JP5962142B2 - Light diffusing film, polarizing plate, and liquid crystal display device - Google Patents
Light diffusing film, polarizing plate, and liquid crystal display device Download PDFInfo
- Publication number
- JP5962142B2 JP5962142B2 JP2012080768A JP2012080768A JP5962142B2 JP 5962142 B2 JP5962142 B2 JP 5962142B2 JP 2012080768 A JP2012080768 A JP 2012080768A JP 2012080768 A JP2012080768 A JP 2012080768A JP 5962142 B2 JP5962142 B2 JP 5962142B2
- Authority
- JP
- Japan
- Prior art keywords
- light
- liquid crystal
- layer
- diffractive structure
- polarizing plate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Landscapes
- Liquid Crystal (AREA)
- Optical Elements Other Than Lenses (AREA)
- Polarising Elements (AREA)
- Diffracting Gratings Or Hologram Optical Elements (AREA)
Description
本発明は、入射した光を拡散して透過することができる光拡散フィルム、該光拡散フィルムを用いた偏光板、及び液晶表示装置に関する。 The present invention relates to a light diffusion film that can diffuse and transmit incident light, a polarizing plate using the light diffusion film, and a liquid crystal display device.
液晶テレビ等の液晶表示装置には、液晶パネルと、該液晶パネルに対して背面側から照明する面光源装置と、が備えられている。液晶パネルのうちの液晶層には表示すべき映像の情報は含まれているが、液晶層自身が発光するものではないので、面光源装置からの光を透過させることにより観察者が視認可能な映像を提供することができる。
液晶層はその性質上、該液晶層の法線方向からの入射光(光源光)に対しては、透過光のコントラスト、及び効率(透過率)は優れている。しかしながら、当該法線方向に対して斜めからの入射光(光源光)については位相がずれ、偏光がずれるので、これを遮断する必要があり、その分、面光源装置からの光の利用効率が低下する。また、このような斜めからの入射光に対する位相のずれを補償するために位相差フィルムを配置することもある。
A liquid crystal display device such as a liquid crystal television includes a liquid crystal panel and a surface light source device that illuminates the liquid crystal panel from the back side. The liquid crystal layer of the liquid crystal panel contains information on the image to be displayed, but the liquid crystal layer itself does not emit light, so that the viewer can see it by transmitting the light from the surface light source device. Video can be provided.
Due to the nature of the liquid crystal layer, the contrast and efficiency (transmittance) of transmitted light are excellent with respect to incident light (light source light) from the normal direction of the liquid crystal layer. However, the incident light (light source light) obliquely with respect to the normal direction is out of phase and polarized light, so that it is necessary to block this, and the use efficiency of light from the surface light source device is correspondingly reduced. descend. In addition, a retardation film may be disposed in order to compensate for such a phase shift with respect to incident light from an oblique direction.
このような問題に対して、光の利用効率を向上させることや、位相差フィルムを不要とするため、面光源装置からの出射光を液晶パネルのパネル面法線方向にできるだけ收束(平行光束化)させるように、当該面光源装置の光学系について工夫がされている。これにより面光源装置からの光を効率よく利用することができ、位相差フィルムを必要としない形態も可能となる。 In order to improve the light utilization efficiency and eliminate the need for a retardation film, the output light from the surface light source device can be collected as much as possible in the normal direction of the panel surface of the liquid crystal panel (parallel light flux). The optical system of the surface light source device has been devised. Thereby, the light from the surface light source device can be used efficiently, and a configuration that does not require a retardation film is also possible.
ところが、液晶パネルのパネル面法線方向に近づけられた光源光が液晶パネルを透過して観察者側に出射されると、液晶表示装置の正面では非常に明るい映像を観察することができるが、正面からはずれた角度で液晶表示装置を見ると暗くなり、いわゆる視野角が非常に狭くなってしまう。 However, when the light source light that is brought close to the normal direction of the panel surface of the liquid crystal panel is transmitted through the liquid crystal panel and emitted to the viewer side, a very bright image can be observed in front of the liquid crystal display device. When the liquid crystal display device is viewed at an angle deviated from the front, it becomes dark and the so-called viewing angle becomes very narrow.
そこで、液晶表示パネルの出光面側(画像観察者側)に、該液晶表示パネルから出射した映像情報を含む光の視野角を広げるために、光を拡散する部材が用いられる。特許文献1には、マットを含む湾曲菱形柱輝度増強フィルムが開示され、ここには回折格子状であることを含む微突出構造ユニットが備えられ、入射する光を制御する技術が表されている。また、特許文献2には、光学部材の少なくとも一方の面にホログラム表面拡散パターンが形成され、回折を利用して光を拡散する技術が開示されている。
Therefore, a member that diffuses light is used on the light exit surface side (image observer side) of the liquid crystal display panel in order to widen the viewing angle of light including video information emitted from the liquid crystal display panel.
特許文献1、2に記載の発明のように、ここに用いられる回折格子状の構造やホログラム表面拡散パターンによれば、視野角を広げることが可能になる。しかしながらこのような従来技術では、回折格子構造(ホログラム表面拡散パターンを含む。)が存在する。そのため、光の波長に基づく分散(以下、「波長分散」と記載することがある。)に起因して色により透過する光の角度が大きく異なる等の現象で虹状の色ムラ(以下「虹ムラ」と記載することがある。)が発生する。そして回折格子構造におけるこのような問題について、これまで検討されてこなかった。
As in the inventions described in
そこで本発明は、上記の問題に鑑み、液晶表示装置の液晶層よりも観察者側に配置されることにより、該液晶表示装置としての特性に適合した視野角拡大特性を発揮するとともに、外光によるコントラスト低下及び像のボケを防止する回折構造体を含むとともに、虹状の色ムラの発生を抑制することが可能な光拡散フィルムを提供することを課題とする。また、当該光拡散フィルムを用いた偏光板、及び液晶表示装置を提供する。 Accordingly, in view of the above problems, the present invention is arranged on the viewer side with respect to the liquid crystal layer of the liquid crystal display device, thereby exhibiting a viewing angle expansion characteristic suitable for the characteristics as the liquid crystal display device and external light. It is an object of the present invention to provide a light diffusion film that includes a diffractive structure that prevents a decrease in contrast and blurring of an image, and that can suppress the occurrence of rainbow-like color unevenness. In addition, a polarizing plate and a liquid crystal display device using the light diffusion film are provided.
以下、本発明について説明する。なお、本発明の理解を容易にするために添付図面の参照符号を括弧書きにて付記するが、それにより本発明が図示の形態のみに限定されるものではない。 The present invention will be described below. In addition, in order to make an understanding of this invention easy, the reference sign of an accompanying drawing is attached in parenthesis writing, However, This invention is not limited only to the form of illustration.
請求項1に記載の発明は、入光面の法線方向に略平行に入射した光を拡散して透過する回折構造(11a)を有する回折構造体(11)と、回折構造体により光が拡散する側に配置され、透光性を有し、回折構造体よりも低い屈折率の媒体であるバインダー(12a)中に、光を散乱する粒子である光散乱粒子(12b)が分散された光散乱層(12、22)と、を備え、回折構造体と光散乱層とは直接積層されるとともに回折構造は、光散乱層との界面を形成しており、光散乱粒子の屈折率が1.40以上1.65未満であり、バインダーと光散乱粒子との屈折率差が0.05以上0.30未満である、光拡散フィルム(10、20)である。
According to the first aspect of the present invention, there is provided a diffractive structure (11) having a diffractive structure (11a) that diffuses and transmits light incident substantially parallel to the normal direction of the light incident surface; is arranged on the side of diffuse, have a light-transmitting, in the binder (12a) which is a medium of lower refractive index than the diffraction structure, the light scattering particles (12b) are dispersed are particles scatter light A light scattering layer (12, 22), the diffractive structure and the light scattering layer are directly laminated, and the diffractive structure forms an interface with the light scattering layer, and the refractive index of the light scattering particles is 1. A light diffusion film (10, 20) having a refractive index difference of not less than 1.40 and less than 1.65 and having a refractive index difference between the binder and the light scattering particles of not less than 0.05 and less than 0.30.
ここで、「略平行」とは、回折構造体の入光面の法線方向に対して半値角度が0°〜15°の範囲内の光を意味する。 Here, “substantially parallel” means light having a half-value angle in the range of 0 ° to 15 ° with respect to the normal direction of the light incident surface of the diffractive structure.
請求項2に記載の発明は、請求項1に記載の光拡散フィルム(10、20)において、回折構造(11a)が計算機ホログラムであることを特徴とする。
The invention according to
請求項3に記載の発明は、請求項1又は2に記載の光拡散フィルム(10、20)において、回折構造体(11)は、該回折構造体の出光面が鉛直に立てられた姿勢で、出光面に対する正面、水平面内方向、及び垂直面内方向にのみ輝度分布を生じる回折構造を有する。
The invention according to claim 3 is the light diffusing film (10, 20) according to
請求項4に記載の発明は、請求項1〜3のいずれか一項に記載の光拡散フィルム(10、20)と、該光拡散フィルムに積層されたPVA層(103)と、を有する偏光板(102)である。
The invention according to
請求項5に記載の発明は、略平行な光を生成する面光源装置(110)と、該面光源装置の観察者側に配置される液晶パネル(101)と、を有し、液晶パネルは、液晶層(106)と、該液晶層の面光源装置側に配置される下偏光板(105)と、液晶層の観察者側に配置される上偏光板(102)と、を備え、上偏光板は請求項4に記載の偏光板である、液晶表示装置(100)を提供する。
The invention according to
請求項6に記載の発明は、請求項5に記載の液晶表示装置(100)において、上偏光板(102)は、液晶層(106)側にPVA層(103)、該PVA層の観察者側に光拡散フィルム(10、20)の順であることを特徴とする。 According to a sixth aspect of the present invention, in the liquid crystal display device (100) according to the fifth aspect , the upper polarizing plate (102) has a PVA layer (103) on the liquid crystal layer (106) side, and an observer of the PVA layer. It is the order of the light diffusion film (10, 20) on the side.
本発明によれば、含まれる回折構造体により視野角拡大特性を発揮できるとともに、当該回折構造体に起因する虹状の色ムラの発生を抑制することが可能となる。 According to the present invention, the included diffractive structure can exhibit viewing angle expansion characteristics and can suppress the occurrence of rainbow-like color unevenness due to the diffractive structure.
本発明の上記した作用及び利得は、次に説明する発明を実施するための形態から明らかにされる。以下、本発明を図面に示す実施形態に基づき説明する。ただし、本発明はこれら実施形態に限定されるものではない。 The above-described operation and gain of the present invention will be clarified from embodiments for carrying out the invention described below. Hereinafter, the present invention will be described based on embodiments shown in the drawings. However, the present invention is not limited to these embodiments.
