 불용이고, 5 중량 % TMAH 수용액에서의 용해 속도가 100 A/초 이하인 감광성 수지 조성물:  The photosensitive resin composition after the prebaking is insoluble in a 2.38 weight ¾> tetramethylammonium hydroxide (TMAH) aqueous solution and has a dissolution rate in a 5 weight% TMAH aqueous solution of 100 A / sec or less:
[화학식 1] [Formula 1]
Figure imgf000034_0001
Figure imgf000034_0001
상기 화학식 1에서,  In Chemical Formula 1,
R1 은 수소, 하이드록시, 할로겐, 치환 또는 비치환된 C1 내지 C30 알킬기 치환 또는 비치환된 C3 내지 C30 사이클로알킬기, 치환 또는' 비치환된 C6 내지 C30 아릴기, 치환 또는 비치환된 C7 내지 C30 아릴알킬기, 치환 또는 비치환된 C1 내지 C30 헤테로알킬기, 치환 또는 비치환된 C2 내지 C30 헤테로사이클로알킬기, 치환 또는 비치환된 C1 내지 C30 헤테로아릴기, 치환 또는 비치환된 C2 내지 C30 알케닐기 , 치환 또는 비치환된 C2 내지 C30 알키닐기 R0- , R(C=0)- (여기서, R은 치환 또는 비치환된 C1 내지 C30의 알킬기, 치환 또는 비치환된 C3 내지 C30의 사이클로알킬기, 치환 또는 비치환된 C6 내지 C30의 아릴기, 또는 치환 또는 비치환된 C7 내지 C30의 아릴알킬기), 또는 이들의 조합이고, R 1 is hydrogen, hydroxy, halogen, substituted or unsubstituted C1 to C30 alkyl group substituted or unsubstituted C3 to C30 cycloalkyl group, substituted or ' unsubstituted C6 to C30 aryl group, substituted or unsubstituted C7 to C30 Arylalkyl group, substituted or unsubstituted C1 to C30 heteroalkyl group, substituted or unsubstituted C2 to C30 heterocycloalkyl group, substituted or unsubstituted C1 to C30 heteroaryl group, substituted or unsubstituted C2 to C30 alkenyl group, substituted Or an unsubstituted C2 to C30 alkynyl group R0-, R (C = 0)-(where R is a substituted or unsubstituted C1 to C30 alkyl group, a substituted or unsubstituted C3 to C30 cycloalkyl group, substituted or unsubstituted A substituted C6 to C30 aryl group, or a substituted or unsubstituted C7 to C30 arylalkyl group, or a combination thereof,
X1은 C1 내지 C6 알콕시기, 히드록시기, 할로겐, 카르복실기, 또는 이들의 조합이고, X 1 is a C1 to C6 alkoxy group, a hydroxy group, a halogen, a carboxyl group, or a combination thereof,
a는 0≤a<4 이다.  a is 0≤a <4.
【청구항 2】  [Claim 2]
제 1항에서,  In paragraph 1,
상기 화학식 1의 R1 은 수소, C1 내지 C10 알킬기, C2 내지 C10 알케닐기, C6 내지 C16의 아릴기, 또는 이들의 조합이고, X1은 C1 내지 C6 알콕시기, 히드록시기, 할로겐, 또는 이들의 조합인 감광성 수지 조성물. R 1 of Formula 1 is hydrogen, C1 to C10 alkyl group, C2 to C10 alkenyl group, C6 to C16 aryl group, or a combination thereof, X 1 is a C1 to C6 alkoxy group, Photosensitive resin composition which is a hydroxyl group, a halogen, or a combination thereof.
【청구항 3]  [Claim 3]
제 1항에서,  In claim 1,
상기 화학식 1의 R1 은 메틸기 또는 페닐기이고, a는 1인 감광성 수지 조성물. R 1 of Formula 1 is a methyl group or a phenyl group, a is a photosensitive resin composition.
【청구항 4]  [Claim 4]
제 1항에서,  In paragraph 1,
상기 폴리실록산 중합체 (A)는 하기 화학식 2로 표시되는 실란 화합물을 더 포함하여 가수분해 및 축합중합된 것인 감광성 수지 조성물:  The polysiloxane polymer (A) is a photosensitive resin composition that is further hydrolyzed and condensation polymerization comprising a silane compound represented by the following formula (2):
[화학식 2]  [Formula 2]
X^Si-Y^SiX^  X ^ Si-Y ^ SiX ^
상기 화학식 2에서,  In Chemical Formula 2,
Y1 은 단일결합, 산소, 치환 또는 비치환된 C1 내지 C20 알킬렌기, 치환 또는 비치환된 C3 내지 C30 사이클로알킬렌기, 치환 또는 비치환된 C6 내지 C30 아릴렌기, 치환 또는 비치환된 C2 내지 C30 헤테로아릴렌기, 치환 또는 비치환된 C2 내지 C30 알케닐렌기, 치환 또는 비치환된 C2 내지 C20 알키닐렌기, 또는 이들의 조합이고, Y 1 is a single bond, oxygen, substituted or unsubstituted C1 to C20 alkylene group, substituted or unsubstituted C3 to C30 cycloalkylene group, substituted or unsubstituted C6 to C30 arylene group, substituted or unsubstituted C2 to C30 Heteroarylene group, substituted or unsubstituted C2 to C30 alkenylene group, substituted or unsubstituted C2 to C20 alkynylene group, or a combination thereof,
