WO2012093786A2 - Stirling cycle-based heat engine system - Google Patents

Stirling cycle-based heat engine system Download PDF

Info

Publication number
WO2012093786A2
WO2012093786A2 PCT/KR2011/009830 KR2011009830W WO2012093786A2 WO 2012093786 A2 WO2012093786 A2 WO 2012093786A2 KR 2011009830 W KR2011009830 W KR 2011009830W WO 2012093786 A2 WO2012093786 A2 WO 2012093786A2
Authority
WO
WIPO (PCT)
Prior art keywords
internal space
heat
heat medium
pumping unit
connection line
Prior art date
Application number
PCT/KR2011/009830
Other languages
French (fr)
Korean (ko)
Other versions
WO2012093786A3 (en
Inventor
신국선
Original Assignee
Shin Gook-Sun
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Gook-Sun filed Critical Shin Gook-Sun
Publication of WO2012093786A2 publication Critical patent/WO2012093786A2/en
Publication of WO2012093786A3 publication Critical patent/WO2012093786A3/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02GHOT GAS OR COMBUSTION-PRODUCT POSITIVE-DISPLACEMENT ENGINE PLANTS; USE OF WASTE HEAT OF COMBUSTION ENGINES; NOT OTHERWISE PROVIDED FOR
    • F02G1/00Hot gas positive-displacement engine plants
    • F02G1/04Hot gas positive-displacement engine plants of closed-cycle type
    • F02G1/043Hot gas positive-displacement engine plants of closed-cycle type the engine being operated by expansion and contraction of a mass of working gas which is heated and cooled in one of a plurality of constantly communicating expansible chambers, e.g. Stirling cycle type engines

Definitions

  • the present invention relates to a heat engine system based on the Stirling cycle, and more particularly, to a problem of a Stirling engine capable of applying various energies such as liquid fuel, gas fuel, solid fuel, waste heat of a power plant and a plant, geothermal heat and solar power as a power source.
  • the present invention relates to a Stirling cycle-based heat engine system that improves the efficiency of freely obtaining abundant heat sources and facilitates operation at relatively low temperatures.
  • the present inventors have become more practical due to the rise of the high oil price with the rise of environmental pollution problems, and in the utilization of new and renewable energy, not only can use gas fuel and solid fuel with liquid fuel of petroleum, but also power plants and Interested in the Stirling Engine, which is expected to be able to apply various energy sources such as waste heat, geothermal heat and solar heat of the plant.
  • 1 is a view for explaining a conventional Stirling engine.
  • a Stirling engine seals a working gas such as hydrogen or helium in a space consisting of a cylinder and a piston, heats it outside of the heating unit, and cools it outside of the cooling unit to move the piston up and down to obtain mechanical energy.
  • External Combustion Engine a working gas such as hydrogen or helium in a space consisting of a cylinder and a piston
  • US Patent Publication No. 4,044,559 "ROTARY CLOSED SERIES CYCLE ENGINE SYSTEM” is to allow the rotor (vane) is installed around the drive shaft (eccentric) in the housing eccentrically coupled, this housing The hot side manifold and the cool side manifold are coupled to the heated gas into the housing through the heated side manifold, and the rotor is rotated while pushing the vanes through the cooling side manifold.
  • a technique for rotating the drive shaft engaged with the rotor by an externally flowing operation is proposed.
  • the present invention has been proposed to solve the above problems of the prior art, and a new type of the stirling cycle-based heat engine system according to the prior art to remove the bottleneck of the heat exchange has a new type to provide a stable operation It is an object to provide a heat engine system based on a Stirling cycle.
  • the present invention provides a new technology that enables the engine to operate with the application of either component of cooling or heating by improving the prior art Stirling cycle based heat engine system which requires components for cooling and heating. It is an object of the present invention to provide a heat engine system based on a stirling cycle.
  • the Stirling cycle-based heat engine system has a cavity 21 of a predetermined volume (A1) in which the heat medium is accommodated, and in the inner space 21 A pumping unit 20 operated by inflow and outflow heat medium;
  • An internal space 31 of the predetermined volume A2 in which the heat medium is accommodated is formed larger than the volume A1 of the internal space 21 of the pumping unit 20, and flows in and out of the internal space 31.
  • the internal space 21 of the pumping unit 20 and the internal space 31 of the driving unit 30 communicate with each other so that the internal space 21 of the pumping unit 20 and the internal space of the driving unit 30 ( 31) comprising a connection line 50 which enables flow of the heat medium to each other;
  • the flow of heat medium in one of the inner space 21 of the pumping unit 20 and the inner space 31 of the driving unit 30 is formed by a heat source applied to the connection line 50 from the outside. After the interlocking operation, the heat medium flows into the inner space (the one of the internal space 21 of the pumping unit 20 and the internal space 31 of the driving unit 30) into which the heat medium is introduced.
  • the external heat medium flows into the internal space (the remaining one of the internal space 21 of the pumping unit 20 and the internal space 31 of the driving unit 30) in which the heat medium flows out, thereby acting from the outside.
  • the heat medium is formed by the heat source to enable the operation of the pumping unit 20 and the driving unit 30.
  • the pumping unit 20 and the driving unit 30 are applied to a cylinder type, so that the pumping unit 20 has an internal space 21 of the pumping unit 20.
  • a first cylinder piston 24 installed to reciprocate in the first cylinder case 22 forming a), wherein the drive unit 30 forms an internal space 31 of the drive unit 30.
  • a second cylinder piston 34 which is installed to reciprocate in the second cylinder case 32, and is installed to be connected between the first and second cylinder pistons 24 and 34. It may be further provided with a link unit 40 to allow the two-cylinder pistons 24 and 34 to operate synchronously.
  • connection line 50 is provided with a first flow control valve 52 at a side connected to the inner space 21 of the first cylinder case 22.
  • a second flow control valve 54 is installed at a side connected to the internal space 31 of the second cylinder case 32, a first connection line 50 'on which a heat source for heating is applied, and the second
  • the third flow control valve 56 is installed on the side of the first cylinder case 22 connected to the internal space 21, and the fourth side of the first cylinder case 22 is connected to the internal space 31 of the second cylinder case 32.
  • the flow control valve 58 is installed and has a second connection line 50 "through which a heat source for cooling is applied, so that the heat medium circulates into the first connection line 50 'and the second connection line 50". To achieve a closed circuit.
  • the pumping unit 20 and the driving unit 30 have a vane driving method, so that the pumping unit 20 has an internal space of the pumping unit 20.
  • a vane 25 is provided in the first vane housing 22 'forming the 21 and has a first rotor 24' which is eccentrically coupled to the first rotating shaft 26, and the drive unit
  • the vane 35 is disposed around the inside of the second vane housing 32 ′ which forms the internal space 31 of the drive unit 30, and is eccentrically coupled to the second rotation shaft 36.
  • the heat medium flows into the inner space 21 of the first vane housing 22' and is connected to the first line through the connection line 50.
  • the heat medium flows into the internal space 31 of the second vane housing 32 ′ and the internal space of the first vane housing 22 ′ through the connection line 50. 31)
  • the flow of heat medium can be formed and operated by a heat source acting from the outside.
  • a heat source for heating the connection line 50 is applied, and a heat medium flows from the inner space 21 of the first vane housing 22 ′.
  • the first vane housing 22 'and the first vane housing 22' are formed such that a heat medium flows from the internal space 31 of the second vane housing 32 'and flows into the internal space 21 of the first vane housing 22'.
  • a second connection line 50 "is connected to the two vane housing 32 'so that the heat medium can be circulated to the first connection line 50' and the second connection line 50" to form a closed circuit. have.
  • the Stirling cycle-based heat engine system it is possible to freely obtain abundant heat source to reduce the size of the engine and very high utility.
  • the cooling to generate power is not necessary, the efficiency of the system is high and the operation is smooth even at a relatively low temperature.
  • the low temperature of the system facilitates the cost and maintenance of the lubrication system.
  • the heat engine system based on the Stirling cycle according to the present invention is such that the heat medium flows in one direction through the connection line 50 connecting the pumping unit 20 and the driving unit 30 to the outside (or closed circuit through circulation). Therefore, the bottleneck of the heat exchange does not occur as in the prior art.
  • connection line 50 which can be configured in a relatively long length and various forms, it is possible to expand the relatively limited heat exchange area relatively freely compared to the stirling cycle-based heat engine system according to the prior art.
  • the engine when the working medium is discharged to the outside, the engine can be operated by the application of only one heat source during cooling or heating.
  • 1 is a view for explaining a conventional Stirling engine
  • FIG. 2 is a view for explaining a heat engine system based on the Stirling cycle according to the spirit of the present invention
  • FIG. 3 is a view for explaining the principle of the Stirling cycle-based heat engine system according to the present invention.
  • FIG. 5 is a graph for explaining the volume change and the relationship between the volume change and the pressure of the heat engine system based on the Stirling cycle according to the present invention
  • FIG. 6 is a view for explaining a Stirling cycle based heat engine system according to a preferred embodiment of the present invention.
  • FIG. 7 is a graph showing pressure diagrams of a pumping unit, a connecting line and a driving unit of the Stirling cycle based heat engine system shown in FIG. 6;
  • FIG. 7 is a graph showing pressure diagrams of a pumping unit, a connecting line and a driving unit of the Stirling cycle based heat engine system shown in FIG. 6;
  • FIG. 8 is a graph showing the gain diagram of the work in the pumping unit, connection line and drive unit of the Stirling cycle based heat engine system shown in FIG. 6;
  • FIG. 8 is a graph showing the gain diagram of the work in the pumping unit, connection line and drive unit of the Stirling cycle based heat engine system shown in FIG. 6;
  • FIG. 9 is a view for explaining a Stirling cycle based heat engine system according to another embodiment of the present invention.
  • FIG. 10 is a view for explaining a Stirling cycle-based heat engine system according to another embodiment of the present invention.
  • FIG. 11 is a view for explaining a Stirling cycle-based heat engine system according to another embodiment of the present invention.
  • FIG. 12 is a view for explaining a Stirling cycle based heat engine system according to another preferred embodiment of the present invention.
  • FIG. 13 is a diagram for describing a Stirling cycle based heat engine system according to another exemplary embodiment of the present invention.
  • FIG. 6 is a view for explaining a stirling cycle-based heat engine system according to a preferred embodiment of the present invention.
  • Figure 6 (a) is a view showing the initial position state of the first cylinder piston 24 and the second cylinder piston 34
  • Figure 6 (b) is an intermediate position state
  • Figure 6 (c) Is a view showing a position state where the first cylinder piston 24 has reached the top dead center.
  • 9 is a view for explaining a Stirling cycle based heat engine system according to another preferred embodiment of the present invention
  • FIG. 10 is a view for explaining a Stirling cycle based heat engine system according to another preferred embodiment of the present invention. Drawing.
  • the sterling cycle-based heat engine system 10 according to the preferred embodiment of the present invention shown in Figures 6, 9 and 10 shows an example configured by applying a cylinder method, the example shown in Figure 6 is applied to the heating heat source
  • FIG. 9 shows a case where a cooling heat source is applied
  • FIG. 10 shows a case where both a heating heat source and a cooling heat source are applied.
  • a sterling cycle based heat engine system 10 includes a pumping unit 20, a driving unit 30, and a connection line 50, so that the pumping unit 20 is provided.
  • the heat medium gas, typically air
  • the pumping unit 20 has an internal space 21 (cavity) of a predetermined volume A1 in which the heat medium is accommodated, and is operated by the heat medium flowing in and out of the internal space 21.
  • the drive unit 30 has an internal space 31 (cavity) of the predetermined volume A2 in which the heat medium is accommodated, and is formed larger than the volume A1 of the internal space 21 of the pumping unit 20, and the internal space ( It is operated by the heat medium flowing in and out of 31).
  • the pumping unit 20 and the driving unit 30 are cylinder type. Accordingly, the pumping unit 20 has a first cylinder piston 24 which is installed to reciprocate in the first cylinder case 22 forming the inner space 21 of the pumping unit 20.
  • the drive unit 30 has a second cylinder piston 34 which is installed to reciprocate in the second cylinder case 32 forming the internal space 31 of the drive unit 30.
  • the link unit 40 is installed between the first and second cylinder pistons 24 and 34 so that the first and second cylinder pistons 24 and 34 are connected to each other so as to have a synchronized operation with each other. This allows for more stable operation while reducing peripherals including sensors, valves and the like.
  • connection line 50 allows the internal space 21 of the pumping unit 20 and the internal space 31 of the driving unit 30 to communicate with each other.
  • the heat medium is allowed to flow between the internal space 21 of the 20 and the internal space 31 of the drive unit 30.
  • the first to fourth flow control valves 52 are installed on the connection line 50 to control the flow of the heat medium (air).
  • connection line 50 is provided with a first flow control valve 52 and a third flow control valve 56 on the side connected to the internal space 21 of the first cylinder case 22, the second cylinder
  • the second flow control valve 54 and the fourth flow control valve 58 are provided on the side connected to the internal space 31 of the case 32, and a heat source (heating heat source) for heating is applied.
  • the link unit 40 is connected to the first and second cylinder pistons 24 and 34 and the link 44 to enable the pivoting movement, and is coupled to a rotating shaft (not shown) through which power is output.
  • the heat engine system 10 based on the Stirling cycle shown in FIG. 9 shows a case in which a cooling heat source is applied while having the same configuration as that of FIG. 6, and the first cylinder case 22 and the driving unit of the pumping unit 20 are applied.
  • a cooling heat source is applied to the second connecting line 50 "connecting the second cylinder case 32 of 30.
  • the heat engine system 10 based on the Stirling cycle shown in Fig. 10 is shown in Figs. There is a difference that is configured to use the heating heat source and cooling heat source applied at the same time.
  • the pumping unit 20 is provided with first and third flow control valves 52 and 56 for inducing one-way movement of the heat medium.
  • first and third flow control valves 52, 56 may be comprised of check valves or valves actuated by cams.
  • first and third flow control valves 52, 56 may be comprised of check valves or valves actuated by cams.
  • the lower third flow control valve 56 is closed to increase the internal pressure, so that the upper first flow control valve 52 automatically opens and air Is moved to the first connection line 50 '.
  • second and fourth flow control valves 54 and 58 which are operated by a cam, are installed on the driving unit 30 side, and when the air is inflated, the air coming from the first connection line 50 'is driven.
  • the second and fourth flow control valves 54 and 58 are interlocked by a cam to control the amount of air entering the drive unit 30, or are opened and closed through a separate automatic control device, but the closing time is a connection line. It is set based on the measured pressure of 50, the temperature and the volume in the connecting line 50.
  • the second cylinder piston 34 of the drive unit 30 may be at the top dead center in the adiabatic expansion process, which is a method in which the drive unit 30 operates in the heat engine system 10 based on the Stirling cycle according to the present embodiment.
  • the air temperature is high, the temperature of the air is lowered as the piston 34 is pushed out. If the outer wall of the second cylinder case 32 is cold, before the second cylinder piston 34 is pushed out, It cools down. As the air cools down in advance, the air cannot be exerted to the end of the cylinder because the volume is low, resulting in heat loss through the outer wall of the cylinder. Thus, the second cylinder Such a loss can be reduced by heat-insulating the case 32.
  • FIG. 7 is a graph showing pressure diagrams of a pumping unit, a connection line, and a driving unit of the Stirling cycle-based heat engine system shown in FIG. 6, and FIG. 7A illustrates an internal space 21 of the pumping unit 20.
  • 7 (b) is a graph showing a change in pressure of the first connection line 50 ′ to which the heating heat source is applied
  • FIG. 7 (c) is a view of the drive unit 30. It is a graph showing the pressure change in the internal space 31.
  • FIG. 8 is a graph showing a gain diagram of work in the pumping unit, the connection line, and the driving unit of the Stirling cycle based heat engine system shown in FIG. 6, and FIG. 8A is a side of the pumping unit 20.
  • Figure 8 is a graph showing a change in the amount of work
  • Figure 8 (b) is a graph showing a change in the amount of work on the drive unit 30 side
  • Figure 8 (c) is a heat engine system 10 based on the Stirling cycle Is a graph showing the amount of work obtained on the basis of the amount of work on the driving unit 30 side-the amount of work on the pumping unit 20 side.
  • the reason why the pressure in the middle portion of the pumping unit 10 does not increase above the maximum pressure as shown in FIG. 7A is equal to the pressure in the connection line 50 such that air is connected to the connection line 50. This is because the process is moved into.
  • the pressure in the connection line 50 is always maintained at an appropriate pressure during the heating.
  • the pressure in the connecting line 50 is transmitted until the pressure of the driving unit 30 is closed until the first flow control valve 52 of the expansion unit 20 is closed. After the transfer, when the first flow control valve 52 closes and fully inflates, the transfer amount is naturally limited to the atmospheric pressure. In this case, the first flow control valve 52 is closed at about the middle of the cylinder stroke.
  • the graph shown in FIG. 7 is a pressure change diagram in the case where the volume in the connecting line 50 is moderately larger than the volume of the cylinder (when the graph is satisfied).
  • FIG. 8 is a diagram showing the magnitude of the force by multiplying the cross-sectional area of the piston by the pressure value of FIG. Since the cross-sectional area of the driving unit 30 as shown in FIG. 8 (b) is larger than that of the pumping unit 20 as shown in FIG. 8 (a), a force difference as shown in FIG. 8 (c) occurs. Subtracting the energy required by the pumping unit 20 from the energy generated by the drive unit 30 is the amount of the engine converted from heat to kinetic energy.
  • FIG. 11 is a view for explaining a Stirling cycle-based heat engine system according to another preferred embodiment of the present invention
  • Figure 12 is a view for explaining a Stirling cycle-based heat engine system according to another preferred embodiment of the present invention
  • 13 is a view for explaining a Stirling cycle-based heat engine system according to another preferred embodiment of the present invention.
  • the Stirling cycle-based heat engine system 10 according to the present embodiment is under the technical concept of the present invention, which is equivalent to the above-described cylinder type, which applies a vane type driving device.
  • the inventor has proposed a vane-type sterling engine through International Patent Application No. PCT / KR2010 / 008782 "Rotary Stirling Engine for Green Growth," according to the present invention.
  • 10 may be configured by applying the vane type driving method proposed in various ways to the pumping unit 20 and the driving unit 30. Therefore, the characteristics of the stirling cycle-based heat engine system 10 according to the present embodiment are the same as those of the cylinder type of the above-described embodiment.
  • the Stirling cycle-based heat engine system 10 according to the present embodiment is the same as the above-described cylinder type in basic operation, but a vane type driving type is applied. That is, the stirling cycle-based heat engine system 10 according to the present embodiment has a drive unit 30 rather than the volume of the pumping unit 20 when one stroke is performed based on the pumping unit 20 as in the above-described example. The total volume of is necessarily configured to be large.
  • each vane 25 and 35 of the first rotor 24 ′ and the second rotor 34 ′ is applied. Acts as a valve, so the above-described cylinder type and moon do not need a valve for controlling.
  • the automatic control valve may be installed on the input side of the drive unit 30 for the automatic control of the system.
  • the Stirling cycle based heat engine system 10 includes a pumping unit 20, a driving unit 30, and a connection line 50. 20), the heat medium (gas, typically air) flows in one direction through the drive unit 30 and the connection line 50 connecting them to operate to the outside (or closed circuit through the circulation).
  • the heat medium gas, typically air
  • the pumping unit 20 has an internal space 21 (cavity) of a predetermined volume A1 in which the heat medium is accommodated, and is operated by the heat medium flowing in and out of the internal space 21.
  • the drive unit 30 has an internal space 31 (cavity) of the predetermined volume A2 in which the heat medium is accommodated, and is formed larger than the volume A1 of the internal space 21 of the pumping unit 20, and the internal space ( It is operated by the heat medium flowing in and out of 31).
  • connection line 50 allows the internal space 21 of the pumping unit 20 and the internal space 31 of the driving unit 30 to communicate with each other so that the internal space 21 of the pumping unit 20 and the driving unit ( The internal space 31 of 30) allows the flow of the heat medium to each other.
  • the pumping unit 20 and the driving unit 30 are applied with a vane type driving method.
  • the vanes 25 are circumferentially installed in the first vane housing 22 ′ forming the internal space 21 of the pumping unit 20 so as to be eccentric to the first rotation shaft 26. It has a first rotor 24'to be engaged.
  • the vanes 35 are circumferentially installed in the second vane housing 32 ′ forming the internal space 31 of the drive unit 30 so as to be eccentric to the second rotation shaft 36. It has a second rotor 34 'that is coupled.
  • the heat medium flows into the inner space 21 of the first vane housing 22 ′ and the second vane through the connection line 50. It flows into the inner space 31 of the housing 32 'and flows outward.
  • the heat medium flows into the internal space 31 of the second vane housing 32 ′ and is connected to the first line through the connection line 50.
  • a first connection line 50 ′ is applied to the connection line 50.
  • the line 50 ' is connected to the first vane housing 22' such that the heat medium flows from the inner space 21 of the first vane housing 22 'and flows into the inner space 31 of the second vane housing 32'. It is connected to the second vane housing 32 '.
  • a second connection line 50 ′′ is applied to the connection line 50, which is connected to the second vane housing 32.
  • Such a Stirling cycle-based heat engine system 10 is a reversible process is established, such as a general Stirling engine or an external combustion engine, can be used as a heat pump or forced heat exchanger if necessary.
  • Such a stirling cycle-based heat engine system 10 further includes a starter to determine the operation direction of the pumping unit 20 and the drive unit 30, which is a cylinder type device This is because a problem may occur when one of the devices connected to it has to rotate in a constant direction when it is stopped to rotate in the opposite direction than when it is stopped at the top dead center and the bottom dead center. Indeed, the present invention alone does not matter in which direction the structure rotates.
  • the technology proposed in the general Stirling engine and the Republic of Korea Patent Registration No. 10-0454814 should be directly heated or cooled the compressor and the expander, but the sterling cycle-based heat engine system 10 according to the present embodiment is pumped
  • the unit 20 or the drive unit 30 is heated or cooled via a connection line 50 connecting them without direct heating. Therefore, the Stirling engine according to the prior art has a fatal weakness that heat exchange should be performed only in a limited area, but the present invention can completely extend the heat exchange area without any limitation from this restriction, and thus the volume of the connecting line 50 is increased in the system. Not only does it interfere with operation, it also reduces pulsation and improves thermal efficiency because it is in adiabatic compression.
  • the present invention does not require cooling at all for this purpose.
  • the present invention can significantly lower the overall temperature of the system.
  • the gas may be circulated quickly so that the temperature of the system does not rise when the same heat source is used. If you want the gas to circulate quickly, you can either run it at a higher speed or increase the volume of each device. It is not desirable to operate at high speeds because the generation of vibration and noise is large, and it is reasonable to increase the volume of the device.
  • this prior art uses the same volume of compressor and expander or cylinder, but the present invention uses pumping unit 20 and drive unit 30 with different volumes, but the volume is one cycle of pumping unit 20.
  • the volume of the drive unit 30 is necessarily large, but also the use thereof is different. That is, the general Stirling engine generates half of the power while cooling in the cooling unit and generates half the power while heating in the heating unit, but the pumping unit 20 pumps only the pumping unit 20 based on the Stirling cycle based on the present invention.
  • the driving unit 30 is clearly divided in roles so as to drive only.
  • Patent No. 10-0454814 has a first connecting pipe and a second connecting pipe connecting the compressor and the expander, but it is only available as a means of transporting gas, so even if the heating and cooling of the diarrhea has no effect on the system. Does not reach.
  • connection pipe connection line 50
  • the present invention does not necessarily connect the pumping unit 20 and the driving unit 30 so that they can be completely separated.
  • a sensor for measuring the temperature and pressure of the air in the connection line 50 to which the heating or cooling heat source is applied is added, and the input valve of the drive unit 30 measures the measured temperature and pressure and the connection line 50. This is because the amount of air discharged can be controlled by adjusting the closing timing or position based on the volume.
  • FIG. 2 is a view for explaining a heat engine system based on the Stirling cycle according to the spirit of the present invention.
  • the Stirling cycle-based heat engine system 10 includes a pumping unit 20, a driving unit 30, and a connection line 50, thereby providing a volume A2 of the driving unit 30.
  • the heat medium gas, typically air
  • the heat exchange system has a bottleneck of heat exchange in the prior art and relatively freely expand the limited heat exchange zone, without cooling It builds up the flow so that it can actuate a drive such as an engine.
  • the Stirling cycle-based heat engine system 10 may apply a heat source (heating source) for heating the heat medium as a preferred embodiment of the present invention shown through FIGS. 6 and 11 as a heat source
  • a heat source for cooling the heat medium
  • a heat source (cooling heat source) for cooling the heat medium may be applied as in the preferred embodiment of the present invention shown in FIGS. 9 and 12, and a heating heat source as in the preferred embodiment of the present invention shown in FIGS. 10 and 13. Cooling heat source can be applied at the same time.
  • Such a stirling cycle-based heat engine system 10 has a volume (A2) of the drive unit 30 is formed larger than the volume (A1) of the pumping unit 20 to generate a flow of heat medium (gas) At this time, the operating force of the drive unit 30 is large because the volume between the pumping unit 20 and the drive unit 30 is different.
  • the pumping unit 20 has an internal space 21 (cavity) of a predetermined volume A1 in which a heat medium is accommodated, and flows in and out of the internal space 21. It is operated by the heat medium.
  • the drive unit 30 has an internal space 31 (cavity) of the predetermined volume A2 in which the heat medium is accommodated, and is formed larger than the volume A1 of the internal space 21 of the pumping unit 20, and the internal space 31 It is operated by the heat medium flowing in and out.
  • the pumping unit 20 and the driving unit 30, as in the preferred embodiment of the present invention can be made by applying a cylinder type and a vane type driving method which are generally used in a Stirling engine.
  • connection line 50 allows the internal space 21 of the pumping unit 20 to communicate with the internal space 31 of the driving unit 30.
  • the heat medium is allowed to flow between the internal space 21 of the 20 and the internal space 31 of the drive unit 30. Since the connection line 50 can be set to various lengths and arrangements as necessary, by applying a heat source to the connection line 50, relatively limited heat exchange compared to the heat engine system based on the Stirling cycle according to the prior art. The area can be expanded relatively freely.
  • Such a stirling cycle-based heat engine system 10 is the internal space 21 of the pumping unit 20 and the internal space 31 of the drive unit 30 by a heat source acting on the connection line 50.
  • the flow of the heating medium in any one of the directions is formed.
  • the heat engine system 10 based on the Stirling cycle allows the pumping unit 20 and the driving unit 30 to operate in conjunction with each other, and then introduces an internal space into which the heat medium flows (the inside of the pumping unit 20).
  • the heat medium in any one of the space 21 and the internal space 31 of the drive unit 30 flows to the outside, and the internal space in which the heat medium flows out (the internal space 21 of the pumping unit 20 and the drive)
  • the flow of the heat medium is formed by the heat source acting from the outside, so that the operation of the pumping unit 20 and the driving unit 30 is prevented. Make it possible.
  • heat medium when applying a heat source (heating heat source) for heating the heat medium as in the preferred embodiment of the present invention shown through FIGS. 6 and 11, the heat medium is driven in the internal space 21 of the pumping unit 20.
  • external heat medium atmospheric pressure air
  • the heat medium (air) in the internal space 31 of the unit 30 is allowed to flow out.
  • heat source cooling heat source
  • the heat medium is pumped in the internal space 31 of the drive unit 30 (20) After the first and second cylinder pistons 24 and 34 are flowed into the internal space 21, the external heat medium (air pressure air) flows into the internal space 31 of the drive unit 30, and is pumped. The heat medium (air) in the internal space 21 of the unit 20 is allowed to flow out.
  • the heating heat source and the cooling heat source are applied at the same time as in the preferred embodiment of the present invention shown through FIGS. 10 and 13, the flow of the heat medium is generated at the same time.
  • FIGS. 3 and 4 are views for explaining the principle of the Stirling cycle-based heat engine system according to the present invention
  • Figure 4 is a view for explaining the operating state of the Stirling cycle-based heat engine system according to the present invention.
  • Figures 3 and 4 are applied to the configuration of the pumping unit 20 and the drive unit 30 in a cylindrical manner in order to explain the principle of the Stirling cycle-based heat engine system according to the present invention
  • the experimental setup is shown.
  • the experimental apparatus of FIGS. 3 and 4 is provided with a pumping unit 20, a drive unit 30 and a connection line 50 to achieve the characteristic operation of the Stirling cycle based heat engine system according to the invention.
  • the pumping unit 20 in which the first cylinder piston 24 is installed in the internal space 21 of the first cylinder case 22, and the second cylinder piston 34 in the internal space 31 of the second cylinder case 32.
  • the heat medium flows through the installed drive unit 30 and the connection line 50 connecting them, and an exhaust valve 1 is provided on the connection line 50 for the external discharge of the internal heat medium.
  • the first cylinder piston 24 and the second cylinder piston 34 through the link unit 40 so that the operation between the first cylinder piston 24 and the second cylinder piston 34 is interlocked.
  • 5 is a graph for explaining the volume change and the relationship between the volume change and the pressure change in the heat engine system based on the Stirling cycle according to the present invention.
  • Figure 5 (a) is a volume change diagram
  • Figure 5 (b) is a volume pressure change diagram.
  • the present invention is characterized by using such a phenomenon.
  • Such a stirling cycle-based heat engine system 10 when one cycle is completed on the basis of the pumping unit 20, the total volume of the drive unit 30 is necessarily compared to the volume of the pumping unit 20. It is characterized by enlarging. At this time, the volume ratio of the pumping unit 10 and the driving unit 30 is preferably equal to the ratio of the atmospheric pressure and the pressure that can be obtained in the connection line 50. Then, when one cycle is completed, time or position is adjusted so that air having the same mass as the mass of air input to the pumping unit 20 is input to the driving unit 30. This makes it possible to heat or cool the connection line 50 instead of directly heating the engine, freely obtaining the necessary heat source, and having a suitable heat source allows the equipment to be built and used anywhere. It's losing.
  • FIG. 4 The process of FIG. 4 is completely the same as the process of expanding by receiving heat while a single cylinder has a constant volume.
  • the method of analyzing the Stirling cycle based heat engine system 10 according to the present invention is equivalent to analyzing a single cylinder.
  • 5 (b) shows a volume pressure change diagram for this, in which case the volume of the cylinder is relatively large compared to the volume of the connection line 50 to which the heating or cooling heat source is applied.
  • the amount corresponding to the upper part of the atmospheric pressure is the amount changed to power by receiving energy, and there is no trace back because the air is released to the atmosphere without being used again.
  • the rotational torque it is possible to control the temperature of the exhausted air, and thus may be configured to reuse the exhausted air according to the purpose.
  • the sterling cycle-based heat engine system 10 basically consists of an open circuit (open circuit), and operates by directly inhaling natural cold air, thereby eliminating the burden of cooling to generate power. There is an effect of driving the engine efficiently even at a relatively low temperature.
  • the conventional solar collector type Stirling engine is very difficult to raise the efficiency more than a certain degree for the energy collected, but it is possible to prevent the increase of the temperature by speeding up the air transport of the heating pipe, thereby significantly improving the efficiency decrease. Will be.
  • the temperature of the system can be lowered by the temperature rise of the cooling head again, heat loss due to radiant heat can be significantly reduced, and heat can be insulated from the drive unit, thereby increasing the overall efficiency considerably.
  • the stirling cycle-based heat engine system 10 has a remarkable effect of increasing the overall efficiency, the system temperature is not high, so the life of parts is increased, maintenance costs such as lubrication are low, and the price of equipment It also has the effect of falling.
  • the Stirling cycle-based heat engine system it is possible to freely obtain abundant heat source to reduce the size of the engine and very high utility.
  • the cooling to generate power is not necessary, the efficiency of the system is high and the operation is smooth even at a relatively low temperature.
  • the low temperature of the system facilitates the cost and maintenance of the lubrication system.
  • the heat engine system based on the Stirling cycle according to the present invention is such that the heat medium flows in one direction through the connection line 50 connecting the pumping unit 20 and the driving unit 30 to the outside (or closed circuit through circulation). Therefore, the bottleneck of the heat exchange does not occur as in the prior art.
  • connection line 50 which can be configured in a relatively long length and various forms, it is possible to expand the relatively limited heat exchange area relatively freely compared to the stirling cycle-based heat engine system according to the prior art.
  • the engine when the working medium is discharged to the outside, the engine can be operated by the application of only one heat source during cooling or heating.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