図1は第一実施形態を説明する図で、光拡散フィルム10の構成を模式的に示す断面図である。光拡散フィルム10は、回折構造体11と、回折構造体11に積層された光散乱層12と、を備えている。
FIG. 1 is a diagram illustrating the first embodiment, and is a cross-sectional view schematically showing the configuration of the
回折構造体11は、その一方の面に凹凸による回折構造11aが形成されている。この回折構造11aは、入射した光を回折現象を利用して拡散させて透過させる機能を有する構造とされている。本実施形態の回折構造11aはいわゆるレリーフ型ホログラムである。このように、本実施形態では回折構造体11が具備する回折構造11aをレリーフ型ホログラムとした。しかしながら本発明はこれに限定されることなく、回折を利用して光を拡散させる機能を発揮することができれば他の回折構造を有する回折構造体としてもよい。他の回折構造としては、回折格子(グレーティング)、フレネルレンズ等の回折光学素子(DOE等)、体積型ホログラム、及び、任意のパターンが連続的に配置され、回折現象を発現する構造等を挙げることができる。
The
回折構造体11は、透光性を有する基材層の一方の面上にレリーフ型ホログラム形状11a(回折構造11a)を有する層が積層されて形成されている。基材層となる材料は、透明性、及び平滑性が高いものが好ましく、例えばポリエチレンテレフタレートフィルム、ポリエチレンフィルム、ポリプロピレンフィルム、ポリ塩化ビニルフィルム、アクリルフィルム、トリアセチルセルロースフィルム、セルロースアセテートブチレートフィルム等を挙げることができる。基材層の厚さは1μm〜1mmが好ましく、より好ましくは10μm〜100μmである。
また、回折構造11aを有する層は、生産性の観点から、硬化前にホログラム形状とし、何らかの手段でこれを硬化させることで形状を固定できる材料であることが好ましい。例えば、ポリエステル(メタ)アクリレート、ウレタン(メタ)アクリレート、エポキシ(メタ)アクリレート、ポリエーテル(メタ)アクリレート、ポリオール(メタ)アクリレート、メラミン(メタ)アクリレート、トリアジン(メタ)アクリレート等の(メタ)アクリレート系化合物、不飽和ポリエステル系化合物、メラミン系化合物、エポキシ系化合物等からなるラジカル重合性プレポリマー、1,6−ヘキサンジオールジ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート等のラジカル重合性不飽和単量体等の中から選択した1種乃至2種以上からなる組成物からなる電離放射線硬化性樹脂を挙げることができる。ここで「(メタ)アクリレート」とは、アクリレート又メタクリレートを意味する。
硬化に用いる電離放射線としては、紫外線、X線、可視光線等の電磁波、又はは電子線、イオン線等の荷電粒子線が用いられる。特に、電離放射線として紫外線を採用する場合、該電離放射線硬化性樹脂は紫外線硬化性樹脂と呼ばれる。
その他、アクリル樹脂、ポリカーボネート樹脂、スチレン樹脂等の熱可塑性樹脂、エポキシ樹脂、熱硬化性ウレタン樹脂、熱硬化性ポリエステル樹脂等の熱可塑性樹脂を用いることもできる。
また回折構造11aを有する層は光散乱層12より高い屈折率の材料で構成されている。
The
Further, from the viewpoint of productivity, the layer having the
As the ionizing radiation used for curing, electromagnetic waves such as ultraviolet rays, X-rays and visible rays, or charged particle beams such as electron beams and ion beams are used. In particular, when ultraviolet rays are employed as the ionizing radiation, the ionizing radiation curable resin is referred to as an ultraviolet curable resin.
In addition, thermoplastic resins such as acrylic resins, polycarbonate resins, and styrene resins, epoxy resins, thermosetting urethane resins, and thermosetting polyester resins can also be used.
The layer having the
光散乱層12は、回折構造体11のうち、回折構造11aを有する側の面に積層される。その結果、光散乱層12は、回折構造11aの凹凸形状に追随して回折構造11aとの界面を形成する。本実施形態で光散乱層12は、透光性を有する媒体であり、光散乱層12の主部となるバインダー12aに、光を散乱する粒子である光散乱粒子12bが分散されて構成されている。
The
バインダー12aは、回折構造体11のうち回折構造11aを有する層の屈折率より低い屈折率を有する粘着剤で構成できる。粘着剤としてはアクリル樹脂系、シリコン樹脂系のものが適用可能である。該粘着剤の屈折率を低くする為に該粘着剤中に弗素系樹脂、弗化マグネシウム微粒子等の低屈折率材料を添加しても良い。回折構造11aを有する層とバインダー12aとの屈折率差を実現する為の手段としては、回折構造11aを有する層の材料中に、酸化ジルコニウム、酸化亜鉛、酸化タングステン等の高屈折率材料からなる微粒子を添加することもできる。これら、低屈折率材料及び高屈折率材料の微粒子の平均粒子径は、可視光線波長域に於ける十分な透明性を確保する為に、可視光線の最短波長(380nm)以下、好ましくは、10nm〜200nmの範囲とする。回折構造11aを有する層とバインダー12aとの屈折率差を十分大きくする場合は、両層の一方に高屈折率材料を添加し、かつ他方に低屈折率材料を添加することが好ましい。
ここで、回折構造11aを有する層と、バインダー12aとの屈折率差は特に限定されることはないが、0.1以上であることが好ましい。
The
Here, the difference in refractive index between the layer having the
ここで、バインダー12aを構成する材料は接着剤の他、透光性を有する他の材料で構成することもできる。他の材料としては、透明性が高く、回折構造11aの凹凸形状に追随させるため、硬化前に回折構造体11に塗布する等して積層してから硬化させることができるものが好ましい。例えば、ポリエステル(メタ)アクリレート、ウレタン(メタ)アクリレート、エポキシ(メタ)アクリレート、ポリエーテル(メタ)アクリレート、ポリオール(メタ)アクリレート、メラミン(メタ)アクリレート、トリアジン(メタ)アクリレート等の(メタ)アクリレート系化合物、不飽和ポリエステル系化合物、メラミン系化合物、エポキシ系化合物等からなるラジカル重合性プレポリマー、1,6−ヘキサンジオールジ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート等のラジカル重合性不飽和単量体等の中から選択した1種又は2種以上の組成物からなる電離放射線硬化性樹脂を挙げることができる。
その他、アクリル樹脂、ポリカーボネート樹脂、スチレン樹脂等の熱可塑性樹脂、エポキシ樹脂、熱硬化性ウレタン樹脂、熱硬化性ポリエステル樹脂等の熱可塑性樹脂を用いることもできる。
Here, the material which comprises the
In addition, thermoplastic resins such as acrylic resins, polycarbonate resins, and styrene resins, epoxy resins, thermosetting urethane resins, and thermosetting polyester resins can also be used.
光散乱粒子12bは、例えば、バインダー12aとは異なる屈折率を有する材料とすることにより光散乱機能を発揮する粒子である。これには例えば、平均粒径が0.5μm〜10μm程度であるシリカ(二酸化珪素)、アルミナ(酸化アルミニウム)、アクリル樹脂、スチレン樹脂、ポリカーボネート樹脂、シリコーン樹脂等の透明物質からなる粒子を用いることができる。その他、光に対して反射作用を及ぼし得る材料であってもよい。
ここで、平均粒径が0.5μmより小さいと内部拡散効果が少なくなり、虹ムラ防止や視野角拡大に寄与しなくなる。一方、平均粒径が10μmより大きくなると、バインダーの通常の膜厚(10μm程度)では該膜内で均一に分散することが困難となる。
The
Here, if the average particle size is smaller than 0.5 μm, the internal diffusion effect is reduced, and it does not contribute to the prevention of rainbow unevenness and the expansion of the viewing angle. On the other hand, when the average particle size is larger than 10 μm, it becomes difficult to uniformly disperse within the film at a normal film thickness (about 10 μm) of the binder.
ここで光拡散粒子12bがバインダー12aとは異なる屈折率を有する材料とすることにより光散乱機能を発揮する粒子であるときには、当該光散乱粒子の屈折率が1.40以上1.65未満であることが好ましい。上記した粒子径を有する透明物質は上記した範囲外の物を汎用的に入手するのは困難である。
また、バインダーと前記光散乱粒子との屈折率差は0.05以上0.30未満であることが好ましい。屈折率差が0.05より小さいと十分な光散乱作用を得ることができず、虹ムラを抑制することが困難になる。一方、屈折率差が0.3以上となると、光散乱作用が強くなりすぎ、明るさやコントラスト比に不具合を生じる虞がある。
Here, when the
The difference in refractive index between the binder and the light scattering particles is preferably 0.05 or more and less than 0.30. If the refractive index difference is smaller than 0.05, a sufficient light scattering effect cannot be obtained, and it becomes difficult to suppress rainbow unevenness. On the other hand, when the difference in refractive index is 0.3 or more, the light scattering action becomes too strong, and there is a possibility that a problem occurs in brightness and contrast ratio.
上記のような構成を備える光拡散フィルム10により、光源からの光を拡散して透過することで、視野角を広げることができる。さらには回折構造体11の性質上、該回折構造体11の回折構造11aの回折に起因する波長分散による虹ムラの発生を光散乱層12により抑制することが可能となる。このような効果は後で説明する。
By diffusing and transmitting light from the light source with the
また、光散乱層12を設けることにより、回折構造11aが光散乱層12に覆われるので光拡散フィルム10の表面に表れない。これにより、光拡散フィルム10の両表面は平滑面となり、他の部材に光拡散フィルム10を積層させる際にも回折構造11aが存在することに配慮する必要がない。また、当該平滑面を利用して液晶表示装置の画面表層を光沢のある面とすることも可能である。さらに、回折構造11aの一方と他方は必ず回折構造体11及び光散乱層12であり、光拡散フィルム10をどのような層に積層させたとしても回折構造11aを挟む一方と他方の材料が変化することがない。従って、光拡散フィルム10がどのような層に積層されたかによらず同様の回折を得ることが可能である。
Moreover, since the
次に本実施形態に具備される回折構造11aの好ましい例について説明する。回折構造11aは、回折構造体11側からの入射光を光散乱層12側に所定の範囲に拡散させるように透過可能な形状とされている。具体的には、回折構造体11を液晶表示装置100(図10参照)に配置し、矩形である光拡散フィルム10の4つの辺のうち2つの辺を水平に、他の2つの辺を鉛直である姿勢(鉛直の姿勢)としたとき、すなわち、回折構造体11の出光面を鉛直である方向に立てるように配置したときに、光拡散フィルム10は、回折構造体11の正面、水平面内となる方向及び垂直面内となる方向の視野角にのみ輝度分布が生じるように光を拡散させる。
従って液晶表示装置100では、観察者が画面を見る際には正面、水平面内、垂直面内の視野角で映像や画像を観察することができればよく、観察者にとって重要でない斜め方向面内の視野角に対して映像光の透過を抑制することができる。従って、不要な光の透過を抑制することができるので、光源からの光の利用効率を向上させることができる。また、回折を利用することにより光を拡散させるので、光散乱粒子等の屈折を利用する視野角拡大部材の場合に問題となっていた外光の後方散乱に起因するコントラスト低下、及び像の鮮明度が低下するいわゆる像ボケを防止することができる。
Next, a preferable example of the
Therefore, in the liquid
ここで、光拡散フィルム10への入射光は、該光拡散フィルム10の入光面法線に対して略平行であることを想定できる。具体的には、後述する液晶表示装置100のように、面光源装置110において光の方向が該法線方向に強く偏向されると共に、収束、平行化されて、光拡散フィルム10の当該法線方向に略平行である光が光拡散フィルム10に入射するような場合である。このときの「略平行」とは、光拡散フィルム10の入光面の法線方向に対して、半値角度が0°〜15°の範囲内の光を意味する。従って、光拡散フィルム10への入射光が、半値角度で±1°〜±15°の広がりを有するものであっても上記した所望の光の拡散ができることが好ましい。
Here, it can be assumed that the incident light on the
このような回折構造11aは、上記のような機能を発揮するものであれば特に限定されることはないが、その中でも計算機ホログラムであることが好ましい。計算機ホログラムによれば透過光の拡散範囲や拡散の態様を任意に設定することができ、所望の光拡散特性を得ることができる。以下、回折構造11aについて、計算機ホログラムによるものを複数の例を挙げて説明する。
Such a
初めに第一の例にかかる回折構造11aによる光拡散特性を説明する。図2は当該第一の例にかかる回折構造11aによる光拡散特性を説明する図である。図2(a)〜図2(c)は、光拡散フィルム10の視野角と輝度との関係を示す図である。より詳しくは、光拡散フィルム10を液晶表示装置100(図10参照)に配置し、矩形である光拡散フィルム10の4つの辺のうち2つの辺を水平に、他の2つの辺を鉛直である姿勢(出光面が鉛直に立てられた姿勢)として立てたときにおける視野角と輝度との関係を示した図である。図2(a)は水平面内における視野角と輝度との関係、図2(b)は垂直面内における視野角と輝度との関係、及び図2(c)は斜め45°の面内における視野角と輝度との関係である。当該第一の例の回折構造11aによれば、回折構造体11側から入射した光を回折して拡散するに際して、視野角0°付近(すなわち出光面に対する正面方向)において、高い輝度を有して光を透過することがわかる。それに加えて、水平方向面内及び垂直方向面内では視野角±30°〜±40°において輝度を有している。一方、斜め45°の面内では、視野角0°付近以外ではこのような輝度を有していない。従って、第一の例によれば、出光面に対する正面方向、水平面内の±30°〜±40°、及び垂直面内の±30°〜±40°において明るい映像光を観察することができる。
First, the light diffusion characteristics of the
このような光拡散特性を得るためには、視野角0°付近の輝度は回折の0次光を利用し、水平面内の±30°〜±40°、及び垂直面内の±30°〜±40°の輝度は回折の1次光を利用することができる。従って計算機ホログラムの形状を得るに際しては1次光が所望の角度に回折するように構成すればよい。図3に説明のための図を示した。図3は、上記した光拡散特性のうち、1次光に関するものを表したグラフである。横軸が水平面内視野角、縦軸が垂直面内視野角である。図3に斜線で示した部分が1次光により輝度が得られるべき角度範囲である。従って、上記説明した光拡散特性は図3のように表すこともできる。そして図3に表した図に基づいてフーリエ変換により最終的にホログラム形状を得るための元となる図を得て、これに対してフーリエ変換等を施すことにより、最終的に上記した光拡散特性を具備する計算機ホログラムのホログラム形状を得ることができる。図3を用いてどのように具体的な回折構造11aを得るかについては後で説明する。
In order to obtain such light diffusion characteristics, the luminance near the viewing angle of 0 ° uses diffraction zero-order light, and ± 30 ° to ± 40 ° in the horizontal plane and ± 30 ° to ± 40 in the vertical plane. For the luminance of 40 °, the diffracted primary light can be used. Accordingly, when obtaining the shape of the computer generated hologram, it is sufficient to configure so that the primary light is diffracted to a desired angle. FIG. 3 shows an explanatory diagram. FIG. 3 is a graph showing the light diffusion characteristics related to the primary light. The horizontal axis is the horizontal in-plane viewing angle, and the vertical axis is the vertical in-plane viewing angle. A hatched portion in FIG. 3 is an angle range in which luminance should be obtained by primary light. Therefore, the light diffusion characteristics described above can also be expressed as shown in FIG. Then, based on the diagram shown in FIG. 3, an original diagram for finally obtaining a hologram shape by Fourier transform is obtained, and by applying Fourier transform or the like to this, the above-mentioned light diffusion characteristics are finally obtained. Can be obtained. How to obtain a
ここで、0次光の輝度の大きさ(視野角0°における輝度)に対する1次光の輝度の大きさ(視野角±30°〜±40°における輝度)の割合は特に限定されることはないが、1次光の輝度の大きさは0次光の輝度の大きさに対して0.1倍以上であることが好ましい。 Here, the ratio of the luminance level of the primary light (luminance at a viewing angle of ± 30 ° to ± 40 °) to the luminance level of the zero-order light (luminance at a viewing angle of 0 °) is particularly limited. However, it is preferable that the luminance of the primary light is 0.1 times or more the luminance of the zero-order light.
