WO2018062627A1 - Stirling engine using supercritical fluid - Google Patents

Stirling engine using supercritical fluid Download PDF

Info

Publication number
WO2018062627A1
WO2018062627A1 PCT/KR2016/014222 KR2016014222W WO2018062627A1 WO 2018062627 A1 WO2018062627 A1 WO 2018062627A1 KR 2016014222 W KR2016014222 W KR 2016014222W WO 2018062627 A1 WO2018062627 A1 WO 2018062627A1
Authority
WO
WIPO (PCT)
Prior art keywords
working fluid
stirling engine
cylinder
critical point
fluid
Prior art date
Application number
PCT/KR2016/014222
Other languages
French (fr)
Korean (ko)
Inventor
이정익
손성민
Original Assignee
한국과학기술원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국과학기술원 filed Critical 한국과학기술원
Publication of WO2018062627A1 publication Critical patent/WO2018062627A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02GHOT GAS OR COMBUSTION-PRODUCT POSITIVE-DISPLACEMENT ENGINE PLANTS; USE OF WASTE HEAT OF COMBUSTION ENGINES; NOT OTHERWISE PROVIDED FOR
    • F02G1/00Hot gas positive-displacement engine plants
    • F02G1/04Hot gas positive-displacement engine plants of closed-cycle type
    • F02G1/043Hot gas positive-displacement engine plants of closed-cycle type the engine being operated by expansion and contraction of a mass of working gas which is heated and cooled in one of a plurality of constantly communicating expansible chambers, e.g. Stirling cycle type engines
    • F02G1/0435Hot gas positive-displacement engine plants of closed-cycle type the engine being operated by expansion and contraction of a mass of working gas which is heated and cooled in one of a plurality of constantly communicating expansible chambers, e.g. Stirling cycle type engines the engine being of the free piston type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02GHOT GAS OR COMBUSTION-PRODUCT POSITIVE-DISPLACEMENT ENGINE PLANTS; USE OF WASTE HEAT OF COMBUSTION ENGINES; NOT OTHERWISE PROVIDED FOR
    • F02G1/00Hot gas positive-displacement engine plants
    • F02G1/04Hot gas positive-displacement engine plants of closed-cycle type
    • F02G1/043Hot gas positive-displacement engine plants of closed-cycle type the engine being operated by expansion and contraction of a mass of working gas which is heated and cooled in one of a plurality of constantly communicating expansible chambers, e.g. Stirling cycle type engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02GHOT GAS OR COMBUSTION-PRODUCT POSITIVE-DISPLACEMENT ENGINE PLANTS; USE OF WASTE HEAT OF COMBUSTION ENGINES; NOT OTHERWISE PROVIDED FOR
    • F02G1/00Hot gas positive-displacement engine plants
    • F02G1/04Hot gas positive-displacement engine plants of closed-cycle type
    • F02G1/043Hot gas positive-displacement engine plants of closed-cycle type the engine being operated by expansion and contraction of a mass of working gas which is heated and cooled in one of a plurality of constantly communicating expansible chambers, e.g. Stirling cycle type engines
    • F02G1/053Component parts or details
    • F02G1/055Heaters or coolers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02GHOT GAS OR COMBUSTION-PRODUCT POSITIVE-DISPLACEMENT ENGINE PLANTS; USE OF WASTE HEAT OF COMBUSTION ENGINES; NOT OTHERWISE PROVIDED FOR
    • F02G2243/00Stirling type engines having closed regenerative thermodynamic cycles with flow controlled by volume changes

