WO2018062481A1 - Antireflective material and method for manufacturing same - Google Patents

Antireflective material and method for manufacturing same Download PDF

Info

Publication number
WO2018062481A1
WO2018062481A1 PCT/JP2017/035465 JP2017035465W WO2018062481A1 WO 2018062481 A1 WO2018062481 A1 WO 2018062481A1 JP 2017035465 W JP2017035465 W JP 2017035465W WO 2018062481 A1 WO2018062481 A1 WO 2018062481A1
Authority
WO
WIPO (PCT)
Prior art keywords
concavo
light
convex structure
layer
material according
Prior art date
Application number
PCT/JP2017/035465
Other languages
French (fr)
Japanese (ja)
Inventor
谷口豊
縄田晃史
北原淑行
田中覚
Original Assignee
Scivax株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Scivax株式会社 filed Critical Scivax株式会社
Priority to JP2018542924A priority Critical patent/JPWO2018062481A1/en
Publication of WO2018062481A1 publication Critical patent/WO2018062481A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/11Anti-reflection coatings
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/02Diffusing elements; Afocal elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/22Absorbing filters
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B9/00Exposure-making shutters; Diaphragms
    • G03B9/02Diaphragms

Definitions

  • the present invention relates to an antireflection material that suppresses reflection of light on the surface and a method for manufacturing the same.
  • the concavo-convex structure was not controlled and was not yet sufficient from the viewpoint of antireflection. Further, prevention of diffracted light caused by the uneven structure is not taken into consideration. Furthermore, there is a problem that it is difficult to manufacture the uneven structure.
  • an object of the present invention is to provide an antireflection material capable of further suppressing light reflection and a method for manufacturing the same.
  • the antireflection material of the present invention has a reflection suppressing layer in which a concavo-convex structure for suppressing reflection of incident light is formed on the first surface, and a second surface of the reflection suppressing layer. And a light absorption layer that absorbs light transmitted through the reflection suppression layer.
  • Another antireflection material according to the present invention is formed on the second surface of the reflection suppressing layer, the reflection suppressing layer in which the concavo-convex structure for suppressing the reflection of incident light is formed on the first surface, and arbitrarily And an adhesive layer capable of adhering to the surface.
  • an adhesive layer capable of adhering to the surface.
  • the refractive index n 2 preferably satisfies 0.9n 1 ⁇ n 2 ⁇ 1.1n 2 .
  • the antireflection layer in the antireflection material of the present invention can be formed of a material having a self-repair function.
  • the material of the reflection suppressing layer may be an imprinting resin.
  • the concavo-convex structure preferably satisfies P> ⁇ , more preferably P ⁇ 6 ⁇ , where ⁇ is the wavelength of the light and P is the average pitch of the concavo-convex structure.
  • the uneven structure preferably has an average pitch P of 10 ⁇ m or less.
  • the light absorbing layer may contain a light absorbing component that absorbs the light, and the average particle diameter of the light absorbing component may be less than or equal to one-half of the wavelength of the light.
  • the concavo-convex structure can be a structure satisfying H / P ⁇ 1, where H is the average depth of the concavo-convex structure.
  • the thickness of the light absorption layer is L, it is preferable to satisfy L ⁇ ⁇ .
  • the concavo-convex structure has a form that does not generate diffracted light.
  • the concavo-convex structure has a random arrangement of element structures of the concavo-convex structure.
  • the concavo-convex structure is one in which either one or both of the size and shape of the element structure are adjusted so that the planar portion is smaller than when the size and shape of the element structure are constant. Is preferred.
  • the element structure of the concavo-convex structure has a shell shape obtained by rotating a parabola.
  • the uneven structure may be a line and space shape.
  • the cross-sectional shape of the line-and-space convex portion is a triangle.
  • the manufacturing method of the antireflection material of the present invention includes a concavo-convex structure forming step for forming a concavo-convex structure for suppressing reflection of incident light on the first surface of the transparent thin film, and before or after the concavo-convex structure forming step. And a two-layer forming step of disposing the transparent thin film on a light absorbing layer that absorbs light transmitted through the transparent thin film.
  • the uneven structure forming step can be performed by optical imprinting.
  • the antireflection material of the present invention can sufficiently suppress the reflection of light by controlling the concavo-convex structure. Further, by dividing the antireflection agent into the reflection suppressing layer and the light absorbing layer, the range of materials selection of the reflection suppressing layer forming the concavo-convex structure can be expanded.
  • FIG. 5 is an explanatory diagram showing the shape of the concavo-convex structure viewed from the direction of the II line in FIG. 4. It is a perspective view which shows another antireflection material of this invention. It is a graph which shows the reflective characteristic of another antireflection material of the present invention. It is explanatory drawing which shows the shape of the cross section of an uneven structure.
  • the antireflection material 1 of the present invention is for preventing reflection of light having a predetermined wavelength ⁇ , and is formed on the antireflection layer 2 and the second surface 22 of the antireflection layer 2 as shown in FIG. And a light absorption layer 4 that absorbs light transmitted through the reflection suppression layer 2.
  • the reflection suppression layer 2 has a first surface 21 and a second surface 22, and the first surface 21 has a concavo-convex structure 3 that suppresses reflection of incident light.
  • the material of the reflection suppression layer 2 may be any material as long as it transmits light that is desired to prevent reflection.
  • a material that is optically transparent in the visible light region of 400 nm to 780 nm glass or resin is used. Can be used.
  • a material containing quartz glass or sapphire glass having a high ultraviolet transmittance it is preferable to use a material containing quartz glass or sapphire glass having a high ultraviolet transmittance.
  • the reflection suppressing layer 2 is made of an elastic material capable of self-healing at least the concavo-convex structure 3 with respect to an external force in a use environment.
  • elastic materials include urethane acrylate, silicon resin, PDMS, and rotaxane.
  • the shape of the entire reflection suppressing layer 2 is not particularly limited as long as it has the first surface 21 and the second surface 22, and can be freely selected according to the function and application of the optical member, such as a planar shape or a curved surface shape. Can be designed.
  • the concavo-convex structure 3 is for suppressing reflection of incident light.
  • the concavo-convex structure may be any shape as long as light reflection can be suppressed, but it is preferable that the concavo-convex structure does not generate diffracted light.
  • the average pitch P of the concavo-convex structure 3 is smaller than the wavelength ⁇ of light, diffracted light may be generated by the concavo-convex structure 3. Therefore, it is better to form the average pitch P of the concavo-convex structure 3 larger than the wavelength ⁇ of light. That is, it may be formed so as to satisfy P> ⁇ .
  • the light here means light (electromagnetic wave) having a predetermined wavelength for which reflection is desired to be prevented. Therefore, when the light includes a plurality of electromagnetic waves having different wavelengths, it is necessary to configure the concavo-convex structure 3 so as to satisfy P> ⁇ for all wavelengths of light that are desired to be prevented from being reflected. That is, if the maximum wavelength of the electromagnetic wave contained in light is ⁇ max, the concavo-convex structure 3 may be configured to satisfy P> ⁇ max. For example, in order to prevent reflection of all electromagnetic waves with respect to visible light having a wavelength in the range of 380 nm to 780 nm, the concavo-convex structure 3 may be configured to satisfy P> 780 nm.
  • the average pitch P is preferably 10 ⁇ m or less.
  • a method for preventing the generation of diffracted light there is a method of randomizing the arrangement of the element structure of the concavo-convex structure 3.
  • the size and shape of the element structure of the concavo-convex structure 3 remain the same and only the arrangement is made random, a gap is generated between the element structures, and a flat portion is generated.
  • a flat portion does not occur between the element structures.
  • a concavo-convex structure may be further formed on the flat portion by ashing or the like.
  • the formation of the concavo-convex structure 3 may be processing by sandblasting or the like, but in such processing, the form of the concavo-convex structure 3 is not controlled, and reflected light or diffracted light may be generated depending on circumstances. Therefore, it is preferable to form the element structure of the concavo-convex structure 3 by controlling the shape of the element structure, for example, the shape of the element structure, the pitch of the adjacent element structure, the depth of the element structure, the aspect ratio which is the ratio of the pitch to the depth, .
  • the shape of the element structure for example, the shape of the element structure, the pitch of the adjacent element structure, the depth of the element structure, the aspect ratio which is the ratio of the pitch to the depth.
  • imprint processing, embossing, injection molding, etc. are mentioned, for example.
  • the material of the reflection suppressing layer 2 is preferably a material suitable for a manufacturing method capable of controlling the form of the concavo-convex structure 3 such as imprinting, embossing, injection molding or the like.
  • Materials suitable for imprint processing include thermoplastic resins and thermosetting resins suitable for thermal imprinting.