X2및 X3은, 각각 독립적으로, C1 내지 C6 알콕시기, 히드록시기, 할로겐, 카르복실기, 또는 이들의 조합이다. X 2 and X 3 are each independently a C1 to C6 alkoxy group, a hydroxy group, a halogen, a carboxyl group, or a combination thereof.
【청구항 5】  [Claim 5]
제 4항에서,  In paragraph 4,
상기 화학식 2의 Y1 은 C1 내지 C10 알킬렌기, C3 내지 C10 사이클로알킬렌기, C6 내지 C12 아릴렌기 , 또는 이들의 조합이고, 상기 X2및 X3 은, 각각 독립적으로, C1 내지 C6 알콕시기인, 감광성. 수지 조성물. Y 1 of Formula 2 is a C1 to C10 alkylene group, C3 to C10 cycloalkylene group, C6 to C12 arylene group, or a combination thereof, X 2 and X 3 are each independently a C1 to C6 alkoxy group, Photosensitivity. Resin composition.
【청구항 6】  [Claim 6]
거 μ항에서,  In this μ term,
상기 감광성 수지 조성물의 프리베이크 후 막이 2.38 중량 % ΤΜΑΗ 수용액에는 불용이고, 5 중량 % ΤΜΑΗ 수용액에서의 용해 속도는 50Α/초 이하인 감광성 수지 조성물. The film after prebaking of the photosensitive resin composition is insoluble in a 2.38 wt% ΤΜΑΗ aqueous solution, and the dissolution rate in the 5 wt% ΤΜΑΗ aqueous solution is 50 A / sec or less. Photosensitive resin composition.
【청구항 7]  [Claim 7]
제 4항에서,  In paragraph 4,
상기 폴리실록산 중합체 (A)는, 상기 화학식 1로 표시되는 실란 화합물 80 몰% 내지 97 몰%와 상기 화학식 2로 표시되는 실란 화합물 3 몰% 내지 20 몰% 를 가수분해 및 축합반웅시켜 형성하는 것인 감광성 수지 조성물.  The polysiloxane polymer (A) is formed by hydrolysis and condensation reaction of 80 mol% to 97 mol% of the silane compound represented by Formula 1 and 3 mol% to 20 mol% of the silane compound represented by Formula 2 Photosensitive resin composition.
【청구항 8]  [Claim 8]
제 4항에서,  In paragraph 4,
상기 폴리실록산 중합체 (A)의 전체 실리콘 원자의 70% 이상이 페닐기에 의해 치환된 감광성 수지 조성물.  Photosensitive resin composition in which 70% or more of all the silicon atoms of the said polysiloxane polymer (A) are substituted by the phenyl group.
[청구항 9】  [Claim 9]
제 1항에서,  In paragraph 1,
상기 감광성 수지 조성물은 (C) 열 또는 빛으로, 산 또는 염기를 발생시키는 첨가제, (D) 쥐논디아지드 화합물, 또는 이들의 조합을 더 포함하는 감광성 수지 조성물.  The photosensitive resin composition further comprises (C) an additive which generates an acid or a base with heat or light, (D) a nonone diazide compound, or a combination thereof.
【청구항 10】  [Claim 10]
제 1항에서,  In paragraph 1,
상기 감광성 수지 .조성물의 굴절율은 1.50 이상인 감광성 수지 조성물. 【청구항 111  The refractive index of the said photosensitive resin composition is 1.50 or more. [Claim 111]
제 1항 내지 제 10항 중 어느 한 항에 따른 감광성 수지 조성물을 경화하여 얻은 경화막.  The cured film obtained by hardening | curing the photosensitive resin composition of any one of Claims 1-10.
【청구항 12】  [Claim 12]
제 11항에서,  In claim 11,
상기 경화막은 400 nm 파장에서의 광투과율이 98 % 이상인 경화막.  The cured film has a light transmittance of 98% or more at 400 nm wavelength.
[청구항 13】  [Claim 13]
제 11항에 따른 경화막을 포함하는 전자 장치 .  An electronic device comprising the cured film of claim 11.
PCT/KR2017/003499 2016-09-28 2017-03-30 Photosensitive resin composition, cured film formed therefrom, and electronic device having cured film WO2018062652A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201780059584.1A CN109791360B (en) 2016-09-28 2017-03-30 Photosensitive resin composition, cured film formed therefrom, and electronic device having the cured film
JP2019516137A JP6826193B2 (en) 2016-09-28 2017-03-30 An electronic device having a photosensitive resin composition, a cured film formed from the photosensitive resin composition, and the cured film.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2016-0125109 2016-09-28
KR1020160125109A KR102032345B1 (en) 2016-09-28 2016-09-28 Photosensitive resin composition, cured film prepared therefrom, and electronic device incoporating the cured film