The present invention relates to a Stirling cycle-based heat engine system which can utilize various types of energy such as liquid fuel, gas fuel, solid fuel, waste heat from power plants and factories, geothermal energy, solar energy, and the like as power sources to overcome the problems of a Stirling engine. The Stirling cycle-based heat engine system (10) includes a pumping unit (20), a driving unit (30), and a connection line (50). A heat medium may flow in one direction through the pumping unit (20), the driving unit (30) and the connection line (50) connecting the pumping unit (20) to the driving unit (30) to flow to the outside (or in a closed circuit through circulation). Thus, heat exchange bottlenecking which occurs in heat engine systems according to a related art may be prevented, and also, a limited heat exchange area may be relatively freely expanded. In addition, the flow of the heat medium may be formed without cooling to operate a driving body such as an engine.

Description

스털링 사이클 기반의 열기관 시스템Stirling cycle based heat engine system
본 발명은 스털링 사이클 기반의 열기관 시스템에 관한 것으로, 좀 더 구체적으로는 액체연료, 가스연료, 고체연료, 발전소 및 공장의 폐열, 지열, 태양열 등 다양한 에너지를 동력원으로 적용할 수 있는 스털링 엔진의 문제점을 개선하여 풍부한 열원을 자유롭게 얻을 수 있도록 하고, 비교적 낮은 온도에서도 작동이 원활하도록 하는 스털링 사이클 기반의 열기관 시스템에 관한 것이다. The present invention relates to a heat engine system based on the Stirling cycle, and more particularly, to a problem of a Stirling engine capable of applying various energies such as liquid fuel, gas fuel, solid fuel, waste heat of a power plant and a plant, geothermal heat and solar power as a power source. The present invention relates to a Stirling cycle-based heat engine system that improves the efficiency of freely obtaining abundant heat sources and facilitates operation at relatively low temperatures.
환경보호의 필요성에 대한 세계적인 공감대가 형성되면서 녹색성장에 대한 요구가 증가하고 있다. 그리고, 이와 같은 녹색성장은 태양력, 풍력, 수력, 바이오매스(biomass) 등 다양한 분야를 걸쳐 연구되고 있는 (신)재생에너지의 높은 활용을 필요로 하고 있다. Growing global consensus on the need for environmental protection is increasing the demand for green growth. In addition, such green growth requires high utilization of (new) renewable energy, which is being studied in various fields such as solar power, wind power, hydropower, and biomass.
한편, 본 발명자는 환경오염문제의 대두와 함께 고유가 시대의 지속으로 인해 그 실용성이 높아지게 되었고, 신재생에너지의 활용에 있어서 석유류의 액체연료와 함께 가스연료 및 고체연료를 사용할 수 있을 뿐만아니라 발전소 및 공장의 폐열, 지열, 태양열 등 다양한 에너지를 동력원으로 적용할 수 있는 것으로 기대되는 스털링 엔진(Stirling Engine)에 관심을 가지게 되었다.On the other hand, the present inventors have become more practical due to the rise of the high oil price with the rise of environmental pollution problems, and in the utilization of new and renewable energy, not only can use gas fuel and solid fuel with liquid fuel of petroleum, but also power plants and Interested in the Stirling Engine, which is expected to be able to apply various energy sources such as waste heat, geothermal heat and solar heat of the plant.
도 1은 통상의 스털링 엔진을 설명하기 위한 도면이다. 1 is a view for explaining a conventional Stirling engine.
도 1을 참조하면, 스털링 엔진은 실린더와 피스톤으로 이루어진 공간 내에 수소나 헬륨 등의 작동가스를 밀봉하고, 이를 가열부의 외부에서 가열시키고, 냉각부의 외부에서 냉각시킴으로서 피스톤을 상하로 움직여 기계적 에너지를 얻는 외연기관(External Combustion Engine)을 말한다.Referring to FIG. 1, a Stirling engine seals a working gas such as hydrogen or helium in a space consisting of a cylinder and a piston, heats it outside of the heating unit, and cools it outside of the cooling unit to move the piston up and down to obtain mechanical energy. External Combustion Engine.
그러나, 이와 같은 일반적인 스털링 엔진은 가열 및 냉각가능한 영역이 실린더에 집중이 되어 있어 임의의 열원을 취하기가 어렵고, 제한된 가열 및 냉각부의 영역으로 많은 에너지를 수용하기가 곤란하며, 반드시 냉각시켜야 하므로 효율이 저하되고, 냉각 문제로 인해 시스템의 온도가 비교적 높아져야 하는 문제점이 있다. However, such a general Stirling engine has a heat and coolable area concentrated in a cylinder, making it difficult to take any heat source, and it is difficult to receive a large amount of energy in a limited heating and cooling area, and it must be cooled, so efficiency is high. There is a problem that the temperature of the system must be relatively high due to the deterioration and cooling problem.
한편, 미국특허공보 특허번호 제4,044,559호 "ROTARY CLOSED SERIES CYCLE ENGINE SYSTEM"은 하우징내에서 구동축(drive shaft)에 베인(vane)이 둘레로 설치되는 로터(rotor)가 편심되어 결합되도록 하고, 이 하우징에 가열측 매니폴드(hot side manifold)와 냉각측 매니폴드(cool side manifold)를 결합시켜 가열된 가스가 가열측 매니폴드를 통해 하우징으로 유입되어 베인을 밀면서 로터를 회전시켜 냉각측 매니폴드를 통해 외부로 흐르는 작동에 의해 로터에 맞물려 있는 구동축이 회전되도록 하는 기술을 제안하고 있다. On the other hand, US Patent Publication No. 4,044,559 "ROTARY CLOSED SERIES CYCLE ENGINE SYSTEM" is to allow the rotor (vane) is installed around the drive shaft (eccentric) in the housing eccentrically coupled, this housing The hot side manifold and the cool side manifold are coupled to the heated gas into the housing through the heated side manifold, and the rotor is rotated while pushing the vanes through the cooling side manifold. A technique for rotating the drive shaft engaged with the rotor by an externally flowing operation is proposed.
그러나, 이와 같은 종래기술에 따른 스털링 엔진은 파이프 길이의 절반은 가열하고, 절반은 냉각하면서도 그 중간에 아무런 장치가 없어 가열측의 압력이 그대로 냉각측에 전달(냉각과 가열을 동일한 파이프에 실시)되므로 파이프 내의 전체 압력은 변화가 없다. 따라서 베인측의 입구나 출구에서도 압력 차이가 발생하지 않으므로 원칙적으로 회전이 불가능하여 작동될 수 없는 문제점을 가지고 있다. 물론, 이와 같은 상태에서 배관을 복잡하게 꼬아놓아도 회전하지 않기는 마찬가지이다. However, such a Stirling engine according to the prior art heats half of the pipe length, and half of the pipe is cooled, but there is no device in the middle so that the pressure on the heating side is transmitted to the cooling side as it is (cooling and heating are performed on the same pipe). Therefore, the total pressure in the pipe does not change. Therefore, the pressure difference does not occur even at the inlet or outlet of the vane side has a problem that can not be operated in principle can not be rotated. Of course, in this state, even if the pipe is twisted intricately does not rotate.
그리고, 대한민국 특허등록공보 등록번호 제10-0454814호 "스털링 엔진 또는 냉동기로 활용할 수 있는 스크롤형 열교환 시스템"과 등록번호 제10-0849506호 "스크롤 방식 스털링 사이클 엔진"은 두 개의 스크롤 기구(나선형 스크류 압축 기구)를 이용하는 기술을 제안하고 있지만, 이 기술도 일반적인 스털링 엔진과 같이 압축부와 팽창부의 나선형 부분에서만 가열하거나 냉각하여야 한다. 따라서, 이와 같은 종래기술은 가열과 냉각을 위하여 압축부나 팽창부의 외부 면적을 최대한 크게 하여 효율적인 열의 이동이 되도록 하여야 하지만, 이러한 면적을 늘리는 데에는 똑같이 한계가 있어 열을 얻고 방출하는 방식에 있어서는 일반적인 스털링 엔진과 다를 바가 없는 것이다.In addition, the Republic of Korea Patent Registration No. 10-0454814 "scroll type heat exchange system that can be used as a Stirling engine or a freezer" and No. 10-0849506 "scroll type Stirling cycle engine" has two scroll mechanisms (spiral screw Compression mechanism) is proposed, but this technique also needs to be heated or cooled only in the helical part of the compression part and the expansion part like a general Stirling engine. Therefore, such a prior art has to maximize the external area of the compression part or the expansion part for efficient heat transfer for heating and cooling, but there is a limit in increasing the area, and thus, the general Stirling engine is a method of obtaining and dissipating heat. It is no different from.
따라서, 본 발명은 이와 같은 종래기술의 문제점을 해결하기 위해 제안된 것으로, 스털링 사이클 기반의 종래기술에 따른 열기관 시스템들이 갖고 있는 열교환의 병목현상을 제거하여 안정적인 작동을 제공할 수 있도록 하는 새로운 형태의 스털링 사이클 기반의 열기관 시스템을 제공하는 것을 목적으로 한다. Therefore, the present invention has been proposed to solve the above problems of the prior art, and a new type of the stirling cycle-based heat engine system according to the prior art to remove the bottleneck of the heat exchange has a new type to provide a stable operation It is an object to provide a heat engine system based on a Stirling cycle.
또한, 본 발명은 종래기술에 따른 스털링 사이클 기반의 열기관 시스템에 비해 상대적으로 제한된 열교환 영역을 비교적 자유롭게 확장시킬 수 있는 새로운 형태의 스털링 사이클 기반의 열기관 시스템을 제공하는 것을 목적으로 한다. It is also an object of the present invention to provide a new type of stirling cycle based heat engine system capable of relatively freely expanding a relatively limited heat exchange area compared to the stirling cycle based heat engine system according to the prior art.
또한, 본 발명은 냉각와 가열을 위한 구성요소를 필수 요건으로 하는 종래기술에 따른 스털링 사이클 기반의 열기관 시스템을 개선하여 냉각 또는 가열 중 어느 한 구성요소의 적용으로 엔진을 작동시킬 수 있도록 할 수 있는 새로운 형태의 스털링 사이클 기반의 열기관 시스템을 제공하는 것을 목적으로 한다. In addition, the present invention provides a new technology that enables the engine to operate with the application of either component of cooling or heating by improving the prior art Stirling cycle based heat engine system which requires components for cooling and heating. It is an object of the present invention to provide a heat engine system based on a stirling cycle.
상술한 목적을 달성하기 위한 본 발명의 특징에 의하면, 스털링 사이클 기반의 열기관 시스템에 있어서, 열매체가 수용되는 정해진 용적(A1)의 내부 공간(21; cavity)를 갖고, 상기 내부 공간(21)에 유입 및 유출되는 열매체에 의해 작동되는 펌핑 유니트(20)와; 열매체가 수용되는 정해진 용적(A2)의 내부 공간(31; cavity)이 상기 펌핑 유니트(20)의 내부 공간(21)의 용적(A1)보다 크게 형성되고, 상기 내부 공간(31)에 유입 및 유출되는 열매체에 의해 작동되는 구동 유니트(30) 및; 상기 펌핑 유니트(20)의 내부 공간(21)과 구동 유니트(30)의 내부 공간(31)이 연통되도록 하여 상기 펌핑 유니트(20)의 내부 공간(21)과 구동 유니트(30)의 내부 공간(31) 상호간에 열매체의 흐름이 가능하도록 하는 연결 라인(50)을 포함하여; 외부로부터 상기 연결 라인(50)에 작용되는 열원에 의해 상기 펌핑 유니트(20)의 내부 공간(21)과 구동 유니트(30)의 내부 공간(31) 중 어느 한 방향으로 열매체가 흐르는 흐름이 형성되도록 하여 연동되어 작동되도록 한 후, 열매체가 유입된 내부 공간{상기 펌핑 유니트(20)의 내부 공간(21)과 구동 유니트(30)의 내부 공간(31) 중 어느 하나}의 열매체가 외부로 흐르도록 하는 동시에 열매체가 유출된 내부 공간{상기 펌핑 유니트(20)의 내부 공간(21)과 구동 유니트(30)의 내부 공간(31) 중 나머지 하나}으로 외부의 열매체가 유입되도록 함으로써, 외부로부터 작용되는 열원에 의해 열매체의 흐름이 형성되어 상기 펌핑 유니트(20) 및 구동 유니트(30)의 작동이 가능하도록 한다. According to a feature of the present invention for achieving the above object, in the Stirling cycle-based heat engine system, has a cavity 21 of a predetermined volume (A1) in which the heat medium is accommodated, and in the inner space 21 A pumping unit 20 operated by inflow and outflow heat medium; An internal space 31 of the predetermined volume A2 in which the heat medium is accommodated is formed larger than the volume A1 of the internal space 21 of the pumping unit 20, and flows in and out of the internal space 31. A driving unit 30 operated by a heating medium to be used; The internal space 21 of the pumping unit 20 and the internal space 31 of the driving unit 30 communicate with each other so that the internal space 21 of the pumping unit 20 and the internal space of the driving unit 30 ( 31) comprising a connection line 50 which enables flow of the heat medium to each other; The flow of heat medium in one of the inner space 21 of the pumping unit 20 and the inner space 31 of the driving unit 30 is formed by a heat source applied to the connection line 50 from the outside. After the interlocking operation, the heat medium flows into the inner space (the one of the internal space 21 of the pumping unit 20 and the internal space 31 of the driving unit 30) into which the heat medium is introduced. At the same time, the external heat medium flows into the internal space (the remaining one of the internal space 21 of the pumping unit 20 and the internal space 31 of the driving unit 30) in which the heat medium flows out, thereby acting from the outside. The heat medium is formed by the heat source to enable the operation of the pumping unit 20 and the driving unit 30.
이와 같은 본 발명에 따른 스털링 사이클 기반의 열기관 시스템에서 상기 펌핑 유니트(20)와 구동 유니트(30)는 실린더 방식이 적용됨으로써, 상기 펌핑 유니트(20)는 상기 펌핑 유니트(20)의 내부 공간(21)을 형성하는 제 1 실린더 케이스(22)내에서 왕복운동되도록 설치되는 제 1 실린더 피스톤(24)을 구비하고, 상기 구동 유니트(30)는 상기 구동 유니트(30)의 내부 공간(31)을 형성하는 제 2 실린더 케이스(32)내에서 왕복운동되도록 설치되는 제 2 실린더 피스톤(34)을 구비하며, 상기 제 1 및 제 2 실린더 피스톤(24, 34) 사이에서 접속되도록 설치됨으로써 상기 제 1 및 제 2 실린더 피스톤(24, 34)이 동기되어 작동되도록 하는 링크 유니트(40)를 더 구비할 수 있다. In such a Stirling cycle-based heat engine system according to the present invention, the pumping unit 20 and the driving unit 30 are applied to a cylinder type, so that the pumping unit 20 has an internal space 21 of the pumping unit 20. And a first cylinder piston 24 installed to reciprocate in the first cylinder case 22 forming a), wherein the drive unit 30 forms an internal space 31 of the drive unit 30. And a second cylinder piston 34 which is installed to reciprocate in the second cylinder case 32, and is installed to be connected between the first and second cylinder pistons 24 and 34. It may be further provided with a link unit 40 to allow the two- cylinder pistons 24 and 34 to operate synchronously.
이와 같은 본 발명에 따른 스털링 사이클 기반의 열기관 시스템에서 상기 연결 라인(50)은 상기 제 1 실린더 케이스(22)의 내부 공간(21)과 접속되는 측에 제 1 흐름 제어밸브(52)가 설치되고, 상기 제 2 실린더 케이스(32)의 내부 공간(31)과 접속되는 측에 제 2 흐름 제어밸브(54)가 설치되며, 가열시키는 열원이 작용되는 제 1 연결 라인(50') 및, 상기 제 1 실린더 케이스(22)의 내부 공간(21)과 접속되는 측에 제 3 흐름 제어밸브(56)가 설치되고, 상기 제 2 실린더 케이스(32)의 내부 공간(31)과 접속되는 측에 제 4 흐름 제어밸브(58)가 설치되며, 냉각시키는 열원이 작용되는 제 2 연결 라인(50")을 구비하여, 열매체가 상기 제 1 연결 라인(50')과 제 2 연결 라인(50")으로 순환되어 폐회로를 이루도록 할 수 있다. In such a Stirling cycle-based heat engine system according to the present invention, the connection line 50 is provided with a first flow control valve 52 at a side connected to the inner space 21 of the first cylinder case 22. A second flow control valve 54 is installed at a side connected to the internal space 31 of the second cylinder case 32, a first connection line 50 'on which a heat source for heating is applied, and the second The third flow control valve 56 is installed on the side of the first cylinder case 22 connected to the internal space 21, and the fourth side of the first cylinder case 22 is connected to the internal space 31 of the second cylinder case 32. The flow control valve 58 is installed and has a second connection line 50 "through which a heat source for cooling is applied, so that the heat medium circulates into the first connection line 50 'and the second connection line 50". To achieve a closed circuit.
이와 같은 본 발명에 따른 스털링 사이클 기반의 열기관 시스템에서 상기 펌핑 유니트(20)와 구동 유니트(30)는 베인형 구동방식이 적용됨으로써, 상기 펌핑 유니트(20)는 상기 펌핑 유니트(20)의 내부 공간(21)을 형성하는 제 1 베인 하우징(22')내에서 베인(25)이 둘레로 설치되어 제 1 회전축(26)에 편심되게 결합되는 제 1 로터(24')를 구비하고, 상기 구동 유니트(30)는 상기 구동 유니트(30)의 내부 공간(31)을 형성하는 제 2 베인 하우징(32')내에서 베인(35)이 둘레로 설치되어 제 2 회전축(36)에 편심되게 결합되는 제 2 로터(34')를 구비하며, 열원으로 열매체를 가열시키는 열원을 사용할 경우 열매체가 상기 제 1 베인 하우징(22')의 내부 공간(21)으로 유입되어 상기 연결 라인(50)을 통해 상기 제 2 베인 하우징(32')의 내부 공간(31)으로 흘러 외부로 흐르도록 하고, 열원으로 열매체를 냉각시키는 열원을 사용할 경우 열매체가 상기 제 2 베인 하우징(32')의 내부 공간(31)으로 유입되어 상기 연결 라인(50)을 통해 상기 제 1 베인 하우징(22')의 내부 공간(31)으로 흘러 외부로 흐르도록 함으로써, 외부로부터 작용되는 열원에 의해 열매체의 흐름이 형성되어 작동가능하도록 할 수 있다. In the heat engine system based on the Stirling cycle according to the present invention, the pumping unit 20 and the driving unit 30 have a vane driving method, so that the pumping unit 20 has an internal space of the pumping unit 20. A vane 25 is provided in the first vane housing 22 'forming the 21 and has a first rotor 24' which is eccentrically coupled to the first rotating shaft 26, and the drive unit The vane 35 is disposed around the inside of the second vane housing 32 ′ which forms the internal space 31 of the drive unit 30, and is eccentrically coupled to the second rotation shaft 36. 2 rotors 34 ', and when using a heat source for heating the heat medium as a heat source, the heat medium flows into the inner space 21 of the first vane housing 22' and is connected to the first line through the connection line 50. Flow into the inner space 31 of the two-vane housing 32 'and flows outward, When a heat source for cooling the heat medium is used, the heat medium flows into the internal space 31 of the second vane housing 32 ′ and the internal space of the first vane housing 22 ′ through the connection line 50. 31), the flow of heat medium can be formed and operated by a heat source acting from the outside.