  • the antireflection material of the present invention is divided into the antireflection layer 2 and the light absorption layer 4, the antireflection material that forms the concavo-convex structure 3 as compared with the case where the concavo-convex structure 3 is provided in the light absorption layer 4.
  • the range of material selection for the layer 2 can be expanded.
  • a transparent material can be used as the material of the reflection suppressing layer 2 that forms the uneven structure 3. Therefore, it is also possible to use a photocurable resin suitable for optical imprinting as the material of the reflection suppressing layer 2, and the concavo-convex structure 3 can be formed by optical imprinting.
  • the uneven structure 3 is formed on the first surface of the transparent thin film (uneven structure forming step).
  • This transparent thin film is arrange
  • the arrangement of the transparent thin film on the light absorption layer 4 may be performed before or after the concavo-convex structure forming step.
  • a transparent thin film is formed by applying a photocurable resin on the film-like light absorbing layer 4 to form two layers. Thereafter, the uneven structure 3 may be formed on the transparent thin film by an imprint technique or the like.
  • the concavo-convex structure 3 may be formed first on the transparent thin film by an imprint technique or the like, and the transparent thin film may be disposed on the light absorption layer 4. In this case, the transparent thin film and the light absorption layer 4 may be joined by welding, application of an adhesive, or the like.
  • the light absorption layer 4 may be any material that absorbs at least the light transmitted through the reflection suppression layer 2.
  • the material that absorbs light refers to a material that absorbs light more than at least reflects light.
  • the extinction coefficient k is 0.4 or less, preferably 0.2 or less. More preferably, it is 0.1 or less. Examples of such a material include black pigments such as carbon black, aniline black, titanium black, and acetylene black.
  • black pigments such as carbon black, aniline black, titanium black, and acetylene black.
  • the particle diameter of the light absorption component is preferably sufficiently small with respect to the wavelength of light to be absorbed so that scattering and reflection do not occur.
  • the average particle diameter of the particles contained in the material should be less than or equal to one-half of the wavelength of light to be absorbed, more preferably less than or equal to one-fourth.
  • a particle size distribution measuring apparatus for example, an image imaging method in which an image of a particle is directly obtained with an electron microscope such as a transmission electron microscope (TEM) and converted into a particle size from the image image, or a particle group Is measured by a laser diffraction / scattering method in which a particle size distribution is obtained by calculation from an intensity distribution pattern of diffraction / scattered light emitted from the laser beam.
  • TEM transmission electron microscope
  • the thickness L of the light absorption layer 4 is too small compared to the wavelength ⁇ of light, the light is likely to pass through the light absorption layer 4 and the light absorption effect of the antireflection material 1 may be reduced. Therefore, it is preferable that the thickness of the light absorption layer 4 satisfies L ⁇ ⁇ .
  • FIG. 2 is a simulation and comparison of the relationship between the incident angle ⁇ (°) of light with respect to the concavo-convex structure 3 and the light reflectance for each size of the concavo-convex structure 3.
  • the shape of the concavo-convex structure 3 is a hole (element structure) formed of a parabolic rotating body satisfying the following formula (1) when the depth is H and the width is D.
  • the depth H of the concavo-convex structure 3 was compared in the case of 0.5 ⁇ m, 1 ⁇ m, 1.5 ⁇ m, 2 ⁇ m, 2.5 ⁇ m, 3 ⁇ m, 3.5 ⁇ m, 4 ⁇ m, 4.5 ⁇ m, and 5 ⁇ m.
  • the thickness of the remaining film of the reflection suppression layer (the portion where the uneven structure 3 is not formed) was 10 ⁇ m, and the thickness of the reflection suppression layer 2 was 100 ⁇ m.
  • the wavelength ⁇ of the light from the light source was 500 nm.
  • the concavo-convex structure 3 may have a line and space shape as shown in FIG.
  • the antireflection characteristic has a defect such as anisotropy, but there is an advantage that the strength of the concavo-convex structure 3 can be increased.
  • FIG. 7 is a simulation and comparison of the relationship between the incident angle ⁇ of light and the reflectance of light with respect to the concavo-convex structure 3 having a line-and-space configuration for each wavelength of incident light.
  • FIG. 7A shows the result when light from the light source is applied to the concavo-convex structure 3 at an incident angle with a line orthogonal to the line and space as an axis
  • FIG. 7B shows the line of space and line.
  • the concavo-convex structure 3 has a line-and-space structure composed of an isosceles triangle having a cross-sectional height (depth) of 15 ⁇ m and a base length (width) of 10 ⁇ m.
  • the thickness of the remaining film (the portion where the uneven structure 3 is not formed) of the reflection suppressing layer 2 was 10 ⁇ m, and the thickness of the light absorption layer 4 was 100 ⁇ m.
  • the wavelength ⁇ of the light from the light source was set to four types of 400 nm, 500 nm, 600 nm, and 700 nm.
  • FIG. 8 (b) a simulation was also performed for a line-and-space structure composed of an isosceles triangle having a cross-section height (depth) of 1.5 ⁇ m and a base length (width) of 1 ⁇ m. went. Also in this case, the thickness of the remaining film of the reflection suppressing layer 2 (the portion where the uneven structure 3 is not formed) was 10 ⁇ m, and the thickness of the light absorption layer 4 was 100 ⁇ m.
  • FIG. FIG. 9A shows the result when light from the light source is applied to the concavo-convex structure 3 at an incident angle with a line orthogonal to the line and space as an axis
  • FIG. 9B shows the line of space and line. The result when light from the light source is applied to the concavo-convex structure 3 at an incident angle as an axis is shown.
  • Fig. 7 shows that reflection is sufficiently suppressed. Further, as compared with FIG. 9, it can be seen that the reflectance decreases as the line and space constituting the concavo-convex structure increases.
  • the relationship between the wavelength of light and the reflectance of the antireflection material of the present invention was measured.
  • the antireflection material of the present invention (Example 1), a light-absorbing layer made of a black paint (Toyocolor TB8100) and a UV curable self-recovering paint (made by Tokushi Co., Ltd.) on a base made of polyethylene terephthalate (PET).
  • a reflection suppression layer formed of AUP-838C-80) was used.
  • Example 2 Further, ashing was performed on the antireflection material of Example 1, and a concavo-convex structure smaller than the concavo-convex structure 3 was formed on the surface of the concavo-convex structure 3 (including the flat portion 31 positioned between the element structures) ( Example 2) was prepared.
  • Comparative Example 1 Velvet (Magellan Original Flocking Paper 1304)
  • Comparative Example 2 Metal Velvet (Acktar)
  • Comparative Example 3 Soma Black (Soma Black Soma Black NR-N50)
  • Comparative Example 4 Spectral Black (Acktar) Comparative Example 5: Super Black IR (Shibuya Optical Co., Ltd.)
  • FIG. 11 shows that the antireflection materials of Examples 1 and 2 can suppress reflection more than visible light compared to the antireflection materials of Comparative Examples 3 to 5. Moreover, it turns out that reflection can be suppressed compared with Comparative Examples 1 and 2 in the long wavelength side among visible light.
  • the incident angles are 5 °, 45 °, and 60 °.
  • the measurement results of the reflectance are shown in FIGS.
  • the incident angle is 60 °
  • the reflectance of the antireflection material of Comparative Example 2 greatly exceeds 0.2%, and thus the reflection spectrum is not displayed in FIG.
  • Example 2 As shown in FIG. 12 to FIG. 14, it can be seen that the reflectance in Example 2 is lower than that in Example 1 when the incident angles are 5 °, 45 °, and 60 °.
  • the reflection suppressing layer 2 and the light absorption layer 4 are integrally formed.
  • the adhesive layer 5 is formed on the second surface 22 of the reflection suppressing layer 2 described above and can adhere to an arbitrary surface. May be provided.
  • the material of the adhesive layer 5 has a difference between the refractive index of the reflection suppressing layer 2 and the refractive index of the adhesive layer 5 of 10% or less.
  • the material of the adhesive layer 5, the refractive index of the antireflection layer 2 n 1, the refractive index of the adhesive layer 5 and n 2, the refractive index n 2 is 0.9n 1 ⁇ n 2 ⁇ 1.1 N Those satisfying 2 are preferred.
  • the refractive index of the reflection suppressing layer 2 and the refractive index of the adhesive layer 5 are the same.
  • the material of the reflection suppressing layer 2 is a PMMA UV resin (refractive index: 1.49)
  • an acrylic pressure-sensitive adhesive for OCA (refractive index: 1.49) is used as the material of the adhesive layer 5.
  • Etc. can be used.
  • the surface 52 of the adhesive layer 5 is inconvenient as it may be inadvertently adhered to other things. Therefore, as shown in FIG. 15B, it is preferable to include a cover 6 formed on the surface 52 of the adhesive layer 5 and removable from the adhesive layer 5.
  • a cover any cover can be used as long as it can be easily peeled off from the adhesive layer.
  • a separator film (PET) having a thickness of 25 ⁇ m can be used.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Surface Treatment Of Optical Elements (AREA)
  • Laminated Bodies (AREA)

Abstract

The purpose of the present invention is to provide an absorption type antireflective material that can sufficiently suppress reflection of light. An antireflective material 1 mainly comprises an reflection suppression layer 2 wherein a textured structure 3 for suppressing reflection of incident light is formed on a first surface 21, and a light absorbing layer 4 formed on a second surface 22 of the reflection suppression layer 2 for absorbing light passing through the reflection suppression layer 2. The reflection suppression layer 2 is preferably formed from a material having a self-repairing function. In addition, the textured structure is preferably given a form, such as random size and disposition, such that diffracted light does not arise.