また、第一の例では、水平面内視野角±30°〜±40°における輝度と、垂直面内視野角±30°〜±40°における輝度と、は同じとなるように構成されているが(図2(a)、図2(b)参照)、垂直面内視野角±30°〜±40°の輝度よりも水平面内視野角±30°〜±40°の輝度を大きくしてもよい。これによれば光拡散フィルム10を例えば据え置き型の液晶表示装置に配置した場合には、水平面内輝度分布が特に重要であることから、これに見合った光拡散特性とすることが可能である。
In the first example, the luminance in the horizontal plane viewing angle of ± 30 ° to ± 40 ° and the vertical in-plane viewing angle of ± 30 ° to ± 40 ° are configured to be the same. (Refer to FIG. 2 (a) and FIG. 2 (b)), the luminance in the horizontal plane viewing angle ± 30 ° to ± 40 ° may be larger than the luminance in the vertical plane viewing angle ± 30 ° to ± 40 °. . According to this, when the
次に、第二の例にかかる回折構造11aによる光拡散特性を説明する。図4、図5には当該第二の例にかかる回折構造11aを説明する図のうち、図3に相当する図を示した。図4、図5のうち、図4に示した例は、水平面内視野角及び垂直面内視野角において複数の角度範囲で輝度が高くなる例である。より具体的には、0次光により正面で輝度が高いことに加え、1次光により水平面内及び垂直面内の±30°〜±40°、±60°〜±70°の範囲で輝度が高くなる。
一方、図5に示した例では、水平面内視野角及び垂直面内視野角において上記第一の例よりも広い角度範囲で輝度が高くなる例である。より具体的には、0次光により正面で輝度が高いことに加え、1次光により水平面内及び垂直面内の±30°〜±70°の範囲で輝度が高くなる。
このように第二の例では、水平面内及び垂直面内においてより広い範囲で光を拡散するホログラム形状が形成され、液晶表示装置に適用した場合にはこれに応じた広い視野角を得ることが可能となる。
Next, the light diffusion characteristics of the
On the other hand, the example shown in FIG. 5 is an example in which the luminance increases in a wider angle range than the first example in the horizontal plane viewing angle and the vertical in-plane viewing angle. More specifically, in addition to the high brightness in the front due to the 0th-order light, the brightness is increased in the range of ± 30 ° to ± 70 ° in the horizontal plane and the vertical plane by the primary light.
Thus, in the second example, a hologram shape that diffuses light in a wider range in the horizontal plane and the vertical plane is formed, and when applied to a liquid crystal display device, a wide viewing angle corresponding to this can be obtained. It becomes possible.
次に第三の例にかかる回折構造11aによる光拡散特性を説明する。図6には当該第三の例にかかる回折構造11aを説明する図のうち、図3に相当する図を示した。図6に示した例では、第一の例で説明した視野角に加え、−10°〜+10°の範囲も輝度が高くなる。すなわち正面から水平面内±45°、及び正面から垂直面内の±45°まで連続的に光を拡散するように回折構造11aが形成されている。従って液晶表示装置に適用した場合には、これに応じて正面から水平面内±45°及び正面から垂直面内±45°の範囲で連続的に映像を観察可能となる。
Next, the light diffusion characteristics of the
次に第四の例にかかる回折構造11aによる光拡散特性を説明する。図7に説明のための図を示した。図7の上段は、本例における水平面内輝度分布を示したものである。ここで、視野角0°に最大輝度を有する輝度分布が0次光によるもの、視野角0°でない角度に最大輝度を有する輝度分布は1次光によるものである。図7の下段は、このような輝度分布を実現するための回折構造11aを得るための図で、図3に相当する図である。図7からわかるように、本例では、1次光の最大輝度となる視野角が、0次光の半値角(最大輝度に対して輝度が半分になる視野角の位置)よりも外側の視野角となるように構成されている。
このような光拡散特性を有するホログラム形状(回折構造)によれば、0次光と1次光との連続性を向上させることができる。従って液晶表示装置にこれを適用する場合には、正面から水平面内、及び正面から垂直面内に向けて連続的に映像を観察可能となる。
図7及び上記説明では水平面内視野角についてのみ説明したが、垂直面内視野角についても同様である。
Next, the light diffusion characteristics of the
According to the hologram shape (diffraction structure) having such light diffusion characteristics, the continuity between the zero-order light and the first-order light can be improved. Therefore, when this is applied to a liquid crystal display device, it is possible to observe images continuously from the front to the horizontal plane and from the front to the vertical plane.
In FIG. 7 and the above description, only the horizontal in-plane viewing angle has been described, but the same applies to the vertical in-plane viewing angle.
以上説明した各例では、光拡散フィルム10に入射する光が水平面内方向と垂直面内方向とで同様の広がりを有しているものとして説明した。しかしながら、光拡散フィルム10を液晶表示装置に用いた場合においては、光拡散フィルム10に入射する光が必ずしも水平面内方向と垂直面内方向とで同様の広がりを有しているとは限らない。このように入射光が方向によって異なる広がりを有している場合(例えば楕円状)には、このまま上記した光拡散フィルム10を適用すると、水平面内と垂直面内とで、光を拡散する範囲が異なってしまう場合もある。これに対しては、予め当該入射光の特性を考慮して、水平面内と垂直面内とで同様の光拡散範囲を可能とするように回折構造11aを補正しておくこともできる。また、このような水平面内と垂直面内とで光を拡散する範囲が異なることを利用し、所望の光拡散特性を得ることができるようにホログラム形状を形成しておくこともできる。
In each example described above, it has been described that the light incident on the
また、以上説明した各例は例示であり、上記の他にも所望の光拡散特性を得るためのホログラム形状を形成することが可能である。本実施形態では回折における0次光と1次光のみを考慮したが、2次光以上の高次光が考慮されてもよい。 Moreover, each example demonstrated above is an illustration, and it is possible to form the hologram shape for obtaining a desired light-diffusion characteristic besides the above. In this embodiment, only the 0th-order light and the 1st-order light in diffraction are considered, but higher-order light higher than the 2nd-order light may be considered.
以上説明した計算機ホログラムは、上記した各光学的機能を有する複数の微小な単位計算機ホログラムが並べられて複合化されたもの、又は単位計算機ホログラムが複眼状に配列されたものである。例えば、単位計算機ホログラムを正方形で形成して、複数の該正方形の単位計算機ホログラムを縦横格子状に密に配列したものや、縦又は横を一列置きに半ピッチずらせていわゆる千鳥状に配列したものを挙げることができる。また、単位計算機ホログラムを隙間なく密に配置するのではなく、所定の間隙を有してまばらに配置したり、所定のパターンに基づいて配置する態様も考えられる。もちろん単位計算機ホログラムの形状は正方形に限られることもなく、長方形やその他の多角形を含めて任意の形状で形成してもよい。さらに、1つの計算機ホログラムに含まれる単位計算機ホログラムの形状や配列形態は必ずしも一定である必要はなく、場所により変えられてもよい。 The above-described computer generated holograms are obtained by arranging a plurality of minute unit computer holograms having the respective optical functions described above and combining them, or unit computer holograms arranged in a compound eye shape. For example, a unit computer hologram is formed in a square shape, and a plurality of the unit computer holograms having a square shape are densely arranged in a vertical / horizontal lattice pattern, or a so-called zigzag pattern in which vertical or horizontal lines are shifted by half a pitch every other row. Can be mentioned. In addition, it is also conceivable that the unit computer generated holograms are not densely arranged with no gap but are sparsely arranged with a predetermined gap or arranged based on a predetermined pattern. Of course, the shape of the unit computer hologram is not limited to a square, and may be formed in any shape including a rectangle and other polygons. Further, the shape and arrangement of unit computer holograms included in one computer hologram are not necessarily constant, and may be changed depending on the location.
次に、光拡散フィルム10の製造方法について一例を説明する。光拡散フィルム10は、回折構造の具体的形状を得る工程、得られた回折構造に基づいて型を作製する工程、当該型を用いて回折構造を回折構造体に形成する工程、及び光散乱層を形成する工程を含んで製造される。以下各工程について説明する。
Next, an example of the manufacturing method of the
回折構造の具体的形状を得る工程は、上記した光学的機能を有する形状を得ることができれば公知の方法を用いることができる。ここでは、光拡散フィルム10の好ましい態様として説明した回折構造としての計算機ホログラムのホログラム形状を得る方法について説明する。計算機ホログラム自体は公知であるので、当該計算機ホログラム形状を得るための方法についても公知の方法(例えば特許第4620220号)を適用することが可能である。ここではそのうちの一例を説明する。
The step of obtaining a specific shape of the diffractive structure can use a known method as long as the shape having the optical function described above can be obtained. Here, a method for obtaining a hologram shape of a computer generated hologram as a diffraction structure described as a preferred embodiment of the
一般に計算機ホログラムを求めるには次のようにする。すなわち、あるホログラムを想定し、それからの再生距離がホログラムの大きさにくらべて十分大きく、ホログラム面の法線に平行な光を照明した場合、再生像面で得られる回折光は、ホログラム面での振幅分布、及び位相分布のフーリエ変換で表される(フラウンホーファー回折)。そこで、再生像面に所定の回折光を与えるために、ホログラム面と再生像面との間で束縛条件を加えながら、フーリエ変換と逆フーリエ変換を交互に繰り返し、ホログラム面に配置する計算機ホログラムを求める方法が知られている(Gerchberg−Saxton反復計算法)。 In general, a computer generated hologram is obtained as follows. In other words, assuming a certain hologram and the reproduction distance from it is sufficiently large compared to the size of the hologram, and illuminating light parallel to the normal of the hologram surface, the diffracted light obtained on the reproduction image surface is Expressed by Fourier transform of the amplitude distribution and phase distribution (Fraunhofer diffraction). Therefore, in order to give a predetermined diffracted light to the reproduction image plane, a computer generated hologram arranged on the hologram plane is repeatedly repeated with Fourier transform and inverse Fourier transform while applying a constraint condition between the hologram plane and the reproduction image plane. The method to obtain | require is known (Gerchberg-Saxton iterative calculation method).