Definitions

  • the present invention relates to a Stirling engine.
  • the superfluous carbon is applied to the working fluid so that the working fluid is designed to operate in an environment near the critical point during the compression stroke. It relates to a Stirling engine using a supercritical fluid that can be utilized in the engine.
  • the Stirling engine is a heat engine that converts heat energy into kinetic energy by compressing and expanding a gas in a closed space at each of the high and low temperatures.
  • the Stirling engine was not attracted by the rapid development of steam engines and internal combustion engines at the time of development, but recently, the development of heat-resistant materials and sealing technologies, energy and environmental issues have emerged as important issues around the world.
  • the Stirling engine is an external combustion engine, it is free to select a heat source, and there is no explosion stroke, which makes it less noise than internal combustion engines such as diesel engines and gasoline engines. It has excellent properties to produce work and electricity from its heat source.
  • the present invention is designed to operate the working fluid in the environment near the critical point during the compression stroke by applying supercritical carbon dioxide to the working fluid, so that the large expansion ratio, high compression efficiency, low compression work near the critical point It is an object of the present invention to provide a Stirling engine using a supercritical fluid that can be utilized in an engine.
  • Reciprocating a piston to compress and expand the working fluid and including at least one cylinder having a high temperature portion for heating the working fluid and a low temperature portion for cooling the working fluid, and filling the working fluid with a supercritical fluid.
  • the supercritical fluid is characterized in that it operates in the vicinity of the critical point that is the point where the discontinuous change in the physical properties of the supercritical fluid is observed during the compression stroke.
  • the Stirling engine of the present invention performs a Stirling cycle in a pressure range of at least 7 to 8 MPa, at a maximum of 20 to 25 MPa, and at a temperature range of at least 25 to 35 degrees and at a maximum of 600 to 700 degrees when the supercritical fluid is operated near a critical point. Characterized in that.
  • the Stirling engine of the present invention is characterized in that when the supercritical fluid is operated near the critical point, the low temperature section performs a Stirling cycle operating in a temperature range of 25 to 35 degrees and a pressure range of 7 to 8 MPa.
  • the present invention has the effect of having higher efficiency and output in the same volume by applying supercritical carbon dioxide designed to operate near the critical point to the Stirling engine as a working fluid.
  • the supercritical carbon dioxide which is a working fluid, operates in an environment near a critical point in a compression stroke, thereby making it possible to utilize a large expansion ratio, a high compression efficiency, and a low compression work near a critical point in a Stirling engine.
  • FIG. 1 is a view showing the configuration of a Stirling engine according to an embodiment of the present invention.
  • FIG. 2 is a view showing a Stirling cycle process of the Stirling engine according to an embodiment of the present invention.
  • 3 is a graph showing the density of supercritical carbon dioxide according to temperature and pressure according to an embodiment of the present invention.
  • FIG. 5 is a graph showing the temperature and compression coefficient of helium according to the conventional embodiment.
  • FIG. 6 is a view showing the pressure and volume of a Stirling engine using a supercritical carbon dioxide as a working fluid and a conventional Stirling engine using helium as a working fluid according to an embodiment of the present invention.
  • FIG. 7 is a view showing the work of compression and expansion of the Stirling engine using supercritical carbon dioxide according to an embodiment of the present invention.
  • FIG. 8 is a view showing the work to the compression and expansion of the Stirling engine using helium according to the prior art.
  • Stirling engine is an external combustion engine that seals the working fluid in a space consisting of a cylinder and a piston, and mechanically moves the piston up and down to obtain mechanical energy by heating and cooling the working fluid from the outside through heat exchange.
  • FIG. 1 is a view showing the configuration of a Stirling engine according to an embodiment of the present invention.
  • the Stirling engine 100 reciprocates in the first cylinder 111 and the second inner space 122 having the first piston 113 reciprocating in the first inner space 112.
  • the second cylinder 121 having the second piston 123 and the first cylinder 111 or the second cylinder 121 are filled with the working fluid 101 to be sealed.
  • the first internal space 112 of the first cylinder 111 is a space where the working fluid 101 is heated, and is called a high temperature unit 110, and the second internal space 122 of the second cylinder 121 is operated.
  • a space in which the fluid 101 is cooled is divided into a low temperature part 120.
  • the high temperature unit 110 is the working fluid 101 is heated by the heating in the first internal space 112 of the first cylinder 111 is filled with the high temperature working fluid 101
  • the low temperature unit 120 is the second cylinder In the second internal space 122 of 121
  • the working fluid 101 is cooled by cooling to fill the low temperature working fluid 101.
  • the first piston 113 is connected to the flywheel 102 by the first crankshaft 114, and the second piston 123 is connected to the flywheel 102 by the second crankshaft 124.
  • the outer circumferential surface of the first cylinder 111 forming the first inner space 112 is provided with an external heat source 115 for heating the working fluid 101, and the second cylinder forming the second inner space 122 ( On the outer circumferential surface of 121, an external cooling source 125 for cooling the working fluid 101 is installed.
  • the working fluid 101 filled in the second cylinder 121 is delivered to the cooling medium in a liquid state stored in the external cooling source 125 and cooled.
  • the Stirling engine 100 constitutes a Stirling cycle with two power pistons, the first piston 113 and the second piston 123.
  • the Stirling engine 100 is referred to as the phase angle of the difference between the operation between the first piston 113 and the second piston 123, the Stirling cycle using the phase angle of the first piston 113 and the second piston 123 Configure the compression, expansion, and movement of the working fluid 101 required.
  • the first cylinder 111 and the second cylinder 121 communicate with each other by the flow path 103 to operate both spaces according to the volume change (compression and expansion) of the first cylinder 111 and the second cylinder 121.
  • the fluid 101 moves, it performs a Stirling cycle that repeats the state change.
  • the working fluid 101 repeatedly performs expansion and compression to enable high efficiency and high power in the expansion and compression process, and uses a supercritical fluid.
  • Supercritical fluid refers to a fluid at a point in time at which the liquid and gas cannot be distinguished due to reaching a state exceeding a certain limit of high temperature and high pressure.
  • the molecular density is close to liquid, but the viscosity is low and close to gas.
  • gaseous and liquid materials also exceed the limits of certain high temperatures and pressures, called critical points, so that no evaporation occurs, resulting in a state in which gas and liquid are indistinguishable.
  • a substance in a state is called a supercritical fluid.
  • Supercritical is a state in which the boundary between a gas and a liquid disappears at temperatures and pressures above the critical point, with a characteristic in between.
  • Supercritical fluids represent a state of matter at temperatures and pressures above the critical point, with gas diffusivity and liquid solubility.
  • Supercritical fluids include water, carbon dioxide, methane, ethane, propane, ethylene, propylene, methanol and the like.
  • the critical temperature is relatively close to room temperature, and carbon dioxide is used in the present invention as one embodiment of the supercritical fluid.
  • the critical point of carbon dioxide is known as 7.37 MPa, 31.1 ° C.
  • Supercritical carbon dioxide has high density and low viscosity. That is, supercritical carbon dioxide has a dense gas characteristic.
  • Supercritical carbon dioxide has high density and thermal conductivity like liquids, but expands like gas, occupies space, has low viscosity, and has properties such as density and heat capacity that change rapidly near the critical point.
  • supercritical carbon dioxide has the feature of compressing fluids at lower work and with higher efficiency than when compressing near conventional critical gases.
  • FIG. 2 is a view showing a Stirling cycle process of the Stirling engine according to an embodiment of the present invention.
  • the present invention proposes a Stirling engine 100 in which supercritical carbon dioxide near a critical point is set as a working fluid 101 in a cooling process and a compression process in order to solve a low power-to-output ratio of the Stirling engine 100. do.
  • the Stirling engine 100 of the present invention has a pressure range of at least 7 to 8 MPa, a maximum of 20 to 25 MPa, and a minimum of 25 degrees Celsius for operating the Stirling engine 100 when the working fluid 101 is set to supercritical carbon dioxide near a critical point.
  • Higher volume-to-volume power ratios and thermal efficiencies can be achieved in the temperature range of from 35 degrees to 35 degrees Celsius, up to 600 degrees Celsius.
  • the Stirling engine 100 of the present invention performs the Stirling cycle while repeating the sequence of the expansion zone, the heating zone, the cooling zone, and the compression zone.
  • the first cylinder 111 is heated by an external heat source 115 so that the high temperature unit 110 expands and pushes up the first piston 113 ( Expansion zone).
  • the second piston 123 of the low temperature part 120 is coupled to the first piston 113, when the first piston 113 is pushed up, the second piston 123 is pushed up together to expand the low temperature part 120.
  • the high temperature part 110 has the heated working fluid 101 along the flow path 103 in the second of the second cylinder 121. It is moved to the interior space 122 (heating area).
  • the low temperature part 120 cools the working fluid 101 introduced into the second inner space 122 of the second cylinder 121 by the external cooling source 125. (Cooling zone).
  • the second piston 123 compresses the working fluid 101, and the cooled working fluid 101 passes through the flow path 103. Is moved to the first internal space 112 of the first cylinder 111 along the (compression area).
  • the compressed working fluid 101 of the second cylinder 121 moves to the first inner space 112 of the first cylinder 111 through the flow path 103, and then heat is applied by the external heat source 115.
  • the sterling cycle is in progress.
  • the Stirling engine 100 is connected to the flywheel 102 in which the high temperature part 110 and the low temperature part 120 rotate in a constant phase difference, and use the rotational force transmitted from the flywheel 102 to the first piston 113.
  • the expansion and compression process is performed while repeatedly raising and lowering the second piston 123.
  • the Stirling engine 100 is designed to operate near the critical point in the compression stroke because it can take the greatest benefit near the critical point in the compression stroke. More details will be described with reference to FIGS. 6 and 7.
  • FIG 3 is a graph showing the density of supercritical carbon dioxide according to temperature and pressure according to an embodiment of the present invention
  • Figure 4 is a graph showing the temperature and compression coefficient of supercritical carbon dioxide according to an embodiment of the present invention
  • Figure 5 Is a graph showing the temperature and compression coefficient of helium according to the conventional embodiment.
  • FIG. 3 shows the density with temperature and pressure near the critical point of the supercritical carbon dioxide (31.04 degrees Celsius, 7380 kPa).
  • Nonlinearly rapidly changing physical properties of the supercritical fluid include a compression factor.
  • Compression coefficient is an index showing how the actual gas has a different compression properties than the ideal gas is defined by the following equation (1).
  • V volume
  • n molar number
  • R gas constant
  • T temperature
  • the compression coefficient of the ideal gas is 1, and a large compression coefficient indicates that the intermolecular repulsive force of the actual gas is superior to the ideal gas, and a small compression coefficient indicates that the intermolecular attraction is superior.
  • the preponderance of repulsive force means greater work for compression, and the predominance of gravitational force means less work for compression.
  • the supercritical carbon dioxide is used as the working fluid 101 to increase the efficiency by applying a reduction in compression work that can be taken in a sudden change in physical properties near the critical point to the Stirling engine 100.
  • the supercritical carbon dioxide has a small compression coefficient near the critical point, and thus, a small amount of work may be achieved in compression, thereby obtaining a large gain.
  • helium has a compression coefficient of 1 or more, it can be seen that the intermolecular repulsive force is superior to the ideal gas.
  • the critical point does not deviate significantly from room temperature and selects a fluid whose pressure is not high.
  • supercritical carbon dioxide is selected among the selected working fluids 101, which is the cheapest fluid without toxicity or explosiveness and shows a sudden change in physical properties near the critical point.
  • FIG. 6 is a view showing the pressure and volume of a Stirling engine using another supercritical carbon dioxide as a working fluid and a conventional Stirling engine using helium as a working fluid, according to an embodiment of the present invention
  • FIG. FIG. 8 is a diagram showing the work of compression and expansion of the Stirling engine using supercritical carbon dioxide
  • FIG. 8 is a view of the work of compression and expansion of the Stirling engine using helium according to the prior art.
  • the Stirling engine 100 of the present invention includes a low temperature unit 120 operating at 32 ° C. near a critical point of supercritical carbon dioxide, and a high temperature unit 110 having a higher temperature than the low temperature unit 120.
  • the minimum pressure of the engine within the piston stroke is designed to be at or above 7.37 MPa, the critical point of supercritical carbon dioxide.
  • Stirling engine 100 of the present invention is designed so that the cooling zone and the compression zone to operate in the environment near the critical point of the supercritical carbon dioxide can realize a large expansion ratio, high compression efficiency, low compression work near the critical point.
  • the Stirling engine 100 of the present invention may have efficiency and output more than 1.5 times higher in the same volume than a Stirling engine using a high pressure helium as a working fluid.
  • a phase diagram of 90 degrees, a volume of 160 ml of the low temperature part 120, a volume of 80 ml of the high temperature part 110, a low temperature part 120 at 32 ° C., and the high temperature part 110 at 650 ° C. at a maximum pressure of 23 MPa can be designed.
  • a high-pressure helium sterling engine achieves an efficiency of 25.0% at an average of 150.9 atmospheres, it does 797.2J per piston stroke.
  • the Stirling engine 100 with supercritical carbon dioxide set as the working fluid 101 operates at 32 ° C. and 7.49 MPa near the critical point in the low temperature section 120, and has an efficiency of 39.6% and a piston stroke at an average pressure of 109.1 atm. Doing 1299.3J per day.
  • the Stirling engine 100 operates at a lower average pressure than conventional high pressure helium when the working fluid 101 is replaced with supercritical carbon dioxide under the above operating conditions, and is 1.58 times more efficient and 1.63 times more efficient when operated in the same volume. Can work.
  • the lower end 104 is a cooling zone and a compression zone, and the upper end 105 is heated with an expansion zone in the pressure volume graph of FIG. 6. Area.
  • the pressure-volume graphs of FIGS. 7 and 8 show the work taken to expand by combining work (A), work per cycle (B), and A + B for compression.
  • the vicinity of the critical point represents the point where discontinuous changes in the physical properties of supercritical carbon dioxide are observed. Therefore, the Stirling engine 100 of the present invention is designed to operate near the critical point where the supercritical carbon dioxide is observed at the discontinuous change of physical properties of the supercritical fluid during the compression stroke and the cooling stroke.
  • the present invention aims to increase efficiency by applying supercritical carbon dioxide as a working fluid to the Stirling engine by applying a reduction in the compression work that can be taken in the rapid change in physical properties near the critical point.