Description

反射防止材およびその製造方法Antireflection material and method for producing the same
 本発明は、表面における光の反射を抑えた反射防止材およびその製造方法に関するものである。 The present invention relates to an antireflection material that suppresses reflection of light on the surface and a method for manufacturing the same.
 カメラや液晶ディスプレイ等の光学素子においては、表面の光反射が問題となることがある。例えば、カメラのレンズユニット内には、一定の光量に絞って光を撮像素子に送る役割を持つ固定絞りがあるが、絞りの表面で光反射が生じると迷光となり鮮明な撮像を損なうため、表面の低反射性が要求される。また、固定絞りの内周端面等は、光路上に位置するため、レンズユニット内の不要な光がその端面で反射すると、撮像素子に入射してフレアやゴーストといった撮像不良が起こる。この撮像不良を防止するために、内周端面部の反射防止処理が施された固定絞り等が求められている。 In optical elements such as cameras and liquid crystal displays, surface light reflection may be a problem. For example, in a camera lens unit, there is a fixed aperture that plays a role of sending light to the image sensor with a fixed amount of light, but if light is reflected on the surface of the aperture, it becomes stray light and impairs clear imaging. Low reflectivity is required. Further, since the inner peripheral end face of the fixed stop is located on the optical path, if unnecessary light in the lens unit is reflected by the end face, it enters the image sensor and causes imaging failure such as flare and ghost. In order to prevent this imaging failure, there is a need for a fixed diaphragm or the like that has been subjected to antireflection processing on the inner peripheral end surface portion.
 従来、樹脂からなる基板の表面に、微細柱状結晶からなる凹凸構造を有する酸化チタン膜を形成した黒色被覆膜がある(例えば、特許文献1参照)。 Conventionally, there is a black coating film in which a titanium oxide film having a concavo-convex structure made of fine columnar crystals is formed on the surface of a substrate made of resin (for example, see Patent Document 1).
国際公開番号WO2010/026853International publication number WO2010 / 026683
 しかしながら、当該凹凸構造は制御されたものではなく、反射防止の観点では、まだ十分なものではなかった。また、凹凸構造によって生じる回折光の防止については考慮されていない。更に、凹凸構造の製造が難しいという問題があった。 However, the concavo-convex structure was not controlled and was not yet sufficient from the viewpoint of antireflection. Further, prevention of diffracted light caused by the uneven structure is not taken into consideration. Furthermore, there is a problem that it is difficult to manufacture the uneven structure.
 そこで本発明では、光の反射を更に抑えることができる反射防止材およびその製造方法を提供することを目的とする。 Therefore, an object of the present invention is to provide an antireflection material capable of further suppressing light reflection and a method for manufacturing the same.
 上記目的を達成するために、本発明の反射防止材は、入射した光の反射を抑制する凹凸構造が第1の面に形成された反射抑制層と、前記反射抑制層の第2の面に形成され、前記反射抑制層を透過した光を吸収する光吸収層と、を具備することを特徴とする。 In order to achieve the above object, the antireflection material of the present invention has a reflection suppressing layer in which a concavo-convex structure for suppressing reflection of incident light is formed on the first surface, and a second surface of the reflection suppressing layer. And a light absorption layer that absorbs light transmitted through the reflection suppression layer.
 また、本発明の別の反射防止材は、入射した光の反射を抑制する凹凸構造が第1の面に形成された反射抑制層と、前記反射抑制層の第2の面に形成され、任意の面に接着可能な接着層と、を具備することを特徴とする。この場合、前記接着層の表面に形成され、当該接着層から取り外し可能なカバーを具備する方が好ましい。また、前記反射抑制層の屈折率をn、前記接着層の屈折率をnとすると、当該屈折率nは、0.9n≦n≦1.1nを満たす方が好ましい。 Another antireflection material according to the present invention is formed on the second surface of the reflection suppressing layer, the reflection suppressing layer in which the concavo-convex structure for suppressing the reflection of incident light is formed on the first surface, and arbitrarily And an adhesive layer capable of adhering to the surface. In this case, it is preferable to provide a cover formed on the surface of the adhesive layer and removable from the adhesive layer. Further, when the refractive index of the reflection suppressing layer is n 1 and the refractive index of the adhesive layer is n 2 , the refractive index n 2 preferably satisfies 0.9n 1 ≦ n 2 ≦ 1.1n 2 .
 また、本発明の反射防止材における前記反射抑制層は、自己修復機能を有する材料で形成することができる。前記反射抑制層の材料は、インプリント用樹脂であっても良い。 The antireflection layer in the antireflection material of the present invention can be formed of a material having a self-repair function. The material of the reflection suppressing layer may be an imprinting resin.
 また、前記凹凸構造は、前記光の波長をλ、前記凹凸構造の平均ピッチをPとすると、P>λを満たす方が好ましく、更に好ましくは、P≧6λを満たす方が良い。ただし、前記凹凸構造は、平均ピッチPが10μm以下である方が好ましい。 Further, the concavo-convex structure preferably satisfies P> λ, more preferably P ≧ 6λ, where λ is the wavelength of the light and P is the average pitch of the concavo-convex structure. However, the uneven structure preferably has an average pitch P of 10 μm or less.
 また、前記光吸収層は、前記光を吸収する光吸収成分を含有するものであり、当該光吸収成分の平均粒径が、前記光の波長の2分の1以下であっても良い。 The light absorbing layer may contain a light absorbing component that absorbs the light, and the average particle diameter of the light absorbing component may be less than or equal to one-half of the wavelength of the light.
 また、前記凹凸構造は、当該凹凸構造の平均深さをHとすると、H/P≧1を満たす構造にすることができる。 Further, the concavo-convex structure can be a structure satisfying H / P ≧ 1, where H is the average depth of the concavo-convex structure.
 また、前記光吸収層の厚みをLとすると、L≧λを満たす方が好ましい。 Further, when the thickness of the light absorption layer is L, it is preferable to satisfy L ≧ λ.
 また、前記凹凸構造は、回折光が生じない形態にした方が好ましい。 Further, it is preferable that the concavo-convex structure has a form that does not generate diffracted light.
 また、前記凹凸構造は、当該凹凸構造の要素構造の配置をランダムにした方が好ましい。 Further, it is preferable that the concavo-convex structure has a random arrangement of element structures of the concavo-convex structure.
 また、前記凹凸構造は、前記要素構造の大きさ及び形状が一定の場合に比べ平面部が少なくなるように、当該要素構造の大きさ及び形状のいずれか一方又は両方が調節されたものである方が好ましい。 In addition, the concavo-convex structure is one in which either one or both of the size and shape of the element structure are adjusted so that the planar portion is smaller than when the size and shape of the element structure are constant. Is preferred.
 また、前記凹凸構造の要素構造は、放物線を回転させた砲弾形状である方が好ましい。 Further, it is preferable that the element structure of the concavo-convex structure has a shell shape obtained by rotating a parabola.
 また、前記凹凸構造は、ラインアンドスペース形状であっても良い。この場合、前記ラインアンドスペースの凸部の断面形状は、三角形である方が好ましい。 Further, the uneven structure may be a line and space shape. In this case, it is preferable that the cross-sectional shape of the line-and-space convex portion is a triangle.
 また、本発明の反射防止材の製造方法は、入射した光の反射を抑制する凹凸構造を透明薄膜の第1の面に形成する凹凸構造形成工程と、前記凹凸構造形成工程の前又は後に、前記透明薄膜を透過する光を吸収する光吸収層上に前記透明薄膜を配置する2層形成工程と、を有することを特徴とする。 Moreover, the manufacturing method of the antireflection material of the present invention includes a concavo-convex structure forming step for forming a concavo-convex structure for suppressing reflection of incident light on the first surface of the transparent thin film, and before or after the concavo-convex structure forming step. And a two-layer forming step of disposing the transparent thin film on a light absorbing layer that absorbs light transmitted through the transparent thin film.
 この場合、前記凹凸構造形成工程は、光インプリントによって行うことができる。 In this case, the uneven structure forming step can be performed by optical imprinting.
 本発明の反射防止材は、凹凸構造を制御することにより、光の反射を十分に抑制することができる。また、反射防止剤を反射抑制層と光吸収層とに分けたことにより、凹凸構造を形成する反射抑制層の材料選択の幅を広げることができる。 The antireflection material of the present invention can sufficiently suppress the reflection of light by controlling the concavo-convex structure. Further, by dividing the antireflection agent into the reflection suppressing layer and the light absorbing layer, the range of materials selection of the reflection suppressing layer forming the concavo-convex structure can be expanded.
本発明の反射防止材を示す断面図である。It is sectional drawing which shows the reflection preventing material of this invention. 本発明の反射防止材の反射特性を示すグラフである。It is a graph which shows the reflective characteristic of the antireflection material of this invention. 本発明の反射防止材に係る凹凸構造を示す斜視図である。It is a perspective view which shows the uneven structure which concerns on the antireflection material of this invention. 本発明の反射防止材に係る凹凸構造を示す平面図である。It is a top view which shows the uneven structure which concerns on the antireflection material of this invention. 図4のI-I線方向から見た凹凸構造の形状を示す説明図である。FIG. 5 is an explanatory diagram showing the shape of the concavo-convex structure viewed from the direction of the II line in FIG. 4. 本発明の別の反射防止材を示す斜視図である。It is a perspective view which shows another antireflection material of this invention. 本発明の別の反射防止材の反射特性を示すグラフである。It is a graph which shows the reflective characteristic of another antireflection material of the present invention. 凹凸構造の断面の形状を示す説明図である。It is explanatory drawing which shows the shape of the cross section of an uneven structure. 別の反射防止材の反射特性を示すグラフである。It is a graph which shows the reflective characteristic of another antireflection material. 実施例1の反射防止材に係る凹凸構造を示す平面図である。It is a top view which shows the uneven structure which concerns on the antireflection material of Example 1. 反射防止材の反射特性を示すグラフである。It is a graph which shows the reflective characteristic of an antireflection material. 入射角5°における反射防止材の反射スペクトルを示すグラフである。It is a graph which shows the reflection spectrum of the reflection preventing material in incident angle 5 degrees. 入射角45°における反射防止材の反射スペクトルを示すグラフである。It is a graph which shows the reflection spectrum of the reflection preventing material in incident angle 45 degrees. 入射角60°における反射防止材の反射スペクトルを示すグラフである。It is a graph which shows the reflection spectrum of the antireflection material in the incident angle of 60 degrees. 本発明の別の反射防止材を示す断面図である。It is sectional drawing which shows another antireflection material of this invention.