そこで、Gerchberg−Saxton反復計算法を利用して、背後からホログラム面の法線に平行な光を照明した場合に所定の観察域へのみ光を回折する計算機ホログラムを得ることを考える。ここではわかりやすさのため、ホログラム面での振幅分布をAHOLO、ホログラム面での位相分布をφHOLO 、再生像面での振幅分布をAIMG 、再生像面での位相分布をφIMGで表現する。図8に流れを示した。
ここで、計算機ホログラムの具体的形状を得るに際しては、上記説明した図3、図4、図5、図6等のような角度分布をもとに振幅分布を作成して計算することにより算出することができる。
Therefore, it is considered to obtain a computer generated hologram that diffracts light only to a predetermined observation area when light parallel to the normal line of the hologram surface is illuminated from behind by using the Gerchberg-Saxton iterative calculation method. Here, for easy understanding, the amplitude distribution on the hologram surface is represented by A HOLO , the phase distribution on the hologram surface is represented by φ HOLO , the amplitude distribution on the reproduction image surface is represented by A IMG , and the phase distribution on the reproduction image surface is represented by φ IMG . . The flow is shown in FIG.
Here, when obtaining a specific shape of a computer generated hologram, it is calculated by creating and calculating an amplitude distribution based on the angular distribution as shown in FIGS. 3, 4, 5, 6, etc. described above. be able to.
過程S1で計算機ホログラムが形成される面領域(x0≦x≦x1、y0≦y≦y1)において、初期値としてAHOLDに1を、φHOLDにランダムな値を与える。
過程S2で、その初期化した値に所定のフーリエ変換を施し、AIMG、φIMGを得る。
過程S3で、AIMGが所定の領域内でほぼ一定値になり、その所定領域外でほぼ0になったと判断された場合は、過程S1で初期化したAHOLDとφHOLDが所望の計算機ホログラムとなる。
In the surface region (x0 ≦ x ≦ x1, y0 ≦ y ≦ y1) in which the computer generated hologram is formed in step S1, 1 is given to A HOLD as an initial value, and a random value is given to φ HOLD .
In step S2, a predetermined Fourier transform is applied to the initialized value to obtain A IMG and φ IMG .
In step S3, if it is determined that A IMG is substantially constant within a predetermined area and is substantially 0 outside the predetermined area, A HOLD and φ HOLD initialized in step S1 are the desired computer holograms. It becomes.
一方、過程S3でこのような条件が満足されないと判断された場合は、過程S4で束縛条件が付与される。具体的には、上記の所定領域内ではAIMGが例えば1にされ、その他では0にされ、φIMGはそのままに維持される。
次に過程S5で束縛条件が付与された後の条件で所定の逆フーリエ変換が施される。
逆フーリエ変換で得られたホログラム面での値は、過程S6で束縛条件が付与され、AHOLDは1に、φHOLDは多値化(元の関数をデジタルな階段状の関数に近似(量子化))される。ただし、φHOLDが連続的な値を持ってもよい場合は、この多値化は必ずしも必要ない。
On the other hand, if it is determined in step S3 that such a condition is not satisfied, a constraint condition is assigned in step S4. Specifically, A IMG is set to 1, for example, in the predetermined area, and is set to 0 in the other areas, and φ IMG is maintained as it is.
Next, a predetermined inverse Fourier transform is performed under the condition after the binding condition is given in step S5.
The value on the hologram surface obtained by the inverse Fourier transform is given a constraining condition in step S6, A HOLD is set to 1, and φ HOLD is multivalued (approximate the original function to a digital step-like function (quantum )). However, in the case where φ HOLD may have continuous values, this multi-value conversion is not necessarily required.
そして、過程S2にもどり、その値にフーリエ変換が施される。以降は上記と同様の処理がおこなわれ、過程S3の条件が満足されるまで(収束するまで)繰り返されて最終的な所望の計算機ホログラムを得ることができる。 And it returns to process S2 and Fourier-transform is given to the value. Thereafter, the same processing as described above is performed, and it is repeated until the condition of step S3 is satisfied (until convergence), thereby obtaining a final desired computer generated hologram.
次に、得られた回折構造に基づいて型を作製する工程について説明する。ホログラム形状11a(回折構造11a)を回折構造体11に形成させるためには、得られた計算機ホログラム形状を回折構造体11となるべき材料に転写可能な凹凸形状を有する型が必要である。ここではその型を作製する工程について説明する。このような型の作製も公知の方法を用いることができるが、以下に一例を説明する。
Next, a process for producing a mold based on the obtained diffraction structure will be described. In order to form the
まず、合成石英等の基板上に表面低反射クロム薄膜を積層したフォトマスクブランク板のクロム薄膜上に、ドライエッチング耐性のあるレジスト層を薄膜状に形成する。ドライエッチング用レジストとしては、一例として、日本ゼオン株式会社製のZEP7000等を使用することができ、レジストの積層は、スピンナー等を用いた回転塗付によって行なう。
このレジスト層に対し、パターン露光を行なうが、パターン露光は、板状のパターン、レーザー描画装置によるレーザービームの走査、又は電子線描画装置による電子線の走査によりおこなうことができる。
この露光によりレジスト樹脂が硬化した易溶化部分と、未露光部分と、が形成されるので、現像液を噴霧して行なうスプレー現像等によって、溶剤現像して易溶化部分を除去し、レジストパターンを形成する。
First, a resist layer having dry etching resistance is formed in a thin film shape on a chromium thin film of a photomask blank plate in which a surface low-reflection chromium thin film is laminated on a substrate such as synthetic quartz. As an example of the resist for dry etching, ZEP7000 manufactured by Nippon Zeon Co., Ltd. can be used. The resist is laminated by spin coating using a spinner or the like.
The resist layer is subjected to pattern exposure. The pattern exposure can be performed by a plate-like pattern, laser beam scanning with a laser drawing apparatus, or electron beam scanning with an electron beam drawing apparatus.
This exposure forms a readily soluble part in which the resist resin is cured and an unexposed part. Therefore, the resist pattern is formed by removing the easily soluble part by solvent development by spray development performed by spraying a developer. Form.
形成されたレジストパターンを利用して、ドライエッチングにより、レジストで被覆されていない部分のクロム薄膜を除去し、除去した部分において、下層の石英基板を露出させる。次いで、露出した石英基板に対して、同様にドライエッチングを施して、石英基板をエッチングし、エッチングの進行により生じた凹部と、クロム薄膜およびレジスト薄膜とが下から順に被覆している石英基板の元の部分からなる凸部とを形成する。この後、レジスト薄膜を溶解等により除去し、石英基板がエッチングされて生じた凹部と、頂部にクロム薄膜が積層した部分からなる凸部とを有する石英基板を得る。 Using the formed resist pattern, the portion of the chromium thin film not covered with the resist is removed by dry etching, and the underlying quartz substrate is exposed in the removed portion. Next, dry etching is similarly performed on the exposed quartz substrate, and the quartz substrate is etched. The quartz substrate in which the concave portion generated by the progress of etching, the chromium thin film, and the resist thin film are sequentially coated from the bottom. A convex portion made of the original portion is formed. Thereafter, the resist thin film is removed by dissolution or the like, and a quartz substrate having a concave portion formed by etching the quartz substrate and a convex portion composed of a portion where a chromium thin film is laminated on the top is obtained.
以上の方法のみでは、凸部と凹部の、2値的(高低の2段、深さとしては、元の石英基板の表面に加えて、もうひとつのレベルの面が生じる。)のものしか得られないが、上記で得られたものに対し、さらにレジストの形成→パターン露光→レジストの現像→クロム薄膜のドライエッチング→石英基板のドライエッチング→レジスト除去からなる、フォトエッチングの工程を繰り返すことにより、1回目のフォトエッチングにより生じた凹部、および凸部に対してさらにフォトエッチングを施すことができる。これを複数回繰り返すことにより、複数の高低差を有する凹凸を精度よく得ることが可能である。このようにして、所定の段数を得た後、クロム薄膜をウェットエッチングにより除去し、石英基板表面に所定の段数の深さの凹凸が形成された計算機ホログラムの型を得ることができる。 With only the above method, only a binary part of the convex part and the concave part (high and low two steps, and a depth of another level surface occurs in addition to the surface of the original quartz substrate) is obtained. However, by repeating the photo-etching process consisting of resist formation → pattern exposure → resist development → dry etching of chromium thin film → dry etching of quartz substrate → resist removal for those obtained above Photoetching can be further performed on the concave portions and the convex portions generated by the first photoetching. By repeating this a plurality of times, it is possible to accurately obtain a plurality of irregularities having a height difference. In this way, after obtaining the predetermined number of steps, the chromium thin film is removed by wet etching to obtain a computer generated hologram type in which irregularities with a predetermined number of steps are formed on the surface of the quartz substrate.
次に、作製した計算機ホログラムの型を用いて回折構造体に形成する工程について説明する。当該型を使用して計算機ホログラムを複製する方法としては、例えば当該型を、加熱により軟化する樹脂層に押し付ける方法、インジェクション法、又はキャスティング法等を利用することできる。これら方法に使用する樹脂としては、熱可塑性、熱硬化性のいずれも使用できる。工業的には、好ましくは紫外線硬化性樹脂を含む未硬化樹脂組成物を型の凹凸が形成された面に接触させ、樹脂組成物の反対側に回折構造体11の基材層となるフィルムをラミネートして、樹脂組成物を型とプラスチックフィルムとの間に挟んだ状態とする。かかる状態から、紫外線を照射する等して樹脂組成物を硬化させ、しかる後に該フィルム及び硬化してかつホログラム形状が賦形された該紫外線硬化性樹脂組成物層を型から離型すると、回折構造体11が形成される。すなわち、透光性を有する基材層の一方の面上に回折構造11aを有する層が積層された回折構造体11である。
Next, a process for forming the diffraction structure using the produced computer generated hologram will be described. As a method of replicating a computer generated hologram using the mold, for example, a method of pressing the mold against a resin layer that is softened by heating, an injection method, a casting method, or the like can be used. As the resin used in these methods, both thermoplastic and thermosetting can be used. Industrially, an uncured resin composition preferably containing an ultraviolet curable resin is brought into contact with the surface on which the unevenness of the mold is formed, and a film serving as a base material layer of the
次に、回折構造体11上に光散乱層を積層する工程について説明する。光散乱層12は、光散乱粒子12bを分散させた、粘着剤としての機能を有するバインダー12aを回折構造体11上に塗布する方法を用いて形成することができる。バインダー12aとして熱可塑性樹脂、熱硬化性樹脂、又は紫外線硬化樹脂を用いる場合には、上記例示したような硬化する前の熱可塑性樹脂、熱硬化性樹脂、又は紫外線硬化樹脂等に光散乱粒子12bを分散させて、これをスキージを用いて回折構造体11上に塗工し、用いた材料に対応した硬化方法により硬化させて形成する方法を用いることが可能である。
Next, the process of laminating a light scattering layer on the
以上のような方法により光拡散フィルム10を製造することができる。
The
次に、第二実施形態について説明する。図9は第二実施形態を説明する図で、光拡散フィルム20の構成を模式的に示す断面図である。光拡散フィルム20は、回折構造体11、光透過層21、及び光散乱層22を有している。
回折構造体11は、第一実施形態で説明した回折構造体11と同様なので、ここでは説明を省略する。
Next, a second embodiment will be described. FIG. 9 is a cross-sectional view schematically illustrating the configuration of the
Since the
光透過層21は、回折構造体11のうち回折構造11aを有する側の面に積層された層であり、回折構造11aの凹凸に追随した形状を具備して回折構造11aとの界面を形成する。光透過層21は、第一実施形態で説明した光散乱層12のうち、バインダー12aを構成する材料のみで形成された層である。すなわち、本実施形態では光透過層21は光を散乱させる機能を具備していない。
The
光散乱層22は、光透過層21の面のうち、回折構造体11とは反対側の面に配置される層であり、第一実施形態で説明した光散乱層12と同様の材料により構成される。第二実施形態では当該光散乱層22により、回折構造11aで波長分散により生じた虹ムラを抑制する。
The
光拡散フィルム20によれば、光拡散フィルム10よりも層が1つ増えるので厚くなるが、光拡散フィルム10に比べて生産性が向上する。すなわち、光拡散フィルム20では、回折構造11aの凹凸に追随させて界面を形成する必要のある層(光透過層)と、光散乱粒子を分散させて積層させる層(光散乱層)と、を別々に積層することができ、製造技術的な困難性を緩和することが可能である。
According to the
次に、上記した光拡散フィルム10を用いた液晶表示装置100について説明する。図10は表示装置100のうち、液晶パネル101、及び面光源装置110に注目して示した分解斜視図である。図10及び適宜示す図により液晶表示装置100について説明する。
Next, the liquid
表示装置100は、液晶パネル101、及び面光源装置110を備えている。また、表示装置100には、説明は省略するが、その他これが表示装置として動作するために必要とされる通常の機器を具備している。
図10では紙面上が観察者側となる。
The
In FIG. 10, the paper surface is the observer side.
