WO2018062542A1 - 電子メディエーター修飾酵素並びにそれを用いた酵素電極、分光学的分析キット及び酵素試験紙 - Google Patents

電子メディエーター修飾酵素並びにそれを用いた酵素電極、分光学的分析キット及び酵素試験紙 Download PDF

Info

Publication number
WO2018062542A1
WO2018062542A1 PCT/JP2017/035676 JP2017035676W WO2018062542A1 WO 2018062542 A1 WO2018062542 A1 WO 2018062542A1 JP 2017035676 W JP2017035676 W JP 2017035676W WO 2018062542 A1 WO2018062542 A1 WO 2018062542A1
Authority
WO
WIPO (PCT)
Prior art keywords
enzyme
electron mediator
oxidoreductase
modifying enzyme
group
Prior art date
Application number
PCT/JP2017/035676
Other languages
English (en)
French (fr)
Inventor
順子 島崎
秀樹 緒方
栄治 渡辺
Original Assignee
有限会社アルティザイム・インターナショナル
株式会社同仁化学研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 有限会社アルティザイム・インターナショナル, 株式会社同仁化学研究所 filed Critical 有限会社アルティザイム・インターナショナル
Priority to JP2018542970A priority Critical patent/JPWO2018062542A1/ja
Publication of WO2018062542A1 publication Critical patent/WO2018062542A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M1/00Apparatus for enzymology or microbiology
    • C12M1/34Measuring or testing with condition measuring or sensing means, e.g. colony counters
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/26Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving oxidoreductase
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/26Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving oxidoreductase
    • C12Q1/32Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving oxidoreductase involving dehydrogenase
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/54Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving glucose or galactose
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/60Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving cholesterol
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/75Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated
    • G01N21/77Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator
    • G01N21/78Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator producing a change of colour
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/28Electrolytic cell components
    • G01N27/30Electrodes, e.g. test electrodes; Half-cells
    • G01N27/327Biochemical electrodes, e.g. electrical or mechanical details for in vitro measurements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/416Systems
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N31/00Investigating or analysing non-biological materials by the use of the chemical methods specified in the subgroup; Apparatus specially adapted for such methods
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N31/00Investigating or analysing non-biological materials by the use of the chemical methods specified in the subgroup; Apparatus specially adapted for such methods
    • G01N31/22Investigating or analysing non-biological materials by the use of the chemical methods specified in the subgroup; Apparatus specially adapted for such methods using chemical indicators