 本発明の反射防止材1は、所定波長λの光の反射を防止するためのもので、図1に示すように、反射抑制層2と、反射抑制層2の第2の面22に形成され、反射抑制層2を透過した光を吸収する光吸収層4と、で主に構成される。 The antireflection material 1 of the present invention is for preventing reflection of light having a predetermined wavelength λ, and is formed on the antireflection layer 2 and the second surface 22 of the antireflection layer 2 as shown in FIG. And a light absorption layer 4 that absorbs light transmitted through the reflection suppression layer 2.
 反射抑制層2は、第1の面21と第2の面22を有し、第1の面21には、入射した光の反射を抑制する凹凸構造3が形成されている。 The reflection suppression layer 2 has a first surface 21 and a second surface 22, and the first surface 21 has a concavo-convex structure 3 that suppresses reflection of incident light.
 反射抑制層2の材質は、反射を防止したい光を透過するものであればどのようなものでも良く、例えば、400nm~780nmの可視光領域で光学的に透明な材料としては、ガラスや樹脂を用いることができる。また、紫外光領域において用いる場合には、紫外線の透過率が高い石英ガラスやサファイアガラスを含む材料を用いることが好ましい。 The material of the reflection suppression layer 2 may be any material as long as it transmits light that is desired to prevent reflection. For example, as a material that is optically transparent in the visible light region of 400 nm to 780 nm, glass or resin is used. Can be used. Further, when used in the ultraviolet region, it is preferable to use a material containing quartz glass or sapphire glass having a high ultraviolet transmittance.
 また、反射抑制層2は、使用環境における外力に対して少なくとも凹凸構造3を自己修復可能な弾性材料からなる方が好ましい。これにより、外力によって凹凸構造3が変形しても、元の形状に戻すことができる。このような弾性材料としては、ウレタンアクリレートやシリコン系樹脂、PDMS、ロタキサン等がある。 Further, it is preferable that the reflection suppressing layer 2 is made of an elastic material capable of self-healing at least the concavo-convex structure 3 with respect to an external force in a use environment. Thereby, even if the concavo-convex structure 3 is deformed by an external force, the original shape can be restored. Examples of such elastic materials include urethane acrylate, silicon resin, PDMS, and rotaxane.
 また、反射抑制層2全体の形状は、第1の面21と第2の面22を有していれば特に限定されず、平面状や曲面状等、光学部材の機能や用途に合わせて自由に設計できる。 Further, the shape of the entire reflection suppressing layer 2 is not particularly limited as long as it has the first surface 21 and the second surface 22, and can be freely selected according to the function and application of the optical member, such as a planar shape or a curved surface shape. Can be designed.
 凹凸構造3は、入射した光の反射を抑制するためのものである。凹凸構造の形態は、光の反射を抑制できるものであればどのようなものでも良いが、回折光が生じない形態にする方が好ましい。例えば、凹凸構造3の平均ピッチPが光の波長λに比較して小さいと当該凹凸構造3によって回折光が生じることがある。したがって、凹凸構造3の平均ピッチPは、光の波長λより大きく形成する方が良い。すなわち、P>λを満たすように形成すれば良い。 The concavo-convex structure 3 is for suppressing reflection of incident light. The concavo-convex structure may be any shape as long as light reflection can be suppressed, but it is preferable that the concavo-convex structure does not generate diffracted light. For example, when the average pitch P of the concavo-convex structure 3 is smaller than the wavelength λ of light, diffracted light may be generated by the concavo-convex structure 3. Therefore, it is better to form the average pitch P of the concavo-convex structure 3 larger than the wavelength λ of light. That is, it may be formed so as to satisfy P> λ.
 なお、ここでいう光とは、反射の防止を望む所定波長の光(電磁波)を意味する。したがって、光が波長の異なる複数の電磁波を含む場合には、反射の防止を望む総ての光の波長に対しP>λを満足するように凹凸構造3を構成する必要がある。すなわち、光に含まれる電磁波の最大波長をλmaxとすると、凹凸構造3をP>λmaxを満たすように構成すれば良い。例えば、波長が380nm~780nmの範囲にある可視光について、総ての電磁波の反射を防止したい場合には、凹凸構造3をP>780nmを満たすように構成すれば良い。 In addition, the light here means light (electromagnetic wave) having a predetermined wavelength for which reflection is desired to be prevented. Therefore, when the light includes a plurality of electromagnetic waves having different wavelengths, it is necessary to configure the concavo-convex structure 3 so as to satisfy P> λ for all wavelengths of light that are desired to be prevented from being reflected. That is, if the maximum wavelength of the electromagnetic wave contained in light is λmax, the concavo-convex structure 3 may be configured to satisfy P> λmax. For example, in order to prevent reflection of all electromagnetic waves with respect to visible light having a wavelength in the range of 380 nm to 780 nm, the concavo-convex structure 3 may be configured to satisfy P> 780 nm.
 また、確実に回折光の発生を防止するには、P≧2λ、P≧3λ、P≧4λ、P≧5λ、P≧6λ、P≧7λ、P≧8λ、P≧9λ、P≧10λと大きくする方が良い。ただし、平均ピッチPが大きすぎると人間の目で凹凸構造を識別することが可能になることや、凹凸構造の頂点部や底部が、光の波長に対して平面と近似できる大きさとなり反射抑制効果が低くなるため、平均ピッチPは10μm以下である方が好ましい。 In order to reliably prevent the generation of diffracted light, P ≧ 2λ, P ≧ 3λ, P ≧ 4λ, P ≧ 5λ, P ≧ 6λ, P ≧ 7λ, P ≧ 8λ, P ≧ 9λ, and P ≧ 10λ It is better to enlarge. However, if the average pitch P is too large, it is possible to identify the concavo-convex structure with human eyes, and the top and bottom portions of the concavo-convex structure can be approximated to a plane with respect to the wavelength of light, thereby suppressing reflection. Since the effect is low, the average pitch P is preferably 10 μm or less.
 また、回折光の発生を防止する別の方法としては、凹凸構造3の要素構造の配置をランダムにする方法がある。ただし、凹凸構造3の要素構造の大きさや形状が同じままで、配置だけをランダムにすると、要素構造間に隙間が生じ平面となる部分が生じる。当該平面では光が反射し易くなるという問題がある。したがって、要素構造間に平面となる部分が生じない方が好ましい。そのためには、凹凸構造の要素構造の大きさ及び形状が一定の場合に比べ平面部が少なくなるように、当該要素構造の大きさ及び形状のいずれか一方又は両方を調節する方が良い。また、アッシング等により、平面部に更に凹凸構造を形成するようにしても良い。 Further, as another method for preventing the generation of diffracted light, there is a method of randomizing the arrangement of the element structure of the concavo-convex structure 3. However, if the size and shape of the element structure of the concavo-convex structure 3 remain the same and only the arrangement is made random, a gap is generated between the element structures, and a flat portion is generated. There is a problem that light is easily reflected on the plane. Therefore, it is preferable that a flat portion does not occur between the element structures. For this purpose, it is better to adjust either one or both of the size and shape of the element structure so that the planar portion is smaller than when the size and shape of the element structure of the concavo-convex structure are constant. Further, a concavo-convex structure may be further formed on the flat portion by ashing or the like.
 凹凸構造3の形成は、サンドブラストによる加工等でも良いが、このような加工では、凹凸構造3の形態の制御はされておらず、場合によっては反射光や回折光が生じることもある。したがって、凹凸構造3の要素構造の形態、例えば要素構造の形状や隣り合う要素構造のピッチ、要素構造の深さ、ピッチと深さの比であるアスペクト比等を制御して形成する方が好ましい。形態を制御できる製造方法としては、例えば、インプリント加工やエンボス加工、射出成形等が挙げられる。この場合には、反射抑制層2の材料は、インプリント加工やエンボス加工、射出成形等、凹凸構造3の形態を制御できる製法に適した材料が好ましい。インプリント加工に適した材料としては、熱インプリントに適した熱可塑性樹脂や熱硬化性樹脂等がある。また、本発明の反射防止材は、反射抑制層2と光吸収層4とに分けているため、光吸収層4に凹凸構造3を設ける場合と比較して、凹凸構造3を形成する反射抑制層2の材料選択の幅を広げることができる。例えば、凹凸構造3を形成する反射抑制層2の材料として透明な材料を用いることができる。したがって、反射抑制層2の材料として、光インプリントに適した光硬化性樹脂を用いることも可能であり、凹凸構造3を光インプリントによって形成することができる。 The formation of the concavo-convex structure 3 may be processing by sandblasting or the like, but in such processing, the form of the concavo-convex structure 3 is not controlled, and reflected light or diffracted light may be generated depending on circumstances. Therefore, it is preferable to form the element structure of the concavo-convex structure 3 by controlling the shape of the element structure, for example, the shape of the element structure, the pitch of the adjacent element structure, the depth of the element structure, the aspect ratio which is the ratio of the pitch to the depth, . As a manufacturing method which can control a form, imprint processing, embossing, injection molding, etc. are mentioned, for example. In this case, the material of the reflection suppressing layer 2 is preferably a material suitable for a manufacturing method capable of controlling the form of the concavo-convex structure 3 such as imprinting, embossing, injection molding or the like. Materials suitable for imprint processing include thermoplastic resins and thermosetting resins suitable for thermal imprinting. Moreover, since the antireflection material of the present invention is divided into the antireflection layer 2 and the light absorption layer 4, the antireflection material that forms the concavo-convex structure 3 as compared with the case where the concavo-convex structure 3 is provided in the light absorption layer 4. The range of material selection for the layer 2 can be expanded. For example, a transparent material can be used as the material of the reflection suppressing layer 2 that forms the uneven structure 3. Therefore, it is also possible to use a photocurable resin suitable for optical imprinting as the material of the reflection suppressing layer 2, and the concavo-convex structure 3 can be formed by optical imprinting.