Abstract

A stirling engine using supercritical fluid is designed such that working fluid operates in an environment near a critical point during a compression stroke by applying supercritical carbon dioxide to the working fluid, and thus a high expansion ratio near the critical point, a high compression efficiency, and a low compression load can be used for the engine.

Description

초임계 유체를 이용한 스털링 엔진Stirling engine with supercritical fluid
본 발명은 스털링 엔진에 관한 것으로서, 특히 작동유체를 초임계 이산화탄소를 적용하여 작동유체가 압축 행정 시 임계점 부근의 환경에서 작동하도록 설계하며 이에 따라 임계점 부근의 큰 팽창비와 높은 압축 효율, 낮은 압축 일을 엔진에 활용할 수 있는 초임계 유체를 이용한 스털링 엔진에 관한 것이다.BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a Stirling engine. In particular, the superfluous carbon is applied to the working fluid so that the working fluid is designed to operate in an environment near the critical point during the compression stroke. It relates to a Stirling engine using a supercritical fluid that can be utilized in the engine.
스털링 기관은 닫힌 공간 안의 기체를 각 고온부와 저온부에서 압축 및 팽창시켜 열에너지를 운동 에너지로 바꾸는 열기관이다.The Stirling engine is a heat engine that converts heat energy into kinetic energy by compressing and expanding a gas in a closed space at each of the high and low temperatures.
스털링 기관은 개발 당시 증기기관과 내연기관의 급속한 발전에 가려 빛을 받지 못하였으나 근래에 내열 재료와 밀봉 기술의 발전, 에너지 및 환경 문제가 전 세계적으로 중요한 이슈로 대두되면서 다시 주목받고 있다.The Stirling engine was not attracted by the rapid development of steam engines and internal combustion engines at the time of development, but recently, the development of heat-resistant materials and sealing technologies, energy and environmental issues have emerged as important issues around the world.
스털링 기관은 외연기관이므로 열원 선택에 있어 자유롭고, 폭발행정이 없어 디젤엔진, 가솔린 엔진 등의 내연기관에 비해 소음이 적으며 저온 열원에서도 동작이 가능하기 때문에 비교적 온도가 낮은 원자력 발전소의 폐열, 태양열 등의 열원에서 일 및 전기를 생산할 수 있는 우수한 성질을 가지고 있다.Since the Stirling engine is an external combustion engine, it is free to select a heat source, and there is no explosion stroke, which makes it less noise than internal combustion engines such as diesel engines and gasoline engines. It has excellent properties to produce work and electricity from its heat source.
그러나 스털링 기관은 낮은 크기 대비 출력 비와 기체의 팽창을 이용하기에 출력을 크게 키우기 용이하지 않기 때문에 산업계에서 널리 사용되지 못하고 있다.However, Stirling engines are not widely used in industry because they use low power-to-size ratios and gas expansion, making them difficult to increase power.
이와 같은 문제점을 해결하기 위하여, 본 발명은 작동유체를 초임계 이산화탄소를 적용하여 작동유체가 압축 행정 시 임계점 부근의 환경에서 작동하도록 설계하며 이에 따라 임계점 부근의 큰 팽창비와 높은 압축 효율, 낮은 압축 일을 엔진에 활용할 수 있는 초임계 유체를 이용한 스털링 엔진을 제공하는데 그 목적이 있다.In order to solve this problem, the present invention is designed to operate the working fluid in the environment near the critical point during the compression stroke by applying supercritical carbon dioxide to the working fluid, so that the large expansion ratio, high compression efficiency, low compression work near the critical point It is an object of the present invention to provide a Stirling engine using a supercritical fluid that can be utilized in an engine.
상기 목적을 달성하기 위한 본 발명의 특징에 따른 초임계 유체를 이용한 스털링 엔진은,Stirling engine using a supercritical fluid according to a feature of the present invention for achieving the above object,
피스톤을 왕복 운동하여 상기 작동유체를 압축과 팽창시키고, 상기 작동유체를 가열하는 고온부와, 상기 작동유체를 냉각시키는 저온부를 구비한 하나 이상의 실린더를 포함하며, 상기 작동유체를 초임계 유체로 충진하고, 상기 초임계 유체가 압축 행정 시 상기 초임계 유체의 불연속적인 물성치 변화가 관측되는 지점인 임계점 부근에서 작동하는 것을 특징으로 한다.Reciprocating a piston to compress and expand the working fluid, and including at least one cylinder having a high temperature portion for heating the working fluid and a low temperature portion for cooling the working fluid, and filling the working fluid with a supercritical fluid. In addition, the supercritical fluid is characterized in that it operates in the vicinity of the critical point that is the point where the discontinuous change in the physical properties of the supercritical fluid is observed during the compression stroke.
본 발명의 스털링 엔진은 상기 초임계 유체를 임계점 부근에서 작동하는 경우, 최소 7 내지 8MPa, 최대 20 내지 25MPa의 압력 범위와, 최소 25 내지 35도, 최대 600 내지 700도의 온도 범위에서 스털링 사이클을 수행하는 것을 특징으로 한다.The Stirling engine of the present invention performs a Stirling cycle in a pressure range of at least 7 to 8 MPa, at a maximum of 20 to 25 MPa, and at a temperature range of at least 25 to 35 degrees and at a maximum of 600 to 700 degrees when the supercritical fluid is operated near a critical point. Characterized in that.
본 발명의 스털링 엔진은 상기 초임계 유체를 임계점 부근에서 작동하는 경우, 상기 저온부를 25 내지 35도의 온도 범위와 7 내지 8MPa의 압력 범위에서 작동하는 스털링 사이클을 수행하는 것을 특징으로 한다.The Stirling engine of the present invention is characterized in that when the supercritical fluid is operated near the critical point, the low temperature section performs a Stirling cycle operating in a temperature range of 25 to 35 degrees and a pressure range of 7 to 8 MPa.
전술한 구성에 의하여, 본 발명은 임계점 부근에서 작동하도록 설계된 초임계 이산화탄소를 작동유체로 스털링 엔진에 적용하여 같은 부피에서 더 높은 효율과 출력을 갖는 효과가 있다.By the above-described configuration, the present invention has the effect of having higher efficiency and output in the same volume by applying supercritical carbon dioxide designed to operate near the critical point to the Stirling engine as a working fluid.
본 발명은 작동유체인 초임계 이산화탄소가 압축 행정 시 임계점 부근의 환경에서 작동하여 임계점 부근의 큰 팽창비와 높은 압축 효율, 낮은 압축 일을 스털링 엔진에 활용할 수 있는 효과가 있다.According to the present invention, the supercritical carbon dioxide, which is a working fluid, operates in an environment near a critical point in a compression stroke, thereby making it possible to utilize a large expansion ratio, a high compression efficiency, and a low compression work near a critical point in a Stirling engine.
도 1은 본 발명의 실시예에 따른 스털링 엔진의 구성을 나타낸 도면이다.1 is a view showing the configuration of a Stirling engine according to an embodiment of the present invention.
도 2는 본 발명의 실시예에 따른 스털링 엔진의 스털링 사이클 과정을 나타낸 도면이다.2 is a view showing a Stirling cycle process of the Stirling engine according to an embodiment of the present invention.
도 3은 본 발명의 실시예에 따른 온도와 압력에 따른 초임계 이산화탄소의 밀도를 나타낸 그래프이다.3 is a graph showing the density of supercritical carbon dioxide according to temperature and pressure according to an embodiment of the present invention.
도 4는 본 발명의 실시예에 따른 초임계 이산화탄소의 온도와 압축 계수를 나타낸 그래프이다.4 is a graph showing the temperature and compression coefficient of the supercritical carbon dioxide according to the embodiment of the present invention.
도 5는 종래의 실시예에 따른 헬륨의 온도와 압축 계수를 나타낸 그래프이다.5 is a graph showing the temperature and compression coefficient of helium according to the conventional embodiment.
도 6은 본 발명의 실시예에 다른 초임계 이산화탄소를 작동유체로 사용한 스털링 엔진과 기존의 헬륨을 작동유체로 사용한 스털링 엔진의 압력과 부피를 나타낸 도면이다.6 is a view showing the pressure and volume of a Stirling engine using a supercritical carbon dioxide as a working fluid and a conventional Stirling engine using helium as a working fluid according to an embodiment of the present invention.
도 7은 본 발명의 실시예에 따른 초임계 이산화탄소를 사용한 스털링 엔진의 압축에 드는 일과 팽창에 드는 일을 나타난 도면이다.7 is a view showing the work of compression and expansion of the Stirling engine using supercritical carbon dioxide according to an embodiment of the present invention.
도 8은 종래 기술에 따른 헬륨을 사용한 스털링 엔진의 압축에 드는 일과 팽창에 드는 일을 나타난 도면이다.8 is a view showing the work to the compression and expansion of the Stirling engine using helium according to the prior art.
명세서 전체에서, 어떤 부분이 어떤 구성요소를 "포함"한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성요소를 더 포함할 수 있는 것을 의미한다.Throughout the specification, when a part is said to "include" a certain component, it means that it can further include other components, without excluding other components unless specifically stated otherwise.
스털링 엔진은 실린더와 피스톤으로 이루어진 공간 내에 작동유체를 밀봉하고, 작동유체를 열교환을 통해 외부에서 가열 및 냉각시킴으로써 피스톤을 상하로 움직여 기계 에너지를 얻는 외연기관(External Combustion Engine)의 일종이다Stirling engine is an external combustion engine that seals the working fluid in a space consisting of a cylinder and a piston, and mechanically moves the piston up and down to obtain mechanical energy by heating and cooling the working fluid from the outside through heat exchange.