Definitions

  • the present invention relates to a novel electron mediator-modified enzyme that is excellent in electron transfer efficiency and enables highly sensitive and highly accurate measurement of biological materials, an enzyme electrode using the electron mediator-modified enzyme, and a spectroscopic analysis kit And enzyme test paper.
  • An electrochemical biosensor is a device that combines the high substrate selectivity of an enzyme reaction by combining an oxidoreductase reaction with an electrode reaction, as well as electrochemical measurement characteristics that enable simple and highly sensitive measurement. It is.
  • it is important to improve the electron transfer rate between the oxidoreductase and the electrode.
  • an organic compound or metal complex having a low molecular weight that mediates electron transfer between an oxidoreductase (coenzyme) and an electrode which is called an electron mediator, may be used.
  • Patent Document 1 includes an insulating substrate, an electrode system having a working electrode and a counter electrode disposed on the substrate, and a reagent layer disposed on the electrode system, and the reagent layer includes Aspergillus
  • a glucose sensor including an oryzae type FAD-GDH, a ruthenium compound, and PMS (phenazine methosulfate) is disclosed.
  • Patent Document 2 discloses glucose oxidoreductase, a coenzyme selected from flavin nucleoside and nicotinamide nucleotide, 9- (dimethylamino) benzophenoxazine-7-ium chloride, N- (9H -Benzophenoxazine-9-ylidene) -N-methylmethanaminium chloride, 8-dimethylamino-2,3-benzophenoxazine hemi (zinc chloride) salt, 7-dimethylamino-1,2-benzophenoxy At least one electroactive organic molecule singly selected from sazine or 8-dimethylamino-2,3-benzophenoxazine and at least one coordination complex singly selected from osmium or ruthenium complexes A reagent for detecting a specimen comprising a transmitter substance comprising the reagent and the reagent Strip of electrochemical detection apparatus configured Nde is disclosed.
  • the electrochemical glucose sensor described in Patent Documents 1 and 2 uses an electroactive organic molecule such as phenazine methosulfate or benzophenoxazine in combination with an expensive transition metal complex such as ruthenium as an electron mediator. Therefore, it is expensive and it is necessary to use an excessive amount of electron mediator in order to ensure the efficiency of electron transfer from the oxidoreductase.
  • the present invention has been made in view of such circumstances, and uses an electron mediator-modifying enzyme that is inexpensive, excellent in electron transfer efficiency, enables highly sensitive and highly accurate measurement of biologically relevant substances, and the electron mediator-modifying enzyme. It is an object of the present invention to provide an enzyme electrode, a spectroscopic analysis kit, and an enzyme test strip.
  • a first aspect of the present invention that meets the above object is represented by the following structural formula (I): Oxidoreductase E, A phenazine derivative;
  • the present invention solves the above problems by providing an electron mediator modifying enzyme having a linker site L that links the oxidoreductase E and the phenazine derivative.
  • X represents an anion
  • Y represents a linear or branched alkyl group which may have a substituent having 1 to 5 carbon atoms
  • R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , R 7 and R 8 are each independently a hydrogen atom, an optionally substituted alkyl group or alkoxy group, a hydroxyl group
  • at least one of R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , R 7 and R 8 is Linker site L.
  • the electron mediator modifying enzyme according to the first aspect of the present invention may be represented by the following structural formula (II).
  • Y represents a methyl group or an ethyl group.
  • the electron mediator modifying enzyme according to the first aspect of the present invention may be represented by the following structural formula (III).
  • Y represents a methyl group or an ethyl group.
  • the oxidoreductase E may be an oxidoreductase having FAD or FMN as a coenzyme.
  • the oxidoreductase E may be an oxidoreductase having NAD or NADP as a coenzyme.
  • the oxidoreductase E may be an oxidoreductase having PQQ as a coenzyme.
  • the oxidoreductase E having FAD or FMN as a coenzyme may be glucose, and the oxidoreductase E is FAD. It may be a dependent glucose dehydrogenase.
  • the oxidoreductase E uses any one of lactic acid, fructosyl amino acid, cholesterol and 1,5-anhydroglucitol as a substrate. Also good.
  • FEOx fructosyl amino acid oxidase
  • ChOx cholesterol oxidase
  • PyOx pyranose oxidase
  • the second aspect of the present invention comprises a substrate, a working electrode, and a counter electrode,
  • the problem is solved by providing an enzyme electrode having at least one kind of the electron mediator modifying enzyme according to the first aspect of the present invention immobilized on the surface of the working electrode.
  • a spectroscopic analysis kit comprising at least one electron mediator-modifying enzyme according to the first aspect of the present invention and a redox indicator. It is.
  • an enzyme test paper comprising at least one electron mediator-modifying enzyme according to the first aspect of the present invention and a redox indicator.
  • the electron mediator modifying enzyme provided by the present invention has a structure in which a phenazine derivative that functions as an electron mediator is bound to an oxidoreductase through a linker site.
  • an electron mediator-modifying enzyme that is inexpensive, excellent in electron transfer efficiency, and capable of measuring a biologically relevant substance with high sensitivity and high precision, an enzyme electrode using the electron mediator-modifying enzyme, and spectroscopy Analytical kits and enzyme test strips are provided.
  • Example 4 is a graph showing the relationship between the glucose concentration and current of the glucose-responsive enzyme electrode prepared in Example 2.
  • 6 is a graph showing a CA measurement result of a glucose responsive enzyme electrode prepared in Example 3.
  • 6 is a graph showing the relationship between the glucose concentration and current of the glucose-responsive enzyme electrode prepared in Example 3. It is a graph which shows the relationship between the glucose concentration of the glucose responsive enzyme electrode produced in Example 6, and an electric current.
  • the electron mediator modifying enzyme (hereinafter sometimes abbreviated as “electron mediator modifying enzyme”) according to the first embodiment of the present invention is represented by the following structural formula (I), oxidoreductase E, It has a phenazine derivative, and a linker site L that connects the oxidoreductase E and the phenazine derivative.
  • X represents an anion
  • Y represents a linear or branched alkyl group which may have a substituent having 1 to 5 carbon atoms
  • R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , R 7 and R 8 each independently have a hydrogen atom, an alkyl or alkoxy group which may have a substituent, a hydroxyl group, a halogen atom, a nitro group or a substituent.
  • anion X which is a counter ion of the phenazine derivative
  • any organic or inorganic anion can be used without particular limitation as long as it does not affect the electron transfer characteristics and the like.
  • Specific examples of the anion X include halide ions such as chloride ions and bromide ions, acetate ions, propionate ions, lactate ions, citrate ions, tartrate ions, methanesulfonate ions, ethanesulfonate ions, and trifluoromethane.
  • Organic acid ions such as alkyl sulfonate ions such as sulfonic acid, aryl sulfonate ions such as benzene sulfonate ion and p-toluene sulfonate ion, nitrate ion, sulfate ion, methyl sulfate ion, ethyl sulfate ion, phosphate ion, etc.
  • preferable anions include methyl sulfate ions and ethyl sulfate ions.
  • Alkyl group Y The alkyl group Y on the nitrogen atom of the phenazine ring is any one of linear or branched alkyl groups having 1 to 5 carbon atoms. Specific examples of preferable alkyl group Y include a methyl group and an ethyl group.
  • Substituents R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , R 7 and R 8 are each independently a hydrogen atom or an alkyl group which may have a substituent. Or it is an amino group which may have an alkoxy group, a hydroxyl group, a halogen atom, a nitro group, or a substituent. Adjacent substituents may be bonded to each other to form a saturated or unsaturated ring.
  • the alkyl group and alkoxy group may be a linear or branched alkyl group or alkoxy group having any carbon number as long as the enzyme activity and electron transfer properties are not affected.
  • the substituents on the alkyl group and the alkoxy group may be arbitrary as long as they do not affect the enzyme activity and the electron transfer property, but the oxidoreductase E and the phenazine derivative are linked as the linker site L.
  • What fulfills the function is formed by reaction of a functional group such as a hydroxyl group, amino group, carboxyl group or thiol group on oxidoreductase E with a reactive functional group such as a carboxyl group, isocyanate group, amino group or thiol group.
  • the functional group may have a functional group such as an ester group, an amide group, a urethane group, a urea group, or a disulfide group.
  • the functional group may be a reactive functional group or may have a function such as a chromophore or an electron transport function.
  • Linker site L At least one of R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , R 7, and R 8 is a linker site that links the oxidoreductase E and a phenazine derivative that acts as an electron mediator (L ).
  • the linker site L any atomic group can be used without limitation as long as it does not affect the enzyme activity and the electron transfer characteristics.
  • Specific examples of the linker site L include an oxygen atom, a nitrogen atom, a sulfur atom, an ester, an amide, a urethane, a urea, a cycloalkylene group, an aryl group, a heteroaryl group, or the like between CC bonds or side chains.
  • an alkylene group which may have a branch may be mentioned.
  • a preferred example of the electron mediator modifying enzyme is represented by the following structural formula (II) or (III).
  • X is a methyl sulfate ion or an ethyl sulfate ion
  • Y is a methyl group or an ethyl group.
  • the oxidoreductase E used is a dehydrogenase, oxidase, or reductase of any origin having a desired substrate specificity depending on the purpose of use, the biological substance to be measured, etc. Oxygenase, hydrogentransferase, etc. can be appropriately selected and used. Specific examples of the oxidoreductase include the following. (1) FAD or FMN as a coenzyme: FAD-dependent glucose dehydrogenase, etc. (2) NAD or NADP as a coenzyme: alcohol dehydrogenase, etc.
  • PQQ as a coenzyme Bacterial glucose dehydrogenase and the like (4) Others: fructosyl amino acid oxidase (FAOx), pyranose oxidase (PyOx), lactate oxidase (LOx), cholesterol oxidase (ChOx).
  • FAOx is an oxidase that uses glycated amino acids produced by hydrolysis of glycated proteins such as glycated hemoglobin and glycated albumin. By using this enzyme, glycated protein that is an index of blood glucose control in the long term of diabetes is used. Measurement can be performed.
  • PyOx is an enzyme used in an enzyme analysis method for 1,5-anhydroglucitol, which is an index of blood glucose management in the short and medium stages of diabetes. It is obvious that PyOx has a wide substrate specificity, and if the activity of glucose of this enzyme can be confirmed in order to detect the presence or absence of this enzyme, 1,5-anhydroglucitol exhibits the same activity. is there.
  • the synthesis of the electron mediator modifying enzyme is carried out by reacting a reactive functional group possessed by a substituent on the phenazine derivative that becomes the linker site L after the reaction with a functional group on oxidoreductase E.
  • the synthesis is preferably carried out by a reaction that proceeds under mild conditions in an aqueous solvent.
  • N-hydroxysuccinimide ester N-hydroxysuccinimide ester (NHS ester) may be used as the carboxylic acid active ester.
  • Specific examples of the combination of the reactive functional group on the phenazine derivative that becomes the linker site L after the reaction and the functional group on the oxidoreductase E include (1) carboxylic acid and amine: amide, and (2) carboxylic acid and hydroxyl group. : Ester, (3) isocyanate and amine: urea, (4) isocyanate and hydroxyl group: urethane, (5) thiol group: disulfide, and the like.
  • phenazine derivative and oxidoreductase E are combined by azide and alkyne Huisgen cyclization (so-called “click chemistry”), or by the formation of thiosuccinimide by reaction of maleimide and thiol group. You may let them.
  • the enzyme electrode according to the second embodiment of the present invention (hereinafter sometimes abbreviated as “enzyme electrode”) has at least an insulating base material, a working electrode, and a counter electrode.
  • the electron mediator modifying enzyme according to the first embodiment of the present invention is immobilized on the surface of the electrode.
  • the enzyme electrode may have a reference electrode as necessary.
  • the enzyme electrode can read out the electron transfer accompanying the enzyme reaction catalyzed by the electron mediator-modifying enzyme as a change in current value, and can be used for quantifying the substrate concentration in the sample.
  • the working electrode and the counter electrode may be of any material and shape.
  • a carbon electrode may be used as the working electrode and the counter electrode, or a metal electrode such as platinum, gold, silver, nickel, or palladium may be used.
  • the reference electrode is not particularly limited, and a common electrode in electrochemical experiments can be used without particular limitation. Specific examples thereof include a saturated calomel electrode and a silver-silver chloride electrode. .