液晶パネル101は、観察者側に配置された上偏光板102、面光源装置110側に配置された下偏光板105、及び上偏光板102と下偏光板105との間に配置された液晶層106と、を有している。
The
上偏光板102は、PVA層103、光拡散フィルム10、及び反射防止層104(AR層104)が積層されて構成されている。
PVA層103は、PVA(ポリヴィニルアルコール)の層にヨウ素を含浸した上で延伸してなる物であり、液晶層106に積層され、入射した光を直交する二つの偏光成分(例えば、P波およびS波等)に分解し、一方の方向(透過軸と平行な方向)の偏光成分(例えば、P波)を透過させ、当該一方の方向に直交する他方の方向(吸収軸と平行な方向)の偏光成分(例えば、S波)を吸収する機能を有する層であり、実質的に偏光作用を発現する偏光板本体(いわゆる「偏光子」)に相当する。当該PVA層103は公知のものを適用することができる。
光拡散フィルム10は、PVA層103に積層される上記第一実施形態で説明したものであり、入射した光を拡散して透過する機能を有している。
AR層104は、光拡散フィルム10に積層されて液晶パネル101の最も観察者側に配置される層であり、光の反射を防止する機能を有する。これにより、液晶パネル101の表面へのいわゆる写り込みを防止することができる。このようなAR層は公知のものを用いることができる。
The upper
The
The
The
下偏光板105にも、PVA層が含まれており、入射した光を直交する二つの偏光成分(例えばP波およびS波等)に分解し、一方の方向(透過軸と平行な方向)の偏光成分(例えば、P波)を透過させ、当該一方の方向に直交する他方の方向(吸収軸と平行な方向)の偏光成分(例えば、S波)を吸収する機能を有する。 The lower polarizing plate 105 also includes a PVA layer, which decomposes incident light into two orthogonally polarized components (for example, P wave and S wave) in one direction (a direction parallel to the transmission axis). It has a function of transmitting a polarization component (for example, P wave) and absorbing a polarization component (for example, S wave) in the other direction (direction parallel to the absorption axis) orthogonal to the one direction.
液晶層106は、1対の硝子板間に液晶材料が封入されてなる。そして、画素を形成する単位セルが複数配置され、単位セル毎に、電界印加がなされ得るようになっており、電界印加された単位セル内の液晶分子の配向方向が変化する。面光源装置110側(すなわち入光側)に配置された下偏光板105を透過した特定方向の偏光成分(本実施形態においては、P波)は、電界印加された単位セルを通過する際にその偏光方向を90°回転させ、その一方で、電界印加されていない単位セルを通過する際にその偏光方向を維持する。このため、単位セルへの電界印加の有無によって、下偏光板105を透過した特定方向の偏光成分(P波)が、下偏光板105の出光側に配置された上偏光板102のPVA層103(偏光子)をさらに透過するか、又は、PVA層103で吸収されて遮断されるか、を制御することができる。
The
このようにして液晶パネル101では、面光源装置110からの光の透過又は遮断を単位セル(画素)毎に制御し、映像を表現することができるように構成されている。
In this way, the
次に面光源装置110について説明する。図11には、図10にXI−XIで示した線に沿った面光源装置110の断面図、図12にはXII−XIIで示した線に沿った断面図を示した。
面光源装置110は、液晶パネル101のうち、観察者側とは反対側に配置され、液晶パネル101に面状の光を出射する照明装置である。図10〜図12からわかるように、面光源装置110は、エッジライト型の面光源装置として構成され、導光板111と、光源115と、光学シート120と、反射シート125と、を有している。
Next, the surface
The surface
導光板111は、図10〜図12からわかるように、基部112と、単位光学要素部113とを有している。基部112は、平板状の部材であり、透光性を有する主部112a内に光散乱粒子112bが分散されて構成されている。光散乱粒子112bは、主部112a内を進む光に対し、反射や屈折等によって、当該光の進路方向を変化させる作用を及ぼす。このような光散乱粒子112bの光拡散機能(光散乱機能)は、例えば、主部112aをなす材料とは異なる屈折率を有した光散乱粒子112bを用いることにより可能となる。その他、光に対して反射作用を及ぼし得る材料であってもよい。
As can be seen from FIGS. 10 to 12, the
単位光学要素部113は、図10〜図12からわかるように、基部112の面のうち光学シート120側の面に形成される部位であり、複数の単位光学要素113aが並列されている。単位光学要素113aは、図12に現れる断面を維持して紙面奥手前方向に延びる柱状の要素であり、その延在する方向は、単位光学要素113aが配列される方向と直交する方向である。
As can be seen from FIGS. 10 to 12, the unit
図13は図12の単位光学要素113aの部分に注目した拡大図を示した。図13からわかるように、単位光学要素113aは、基部112の一方の面上に底辺を有し、基部112から突出する凸状の三角柱形状である。図示の主切断面形状(単位光学要素の延在方向と直交する断面における形状)においては三角形形状を有している。本実施形態の単位光学要素113aでは、底辺に対向する頂点が主切断面形状としては曲線状とされている。
FIG. 13 shows an enlarged view paying attention to the unit
また、単位光学要素113aの当該主切断面形状は、次の条件Aおよび条件Bのうちの少なくとも一方を満たすようになっていることが好ましい。
条件A:主切断面三角形形状の頂角以外の角、すなわち、主切断面三角形形状の基部112上に位置する底角の角度θ1、θ2が、25°以上45°以下である。
条件B:単位光学要素113aの底辺の長さWaに対する、単位光学要素113aの高さHaの比(Ha/Wa)が、0.2以上0.5以下である。
条件Aおよび条件Bの少なくとも一方が満たされる場合、後述するように、導光板111から出光する光のうち、単位光学要素113aが配列される方向(図12の紙面左右方向)に沿った成分について極めて効果的に集光作用が及ぼされる。
Moreover, it is preferable that the main cut surface shape of the unit
Condition A: Angles other than the apex angle of the main cut surface triangular shape, that is, the angles θ 1 and θ 2 of the base angles located on the
Condition B: The ratio (Ha / Wa) of the height Ha of the unit
When at least one of condition A and condition B is satisfied, as will be described later, of the light emitted from the
また、本実施形態では、単位光学要素113aは図12、図13に現れる断面(単位光学要素113aが配列される方向に沿った断面であるが、各単位光学要素113aの主切断面にも合致する。)において、二等辺三角形としている。これによれば、正面方向輝度を効果的に上昇させること、および、単位光学要素113aの配列方向に沿った面内での輝度の角度分布に対称性を付与することができる。従って、当該断面における断面三角形形状の二つの底角θ1、θ2は等しいことが好ましい。
Further, in this embodiment, the unit
なお、本件明細書における「三角形形状」とは、厳密な意味での三角形形状のみでなく、製造技術における限界や成型時の誤差等を含む略三角形形状を含むものであっても、本発明の奏するべき光学的機能と同等の機能を確保し得る範囲内であれば、「三角形形状」に包含される。また同様に、本明細書において用いる、その他の形状や幾何学的条件を特定する用語、例えば、「平行」、「直交」、「楕円」、「円」等の用語も、厳密な意味に縛られることなく、同様の光学的機能を期待し得る程度の誤差を含めて解釈することとする。 The “triangular shape” in the present specification is not limited to a triangular shape in a strict sense, but may include a substantially triangular shape including limitations in manufacturing technology, errors in molding, and the like. If it is within a range where a function equivalent to the optical function to be performed can be secured, it is included in the “triangular shape”. Similarly, terms used in the present specification to specify other shapes and geometric conditions, for example, terms such as “parallel”, “orthogonal”, “ellipse”, “circle”, etc. are bound to the strict meaning. Therefore, it should be interpreted including an error to the extent that a similar optical function can be expected.
以上のような構成を有する導光板111の寸法は、一例として、以下のように設定され得る。まず、単位光学要素113aの具体例として、導光板111の板面に沿った幅Wa(図13参照)を20μm以上500μm以下とすることができ、導光板111の板面への法線方向ndに沿った単位光学要素113aの高さHa(図13参照)を4μm以上250μm以下とすることができる。また、単位光学要素113aの断面形状が三角形形状からなる場合には、頂角θ3(図13参照)の角度を90°以上125°以下とすることができる。
一方、基部112の厚さは、0.5mm〜6mmとすることができる。
The dimensions of the
On the other hand, the thickness of the base 112 can be 0.5 mm to 6 mm.
以上のような構成からなる導光板111は、押し出し成型により、または、基材上に単位光学要素113aを賦型することにより、製造することができる。導光板111の基部112の主部112a及び単位光学要素113aをなす材料としては、種々の材料を使用することができる。ただし、表示装置に組み込まれる光学シート用の材料として広く使用され、優れた機械的特性、光学特性、安定性および加工性等を有するとともに安価に入手可能な材料、例えば、アクリル、スチレン、ポリカーボネート、ポリエチレンテレフタレート、アクリロニトリル等の一以上を主成分とする透明樹脂や、エポキシ(メタ)アクリレートやウレタン(メタ)アクリレート系の反応性樹脂(電離放射線硬化型樹脂等)が好適に使用され得る。一方、光散乱粒子112bは、一例として、平均粒径が0.5μm〜100μm程度であるシリカ(二酸化珪素)、アルミナ(酸化アルミニウム)、アクリル樹脂、ポリカーボネート樹脂、シリコーン樹脂等の透明物質からなる粒子を用いることができる。
The
なお、押し出し成型で製造された導光板111においては、基部112と、単位光学要素部113と、が一体的に形成され得る。また、押し出し成型によって導光板111を製造する場合、単位光学要素部113が、基部112の主部112aをなす材料と同一の樹脂材料であってもよい。
In the
図10〜図12に戻って、光源115について説明する。光源115は、導光板111の基部112の板状の対向する2組の側面のうち、単位光学要素113aが延在する長手方向(延在方向)両端となる一組の側面のそれぞれに配置される。光源の種類は特に限定されるものではないが、線状の冷陰極管等の蛍光灯、点状のLED(発光ダイオード)、又は白熱電球等の種々の態様で構成され得る。本実施形態では光源115は複数のLEDにからなり、不図示の制御装置により各LEDの出力、すなわち、各LEDの点灯および消灯、及び/又は、各LEDの点灯時の明るさを、他のLEDの出力から独立して調節し得るように構成されている。
Returning to FIGS. 10 to 12, the
次に光学シート120について説明する。図10〜図12からわかるように、光学シート120は、シート状に形成された本体部121と、本体部121の面のうち、導光板111に対向する面、つまり入光側面に設けられた単位プリズム部122と、を有している。
Next, the
この光学シート120は、後述するように、入光側から入射した光の進行方向を変化させて出光側から出射させ、正面方向(出光面の法線方向)の輝度を集中的に向上させる機能(集光機能)を有している。この集光機能は、主として、光学シート120のうち、単位プリズム部122によって発揮される。
As will be described later, the
図10〜図12に示すように、本体部121は、単位プリズム部122を支持する平板状のシート状部材として機能する。そして、本体部121の面のうち、導光板111に対面する側とは反対側の面が出光側面となる。本実施形態において、本体部121の出光側面は、平坦(平ら)で平滑な面として形成されている。ただし、出光側面は平滑面であることに限定されることはなく、微小な凹凸が付された面(いわゆるマット面)であってもよく、必要に応じた表面形態を適用することが可能である。
As shown in FIGS. 10 to 12, the
単位プリズム部122は、図10〜図12によく表れているように、複数の単位プリズム122aが本体部121の入光側面に沿って並べられるように配置されている。より具体的には、単位プリズム122aは、当該並べられる方向に直交する方向に、図11に示した所定の主切断面形状を維持して延びるように形成された柱状の部材である。その延在する方向は、単位プリズム122aが並べられる方向に直交する方向である他、上記した導光板111の単位光学要素113aが延びる方向に対して90度ずれた方向である。従って、単位プリズム122aの延在方向と単位光学要素113aの延在方向とは表示装置を正面から見た場合に直交する。
The
また、単位プリズム122aの長手方向は、正面から観察した場合に、液晶パネル101の下偏光板105の透過軸と交差している。好ましくは、光学シート120の単位プリズム122aの長手方向は、液晶パネル101の下偏光板105の透過軸に対して、表示装置の表示面と平行な面(光学シート120の本体部121のシート面と平行な面)上で45°より大きく135°より小さい角度で交差している。なお、ここでいう角度は、単位プリズム122aの長手方向と下偏光板105の透過軸とによってなされる角度のうちの、小さい方の角度、すなわち、180°以下の角度のことを意味している。とりわけ、本実施形態においては、光学シート120の単位プリズム122aの長手方向は、液晶パネル101の下偏光板105の透過軸に対して直交し、光学シート120の単位プリズム122aが並べられる方向は、液晶パネル101の下偏光板105の透過軸と平行になっていることが好ましい。