도 1은 본 발명의 실시예에 따른 스털링 엔진의 구성을 나타낸 도면이다.1 is a view showing the configuration of a Stirling engine according to an embodiment of the present invention.
본 발명의 실시예에 따른 스털링 엔진(100)은 제1 내부 공간(112)에서 왕복 운동하는 제1 피스톤(113)을 구비한 제1 실린더(111)와 제2 내부 공간(122)에서 왕복 운동하는 제2 피스톤(123)을 구비한 제2 실린더(121)와, 상기 제1 실린더(111) 또는 상기 제2 실린더(121)에 작동유체(101)를 충진시켜 밀봉한다.The Stirling engine 100 according to the exemplary embodiment of the present invention reciprocates in the first cylinder 111 and the second inner space 122 having the first piston 113 reciprocating in the first inner space 112. The second cylinder 121 having the second piston 123 and the first cylinder 111 or the second cylinder 121 are filled with the working fluid 101 to be sealed.
여기서, 제1 실린더(111)의 제1 내부 공간(112)은 작동유체(101)가 가열되는 공간으로 고온부(110)라 하고, 제2 실린더(121)의 제2 내부 공간(122)은 작동유체(101)가 냉각되는 공간으로 저온부(120)라 구분한다.Here, the first internal space 112 of the first cylinder 111 is a space where the working fluid 101 is heated, and is called a high temperature unit 110, and the second internal space 122 of the second cylinder 121 is operated. A space in which the fluid 101 is cooled is divided into a low temperature part 120.
고온부(110)는 제1 실린더(111)의 제1 내부 공간(112)에서 가열에 의해서 작동유체(101)가 가열되어 고온의 작동유체(101)가 충진되며, 저온부(120)는 제2 실린더(121)의 제2 내부 공간(122)에서 냉각에 의해서 작동유체(101)가 냉각되어 저온의 작동유체(101)가 충진된다.The high temperature unit 110 is the working fluid 101 is heated by the heating in the first internal space 112 of the first cylinder 111 is filled with the high temperature working fluid 101, the low temperature unit 120 is the second cylinder In the second internal space 122 of 121, the working fluid 101 is cooled by cooling to fill the low temperature working fluid 101.
제1 피스톤(113)은 제1 크랭크축(114)에 의해 플라이휠(102)과 연결되고, 제2 피스톤(123)은 제2 크랭크축(124)에 의해 플라이휠(102)과 연결된다.The first piston 113 is connected to the flywheel 102 by the first crankshaft 114, and the second piston 123 is connected to the flywheel 102 by the second crankshaft 124.
제1 내부 공간(112)을 형성하는 제1 실린더(111)의 외주면에는 작동유체(101)를 가열하는 외부열원(115)이 설치되며, 제2 내부 공간(122)을 형성하는 제2 실린더(121)의 외주면에는 작동유체(101)를 냉각시키는 외부냉원(125)이 설치된다.The outer circumferential surface of the first cylinder 111 forming the first inner space 112 is provided with an external heat source 115 for heating the working fluid 101, and the second cylinder forming the second inner space 122 ( On the outer circumferential surface of 121, an external cooling source 125 for cooling the working fluid 101 is installed.
제2 실린더(121)에 충진된 작동유체(101)는 외부냉원(125)에 저장된 액체 상태의 냉각매체에 전달되어 냉각된다.The working fluid 101 filled in the second cylinder 121 is delivered to the cooling medium in a liquid state stored in the external cooling source 125 and cooled.
본 발명의 실시예에 따른 스털링 엔진(100)은 두 개의 동력 피스톤인 제1 피스톤(113)과 제2 피스톤(123)으로 스털링 사이클을 구성한다.The Stirling engine 100 according to the embodiment of the present invention constitutes a Stirling cycle with two power pistons, the first piston 113 and the second piston 123.
스털링 엔진(100)은 제1 피스톤(113)과 제2 피스톤(123) 간의 동작의 차를 위상각이라 하며, 제1 피스톤(113)과 제2 피스톤(123)의 위상각을 이용하여 스털링 사이클에 필요한 압축, 팽창, 작동유체(101)의 이동을 구성한다.The Stirling engine 100 is referred to as the phase angle of the difference between the operation between the first piston 113 and the second piston 123, the Stirling cycle using the phase angle of the first piston 113 and the second piston 123 Configure the compression, expansion, and movement of the working fluid 101 required.
제1 실린더(111)와 제2 실린더(121)는 유로(103)에 의해 연통되어 제1 실린더(111)와 제2 실린더(121)의 용적 변화(압축과 팽창)에 따라 양쪽의 공간을 작동유체(101)가 이동하면서 상태 변화를 반복하는 스털링 사이클을 수행한다.The first cylinder 111 and the second cylinder 121 communicate with each other by the flow path 103 to operate both spaces according to the volume change (compression and expansion) of the first cylinder 111 and the second cylinder 121. As the fluid 101 moves, it performs a Stirling cycle that repeats the state change.
작동유체(101)는 팽창과 압축을 반복 수행하여 팽창과 압축 과정에서 고효율과 고출력이 가능하며, 초임계 유체를 사용한다.The working fluid 101 repeatedly performs expansion and compression to enable high efficiency and high power in the expansion and compression process, and uses a supercritical fluid.
초임계 유체는 일정한 고온과 고압의 한계를 넘어선 상태에 도달하여 액체와 기체를 구분할 수 없는 시점의 유체를 가리키는 것으로, 분자의 밀도는 액체에 가깝지만, 점성도는 낮아 기체에 가까운 성질을 가진다.Supercritical fluid refers to a fluid at a point in time at which the liquid and gas cannot be distinguished due to reaching a state exceeding a certain limit of high temperature and high pressure. The molecular density is close to liquid, but the viscosity is low and close to gas.
보통 온도 및 압력에서는 기체와 액체가 되는 물질도 임계점(Critical Point)이라고 불리는 일정한 고온 및 고압의 한계를 넘으면 증발 과정이 일어나지 않아서 기체와 액체의 구별을 할 수 없는 상태, 즉 임계상태가 되는데, 이 상태에 있는 물질을 초임계 유체라고 하는 것이다.At normal temperatures and pressures, gaseous and liquid materials also exceed the limits of certain high temperatures and pressures, called critical points, so that no evaporation occurs, resulting in a state in which gas and liquid are indistinguishable. A substance in a state is called a supercritical fluid.
초임계는 임계점보다 높은 온도와 압력에서 기체와 액체의 경계가 사라져 그 중간의 독특한 성질을 가지는 상태를 나타낸다.Supercritical is a state in which the boundary between a gas and a liquid disappears at temperatures and pressures above the critical point, with a characteristic in between.
초임계 유체는 임계점 이상의 온도와 압력에 놓인 물질 상태를 나타내며 기체의 확산성과 액체의 용해성이 있다.Supercritical fluids represent a state of matter at temperatures and pressures above the critical point, with gas diffusivity and liquid solubility.
초임계 유체는 물, 이산화탄소, 메탄, 에탄, 프로판, 에틸렌, 프로필렌, 메탄올 등이 있다.Supercritical fluids include water, carbon dioxide, methane, ethane, propane, ethylene, propylene, methanol and the like.
이러한 성질을 갖는 초임계 유체 중 임계온도가 상온에 비교적 가까운 것이 이산화탄소이며 본 발명에서는 초임계 유체의 한 실시형태로서, 초임계 이산화탄소를 이용한다. 이산화탄소의 임계점은 7.37MPa, 31.1℃로 알려져 있다.Among the supercritical fluids having this property, the critical temperature is relatively close to room temperature, and carbon dioxide is used in the present invention as one embodiment of the supercritical fluid. The critical point of carbon dioxide is known as 7.37 MPa, 31.1 ° C.
이산화탄소는 임계 온도 및 임계 압력 이상의 조건에서 초임계 이산화탄소가 된다. 초임계 이산화탄소는 밀도가 높은 특성을 가짐과 동시에 점도가 낮은 특성을 갖는다. 즉, 초임계 이산화탄소는 밀도가 높은 기체 특성을 갖는다.Carbon dioxide becomes supercritical carbon dioxide at conditions above the critical temperature and the critical pressure. Supercritical carbon dioxide has high density and low viscosity. That is, supercritical carbon dioxide has a dense gas characteristic.
초임계 이산화탄소는 액체처럼 밀도와 열전도율이 높지만 기체와 같이 팽창하여 공간을 차지하고 점성이 낮으며 임계점 부근에서 밀도, 열용량 등의 물성이 급격하게 변하는 성질이 있다.Supercritical carbon dioxide has high density and thermal conductivity like liquids, but expands like gas, occupies space, has low viscosity, and has properties such as density and heat capacity that change rapidly near the critical point.
특히, 초임계 이산화탄소는 임계점 부근에서 압축할 때 통상의 기체를 압축할 때에 비하여 더 낮은 일과 더 높은 효율로 유체를 압축할 수 있는 특징을 가진다.In particular, supercritical carbon dioxide has the feature of compressing fluids at lower work and with higher efficiency than when compressing near conventional critical gases.
이하 도 2를 참조하여 본 발명의 스털링 엔진의 스털링 사이클을 상세하게 설명한다.Hereinafter, the Stirling cycle of the Stirling engine of the present invention will be described in detail with reference to FIG. 2.
도 2는 본 발명의 실시예에 따른 스털링 엔진의 스털링 사이클 과정을 나타낸 도면이다.2 is a view showing a Stirling cycle process of the Stirling engine according to an embodiment of the present invention.
본 발명은 스털링 엔진(100)의 낮은 크기 대비 출력비를 해결하기 위해서 냉각 과정과 압축 과정의 온도 및 압력 조건이 임계점 부근의 초임계 이산화탄소를 작동유체(101)로 설정한 스털링 엔진(100)을 제시한다.The present invention proposes a Stirling engine 100 in which supercritical carbon dioxide near a critical point is set as a working fluid 101 in a cooling process and a compression process in order to solve a low power-to-output ratio of the Stirling engine 100. do.