  • Examples of methods for forming electrodes on an insulating substrate include photolithographic methods, printing methods such as screen printing, gravure printing, and flexographic printing.
  • any known material can be used without particular limitation, and specific examples thereof include silicon, glass, glass epoxy, ceramic, polyethylene terephthalate (PET), polystyrene, polymethacrylate.
  • PET polyethylene terephthalate
  • Polystyrene polymethacrylate.
  • Polypropylene acrylic resin, polyvinyl chloride, polyethylene, polypropylene, polyester, and polyimide.
  • any known method can be used without particular limitation. Specific examples thereof include (1) hydrogen bonding, intermolecular force, hydrophobic interaction and the like.
  • (2) A highly reactive functional group is introduced on the surface of the working electrode by utilizing a reaction between a surface functional group and a cross-linking molecule, etc. , React this with the functional group of the electron mediator modifying enzyme, and fix the electron mediator modifying enzyme to the surface of the working electrode via the formed covalent bond, (3) Crosslinking method that crosslinks and insolubilizes, (4) Inclusion method that encapsulates electron mediator modification enzyme in matrix such as polymer, etc. It can also be used in conjunction. From the viewpoint of stability and the like, the covalent bonding method (2) is preferable, and the inclusion method (4) is also preferable in that a printing method such as an inkjet method can be applied.
  • the spectroscopic analysis kit according to the third embodiment of the present invention (hereinafter sometimes abbreviated as “spectroscopic analysis kit”) is modified by the electron mediator according to the first embodiment of the present invention. Used to read out the electron transfer associated with the oxidation-reduction reaction of a substrate catalyzed by an electron mediator-modifying enzyme in solution as a change in the color of the oxidation-reduction indicator (absorbance at a specific wavelength). It is done.
  • the spectroscopic analysis kit may contain the electron mediator-modifying enzyme and the redox indicator in a state of being accommodated in the same container, or may be included in a state of being individually accommodated in a separate container.
  • any container that can stably store the electron mediator-modifying enzyme and the redox indicator can be used.
  • the container include glass or synthetic resin bottles, vials, and ampoules.
  • the electron mediator-modifying enzyme and the redox indicator may be contained in a container in the form of crystals, powder, or the like, or may be contained in a state dissolved or dispersed in a suitable solvent or dispersion medium.
  • oxidation-reduction indicator those capable of transferring electrons to and from the electron mediator can be appropriately selected and used according to the oxidation-reduction potential of the electron mediator used for the electron mediator modifying enzyme.
  • the spectroscopic analysis kit may contain a solvent, a dispersion medium, a diluting solution, and the like together with an instruction manual in a state of being packaged in a packaging container, if necessary.
  • the enzyme test paper according to the fourth embodiment of the present invention (hereinafter may be abbreviated as “enzyme test paper”), the electron mediator-modifying enzyme according to the first embodiment of the invention, and the redox It contains an indicator in an impregnated state on a sheet-like base material such as paper, and is catalyzed by an electron mediator-modifying enzyme, which oxidizes the electron transfer accompanying the redox reaction of the substrate dropped on the enzyme test paper. It is used to read out as a change in the color of the reduction indicator (absorbance at a specific wavelength).
  • the electron mediator-modifying enzyme and redox indicator used in the enzyme test paper are the same as those in the above-described spectroscopic analysis kit, and detailed description thereof is omitted.
  • As a base material used for enzyme test paper it can be held in an impregnated state with an electron mediator-modifying enzyme and a redox indicator, has water absorption, and is used as a test paper, such as a sheet of paper or nonwoven fabric
  • the shape can be used without particular limitation.
  • FADGDH mold-derived FAD-dependent glucose dehydrogenase
  • this mixed reaction solution was shaken at 1200C for 2 hours at 25 ° C.
  • an ultrafiltration column (Amicon (registered trademark) ultra 30k, Merck), 20 mM P.A. P. B.
  • the enzyme activity of the PES-modified FADGDH (structural formula (II)) prepared as described above was measured using the MTT (3- (4,5-dimethylthiazol-2-yl) -2,5-diphenyltetrazolium bromide) system, PMS ( It was measured by phenazine methosulfate) / DCIP (2,6-dichloroindophenol) system or DCIP system.
  • MTT 3- (4,5-dimethylthiazol-2-yl) -2,5-diphenyltetrazolium bromide
  • PMS It was measured by phenazine methosulfate
  • DCIP 2,6-dichloroindophenol
  • DCIP DCIP
  • the modification reaction was performed with the enzyme: arPES mixture ratio at 1:50 or 1:80 when the enzyme was modified with PES.
  • a study was also conducted when the enzyme and arPES mixed solution during the reaction was diluted three times. In the modification reaction, aggregation was observed without dilution, but no aggregation was visually observed in the reaction solution in which the enzyme / arPES mixed solution was diluted 3 times. However, agglomeration was observed during the exchange to distilled water and the concentration process. The amount of enzyme recovered was greater in the diluted reaction solution.
  • Table 1 shows the results of enzyme activity measurement (1 mM MTT or 0.6 mM PMS / 0.06 mM DCIP, glucose concentration 100 mM) of each modified enzyme prepared.
  • the enzyme prepared at a mixing ratio of 1:50 was 14.3 U / mg without dilution and 10.9 U / mg with the diluted reaction solution, and the PES modification efficiency decreased by dilution. It was thought that there was. On the other hand, when the mixing ratio was 1:80, it was 15.7 U / mg without dilution and 17.7 U / mg with the diluted reaction solution, and no decrease in PES modification efficiency was observed even after dilution.
  • the difference in modification efficiency between using condensate and arPES after condensing and freezing and thawing was evaluated by MTT activity.
  • the prepared enzyme ink was applied on a carbon electrode at 160 nL / mm 2 (160 nL ⁇ 1). After applying the PES-modified enzyme ink on the working electrode of the electrode chip, it was dried at room temperature and low humidity (McDry: 1% relative humidity) for 2 hours.
  • the dried electrode tip was exposed to glutaraldehyde vapor at 25 ° C. for 1 hour and used as a PES-modified enzyme electrode tip.
  • a PES non-modified enzyme electrode chip was produced using a PES non-modified enzyme ink prepared using the same procedure except that mold-derived FADGDH without PES modification was used. Each electrode chip was stored until measurement under low humidity (McDry: 1% relative humidity).
  • a FADGDH that is not PES-modified using the same concentration glucose solution and the same concentration glucose solution containing 0.36 mM 1-methoxyPES (mPES)
  • mPES mM 1-methoxyPES
  • a calibration curve of the PES non-modified enzyme electrode chip Made The chronoamperometry (CA) method was used for the measurement, and the potential was applied 5 seconds after the sample was added (waiting time 5 seconds). The applied potential is +100 mV vs. Ag / AgCl, potential application time was 45 seconds.
  • the measurement results are shown in FIG.
  • the PES-modified enzyme electrode chip showed a substrate concentration-dependent response up to 600 mg / dL without adding mPES to the glucose solution.
  • the PES non-modified enzyme electrode chip when mPES is not added to the glucose solution, a glucose concentration-dependent current response is not observed, and when mPES is added to the glucose solution, the current response is high at a high substrate concentration. Saturated.
  • a glucose concentration-dependent current response could be confirmed over a wider range of glucose concentrations than when a PES non-modified enzyme electrode chip was used and mPES was added to the glucose solution.
  • the prepared three types of PES-modified enzyme inks were applied in layers by 200 nL twice on the circular carbon electrode of the DEP chip. After drying, 200 nL of 10% BSA solution was further applied and dried at room temperature and low humidity (McDry: 1% relative humidity) for 2 hours. Each dried chip was exposed to glutaraldehyde vapor at 25 ° C. for 1 hour. Each produced electrode chip was stored until measurement under low humidity (McDry: 1% relative humidity).
  • the chip thus prepared was connected to a potentiostat, immersed in a batch cell, and subjected to CA measurement at an applied potential of +100 mV (vs. Ag / AgCl) and a stirring speed of 250 rpm.
  • glucose-responsive electrode tips were prepared by preparing different concentrations of PES-modified enzyme ink, and their current responses were compared.
  • all glucose-responsive electrode tips showed a substrate concentration-dependent response (see FIG. 2), but the observed response current value was higher as the amount of arPES mixed was higher.
  • the calibration curve prepared from the CA measurement showed no significant difference in linearity between the arPES concentration of 5 mM and 2.5 mM, but the lower glucose concentration when the arPES concentration was 0.5 mM. The response was saturated (see FIG. 3).
  • LOx lactic acid oxidase
  • the enzyme activities of the PES-modified LOx and PES-modified ChOx prepared as described above were measured by the MTT system and the PMS / MTT system.
  • PMS / MTT system 0.6 mM PMS, 1 mM MTT, 0.04% Triton, 20 mM P.M. P. B.
  • the increase in absorbance at 570 nm was measured when 1 mM lactic acid or 100 ⁇ M cholesterol was added. The results are shown in Table 2.
  • the enzyme activity of the PES-modified PyOx prepared as described above was measured by the MTT system and the PMS / MTT system.
  • PMS / MTT system 0.6 mM PMS, 1 mM MTT, 0.04% Triton, 20 mM P.M. P. B.
  • the increase in absorbance at 570 nm was measured when 1 mM lactic acid or 100 ⁇ M cholesterol was added. The results are shown in Table 3.
  • PyOx is an enzyme used in an enzyme analysis method for 1,5-anhydroglucitol, which is an index of blood glucose control in the short and medium stages of diabetes. It is obvious that PyOx has a wide substrate specificity, and if the activity of glucose of this enzyme can be confirmed in order to detect the presence or absence of this enzyme, 1,5-anhydroglucitol exhibits the same activity. is there. Therefore, these results indicate that 1,5-anhydroglucitol can be measured because MTT color development was observed using PES-modified PyOx without adding other mediators.
  • the prepared PES-modified enzyme ink was applied in a stack of 200 nL twice on the circular carbon electrode of the DEP chip. The film was dried at room temperature and low humidity (McDry: 1% relative humidity) for 2 hours. The dried chips were exposed to glutaraldehyde vapor for 1 hour at 25 ° C. The produced enzyme electrode chip was stored until measurement under low humidity (McDry: 1% relative humidity).
  • the chip thus produced was connected to a potentiostat, immersed in a batch cell, and subjected to CA measurement at an applied potential of +50 mV (vs. Ag / AgCl) and a stirring speed of 250 rpm.
  • PyOx is an enzyme used in an enzyme analysis method for 1,5-anhydroglucitol, which is an index of blood glucose control in the short and medium stages of diabetes. PyOx has a wide substrate specificity, and if it is possible to measure the enzyme's glucose to detect the presence or absence of the enzyme's activity, 1,5-anhydroglucitol can be measured as well. Is self-explanatory. Therefore, these results indicate that 1,5-anhydroglucitol can be measured using PES-modified PyOx without adding other mediators.
  • the fructosyl amino acid oxidase (FAOX) was condensed with dH 2 O, and exchange concentrated dH 2 O using ultrafiltration column (Amicon (registered trademark) ultra 30k, Merck).
  • ultrafiltration column Amicon (registered trademark) ultra 30k, Merck.
  • 50 mM ar-PES and 40 ⁇ L of 50 mM TAPS (pH 8.3) buffer were added, mixed up to 100 ⁇ L with dH 2 O, and then shaken at 25 ° C. for 2 hours. (1200 rpm).
  • the buffer solution was exchanged using an ultrafiltration column (Amicon (registered trademark) ultra 30k, Merck) and dH 2 O.
  • the activity of the PES modifying enzyme prepared as described above was measured by MTT or PMS / MTT system. 1 mM MTT, 0 or 0.6 mM PMS, 0.04% Triton, 20 mM P.I. P. B. In (pH 7.0), the increase in absorbance at 570 nm when the substrate was added was measured. The substrate concentration at the time of measurement was 1 mM fructosyl valine.
  • Enzyme activity measurement using MTT was performed on PES-modified FAOx.
  • the MTT activity was 0.31 U / mg.
  • the MTT activity when PMS was used as a mediator was 25 U / mg.
  • the activity using MTT as a coloring reagent by modifying FAOx with arPES was 3 It doubled.
  • FAOx is an oxidase that uses glycated amino acids produced by hydrolyzing glycated proteins such as glycated hemoglobin and glycated albumin as substrates.
  • glycated proteins which are indicators of blood glucose management in the long term of diabetes, are measured. be able to. Therefore, these results show that glycated proteins can be measured without adding other electron mediators by using PES-modified FAOx.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Biochemistry (AREA)
  • Analytical Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Molecular Biology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biotechnology (AREA)
  • Biophysics (AREA)
  • Genetics & Genomics (AREA)
  • Microbiology (AREA)
  • Pathology (AREA)
  • General Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Plasma & Fusion (AREA)
  • Emergency Medicine (AREA)
  • Medicinal Chemistry (AREA)
  • Biomedical Technology (AREA)
  • Sustainable Development (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)
  • Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)
  • Enzymes And Modification Thereof (AREA)