 また、凹凸構造3は、透明薄膜の第1の面に形成される(凹凸構造形成工程)。この透明薄膜は、光吸収層4上に配置される(2層形成工程)。光吸収層4上への透明薄膜の配置は、凹凸構造形成工程の前におこなっても良いし、後におこなっても良い。例えば、フィルム状の光吸収層4上に光硬化性樹脂を塗布することによって透明薄膜を形成し、2層を形成する。その後、インプリント技術等によって透明薄膜に凹凸構造3を形成すれば良い。また、インプリント技術等によって透明薄膜に先に凹凸構造3を形成し、当該透明薄膜を光吸収層4上に配置しても良い。この場合、透明薄膜と光吸収層4は溶着や接着剤の塗布等によって接合しても良い。 The uneven structure 3 is formed on the first surface of the transparent thin film (uneven structure forming step). This transparent thin film is arrange | positioned on the light absorption layer 4 (2 layer formation process). The arrangement of the transparent thin film on the light absorption layer 4 may be performed before or after the concavo-convex structure forming step. For example, a transparent thin film is formed by applying a photocurable resin on the film-like light absorbing layer 4 to form two layers. Thereafter, the uneven structure 3 may be formed on the transparent thin film by an imprint technique or the like. Alternatively, the concavo-convex structure 3 may be formed first on the transparent thin film by an imprint technique or the like, and the transparent thin film may be disposed on the light absorption layer 4. In this case, the transparent thin film and the light absorption layer 4 may be joined by welding, application of an adhesive, or the like.
 光吸収層4は、少なくとも反射抑制層2を透過した光を吸収する材料であればどのようなものでも良い。ここで、光を吸収する材料とは、少なくとも光を反射するよりも光を吸収する割合が大きい材料をいうが、好ましくは、消衰係数kが0.4以下、好ましくは0.2以下、更に好ましくは0.1以下であることが好ましい。このような材料としては、例えば、カーボンブラックやアニリンブラック、チタンブラック、アセチレンブラック等の黒色顔料が該当する。また、樹脂等に前記材料を光吸収成分として含有するものでも良い。この際、光吸収成分の粒径は、散乱や反射が生じないように、吸収する光の波長に対して十分に小さいことが好ましい。具体的には、材料に含まれる粒子の平均粒径が、吸収する光の波長の2分の1以下、更に好ましくは4分の1以下であるのが良い。なお、光吸収成分の平均粒径は、粒度分布測定装置を用いて測定すれば良い。粒度分布測定装置の測定原理としては、例えば透過型電子顕微鏡(TEM)等の電子顕微鏡で直接、粒子の画像を取得し、その画像イメージから粒子の大きさに換算する画像イメージング法や、粒子群にレーザ光を照射し、そこから発せられる回折・散乱光の強度分布パターンから計算によって粒度分布を求めるレーザ回折・散乱法により測定するものがある。 The light absorption layer 4 may be any material that absorbs at least the light transmitted through the reflection suppression layer 2. Here, the material that absorbs light refers to a material that absorbs light more than at least reflects light. Preferably, the extinction coefficient k is 0.4 or less, preferably 0.2 or less. More preferably, it is 0.1 or less. Examples of such a material include black pigments such as carbon black, aniline black, titanium black, and acetylene black. Moreover, what contains the said material as a light absorption component in resin etc. may be used. At this time, the particle diameter of the light absorption component is preferably sufficiently small with respect to the wavelength of light to be absorbed so that scattering and reflection do not occur. Specifically, the average particle diameter of the particles contained in the material should be less than or equal to one-half of the wavelength of light to be absorbed, more preferably less than or equal to one-fourth. In addition, what is necessary is just to measure the average particle diameter of a light absorption component using a particle size distribution measuring apparatus. As a measurement principle of the particle size distribution measuring apparatus, for example, an image imaging method in which an image of a particle is directly obtained with an electron microscope such as a transmission electron microscope (TEM) and converted into a particle size from the image image, or a particle group Is measured by a laser diffraction / scattering method in which a particle size distribution is obtained by calculation from an intensity distribution pattern of diffraction / scattered light emitted from the laser beam.
 また、光吸収層4の厚みLが光の波長λと比較して小さくなり過ぎると当該光は光吸収層4を透過し易くなり、反射防止材1の光吸収効果が低くなる場合がある。したがって、光吸収層4の厚みは、L≧λを満たす方が好ましい。 If the thickness L of the light absorption layer 4 is too small compared to the wavelength λ of light, the light is likely to pass through the light absorption layer 4 and the light absorption effect of the antireflection material 1 may be reduced. Therefore, it is preferable that the thickness of the light absorption layer 4 satisfies L ≧ λ.
 また、反射抑制層2は、凹凸構造3に対する光の入射角(反射抑制層2に対する垂直方向を0°とした場合の角度)に応じて反射率が異なる。図2は、凹凸構造3に対する光の入射角φ(°)と光の反射率との関係を、凹凸構造3の大きさごとにシミュレーションし比較したものである。ここで、反射抑制層2は、屈折率n=1.45、消衰係数k=0の透明な材料を用いることを想定した。また、光吸収層4は、屈折率n=1.6、消衰係数k=0.2の材料を用いることを想定した。 Further, the reflectance of the reflection suppressing layer 2 varies depending on the incident angle of light with respect to the concavo-convex structure 3 (an angle when the vertical direction with respect to the reflection suppressing layer 2 is 0 °). FIG. 2 is a simulation and comparison of the relationship between the incident angle φ (°) of light with respect to the concavo-convex structure 3 and the light reflectance for each size of the concavo-convex structure 3. Here, it is assumed that the reflection suppressing layer 2 uses a transparent material having a refractive index n = 1.45 and an extinction coefficient k = 0. The light absorption layer 4 is assumed to use a material having a refractive index n = 1.6 and an extinction coefficient k = 0.2.
 凹凸構造3の形状は、図3~図5に示すように、深さをH、幅をDとしたとき下記式(1)を満たす放物線の回転体からなる砲弾形状からなる穴(要素構造)をピッチP=Hとなるように三角配置で複数配列するハニカム構造とした。
Figure JPOXMLDOC01-appb-I000001
また、凹凸構造3の深さHは、0.5μm、1μm、1.5μm、2μm、2.5μm、3μm、3.5μm、4μm、4.5μm、5μmの場合について比較した。反射抑制層の残膜(凹凸構造3が形成されていない部分)の厚みは10μm、反射抑制層2の厚みは100μmとした。また、光源の光の波長λは500nmとした。
As shown in FIG. 3 to FIG. 5, the shape of the concavo-convex structure 3 is a hole (element structure) formed of a parabolic rotating body satisfying the following formula (1) when the depth is H and the width is D. The honeycomb structure is arranged in a plurality of triangles so that the pitch P = H.
Figure JPOXMLDOC01-appb-I000001
Further, the depth H of the concavo-convex structure 3 was compared in the case of 0.5 μm, 1 μm, 1.5 μm, 2 μm, 2.5 μm, 3 μm, 3.5 μm, 4 μm, 4.5 μm, and 5 μm. The thickness of the remaining film of the reflection suppression layer (the portion where the uneven structure 3 is not formed) was 10 μm, and the thickness of the reflection suppression layer 2 was 100 μm. The wavelength λ of the light from the light source was 500 nm.
 なお、シミュレーションには、シノプシス社(synopsys, Inc)製のソフトDiffractMODを用いた。 For the simulation, the software DiffractMOD manufactured by Synopsys, Inc. was used.
 図2より、凹凸構造3を構成する穴を大きくする程、反射率は低下することがわかる。また、凹凸構造3を構成する穴が大きい程、入射角が大きくなっても、反射率を十分におさえていることがわかる。入射角85度において、深さH=λ(500nm)の時と比較し、H=2λになると反射率が大きく下がり、H=3λになると約半分になる。H=6λになると反射率は35%未満になる。 FIG. 2 shows that the reflectance decreases as the holes constituting the concavo-convex structure 3 are increased. It can also be seen that the larger the hole forming the concavo-convex structure 3, the more sufficient the reflectance is maintained even when the incident angle is increased. Compared to the depth H = λ (500 nm) at an incident angle of 85 degrees, the reflectivity decreases significantly when H = 2λ, and is approximately halved when H = 3λ. When H = 6λ, the reflectance is less than 35%.
 また、凹凸構造3は、図6に示すようなラインアンドスペース形状であっても良い。この場合、反射防止特性は異方性が生じる等の欠点もあるが、凹凸構造3の強度を上げることができるという利点がある。図7は、形態がラインアンドスペースである凹凸構造3に対する光の入射角φと光の反射率との関係を、入射光の波長ごとにシミュレーションし比較したものである。図7(a)は、ラインアンドスペースと直交する線を軸とした入射角度で光源の光を凹凸構造3に当てた場合の結果を示し、図7(b)は、ラインアンドスペースのラインを軸とした入射角度で光源の光を凹凸構造3に当てた場合の結果を示す。ここで、反射抑制層2は、屈折率n=1.45、消衰係数k=0の透明な材料を用いることを想定した。また、光吸収層4は、屈折率n=1.6、消衰係数k=0.2の材料を用いることを想定した。 Further, the concavo-convex structure 3 may have a line and space shape as shown in FIG. In this case, the antireflection characteristic has a defect such as anisotropy, but there is an advantage that the strength of the concavo-convex structure 3 can be increased. FIG. 7 is a simulation and comparison of the relationship between the incident angle φ of light and the reflectance of light with respect to the concavo-convex structure 3 having a line-and-space configuration for each wavelength of incident light. FIG. 7A shows the result when light from the light source is applied to the concavo-convex structure 3 at an incident angle with a line orthogonal to the line and space as an axis, and FIG. 7B shows the line of space and line. The result when light from the light source is applied to the concavo-convex structure 3 at an incident angle as an axis is shown. Here, it is assumed that the reflection suppressing layer 2 uses a transparent material having a refractive index n = 1.45 and an extinction coefficient k = 0. The light absorption layer 4 is assumed to use a material having a refractive index n = 1.6 and an extinction coefficient k = 0.2.