본 발명의 스털링 엔진(100)은 작동유체(101)를 임계점 부근의 초임계 이산화탄소로 설정한 경우 스털링 엔진(100)을 작동시키는 최소 7 내지 8Mpa, 최대 20 내지 25Mpa의 압력 범위와, 최소 섭씨 25 내지 35도, 최대 섭씨 600 내지 700도의 온도 범위에서 더 높은 부피 대비 출력 비와 열효율을 얻을 수 있다.The Stirling engine 100 of the present invention has a pressure range of at least 7 to 8 MPa, a maximum of 20 to 25 MPa, and a minimum of 25 degrees Celsius for operating the Stirling engine 100 when the working fluid 101 is set to supercritical carbon dioxide near a critical point. Higher volume-to-volume power ratios and thermal efficiencies can be achieved in the temperature range of from 35 degrees to 35 degrees Celsius, up to 600 degrees Celsius.
본 발명의 스털링 엔진(100)은 팽창 영역, 가열 영역, 냉각 영역, 압축 영역의 순서를 반복하면서 스털링 사이클을 수행한다.The Stirling engine 100 of the present invention performs the Stirling cycle while repeating the sequence of the expansion zone, the heating zone, the cooling zone, and the compression zone.
도 2의 (a), (b)에 도시된 바와 같이, 제1 실린더(111)는 외부열원(115)에 의해 열이 가해져 고온부(110)가 팽창하여 제1 피스톤(113)을 밀어 올린다(팽창 영역).As shown in (a) and (b) of FIG. 2, the first cylinder 111 is heated by an external heat source 115 so that the high temperature unit 110 expands and pushes up the first piston 113 ( Expansion zone).
저온부(120)의 제2 피스톤(123)은 제1 피스톤(113)에 결합되어 있으므로 제1 피스톤(113)이 밀어 올려지면 함께 밀어 올려져 저온부(120)를 팽창시킨다.Since the second piston 123 of the low temperature part 120 is coupled to the first piston 113, when the first piston 113 is pushed up, the second piston 123 is pushed up together to expand the low temperature part 120.
도 2의 (c)에 도시된 바와 같이, 고온부(110)는 제1 피스톤(113)이 다시 압축되면 가열된 작동유체(101)가 유로(103)를 따라 제2 실린더(121)의 제2 내부 공간(122)으로 이동된다(가열 영역).As shown in FIG. 2 (c), when the first piston 113 is compressed again, the high temperature part 110 has the heated working fluid 101 along the flow path 103 in the second of the second cylinder 121. It is moved to the interior space 122 (heating area).
이어서, 도 2의 (d)에 도시된 바와 같이, 저온부(120)는 제2 실린더(121)의 제2 내부 공간(122)으로 유입된 작동유체(101)를 외부냉원(125)에 의해 냉각시킨다(냉각 영역).Subsequently, as shown in FIG. 2D, the low temperature part 120 cools the working fluid 101 introduced into the second inner space 122 of the second cylinder 121 by the external cooling source 125. (Cooling zone).
도 2의 (a)에 도시된 바와 같이, 저온부(120)는 냉각이 진행되면서 제2 피스톤(123)이 작동유체(101)를 압축하게 되고, 냉각된 작동유체(101)가 유로(103)를 따라 제1 실린더(111)의 제1 내부 공간(112)으로 이동된다(압축 영역).As shown in FIG. 2A, as the cooling unit 120 cools, the second piston 123 compresses the working fluid 101, and the cooled working fluid 101 passes through the flow path 103. Is moved to the first internal space 112 of the first cylinder 111 along the (compression area).
제2 실린더(121)는 외부냉원(125)에 의해 냉각이 진행되고 제2 내부 공간(122)의 충진된 작동유체(101)가 압축되면 한 사이클이 마무리된다.When the second cylinder 121 is cooled by the external cooling source 125 and the filled working fluid 101 of the second internal space 122 is compressed, one cycle is completed.
제2 실린더(121)의 압축된 작동유체(101)는 유로(103)를 통해 제1 실린더(111)의 제1 내부 공간(112)으로 이동한 후 외부열원(115)에 의해 열이 가해져 다음 스털링 사이클이 진행된다.The compressed working fluid 101 of the second cylinder 121 moves to the first inner space 112 of the first cylinder 111 through the flow path 103, and then heat is applied by the external heat source 115. The sterling cycle is in progress.
스털링 엔진(100)은 고온부(110)와 저온부(120)가 일정한 위상차를 가지고 회전 운동하는 플라이휠(102)과 연결되어 있으며, 플라이휠(102)로부터 전달받은 회전력을 이용하여 제1 피스톤(113)과 제2 피스톤(123)의 상승과 하강을 반복하면서 팽창과 압축 과정을 수행한다.The Stirling engine 100 is connected to the flywheel 102 in which the high temperature part 110 and the low temperature part 120 rotate in a constant phase difference, and use the rotational force transmitted from the flywheel 102 to the first piston 113. The expansion and compression process is performed while repeatedly raising and lowering the second piston 123.
스털링 엔진(100)은 압축 행정 시 임계점 부근에서 가장 큰 이득을 취할 수 있기 때문에 초임계 이산화탄소가 압축 행정 시 임계점 부근에서 작동하도록 설계한다. 좀 더 상세한 내용은 이하의 도 6 및 도 7에서 설명한다.The Stirling engine 100 is designed to operate near the critical point in the compression stroke because it can take the greatest benefit near the critical point in the compression stroke. More details will be described with reference to FIGS. 6 and 7.
도 3은 본 발명의 실시예에 따른 온도와 압력에 따른 초임계 이산화탄소의 밀도를 나타낸 그래프이고, 도 4는 본 발명의 실시예에 따른 초임계 이산화탄소의 온도와 압축 계수를 나타낸 그래프이고, 도 5는 종래의 실시예에 따른 헬륨의 온도와 압축 계수를 나타낸 그래프이다.3 is a graph showing the density of supercritical carbon dioxide according to temperature and pressure according to an embodiment of the present invention, Figure 4 is a graph showing the temperature and compression coefficient of supercritical carbon dioxide according to an embodiment of the present invention, Figure 5 Is a graph showing the temperature and compression coefficient of helium according to the conventional embodiment.
임계점 부근에서 초임계 유체는 비선형적인 물성치를 보이며, 도 3은 초임계 이산화탄소의 임계점(섭씨 31.04도, 7380kPa) 근방에서 온도와 압력에 따른 밀도를 나타낸 것이다.In the vicinity of the critical point, the supercritical fluid shows nonlinear properties, and FIG. 3 shows the density with temperature and pressure near the critical point of the supercritical carbon dioxide (31.04 degrees Celsius, 7380 kPa).
초임계 유체의 비선형적으로 급격히 변하는 물성치는 압축 계수(Compressibility Factor)가 포함된다.Nonlinearly rapidly changing physical properties of the supercritical fluid include a compression factor.
압축 계수는 실제 기체가 이상 기체에 비해 얼마나 다른 압축 성질을 가지는지 보여주는 지표로서 다음의 [수학식 1]과 같이 정의된다.Compression coefficient is an index showing how the actual gas has a different compression properties than the ideal gas is defined by the following equation (1).
Figure PCTKR2016014222-appb-M000001
Figure PCTKR2016014222-appb-M000001
여기서, p는 압력, V는 부피, n은 몰수, R은 기체상수, T는 온도를 나타낸다.Where p is pressure, V is volume, n is molar number, R is gas constant, and T is temperature.
이상 기체의 압축 계수는 1이며, 압축 계수가 크다는 것은 실제 기체의 분자간 반발력이 이상 기체에 비해 우세함을 나타내고, 압축 계수가 작다는 것은 분자간 인력이 우세함을 나타낸다.The compression coefficient of the ideal gas is 1, and a large compression coefficient indicates that the intermolecular repulsive force of the actual gas is superior to the ideal gas, and a small compression coefficient indicates that the intermolecular attraction is superior.
따라서, 반발력이 우세하다는 것은 압축을 시키는데 더 큰 일이 들어가며, 인력이 우세하다는 것은 압축을 시키는데 더 작은 일이 들어간다는 것이다.Thus, the preponderance of repulsive force means greater work for compression, and the predominance of gravitational force means less work for compression.
본 발명은 초임계 이산화탄소를 작동유체(101)로 사용하여 임계점 부근의 급격한 물성치 변화에서 취할 수 있는 압축 일의 감소를 스털링 엔진(100)에 적용하여 효율을 높이고자 한다.In the present invention, the supercritical carbon dioxide is used as the working fluid 101 to increase the efficiency by applying a reduction in compression work that can be taken in a sudden change in physical properties near the critical point to the Stirling engine 100.
도 4에 도시된 바와 같이, 초임계 이산화탄소는 임계점 부근에서 압축 계수가 작으며 이에 따라 압축에 작은 일이 들어가므로 큰 이득을 얻을 수 있다.As shown in FIG. 4, the supercritical carbon dioxide has a small compression coefficient near the critical point, and thus, a small amount of work may be achieved in compression, thereby obtaining a large gain.
도 5에 도시된 바와 같이, 헬륨은 압축 계수가 1 이상이므로 분자간 반발력이 이상 기체에 비해 우세함을 볼 수 있다.As shown in Figure 5, helium has a compression coefficient of 1 or more, it can be seen that the intermolecular repulsive force is superior to the ideal gas.
본 발명의 작동유체(101)는 임계점 부근에서 압축 효과를 이용하고자 하므로 임계점이 상온에서 크게 벗어나지 않으며 압력이 높지 않은 유체를 선택한다.Since the working fluid 101 of the present invention intends to use the compression effect near the critical point, the critical point does not deviate significantly from room temperature and selects a fluid whose pressure is not high.
하기의 [표 1]에 도시된 바와 같이, 이렇게 선택된 작동유체(101) 중 독성이나 폭발성이 없으면서 가장 저렴한 유체이며, 임계점 부근의 급격한 물성치 변화를 보이는 물질인 초임계 이산화탄소를 선택한 것이다.As shown in Table 1 below, supercritical carbon dioxide is selected among the selected working fluids 101, which is the cheapest fluid without toxicity or explosiveness and shows a sudden change in physical properties near the critical point.