Abstract

下記の構造式(I)で表され、酸化還元酵素Eと、フェナジン誘導体と、酸化還元酵素Eとフェナジン誘導体とを連結するリンカー部位Lとを有する電子メディエーター修飾酵素が開示されている。また、構造式(I)中、Yは炭素数1~5の置換基を有してもよい直鎖又は分岐鎖アルキル基を表し、R~Rは、互いに独立して、水素原子、置換基を有していてもよいアルキル基若しくはアルコキシ基、水酸基、ハロゲン原子、ニトロ基又は置換基を有してもよいアミノ基を表し、うち少なくとも1つは、リンカー部位Lである。また、該電子メディエーター修飾酵素を用いた酵素電極、分光学的分析キット及び酵素試験紙が開示されている。

Description

電子メディエーター修飾酵素並びにそれを用いた酵素電極、分光学的分析キット及び酵素試験紙
 本発明は、電子伝達効率に優れ、高感度かつ高精度での生体関連物質の計測を可能にする新規な電子メディエーター修飾酵素、並びに該電子メディエーター修飾酵素を用いた酵素電極、分光学的分析キット及び酵素試験紙に関する。
 電気化学バイオセンサーは、酸化還元酵素反応と電極反応とを共役させることにより、酵素反応の有する高い基質選択性と、簡便かつ高感度での測定が可能であるという電気化学計測の特性を併せ持つデバイスである。電気化学バイオセンサーの高感度化のためには、酸化還元酵素と電極との間の電子伝達速度を向上させることが重要である。そのために、電子メディエーターと呼ばれる、酸化還元酵素(補酵素)と電極との電子伝達を媒介する低分子量の有機化合物や金属錯体等が用いられることがある。
 例えば、特許文献1には、絶縁性基板、前記基板上に配置された作用極及び対極を有する電極系、及び、前記電極系上に配置された試薬層を備え、前記試薬層が、アスペルギルス・オリゼ型FAD-GDH、ルテニウム化合物、及び、PMS(フェナジンメトサルフェート)を含むグルコースセンサーが開示されている。
 また、特許文献2には、ブドウ糖酸化還元酵素と、フラビン・ヌクレオシド及びニコチンアミド・ヌクレオチドから選択された補酵素と、9-(ジメチルアミノ)ベンゾフェノキサジン-7-イウム=クロリド、N-(9H-ベンゾフェノキサジン-9-イリデン)-N-メチルメタンアミニウム=クロリド、8-ジメチルアミノ-2,3-ベンゾフェノキサジン=ヘミ(塩化亜鉛)塩、7-ジメチルアミノ-1,2-ベンゾフェノキサジン、又は8-ジメチルアミノ-2,3-ベンゾフェノキサジンから単独で選択された少なくとも1つの電気活性有機分子、及び、オスミウム又はルテニウムの各錯体から単独で選択される少なくとも1つの配位錯体を含んで構成される伝達物質剤とを含んで構成される検体の検出用試薬及び当該試薬を含んで構成された電気化学的検出装置のストリップが開示されている。
特許第5584740号公報 特許第5453314号公報
 しかしながら、特許文献1及び2に記載の電気化学グルコースセンサーは、電子メディエーターとして、フェナジンメトサルフェートやベンゾフェノキサジン等の電気活性有機分子と、高価なルテニウム等の遷移金属錯体とを組み合わせて用いているため、高価であると共に、酸化還元酵素からの電子移動効率を確保するためには、過剰量の電子メディエーターを用いる必要がある。
 本発明はかかる事情に鑑みてなされたもので、安価で電子伝達効率に優れ、高感度かつ高精度での生体関連物質の計測を可能にする電子メディエーター修飾酵素、並びに該電子メディエーター修飾酵素を用いた酵素電極、分光学的分析キット及び酵素試験紙を提供することを目的とする。
 前記目的に沿う本発明の第1の態様は、下記の構造式(I)で表され、
 酸化還元酵素Eと、
 フェナジン誘導体と、
 前記酸化還元酵素Eと前記フェナジン誘導体とを連結するリンカー部位Lとを有することを特徴とする電子メディエーター修飾酵素を提供することにより上記課題を解決するものである。
Figure JPOXMLDOC01-appb-C000004
 構造式(I)中、
 Xは陰イオンを表し、
 Yは炭素数1~5の置換基を有してもよい直鎖又は分岐鎖アルキル基を表し、
 R、R、R、R、R、R、R及びRは、互いに独立して、水素原子、置換基を有していてもよいアルキル基若しくはアルコキシ基、水酸基、ハロゲン原子、ニトロ基又は置換基を有してもよいアミノ基を表し、R、R、R、R、R、R、R及びRのうち少なくとも1つは、前記リンカー部位Lである。
 本発明の第1の態様に係る電子メディエーター修飾酵素は、下記の構造式(II)で表されるものであってもよい。
Figure JPOXMLDOC01-appb-C000005
 構造式(II)中、Yはメチル基又はエチル基を表す。
 本発明の第1の態様に係る電子メディエーター修飾酵素は、下記の構造式(III)で表されるものであってもよい。
Figure JPOXMLDOC01-appb-C000006
 構造式(III)中、Yはメチル基又はエチル基を表す。
 本発明の第1の態様に係る電子メディエーター修飾酵素において、前記酸化還元酵素Eが、FAD又はFMNを補酵素とする酸化還元酵素であってもよい。
 本発明の第1の態様に係る電子メディエーター修飾酵素において、前記酸化還元酵素Eが、NAD又はNADPを補酵素とする酸化還元酵素であってもよい。
 本発明の第1の態様に係る電子メディエーター修飾酵素において、前記酸化還元酵素Eが、PQQを補酵素とする酸化還元酵素であってもよい。
 本発明の第1の態様に係る電子メディエーター修飾酵素において、FAD又はFMNを補酵素とする前記酸化還元酵素Eが、グルコースを基質とするものであってもよく、前記酸化還元酵素Eが、FAD依存性グルコース脱水素酵素であってもよい。
 本発明の第1の態様に係る電子メディエーター修飾酵素において、前記酸化還元酵素Eが、乳酸、フルクトシルアミノ酸、コレステロール及び1,5-アンヒドログルシトールのいずれかを基質とするものであってもよい。
 本発明の第1の態様に係る電子メディエーター修飾酵素において、前記酸化還元酵素Eが、乳酸酸化酵素(LOx)、フルクトシルアミノ酸酸化酵素(FAOx)、コレステロール酸化酵素(ChOx)及びピラノース酸化酵素(PyOx)のいずれかであってもよい。
 本発明の第2の態様は、基材と、作用電極と、対極とを有し、
 前記作用電極の表面に、本発明の第1の態様に係る電子メディエーター修飾酵素が少なくとも1種固定されている酵素電極を提供することにより上記課題を解決するものである。
 本発明の第3の態様は、本発明の第1の態様に係る電子メディエーター修飾酵素の少なくとも1種と、酸化還元指示薬とを含む分光学的分析キットを提供することにより上記課題を解決するものである。
 本発明の第4の態様は、本発明の第1の態様に係る電子メディエーター修飾酵素の少なくとも1種と、酸化還元指示薬とを含む酵素試験紙を提供することにより上記課題を解決するものである。
 本発明により提供される電子メディエーター修飾酵素は、リンカー部位を介して、電子メディエーターとして機能するフェナジン誘導体が酸化還元酵素に結合された構造を有している。それにより、フェナジン誘導体は常に酸化還元酵素の近傍に配置されるため、酸化還元酵素とフェナジン誘導体との間での電子の授受は、高価なルテニウム錯体等の遷移金属錯体を用いなくても効率的に行われる。したがって、本発明によると、安価で電子伝達効率に優れ、高感度かつ高精度での生体関連物質の計測を可能にする電子メディエーター修飾酵素、並びに該電子メディエーター修飾酵素を用いた酵素電極、分光学的分析キット及び酵素試験紙が提供される。
実施例2で作製したグルコース応答性酵素電極のグルコース濃度と電流との関係を示すグラフである。 実施例3で作製したグルコース応答性酵素電極のCA測定結果を示すグラフである。 実施例3で作製したグルコース応答性酵素電極のグルコース濃度と電流との関係を示すグラフである。 実施例6で作製したグルコース応答性酵素電極のグルコース濃度と電流との関係を示すグラフである。
 続いて、本発明を具体化した実施の形態につき説明し、本発明の理解に供する。
[電子メディエーター修飾酵素]
 本発明の第1の実施の形態に係る電子メディエーター修飾酵素(以下「電子メディエーター修飾酵素」と略称する場合がある。)は、下記の構造式(I)で表され、酸化還元酵素Eと、フェナジン誘導体と、酸化還元酵素Eと前記フェナジン誘導体とを連結するリンカー部位Lとを有している。
Figure JPOXMLDOC01-appb-C000007
 構造式(I)中、Xは陰イオンを表し、Yは炭素数1~5の置換基を有してもよい直鎖又は分岐鎖アルキル基を表し、R、R、R、R、R、R、R及びRは、互いに独立して、水素原子、置換基を有していてもよいアルキル基若しくはアルコキシ基、水酸基、ハロゲン原子、ニトロ基又は置換基を有してもよいアミノ基を表し、R、R、R、R、R、R、R及びRのうち少なくとも1つは、リンカー部位Lである。
陰イオンX
 フェナジン誘導体の対イオンである陰イオンXとしては、電子伝達特性等に影響を与えない限りにおいて、任意の有機又は無機陰イオンを特に制限なく用いることができる。陰イオンXの具体例としては、塩化物イオン、臭化物イオン等のハロゲン化物イオン、酢酸イオン、プロピオン酸イオン、乳酸イオン、クエン酸イオン、酒石酸イオン、メタンスルホン酸イオン、エタンスルホン酸イオン、トリフルオロメタンスルホン酸等のアルキルスルホン酸イオン、ベンゼンスルホン酸イオン、p-トルエンスルホン酸イオン等のアリールスルホン酸イオン等の有機酸イオン、硝酸イオン、硫酸イオン、メチル硫酸イオン、エチル硫酸イオン、リン酸イオン等の無機酸イオン等が挙げられる。好ましい陰イオンの具体例としては、メチル硫酸イオン又はエチル硫酸イオンが挙げられる。
アルキル基Y
 フェナジン環の窒素原子上のアルキル基Yは、炭素数1~5の直鎖又は分岐鎖アルキル基のうち任意のものである。好ましいアルキル基Yの具体例としては、メチル基及びエチル基が挙げられる。
置換基R、R、R、R、R、R、R及びR
 フェナジン環上の置換基R、R、R、R、R、R、R及びRは、互いに独立して、水素原子、置換基を有していてもよいアルキル基若しくはアルコキシ基、水酸基、ハロゲン原子、ニトロ基又は置換基を有してもよいアミノ基である。隣接する置換基同士が結合して、飽和又は不飽和の環を形成していてもよい。アルキル基及びアルコキシ基は、酵素活性及び電子伝達特性等に影響を与えない限りにおいて、任意の炭素数の直鎖又は分岐鎖アルキル基又はアルコキシ基であってもよい。アルキル基及びアルコキシ基上の置換基も、酵素活性及び電子伝達特性等に影響を与えない限りにおいて任意のものであってよいが、リンカー部位Lとして、酸化還元酵素Eとフェナジン誘導体とを連結する機能を果たすものは、酸化還元酵素E上の水酸基、アミノ基、カルボキシル基、チオール基等の官能基と、カルボキシル基、イソシアネート基、アミノ基、チオール基等の反応性官能基との反応により形成された、エステル基、アミド基、ウレタン基、尿素基、ジスルフィド基等の官能基を有していてもよい。官能基は、反応性の官能基であってもよく、発色団、電子輸送機能等の機能を有するものであってもよい。
リンカー部位L
 R、R、R、R、R、R、R及びRのうち少なくとも1つは、酸化還元酵素Eと、電子メディエーターとして作用するフェナジン誘導体を連結するリンカー部位(L)である。リンカー部位Lとしては、酵素活性及び電子伝達特性等に影響を与えない限りにおいて、任意の原子団を制限なく用いることができる。リンカー部位Lの具体例としては、C-C結合間又は側鎖に、酸素原子、窒素原子、硫黄原子、エステル、アミド、ウレタン、尿素、シクロアルキレン基、アリール基、ヘテロアリール基等を有していてもよく、分岐を有していてもよいアルキレン基が挙げられる。