 凹凸構造3は、図8(a)に示すように、断面の高さ(深さ)が15μm、底辺の長さ(幅)が10μmである二等辺三角形からなるラインアンドスペース構造とした。反射抑制層2の残膜(凹凸構造3が形成されていない部分)の厚みは10μm、光吸収層4の厚みは、100μmとした。 As shown in FIG. 8A, the concavo-convex structure 3 has a line-and-space structure composed of an isosceles triangle having a cross-sectional height (depth) of 15 μm and a base length (width) of 10 μm. The thickness of the remaining film (the portion where the uneven structure 3 is not formed) of the reflection suppressing layer 2 was 10 μm, and the thickness of the light absorption layer 4 was 100 μm.
 また、光源の光の波長λは400nm、500nm、600nm、700nmの4種類とした。 Further, the wavelength λ of the light from the light source was set to four types of 400 nm, 500 nm, 600 nm, and 700 nm.
 また、図8(b)に示すように、断面の高さ(深さ)が1.5μm、底辺の長さ(幅)が1μmである二等辺三角形からなるラインアンドスペース構造についても、シミュレーションを行った。この場合も、反射抑制層2の残膜(凹凸構造3が形成されていない部分)の厚みは10μm、光吸収層4の厚みは、100μmとした。その結果を図9に示す。図9(a)は、ラインアンドスペースと直交する線を軸とした入射角度で光源の光を凹凸構造3に当てた場合の結果を示し、図9(b)は、ラインアンドスペースのラインを軸とした入射角度で光源の光を凹凸構造3に当てた場合の結果を示す。 Further, as shown in FIG. 8 (b), a simulation was also performed for a line-and-space structure composed of an isosceles triangle having a cross-section height (depth) of 1.5 μm and a base length (width) of 1 μm. went. Also in this case, the thickness of the remaining film of the reflection suppressing layer 2 (the portion where the uneven structure 3 is not formed) was 10 μm, and the thickness of the light absorption layer 4 was 100 μm. The result is shown in FIG. FIG. 9A shows the result when light from the light source is applied to the concavo-convex structure 3 at an incident angle with a line orthogonal to the line and space as an axis, and FIG. 9B shows the line of space and line. The result when light from the light source is applied to the concavo-convex structure 3 at an incident angle as an axis is shown.
 なお、シミュレーションには、シノプシス社(synopsys, Inc)製のソフトDiffractMODを用いた。 For the simulation, the software DiffractMOD manufactured by Synopsys, Inc. was used.
 図7より、反射を十分に抑えていることがわかる。また、図9と比較すると、凹凸構造を構成するラインアンドスペースが大きい方が、反射率は低下することがわかる。 Fig. 7 shows that reflection is sufficiently suppressed. Further, as compared with FIG. 9, it can be seen that the reflectance decreases as the line and space constituting the concavo-convex structure increases.
 次に、光の波長と本発明の反射防止材の反射率との関係を測定した。本発明の反射防止材(実施例1)としては、ポリエチレンテレフタレート(PET)からなる基材上に黒色塗料(トーヨーカラー製TB8100)からなる光吸収層とUV硬化型自己修復塗料(株式会社トクシキ製AUP-838C-80)からなる反射抑制層を形成したものを用いた。反射抑制層の凹凸構造としては、図10に示すように、下記式(1)を満たす放物線の回転体からなる砲弾形状からなる穴(要素構造)をランダム配置で複数配列する構造とした。
Figure JPOXMLDOC01-appb-I000002
なお、穴(要素構造)の幅はD=1,2,3,4,5,6(μm)の6種類とし、深さは総てH=10(μm)とした。
Next, the relationship between the wavelength of light and the reflectance of the antireflection material of the present invention was measured. As the antireflection material of the present invention (Example 1), a light-absorbing layer made of a black paint (Toyocolor TB8100) and a UV curable self-recovering paint (made by Tokushi Co., Ltd.) on a base made of polyethylene terephthalate (PET). A reflection suppression layer formed of AUP-838C-80) was used. As the concavo-convex structure of the reflection suppressing layer, as shown in FIG. 10, a plurality of holes (element structures) made of a cannonball shape made of a parabolic rotating body satisfying the following formula (1) are arranged in a random arrangement.
Figure JPOXMLDOC01-appb-I000002
The widths of the holes (element structures) were D = 1, 2, 3, 4, 5, 6 (μm), and the depths were all H = 10 (μm).
 また、実施例1の反射防止材に対してアッシングを行い、前記凹凸構造3の表面(要素構造間に位置する平面部31を含む)に当該凹凸構造3よりも小さい凹凸構造を形成したもの(実施例2)を作製した。 Further, ashing was performed on the antireflection material of Example 1, and a concavo-convex structure smaller than the concavo-convex structure 3 was formed on the surface of the concavo-convex structure 3 (including the flat portion 31 positioned between the element structures) ( Example 2) was prepared.
 このように形成した反射防止材の反射率を紫外可視近赤外分光光度計(株式会社日立ハイテクサイエンス製UH4150)を用いて測定した。また、比較のために下記5つの反射防止材についても測定した。
比較例1:ベルベット(株式会社マゼランオリジナル植毛紙1304)
比較例2:Metal Velvet(Acktar社)
比較例3:ソマブラック(ソマール株式会社ソマブラックNR-N50)
比較例4:Spectral Black(Acktar社)
比較例5:スーパーブラックIR(株式会社渋谷光学)
The reflectance of the antireflection material thus formed was measured using an ultraviolet-visible-near infrared spectrophotometer (UH4150 manufactured by Hitachi High-Tech Science Co., Ltd.). For comparison, the following five antireflection materials were also measured.
Comparative Example 1: Velvet (Magellan Original Flocking Paper 1304)
Comparative Example 2: Metal Velvet (Acktar)
Comparative Example 3: Soma Black (Soma Black Soma Black NR-N50)
Comparative Example 4: Spectral Black (Acktar)
Comparative Example 5: Super Black IR (Shibuya Optical Co., Ltd.)
 図11より、可視光に対して、実施例1,2の反射防止材は、比較例3~5の反射防止材よりも反射を抑制できることがわかる。また、可視光のうち長波長側では、比較例1,2よりも反射を抑制できることがわかる。 FIG. 11 shows that the antireflection materials of Examples 1 and 2 can suppress reflection more than visible light compared to the antireflection materials of Comparative Examples 3 to 5. Moreover, it turns out that reflection can be suppressed compared with Comparative Examples 1 and 2 in the long wavelength side among visible light.
 また、実施例1,2および比較例1~5の反射防止材について、入射角(反射抑制層2に対する垂直方向を0°とした場合の角度)が5°、45°、60°である場合の反射率の測定結果を図12~図14に示す。なお、入射角が60°の場合、比較例2の反射防止材の反射率は0.2%を大きく超えていたため、当該反射スペクトルは図14には表示されていない。 Further, in the antireflection materials of Examples 1 and 2 and Comparative Examples 1 to 5, the incident angles (angles when the vertical direction with respect to the reflection suppressing layer 2 is 0 °) are 5 °, 45 °, and 60 °. The measurement results of the reflectance are shown in FIGS. When the incident angle is 60 °, the reflectance of the antireflection material of Comparative Example 2 greatly exceeds 0.2%, and thus the reflection spectrum is not displayed in FIG.
 図12~図14に示すように、入射角が5°、45°、60°である場合の反射率は、実施例2の方が実施例1よりも低いことがわかる。 As shown in FIG. 12 to FIG. 14, it can be seen that the reflectance in Example 2 is lower than that in Example 1 when the incident angles are 5 °, 45 °, and 60 °.
 なお、上記説明では、反射抑制層2と光吸収層4を一体に形成する場合について説明したが、光吸収層4の代わりになる物体の表面に反射抑制層2を接着して利用したい場合もある。この場合には、光吸収層4を設ける代わりに、図15(a)に示すように、上述した反射抑制層2の第2の面22に形成され、任意の面に接着可能な接着層5を設けるようにしても良い。 In the above description, the case where the reflection suppressing layer 2 and the light absorption layer 4 are integrally formed has been described. However, there are cases where it is desired to use the reflection suppression layer 2 by adhering it to the surface of an object instead of the light absorption layer 4. is there. In this case, instead of providing the light absorption layer 4, as shown in FIG. 15A, the adhesive layer 5 is formed on the second surface 22 of the reflection suppressing layer 2 described above and can adhere to an arbitrary surface. May be provided.
 この場合、反射抑制層2と接着層5の界面における光の反射を防止するために、接着層5の材料は、反射抑制層2の屈折率と接着層5の屈折率の違いが10%以下となるものが好ましい。すなわち、接着層5の材料は、反射抑制層2の屈折率をn、接着層5の屈折率をnとすると、当該屈折率nは、0.9n≦n≦1.1nを満たすものが好ましい。もちろん、反射抑制層2の屈折率と接着層5の屈折率が同じであることが最も好ましい。このような材料としては、例えば、反射抑制層2の材料がPMMA系UV樹脂(屈折率:1.49)である場合には、接着層5の材料としてOCA用アクリル系粘着剤(屈折率:1.49)等を用いることができる。 In this case, in order to prevent reflection of light at the interface between the reflection suppressing layer 2 and the adhesive layer 5, the material of the adhesive layer 5 has a difference between the refractive index of the reflection suppressing layer 2 and the refractive index of the adhesive layer 5 of 10% or less. Is preferred. That is, the material of the adhesive layer 5, the refractive index of the antireflection layer 2 n 1, the refractive index of the adhesive layer 5 and n 2, the refractive index n 2 is 0.9n 1n 2 ≦ 1.1 N Those satisfying 2 are preferred. Of course, it is most preferable that the refractive index of the reflection suppressing layer 2 and the refractive index of the adhesive layer 5 are the same. As such a material, for example, when the material of the reflection suppressing layer 2 is a PMMA UV resin (refractive index: 1.49), an acrylic pressure-sensitive adhesive for OCA (refractive index: 1.49) is used as the material of the adhesive layer 5. Etc. can be used.
 また、接着層5の表面52は、そのままでは、他のものに不用意に接着する可能性があり不便である。したがって、図15(b)に示すように、接着層5の表面52に形成され、当該接着層5から取り外し可能なカバー6を具備する方が好ましい。カバーとしては、接着層から容易に剥がすことができるものであればどのようなものでも良く、例えば、厚さ25μmのセパレーターフィルム(PET)を用いることができる。 Also, the surface 52 of the adhesive layer 5 is inconvenient as it may be inadvertently adhered to other things. Therefore, as shown in FIG. 15B, it is preferable to include a cover 6 formed on the surface 52 of the adhesive layer 5 and removable from the adhesive layer 5. As the cover, any cover can be used as long as it can be easily peeled off from the adhesive layer. For example, a separator film (PET) having a thickness of 25 μm can be used.
 1 反射防止材
 2 反射抑制層
 3 凹凸構造
 4 光吸収層
 5 接着層
 6 カバー
 21 第1の面
 22 第2の面
 31 平面部
 52 表面
DESCRIPTION OF SYMBOLS 1 Antireflection material 2 Antireflection layer 3 Uneven structure 4 Light absorption layer 5 Adhesive layer 6 Cover 21 1st surface 22 2nd surface 31 Planar part 52 Surface