Figure PCTKR2016014222-appb-T000001
Figure PCTKR2016014222-appb-T000001
도 6은 본 발명의 실시예에 다른 초임계 이산화탄소를 작동유체로 사용한 스털링 엔진과 기존의 헬륨을 작동유체로 사용한 스털링 엔진의 압력과 부피를 나타낸 도면이고, 도 7은 본 발명의 실시예에 따른 초임계 이산화탄소를 사용한 스털링 엔진의 압축에 드는 일과 팽창에 드는 일을 나타난 도면이고, 도 8은 종래 기술에 따른 헬륨을 사용한 스털링 엔진의 압축에 드는 일과 팽창에 드는 일을 나타난 도면이다.6 is a view showing the pressure and volume of a Stirling engine using another supercritical carbon dioxide as a working fluid and a conventional Stirling engine using helium as a working fluid, according to an embodiment of the present invention, and FIG. FIG. 8 is a diagram showing the work of compression and expansion of the Stirling engine using supercritical carbon dioxide, and FIG. 8 is a view of the work of compression and expansion of the Stirling engine using helium according to the prior art.
도 6에 도시된 바와 같이, 본 발명의 스털링 엔진(100)은 초임계 이산화탄소의 임계점 부근인 32℃에서 작동하는 저온부(120)와, 상기 저온부(120)보다 높은 온도를 가지는 고온부(110) 사이에서 작동하며 피스톤 행정 내에 엔진의 최저 압력이 초임계 이산화탄소의 임계점인 7.37MPa 이상이 되도록 설계한다.As shown in FIG. 6, the Stirling engine 100 of the present invention includes a low temperature unit 120 operating at 32 ° C. near a critical point of supercritical carbon dioxide, and a high temperature unit 110 having a higher temperature than the low temperature unit 120. The minimum pressure of the engine within the piston stroke is designed to be at or above 7.37 MPa, the critical point of supercritical carbon dioxide.
본 발명의 스털링 엔진(100)은 냉각 영역과 압축 영역이 초임계 이산화탄소의 임계점 부근의 환경에서 작동하도록 설계되어 임계점 부근의 큰 팽창비와 높은 압축 효율, 낮은 압축 일을 구현할 수 있다. Stirling engine 100 of the present invention is designed so that the cooling zone and the compression zone to operate in the environment near the critical point of the supercritical carbon dioxide can realize a large expansion ratio, high compression efficiency, low compression work near the critical point.
도 6과 같이, 본 발명의 스털링 엔진(100)은 기존의 고압 헬륨을 작동유체로 하는 스털링 엔진에 비해서 같은 부피에서 1.5배 이상 더 높은 효율과 출력을 갖을 수 있다.As shown in FIG. 6, the Stirling engine 100 of the present invention may have efficiency and output more than 1.5 times higher in the same volume than a Stirling engine using a high pressure helium as a working fluid.
예를 들어, 위상도 90도, 저온부(120)의 용적 160ml, 고온부(110)의 용적 80ml, 저온부(120)를 섭씨 32℃, 고온부(110)를 섭씨 650℃에서 최고 압력 23MPa 조건에서 설계할 때, 고압 헬륨의 스털링 엔진은 평균 150.9 기압 조건에서 25.0%의 효율을 보이며 피스톤 행정 당 797.2J의 일을 한다. 같은 조건에서 초임계 이산화탄소를 작동유체(101)로 설정한 스털링 엔진(100)은 저온부(120)에서 임계점 부근인 32℃, 7.49MPa를 유지하여 작동하며 평균 109.1 기압에서 39.6%의 효율과 피스톤 행정 당 1299.3J의 일을 한다.For example, a phase diagram of 90 degrees, a volume of 160 ml of the low temperature part 120, a volume of 80 ml of the high temperature part 110, a low temperature part 120 at 32 ° C., and the high temperature part 110 at 650 ° C. at a maximum pressure of 23 MPa can be designed. When a high-pressure helium sterling engine achieves an efficiency of 25.0% at an average of 150.9 atmospheres, it does 797.2J per piston stroke. Under the same conditions, the Stirling engine 100 with supercritical carbon dioxide set as the working fluid 101 operates at 32 ° C. and 7.49 MPa near the critical point in the low temperature section 120, and has an efficiency of 39.6% and a piston stroke at an average pressure of 109.1 atm. Doing 1299.3J per day.
스털링 엔진(100)은 상기한 작동 조건에서 작동유체(101)를 초임계 이산화탄소로 대체한 경우 기존의 고압 헬륨에 비해 더 낮은 평균 압력으로 작동하며 동일한 부피에서 작동시켰을 때 1.58배의 효율과 1.63배의 일을 낼 수 있다.The Stirling engine 100 operates at a lower average pressure than conventional high pressure helium when the working fluid 101 is replaced with supercritical carbon dioxide under the above operating conditions, and is 1.58 times more efficient and 1.63 times more efficient when operated in the same volume. Can work.
본 발명의 스털링 엔진(100)은 작동유체(101)를 초임계 이산화탄소로 사용했을 때 도 6의 압력 부피 그래프에서 하단부(104)가 냉각 영역과 압축 영역이고, 상단부(105)가 팽창 영역과 가열 영역이다.In the Stirling engine 100 of the present invention, when the working fluid 101 is used as supercritical carbon dioxide, the lower end 104 is a cooling zone and a compression zone, and the upper end 105 is heated with an expansion zone in the pressure volume graph of FIG. 6. Area.
도 6에 도시된 바와 같이, 고압 헬륨을 작동유체로 적용한 스털링 엔진과 초임계 이산화탄소를 작동유체(101)로 적용한 스털링 엔진(100)의 압력 부피 그래프를 비교해 보면 상단부(105)인 팽창 영역과 가열 영역에서 적은 퍼포먼스를 보이지만, 하단부(104)인 냉각 영역과 압축 영역에서 휠씬 적은 에너지가 들어 전체적인 일을 증가시킨다.As shown in FIG. 6, when comparing a pressure volume graph of a Stirling engine to which high pressure helium is applied as the working fluid and a Stirling engine 100 to which supercritical carbon dioxide is applied to the working fluid 101, the expansion zone and the heating area of the upper part 105 are heated. There is less performance in the area, but much less energy in the cooling and compression areas at the lower end 104 increases the overall work.
도 7과 도 8의 압력 부피 그래프는 압축에 드는 일(A), 사이클 당 일(B), A+B를 합치면 팽창에 드는 일을 나타낸다.The pressure-volume graphs of FIGS. 7 and 8 show the work taken to expand by combining work (A), work per cycle (B), and A + B for compression.
도 7 및 도 8에 도시된 바와 같이, 고압 헬륨을 작동유체로 적용한 스털링 엔진과 초임계 이산화탄소를 작동유체(101)로 적용한 스털링 엔진(100)의 압력 부피 그래프를 비교해 보면 팽창에 드는 일(A+B)은 유사하여 이득에 별 차이가 없으나 압축에 드는 일(A)은 임계점 부근에서 휠씬 적은 에너지가 들어 압도적인 이득을 얻기 때문에 전체적인 일이 증가된다. 이는 압축에 드는 일이 임계점 부근에서 적어지는 초임계 이산화탄소의 특성 때문이다.As shown in FIG. 7 and FIG. 8, when comparing the pressure volume graph of the Stirling engine to which the high pressure helium is applied as the working fluid and the Stirling engine 100 to which the supercritical carbon dioxide is applied to the working fluid 101 (A) + B) is similar, and there is no difference in gain, but the work of compression (A) increases the overall work because it gains an overwhelming gain with much less energy near the critical point. This is due to the nature of supercritical carbon dioxide, which requires less compression near the critical point.
임계점 부근은 초임계 이산화탄소의 불연속적인 물성치 변화가 관측되는 지점을 나타낸다. 따라서, 본 발명의 스털링 엔진(100)은 초임계 이산화탄소가 압축 행정과 냉각 행정 시 초임계 유체의 불연속적인 물성치 변화가 관측되는 지점인 임계점 부근에서 작동하도록 설계하는 것이다.The vicinity of the critical point represents the point where discontinuous changes in the physical properties of supercritical carbon dioxide are observed. Therefore, the Stirling engine 100 of the present invention is designed to operate near the critical point where the supercritical carbon dioxide is observed at the discontinuous change of physical properties of the supercritical fluid during the compression stroke and the cooling stroke.
이상에서 설명한 본 발명의 실시예는 장치 및/또는 방법을 통해서만 구현이 되는 것은 아니며, 본 발명의 실시예의 구성에 대응하는 기능을 실현하기 위한 프로그램, 그 프로그램이 기록된 기록 매체 등을 통해 구현될 수도 있으며, 이러한 구현은 앞서 설명한 실시예의 기재로부터 본 발명이 속하는 기술분야의 전문가라면 쉽게 구현할 수 있는 것이다.The embodiments of the present invention described above are not implemented only by the apparatus and / or method, but may be implemented through a program for realizing a function corresponding to the configuration of the embodiments of the present invention, a recording medium on which the program is recorded, and the like. Such implementations may be readily implemented by those skilled in the art from the description of the above-described embodiments.
이상에서 본 발명의 실시예에 대하여 상세하게 설명하였지만 본 발명의 권리범위는 이에 한정되는 것은 아니고 다음의 청구범위에서 정의하고 있는 본 발명의 기본 개념을 이용한 당업자의 여러 변형 및 개량 형태 또한 본 발명의 권리범위에 속하는 것이다.Although the embodiments of the present invention have been described in detail above, the scope of the present invention is not limited thereto, and various modifications and improvements of those skilled in the art using the basic concepts of the present invention defined in the following claims are also provided. It belongs to the scope of rights.
본 발명은 초임계 이산화탄소를 작동유체로 사용하여 임계점 부근의 급격한 물성치 변화에서 취할 수 있는 압축 일의 감소를 스털링 엔진에 적용하여 효율을 높이고자 한다.The present invention aims to increase efficiency by applying supercritical carbon dioxide as a working fluid to the Stirling engine by applying a reduction in the compression work that can be taken in the rapid change in physical properties near the critical point.