 電子メディエーター修飾酵素の好ましい一例は、下記の構造式(II)又は(III)で表されるものである。
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000009
 構造式(II)及び(III)中、Xはメチル硫酸イオン又はエチル硫酸イオンであり、Yはメチル基又はエチル基である。
酸化還元酵素E
 電子メディエーター修飾酵素において、用いられる酸化還元酵素Eとしては、使用目的、計測対象となる生体関連物質等に応じて、所望の基質特異性を有する任意の起源の脱水素酵素、酸化酵素、還元酵素、酸素添加酵素、水素転移酵素等を適宜選択して用いることができる。酸化還元酵素の具体例としては、下記のものが挙げられる。
(1)FAD又はFMNを補酵素とするもの:FAD依存性グルコース脱水素酵素等
(2)NAD又はNADPを補酵素とするもの:アルコール脱水素酵素等
(3)PQQを補酵素とするもの:細菌由来グルコース脱水素酵素等
(4)その他のもの:フルクトシルアミノ酸酸化酵素(FAOx)、ピラノース酸化酵素(PyOx)、乳酸酸化酵素(LOx)、コレステロール酸化酵素(ChOx)。この中でFAOxは糖化ヘモグロビンや糖化アルブミンといった糖化蛋白質を加水分解して生じる糖化アミノ酸を基質とする酸化酵素であり、この酵素を用いることで糖尿病の中長期の血糖管理の指標である糖化蛋白質の計測を行うことができる。またPyOxは糖尿病の短・中期の血糖管理の指標である1,5-アンヒドログルシトールの酵素分析法に用いられている酵素である。PyOxは基質特異性が広く、本酵素の活性の有無を検出するためには同酵素のグルコースの活性を確認できれば、1,5-アンヒドログルシトールにも同様の活性を示すことは自明である。
 電子メディエーター修飾酵素の合成は、反応後にリンカー部位Lとなるフェナジン誘導体上の置換基が有する反応性の官能基と、酸化還元酵素E上の官能基とを反応させることにより行われる。酸化還元酵素Eの変性や失活を避けるため、合成は、好ましくは、水系溶媒中温和な条件下で進行する反応により行われる。例えば、後述するカルボン酸とアミンの反応によるアミドの形成においては、カルボン酸の活性エステルとして、N-ヒドロキシスクシンイミドエステル(NHSエステル)を用いてもよい。
 反応後にリンカー部位Lとなるフェナジン誘導体上の反応性の官能基と酸化還元酵素E上の官能基の組み合わせの具体例としては、(1)カルボン酸とアミン:アミド、(2)カルボン酸と水酸基:エステル、(3)イソシアネートとアミン:尿素、(4)イソシアネートと水酸基:ウレタン、(5)チオール基:ジスルフィド等が挙げられる。或いは、化学修飾が必要となるが、アジドとアルキンのフイスゲン環化(いわゆる「クリックケミストリー」)、マレイミドとチオール基の反応によるチオコハク酸イミドの生成等により、フェナジン誘導体と酸化還元酵素Eとを結合させてもよい。
[酵素電極]
 本発明の第2の実施の形態に係る酵素電極(以下、「酵素電極」と略称する場合がある。)は、少なくとも、絶縁性の基材と、作用電極と、対極とを有し、作用電極の表面には、本発明の第1の実施の形態に係る電子メディエーター修飾酵素が固定されている。酵素電極は、必要に応じて、参照極を有してもよい。酵素電極は、電子メディエーター修飾酵素に触媒される酵素反応に伴う電子移動を、電流値の変化として読み出すことができ、サンプル中の基質濃度の定量等に用いることができる。
 作用電極及び対極は、任意の材質及び形状のものであってよい。例えば、作用電極及び対極として、カーボン電極を用いてもよいし、白金、金、銀、ニッケル、パラジウム等の金属電極を用いてもよい。参照極としては、特に限定されるものではなく、電気化学実験において一般的なものを特に制限なく用いることができるが、その具体例としては、飽和カロメル電極、銀-塩化銀電極等が挙げられる。
 絶縁性の基材上に電極を形成する方法としては、フォトリゾグラフィ法や、スクリーン印刷、グラビア印刷、フレキソ印刷等の印刷法等が挙げられる。また、絶縁性基材の材料としては、任意の公知のものを特に制限なく用いることができ、その具体例としては、シリコン、ガラス、ガラスエポキシ、セラミック、ポリエチレンテレフタレート(PET)、ポリスチレン、ポリメタクリレート、ポリプロピレン、アクリル樹脂、ポリ塩化ビニル、ポリエチレン、ポリプロピレン、ポリエステル及びポリイミド等が挙げられる。
 電子メディエーター修飾酵素の作用電極表面への固定には、任意の公知の方法を特に制限なく用いることができ、その具体例としては、(1)水素結合、分子間力、疎水性相互作用等を介して作用電極の表面に電子メディエーター修飾酵素を吸着させる物理吸着法、(2)作用電極の表面に、表面官能基と架橋分子との反応等を利用して反応性の高い官能基を導入し、これを電子メディエーター修飾酵素の官能基と反応させ、形成された共有結合を介して電子メディエーター修飾酵素を作用電極の表面に固定する共有結合法、(3)架橋剤により電子メディエーター修飾酵素同士を架橋し不溶化させる架橋化法、(4)高分子等のマトリックスに電子メディエーター修飾酵素を包括させる包括法等が挙げられ、これらのうち複数の方法を組み合わせて用いることもできる。安定性等の観点からは、(2)の共有結合法が好ましく、インクジェット法等による印刷法が適用可能な点で、(4)の包括法も好ましい。
 本発明の第3の実施の形態に係る分光学的分析キット(以下、「分光学的分析キット」と略称する場合がある。)は、本発明の第1の実施の形態に係る電子メディエーター修飾酵素と、酸化還元指示薬とを含み、溶液中で電子メディエーター修飾酵素に触媒される基質の酸化還元反応に伴う電子移動を、酸化還元指示薬の色(特定波長における吸光度)の変化として読み出すために用いられる。分光学的分析キットは、電子メディエーター修飾酵素及び酸化還元指示薬を、同一の容器中に収容された状態で含んでいてもよく、それぞれ個別の容器に収容された状態で含んでいてもよい。容器は、電子メディエーター修飾酵素及び酸化還元指示薬を安定に保存できる任意のものを用いることができる。容器の具体例としては、ガラス又は合成樹脂製ボトル、バイアル、アンプル等が挙げられる。電子メディエーター修飾酵素及び酸化還元指示薬は、結晶、粉末等の状態で容器中に収容されていてもよく、適当な溶媒又は分散媒中に溶解又は分散された状態で収容されていてもよい。
 酸化還元指示薬は、電子メディエーター修飾酵素に用いられる電子メディエーターの酸化還元電位等に応じて、電子メディエーターとの間で電子の授受が可能なものを適宜選択して用いることができる。
 分光学的分析キットは、必要に応じて、取扱説明書等と共に、溶媒、分散媒、希釈液等を、包装容器に同梱された状態で含んでいてもよい。
 本発明の第4の実施の形態に係る酵素試験紙(以下、「酵素試験紙」と略称する場合がある。)は、発明の第1の実施の形態に係る電子メディエーター修飾酵素と、酸化還元指示薬とを、紙等のシート状の基材に含浸された状態で含んでおり、電子メディエーター修飾酵素に触媒される、酵素試験紙上に滴下された基質の酸化還元反応に伴う電子移動を、酸化還元指示薬の色(特定波長における吸光度)の変化として読み出すために用いられる。
 酵素試験紙に用いられる電子メディエーター修飾酵素及び酸化還元指示薬は、前述の分光学的分析キットの場合と同様であるので、詳しい説明を省略する。酵素試験紙に用いられる基材としては、電子メディエーター修飾酵素及び酸化還元指示薬を含浸された状態で保持することが可能であり、吸水性を有し、試験紙として用いられる紙、不織布等のシート状のものを特に制限なく用いることができる。
 次に、本発明の作用効果を確認するために行った実施例について説明する。
実施例1:PES修飾FADGDHの調製
 カビ由来FAD依存性グルコース脱水素酵素(FADGDH)水溶液(36.2mg/mL、蒸留水)8.5μLに対して、1-(3-カルボキシルプロパン)オキシ-5-エチルフェナジニウムエタンスルホン酸塩のN-ヒドロキシスクシンイミドエステル(arPES)50mM水溶液5又は8μL(終濃度2.5又は4.0mM)、及び50mM TAPS緩衝液(pH=8.3)40μLを添加して、蒸留水を加え100μLとした。また、この混合反応溶液を、25℃において2時間振盪した(1200rpm)。反応終了後、未反応のarPESを除くため、限外ろ過カラム(amicon(登録商標) ultra 30k、Merck)、20mM P.P.B.(pH=7.0)を用いて緩衝液の交換を行った。
 以上の様に調製したPES修飾FADGDH(構造式(II))の酵素活性を、MTT(3-(4,5-ジメチルチアゾール-2-イル)-2,5-ジフェニルテトラゾリウムブロミド)系、PMS(フェナジンメトサルフェート)/DCIP(2,6-ジクロロインドフェノール)系又はDCIP系により測定した。MTT系では、1mM MTT、0.04% Triton、20mM P.P.B.(pH=7.0)中で、100mMグルコースを添加した時の570nmの吸光度の増加を測定した。PMS/DCIP系では、0.6mM PMS、0.06mM DCIP、20mM P.P.B.(リン酸カリウム緩衝液、pH=7.0)中で、100mMグルコースを添加した時の600nmの吸光度の減少を測定した。
Figure JPOXMLDOC01-appb-C000010
 酵素のPES修飾時の、酵素:arPES混合比を1:50又は1:80として、修飾反応を行った。反応中の酵素及びarPES混合溶液を3倍に希釈した場合の検討も併せて行った。修飾反応では、希釈なしの場合に凝集が見られたが、酵素・arPES混合溶液を3倍に希釈した反応溶液では、目視で凝集は見られなかった。ただ、蒸留水への交換、濃縮過程において凝集が見られた。回収された酵素量は希釈した反応液の方が多かった。調製した各修飾酵素の酵素活性測定(1mM MTT又は0.6mM PMS/0.06mM DCIP、グルコース濃度100 mM)の結果を表1に示す。
Figure JPOXMLDOC01-appb-T000011
 MTT活性に関しては、混合比1:50で調製した酵素では、希釈なしの場合に14.3U/mg、希釈反応液の場合に10.9U/mgであり、希釈によってPES修飾効率が低下していると考えられた。一方、混合比1:80では、希釈なしの場合15.7U/mg、希釈反応液の場合17.7U/mgであり、希釈してもPES修飾効率の低下が見られなかった。修飾反応に用いるarPESの凍結融解の影響を検討するため、復水してそのまま使用する場合と、復水、凍結融解後のarPESを使用した場合での修飾効率の差をMTT活性で評価した。その結果、凍結融解後のarPESを使用した場合でのMTT活性は11.8U/mgと、80%程度の活性の低下が観察された。この結果を元に、以後の実験では、arPESを凍結融解せずに用いることとした。
実施例2:PES修飾FADGDHを用いた酵素電極の調製(1)