Claims (20)

  1.  入射した光の反射を抑制する凹凸構造が第1の面に形成された反射抑制層と、
     前記反射抑制層の第2の面に形成され、前記反射抑制層を透過した光を吸収する光吸収層と、
    を具備することを特徴とする反射防止材。
    A reflection suppressing layer in which a concavo-convex structure for suppressing reflection of incident light is formed on the first surface;
    A light absorption layer that is formed on the second surface of the reflection suppression layer and absorbs light transmitted through the reflection suppression layer;
    An antireflective material comprising:
  2.  入射した光の反射を抑制する凹凸構造が第1の面に形成された反射抑制層と、
     前記反射抑制層の第2の面に形成され、任意の面に接着可能な接着層と、
    を具備することを特徴とする反射防止材。
    A reflection suppressing layer in which a concavo-convex structure for suppressing reflection of incident light is formed on the first surface;
    An adhesive layer formed on the second surface of the antireflection layer and capable of adhering to an arbitrary surface;
    An antireflective material comprising:
  3.  前記接着層の表面に形成され、当該接着層から取り外し可能なカバーを具備することを特徴とする請求項2記載の反射防止材。 The antireflection material according to claim 2, further comprising a cover formed on a surface of the adhesive layer and removable from the adhesive layer.
  4.  前記反射抑制層の屈折率をn、前記接着層の屈折率をnとすると、当該屈折率nは、0.9n≦n≦1.1n
    を満たすことを特徴とする請求項2又は3記載の反射防止材。
    When the refractive index of the reflection suppressing layer is n 1 and the refractive index of the adhesive layer is n 2 , the refractive index n 2 is 0.9n 1 ≦ n 2 ≦ 1.1n 2.
    The antireflection material according to claim 2 or 3, wherein:
  5.  前記反射抑制層は、自己修復機能を有する材料からなることを特徴とする請求項1ないし4のいずれかに記載の反射防止材。 The antireflection material according to any one of claims 1 to 4, wherein the antireflection layer is made of a material having a self-healing function.
  6.  前記凹凸構造は、前記光の波長をλ、前記凹凸構造の平均ピッチをPとすると、P>λを満たすことを特徴とする請求項1ないし5のいずれかに記載の反射防止材。 6. The antireflection material according to claim 1, wherein the concavo-convex structure satisfies P> λ where λ is a wavelength of the light and P is an average pitch of the concavo-convex structure.
  7.  前記光吸収層は、前記光を吸収する光吸収成分を含有するものであり、当該光吸収成分の平均粒径が、前記光の波長の2分の1以下であることを特徴とする請求項1ないし6のいずれかに記載の反射防止材。 The said light absorption layer contains the light absorption component which absorbs the said light, The average particle diameter of the said light absorption component is 1 or less of the wavelength of the said light, It is characterized by the above-mentioned. The antireflection material according to any one of 1 to 6.
  8.  前記凹凸構造は、P≧6λを満たす構造であることを特徴とする請求項6又は7記載の反射防止材。 The anti-reflection material according to claim 6 or 7, wherein the concavo-convex structure is a structure satisfying P ≧ 6λ.
  9.  前記凹凸構造は、当該凹凸構造の平均深さをHとすると、H/P≧1を満たす構造であることを特徴とする請求項1ないし8のいずれかに記載の反射防止材。 The antireflection material according to any one of claims 1 to 8, wherein the concavo-convex structure is a structure satisfying H / P ≧ 1, where H is an average depth of the concavo-convex structure.
  10.  前記光吸収層の厚みをLとすると、L≧λを満たすことを特徴とする請求項1ないし9のいずれかに記載の反射防止材。 The antireflection material according to claim 1, wherein L ≧ λ is satisfied, where L is a thickness of the light absorption layer.
  11.  前記凹凸構造は、平均ピッチPが10μm以下であることを特徴とする請求項1ないし10のいずれかに記載の反射防止材。 The antireflection material according to any one of claims 1 to 10, wherein the uneven structure has an average pitch P of 10 µm or less.
  12.  前記凹凸構造は、回折光が生じない形態にしたものであることを特徴とする請求項1ないし11のいずれかに記載の反射防止材。 The antireflection material according to any one of claims 1 to 11, wherein the concavo-convex structure has a form in which diffracted light does not occur.
  13.  前記凹凸構造は、当該凹凸構造の要素構造の配置をランダムにしたことを特徴とする請求項12記載の反射防止材。 13. The antireflection material according to claim 12, wherein the concavo-convex structure has a random arrangement of element structures of the concavo-convex structure.
  14.  前記凹凸構造は、前記要素構造の大きさ及び形状が一定の場合に比べ平面部が少なくなるように、当該要素構造の大きさ及び形状のいずれか一方又は両方が調節されたものであることを特徴とする請求項13記載の反射防止材。 The concavo-convex structure is a structure in which either one or both of the size and shape of the element structure are adjusted so that the number of planar portions is smaller than when the size and shape of the element structure are constant. The antireflection material according to claim 13.
  15.  前記凹凸構造の要素構造は、放物線を回転させた砲弾形状であることを特徴とする請求項1ないし14のいずれかに記載の反射防止材。 The antireflection material according to any one of claims 1 to 14, wherein the element structure of the concavo-convex structure has a shell shape obtained by rotating a parabola.
  16.  前記凹凸構造は、ラインアンドスペース形状であることを特徴とする請求項1ないし14のいずれかに記載の反射防止材。 The antireflection material according to any one of claims 1 to 14, wherein the uneven structure has a line-and-space shape.
  17.  前記ラインアンドスペースの凸部の断面形状は、三角形であることを特徴とする請求項16記載の反射防止材。 The antireflection material according to claim 16, wherein a cross-sectional shape of the line-and-space convex portion is a triangle.
  18.  前記反射抑制層の材料は、インプリント用樹脂であることを特徴とする請求項1ないし17のいずれかに記載の反射防止材。 The antireflection material according to any one of claims 1 to 17, wherein a material of the antireflection layer is an imprinting resin.
  19.  入射した光の反射を抑制する凹凸構造を透明薄膜の第1の面に形成する凹凸構造形成工程と、
     前記凹凸構造形成工程の前又は後に、前記透明薄膜を透過する光を吸収する光吸収層上に前記透明薄膜を配置する2層形成工程と、
    を有することを特徴とする反射防止材の製造方法。
    A concavo-convex structure forming step of forming a concavo-convex structure for suppressing reflection of incident light on the first surface of the transparent thin film;
    Before or after the concavo-convex structure forming step, a two-layer forming step of disposing the transparent thin film on a light absorbing layer that absorbs light transmitted through the transparent thin film; and
    A method for producing an antireflective material, comprising:
  20.  前記凹凸構造形成工程は、光インプリントによって行うことを特徴とする請求項19記載の反射防止材の製造方法。 20. The method of manufacturing an antireflection material according to claim 19, wherein the uneven structure forming step is performed by optical imprinting.
PCT/JP2017/035465 2016-09-30 2017-09-29 Antireflective material and method for manufacturing same WO2018062481A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018542924A JPWO2018062481A1 (en) 2016-09-30 2017-09-29 Antireflective material and method of manufacturing the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-194167 2016-09-30
JP2016194167 2016-09-30

Publications (1)

Publication Number Publication Date
WO2018062481A1 true WO2018062481A1 (en) 2018-04-05

Family

ID=61759800

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/035465 WO2018062481A1 (en) 2016-09-30 2017-09-29 Antireflective material and method for manufacturing same

Country Status (2)

Country Link
JP (1) JPWO2018062481A1 (en)
WO (1) WO2018062481A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021075066A1 (en) * 2019-10-18 2021-04-22 大塚テクノ株式会社 Reflection preventing structure

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003004904A (en) * 2001-06-25 2003-01-08 Dainippon Printing Co Ltd Antireflection film having antidazzle layer with high refractive index and low reflective display device
JP3676260B2 (en) * 2000-12-28 2005-07-27 ナトコ株式会社 Active energy ray curable urethane (meth) acrylate, active energy ray curable composition and use thereof
WO2013061990A1 (en) * 2011-10-24 2013-05-02 旭硝子株式会社 Optical filter, method for producing same, and image capturing device
WO2014163198A1 (en) * 2013-04-05 2014-10-09 三菱レイヨン株式会社 Multilayer structure, method for producing same, and article
JP2016057335A (en) * 2014-09-05 2016-04-21 ソニー株式会社 Laminate, imaging device package, image acquisition apparatus, and electronic equipment

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3676260B2 (en) * 2000-12-28 2005-07-27 ナトコ株式会社 Active energy ray curable urethane (meth) acrylate, active energy ray curable composition and use thereof
JP2003004904A (en) * 2001-06-25 2003-01-08 Dainippon Printing Co Ltd Antireflection film having antidazzle layer with high refractive index and low reflective display device
WO2013061990A1 (en) * 2011-10-24 2013-05-02 旭硝子株式会社 Optical filter, method for producing same, and image capturing device
WO2014163198A1 (en) * 2013-04-05 2014-10-09 三菱レイヨン株式会社 Multilayer structure, method for producing same, and article
JP2016057335A (en) * 2014-09-05 2016-04-21 ソニー株式会社 Laminate, imaging device package, image acquisition apparatus, and electronic equipment

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021075066A1 (en) * 2019-10-18 2021-04-22 大塚テクノ株式会社 Reflection preventing structure
JP2021067735A (en) * 2019-10-18 2021-04-30 大塚テクノ株式会社 Reflection preventing structure
EP3828599A4 (en) * 2019-10-18 2021-07-28 Otsuka Techno Corporation Reflection preventing structure
CN114556161A (en) * 2019-10-18 2022-05-27 大冢科技株式会社 Anti-reflection structure
US20240036233A1 (en) * 2019-10-18 2024-02-01 Otsuka Techno Corporation Reflection preventing structure
CN114556161B (en) * 2019-10-18 2024-06-11 大冢科技株式会社 Anti-reflection structure

Also Published As

Publication number Publication date
JPWO2018062481A1 (en) 2019-07-25

Similar Documents

Publication Publication Date Title
JP6059695B2 (en) Manufacturing method of optical body
JP6197647B2 (en) Optical filter, method for manufacturing the same, and imaging apparatus
JP6790831B2 (en) Optical filter and imaging device
JP5512269B2 (en) Antireflection structure, optical unit and optical device
JP6078969B2 (en) Light diffusing film, polarizing plate, and liquid crystal display device
JP2015068853A (en) Laminated body, imaging element package, imaging apparatus, and electronic apparatus
JP2008090212A (en) Antireflection optical structure, antireflection optical structure body and its manufacturing method
WO2016035245A1 (en) Laminate, imaging device package, image acquisition apparatus, and electronic equipment
WO2017104138A1 (en) Structured coloring body and method for producing same
JP2014123077A (en) Anti-reflection body and manufacturing method therefor
JP2015038579A (en) Optical element, optical system, imaging device, optical apparatus, and master and method for manufacturing the same
JP2007304468A (en) Antireflection structure and optical unit provided with the same
WO2018062481A1 (en) Antireflective material and method for manufacturing same
WO2016158933A1 (en) Method for manufacturing master, optical body, optical member, and display device
WO2016159045A1 (en) Anti-reflective structure
JP5962142B2 (en) Light diffusing film, polarizing plate, and liquid crystal display device
JP2005202182A (en) Prism sheet, light diffusion sheet, and transmitting type screen
JP6385977B2 (en) Optical body and display device
JP7302277B2 (en) DISPLAY AND METHOD FOR MANUFACTURING DISPLAY
JP6046335B2 (en) Diffraction structure for liquid crystal display device, polarizing plate, and liquid crystal display device
JP2017227837A (en) Display body
JP2015197462A (en) Low-reflection film having random concavo-convex structure and manufacturing method therefor
JP2006335028A (en) Production method of mold for duplicating light diffusion sheet, light diffusion sheet and production method of the same, and screen

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17856430

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018542924

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17856430

Country of ref document: EP

Kind code of ref document: A1