Claims (6)

  1. 작동유체의 가열 및 냉각을 통해 동력을 생성하는 스털링 엔진에 있어서,In a Stirling engine that generates power through heating and cooling of working fluid,
    피스톤을 왕복 운동하여 상기 작동유체를 압축과 팽창시키고, 상기 작동유체를 가열하는 고온부와, 상기 작동유체를 냉각시키는 저온부를 구비한 하나 이상의 실린더를 포함하며, 상기 작동유체를 초임계 유체로 충진하고, 상기 초임계 유체가 압축 행정 시 상기 초임계 유체의 불연속적인 물성치 변화가 관측되는 지점인 임계점 부근에서 작동하는 것을 특징으로 하는 스털링 엔진.Reciprocating a piston to compress and expand the working fluid, and including at least one cylinder having a high temperature portion for heating the working fluid and a low temperature portion for cooling the working fluid, and filling the working fluid with a supercritical fluid. And the supercritical fluid operates near a critical point at which a discontinuous change in physical properties of said supercritical fluid is observed during the compression stroke.
  2. 제1항에 있어서,The method of claim 1,
    상기 초임계 유체를 상기 임계점 부근에서 작동하는 경우, 최소 7 내지 8MPa, 최대 20 내지 25MPa의 압력 범위와, 최소 25 내지 35도, 최대 600 내지 700도의 온도 범위에서 스털링 사이클을 수행하는 것을 특징으로 하는 스털링 엔진.When the supercritical fluid is operated near the critical point, a sterling cycle is performed in a pressure range of at least 7 to 8 MPa, at a maximum of 20 to 25 MPa, and at a temperature of at least 25 to 35 degrees and at a maximum of 600 to 700 degrees. Stirling Engine.
  3. 제1항에 있어서,The method of claim 1,
    상기 초임계 유체를 임계점 부근에서 작동하는 경우, 상기 저온부를 25 내지 35도의 온도 범위와 7 내지 8MPa의 압력 범위에서 작동하는 스털링 사이클을 수행하는 것을 특징으로 하는 스털링 엔진.Stirling engine, characterized in that when operating the supercritical fluid near a critical point, the low temperature section performs a Stirling cycle operating in a temperature range of 25 to 35 degrees and a pressure range of 7 to 8 MPa.
  4. 제1항에 있어서,The method of claim 1,
    상기 작동유체는 초임계 이산화탄소인 것을 특징으로 하는 스털링 엔진.Stirling engine, characterized in that the working fluid is supercritical carbon dioxide.
  5. 제1항에 있어서,The method of claim 1,
    상기 각각의 실린더는 외주면에 상기 작동유체를 가열하는 외부열원이 설치되고, 상기 제1 내부 공간에서 왕복 운동하는 제1 피스톤을 구비한 제1 실린더와, 외주면에 상기 작동유체를 냉각시키는 외부냉원이 설치되고, 제2 내부 공간에서 왕복 운동하는 제2 피스톤을 구비한 제2 실린더를 포함하고, 상기 제1 실린더는 상기 작동유체를 가열하는 공간으로 고온부와, 상기 제2 실린더는 상기 작동유체를 냉각되는 공간으로 저온부로 설정하는 것을 특징으로 하는 스털링 엔진.Each cylinder has an external heat source for heating the working fluid on an outer circumferential surface thereof, a first cylinder having a first piston reciprocating in the first inner space, and an external cooling source for cooling the working fluid on an outer circumferential surface thereof. And a second cylinder having a second piston reciprocating in a second internal space, wherein the first cylinder is a space for heating the working fluid, and the second cylinder cools the working fluid. Stirling engine, characterized in that the setting to the low temperature portion.
  6. 제1항에 있어서,The method of claim 1,
    상기 초임계 유체는 상기 작동유체를 압축시키는 압축 행정과, 상기 작동유체를 냉각시키는 냉각 행정을 수행하는 경우, 상기 임계점 부근에서 작동하는 것을 특징으로 하는 스털링 엔진.And said supercritical fluid operates near said critical point when performing a compression stroke for compressing said working fluid and a cooling stroke for cooling said working fluid.
PCT/KR2016/014222 2016-09-29 2016-12-06 Stirling engine using supercritical fluid WO2018062627A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2016-0125837 2016-09-29
KR1020160125837A KR101899466B1 (en) 2016-09-29 2016-09-29 Stirling Engine Using Supercritical Fluids