 カーボン印刷電極;10mM P.P.B.(pH=7.0)中で、最終濃度が、それぞれ0.5%、5mM、5.16mg/mL、1.2%となるよう、トレハロース、arPES、カビ由来FADGDH、ケッチェンブラックを混合し、これをPES修飾酵素インクとした。調製した酵素インクは、カーボン電極上に160nL/mmで塗布(160nL×1)した。電極チップの作用電極上にPES修飾酵素インクを塗布後、室温、低湿度下(McDry:相対湿度1%)にて2時間乾燥した。乾燥した電極チップを、25℃にてグルタルアルデヒド蒸気に1時間曝露し、これをPES修飾酵素電極チップとして使用した。併せて、PES修飾していないカビ由来FADGDHを用いる以外は同様の手順を用いて調製したPES非修飾酵素インクを用いて、PES非修飾酵素電極チップを作製した。各電極チップは、低湿度下(McDry:相対湿度1%)にて測定まで保存した。
 20mM P.P.B.(pH=7.0)中、0~600mg/dLに調製したグルコース溶液を用い、PES修飾酵素電極チップの検量線の作成を行った。また、同濃度のグルコース溶液及び更に0.36mMの1-メトキシPES(mPES)を含む同濃度のグルコース溶液を用いて、PES修飾していないFADGDHを用いて、PES非修飾酵素電極チップの検量線の作成を行った。測定にはクロノアンペロメトリー(CA)法を用い、検体添加後5秒後に電位を印加する(待ち時間5秒)方法により行った。印加電位は+100mV vs.Ag/AgCl、電位印加時間は45秒とした。
 測定結果を図1に示す。PES修飾酵素電極チップでは、グルコース溶液にmPESを添加しなくても、600mg/dLまで基質濃度依存的応答を示した。一方、PES非修飾酵素電極チップでは、グルコース溶液にmPESを添加しない場合にはグルコース濃度依存的な電流応答が観測されず、グルコース溶液にmPESを添加した場合には、電流応答が高基質濃度で飽和した。PES修飾酵素電極チップを用いた場合、PES非修飾酵素電極チップを用い、グルコース溶液にmPESを添加した場合に比べ、より幅広いグルコース濃度にわたって、グルコース濃度依存的な電流応答が確認できた。
実施例3:PES修飾FADGDHを用いた酵素電極の調製(2)
 10mM P.P.B.(pH=7.0)中で最終濃度が、それぞれ0.5%、0.5、2.5又は5mM、5.0mg/mL、1.2%となるよう、トレハロース、arPES、カビ由来FADGDH、ケッチェンブラックを混合し、これをPES修飾酵素インクとした。調製した3種類のPES修飾酵素インクを、DEPチップの円型カーボン電極上に200nLずつ2回積層塗布した。乾燥後、10%BSA溶液を更に200nL塗布し、室温、低湿度下(McDry:相対湿度1%)で2時間乾燥した。乾燥した各チップは、25℃でグルタルアルデヒド蒸気に1時間曝露した。作製した各電極チップは、低湿度下(McDry:相対湿度1%)で測定まで保存した。
 このようにして作製したチップをポテンショスタットと接続し、バッチセルに浸漬し、印加電位+100mV(vs.Ag/AgCl)、攪拌速度250rpmにてCA測定を行った。測定溶液は100mM P.P.B.(pH=7.0)とし、同緩衝液で調製したグルコース溶液を5、10、25、50、100、300、600mg/dLとなるように順次添加した。検量線の作製後、同緩衝液、同条件で、引き続き20時間の連続測定を行った。
 異なる濃度のPES修飾酵素インクを調製して3種類のグルコース応答性電極チップの作製を行い、その電流応答を比較した。CA測定では、いずれのグルコース応答性電極チップも基質濃度依存的応答を示したが(図2参照)、観測された応答電流値は、混合したarPES量が多いほど高いという結果が得られた。CA測定から作製した検量線は、arPESの濃度が5mMの場合と2.5mMの場合では直線性に大きな差は観測されなかったが、arPES濃度が0.5mMの場合、より低濃度のグルコース濃度で応答が飽和した(図3参照)。
実施例4:PES修飾LOx及びPES修飾ChOxの調製
 乳酸菌由来乳酸酸化酵素(LOx)300μgに50mM TAPS緩衝液(pH=8.3)20μL、50mM arPES水溶液5μLを加え、蒸留水を加え120μLとした。この混合反応溶液を、20℃において2時間振盪した(1200rpm)。反応終了後、未反応のarPESを除くため、限外ろ過カラム(amicon(登録商標) ultra 30k、Merck)、20mM P.P.B.(pH=7.0)を用いて緩衝液の交換を行った。ストレプトマイセス属由来のコレステロール酸化酵素(ChOx)に関しても同様にPES修飾を行った。
 以上のように調製したPES修飾LOx及びPES修飾ChOxの酵素活性を、MTT系及びPMS/MTT系により測定した。MTT系では、1mM MTT、0.04% Triton、20mM P.P.B.(pH=7.0)中で、PMS/MTT系では、0.6mM PMS、1mM MTT、0.04% Triton、20mM P.P.B.(pH=7.0)中で、1mMの乳酸または100μMのコレステロールを添加した時の570nmの吸光度の増加を測定した。結果を表2に示す。
Figure JPOXMLDOC01-appb-T000012
 電子メディエーターを添加しない場合、LOxやChOxにおいて、MTTの発色は全く観察されなかった。これに対して、これらの酵素をPES修飾することで、電子メディエーターを添加していないMTT系は、電子メディエーターを添加したPMS/MTT系の10%前後の発色を示した。以上の結果からPES修飾LOxおよびPES修飾ChOxを用いることで、他の電子メディエーターを加えることなく、乳酸あるいはコレステロールのそれぞれを計測できることが示された。
実施例5:PES修飾PyOxの調製
 カワラタケ属由来ピラノース酸化酵素(PyOx)1mgに50mM TAPS緩衝液(pH=8.3)40μL、50mM arPES水溶液5μLを加え、蒸留水を加え100μLとした。この混合反応溶液を、20℃において2時間振盪した(1200rpm)。反応終了後、未反応のarPESを除くため、限外ろ過カラム(amicon(登録商標) ultra 30k、Merck)、20mM P.P.B.(pH=7.0)を用いて緩衝液の交換を行った。
 以上のように調製したPES修飾PyOxの酵素活性を、MTT系及びPMS/MTT系により測定した。MTT系では、1mM MTT、0.04% Triton、20mM P.P.B.(pH=7.0)中で、PMS/MTT系では、0.6mM PMS、1mM MTT、0.04% Triton、20mM P.P.B.(pH=7.0)中で、1mMの乳酸または100μMのコレステロールを添加した時の570nmの吸光度の増加を測定した。結果を表3に示す。
Figure JPOXMLDOC01-appb-T000013
 電子メディエーターを添加しない場合、PES修飾によりMTT系の活性は15倍以上に向上し、電子メディエーターを添加したPMS/MTT系と比較すると、7%程度の発色を示した。PyOxは糖尿病の短・中期の血糖管理の指標である1,5-アンヒドログルシトールの酵素分析法に用いられている酵素である。PyOxは基質特異性が広く、本酵素の活性の有無を検出するためには同酵素のグルコースの活性を確認できれば、1,5-アンヒドログルシトールにも同様の活性を示すことは自明である。したがって、PES修飾PyOxを用いて、他のメディエーターを加えることなく、MTTの発色が観察されたことから、1,5-アンヒドログルシトールの計測が行えることをこれらの結果は示している。
実施例6:PES修飾PyOxを用いた酵素電極の調製
 5mM P.P.B.(pH=7.0)中で最終濃度が、それぞれ0.25%、2.5mg/mL、1.2%、0.6%となるよう、トレハロース、PES修飾PyOx、BSA、ケッチェンブラックを混合し、これをPES修飾酵素インクとした。調製したPES修飾酵素インクを、DEPチップの円型カーボン電極上に200nLずつ2回積層塗布した。室温、低湿度下(McDry:相対湿度1%)で2時間乾燥した。乾燥したチップは、25℃でグルタルアルデヒド蒸気に1時間曝露した。作製した酵素電極チップは、低湿度下(McDry:相対湿度1%)で測定まで保存した。
 このようにして作製したチップをポテンショスタットと接続し、バッチセルに浸漬し、印加電位+50mV(vs.Ag/AgCl)、攪拌速度250rpmにてCA測定を行った。測定溶液は100mM P.P.B.(pH=7.0)とし、同緩衝液で調製したグルコース溶液を5、10、25、50、100、300、600mg/dLとなるように順次添加した。
 CA測定では、グルコース濃度依存的応答を示し(図4参照)、PES修飾PyOxを用いたグルコースが計測できることが示された。PyOxは糖尿病の短・中期の血糖管理の指標である1,5-アンヒドログルシトールの酵素分析法に用いられている酵素である。PyOxは基質特異性が広く、本酵素の活性の有無を検出するためには同酵素のグルコースの計測が可能であれば、1,5-アンヒドログルシトールの計測も同様に可能であることは自明である。したがって、PES修飾PyOxを用いて、他のメディエーターを加えることなく、1,5-アンヒドログルシトールの計測が行えることをこれらの結果は示している。
 フルクトシルアミノ酸酸化酵素(FAOx)をdHOで復水し、限外ろ過カラム(amicon(登録商標) ultra 30k,Merck)を用いてdHOに交換・濃縮した。酵素約600μgに対して、50mM ar-PES 2.5μL、50mM TAPS(pH8.3)緩衝液を40μL添加して、dHOで100μLにメスアップして混合した後、25℃において2時間振盪した(1200rpm)。反応後未反応のarPESを除くため、限外ろ過カラム(amicon(登録商標) ultra 30k,Merck)、dHOを用いて緩衝液の交換を行った。以上のように調製したPES修飾酵素の活性をMTT、もしくはPMS/MTT系により測定した。1mM MTT、0又は0.6mM PMS、0.04% Triton,20mM P.P.B.(pH7.0)中で、基質を添加した時の570nmの吸光度の増加を測定した。測定時の基質濃度は、1mMフルクトシルバリンとした。
 PES修飾FAOxに対して、MTTを用いた酵素活性測定を行った。調製したPES修飾FAOxのMTTを用いた酵素活性測定の結果、MTT活性は0.31U/mgであった。PMSをメディエーターとして用いた際のMTT活性は25U/mgであった。一方、未修飾のFAODのMTT活性は0.12U/mg,PMS/MTT系での活性は23U/mgであったことから、FAOxをarPESで修飾することによりMTTを発色試薬とする活性が3倍程度に上昇した。FAOxは糖化ヘモグロビンや糖化アルブミンといった糖化蛋白質を加水分解して生じる糖化アミノ酸を基質とする酸化酵素であり、この酵素を用いることで糖尿病の中長期の血糖管理の指標である糖化蛋白質の計測を行うことができる。したがって、これらの結果はPES修飾FAOxを用いることで、他の電子メディエーターを加えることなく糖化タンパク質を計測できることを示している。
 なお、本発明は、本発明の広義の精神と範囲を逸脱することなく、様々な実施形態及び変形が可能とされるものである。また、上述した実施形態は、本発明を説明するためのものであり、本発明の範囲を限定するものではない。つまり、本発明の範囲は、実施形態ではなく、請求の範囲によって示される。そして、請求の範囲内及びそれと同等の発明の意義の範囲内で施される様々な変形が、本発明の範囲内とみなされる。
 本出願は、2016年9月30日に出願された日本国特許出願2016-192730号に基づくものであり、その明細書、特許請求の範囲、図面および要約書を含むものである。上記日本国特許出願における開示は、その全体が本明細書中に参照として含まれる。