Publications (1)

Publication Number Publication Date
WO2018062652A1 true WO2018062652A1 (en) 2018-04-05

Family

ID=61760927

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/003499 WO2018062652A1 (en) 2016-09-28 2017-03-30 Photosensitive resin composition, cured film formed therefrom, and electronic device having cured film

Country Status (4)

Country Link
JP (1) JP6826193B2 (en)
KR (1) KR102032345B1 (en)
CN (1) CN109791360B (en)
WO (1) WO2018062652A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220139937A (en) * 2020-03-26 2022-10-17 후지필름 가부시키가이샤 Manufacturing method of radiation-sensitive resin composition, pattern formation method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6639724B1 (en) * 2019-03-15 2020-02-05 メルク、パテント、ゲゼルシャフト、ミット、ベシュレンクテル、ハフツングMerck Patent GmbH Positive photosensitive polysiloxane composition

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007193318A (en) * 2005-12-21 2007-08-02 Toray Ind Inc Photosensitive siloxane composition, cured film formed of the same and element having cured film
KR101055534B1 (en) * 2003-10-07 2011-08-08 신에쓰 가가꾸 고교 가부시끼가이샤 Radiation-sensitive resin composition and pattern formation method using the same
US20130216952A1 (en) * 2010-08-24 2013-08-22 Az Electronic Materials Usa Corp. Positive photosensitive siloxane composition
US20140335452A1 (en) * 2011-05-20 2014-11-13 Az Electronic Materials Usa Corp. Positive photosensitive siloxane composition
US20150291749A1 (en) * 2012-11-22 2015-10-15 Az Electronic Materials (Luxembourg) S.A.R.L. Positive-type photosensitive siloxane composition

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101271783B1 (en) * 2005-10-28 2013-06-07 도레이 카부시키가이샤 Siloxane resin composition and method for producing same
EP2071400A1 (en) * 2007-11-12 2009-06-17 Rohm and Haas Electronic Materials LLC Coating compositions for use with an overcoated photoresist
CN102918460B (en) * 2010-06-09 2015-07-22 东丽株式会社 Photosensitive siloxane composition, cured film formed form same, and element having cured film
WO2016052268A1 (en) * 2014-09-30 2016-04-07 東レ株式会社 Photosensitive resin composition, cured film, element provided with cured film, and method for manufacturing semiconductor device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101055534B1 (en) * 2003-10-07 2011-08-08 신에쓰 가가꾸 고교 가부시끼가이샤 Radiation-sensitive resin composition and pattern formation method using the same
JP2007193318A (en) * 2005-12-21 2007-08-02 Toray Ind Inc Photosensitive siloxane composition, cured film formed of the same and element having cured film
US20130216952A1 (en) * 2010-08-24 2013-08-22 Az Electronic Materials Usa Corp. Positive photosensitive siloxane composition
US20140335452A1 (en) * 2011-05-20 2014-11-13 Az Electronic Materials Usa Corp. Positive photosensitive siloxane composition
US20150291749A1 (en) * 2012-11-22 2015-10-15 Az Electronic Materials (Luxembourg) S.A.R.L. Positive-type photosensitive siloxane composition