Publications (1)

Publication Number Publication Date
WO2018062627A1 true WO2018062627A1 (en) 2018-04-05

Family

ID=61760001

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/014222 WO2018062627A1 (en) 2016-09-29 2016-12-06 Stirling engine using supercritical fluid

Country Status (2)

Country Link
KR (1) KR101899466B1 (en)
WO (1) WO2018062627A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3486473A1 (en) * 2017-11-21 2019-05-22 Thomas Koch Method for using small temperature differences for operating heat engines designed for the conversion of thermal energy into mechanical energy
US10975697B2 (en) 2019-09-05 2021-04-13 Karl Peter Mulligan Systems and methods for a piston engine including a recirculating system using supercritical carbon dioxide
WO2022194877A1 (en) 2021-03-17 2022-09-22 Cixten Cartridge for a heat engine having a thermodynamic cycle and associated heat engine
CN115640659A (en) * 2022-12-08 2023-01-24 中国核动力研究设计院 Design method of transcritical carbon dioxide centrifugal compressor

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100137721A (en) * 2009-06-23 2010-12-31 재단법인 포항산업과학연구원 Stirling engine
KR20110028429A (en) * 2008-06-12 2011-03-18 베르카나, 엘엘씨 A stirling engine
KR20120080522A (en) * 2011-01-07 2012-07-17 신국선 Heat engine system based on stirling cycle
CN102797589A (en) * 2012-09-05 2012-11-28 哈尔滨翔凯科技发展有限公司 Supercritical fluid-type external-combustion heat engine
KR20120131007A (en) * 2011-05-24 2012-12-04 한국과학기술연구원 Stirling engine of which the heat-exchange parts are improved

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110028429A (en) * 2008-06-12 2011-03-18 베르카나, 엘엘씨 A stirling engine
KR20100137721A (en) * 2009-06-23 2010-12-31 재단법인 포항산업과학연구원 Stirling engine
KR20120080522A (en) * 2011-01-07 2012-07-17 신국선 Heat engine system based on stirling cycle
KR20120131007A (en) * 2011-05-24 2012-12-04 한국과학기술연구원 Stirling engine of which the heat-exchange parts are improved
CN102797589A (en) * 2012-09-05 2012-11-28 哈尔滨翔凯科技发展有限公司 Supercritical fluid-type external-combustion heat engine

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3486473A1 (en) * 2017-11-21 2019-05-22 Thomas Koch Method for using small temperature differences for operating heat engines designed for the conversion of thermal energy into mechanical energy
US10975697B2 (en) 2019-09-05 2021-04-13 Karl Peter Mulligan Systems and methods for a piston engine including a recirculating system using supercritical carbon dioxide
WO2022194877A1 (en) 2021-03-17 2022-09-22 Cixten Cartridge for a heat engine having a thermodynamic cycle and associated heat engine
FR3120916A1 (en) 2021-03-17 2022-09-23 Pierre-Yves Berthelemy Cartridge for thermal machine with thermodynamic cycle and module for associated thermal machine
CN115640659A (en) * 2022-12-08 2023-01-24 中国核动力研究设计院 Design method of transcritical carbon dioxide centrifugal compressor
CN115640659B (en) * 2022-12-08 2023-04-07 中国核动力研究设计院 Design method of transcritical carbon dioxide centrifugal compressor

Also Published As

Publication number Publication date
KR20180035571A (en) 2018-04-06
KR101899466B1 (en) 2018-09-18

Similar Documents

Publication Publication Date Title
WO2018062627A1 (en) Stirling engine using supercritical fluid
US6568169B2 (en) Fluidic-piston engine
KR101766270B1 (en) A heat engine
US20110030366A1 (en) Stirling engine
RU2673954C2 (en) Reciprocating motor-compressor with integrated stirling engine
JP2023082139A (en) Efficient heat recovery engine
KR20130040841A (en) Thermodynamic cycle and heat engine
CN105626304A (en) Gas axial transmission alpha type four-cylinder double-acting stirling engine
JP2017505876A (en) Compressor train with Stirling engine
US3971230A (en) Stirling cycle engine and refrigeration systems
JP4848058B1 (en) Stirling engine
US10570851B2 (en) Heat engine
JP2013024236A (en) Stirling engine
KR102394987B1 (en) Variable volume transfer shuttle capsule and valve mechanism
CN107636261A (en) Supercritical steam cycle method including isothermal expansion and the free-piston heat engine for including the fluid pressure type Energy extraction for the round-robin method
RU2565933C1 (en) Closed-cycle piston engine
EP3587782A1 (en) Stirling engine
WO2024056007A1 (en) Heat regenerator, and heat engine having heat regenerator
WO2012093786A2 (en) Stirling cycle-based heat engine system
CN203308604U (en) Thermodynamic engine
US20100269502A1 (en) External combustion engine
CN101776025B (en) High-efficiency high temperature type internal-external mixed combustion engine
JPS58202350A (en) Stirling engine
CN115773189A (en) Double-acting Stirling engine piston sealing device
CN117869104A (en) Novel single cylinder body Stirling engine

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16917828

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16917828

Country of ref document: EP

Kind code of ref document: A1