Claims (13)

  1.  下記の構造式(I)で表され、
     酸化還元酵素Eと、
     フェナジン誘導体と、
     前記酸化還元酵素Eと前記フェナジン誘導体とを連結するリンカー部位Lとを有することを特徴とする電子メディエーター修飾酵素。
    Figure JPOXMLDOC01-appb-C000001
     構造式(I)中、
     Xは陰イオンを表し、
     Yは炭素数1~5の置換基を有してもよい直鎖又は分岐鎖アルキル基を表し、
     R、R、R、R、R、R、R及びRは、互いに独立して、水素原子、置換基を有していてもよいアルキル基若しくはアルコキシ基、水酸基、ハロゲン原子、ニトロ基又は置換基を有してもよいアミノ基を表し、R、R、R、R、R、R、R及びRのうち少なくとも1つは、前記リンカー部位Lである。
  2.  下記の構造式(II)で表されることを特徴とする請求項1に記載の電子メディエーター修飾酵素。
    Figure JPOXMLDOC01-appb-C000002
     構造式(II)中、
     Yはメチル基又はエチル基を表す。
  3.  下記の構造式(III)で表されることを特徴とする請求項1に記載の電子メディエーター修飾酵素。
    Figure JPOXMLDOC01-appb-C000003
     構造式(III)中、
     Yはメチル基又はエチル基を表す。
  4.  前記酸化還元酵素Eが、FAD又はFMNを補酵素とする酸化還元酵素であることを特徴とする請求項1から3のいずれか1項に記載の電子メディエーター修飾酵素。
  5.  前記酸化還元酵素Eが、NAD又はNADPを補酵素とする酸化還元酵素であることを特徴とする請求項1から3のいずれか1項に記載の電子メディエーター修飾酵素。
  6.  前記酸化還元酵素Eが、PQQを補酵素とする酸化還元酵素であることを特徴とする請求項1から3のいずれか1項に記載の電子メディエーター修飾酵素。
  7.  前記酸化還元酵素Eが、グルコースを基質とすることを特徴とする請求項4に記載の電子メディエーター修飾酵素。
  8.  前記酸化還元酵素Eが、FAD依存性グルコース脱水素酵素であることを特徴とする請求項7に記載の電子メディエーター修飾酵素。
  9.  前記酸化還元酵素Eが、乳酸、フルクトシルアミノ酸、コレステロール及び1,5-アンヒドログルシトールのいずれかを基質とすることを特徴とする請求項4に記載の電子メディエーター修飾酵素。
  10.  前記酸化還元酵素Eが、乳酸酸化酵素(LOx)、フルクトシルアミノ酸酸化酵素(FAOx)、コレステロール酸化酵素(ChOx)及びピラノース酸化酵素(PyOx)のいずれかである請求項4に記載の電子メディエーター修飾酵素。
  11.  基材と、作用電極と、対極とを有し、
     前記作用電極の表面に、請求項1~10のいずれか1項に記載の電子メディエーター修飾酵素が少なくとも1種固定されている酵素電極。
  12.  請求項1~10のいずれか1項に記載の電子メディエーター修飾酵素の少なくとも1種と、酸化還元指示薬とを含む分光学的分析キット。
  13.  請求項1~10のいずれか1項に記載の電子メディエーター修飾酵素の少なくとも1種と、酸化還元指示薬とを含む酵素試験紙。
PCT/JP2017/035676 2016-09-30 2017-09-29 電子メディエーター修飾酵素並びにそれを用いた酵素電極、分光学的分析キット及び酵素試験紙 WO2018062542A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018542970A JPWO2018062542A1 (ja) 2016-09-30 2017-09-29 電子メディエーター修飾酵素並びにそれを用いた酵素電極、分光学的分析キット及び酵素試験紙