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220139937A (en) * 2020-03-26 2022-10-17 후지필름 가부시키가이샤 Manufacturing method of radiation-sensitive resin composition, pattern formation method
KR102669761B1 (en) 2020-03-26 2024-05-28 후지필름 가부시키가이샤 Method for producing radiation-sensitive resin composition, method for forming pattern

Also Published As

Publication number Publication date
KR102032345B1 (en) 2019-10-15
KR20180035075A (en) 2018-04-05
CN109791360B (en) 2022-07-05
CN109791360A (en) 2019-05-21
JP2019530900A (en) 2019-10-24
JP6826193B2 (en) 2021-02-03

Similar Documents

Publication Publication Date Title
JP5707407B2 (en) Positive photosensitive siloxane composition
JP6137862B2 (en) Negative photosensitive siloxane composition
KR20200060466A (en) Positive photosensitive siloxane composition and cured film using same
KR20190056088A (en) Photosensitive resin composition and cured film prepared therefrom
KR101920642B1 (en) Photo-sensitive Composition, Cured Film Prepared Therefrom, and Device Incoporating the Cured Film
WO2018062652A1 (en) Photosensitive resin composition, cured film formed therefrom, and electronic device having cured film
WO2017099365A1 (en) Photosensitive resin composition, cured film produced from same, and device having cured film
KR101921143B1 (en) Photo-sensitive Composition, Cured Film Prepared Therefrom, and Device Incoporating the Cured Film
KR101862710B1 (en) Photo-sensitive Composition, Cured Film Prepared Therefrom, and Device Incoporating the Cured Film
KR101930367B1 (en) Photo-sensitive Composition, Cured Film Prepared Therefrom, and Device Incoporating the Cured Film
JP2018189732A (en) Positive type photosensitive siloxane composition and cured film formed by using the same
KR101857145B1 (en) Photo-sensitive Composition, Cured Film Prepared Therefrom, and Device Incoporating the Cured Film
KR101988996B1 (en) Photosensitive resin composition, cured film prepared therefrom, and electronic device incoporating the cured film
KR101852458B1 (en) Photo-sensitive Composition, Cured Film Prepared Therefrom, and Device Incoporating the Cured Film
KR102028642B1 (en) Photo-sensitive Composition, Cured Film Prepared Therefrom, and Electronic Device Incoporating the Cured Film
KR102042190B1 (en) Photo-sensitive Composition, Cured Film Prepared Therefrom, and Electronic Device Incoporating the Cured Film
KR101850888B1 (en) Photo-sensitive Composition, Cured Film Prepared Therefrom, and Device Incoporating the Cured Film
KR101968223B1 (en) Photo-sensitive Composition, Cured Film Prepared Therefrom, and Device Incoporating the Cured Film
KR101906281B1 (en) Photo-sensitive Composition, Cured Film Prepared Therefrom, and Device Incoporating the Cured Film
KR101857144B1 (en) Photo-sensitive Composition, Cured Film Prepared Therefrom, and Device Incoporating the Cured Film
KR102106397B1 (en) Photo-sensitive Composition, Cured Film Prepared Therefrom, and Electronic Device Incorporating the Cured Film
KR102106396B1 (en) Photo-sensitive Composition, Cured Film Prepared Therefrom, and Electronic Device Incorporating the Cured Film
KR20170012923A (en) Photo-sensitive Composition, Cured Film Prepared Therefrom, and Device Incoporating the Cured Film
KR20190010271A (en) Photo-sensitive Composition, Cured Film Prepared Therefrom, and Electronic Device Incorporating the Cured Film

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17856538

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019516137

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17856538

Country of ref document: EP

Kind code of ref document: A1