The longitudinal direction of the
次に単位プリズム122aの配列方向の断面形状について説明する。図14は、図11のうち、光学シート120の一部を拡大した図である。ここでndは本体部121のシート面の法線方向を表わしている。
Next, the sectional shape of the
図14からわかるように、本実施形態では、単位プリズム122aは、本体部121の導光板111側の面が突出した二等辺三角形の断面を有している。つまり、本体部121のシート面と平行な方向の単位プリズム122aの幅は、本体部121の法線方向ndに沿って本体部121から離れるにつれて小さくなる。
As can be seen from FIG. 14, in the present embodiment, the
また、本実施形態では、単位プリズム122aの外輪郭は、本体部121の法線方向ndと平行な軸を対称軸として、線対称となっており、断面が二等辺三角形である。これにより、光学シート120の出光面における輝度は、単位プリズム122aの配列方向に平行な面において、正面方向を中心として対称的な輝度の角度分布を有するようになる。
In the present embodiment, the outer contour of the
ここで、単位プリズム122aの寸法は特に限定されるものではないが、頂角θ4は60°〜70°(図14参照)、底辺幅Wは50μm程度(図14参照)とすることにより適切な集光特性を得ることができることが多い。
Here, although not particularly limited dimensions of the
以上のような構成からなる光学シート120は、押し出し成型により、又は、基材上に単位プリズム122aを賦型することにより製造することができる。光学シート120をなす材料としては、種々の材料を使用することができる。ただし、表示装置に組み込まれる光学シート用の材料として広く使用され、優れた機械的特性、光学特性、安定性および加工性等を有するとともに安価に入手可能な材料、例えば、アクリル、スチレン、ポリカーボネート、ポリエチレンテレフタレート、アクリロニトリル等の一以上を主成分とする透明樹脂や、エポキシ(メタ)アクリレートやウレタン(メタ)アクリレート系の反応性樹脂(電離放射線硬化型樹脂等)が好適に使用され得る。
The
本実施形態では上記のように断面形状が三角形である単位プリズムについて説明したが、これに限定されるものでなく、当該三角形の頂点部が短い上底となる台形、頂点の1つが導光板111側に対峙した五角形であってもよい。また斜面の形状が折れ線状や曲線であってもよい。
In the present embodiment, the unit prism having a triangular cross-section as described above has been described. However, the present invention is not limited to this, and the
図10〜図12に戻って、面光源装置110の反射シート125について説明する。反射シート125は、導光板111の裏面から出射した光を反射して、再び導光板111内に光を入射させるための部材である。反射シート125は、金属等の高い反射率を有する材料からなるシート、高い反射率を有する材料からなる薄膜(例えば金属薄膜)を表面層として含んだシート等のいわゆる鏡面反射を可能とするものを好ましく適用することができる。これにより、光の収束性を向上させることが可能となり、エネルギー利用効率をよくすることができる。
Returning to FIGS. 10 to 12, the
次に、以上のような構成を備える表示装置100の作用について、光路例を示しつつ説明する。ただし当該光路例は光路を概念的に示すものであり、屈折や反射の程度を厳密に表したものでない。
Next, the operation of the
まず、図11に示すように、光源115で発光された光は、導光板111の側面の入光面を介して導光板111内に入射する。図11には、一例として、光源115から導光板111に入射した光L21、L22の光路例が示されている。
First, as shown in FIG. 11, the light emitted from the
図11に示すように、導光板111へ入射した光L21、L22は、導光板111の単位光学要素部113の面及びその反対側の裏面において、空気との屈折率差による全反射を繰り返し、単位光学要素113aの延在方向へ進んでいく。
As shown in FIG. 11, the light L21 and L22 incident on the
ただし、導光板111の基部112のうち主部112aには光散乱粒子112bが分散されている。このため、図11に示すように、導光板111内を進む光L21、L22は、光散乱粒子112bによって進行方向を不規則に変更され、全反射臨界角未満の入射角度で単位光学要素部113及びその反対側の面に入射することもある。この場合、当該光は、導光板111の単位光学要素部113及びその反対側の面から出射し得る。
However, the
単位光学要素部113から出射した光L21、L22は、導光板111の出光側に配置された光学シート120へと向かう。一方、単位光学要素部113とは反対側である裏面から出射した光は、導光板111の背面に配置された反射シート125で反射され、再び導光板111内に入射して導光板111内を進むことになる(図示は省略)。
Lights L21 and L22 emitted from the unit
導光板111内を進行する光と、導光板111内に分散された光散乱粒子112bと、の衝突は、導光板111内の導光方向に沿った各区域において生じる。このため、導光板111内を進んでいる光は、少しずつ、出光面から出射するようになる。これにより、導光板111の単位光学要素部113から出射する光の導光方向に沿った光量分布を均一化させることができる。
The collision between the light traveling in the
とりわけ、図示する導光板111の単位光学要素部113は複数の単位光学要素113aによって構成され、各単位光学要素113aの断面形状は、三角形または三角形の頂角を面取りしてなる形状となっている。すなわち、単位光学要素113aは、導光板111の裏面に対して傾斜面113aa、113abを有して構成されている(図13参照)。従って、単位光学要素113aを介して導光板111から出射する光L21、L22は、例えば図13に光L41で示したように、導光板111から出射するときに屈折する。この屈折は、単位光学要素113aの配列方向において、シート面法線ndに近づく(法線ndとのなす角が小さくなる)屈折である。このような作用により、単位光学要素部113は、導光方向と直交する方向に沿った光の成分について、透過光の進行方向を正面方向側に絞り込むことができる。すなわち、単位光学要素部113は、導光方向と直交する方向に沿った光の成分に対して、集光作用を及ぼすようになる。
In particular, the unit
上述したように、以下の条件Aおよび条件Bの少なくとも一方が満たされる場合、単位光学要素部113は、導光板111から出光する光に対し、極めて効果的に上記の集光作用を及ぼすようになる(図13参照)。
条件A:主切断面三角形形状の頂角以外の角、すなわち、主切断面三角形形状の基部112上に位置する底角の角度θ1、θ2が、25°以上45°以下である。
条件B:単位光学要素113aの幅Waに対する、単位光学要素113aの基部高さHaの比(Ha/Wa)が、0.2以上0.5以下である。
As described above, when at least one of the following condition A and condition B is satisfied, the unit
Condition A: Angles other than the apex angle of the main cut surface triangular shape, that is, the angles θ 1 and θ 2 of the base angles located on the
Condition B: The ratio (Ha / Wa) of the base height Ha of the unit
以上のようにして、導光板111から出射する光の出射角度は、導光板111の単位光学要素113aの配列方向と平行な面において、正面方向を中心とした狭い角度範囲内に絞り込まれる。
As described above, the emission angle of the light emitted from the
導光板111から出射した光は、その後、光学シート120へ入射する。光学シート120の単位プリズム122aは、導光板111の単位光学要素113aと同様に、単位プリズム122aの入光面での屈折によって透過光に対して集光作用を及ぼす。ただし、光学シート120でその進行方向を変化させられる光は、光学シート120のうち、単位プリズム122aの配列方向と平行な面内の成分であり、導光板111で集光させられた成分とは異なる。すなわち、図14にL51で示したように、単位プリズム122aに入射した光は、単位プリズム122aと空気との屈折率差に基づいてその界面で全反射する。そのとき、単位プリズム122aの斜辺はシート面法線ndに対してθ4/2傾いているので、界面における反射光は入射光よりも法線ndに近付けられる角度となる。
The light emitted from the
つまり、導光板111は、導光板111の単位光学要素113aの配列方向と平行な面において、光の進行方向を正面方向を中心とした狭い角度範囲内に絞り込むようになる。その一方で、光学シート120では、光学シート120の単位プリズム122aの配列方向と平行な面において、光の進行方向を正面方向を中心とした狭い角度範囲内に絞り込むようになる。したがって、光学シート120での光学的作用によって、導光板111で上昇されられた正面方向輝度を害すことなく、さらに、正面方向輝度を上昇させることができる。
That is, the
ここで、液晶パネル101の下偏光板105は、一方の偏光成分である例えばP波のみを選択的に透過させ、他方の偏光成分である例えばS波を吸収してしまう。したがって、単位プリズム122aの配列方向と交差する単位光学要素113aの配列方向に沿った成分が導光板111によって十分に正面方向に集光されているとの前提に立つと、正面方向からの観察において、光学シート120の単位プリズム122aの長手方向が、液晶パネル101の下偏光板105の透過軸に対して、45°より大きく135°より小さい角度で交差していることが好ましく、とりわけ、単位プリズム122aの配列方向が、下偏光板105の透過軸と平行になっていることが好ましい。このような構成によれば、液晶パネル101での光源光の利用効率をさらに上昇させることができる。
Here, the lower polarizing plate 105 of the
光学シート120の単位プリズム122a、導光板111の単位光学要素113aは、導光方向に直交する光の成分を集光させることに強く特化して断面形状を決定され得る。このように設計された面光源装置110によれば、光の利用効率を大幅に向上させることが可能となる。
The
さらに、光路について説明する。上記のように面光源装置110を出射した光は、液晶パネル101の下偏光板105に入射する。下偏光板105は、入射光のうち、一方の偏光成分を透過させ、その他の偏光成分を吸収する。下偏光板105を透過した光は、画素毎への電界印加の状態に応じて、選択的に上偏光板102のPVA層103を透過するようになる。このようにして、下偏光板105、液晶層106、上偏光板102のPVA層103により面光源装置110からの光を画素毎に選択的に透過させることにより、液晶表示装置100の観察者が、映像を観察することができるようになる。
Further, the optical path will be described. The light emitted from the surface
上述したように、面光源装置110の出光面における正面方向輝度は、導光板111による集光作用及び光学シート120による集光作用により、高められている。すなわち、本実施形態における液晶表示装置100においては、導光板111の単位光学要素113aおよび光学シート120の単位プリズム122aによって光の進行方向を正面方向を中心とした狭い角度範囲内に変化させる機能(集光機能)による光源光の利用効率の改善によって、正面方向輝度を極めて効果的に上昇させることができる。そしてこれにより位相差フィルムが不要となる。
As described above, the front luminance on the light exit surface of the surface
さらに、PVA層103を透過した光は映像光として光拡散フィルム10に入射する。光拡散フィルム10は上記したように、該光拡散フィルム10の法線方向に略平行な光を所望の角度範囲に広げることが可能である。従って、光拡散フィルム10に入射した映像光は視野角が広げられるように観察者側に透過される(図10のL61参照)。
Further, the light transmitted through the
また、光拡散フィルム10では、光散乱層12の光散乱粒子12bにより、回折構造11aにおける回折に起因して波長分散を、光散乱粒子12bの光散乱機能により、混ぜ合わせることができる。従って、回折構造体を利用した光拡散フィルムにおいて問題となっていた虹ムラを大幅に抑制することが可能となる。また、回折構造体11により強く指向性が付与された回折散乱光に対して光散乱粒子12bによりその指向性を緩和し、0次光と1次光、又は1次光同士の光の拡散の連続性を向上させることができる。
Moreover, in the
また、液晶表示装置100では、光拡散フィルム10の上記例示した光拡散特性を有する回折構造を適用すれば、観察者が画面を見る際には正面、水平面内、垂直面内の視野角で映像や画像を観察することができればよく、観察者にとって重要でない斜め方向面内の視野角に対して映像光の透過を抑制することができる。従って、不要な光の透過を抑制することができるので、光源からの光の利用効率を向上させることができる。
さらに、光拡散フィルム10のホログラム形状11a(回折構造11a)を計算機ホログラムとすれば、光の拡散範囲等を所望のものに調整することができる。
Further, in the liquid
Furthermore, if the
なお、ここで説明した液晶表示装置100の構成は例示であり、本発明の趣旨に反しない限りは構成を変更することも可能である。例えば、ここでは光拡散フィルム10を適用した液晶表示装置100を説明したが、光拡散フィルム10のかわりに、光拡散フィルム20を適用してもよい。また、上偏光板102では液晶層106側にPVA層103、その観察者側に光拡散フィルム10を配置したが、これとは逆に液晶層側に光拡散フィルム10を配置し、その観察者側にPVA層を設けても良い。
Note that the configuration of the liquid
さらに、面光源装置についても、上記した面光源装置110に限られることなく、液晶パネルの法線方向に対して略平行な光を効率良く透過することができれば他の形態であってもよい。例えば、本実施形態の面光源装置110では、導光板111において基部112の光学シート120側に単位光学要素部113を配置した例を説明した。しかしながらこれに限定されることなく、単位光学要素部が基部の反射シート側に設けられたり、基部の光学シート側及び反射シート側の両面に設けられたり、又は単位光学要素部が配置されずに基部のみより形成されてたりする形態であってもよい。また、導光板を配置することなく、光源からの光を斜めに傾斜するように直接光学シートに透過する形態を採用することもできる。
Further, the surface light source device is not limited to the surface
以下、実施例について説明する。 Examples will be described below.