이와 같은 본 발명에 따른 스털링 사이클 기반의 열기관 시스템에서 상기 연결 라인(50)은 가열시키는 열원이 작용되고, 상기 제 1 베인 하우징(22')의 내부 공간(21)으로부터 열매체가 흘러 상기 제 2 베인 하우징(32')의 내부 공간(31)으로 흐르도록 상기 제 1 베인 하우징(22')과 제 2 베인 하우징(32')에 접속되는 제 1 연결 라인(50') 및, 냉각시키는 열원이 작용되고, 상기 제 2 베인 하우징(32')의 내부 공간(31)으로부터 열매체가 흘러 상기 제 1 베인 하우징(22')의 내부 공간(21)으로 흐르도록 상기 제 1 베인 하우징(22')과 제 2 베인 하우징(32')에 접속되는 제 2 연결 라인(50")을 구비하여, 열매체가 상기 제 1 연결 라인(50')과 제 2 연결 라인(50")으로 순환되어 폐회로를 이루도록 할 수 있다.In the heat engine system based on the Stirling cycle according to the present invention, a heat source for heating the connection line 50 is applied, and a heat medium flows from the inner space 21 of the first vane housing 22 ′. A first connection line 50 'connected to the first vane housing 22' and the second vane housing 32 'so as to flow into the internal space 31 of the housing 32', and a heat source for cooling acts. The first vane housing 22 'and the first vane housing 22' are formed such that a heat medium flows from the internal space 31 of the second vane housing 32 'and flows into the internal space 21 of the first vane housing 22'. A second connection line 50 "is connected to the two vane housing 32 'so that the heat medium can be circulated to the first connection line 50' and the second connection line 50" to form a closed circuit. have.
본 발명에 따른 스털링 사이클 기반의 열기관 시스템에 의하면, 풍부한 열원을 자유롭게 얻을 수 있어 엔진의 크기를 줄일 수 있고 활용성이 매우 높다. 그리고, 동력을 발생시키기 위한 냉각이 필요 없으므로 시스템의 효율이 높아 비교적 낮은 온도에서도 작동이 원활하다. 그리고, 시스템의 온도가 낮으므로 윤활 계통의 단가 및 유지 보수가 용이하다. 특히, 본 발명에 따른 스털링 사이클 기반의 열기관 시스템은 펌핑 유니트(20)와 구동 유니트(30)를 접속시키는 연결 라인(50)을 통해 열매체가 일방향으로 흘러 외부(또는 순환을 통한 폐회로)로 흐르도록 하므로, 종래기술과 같이 열교환의 병목현상이 발생되지 않는다. 또한, 비교적 긴 길이와 다양한 형태로 구성할 수 있는 연결 라인(50)에 열원을 적용할 수 있으므로, 종래기술에 따른 스털링 사이클 기반의 열기관 시스템에 비해 상대적으로 제한된 열교환 영역을 비교적 자유롭게 확장시킬 수 있다. 또한, 일을 한 열매체가 외부로 배출되도록 하는 경우 냉각 또는 가열 중 한 열원만의 적용으로 엔진을 작동시킬 수 있다.According to the Stirling cycle-based heat engine system according to the present invention, it is possible to freely obtain abundant heat source to reduce the size of the engine and very high utility. In addition, since the cooling to generate power is not necessary, the efficiency of the system is high and the operation is smooth even at a relatively low temperature. In addition, the low temperature of the system facilitates the cost and maintenance of the lubrication system. In particular, the heat engine system based on the Stirling cycle according to the present invention is such that the heat medium flows in one direction through the connection line 50 connecting the pumping unit 20 and the driving unit 30 to the outside (or closed circuit through circulation). Therefore, the bottleneck of the heat exchange does not occur as in the prior art. In addition, since the heat source can be applied to the connection line 50, which can be configured in a relatively long length and various forms, it is possible to expand the relatively limited heat exchange area relatively freely compared to the stirling cycle-based heat engine system according to the prior art. . In addition, when the working medium is discharged to the outside, the engine can be operated by the application of only one heat source during cooling or heating.
도 1은 통상의 스털링 엔진을 설명하기 위한 도면;1 is a view for explaining a conventional Stirling engine;
도 2는 본 발명의 기술 사상에 따른 스털링 사이클 기반의 열기관 시스템을 설명하기 위한 도면;2 is a view for explaining a heat engine system based on the Stirling cycle according to the spirit of the present invention;
도 3은 본 발명에 따른 스털링 사이클 기반의 열기관 시스템의 원리를 설명하기 위한 도면;3 is a view for explaining the principle of the Stirling cycle-based heat engine system according to the present invention;
도 4는 본 발명에 따른 스털링 사이클 기반의 열기관 시스템의 작동 상태를 설명하기 위한 도면;4 is a view for explaining the operating state of the Stirling cycle-based heat engine system according to the present invention;
도 5는 본 발명에 따른 스털링 사이클 기반의 열기관 시스템의 부피 변화 및 부피와 압력 변화 관계를 설명하기 위한 그래프 도면;5 is a graph for explaining the volume change and the relationship between the volume change and the pressure of the heat engine system based on the Stirling cycle according to the present invention;
도 6은 본 발명의 바람직한 실시예에 따른 스털링 사이클 기반의 열기관 시스템을 설명하기 위한 도면;6 is a view for explaining a Stirling cycle based heat engine system according to a preferred embodiment of the present invention;
도 7은 도 6에서 보인 스털링 사이클 기반의 열기관 시스템의 펌핑 유니트, 연결 라인 및 구동 유니트에서의 압력선도를 보여주는 그래프 도면;FIG. 7 is a graph showing pressure diagrams of a pumping unit, a connecting line and a driving unit of the Stirling cycle based heat engine system shown in FIG. 6; FIG.
도 8은 도 6에서 보인 스털링 사이클 기반의 열기관 시스템의 펌핑 유니트, 연결 라인 및 구동 유니트에서의 일의 이득선도를 보여주는 그래프 도면;FIG. 8 is a graph showing the gain diagram of the work in the pumping unit, connection line and drive unit of the Stirling cycle based heat engine system shown in FIG. 6; FIG.
도 9는 본 발명의 바람직한 다른 실시예에 따른 스털링 사이클 기반의 열기관 시스템을 설명하기 위한 도면;9 is a view for explaining a Stirling cycle based heat engine system according to another embodiment of the present invention;
도 10은 본 발명의 바람직한 또 다른 실시예에 따른 스털링 사이클 기반의 열기관 시스템을 설명하기 위한 도면;10 is a view for explaining a Stirling cycle-based heat engine system according to another embodiment of the present invention;
도 11은 본 발명의 바람직한 또 다른 실시예에 따른 스털링 사이클 기반의 열기관 시스템을 설명하기 위한 도면;11 is a view for explaining a Stirling cycle-based heat engine system according to another embodiment of the present invention;
도 12는 본 발명의 바람직한 또 다른 실시예에 따른 스털링 사이클 기반의 열기관 시스템을 설명하기 위한 도면;12 is a view for explaining a Stirling cycle based heat engine system according to another preferred embodiment of the present invention;
도 13은 본 발명의 바람직한 또 다른 실시예에 따른 스털링 사이클 기반의 열기관 시스템을 설명하기 위한 도면이다.FIG. 13 is a diagram for describing a Stirling cycle based heat engine system according to another exemplary embodiment of the present invention.
이하, 본 발명의 바람직한 실시예를 첨부된 도면 도 6 및 도 13에 의거하여 상세히 설명하며, 도 2 내지 도 13에 있어서 동일한 기능을 수행하는 구성 요소에 대해서는 동일한 참조 번호를 병기한다. 한편, 각 도면에서 일반적으로 스털링 엔진과 관련하여 통상 이 분야의 관련 기술로부터 이 분야의 종사자들이 용이하게 적용하는 기술에 대한 상세한 설명은 생략한다. 그리고, 도면의 도시에 있어서 요소들 사이의 크기 비가 다소 상이하게 표현되거나 서로 결합되는 부품들 사이의 크기가 상이하게 표현된 부분도 있으나, 이와 같은 도면의 표현 차이는 이 분야의 종사자들이 용이하게 이해할 수 있는 부분들이므로 별도의 설명을 생략한다.Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to FIGS. 6 and 13, and like reference numerals denote like elements for performing the same functions in FIGS. 2 to 13. On the other hand, in each drawing, in general with respect to the Stirling engine, a detailed description of a technology easily applied by those skilled in the art from the related art in this field will be omitted. In addition, although the size ratio between elements is somewhat different in the drawings of the drawings, or the size between the parts that are coupled to each other is expressed differently, the representation differences in such drawings are easily understood by those skilled in the art. The descriptions are omitted since they are possible parts.
도 6은 본 발명의 바람직한 실시예에 따른 스털링 사이클 기반의 열기관 시스템을 설명하기 위한 도면이다. 여기서, 도 6의 (a)는 제 1 실린더 피스톤(24)과 제 2 실린더 피스톤(34)의 최초 위치상태를 보여주는 도면이고, 도 6의 (b)는 중간 위치상태, 도 6의 (c)는 제 1 실린더 피스톤(24)이 상사점에 도달한 위치상태를 보여주는 도면이다. 그리고, 도 9는 본 발명의 바람직한 다른 실시예에 따른 스털링 사이클 기반의 열기관 시스템을 설명하기 위한 도면이고, 도 10은 본 발명의 바람직한 또 다른 실시예에 따른 스털링 사이클 기반의 열기관 시스템을 설명하기 위한 도면이다. 여기서, 도 6, 9 및 10에서 보인 본 발명의 바람직한 실시예에 따른 스털링 사이클 기반의 열기관 시스템(10)은 실린더 방식을 적용하여 구성한 예를 보인 것으로, 도 6에서 보인 예는 가열 열원을 적용하는 경우, 도 9는 냉각 열원을 적용하는 경우, 도 10은 가열 열원과 냉각 열원을 모두 적용하는 경우를 보인 것이다. 6 is a view for explaining a stirling cycle-based heat engine system according to a preferred embodiment of the present invention. Here, Figure 6 (a) is a view showing the initial position state of the first cylinder piston 24 and the second cylinder piston 34, Figure 6 (b) is an intermediate position state, Figure 6 (c) Is a view showing a position state where the first cylinder piston 24 has reached the top dead center. 9 is a view for explaining a Stirling cycle based heat engine system according to another preferred embodiment of the present invention, and FIG. 10 is a view for explaining a Stirling cycle based heat engine system according to another preferred embodiment of the present invention. Drawing. Here, the sterling cycle-based heat engine system 10 according to the preferred embodiment of the present invention shown in Figures 6, 9 and 10 shows an example configured by applying a cylinder method, the example shown in Figure 6 is applied to the heating heat source In this case, FIG. 9 shows a case where a cooling heat source is applied, and FIG. 10 shows a case where both a heating heat source and a cooling heat source are applied.
도 6을 참조하면, 본 발명의 바람직한 실시예에 따른 스털링 사이클 기반의 열기관 시스템(10)은 펌핑 유니트(20), 구동 유니트(30) 및 연결 라인(50)을 구비하여, 펌핑 유니트(20), 구동 유니트(30) 및 이들을 접속시키는 연결 라인(50)을 통해 열매체(기체, 대표적으로 공기)가 일방향으로 흘러 외부(또는 순환을 통한 폐회로)로 흐르도록 하여 작동된다. Referring to FIG. 6, a sterling cycle based heat engine system 10 according to a preferred embodiment of the present invention includes a pumping unit 20, a driving unit 30, and a connection line 50, so that the pumping unit 20 is provided. The heat medium (gas, typically air) flows in one direction through the drive unit 30 and the connection line 50 connecting them to the outside (or closed circuit through circulation).
이때, 펌핑 유니트(20)는 열매체가 수용되는 정해진 용적(A1)의 내부 공간(21; cavity)를 갖고, 이 내부 공간(21)에 유입 및 유출되는 열매체에 의해 작동된다. 그리고, 구동 유니트(30)는 열매체가 수용되는 정해진 용적(A2)의 내부 공간(31; cavity)이 펌핑 유니트(20)의 내부 공간(21)의 용적(A1)보다 크게 형성되고, 내부 공간(31)에 유입 및 유출되는 열매체에 의해 작동된다. At this time, the pumping unit 20 has an internal space 21 (cavity) of a predetermined volume A1 in which the heat medium is accommodated, and is operated by the heat medium flowing in and out of the internal space 21. In addition, the drive unit 30 has an internal space 31 (cavity) of the predetermined volume A2 in which the heat medium is accommodated, and is formed larger than the volume A1 of the internal space 21 of the pumping unit 20, and the internal space ( It is operated by the heat medium flowing in and out of 31).
본 실시예에서 펌핑 유니트(20)와 구동 유니트(30)는 실린더 방식이 적용된다. 따라서, 펌핑 유니트(20)는 펌핑 유니트(20)의 내부 공간(21)을 형성하는 제 1 실린더 케이스(22)내에서 왕복운동되도록 설치되는 제 1 실린더 피스톤(24)을 갖는다. 그리고, 구동 유니트(30)는 구동 유니트(30)의 내부 공간(31)을 형성하는 제 2 실린더 케이스(32)내에서 왕복운동되도록 설치되는 제 2 실린더 피스톤(34)을 갖는다. 그리고, 제 1 및 제 2 실린더 피스톤(24, 34) 사이에는 링크 유니트(40)가 설치되어 제 1 및 제 2 실린더 피스톤(24, 34)이 접속되도록 하여 서로 동기되어 연동된 작동을 갖도록 함으로써, 센서, 밸브 등을 포함하는 주변장치를 감소시키면서 더욱 안정된 작동이 가능하도록 한다. In this embodiment, the pumping unit 20 and the driving unit 30 are cylinder type. Accordingly, the pumping unit 20 has a first cylinder piston 24 which is installed to reciprocate in the first cylinder case 22 forming the inner space 21 of the pumping unit 20. In addition, the drive unit 30 has a second cylinder piston 34 which is installed to reciprocate in the second cylinder case 32 forming the internal space 31 of the drive unit 30. In addition, the link unit 40 is installed between the first and second cylinder pistons 24 and 34 so that the first and second cylinder pistons 24 and 34 are connected to each other so as to have a synchronized operation with each other. This allows for more stable operation while reducing peripherals including sensors, valves and the like.
또한, 이와 같은 스털링 사이클 기반의 열기관 시스템(10)에서 연결 라인(50)은 펌핑 유니트(20)의 내부 공간(21)과 구동 유니트(30)의 내부 공간(31)이 연통되도록 하여 펌핑 유니트(20)의 내부 공간(21)과 구동 유니트(30)의 내부 공간(31) 상호간에 열매체의 흐름이 가능하도록 한다. 본 실시예에서 연결 라인(50)상에는 제 1 내지 제 4 흐름 제어밸브(52)가 설치되어 열매체(공기)의 흐름을 제어하도록 한다. 즉, 연결 라인(50)은 제 1 실린더 케이스(22)의 내부 공간(21)과 접속되는 측에 제 1 흐름 제어밸브(52) 및 제 3 흐름 제어밸브(56)가 설치되고, 제 2 실린더 케이스(32)의 내부 공간(31)과 접속되는 측에 제 2 흐름 제어밸브(54) 및 제 4 흐름 제어밸브(58)가 설치되도록 하고, 가열시키는 열원(가열 열원)이 작용되도록 한다. In addition, in the Stirling cycle-based heat engine system 10, the connection line 50 allows the internal space 21 of the pumping unit 20 and the internal space 31 of the driving unit 30 to communicate with each other. The heat medium is allowed to flow between the internal space 21 of the 20 and the internal space 31 of the drive unit 30. In the present embodiment, the first to fourth flow control valves 52 are installed on the connection line 50 to control the flow of the heat medium (air). That is, the connection line 50 is provided with a first flow control valve 52 and a third flow control valve 56 on the side connected to the internal space 21 of the first cylinder case 22, the second cylinder The second flow control valve 54 and the fourth flow control valve 58 are provided on the side connected to the internal space 31 of the case 32, and a heat source (heating heat source) for heating is applied.
한편, 본 실시예에서 링크 유니트(40)는 피벗운동이 가능하도록 제 1 및 제 2 실린더 피스톤(24, 34)과 링크(44)로 접속되고, 동력이 출력되는 회전축(도시 않음)에 결합되는 플라이 휠(42)을 설치하여 회전력이 축적되도록 함으로써, 도 6의 (a), (b), (c) 단계로 이루어지는 제 1 및 제 2 실린더 피스톤(24, 34)의 운동이 원활하게 이루어지도록 한다. On the other hand, in the present embodiment, the link unit 40 is connected to the first and second cylinder pistons 24 and 34 and the link 44 to enable the pivoting movement, and is coupled to a rotating shaft (not shown) through which power is output. By installing the flywheel 42 so that the rotational force is accumulated, the movement of the first and second cylinder pistons 24 and 34 consisting of the steps (a), (b) and (c) of FIG. 6 is performed smoothly. do.
한편, 도 9에서 보인 스털링 사이클 기반의 열기관 시스템(10)은 도 6과 동일한 구성을 가지면서 냉각 열원이 적용되는 경우를 보인 것으로, 펌핑 유니트(20)의 제 1 실린더 케이스(22)와 구동 유니트(30)의 제 2 실린더 케이스(32)를 연결하는 제 2 연결 라인(50")에는 냉각 열원이 작용된다. 그리고, 도 10에서 보인 스털링 사이클 기반의 열기관 시스템(10)은 도 7 및 도 9에서 적용한 가열 열원과 냉각 열원을 동시에 사용하도록 구성되는 차이점이 있다. On the other hand, the heat engine system 10 based on the Stirling cycle shown in FIG. 9 shows a case in which a cooling heat source is applied while having the same configuration as that of FIG. 6, and the first cylinder case 22 and the driving unit of the pumping unit 20 are applied. A cooling heat source is applied to the second connecting line 50 "connecting the second cylinder case 32 of 30. The heat engine system 10 based on the Stirling cycle shown in Fig. 10 is shown in Figs. There is a difference that is configured to use the heating heat source and cooling heat source applied at the same time.
도 7 및 도 10에 따른 스털링 사이클 기반의 열기관 시스템(10)은 펌핑 유니트(20)에 열매체의 일방향 이동을 유도하는 제 1 및 제 3 흐름 제어밸브(52, 56)가 설치된다. 이 제 1 및 제 3 흐름 제어밸브(52, 56)는 체크밸브 또는 캠에 의하여 작동되는 밸브로 이루어질 수 있다. 펌핑 유니트(92)의 제 1 실린더 피스톤(24)이 압축되면 하부의 제 3 흐름 제어밸브(56)는 닫히게 되어 내부 압력이 증가되면서, 상부의 제 1 흐름 제어밸브(52)가 자동적으로 열리고 공기가 제 1 연결 라인(50')으로 이동되게 된다. 그리고, 구동 유니트(30) 측에 캠에 의해 작동이 되는 제 2 및 제 4 흐름 제어밸브(54, 58)가 설치되어 있으며, 팽창시에는 제 1 연결 라인(50')에서 오는 공기가 구동 유니트(30)의 제 2 실린더 케이스(32) 내로 들어갈 수 있도록 되고, 배기시에는 제 1 연결 라인(50')에서 오는 공기를 차단하고, 구동 유니트(30)의 제 2 실린더 케이스(32) 내 공기를 외부로 보낼 수 있도록 구동이 된다. 이때 구동 유니트(30)로 들어가는 공기의 양을 조절하기 위하여 제 2 및 제 4 흐름 제어밸브(54, 58)는 캠에 의하여 연동되게 하거나, 별도의 자동제어장치를 통하여 개폐하되 닫는 시기는 연결 라인(50)의 측정압력, 온도 및 연결 라인(50)내의 용적을 기준으로 설정하게 된다. In the heat engine system 10 based on the Stirling cycle according to FIGS. 7 and 10, the pumping unit 20 is provided with first and third flow control valves 52 and 56 for inducing one-way movement of the heat medium. These first and third flow control valves 52, 56 may be comprised of check valves or valves actuated by cams. When the first cylinder piston 24 of the pumping unit 92 is compressed, the lower third flow control valve 56 is closed to increase the internal pressure, so that the upper first flow control valve 52 automatically opens and air Is moved to the first connection line 50 '. In addition, second and fourth flow control valves 54 and 58, which are operated by a cam, are installed on the driving unit 30 side, and when the air is inflated, the air coming from the first connection line 50 'is driven. It is possible to enter into the second cylinder case 32 of the (30), when exhausting the air coming from the first connecting line 50 'is cut off, the air in the second cylinder case 32 of the drive unit 30 It is driven to send to outside. At this time, the second and fourth flow control valves 54 and 58 are interlocked by a cam to control the amount of air entering the drive unit 30, or are opened and closed through a separate automatic control device, but the closing time is a connection line. It is set based on the measured pressure of 50, the temperature and the volume in the connecting line 50.
한편, 본 실시예에 따른 스털링 사이클 기반의 열기관 시스템(10)에서 구동 유니트(30)가 작동되는 방식인 단열팽창 과정에 있어 구동 유니트(30)의 제 2 실린더 피스톤(34)이 상사점에 있을 때에는 공기 온도가 높고, 피스톤(34)이 밀려 나가면서 공기의 온도가 낮아지게 되는데, 만약에 제 2 실린더 케이스(32)의 외벽이 차가운 상태라면, 제 2 실린더 피스톤(34)이 밀려 나가기도 전에 식게 된다. 이에 이 공기는 미리 식어 부피가 줄기 때문에 실린더의 끝까지 힘을 발휘할 수가 없게 되므로써, 실린더의 외벽을 통하여 열손실이 발생하게 된다. 따라서, 제 2 실린더 케이스(32)에 단열을 함으로써 이러한 손실을 저감시킬 수 있다. Meanwhile, the second cylinder piston 34 of the drive unit 30 may be at the top dead center in the adiabatic expansion process, which is a method in which the drive unit 30 operates in the heat engine system 10 based on the Stirling cycle according to the present embodiment. When the air temperature is high, the temperature of the air is lowered as the piston 34 is pushed out. If the outer wall of the second cylinder case 32 is cold, before the second cylinder piston 34 is pushed out, It cools down. As the air cools down in advance, the air cannot be exerted to the end of the cylinder because the volume is low, resulting in heat loss through the outer wall of the cylinder. Thus, the second cylinder Such a loss can be reduced by heat-insulating the case 32.
도 7은 도 6에서 보인 스털링 사이클 기반의 열기관 시스템의 펌핑 유니트, 연결 라인 및 구동 유니트에서의 압력선도를 보여주는 그래프 도면으로서, 도 7의 (a)는 펌핑 유니트(20)의 내부 공간(21)에서의 압력 변화를 보여주는 그래프이고, 도 7의 (b)는 가열 열원이 작용되는 제 1 연결 라인(50')의 압력 변화를 보여주는 그래프이며, 도 7의 (c)는 구동 유니트(30)의 내부 공간(31)에서의 압력 변화를 보여주는 그래프이다. 그리고, 도 8은 도 6에서 보인 스털링 사이클 기반의 열기관 시스템의 펌핑 유니트, 연결 라인 및 구동 유니트에서의 일의 이득선도를 보여주는 그래프 도면으로서, 도 8의 (a)는 펌핑 유니트(20)측에서 일의 양의 변화를 보여주는 그래프이고, 도 8의 (b)는 구동 유니트(30)측에서 일의 양의 변화를 보여주는 그래프이며, 도 8의 (c)는 스털링 사이클 기반의 열기관 시스템(10)에서 얻어지는 일의 양{구동 유니트(30)측에서 일의 양 - 펌핑 유니트(20)측에서 일의 양}을 보여주는 그래프이다.FIG. 7 is a graph showing pressure diagrams of a pumping unit, a connection line, and a driving unit of the Stirling cycle-based heat engine system shown in FIG. 6, and FIG. 7A illustrates an internal space 21 of the pumping unit 20. 7 (b) is a graph showing a change in pressure of the first connection line 50 ′ to which the heating heat source is applied, and FIG. 7 (c) is a view of the drive unit 30. It is a graph showing the pressure change in the internal space 31. FIG. 8 is a graph showing a gain diagram of work in the pumping unit, the connection line, and the driving unit of the Stirling cycle based heat engine system shown in FIG. 6, and FIG. 8A is a side of the pumping unit 20. 8 is a graph showing a change in the amount of work, Figure 8 (b) is a graph showing a change in the amount of work on the drive unit 30 side, Figure 8 (c) is a heat engine system 10 based on the Stirling cycle Is a graph showing the amount of work obtained on the basis of the amount of work on the driving unit 30 side-the amount of work on the pumping unit 20 side.
도 7을 참조하면, 도 7의 (a)와 같이 펌핑 유니트(10)의 중간 부분의 압력이 최고압 이상으로 증가하지 않는 이유는 연결 라인(50) 내의 압력과 같아져서 공기가 연결 라인(50) 내로 이동되는 과정이기 때문이다. 도 7의 (b)와 같이 연결 라인(50)내의 압력은 상시 가열 중에 있어 늘 적당한 압력으로 유지 되도록 한다. 도 7의 (c)와 같이 구동 유니트(30)의 압력도 팽창 유니트(20)의 제 1 흐름 제어밸브(52)가 닫히기 전까지는 연결 라인(50)내의 압력이 전달되고, 일정한 양의 공기가 이송된 후 제 1 흐름 제어밸브(52)가 닫히면서 완전히 팽창하면 자연스럽게 대기압과 같도록 이송량을 제한한다. 이 경우는 제 1 흐름 제어밸브(52)가 실린더 행정의 중간쯤에서 닫히도록 한다. 여기서, 도 7에서 도시한 그래프는 연결 라인(50)내 용적이 실린더의 용적에 비해 적당히 큰 경우{그래프를 만족시키는 경우}의 압력변화 선도이다.Referring to FIG. 7, the reason why the pressure in the middle portion of the pumping unit 10 does not increase above the maximum pressure as shown in FIG. 7A is equal to the pressure in the connection line 50 such that air is connected to the connection line 50. This is because the process is moved into. As shown in FIG. 7B, the pressure in the connection line 50 is always maintained at an appropriate pressure during the heating. As shown in FIG. 7C, the pressure in the connecting line 50 is transmitted until the pressure of the driving unit 30 is closed until the first flow control valve 52 of the expansion unit 20 is closed. After the transfer, when the first flow control valve 52 closes and fully inflates, the transfer amount is naturally limited to the atmospheric pressure. In this case, the first flow control valve 52 is closed at about the middle of the cylinder stroke. Here, the graph shown in FIG. 7 is a pressure change diagram in the case where the volume in the connecting line 50 is moderately larger than the volume of the cylinder (when the graph is satisfied).
도 8은 도 7의 압력값에 피스톤의 단면적을 곱하여 힘으로 그 크기를 나타낸 선도이다. 도 8의 (a)와 같은 펌핑 유니트(20)의 단면적보다 도 8의 (b)와 같은 구동 유니트(30)의 단면적이 크므로 도 8의 (c)와 같은 힘의 차이가 발생된다. 구동 유니트(30)에서 생성되는 에너지에서 펌핑 유니트(20)에서 필요로 하는 에너지를 차감한 것이 엔진이 열로부터 운동 에너지로 변환된 양이 된다.8 is a diagram showing the magnitude of the force by multiplying the cross-sectional area of the piston by the pressure value of FIG. Since the cross-sectional area of the driving unit 30 as shown in FIG. 8 (b) is larger than that of the pumping unit 20 as shown in FIG. 8 (a), a force difference as shown in FIG. 8 (c) occurs. Subtracting the energy required by the pumping unit 20 from the energy generated by the drive unit 30 is the amount of the engine converted from heat to kinetic energy.
도 11은 본 발명의 바람직한 또 다른 실시예에 따른 스털링 사이클 기반의 열기관 시스템을 설명하기 위한 도면이고, 도 12는 본 발명의 바람직한 또 다른 실시예에 따른 스털링 사이클 기반의 열기관 시스템을 설명하기 위한 도면이며, 도 13은 본 발명의 바람직한 또 다른 실시예에 따른 스털링 사이클 기반의 열기관 시스템을 설명하기 위한 도면이다. 11 is a view for explaining a Stirling cycle-based heat engine system according to another preferred embodiment of the present invention, Figure 12 is a view for explaining a Stirling cycle-based heat engine system according to another preferred embodiment of the present invention 13 is a view for explaining a Stirling cycle-based heat engine system according to another preferred embodiment of the present invention.
도 11 내지 도 13을 참조하면, 본 실시예에 따른 스털링 사이클 기반의 열기관 시스템(10)은 전술한 실린더 방식과 동등하게 본 발명의 기술 사상 아래 있는데, 이는 베인형 구동장치를 적용한 것이다. 예컨대, 본 발명자는 국제특허출원번호 제PCT/KR2010/008782호 "녹색성장을 위한 회전형 스털링 엔진"을 통해 베인형 구동방식의 스털링 엔진을 제안한 바 있는데, 본 발명에 따른 스털링 사이클 기반의 열기관 시스템(10)은 이와 같이 다양하게 제안되어 있는 베인형 구동방식을 펌핑 유니트(20)와 구동 유니트(30)에 적용하여 구성할 수 있는 것이다. 따라서, 본 실시예에 따른 스털링 사이클 기반의 열기관 시스템(10)의 특성은 전술한 실시예의 실린더 방식과 특성이 동일하게 나타난다. 11 to 13, the Stirling cycle-based heat engine system 10 according to the present embodiment is under the technical concept of the present invention, which is equivalent to the above-described cylinder type, which applies a vane type driving device. For example, the inventor has proposed a vane-type sterling engine through International Patent Application No. PCT / KR2010 / 008782 "Rotary Stirling Engine for Green Growth," according to the present invention. 10 may be configured by applying the vane type driving method proposed in various ways to the pumping unit 20 and the driving unit 30. Therefore, the characteristics of the stirling cycle-based heat engine system 10 according to the present embodiment are the same as those of the cylinder type of the above-described embodiment.
이와 같은 본 실시예에 따른 스털링 사이클 기반의 열기관 시스템(10)는 기본적인 작동에 있어서는 전술한 실린더 방식과 동일하지만, 베인형 구동방식이 적용된다. 즉, 본 실시예에 따른 스털링 사이클 기반의 열기관 시스템(10)은 전술한 예와 동일하게 펌핑 유니트(20)를 기준으로 하나의 행정이 진행될 때 펌핑 유니트(20)의 용적보다 구동 유니트(30)의 총 용적이 반드시 크도록 구성된다. The Stirling cycle-based heat engine system 10 according to the present embodiment is the same as the above-described cylinder type in basic operation, but a vane type driving type is applied. That is, the stirling cycle-based heat engine system 10 according to the present embodiment has a drive unit 30 rather than the volume of the pumping unit 20 when one stroke is performed based on the pumping unit 20 as in the above-described example. The total volume of is necessarily configured to be large.
그리고, 이와 같은 본 실시예에 따른 스털링 사이클 기반의 열기관 시스템(10)은 베인형 구동방식이 적용되므로, 제 1 로터(24')와 제 2 로터(34')의 각 베인(25, 35)가 밸브의 역할을 하게 되므로 전술한 실린더 방식이 적용된 형태와 달이 제어를 위한 밸브가 없어도 된다. 물론, 시스템의 자동제어를 위해 구동 유니트(30)의 입력 측에는 자동제어밸브를 설치할 수도 있는 것이다.In addition, since the vane-type driving method is applied to the heat engine system 10 based on the Stirling cycle according to the present embodiment, each vane 25 and 35 of the first rotor 24 ′ and the second rotor 34 ′ is applied. Acts as a valve, so the above-described cylinder type and moon do not need a valve for controlling. Of course, the automatic control valve may be installed on the input side of the drive unit 30 for the automatic control of the system.
다시, 도 11 내지 도 13을 참조하면, 본 실시예에 따른 스털링 사이클 기반의 열기관 시스템(10)은 펌핑 유니트(20), 구동 유니트(30) 및 연결 라인(50)을 구비하여, 펌핑 유니트(20), 구동 유니트(30) 및 이들을 접속시키는 연결 라인(50)을 통해 열매체(기체, 대표적으로 공기)가 일방향으로 흘러 외부(또는 순환을 통한 폐회로)로 흐르도록 하여 작동된다. Again, referring to FIGS. 11 to 13, the Stirling cycle based heat engine system 10 according to the present embodiment includes a pumping unit 20, a driving unit 30, and a connection line 50. 20), the heat medium (gas, typically air) flows in one direction through the drive unit 30 and the connection line 50 connecting them to operate to the outside (or closed circuit through the circulation).
이때, 펌핑 유니트(20)는 열매체가 수용되는 정해진 용적(A1)의 내부 공간(21; cavity)를 갖고, 이 내부 공간(21)에 유입 및 유출되는 열매체에 의해 작동된다. 그리고, 구동 유니트(30)는 열매체가 수용되는 정해진 용적(A2)의 내부 공간(31; cavity)이 펌핑 유니트(20)의 내부 공간(21)의 용적(A1)보다 크게 형성되고, 내부 공간(31)에 유입 및 유출되는 열매체에 의해 작동된다. 그리고, 연결 라인(50)은 펌핑 유니트(20)의 내부 공간(21)과 구동 유니트(30)의 내부 공간(31)이 연통되도록 하여 펌핑 유니트(20)의 내부 공간(21)과 구동 유니트(30)의 내부 공간(31) 상호간에 열매체의 흐름이 가능하도록 한다. At this time, the pumping unit 20 has an internal space 21 (cavity) of a predetermined volume A1 in which the heat medium is accommodated, and is operated by the heat medium flowing in and out of the internal space 21. In addition, the drive unit 30 has an internal space 31 (cavity) of the predetermined volume A2 in which the heat medium is accommodated, and is formed larger than the volume A1 of the internal space 21 of the pumping unit 20, and the internal space ( It is operated by the heat medium flowing in and out of 31). In addition, the connection line 50 allows the internal space 21 of the pumping unit 20 and the internal space 31 of the driving unit 30 to communicate with each other so that the internal space 21 of the pumping unit 20 and the driving unit ( The internal space 31 of 30) allows the flow of the heat medium to each other.
본 실시예에서 펌핑 유니트(20)와 구동 유니트(30)는 베인형 구동방식이 적용된다. 따라서, 펌핑 유니트(20)는 펌핑 유니트(20)의 내부 공간(21)을 형성하는 제 1 베인 하우징(22')내에서 베인(25)이 둘레로 설치되어 제 1 회전축(26)에 편심되게 결합되는 제 1 로터(24')를 갖는다. 그리고, 구동 유니트(30)는 구동 유니트(30)의 내부 공간(31)을 형성하는 제 2 베인 하우징(32')내에서 베인(35)이 둘레로 설치되어 제 2 회전축(36)에 편심되게 결합되는 제 2 로터(34')를 갖는다. In this embodiment, the pumping unit 20 and the driving unit 30 are applied with a vane type driving method. Accordingly, in the pumping unit 20, the vanes 25 are circumferentially installed in the first vane housing 22 ′ forming the internal space 21 of the pumping unit 20 so as to be eccentric to the first rotation shaft 26. It has a first rotor 24'to be engaged. In the drive unit 30, the vanes 35 are circumferentially installed in the second vane housing 32 ′ forming the internal space 31 of the drive unit 30 so as to be eccentric to the second rotation shaft 36. It has a second rotor 34 'that is coupled.
이때, 도 11 및 13에서 보는 바와 같이, 열원으로 열매체를 가열시키는 열원을 사용할 경우 열매체가 제 1 베인 하우징(22')의 내부 공간(21)으로 유입되어 연결 라인(50)을 통해 제 2 베인 하우징(32')의 내부 공간(31)으로 흘러 외부로 흐르도록 한다. 그리고, 도 12 및 도 13에서 보는 바와 같이, 열원으로 열매체를 냉각시키는 열원을 사용할 경우 열매체가 제 2 베인 하우징(32')의 내부 공간(31)으로 유입되어 연결 라인(50)을 통해 제 1 베인 하우징(22')의 내부 공간(31)으로 흘러 외부로 흐르도록 함으로써, 외부로부터 작용되는 열원에 의해 열매체의 흐름이 형성되어 작동이 가능하도록 한다. In this case, as shown in FIGS. 11 and 13, when using a heat source for heating the heat medium as the heat source, the heat medium flows into the inner space 21 of the first vane housing 22 ′ and the second vane through the connection line 50. It flows into the inner space 31 of the housing 32 'and flows outward. 12 and 13, when using a heat source for cooling the heat medium as a heat source, the heat medium flows into the internal space 31 of the second vane housing 32 ′ and is connected to the first line through the connection line 50. By flowing into the inner space 31 of the vane housing 22 'and flowing to the outside, the flow of the heat medium is formed by the heat source acting from the outside to enable the operation.
따라서, 도 11에서 보는 바와 같이, 가열 열원과 냉각 열원이 동시에 적용되는 스털링 사이클 기반의 열기관 시스템(10)은 연결 라인(50)으로 제 1 연결 라인(50')이 적용되는데, 이 제 1 연결 라인(50')은 제 1 베인 하우징(22')의 내부 공간(21)으로부터 열매체가 흘러 제 2 베인 하우징(32')의 내부 공간(31)으로 흐르도록 제 1 베인 하우징(22')과 제 2 베인 하우징(32')에 접속된다. 그리고, 도 12에서 보는 바와 같이, 냉각 열원이 적용되는 경우, 연결 라인(50)으로 제 2 연결 라인(50")이 적용되는데, 이 제 2 연결 라인(50")은 제 2 베인 하우징(32')의 내부 공간(31)으로부터 열매체가 흘러 제 1 베인 하우징(22')의 내부 공간(21)으로 흐르도록 제 1 베인 하우징(22')과 제 2 베인 하우징(32')에 접속된다. 그리고, 도 13에서 보는 바와 같이, 가열 열원과 냉각 열원이 동시에 사용되는 경우, 전술한 제 1 연결라인(50')과 제 2 연결 라인(50")이 동시에 적용되어 열매체가 제 1 연결 라인(50')과 제 2 연결 라인(50")으로 순환되어 폐회로를 이루게 된다.Accordingly, as shown in FIG. 11, in the Stirling cycle-based heat engine system 10 in which a heating heat source and a cooling heat source are applied at the same time, a first connection line 50 ′ is applied to the connection line 50. The line 50 'is connected to the first vane housing 22' such that the heat medium flows from the inner space 21 of the first vane housing 22 'and flows into the inner space 31 of the second vane housing 32'. It is connected to the second vane housing 32 '. As shown in FIG. 12, when a cooling heat source is applied, a second connection line 50 ″ is applied to the connection line 50, which is connected to the second vane housing 32. Is connected to the first vane housing 22 'and the second vane housing 32' so that the heat medium flows from the inner space 31 of the ') to flow into the inner space 21 of the first vane housing 22'. 13, when the heating heat source and the cooling heat source are used at the same time, the first connection line 50 ′ and the second connection line 50 ″ described above are simultaneously applied, and the heat medium is applied to the first connection line ( 50 ') and the second connection line 50 "to form a closed circuit.
이와 같은 본 실시예에 따른 스털링 사이클 기반의 열기관 시스템(10)은 일반적인 스털링 엔진 또는 외연기관과 같이 가역과정이 성립되며, 필요한 경우 히트펌프 또는 강제 열교환기로써도 사용가능하다. Such a Stirling cycle-based heat engine system 10 according to the present embodiment is a reversible process is established, such as a general Stirling engine or an external combustion engine, can be used as a heat pump or forced heat exchanger if necessary.
이와 같은 본 실시예에 따른 스털링 사이클 기반의 열기관 시스템(10)은 펌핑 유니트(20)와 구동 유니트(30)의 작동방향을 결정할 수 있도록 시동장치를 더 포함하게 되며, 이는 실린더 방식인 경우 장치가 극단적으로 상사점과 하사점에 멈추어 있는 경우와 반대방향으로 회전하도록 멈추어 있는 경우에 이와 연결된 장치 중 하나가 일정한 방향으로 회전하여야 할 때에는 문제가 생길 수 있기 때문이다. 실제 본 발명 자체만으로는 구조상 어느 방향으로 회전하든 문제는 없다.Such a stirling cycle-based heat engine system 10 according to the present embodiment further includes a starter to determine the operation direction of the pumping unit 20 and the drive unit 30, which is a cylinder type device This is because a problem may occur when one of the devices connected to it has to rotate in a constant direction when it is stopped to rotate in the opposite direction than when it is stopped at the top dead center and the bottom dead center. Indeed, the present invention alone does not matter in which direction the structure rotates.
한편, 일반적인 스털링 엔진과 대한민국 특허등록공보 등록번호 제10-0454814호에서 제안한 기술은 최종적으로 압축기 및 팽창기를 직접 가열하거나 냉각하여야 하지만, 본 실시예에 따른 스털링 사이클 기반의 열기관 시스템(10)은 펌핑 유니트(20)나 구동 유니트(30)를 직접가열하지 않고 이를 접속시키는 연결 라인(50)을 통해서 가열하거나 냉각한다. 따라서, 종래기술에 따른 스털링 엔진은 제한된 영역에서만 열교환을 하여야 한다는 치명적 약점을 지니고 있으나, 본 발명은 이러한 제약에서 완전히 벗어나 얼마든지 열교환 영역을 넓힐 수가 있으며 이렇게 늘어난 연결 라인(50)의 용적은 시스템의 작동에 장애가 되지 않을 뿐만 아니라 맥동을 줄여주고, 열효율을 높여주게 되는데 이는 단열압축 과정에 있기 때문이다.On the other hand, the technology proposed in the general Stirling engine and the Republic of Korea Patent Registration No. 10-0454814 should be directly heated or cooled the compressor and the expander, but the sterling cycle-based heat engine system 10 according to the present embodiment is pumped The unit 20 or the drive unit 30 is heated or cooled via a connection line 50 connecting them without direct heating. Therefore, the Stirling engine according to the prior art has a fatal weakness that heat exchange should be performed only in a limited area, but the present invention can completely extend the heat exchange area without any limitation from this restriction, and thus the volume of the connecting line 50 is increased in the system. Not only does it interfere with operation, it also reduces pulsation and improves thermal efficiency because it is in adiabatic compression.
또한, 이와 같은 종래기술은 동력을 얻기 위한 주 수단으로써 냉각이 반드시 필요하지만, 본 발명은 이러한 목적으로는 냉각이 전혀 필요하지 않다. 따라서 본 발명은 시스템의 전체적인 온도를 상당량 낮출 수 있다. 즉 동일한 열원을 갖는 경우에 시스템의 온도가 상승하지 않도록 기체를 빨리 순환하게 하면 된다. 빠르게 기체를 순환하게 하려면 작동속도를 그만큼 고속으로 돌게 하거나 각각의 장치의 용적을 늘려주면 된다. 고속으로 작동하는 것은 진동과 소음의 발생이 커지게 되므로 바람직하지 않고, 장치의 용적을 늘려주는 것이 합리적이라 하겠다.Moreover, while such a prior art requires cooling as a main means for obtaining power, the present invention does not require cooling at all for this purpose. Thus, the present invention can significantly lower the overall temperature of the system. In other words, the gas may be circulated quickly so that the temperature of the system does not rise when the same heat source is used. If you want the gas to circulate quickly, you can either run it at a higher speed or increase the volume of each device. It is not desirable to operate at high speeds because the generation of vibration and noise is large, and it is reasonable to increase the volume of the device.
또한, 이와 같은 종래기술은 폐회로를 형성하지 않으면 작동이 되지 않지만, 본 발명은 폐회로가 아닌 상태에서의 작동을 기본으로 하고 있다. 그리고, 특허 제10-0454814호의 경우 엔진의 효율을 높이기 위하여 프리 히터, 쿨러 및 재생기가 필요하지만, 본 발명에서는 배기제어장치가 필요하다.In addition, such a prior art does not operate unless a closed circuit is formed, but the present invention is based on the operation in a non-closed state. In the case of Patent No. 10-0454814, a preheater, a cooler, and a regenerator are required to increase the efficiency of an engine, but an exhaust control device is required in the present invention.
또한, 이와 같은 종래기술은 같은 용적의 압축기와 팽창기 또는 실린더를 사용하지만, 본 발명은 용적이 다른 펌핑 유니트(20)와 구동 유니트(30)를 사용하되 용적은 펌핑 유니트(20)의 한 사이클을 기준으로 구동 유니트(30)의 용적이 반드시 크도록 되어 있을 뿐만 아니라 용도도 다르다. 즉 일반 스털링 엔진은 냉각부에서 냉각하면서 절반의 동력을 발생시키고 가열부에서는 가열하면서 절반의 동력을 발생시키지만 본 발명에 따른 스털링 사이클 기반의 열기관 시스템(10)은 펌핑 유니트(20)는 펌핑만 하고, 구동 유니트(30)는 구동만 하도록 명확하게 역할이 구분되어져 있다.In addition, this prior art uses the same volume of compressor and expander or cylinder, but the present invention uses pumping unit 20 and drive unit 30 with different volumes, but the volume is one cycle of pumping unit 20. As a reference, not only the volume of the drive unit 30 is necessarily large, but also the use thereof is different. That is, the general Stirling engine generates half of the power while cooling in the cooling unit and generates half the power while heating in the heating unit, but the pumping unit 20 pumps only the pumping unit 20 based on the Stirling cycle based on the present invention. The driving unit 30 is clearly divided in roles so as to drive only.
또한, 특허 제10-0454814호는 압축기와 팽창기를 연결하는 제1연결관과 제2연결관이 있으나, 이는 단지 기체를 수송하는 수단으로 밖에는 사용이 불가하여 설사 가열 및 냉각을 하더라도 시스템에는 아무런 영향을 미치지 못한다. 하지만, 본 발명은 이와 유사한 연결관{연결라인(50)}을 가열 및 냉각을 위해 사용하고 있으므로 파이프의 역할이 완전히 다를 뿐만 아니라 본 발명의 핵심 내용이기도 하다.In addition, Patent No. 10-0454814 has a first connecting pipe and a second connecting pipe connecting the compressor and the expander, but it is only available as a means of transporting gas, so even if the heating and cooling of the diarrhea has no effect on the system. Does not reach. However, the present invention uses a similar connection pipe (connection line 50) for heating and cooling, so the role of the pipe is not only completely different, but also the core of the present invention.
또한, 이와 같은 종래기술은 두 개의 실린더 혹은 압축기와 팽창기의 회전부는 반드시 기계적으로 연결되어야 하지만, 본 발명은 펌핑 유니트(20)와 구동 유니트(30)를 반드시 연결할 필요가 없어 완전히 분리되게 할 수 있다. 물론 이때에는 가열 혹은 냉각 열원이 작용되는 연결 라인(50)내의 공기의 온도와 압력을 측정하는 센서를 추가하고, 구동 유니트(30)의 입력밸브를 측정된 온도와 압력 그리고 연결 라인(50)의 용적을 기반으로 닫히는 시기나 위치를 조절하여 배출되는 공기의 양을 제어할 수 있기 때문이다.In addition, in the prior art as described above, the two cylinders or the rotating parts of the compressor and the expander must be mechanically connected, but the present invention does not necessarily connect the pumping unit 20 and the driving unit 30 so that they can be completely separated. . Of course, at this time, a sensor for measuring the temperature and pressure of the air in the connection line 50 to which the heating or cooling heat source is applied is added, and the input valve of the drive unit 30 measures the measured temperature and pressure and the connection line 50. This is because the amount of air discharged can be controlled by adjusting the closing timing or position based on the volume.
상술한 바와 같은, 본 발명의 바람직한 실시예에 따른 스털링 사이클 기반의 열기관 시스템을 상기한 설명 및 도면에 따라 도시하였지만, 이는 예를 들어 설명한 것에 불과하며 본 발명의 기술적 사상을 벗어나지 않는 범위 내에서 다양한 변화 및 변경이 가능하다는 것을 이 분야의 통상적인 기술자들은 잘 이해할 수 있을 것이다.As described above, the Stirling cycle-based heat engine system according to a preferred embodiment of the present invention has been shown in accordance with the above description and drawings, but this is merely described for example and various within the scope without departing from the spirit of the present invention. It will be understood by those skilled in the art that variations and modifications are possible.
도 2는 본 발명의 기술 사상에 따른 스털링 사이클 기반의 열기관 시스템을 설명하기 위한 도면이다. 2 is a view for explaining a heat engine system based on the Stirling cycle according to the spirit of the present invention.
도 2를 참조하면, 본 발명에 따른 스털링 사이클 기반의 열기관 시스템(10)은 펌핑 유니트(20), 구동 유니트(30) 및 연결 라인(50)을 구비하여, 구동 유니트(30)의 용적(A2)이 펌핑 유니트(20)의 용적(A1)보다 크게 하고, 펌핑 유니트(20)와 구동 유니트(30)를 접속시키는 연결 라인(50)을 통해 열매체(기체, 대표적으로 공기)가 일방향으로 흘러 외부(또는 순환을 통한 폐회로)로 흐르도록 하여 작동되므로, 종래기술에 따른 열기관 시스템들이 갖고 있는 열교환의 병목현상을 제거함과 동시에 제한된 열교환 영역을 상대적으로 자유롭게 확장시킬 수 있도록 하고, 냉각을 하지 않고도 열매체의 흐름을 형성하여 엔진과 같은 구동체를 작동시킬 수 있도록 한다. 예컨대, 본 발명에 따른 스털링 사이클 기반의 열기관 시스템(10)은 열원으로서, 도 6 및 도 11을 통해 보인 본 발명의 바람직한 실시예와 같이 열매체를 가열시키는 열원(가열 열원)을 적용할 수 있고, 도 9 및 도 12를 통해 보인 본 발명의 바람직한 실시예와 같이 열매체를 냉각시키는 열원(냉각 열원)을 적용할 수 있으며, 도 10 및 도 13을 통해 보인 본 발명의 바람직한 실시예와 같이 가열 열원과 냉각 열원을 동시에 적용할 수 있는 것이다. Referring to FIG. 2, the Stirling cycle-based heat engine system 10 according to the present invention includes a pumping unit 20, a driving unit 30, and a connection line 50, thereby providing a volume A2 of the driving unit 30. ) Is larger than the volume A1 of the pumping unit 20, and the heat medium (gas, typically air) flows in one direction through the connecting line 50 connecting the pumping unit 20 and the driving unit 30. (Or closed circuit through the circulation), so that the heat exchange system has a bottleneck of heat exchange in the prior art and relatively freely expand the limited heat exchange zone, without cooling It builds up the flow so that it can actuate a drive such as an engine. For example, the Stirling cycle-based heat engine system 10 according to the present invention may apply a heat source (heating source) for heating the heat medium as a preferred embodiment of the present invention shown through FIGS. 6 and 11 as a heat source, A heat source (cooling heat source) for cooling the heat medium may be applied as in the preferred embodiment of the present invention shown in FIGS. 9 and 12, and a heating heat source as in the preferred embodiment of the present invention shown in FIGS. 10 and 13. Cooling heat source can be applied at the same time.
이와 같은 본 발명에 따른 스털링 사이클 기반의 열기관 시스템(10)은 구동 유니트(30)의 용적(A2)이 펌핑 유니트(20)의 용적(A1) 보다 크게 형성하여 열매체(기체)의 흐름이 발생될 때, 펌핑 유니트(20)와 구동 유니트(30)간의 용적이 다름으로 인해 구동 유니트(30)의 작동력이 크도록 하는 것을 특징으로 한다. Such a stirling cycle-based heat engine system 10 according to the present invention has a volume (A2) of the drive unit 30 is formed larger than the volume (A1) of the pumping unit 20 to generate a flow of heat medium (gas) At this time, the operating force of the drive unit 30 is large because the volume between the pumping unit 20 and the drive unit 30 is different.
본 발명의 스털링 사이클 기반의 열기관 시스템(10)에서 펌핑 유니트(20)는 열매체가 수용되는 정해진 용적(A1)의 내부 공간(21; cavity)를 갖고, 이 내부 공간(21)에 유입 및 유출되는 열매체에 의해 작동된다. 구동 유니트(30)는 열매체가 수용되는 정해진 용적(A2)의 내부 공간(31; cavity)이 펌핑 유니트(20)의 내부 공간(21)의 용적(A1)보다 크게 형성되고, 내부 공간(31)에 유입 및 유출되는 열매체에 의해 작동된다. 여기서, 펌핑 유니트(20)와 구동 유니트(30)는, 본 발명의 바람직한 실시예와 같이, 일반적으로 스털링 엔진에서 널리 사용되고 있는 실린더 방식과 베인형 구동방식을 적용하여 이루어질 수 있다. In the Stirling cycle-based heat engine system 10 of the present invention, the pumping unit 20 has an internal space 21 (cavity) of a predetermined volume A1 in which a heat medium is accommodated, and flows in and out of the internal space 21. It is operated by the heat medium. The drive unit 30 has an internal space 31 (cavity) of the predetermined volume A2 in which the heat medium is accommodated, and is formed larger than the volume A1 of the internal space 21 of the pumping unit 20, and the internal space 31 It is operated by the heat medium flowing in and out. Here, the pumping unit 20 and the driving unit 30, as in the preferred embodiment of the present invention, can be made by applying a cylinder type and a vane type driving method which are generally used in a Stirling engine.
또한, 본 발명의 스털링 사이클 기반의 열기관 시스템(10)에서 연결 라인(50)은 펌핑 유니트(20)의 내부 공간(21)과 구동 유니트(30)의 내부 공간(31)이 연통되도록 하여 펌핑 유니트(20)의 내부 공간(21)과 구동 유니트(30)의 내부 공간(31) 상호간에 열매체의 흐름이 가능하도록 한다. 이와 같은 연결 라인(50)은 그 길이 및 배치 구조를 필요에 따라 다양하게 설정할 수 있으므로, 이 연결 라인(50)에 열원을 적용하여 종래기술에 따른 스털링 사이클 기반의 열기관 시스템에 비해 상대적으로 제한된 열교환 영역을 비교적 자유롭게 확장시킬 수 있다. In addition, in the heat engine system 10 based on the Stirling cycle of the present invention, the connection line 50 allows the internal space 21 of the pumping unit 20 to communicate with the internal space 31 of the driving unit 30. The heat medium is allowed to flow between the internal space 21 of the 20 and the internal space 31 of the drive unit 30. Since the connection line 50 can be set to various lengths and arrangements as necessary, by applying a heat source to the connection line 50, relatively limited heat exchange compared to the heat engine system based on the Stirling cycle according to the prior art. The area can be expanded relatively freely.
이와 같은 본 발명에 따른 스털링 사이클 기반의 열기관 시스템(10)은 연결 라인(50)에 작용되는 열원에 의해 펌핑 유니트(20)의 내부 공간(21)과 구동 유니트(30)의 내부 공간(31) 중 어느 한 방향으로 열매체가 흐르는 흐름이 형성되도록 한다. Such a stirling cycle-based heat engine system 10 according to the present invention is the internal space 21 of the pumping unit 20 and the internal space 31 of the drive unit 30 by a heat source acting on the connection line 50. The flow of the heating medium in any one of the directions is formed.
그리고, 본 발명에 따른 스털링 사이클 기반의 열기관 시스템(10)은 펌핑 유니트(20)와 구동 유니트(30)가 연동되어 작동되도록 한 후, 열매체가 유입된 내부 공간{상기 펌핑 유니트(20)의 내부 공간(21)과 구동 유니트(30)의 내부 공간(31) 중 어느 하나}의 열매체가 외부로 흐르도록 하는 동시에 열매체가 유출된 내부 공간{상기 펌핑 유니트(20)의 내부 공간(21)과 구동 유니트(30)의 내부 공간(31) 중 나머지 하나}으로 외부의 열매체가 유입되도록 함으로써, 외부로부터 작용되는 열원에 의해 열매체의 흐름이 형성되어 펌핑 유니트(20)와 구동 유니트(30)의 작동이 가능하도록 한다. 예컨대, 도 6 및 도 11을 통해 보인 본 발명의 바람직한 실시예와 같이 열매체를 가열시키는 열원(가열 열원)을 적용할 때, 열매체가 펌핑 유니트(20)의 내부 공간(21)에서 구동 유니트(30)의 내부 공간(31)으로 흘러 제 1 및 제 2 실린더 피스톤(24, 34)이 작동된 후, 펌핑 유니트(20)의 내부 공간(21)으로 외부의 열매체(대기압 공기)가 유입되고, 구동 유니트(30)의 내부 공간(31)의 열매체(공기)가 외부로 유출되도록 한다. 그리고, 도 9 및 도 12를 통해 보인 본 발명의 바람직한 실시예와 같이 열매체를 냉각시키는 열원(냉각 열원)을 적용할 때, 열매체가 구동 유니트(30)의 내부 공간(31)에서 펌핑 유니트(20)의 내부 공간(21)으로 흘러 제 1 및 제 2 실린더 피스톤(24, 34)이 작동된 후, 구동 유니트(30)의 내부 공간(31)으로 외부의 열매체(대기압 공기)가 유입되고, 펌핑 유니트(20)의 내부 공간(21)의 열매체(공기)가 외부로 유출되도록 한다. 물론, 도 10 및 도 13을 통해 보인 본 발명의 바람직한 실시예와 같이 가열 열원과 냉각 열원을 동시에 적용하는 경우, 이와 같은 열매체의 흐름은 동시에 발생되게 된다. In addition, the heat engine system 10 based on the Stirling cycle according to the present invention allows the pumping unit 20 and the driving unit 30 to operate in conjunction with each other, and then introduces an internal space into which the heat medium flows (the inside of the pumping unit 20). The heat medium in any one of the space 21 and the internal space 31 of the drive unit 30 flows to the outside, and the internal space in which the heat medium flows out (the internal space 21 of the pumping unit 20 and the drive) By allowing the external heat medium to flow into the other one of the internal spaces 31 of the unit 30, the flow of the heat medium is formed by the heat source acting from the outside, so that the operation of the pumping unit 20 and the driving unit 30 is prevented. Make it possible. For example, when applying a heat source (heating heat source) for heating the heat medium as in the preferred embodiment of the present invention shown through FIGS. 6 and 11, the heat medium is driven in the internal space 21 of the pumping unit 20. After the first and second cylinder pistons 24 and 34 flow into the internal space 31 of the pump), external heat medium (atmospheric pressure air) flows into the internal space 21 of the pumping unit 20, and is driven. The heat medium (air) in the internal space 31 of the unit 30 is allowed to flow out. And, when applying a heat source (cooling heat source) for cooling the heat medium as in the preferred embodiment of the present invention shown through Figs. 9 and 12, the heat medium is pumped in the internal space 31 of the drive unit 30 (20) After the first and second cylinder pistons 24 and 34 are flowed into the internal space 21, the external heat medium (air pressure air) flows into the internal space 31 of the drive unit 30, and is pumped. The heat medium (air) in the internal space 21 of the unit 20 is allowed to flow out. Of course, when the heating heat source and the cooling heat source are applied at the same time as in the preferred embodiment of the present invention shown through FIGS. 10 and 13, the flow of the heat medium is generated at the same time.
도 3은 본 발명에 따른 스털링 사이클 기반의 열기관 시스템의 원리를 설명하기 위한 도면이고, 도 4는 본 발명에 따른 스털링 사이클 기반의 열기관 시스템의 작동 상태를 설명하기 위한 도면이다. 이때, 도 3 및 도 4는 본 발명에 따른 스털링 사이클 기반의 열기관 시스템의 원리를 설명하기 위해 본 발명의 바람직한 실시예에서 실린더 방식으로 펌핑 유니트(20)와 구동 유니트(30)를 구성한 형태를 적용한 실험장치를 보인 것이다. 따라서, 도 3 및 도 4의 실험 장치는 본 발명에 따른 스털링 사이클 기반의 열기관 시스템의 특징적인 작동이 이루어지도록 펌핑 유니트(20), 구동 유니트(30) 및 연결 라인(50)을 구비하여, 제 1 실린더 케이스(22)의 내부 공간(21)에 제 1 실린더 피스톤(24)이 설치되는 펌핑 유니트(20), 제 2 실린더 케이스(32)의 내부 공간(31)에 제 2 실린더 피스톤(34)이 설치되는 구동 유니트(30) 및 이들을 접속시키는 연결 라인(50)을 통해 열매체가 흐르도록 하고, 내부 열매체의 외부 배출을 위해 연결 라인(50) 상에 배기 밸브(1)를 설치하였다. 그리고, 실린더 방식이 적용되는 경우, 제 1 실린더 피스톤(24)과 제 2 실린더 피스톤(34)간의 작동이 연동되도록 링크 유니트(40)를 통해 제 1 실린더 피스톤(24)과 제 2 실린더 피스톤(34)을 접속시켰다. 그리고, 도 5는 본 발명에 따른 스털링 사이클 기반의 열기관 시스템의 부피 변화 및 부피와 압력 변화 관계를 설명하기 위한 그래프 도면이다. 이때, 도 5의 (a)는 부피 변화도이고, 도 5의 (b)는 부피 압력 변화 선도이다.3 is a view for explaining the principle of the Stirling cycle-based heat engine system according to the present invention, Figure 4 is a view for explaining the operating state of the Stirling cycle-based heat engine system according to the present invention. At this time, Figures 3 and 4 are applied to the configuration of the pumping unit 20 and the drive unit 30 in a cylindrical manner in order to explain the principle of the Stirling cycle-based heat engine system according to the present invention The experimental setup is shown. Thus, the experimental apparatus of FIGS. 3 and 4 is provided with a pumping unit 20, a drive unit 30 and a connection line 50 to achieve the characteristic operation of the Stirling cycle based heat engine system according to the invention. The pumping unit 20 in which the first cylinder piston 24 is installed in the internal space 21 of the first cylinder case 22, and the second cylinder piston 34 in the internal space 31 of the second cylinder case 32. The heat medium flows through the installed drive unit 30 and the connection line 50 connecting them, and an exhaust valve 1 is provided on the connection line 50 for the external discharge of the internal heat medium. And, when the cylinder system is applied, the first cylinder piston 24 and the second cylinder piston 34 through the link unit 40 so that the operation between the first cylinder piston 24 and the second cylinder piston 34 is interlocked. ) Is connected. 5 is a graph for explaining the volume change and the relationship between the volume change and the pressure change in the heat engine system based on the Stirling cycle according to the present invention. At this time, Figure 5 (a) is a volume change diagram, Figure 5 (b) is a volume pressure change diagram.
도 3 내지 도 5를 참조하면, 배기 밸브(1)를 열고, 제 1 실린더 및 제 2 실린더 피스톤(24, 34)을 좌우로 밀어 보게 되면, 배기 밸브(1)를 통해서 공기가 들어가고 나가는 것을 확인할 수 있다. 공기가 들어가는 경우 제 1 실린더 및 제 2 실린더 피스톤(24, 34)을 오른쪽으로 밀게 되면 전체적인 용적{제 1 실린더 피스톤(24)에 의해 형성되는 제 1 실린더 케이스(22)내의 용적과 제 2 실린더 피스톤(34)에 의해 형성되는 제 2 실린더 케이스(32)내의 용적}이 늘어나게 되어 외부의 공기가 대기압에 의해 밀려 들어가 상대적으로 내부의 공기 압력이 떨어지게 된다. 반대로 제 1 실린더 및 제 2 실린더 피스톤(24, 34)을 왼쪽으로 밀게 되면 전체적인 용적이 작아지므로 실린더 내부의 압력이 올라가게 되어 안에 있던 공기가 대기압을 뚫고 밖으로 나가게 된다. 본 발명은 이와 같은 현상을 이용한 것을 특징으로 한다. 3 to 5, when the exhaust valve 1 is opened and the first cylinder and the second cylinder pistons 24 and 34 are pushed from side to side, it is confirmed that air enters and exits through the exhaust valve 1. Can be. When air enters, pushing the first cylinder and the second cylinder pistons 24 and 34 to the right, the total volume (the volume in the first cylinder case 22 formed by the first cylinder piston 24 and the second cylinder piston The volume in the second cylinder case 32 formed by the 34 increases, so that the outside air is pushed by the atmospheric pressure and the inside air pressure is relatively lowered. On the contrary, when the first cylinder and the second cylinder pistons 24 and 34 are pushed to the left side, the overall volume is reduced, so that the pressure inside the cylinder is increased so that the air inside the air passes through the atmospheric pressure. The present invention is characterized by using such a phenomenon.
또한, 도 3에서 제 1 실린더 및 제 2 실린더 피스톤(24, 34)의 위치가 적당히 중간에 있도록 하고 배기 밸브(1)를 잠근다. 이 상태에서 제 1 실린더 및 제 2 실린더 피스톤(24, 34)을 좌측 방향 또는 우측 방향으로 밀게 되면 공기가 빠져나가거나 들어올 수 없으므로 피스톤을 움직이는데 힘이 들게 된다. 그러므로 피스톤에서 손을 떼게 되면 피스톤은 다시 원래의 자리로 가게 된다. 그리고, 배기 밸브(1)를 열고, 외부에서 강제로 공기를 넣어 주면, 반대의 현상이 되므로 제 1 실린더 및 제 2 실린더 피스톤(24, 34)은 오른쪽으로 이동하게 되고, 반대로 공기를 빼어주면 제 1 실린더 및 제 2 실린더 피스톤(24, 34)은 왼쪽으로 움직이게 된다.In addition, in FIG. 3, the position of the first cylinder and the second cylinder pistons 24, 34 is properly in the middle and the exhaust valve 1 is closed. In this state, when the first cylinder and the second cylinder pistons 24 and 34 are pushed in the left direction or the right direction, air cannot escape or enter, which causes a force to move the piston. Therefore, when the piston is released, the piston is returned to its original position. If the exhaust valve 1 is opened and air is forced in from the outside, the opposite phenomenon occurs, so that the first cylinder and the second cylinder pistons 24 and 34 move to the right. The first cylinder and the second cylinder pistons 24, 34 move to the left.
도 4의 (a)와 같이 제 1 실린더 및 제 2 실린더 피스톤(24, 34)을 충분히 왼쪽으로 밀어놓고, 배기 밸브(1)를 잠가 연결 라인(50)을 가열하면, 연결 라인(50)내의 공기를 가열하게 되고, 공기는 등온 팽창하게 된다. 이렇게 해서 팽창되는 것은 마치 외부에서 공기를 불어넣는 경우와 완전히 동일한 경우가 된다. 그리고, 계속해서 열을 가하게 되면 결과적으로 왼쪽에 있던 실린더 내의 공기는 모두 이송되면서 가열되어 오른쪽으로 이동되어 도 4의 (b)와 같은 상태{제 2 실린더 피스톤(34)이 위치 B에 이동된 상태}가 된다. 이러한 과정이 바로 동력을 발생시키는 과정이 되며, 도 6에서 보인 본 발명의 바람직한 실시예의 경우 플라이 휠(42)에 에너지가 저장되게 된다. 이렇게 저장된 에너지의 일부는 제 1 실린더 및 제 2 실린더 피스톤(24, 34)을 움직여 흡기 및 배기를 실시하고 다시 초기 상태인 도 4의 (a)와 같은 상태{제 2 실린더 피스톤(34)이 위치 A에 이동된 상태}로 되돌리게 된다. As shown in FIG. 4A, when the first cylinder and the second cylinder pistons 24 and 34 are sufficiently pushed to the left, the exhaust valve 1 is closed and the connection line 50 is heated. The air is heated and the air is isothermally expanded. In this way, the expansion is almost the same as if blowing air from the outside. Then, if heat is continuously applied, as a result, all the air in the cylinder on the left side is transferred and heated and moved to the right side, as shown in FIG. 4B (the state in which the second cylinder piston 34 is moved to position B). } This process is a process for generating power, in the case of the preferred embodiment of the present invention shown in Figure 6 will be stored in the fly wheel 42. Some of the energy stored in this way moves the first cylinder and the second cylinder pistons 24 and 34 to perform intake and exhaust, and again the state as shown in FIG. Is moved to A}.
이와 같은 본 발명에 따른 스털링 사이클 기반의 열기관 시스템(10)은 펌핑 유니트(20)를 기준으로 하나의 사이클이 완성될 때 펌핑 유니트(20)의 용적에 비해 구동 유니트(30)의 총 용적이 반드시 크게 하는 것을 특징으로 한다. 이때, 펌핑 유니트(10)와 구동 유니트(30)의 용적비는 대기압과 연결 라인(50)에서 얻을 수 있는 압력의 비율과 같게 하는 것이 바람직하다. 그리고, 하나의 사이클이 완성될 때 펌핑 유니트(20)에 입력되는 공기의 질량과 같은 질량의 공기가 구동 유니트(30)에 입력되도록 시간 또는 위치를 조정하도록 한다. 이렇게 함으로써 엔진에 직접 열을 가하는 대신 연결 라인(50)을 가열하거나 냉각할 수 있게 되었으며 필요한 열원도 자유롭게 얻을 수 있고, 적절한 열원만 있으면 어느 곳이나 장비를 구축하고 활용할 수 있게 되어 활용범위가 대단히 넓어지는 효과가 있다. Such a stirling cycle-based heat engine system 10 according to the present invention, when one cycle is completed on the basis of the pumping unit 20, the total volume of the drive unit 30 is necessarily compared to the volume of the pumping unit 20. It is characterized by enlarging. At this time, the volume ratio of the pumping unit 10 and the driving unit 30 is preferably equal to the ratio of the atmospheric pressure and the pressure that can be obtained in the connection line 50. Then, when one cycle is completed, time or position is adjusted so that air having the same mass as the mass of air input to the pumping unit 20 is input to the driving unit 30. This makes it possible to heat or cool the connection line 50 instead of directly heating the engine, freely obtaining the necessary heat source, and having a suitable heat source allows the equipment to be built and used anywhere. It's losing.
도 4의 과정으로 변화되는 것은 단일 실린더가 일정한 부피를 갖고 있는 상태에서 열을 받아 팽창한 과정을 나타낸 것과 완전히 동일하다. 따라서, 본 발명에 따른 스털링 사이클 기반의 열기관 시스템(10)을 해석하는 방법은 단일 실린더를 해석하는 것과 같다. 이에 대한 부피 압력변화 선도를 도 5의 (b)에 나타내었는데, 이 경우는 실린더의 용적이 가열 혹은 냉각 열원이 작용되는 연결 라인(50)의 용적에 비해 상대적으로 큰 경우이다.The process of FIG. 4 is completely the same as the process of expanding by receiving heat while a single cylinder has a constant volume. Thus, the method of analyzing the Stirling cycle based heat engine system 10 according to the present invention is equivalent to analyzing a single cylinder. 5 (b) shows a volume pressure change diagram for this, in which case the volume of the cylinder is relatively large compared to the volume of the connection line 50 to which the heating or cooling heat source is applied.
도 5의 (b)에서 보는 바와 같이, 대기압 윗부분에 해당되는 양이 에너지를 받아 동력으로 바뀐 양이 되는 것이며 되돌아간 흔적이 없는 이유는 이 공기를 다시 사용하지 않고 대기 중으로 방출해 없어지기 때문이다. 그러나, 적절하게 회전토크를 설정하면 배기되는 공기의 온도를 제어할 수 있으며 이에 따라 배출된 공기를 용도에 맞게 재사용하도록 구성할 수도 있다.As shown in (b) of FIG. 5, the amount corresponding to the upper part of the atmospheric pressure is the amount changed to power by receiving energy, and there is no trace back because the air is released to the atmosphere without being used again. . However, by setting the rotational torque appropriately, it is possible to control the temperature of the exhausted air, and thus may be configured to reuse the exhausted air according to the purpose.
한편, 기존의 폐회로로 구성된 일반적 스털링 엔진의 경우에는 반드시 냉각장치가 필요하고, 냉각의 성능에 따라 효율이 결정되었다. 그러나 본 발명에 따른 스털링 사이클 기반의 열기관 시스템(10)은 기본적으로는 개회로(열린 회로)로 구성을 하고, 자연의 찬 공기를 바로 흡입하면서 작동되므로 동력을 발생시키기 위한 냉각의 부담을 제거함으로써 비교적 낮은 온도에서도 엔진을 효율적으로 구동시키는 효과가 있다.On the other hand, in the case of a conventional Stirling engine consisting of a closed loop, a cooling device is required, and the efficiency is determined according to the cooling performance. However, the sterling cycle-based heat engine system 10 according to the present invention basically consists of an open circuit (open circuit), and operates by directly inhaling natural cold air, thereby eliminating the burden of cooling to generate power. There is an effect of driving the engine efficiently even at a relatively low temperature.
또한, 일반 스털링 엔진과 같이 실린더 헤드를 냉각할 필요가 없으므로 전체적인 시스템의 효율을 상당부분 높일 수가 있게 되었다. 이것은 기존의 시스템들이 냉각효율을 높이기 위해서는 냉각헤드의 온도를 어쩔 수 없이 높일 수밖에 없어 가열헤드의 온도도 그만큼 더 상승시킬 수밖에 없었기 때문이다. 이렇게 되면, 전체적인 시스템의 온도가 높아질 수밖에 없게 되고, 이것은 복사에 의한 열손실이 많이 발생함을 의미한다. 따라서 온도가 높을수록 효율은 떨어지게 되는 원인이 된다. 이는 태양열을 사용하는 경우에 아주 치명적인 문제로 대두가 되는 경우가 있는데 이러한 이유는 집열되는 가열부를 단열할 수가 없으므로 발생하는 문제이다. 참고로 복사에 의한 열손실은 스테판-볼츠만법칙에 의하여 계산되며, 이 값은 절대로 작은 값이 아니다. 다음 식은 스테판-볼츠만법칙을 표현한 식이다.In addition, there is no need to cool the cylinder head like a normal Stirling engine, which significantly increases the efficiency of the overall system. This is because existing systems are forced to raise the temperature of the cooling head in order to increase the cooling efficiency. In this case, the temperature of the whole system is inevitably high, which means that a lot of heat loss due to radiation occurs. Therefore, the higher the temperature, the lower the efficiency. This is a very fatal problem in the case of using solar heat, which is a problem that occurs because it is not possible to insulate the heating portion to be collected. Note that the heat loss due to radiation is calculated by the Stefan-Boltzmann law, which is by no means small. The following expression represents the Stefan-Boltzmann law.
Figure PCTKR2011009830-appb-I000001
Figure PCTKR2011009830-appb-I000001
상기 식에 따라 일례를 들어 보면, 1㎡로 얻을 수 있는 태양열이 1kW라고 가정하고, 반사경을 1㎡로 만들고, 엔진의 가열헤드 부분의 가로 세로를 10㎝되도록 제작하였다고 가정하면, 가열 헤드의 전 면적을 통해 들어오는 태양열은 1kW가 된다. 그런데 이 엔진을 효율적으로 구동하기 위해 냉각부의 온도를 500℃로 유지하고, 가열부의 온도를 1000℃로 유지한다면 어떻게 될까? 상기한 스테판-볼츠만의 법칙에 따라 계산하면 방사계수가 1인 경우 100㎠의 가열부에서 방사되는 에너지가 무려 1.4kW나 된다. 따라서 방사율이 아주 낮은 재료를 선택해야만 한다. 방사율이 0.1인 경우라 하더라도 140W의 손실이 발생되며, 이것은 들어오는 에너지의 14%를 차지하게 되는 것이다. 또한 이러한 방사율은 절대온도의 4제곱에 비례하는 양이므로 고온으로 엔진을 만드는 경우에는 신중히 고려해야할 사항이다. 그러나 냉각이 필요 없도록 하고 가열부의 온도를 500℃로 하고 방사율이 1인 경우는 200W로 낮아지게 되고, 방사율이 0.1인 경우는 20W가 된다. 똑같은 재료로 똑같은 시스템을 만들어 동력을 생산한다고 보면 전체적인 손실에 대한 비율은 140W에서 20W로 줄게 되는 것이다.Taking an example according to the above formula, assuming that the solar heat obtainable at 1 m 2 is 1 kW, the reflector is made 1 m 2, and it is assumed that the width of the heating head portion of the engine is 10 cm. The solar heat entering the area is 1 kW. But what if the temperature of the cooling unit is kept at 500 ° C and the temperature of the heating part is kept at 1000 ° C in order to drive the engine efficiently? When calculated according to Stefan-Boltzmann's law described above, when the radiation coefficient is 1, the energy radiated from a heating part of 100 cm 2 is 1.4 kW. Therefore, materials with very low emissivity must be selected. Even with an emissivity of 0.1, a loss of 140 W is generated, which accounts for 14% of the incoming energy. This emissivity is also proportional to the square of the absolute temperature, so it must be carefully considered when making engines at high temperatures. However, cooling is not required, and the temperature of the heating part is 500 ° C., and the emissivity is lowered to 200 W when the emissivity is 1, and 20 W when the emissivity is 0.1. If you make the same system with the same materials to produce power, the ratio of total losses will be reduced from 140W to 20W.
따라서, 기존의 태양열 집열 방식의 스털링 엔진은 집열 에너지에 대하여 효율을 어느 정도 이상 올리기가 매우 곤란하였으나, 가열 파이프의 공기 수송을 신속하게 함으로써 온도의 상승을 막아 이로 인한 효율저하를 상당부분 개선할 수 있게 되는 것이다. 그리고, 시스템의 온도를 냉각 헤드의 온도 상승분만큼을 다시 낮출 수 있도록 하면, 복사열에 의한 열손실을 상당량 줄일 수 있고, 또한 구동 유니트에 단열을 할 수 있게 되므로 전체적인 효율을 상당량 높이는 효과가 있다. Therefore, the conventional solar collector type Stirling engine is very difficult to raise the efficiency more than a certain degree for the energy collected, but it is possible to prevent the increase of the temperature by speeding up the air transport of the heating pipe, thereby significantly improving the efficiency decrease. Will be. In addition, if the temperature of the system can be lowered by the temperature rise of the cooling head again, heat loss due to radiant heat can be significantly reduced, and heat can be insulated from the drive unit, thereby increasing the overall efficiency considerably.
한편, 대기의 찬 공기를 바로 사용하므로 비교적 높은 온도차를 얻을 수 있으며, 높은 열전달률을 얻을 수 있다. 이는 다음의 식과 같이 열전달 방정식이 온도차에 비례하기 때문이다. On the other hand, since the cold air of the atmosphere is used directly, a relatively high temperature difference can be obtained and a high heat transfer rate can be obtained. This is because the heat transfer equation is proportional to the temperature difference as in the following equation.
Figure PCTKR2011009830-appb-I000002
Figure PCTKR2011009830-appb-I000002
따라서, 본 발명에 따른 스털링 사이클 기반의 열기관 시스템(10)은 전체적인 효율을 상승시키는 효과가 현저하고, 시스템의 온도가 높지 않으므로 부품의 수명이 늘고, 윤활 등의 유지관리비가 저렴해지고, 장비의 가격 또한 내릴 수 있는 효과가 있다.Therefore, the stirling cycle-based heat engine system 10 according to the present invention has a remarkable effect of increasing the overall efficiency, the system temperature is not high, so the life of parts is increased, maintenance costs such as lubrication are low, and the price of equipment It also has the effect of falling.
본 발명에 따른 스털링 사이클 기반의 열기관 시스템에 의하면, 풍부한 열원을 자유롭게 얻을 수 있어 엔진의 크기를 줄일 수 있고 활용성이 매우 높다. 그리고, 동력을 발생시키기 위한 냉각이 필요 없으므로 시스템의 효율이 높아 비교적 낮은 온도에서도 작동이 원활하다. 그리고, 시스템의 온도가 낮으므로 윤활 계통의 단가 및 유지 보수가 용이하다. 특히, 본 발명에 따른 스털링 사이클 기반의 열기관 시스템은 펌핑 유니트(20)와 구동 유니트(30)를 접속시키는 연결 라인(50)을 통해 열매체가 일방향으로 흘러 외부(또는 순환을 통한 폐회로)로 흐르도록 하므로, 종래기술과 같이 열교환의 병목현상이 발생되지 않는다. 또한, 비교적 긴 길이와 다양한 형태로 구성할 수 있는 연결 라인(50)에 열원을 적용할 수 있으므로, 종래기술에 따른 스털링 사이클 기반의 열기관 시스템에 비해 상대적으로 제한된 열교환 영역을 비교적 자유롭게 확장시킬 수 있다. 또한, 일을 한 열매체가 외부로 배출되도록 하는 경우 냉각 또는 가열 중 한 열원만의 적용으로 엔진을 작동시킬 수 있다.According to the Stirling cycle-based heat engine system according to the present invention, it is possible to freely obtain abundant heat source to reduce the size of the engine and very high utility. In addition, since the cooling to generate power is not necessary, the efficiency of the system is high and the operation is smooth even at a relatively low temperature. In addition, the low temperature of the system facilitates the cost and maintenance of the lubrication system. In particular, the heat engine system based on the Stirling cycle according to the present invention is such that the heat medium flows in one direction through the connection line 50 connecting the pumping unit 20 and the driving unit 30 to the outside (or closed circuit through circulation). Therefore, the bottleneck of the heat exchange does not occur as in the prior art. In addition, since the heat source can be applied to the connection line 50, which can be configured in a relatively long length and various forms, it is possible to expand the relatively limited heat exchange area relatively freely compared to the stirling cycle-based heat engine system according to the prior art. . In addition, when the working medium is discharged to the outside, the engine can be operated by the application of only one heat source during cooling or heating.

Claims (5)

  1. 스털링 사이클 기반의 열기관 시스템에 있어서, In a sterling cycle based heat engine system,
    열매체가 수용되는 정해진 용적(A1)의 내부 공간(21; cavity)를 갖고, 상기 내부 공간(21)에 유입 및 유출되는 열매체에 의해 작동되는 펌핑 유니트(20)와;A pumping unit (20) having an internal space (21; cavity) of a predetermined volume (A1) in which the heat medium is accommodated, and operated by the heat medium flowing in and out of the internal space (21);
    열매체가 수용되는 정해진 용적(A2)의 내부 공간(31; cavity)이 상기 펌핑 유니트(20)의 내부 공간(21)의 용적(A1)보다 크게 형성되고, 상기 내부 공간(31)에 유입 및 유출되는 열매체에 의해 작동되는 구동 유니트(30) 및;An internal space 31 of the predetermined volume A2 in which the heat medium is accommodated is formed larger than the volume A1 of the internal space 21 of the pumping unit 20, and flows in and out of the internal space 31. A driving unit 30 operated by a heating medium to be used;
    상기 펌핑 유니트(20)의 내부 공간(21)과 구동 유니트(30)의 내부 공간(31)이 연통되도록 하여 상기 펌핑 유니트(20)의 내부 공간(21)과 구동 유니트(30)의 내부 공간(31) 상호간에 열매체의 흐름이 가능하도록 하는 연결 라인(50)을 포함하여;The internal space 21 of the pumping unit 20 and the internal space 31 of the driving unit 30 communicate with each other so that the internal space 21 of the pumping unit 20 and the internal space of the driving unit 30 ( 31) comprising a connection line 50 which enables flow of the heat medium to each other;
    외부로부터 상기 연결 라인(50)에 작용되는 열원에 의해 상기 펌핑 유니트(20)의 내부 공간(21)과 구동 유니트(30)의 내부 공간(31) 중 어느 한 방향으로 열매체가 흐르는 흐름이 형성되도록 하여 연동되어 작동되도록 한 후, 열매체가 유입된 내부 공간{상기 펌핑 유니트(20)의 내부 공간(21)과 구동 유니트(30)의 내부 공간(31) 중 어느 하나}의 열매체가 외부로 흐르도록 하는 동시에 열매체가 유출된 내부 공간{상기 펌핑 유니트(20)의 내부 공간(21)과 구동 유니트(30)의 내부 공간(31) 중 나머지 하나}으로 외부의 열매체가 유입되도록 함으로써, 외부로부터 작용되는 열원에 의해 열매체의 흐름이 형성되어 상기 펌핑 유니트(20) 및 구동 유니트(30)의 작동이 가능하도록 하는 것을 특징으로 하는 스털링 사이클 기반의 열기관 시스템.The flow of heat medium in one of the inner space 21 of the pumping unit 20 and the inner space 31 of the driving unit 30 is formed by a heat source applied to the connection line 50 from the outside. After the interlocking operation, the heat medium flows into the inner space (the one of the internal space 21 of the pumping unit 20 and the internal space 31 of the driving unit 30) into which the heat medium is introduced. At the same time, the external heat medium flows into the internal space (the remaining one of the internal space 21 of the pumping unit 20 and the internal space 31 of the driving unit 30) in which the heat medium flows out, thereby acting from the outside. Stirling cycle-based heat engine system, characterized in that the flow of heat medium is formed by the heat source to enable the operation of the pumping unit (20) and the drive unit (30).
  2. 제 1 항에 있어서,The method of claim 1,
    상기 펌핑 유니트(20)와 구동 유니트(30)는 실린더 방식이 적용됨으로써, The pumping unit 20 and the drive unit 30 is a cylinder type is applied,
    상기 펌핑 유니트(20)는 상기 펌핑 유니트(20)의 내부 공간(21)을 형성하는 제 1 실린더 케이스(22)내에서 왕복운동되도록 설치되는 제 1 실린더 피스톤(24)을 구비하고, The pumping unit 20 has a first cylinder piston 24 which is installed to reciprocate in the first cylinder case 22 forming the inner space 21 of the pumping unit 20,
    상기 구동 유니트(30)는 상기 구동 유니트(30)의 내부 공간(31)을 형성하는 제 2 실린더 케이스(32)내에서 왕복운동되도록 설치되는 제 2 실린더 피스톤(34)을 구비하며, The drive unit 30 has a second cylinder piston 34 which is installed to reciprocate in the second cylinder case 32 forming the inner space 31 of the drive unit 30,
    상기 제 1 및 제 2 실린더 피스톤(24, 34) 사이에서 접속되도록 설치됨으로써 상기 제 1 및 제 2 실린더 피스톤(24, 34)이 동기되어 작동되도록 하는 링크 유니트(40)를 더 포함하는 것을 특징으로 하는 스털링 사이클 기반의 열기관 시스템.And a link unit 40 which is installed to be connected between the first and second cylinder pistons 24 and 34 so that the first and second cylinder pistons 24 and 34 operate in synchronization. Sterling cycle based heat engine system.
  3. 제 2 항에 있어서, The method of claim 2,
    상기 연결 라인(50)은 상기 제 1 실린더 케이스(22)의 내부 공간(21)과 접속되는 측에 제 1 흐름 제어밸브(52)가 설치되고, 상기 제 2 실린더 케이스(32)의 내부 공간(31)과 접속되는 측에 제 2 흐름 제어밸브(54)가 설치되며, 가열시키는 열원이 작용되는 제 1 연결 라인(50') 및,The connection line 50 is provided with a first flow control valve 52 on the side connected to the internal space 21 of the first cylinder case 22, the internal space of the second cylinder case 32 ( A second flow control valve 54 is installed on the side connected to 31, a first connection line 50 'on which a heat source for heating is applied, and
    상기 제 1 실린더 케이스(22)의 내부 공간(21)과 접속되는 측에 제 3 흐름 제어밸브(56)가 설치되고, 상기 제 2 실린더 케이스(32)의 내부 공간(31)과 접속되는 측에 제 4 흐름 제어밸브(58)가 설치되며, 냉각시키는 열원이 작용되는 제 2 연결 라인(50")을 구비하여, A third flow control valve 56 is installed at the side of the first cylinder case 22 connected to the internal space 21, and at the side of the second cylinder case 32 connected to the internal space 31. The fourth flow control valve 58 is installed and has a second connection line 50 "to which a heat source for cooling is applied,
    열매체가 상기 제 1 연결 라인(50')과 제 2 연결 라인(50")으로 순환되어 폐회로를 이루도록 하는 것을 특징으로 하는 스털링 사이클 기반의 열기관 시스템.Sterling cycle based heat engine system, characterized in that the heat medium is circulated to the first connecting line (50 ') and the second connecting line (50 ") to form a closed circuit.
  4. 제 1 항에 있어서, The method of claim 1,
    상기 펌핑 유니트(20)와 구동 유니트(30)는 베인형 구동방식이 적용됨으로써, The pumping unit 20 and the driving unit 30 is a vane type driving method is applied,
    상기 펌핑 유니트(20)는 상기 펌핑 유니트(20)의 내부 공간(21)을 형성하는 제 1 베인 하우징(22')내에서 베인(25)이 둘레로 설치되어 제 1 회전축(26)에 편심되게 결합되는 제 1 로터(24')를 구비하고, The pumping unit 20 has a vane 25 circumferentially installed in the first vane housing 22 ′ forming the internal space 21 of the pumping unit 20 so as to be eccentric to the first rotation shaft 26. Having a first rotor 24 'coupled thereto,
    상기 구동 유니트(30)는 상기 구동 유니트(30)의 내부 공간(31)을 형성하는 제 2 베인 하우징(32')내에서 베인(35)이 둘레로 설치되어 제 2 회전축(36)에 편심되게 결합되는 제 2 로터(34')를 구비하며, The drive unit 30 has a vane 35 circumferentially installed in the second vane housing 32 ′ forming the internal space 31 of the drive unit 30 so as to be eccentric with the second rotation shaft 36. Has a second rotor 34 'that is coupled,
    열원으로 열매체를 가열시키는 열원을 사용할 경우 열매체가 상기 제 1 베인 하우징(22')의 내부 공간(21)으로 유입되어 상기 연결 라인(50)을 통해 상기 제 2 베인 하우징(32')의 내부 공간(31)으로 흘러 외부로 흐르도록 하고, 열원으로 열매체를 냉각시키는 열원을 사용할 경우 열매체가 상기 제 2 베인 하우징(32')의 내부 공간(31)으로 유입되어 상기 연결 라인(50)을 통해 상기 제 1 베인 하우징(22')의 내부 공간(31)으로 흘러 외부로 흐르도록 함으로써, 외부로부터 작용되는 열원에 의해 열매체의 흐름이 형성되어 작동가능하도록 하는 것을 특징으로 하는 스털링 사이클 기반의 열기관 시스템.In the case of using a heat source for heating the heat medium as a heat source, the heat medium flows into the inner space 21 of the first vane housing 22 ′ and the inner space of the second vane housing 32 ′ through the connection line 50. In the case of using a heat source for flowing to the outside 31 and cooling the heat medium as a heat source, the heat medium flows into the inner space 31 of the second vane housing 32 ′ and passes through the connection line 50. Stirling cycle-based heat engine system, characterized in that by flowing to the inner space (31) of the first vane housing (22 ') to flow to the outside, the flow of heat medium is formed and operable by the heat source acting from the outside.
  5. 제 4 항에 있어서, The method of claim 4, wherein
    상기 연결 라인(50)은 가열시키는 열원이 작용되고, 상기 제 1 베인 하우징(22')의 내부 공간(21)으로부터 열매체가 흘러 상기 제 2 베인 하우징(32')의 내부 공간(31)으로 흐르도록 상기 제 1 베인 하우징(22')과 제 2 베인 하우징(32')에 접속되는 제 1 연결 라인(50') 및,A heat source for heating the connection line 50 is applied, and a heat medium flows from the internal space 21 of the first vane housing 22 ′ and flows into the internal space 31 of the second vane housing 32 ′. A first connection line 50 'connected to the first vane housing 22' and the second vane housing 32 ',
    냉각시키는 열원이 작용되고, 상기 제 2 베인 하우징(32')의 내부 공간(31)으로부터 열매체가 흘러 상기 제 1 베인 하우징(22')의 내부 공간(21)으로 흐르도록 상기 제 1 베인 하우징(22')과 제 2 베인 하우징(32')에 접속되는 제 2 연결 라인(50")을 구비하여, A heat source for cooling is applied, and the first vane housing is formed such that a heat medium flows from the internal space 31 of the second vane housing 32 ′ and flows into the internal space 21 of the first vane housing 22 ′. 22 'and a second connection line 50 "connected to the second vane housing 32',
    열매체가 상기 제 1 연결 라인(50')과 제 2 연결 라인(50")으로 순환되어 폐회로를 이루도록 하는 것을 특징으로 하는 스털링 사이클 기반의 열기관 시스템.Sterling cycle based heat engine system, characterized in that the heat medium is circulated to the first connecting line (50 ') and the second connecting line (50 ") to form a closed circuit.
PCT/KR2011/009830 2011-01-07 2011-12-20 Stirling cycle-based heat engine system WO2012093786A2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20110001881 2011-01-07
KR10-2011-0001881 2011-01-07

Publications (2)

Publication Number Publication Date
WO2012093786A2 true WO2012093786A2 (en) 2012-07-12
WO2012093786A3 WO2012093786A3 (en) 2012-09-07

Family

ID=46457793

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2011/009830 WO2012093786A2 (en) 2011-01-07 2011-12-20 Stirling cycle-based heat engine system

Country Status (2)

Country Link
KR (1) KR20120080522A (en)
WO (1) WO2012093786A2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101899466B1 (en) * 2016-09-29 2018-09-18 한국과학기술원 Stirling Engine Using Supercritical Fluids

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002206819A (en) * 2001-01-04 2002-07-26 Tatsutoshi Hashimoto Starling engine
KR20030068378A (en) * 2002-02-15 2003-08-21 한국기계연구원 Scroll-type heat exchange system applicable to stirling engine or refrigerator
KR100849506B1 (en) * 2007-05-28 2008-07-31 한국기계연구원 Scroll-type stirling cycle engine
US20090313989A1 (en) * 2008-06-23 2009-12-24 Doss Lee E Rotary stirling cycle machine

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002206819A (en) * 2001-01-04 2002-07-26 Tatsutoshi Hashimoto Starling engine
KR20030068378A (en) * 2002-02-15 2003-08-21 한국기계연구원 Scroll-type heat exchange system applicable to stirling engine or refrigerator
KR100849506B1 (en) * 2007-05-28 2008-07-31 한국기계연구원 Scroll-type stirling cycle engine
US20090313989A1 (en) * 2008-06-23 2009-12-24 Doss Lee E Rotary stirling cycle machine

Also Published As

Publication number Publication date
KR20120080522A (en) 2012-07-17
WO2012093786A3 (en) 2012-09-07

Similar Documents

Publication Publication Date Title
US8424284B2 (en) High efficiency positive displacement thermodynamic system
CA2586382A1 (en) Method and apparatus for converting thermal energy to mechanical energy
WO2009066178A4 (en) Heat engines
KR20140041774A (en) Semi-isothermal compression engines with separate combustors and expanders, and associated system and methods
US9021800B2 (en) Heat exchanger and associated method employing a stirling engine
US8978618B2 (en) Heat engine
US9482450B2 (en) Ericsson cycle device improvements
JP2023082139A (en) Efficient heat recovery engine
JP3521183B2 (en) Heat engine with independently selectable compression ratio and expansion ratio
JP5525371B2 (en) External combustion type closed cycle heat engine
CN201723330U (en) External combustion engine
KR101018379B1 (en) External combustion engine and output method thereof
JP2009270559A (en) Rotary type external combustion engine
WO2012093786A2 (en) Stirling cycle-based heat engine system
JP6494662B2 (en) Variable volume transfer shuttle capsule and valve mechanism
US20200040731A1 (en) Near-adiabatic engine
CN210686064U (en) Pressure storage type engine
US10208599B2 (en) Heat engine with linear actuators
Komninos et al. The effect of compressor-expander phasing in an Ericsson engine: A numerical study
JPH03222850A (en) Stirling engine
WO2021259401A1 (en) Stirling engine
WO2022108574A2 (en) Multi cycle engine
RU2285141C2 (en) External combustion engine
CN110645050A (en) Pressure storage type engine and acting method
WO2020019048A1 (en) Integrated internal combustion engine formed by a main unit with a turbine and a secondary unit with pistons, and a method for controlling the thermodynamic cycle of the engine

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11854991

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase in:

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11854991

Country of ref document: EP

Kind code of ref document: A2