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016192730 2016-09-30
JP2016-192730 2016-09-30

Publications (1)

Publication Number Publication Date
WO2018062542A1 true WO2018062542A1 (ja) 2018-04-05

Family

ID=61760815

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/035676 WO2018062542A1 (ja) 2016-09-30 2017-09-29 電子メディエーター修飾酵素並びにそれを用いた酵素電極、分光学的分析キット及び酵素試験紙

Country Status (2)

Country Link
JP (1) JPWO2018062542A1 (ja)
WO (1) WO2018062542A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3572503A1 (en) 2018-05-22 2019-11-27 ARKRAY, Inc. Mutant glucose oxidase and use thereof
CN114450313A (zh) * 2019-09-30 2022-05-06 普和希控股公司 高分子量氧化还原聚合物和使用其的生物传感器
US11959873B2 (en) 2018-03-30 2024-04-16 Phc Holdings Corporation Sensor using phenazine derivative or high molecular weight redox polymer containing phenazine derivative

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005073630A (ja) * 2003-09-02 2005-03-24 Toyobo Co Ltd 酵素の反応性を改変する方法および反応性を改変した修飾酵素
JP2011515686A (ja) * 2008-03-27 2011-05-19 エフ.ホフマン−ラ ロシュ アーゲー 改善された分析物特異性を有するバイオセンサー

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007289148A (ja) * 2006-03-31 2007-11-08 Toyobo Co Ltd アスペルギルス・オリゼ由来グルコースデヒドロゲナーゼの製造方法
EP2022850B1 (en) * 2006-05-29 2011-08-31 Amano Enzyme Inc. Flavin adenine dinucleotide-binding glucose dehydrogenase
WO2008001903A1 (en) * 2006-06-29 2008-01-03 Ikeda Food Research Co., Ltd. Fad-conjugated glucose dehydrogenase gene
JP2010054503A (ja) * 2008-08-01 2010-03-11 Toyobo Co Ltd グルコース脱水素酵素を用いたグルコースの電気化学測定法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005073630A (ja) * 2003-09-02 2005-03-24 Toyobo Co Ltd 酵素の反応性を改変する方法および反応性を改変した修飾酵素
JP2011515686A (ja) * 2008-03-27 2011-05-19 エフ.ホフマン−ラ ロシュ アーゲー 改善された分析物特異性を有するバイオセンサー

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
YABUKI, SOICHI: "Application of chemically modified enzymes to biosensors", MATERIALS INTEGRATION, vol. 21, no. 5, 2008, pages 191 - 196 *
YOMO, TETSUYA ET AL.: "Preparation and kinetic properties of 5-ethylphenazine-glucose-dehydrogenase-NAD+ conjugate, a semisynthetic glucose oxidase", EUROPEAN JOURNAL OF BIOCHMEMISTRY, vol. 200, 1991, pages 759 - 766, XP055480382 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11959873B2 (en) 2018-03-30 2024-04-16 Phc Holdings Corporation Sensor using phenazine derivative or high molecular weight redox polymer containing phenazine derivative
EP3572503A1 (en) 2018-05-22 2019-11-27 ARKRAY, Inc. Mutant glucose oxidase and use thereof
US10822592B2 (en) 2018-05-22 2020-11-03 Arkray, Inc. Mutant glucose oxidase and use thereof
US11525121B2 (en) 2018-05-22 2022-12-13 Arkray, Inc. Mutant glucose oxidase and use thereof
CN114450313A (zh) * 2019-09-30 2022-05-06 普和希控股公司 高分子量氧化还原聚合物和使用其的生物传感器
EP4043499A4 (en) * 2019-09-30 2023-06-21 PHC Holdings Corporation HIGH MOLECULAR WEIGHT REDOX POLYMER AND BIOSENSOR USING IT

Also Published As

Publication number Publication date
JPWO2018062542A1 (ja) 2019-08-29

Similar Documents

Publication Publication Date Title
FI98569C (fi) Heteropolyhapon vaikealiukoisen suolan käyttö analyytin määritykseen, vastaava määritysmenetelmä sekä tähän sopiva aine
JP4420899B2 (ja) (ピリジル)イミダゾール配位子を有する遷移金属錯体
Situmorang et al. Immobilisation of enzyme throughout a polytyramine matrix: a versatile procedure for fabricating biosensors
Serafín et al. Electrochemical biosensor for creatinine based on the immobilization of creatininase, creatinase and sarcosine oxidase onto a ferrocene/horseradish peroxidase/gold nanoparticles/multi-walled carbon nanotubes/Teflon composite electrode
Aynacı et al. An amperometric biosensor for acetylcholine determination prepared from acetylcholinesterase-choline oxidase immobilized in polypyrrole-polyvinylsulpfonate film
US20080248514A1 (en) Electrochemical method for glucose quantification, glucose dehydrogenase composition, and electrochemical sensor for glucose measurement
Shin et al. A planar amperometric creatinine biosensor employing an insoluble oxidizing agent for removing redox-active interferences
Zayats et al. An integrated NAD+-dependent enzyme-functionalized field-effect transistor (ENFET) system: development of a lactate biosensor
EP3242129B1 (en) Electrochemical biosensor
JP5453314B2 (ja) 電気化学的検出に用いる改良型試薬組成物
WO2018062542A1 (ja) 電子メディエーター修飾酵素並びにそれを用いた酵素電極、分光学的分析キット及び酵素試験紙
CN101558296A (zh) 用于测定全血中的1,5-脱水葡萄糖醇的方法以及用于所述方法的传感器芯片和测定试剂盒
Yabuki et al. Hydrogen peroxide determination based on a glassy carbon electrode covered with polyion complex membrane containing peroxidase and mediator
KR102085709B1 (ko) 신규 루테늄계 전자전달 매개체를 포함하는 산화환원반응용 시약조성물 및 바이오센서
US20150276652A1 (en) Analysis Device
Mizutani et al. Rapid determination of glucose and sucrose by an amperometric glucose-sensing electrode combined with an invertase/mutarotase-attached measuring cell
Liu et al. Amperometric detection of methanol with a methanol dehydrogenase modified electrode sensor
Dabhade et al. Development of glucose oxidase-chitosan immobilized paper biosensor using screen-printed electrode for amperometric detection of Cr (VI) in water
US20090071823A1 (en) Disposable enzymatic sensor for liquid samples
US20220057355A1 (en) Crosslinker comprising genipin for use in preparation of sensing film or diffusion control film of electrochemical sensor
Pravda et al. Amperometric glucose biosensors based on an osmium (2+/3+) redox polymer‐mediated electron transfer at carbon paste electrodes
KR102266197B1 (ko) 글루코스 탈수소화효소 감응형 신규 루테늄계 전자전달 매개체, 이의 제조방법, 이를 포함하는 산화환원반응용 시약조성물 및 바이오센서
JP3070818B2 (ja) バイオセンサおよびその製造方法
CN106459950A (zh) 通过交联的高负载酶固定化
Arai et al. Electrochemical characteristics of glucose oxidase immobilized in poly (quinone) redox polymers

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17856489

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018542970

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17856489

Country of ref document: EP

Kind code of ref document: A1