(実施例1の液晶表示装置)
実施例1では、上記した第一実施形態で示した光拡散フィルム10を適用し、図10に示された層構成を有するエッジライト型の液晶表示装置を作製した。ここで光拡散フィルム10に関しては以下のように作製した。
TAC基材(富士フィルム株式会社製、フジタックTD−80UL)に紫外線硬化型樹脂(SSCP社製、DAN563、屈折率1.58)を用いて上述したホログラムの型の賦型により回折構造をもつ層を形成し、その賦型面上にアクリル系の粘着剤(綜研化学株式会社製、光学用SKダイン特注品、屈折率1.52)に平均粒径3μmのシリコン粒子(モメンティブ・パフォーマンス・マテリアルズ・ジャパン合同会社製、トスパール130、 屈折率1.42)を30質量部分散させた塗膜をホログラムの凹凸形状に隙間なく埋まり込むように形成した。さらにその粘着剤上にTACフィルムをラミネートすることにより光拡散フィルム10を作製した。
(Liquid Crystal Display Device of Example 1)
In Example 1, the
Layer having a diffractive structure by forming the above-described hologram mold using a UV curable resin (SSCP, DAN563, refractive index 1.58) on a TAC substrate (Fuji Film KK, Fujitac TD-80UL) On the molding surface, and an acrylic adhesive (manufactured by Soken Chemical Co., Ltd., optical SK Dyne custom-made, refractive index 1.52) and silicon particles with an average particle size of 3 μm (Momentive Performance Materials) A coating film in which 30 parts by mass of Tospearl 130, refractive index 1.42), manufactured by Japan GK Co., Ltd. was dispersed was formed so as to be embedded in the concavo-convex shape of the hologram without any gaps. Furthermore, the
(実施例2の液晶表示装置)
実施例2では、上記した第二実施形態で示した光拡散フィルム20を適用し、図10に示された層構成を有するエッジライト型の液晶表示装置を作製した。ここで光拡散フィルム20に関しては以下のように作製した。
TAC基材(富士フィルム株式会社製、フジタックTD−80UL)に紫外線硬化型樹脂(SSCP社製、DAN563、屈折率1.58)を用いて上述したホログラムの型の賦型により回折構造をもつ層を形成し、その賦型面上にアクリル系の粘着剤(綜研化学株式会社製、光学用SKダイン特注品、屈折率1.52)をホログラムの凹凸形状に隙間なく埋まり込むように形成する。一方、TAC基材上に紫外線硬化型アクリル樹脂(日本化薬株式会社製、KAYARAD PET30、屈折率1.52)の塗液に平均粒径3μmのシリコン粒子(モメンティブ・パフォーマンス・マテリアルズ・ジャパン合同会社製トスパール130、屈折率1.42)を30質量部分散させて塗布後、紫外線を照射して塗膜を形成する。このTAC基材フィルムの塗膜面を前述した粘着剤層とラミネートすることにより光拡散フィルム20を作製した。
(Liquid Crystal Display Device of Example 2)
In Example 2, the
Layer having a diffractive structure by forming the above-described hologram mold using a UV curable resin (SSCP, DAN563, refractive index 1.58) on a TAC substrate (Fuji Film KK, Fujitac TD-80UL) Acrylic pressure-sensitive adhesive (manufactured by Soken Chemical Co., Ltd., optical SK dyne custom-made product, refractive index 1.52) is formed on the molding surface so as to be embedded in the concavo-convex shape of the hologram without any gaps. On the other hand, an ultraviolet curable acrylic resin (manufactured by Nippon Kayaku Co., Ltd., KAYARAD PET30, refractive index 1.52) is coated on a TAC substrate with silicon particles having an average particle size of 3 μm (Momentive Performance Materials Japan Joint) 30 parts by mass of Tospearl 130 manufactured by company and having a refractive index of 1.42) are dispersed and applied, and then an ultraviolet ray is irradiated to form a coating film. The
(実施例3の液晶表示装置)
実施例3では、上記実施例2のシリコン粒子を平均粒径1μmのシリコン粒子(モメンティブ・パフォーマンス・マテリアルズ・ジャパン合同会社製、トスパール110、屈折率1.42)に変更して光拡散フィルム20を作製した。
(Liquid Crystal Display Device of Example 3)
In Example 3, the
(実施例4の液晶表示装置)
実施例4では、上記実施例2のシリコン粒子を平均粒径3μmのスチレン−アクリル粒子(株式会社日本触媒製、エポスター特注品、屈折率1.61)に変更して光拡散フィルム20を作製した。
(Liquid Crystal Display Device of Example 4)
In Example 4, the
(実施例5の液晶表示装置)
実施例5では、図10に示された層構成を有するエッジライト型の液晶表示装置を作製した。ここで光拡散フィルムに関しては以下のように作製した。
TAC基材(富士フィルム株式会社製、フジタックTD−80UL)に紫外線硬化型樹脂(SSCP社製、DAN563、屈折率1.58)を用いて上述したホログラムの型の賦型により回折構造をもつ層を形成し、その賦型面上にアクリル系の粘着剤(綜研化学株式会社製、光学用SKダイン特注品、屈折率1.52)をホログラムの凹凸形状に隙間なく埋まり込むように形成した。一方、TAC基材上にジルコニア微粒子を紫外線硬化型アクリル樹脂に分散した塗液(JSR株式会社製、特注品、屈折率1.60)に平均粒径3μmのポリメタクリル酸メチル系粒子(株式会社日本触媒製、エポスターMA、屈折率1.51)を30質量部分散させて塗布後、紫外線を照射して塗膜を形成した。このTAC基材フィルムの塗膜面を前述した粘着剤層とラミネートすることにより光拡散フィルム20を作製した。
(Liquid Crystal Display Device of Example 5)
In Example 5, an edge light type liquid crystal display device having the layer configuration shown in FIG. 10 was produced. Here, the light diffusion film was prepared as follows.
Layer having a diffractive structure by forming the above-described hologram mold using a UV curable resin (SSCP, DAN563, refractive index 1.58) on a TAC substrate (Fuji Film KK, Fujitac TD-80UL) An acrylic pressure-sensitive adhesive (manufactured by Soken Chemical Co., Ltd., optical SK dyne custom-made product, refractive index 1.52) was formed on the molding surface so as to be embedded in the concavo-convex shape of the hologram without any gaps. On the other hand, polymethyl methacrylate-based particles having an average particle size of 3 μm (Co., Ltd.) are applied to a coating liquid (made by JSR Corporation, custom-made, refractive index 1.60) in which zirconia fine particles are dispersed in an ultraviolet curable acrylic resin on a TAC substrate. 30 parts by mass of Nippon Shokubai Co., Ltd., Eposta MA, refractive index 1.51) was dispersed and applied, and then irradiated with ultraviolet rays to form a coating film. The
(実施例6の液晶表示装置)
実施例6では、図10に示された構成を有するエッジライト型の液晶表示装置を作製した。ここで光拡散フィルムに関しては以下のように作製した。
TAC基材(富士フィルム株式会社製、フジタックTD−80UL)に紫外線硬化型樹脂(SSCP社製、DAN563、屈折率1.58)を用いて上述したホログラムの型の賦型により回折構造をもつ層を形成し、その賦型面上にアクリル系の粘着剤(綜研化学株式会社製、光学用SKダイン特注品、屈折率1.52)をホログラムの凹凸形状に隙間なく埋まり込むように形成した。一方、TAC基材上にジルコニア微粒子を紫外線硬化型アクリル樹脂に分散した塗液(JSR株式会社製、特注品、屈折率1.60)に平均粒径3μmのシリコン粒子(モメンティブ・パフォーマンス・マテリアルズ・ジャパン合同会社製、トスパール130、屈折率1.42)を30質量部分散させて塗布後、紫外線を照射して塗膜を形成した。このTAC基材フィルムの塗膜面を前述した粘着剤層とラミネートすることにより光拡散フィルム20を作製した。
(Liquid Crystal Display Device of Example 6)
In Example 6, an edge light type liquid crystal display device having the configuration shown in FIG. 10 was produced. Here, the light diffusion film was prepared as follows.
Layer having a diffractive structure by forming the above-described hologram mold using a UV curable resin (SSCP, DAN563, refractive index 1.58) on a TAC substrate (Fuji Film KK, Fujitac TD-80UL) An acrylic pressure-sensitive adhesive (manufactured by Soken Chemical Co., Ltd., optical SK dyne custom-made product, refractive index 1.52) was formed on the molding surface so as to be embedded in the concavo-convex shape of the hologram without any gaps. On the other hand, silicon particles (momentive performance materials) with an average particle size of 3 μm are applied to a coating liquid (made by JSR Corporation, custom-made, refractive index 1.60) in which zirconia fine particles are dispersed in a TAC base material in an ultraviolet curable acrylic resin. -Japan Goshi company make, Tospearl 130, refractive index 1.42) 30 mass parts was disperse | distributed, and the ultraviolet-ray was irradiated and the coating film was formed. The
(比較例1の液晶表示装置)
比較例1では、上記した第一実施形態で示した光拡散フィルム10の光散乱層から光散乱粒子を除外した光拡散フィルムを適用した液晶表示装置を作製した。光散乱粒子を除外した光拡散フィルムに関しては以下のように作製した。
TAC基材に紫外線硬化型樹脂(屈折率1.58)を用いて上述したホログラムの型の賦型により回折構造を有する層を形成し、その賦型面上にアクリル系の粘着剤(屈折率1.52)の塗膜をホログラムの凹凸形状に隙間なく埋まり込むように形成した。さらにその粘着剤上にTACフィルムをラミネートすることにより光拡散フィルムを作製した。
(Liquid Crystal Display Device of Comparative Example 1)
In Comparative Example 1, a liquid crystal display device using a light diffusion film in which light scattering particles were excluded from the light scattering layer of the
A layer having a diffractive structure is formed on the TAC substrate using an ultraviolet curable resin (refractive index of 1.58) by molding the above-described hologram mold, and an acrylic pressure-sensitive adhesive (refractive index) is formed on the molding surface. The coating film of 1.52) was formed so as to be embedded in the concavo-convex shape of the hologram without a gap. Furthermore, the light diffusion film was produced by laminating | stacking a TAC film on the adhesive.
(比較例2の液晶表示装置)
比較例2では、光散乱粒子とバインダーとの屈折率差が0.04である光拡散フィルムを作製した。図10に示された構成を有するエッジライト型の液晶表示装置を作製し、光拡散フィルムに関しては以下のように作製した。
TAC基材に紫外線硬化型樹脂(屈折率1.58)を用いて上述したホログラムの型の賦型により回折構造をもつ層を形成し、その賦型面上にアクリル系の粘着剤(屈折率1.52)をホログラムの凹凸形状に隙間なく埋まり込むように形成した。一方、TAC基材上にシリカ粒子を分散させた紫外線硬化型のアクリル樹脂(JSR株式会社製、特注品、屈折率1.46)の塗液にシリコン粒子(モメンティブ・パフォーマンス・マテリアルズ・ジャパン合同会社製、トスパール130、屈折率1.42)を30質量部分散させて塗布後、紫外線を照射して塗膜を形成した。このTAC基材フィルムの塗膜面を前述した粘着剤層表面とラミネートすることにより光拡散フィルムを作製した。
(Liquid crystal display device of Comparative Example 2)
In Comparative Example 2, a light diffusion film having a refractive index difference between the light scattering particles and the binder of 0.04 was prepared. An edge-light type liquid crystal display device having the configuration shown in FIG. 10 was produced, and the light diffusion film was produced as follows.
A layer having a diffractive structure is formed on the TAC substrate using an ultraviolet curable resin (refractive index of 1.58) by molding the above-described hologram mold, and an acrylic adhesive (refractive index) is formed on the molding surface. 1.52) was formed so as to be embedded in the concavo-convex shape of the hologram without any gap. On the other hand, silicon particles (Momentive Performance Materials Japan Joint) in a coating solution of UV curable acrylic resin (manufactured by JSR Corporation, special order, refractive index 1.46) in which silica particles are dispersed on a
(比較例3の液晶表示装置)
比較例3では、光散乱粒子とバインダーとの屈折率差が0.33である光拡散フィルムを作製した。図10に示された構成を有するエッジライト型の液晶表示装置を作製し、光拡散フィルムに関しては以下のように作製した。
TAC基材に紫外線硬化型樹脂(屈折率1.58)を用いて上述したホログラムの型の賦型により回折構造をもつ層を形成し、その賦型面上にアクリル系の粘着剤(屈折率1.52)をホログラムの凹凸形状に隙間なく埋まり込むように形成した。一方、TAC基材上にZrO2微粒子を分散させた紫外線硬化型アクリル樹脂(JSR株式会社製、特注品、屈折率1.75)の塗液にシリコン粒子(モメンティブ・パフォーマンス・マテリアルズ・ジャパン合同会社製、トスパール130、屈折率1.42)を30質量部分散させて塗布後、紫外線を照射して塗膜を形成した。このTAC基材フィルムの塗膜面を前述した粘着剤層とラミネートすることにより光拡散フィルムを作製した。
(Liquid Crystal Display Device of Comparative Example 3)
In Comparative Example 3, a light diffusion film having a refractive index difference of 0.33 between the light scattering particles and the binder was produced. An edge-light type liquid crystal display device having the configuration shown in FIG. 10 was produced, and the light diffusion film was produced as follows.
A layer having a diffractive structure is formed on the TAC substrate using an ultraviolet curable resin (refractive index of 1.58) by molding the above-described hologram mold, and an acrylic adhesive (refractive index) is formed on the molding surface. 1.52) was formed so as to be embedded in the concavo-convex shape of the hologram without any gap. On the other hand, silicon particles (Momentive Performance Materials Japan Joint) in a coating solution of UV curable acrylic resin (made by JSR Corporation, special order, refractive index 1.75) in which ZrO 2 fine particles are dispersed on a
(評価項目、及び評価方法)
上記実施例1〜実施例6、及び比較例1〜比較例3の液晶表示装置に対して、明るさ、虹ムラ、視野角、コントラスト比をそれぞれ評価し、これらを総合して総合評価をした。
それぞれについては次のように評価をおこなった。
明るさは、液晶表示装置を白表示し、出光面側から目視観察したときの明るさ(正面輝度)を相対的に評価した。比較例1を○とし、それよりやや暗いと感じられる順に△、×とした。
虹ムラは、液晶表示装置を白表示および黒表示し、出光面側から目視観察したときの面内の色のムラを相対的に評価した。目視で認識されない場合を○、認識される場合を×とする。
視野角は、液晶表示装置を白表示し、出光面側斜め45度から目視観察したときの明るさを相対的に評価した。比較例1を○とし、それより明るいと感じられる場合を◎とした。
コントラスト比は、輝度計(コニカミノルタ社製、CS2000)にて明所コントラストを測定した。比較例1の構成の場合を○とし、それよりコントラストが悪くなる順に△、×と評価した。
(Evaluation items and evaluation methods)
For the liquid crystal display devices of Examples 1 to 6 and Comparative Examples 1 to 3, brightness, rainbow unevenness, viewing angle, and contrast ratio were evaluated, and these were comprehensively evaluated. .
Each was evaluated as follows.
As for brightness, the brightness (front brightness) when the liquid crystal display device was displayed in white and visually observed from the light exit surface side was relatively evaluated. Comparative Example 1 was marked with ◯, and it was marked with Δ and x in the order of feeling slightly darker than that.
For the rainbow unevenness, the liquid crystal display device was displayed in white and black, and the unevenness of the color in the surface when visually observed from the light-emitting surface side was relatively evaluated. The case where it is not visually recognized is marked with ◯, and the case where it is recognized is marked with x.
The viewing angle was evaluated by relatively evaluating the brightness when the liquid crystal display device was displayed in white and visually observed from an oblique angle of 45 degrees on the light exit surface side. The comparative example 1 was set as ◯, and the case where it was felt brighter was rated as ◎.
As for the contrast ratio, the bright place contrast was measured with a luminance meter (CS2000, manufactured by Konica Minolta Co., Ltd.). The case of the configuration of Comparative Example 1 was evaluated as ◯, and Δ and X were evaluated in the order of worse contrast.
(結果)
結果を表1に示す。
(result)
The results are shown in Table 1.
表1からもわかるように、実施例1〜実施例6では比較例1〜3に対し、いずれの項目でもバランス良く性能を発揮しており総合的に良好な結果を得ることができた。 As can be seen from Table 1, in Examples 1 to 6, the performance was exhibited in a well-balanced manner in all items with respect to Comparative Examples 1 to 3, and overall good results could be obtained.
10 光拡散フィルム
11 回折構造体
11a 回折構造
12 光散乱層
12a バインダー(主部)
12b 光散乱粒子
20 光拡散フィルム
21 光透過層
22 光散乱層
100 液晶表示装置
101 液晶パネル
102 上偏光板
103 PVA層(偏光子)
104 反射防止層
105 下偏光板
106 液晶層
110 面光源装置
111 導光板
112 基部
112a 主部
112b 光散乱粒子
113 単位光学要素部
113a 単位光学要素
115 光源
120 光学シート
121 本体部
122 単位プリズム部
122a 単位プリズム
125 反射シート
DESCRIPTION OF
12b
DESCRIPTION OF
Claims (6)
前記回折構造体により光が拡散する側に配置され、透光性を有し、前記回折構造体よりも低い屈折率の媒体であるバインダー中に、光を散乱する粒子である光散乱粒子が分散された光散乱層と、を備え、
前記回折構造体と前記光散乱層とは直接積層されるとともに前記回折構造は、前記光散乱層との界面を形成しており、
前記光散乱粒子の屈折率が1.40以上1.65未満であり、前記バインダーと前記光散乱粒子との屈折率差が0.05以上0.30未満である、
光拡散フィルム。 A diffractive structure having a diffractive structure that diffuses and transmits light incident substantially parallel to the normal direction of the light incident surface;
Is disposed on the side where light is diffused by the diffraction structures, have a light-transmitting, during said binder is a medium of lower refractive index than the diffraction structures, light scattering particles are particles that scatter light dispersion A light scattering layer,
The diffractive structure and the light scattering layer are directly laminated and the diffractive structure forms an interface with the light scattering layer,
The refractive index of the light scattering particles is 1.40 or more and less than 1.65, and the refractive index difference between the binder and the light scattering particles is 0.05 or more and less than 0.30.
Light diffusion film.
前記液晶パネルは、液晶層と、該液晶層の前記面光源装置側に配置される下偏光板と、
前記液晶層の前記観察者側に配置される上偏光板と、を備え、
前記上偏光板は請求項4に記載の偏光板である、
液晶表示装置。 A surface light source device that generates substantially parallel light, and a liquid crystal panel disposed on an observer side of the surface light source device,
The liquid crystal panel includes a liquid crystal layer, a lower polarizing plate disposed on the surface light source device side of the liquid crystal layer,
An upper polarizing plate disposed on the viewer side of the liquid crystal layer,
The upper polarizing plate is the polarizing plate according to claim 4 ,
Liquid crystal display device.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012080768A JP5962142B2 (en) | 2012-03-30 | 2012-03-30 | Light diffusing film, polarizing plate, and liquid crystal display device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012080768A JP5962142B2 (en) | 2012-03-30 | 2012-03-30 | Light diffusing film, polarizing plate, and liquid crystal display device |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2013210494A JP2013210494A (en) | 2013-10-10 |
JP5962142B2 true JP5962142B2 (en) | 2016-08-03 |
Family
ID=49528392
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2012080768A Active JP5962142B2 (en) | 2012-03-30 | 2012-03-30 | Light diffusing film, polarizing plate, and liquid crystal display device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5962142B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108878684A (en) * | 2018-06-29 | 2018-11-23 | 上海天马微电子有限公司 | Glue layer, display panel and display device |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102177714B1 (en) * | 2014-01-17 | 2020-11-11 | 엘지이노텍 주식회사 | Optical element and lighting device including the same |
JP6886992B2 (en) * | 2018-03-30 | 2021-06-16 | 恵和株式会社 | Light diffusing plate laminate, backlight unit, and liquid crystal display device |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH09325204A (en) * | 1996-05-31 | 1997-12-16 | Sony Corp | Optical filter, and image display device and liquid crystal display element using same |
JP4172603B2 (en) * | 1997-10-24 | 2008-10-29 | 大日本印刷株式会社 | Diffractive diffuse reflector for reflective liquid crystal display |
KR100774256B1 (en) * | 2001-11-08 | 2007-11-08 | 엘지.필립스 엘시디 주식회사 | liquid crystal display devices |
JP2003222727A (en) * | 2002-01-31 | 2003-08-08 | Hitachi Chem Co Ltd | Optical control diffusion element by holography |
JP2005010509A (en) * | 2003-06-19 | 2005-01-13 | Fuji Photo Film Co Ltd | Light diffusing film, polarizing plate, and liquid crystal display |
JP2007304436A (en) * | 2006-05-12 | 2007-11-22 | Nec Lcd Technologies Ltd | Display device, polarization element, anti-glare film, and its manufacturing method |
KR20110102897A (en) * | 2008-12-23 | 2011-09-19 | 스미또모 가가꾸 가부시키가이샤 | Optical film and liquid crystal display device comprising same |
JP2011186358A (en) * | 2010-03-11 | 2011-09-22 | Fujifilm Corp | Polymer film, method for producing the same, retardation film using the same, polarizing plate and liquid crystal display device |
-
2012
- 2012-03-30 JP JP2012080768A patent/JP5962142B2/en active Active
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108878684A (en) * | 2018-06-29 | 2018-11-23 | 上海天马微电子有限公司 | Glue layer, display panel and display device |
Also Published As
Publication number | Publication date |
---|---|
JP2013210494A (en) | 2013-10-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6078969B2 (en) | Light diffusing film, polarizing plate, and liquid crystal display device | |
WO2015046439A1 (en) | Prism sheet, area light source device, image source unit, and liquid crystal display device | |
JP5402486B2 (en) | Optical sheet, surface light source device, and transmissive display device | |
CN102016714B (en) | Polarization preserving front projection screen | |
WO2021009943A1 (en) | Optical structure, polarization plate equipped with optical structure, and display device | |
WO2010131430A1 (en) | Sheet and light-emitting device | |
KR20160031033A (en) | Light-diffusing element, polarizer having light-diffusing element, and liquid crystal display device having same | |
JP2013003266A (en) | Light diffusion member, polarizing plate, and liquid crystal display device | |
JP2015069834A (en) | Light guide plate and surface light source device | |
KR20060059889A (en) | Micro-lens array based light transmission screen | |
JP5295721B2 (en) | Backlight unit | |
JP5962142B2 (en) | Light diffusing film, polarizing plate, and liquid crystal display device | |
TWI390251B (en) | Light control film and the use of its backlight device | |
JP2011180574A (en) | Optical sheet, surface light source apparatus, and transmissive display apparatus | |
JP2017167506A (en) | Image source unit and display device | |
JP2008262209A (en) | Light diffusion sheet and projection screen | |
JP2015180952A (en) | Prism sheet, surface light source device, video source unit, and liquid crystal display device | |
JP6237846B2 (en) | Liquid crystal display | |
JP5768447B2 (en) | 3D liquid crystal display | |
JP6046335B2 (en) | Diffraction structure for liquid crystal display device, polarizing plate, and liquid crystal display device | |
WO2018043618A1 (en) | Depolarization element | |
JP2015069014A (en) | Light control sheet and display device | |
JP2016194728A (en) | Diffraction structure for liquid crystal display device, polarizing plate, and liquid crystal display device | |
JP2012103290A (en) | Optical sheet, backlight unit and liquid crystal display device | |
JP2011232367A (en) | Optical sheet, surface light source device, transmissive display device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20150129 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20151014 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20151020 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20151217 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20160531 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20160613 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5962142 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |