WO2018062445A1 - Work machine vibration monitoring method and system - Google Patents

Work machine vibration monitoring method and system Download PDF

Info

Publication number
WO2018062445A1
WO2018062445A1 PCT/JP2017/035366 JP2017035366W WO2018062445A1 WO 2018062445 A1 WO2018062445 A1 WO 2018062445A1 JP 2017035366 W JP2017035366 W JP 2017035366W WO 2018062445 A1 WO2018062445 A1 WO 2018062445A1
Authority
WO
WIPO (PCT)
Prior art keywords
harmonic
tpf
threshold value
peak
frequency
Prior art date
Application number
PCT/JP2017/035366
Other languages
French (fr)
Japanese (ja)
Inventor
保宏 駒井
Original Assignee
エヌティーエンジニアリング株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by エヌティーエンジニアリング株式会社 filed Critical エヌティーエンジニアリング株式会社
Priority to DE112017004081.7T priority Critical patent/DE112017004081T5/en
Priority to CN201780058842.4A priority patent/CN109863376B/en
Publication of WO2018062445A1 publication Critical patent/WO2018062445A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01HMEASUREMENT OF MECHANICAL VIBRATIONS OR ULTRASONIC, SONIC OR INFRASONIC WAVES
    • G01H1/00Measuring characteristics of vibrations in solids by using direct conduction to the detector
    • G01H1/003Measuring characteristics of vibrations in solids by using direct conduction to the detector of rotating machines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q17/00Arrangements for observing, indicating or measuring on machine tools
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q17/00Arrangements for observing, indicating or measuring on machine tools
    • B23Q17/09Arrangements for observing, indicating or measuring on machine tools for indicating or measuring cutting pressure or for determining cutting-tool condition, e.g. cutting ability, load on tool
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q17/00Arrangements for observing, indicating or measuring on machine tools
    • B23Q17/09Arrangements for observing, indicating or measuring on machine tools for indicating or measuring cutting pressure or for determining cutting-tool condition, e.g. cutting ability, load on tool
    • B23Q17/0952Arrangements for observing, indicating or measuring on machine tools for indicating or measuring cutting pressure or for determining cutting-tool condition, e.g. cutting ability, load on tool during machining
    • B23Q17/0971Arrangements for observing, indicating or measuring on machine tools for indicating or measuring cutting pressure or for determining cutting-tool condition, e.g. cutting ability, load on tool during machining by measuring mechanical vibrations of parts of the machine
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q17/00Arrangements for observing, indicating or measuring on machine tools
    • B23Q17/12Arrangements for observing, indicating or measuring on machine tools for indicating or measuring vibration
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01HMEASUREMENT OF MECHANICAL VIBRATIONS OR ULTRASONIC, SONIC OR INFRASONIC WAVES
    • G01H17/00Measuring mechanical vibrations or ultrasonic, sonic or infrasonic waves, not provided for in the preceding groups
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M99/00Subject matter not provided for in other groups of this subclass
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/18Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
    • G05B19/406Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by monitoring or safety
    • G05B19/4065Monitoring tool breakage, life or condition
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/37Measurements
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/37Measurements
    • G05B2219/37434Measuring vibration of machine or workpiece or tool

Definitions

  • the present invention relates to a vibration monitoring method and system for a work machine that develops machining vibration detected during machining into a frequency spectrum composed of frequency and acceleration by Fourier series expansion.
  • the controller 30 includes an arithmetic unit (arithmetic mechanism) 38 that amplifies and takes in mechanical vibration (machining vibration) detected by the acceleration sensor 26 and / or the microphone 28 by an amplifier and filter circuit 36. Prepare.
  • the tool passing frequency (Tool-Passing-Frequency) at which the cutting edge comes into contact with the workpiece W is obtained from (rotational speed RPM / 60 of the spindle) ⁇ the number of teeth.
  • the tool passing frequency is 127 Hz (hereinafter referred to as TPF1).
  • the harmonic frequency twice (integer multiple) of TPF1 is 253 Hz (hereinafter referred to as TPF2)
  • the harmonic frequency three times (integer multiple) of TPF1 is 380 Hz (hereinafter referred to as TPF3).
  • the harmonic frequency four times (integer multiple) of TPF1 is 507 Hz (hereinafter referred to as TPF4).
  • the threshold value excess integration display unit 56 for example, in the frequency spectrum of vibration generated during machining by the cutter 22, when the vibration of the TPF 1 (TPF 1 peak) exceeds the threshold value set in the frequency spectrum display unit 52, The count-up value exceeding the threshold value is sent to the first display field 56 a of the threshold value exceeding display unit 56. In the first display field 56a, the count-up value of TPF1 is accumulated and displayed. Therefore, the graph displayed in the first display field 56a of the threshold value excess integration display unit 56 is cumulatively added each time a count-up value exceeding the threshold value of TPF1 is sent.
  • the vibration monitoring method and system when a workpiece is machined through a machining tool, the correlation between the number of peak occurrences at the tool passing frequency (TPF) and the number of peak occurrences at the harmonic frequency is observed. be able to. In a good machining state, the number of peak occurrences at the tool passing frequency becomes relatively significant, while in a poor machining state, the number of peak occurrences at the harmonic frequency increases with the tool passing frequency. For this reason, the quality determination of the machining state can be performed with high accuracy and efficiency from the change in the relationship between the two.
  • TPF tool passing frequency

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Human Computer Interaction (AREA)
  • Manufacturing & Machinery (AREA)
  • Automation & Control Theory (AREA)
  • Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)
  • Machine Tool Sensing Apparatuses (AREA)
  • Automatic Control Of Machine Tools (AREA)
  • Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)
  • Numerical Control (AREA)

Abstract

This vibration monitoring method has a step for displaying the number of times a tool passing frequency (TPF) peak that is the peak acceleration at a tool passing frequency has exceeded a TPF threshold value in a display column 56a of a total threshold crossing display part 56, a step for displaying the number of times harmonic TPF peaks at harmonic frequencies have exceeded harmonic TPF threshold values in display columns 56b–56d of the total threshold crossing display part 56, and a step for displaying a comparison of the number of TPF threshold crossings and the number of harmonic TPF threshold crossings in a variation display part 58.

Description

作業機械の振動監視方法及びシステムVibration monitoring method and system for work machine
 本発明は、加工工具を介してワークに加工処理を施す際、前記加工工具による振動状態を監視するための作業機械の振動監視方法及びシステムに関する。 The present invention relates to a vibration monitoring method and system for a work machine for monitoring a vibration state by the processing tool when a workpiece is processed through a processing tool.
 一般的に、加工工具を介してワークに加工処理を施すために、各種の工作機械が使用されている。例えば、ボーリング加工は、中ぐり用カッタ(刃先)が設けられたボーリングツールを工作機械の回転主軸(スピンドル)に取り付け、前記ボーリングツールを高速で回転させながら下穴に沿って順次繰り出すことにより、その刃先加工径で所定の位置に高精度な孔部を加工するものである。 Generally, various machine tools are used to process a workpiece through a processing tool. For example, in the boring process, a boring tool provided with a boring cutter (cutting edge) is attached to a rotating spindle (spindle) of a machine tool, and the boring tool is sequentially fed along a pilot hole while rotating at a high speed. A highly accurate hole is processed at a predetermined position with the cutting edge diameter.
 この種の作業機械では、高精度な加工を行うために、加工状態の良否を判断する必要がある。従来より、加工状態の良否は、加工音、すなわち、良好な切削加工音であるか否かにより判断することが行われている。また、音と振動とは、同源であり、加工の振動の特性を検出することにより、加工状態の良否を判断することができる。 In this type of work machine, it is necessary to judge the quality of the machining state in order to perform high-precision machining. Conventionally, whether the machining state is good or bad is determined by whether it is a machining sound, that is, a good cutting sound. Further, the sound and vibration are the same source, and the quality of the machining state can be determined by detecting the characteristics of the machining vibration.
 例えば、特許文献1に開示されている加工状態監視方法は、ワークの加工が正常状態であるか否かを判断する正常状態判断工程と、びびり振動が発生しているか否かを判断するびびり振動判断工程と、前記正常状態でなく且つ前記びびり振動が発生していないと判断された際、該正常状態から前記びびり振動に移行する予兆期であると判断する予兆期判断工程と、前記予兆期であると判断された際、該予兆期の加工状態を監視するとともに、該予兆期の加工状態を画面表示する予兆期監視工程と、を有している。このため、予兆期の加工状態から特徴的な情報を得ることにより、びびり振動が発生する前に迅速且つ有効に対応することができる、としている。 For example, the machining state monitoring method disclosed in Patent Document 1 includes a normal state determination step for determining whether or not a workpiece is in a normal state, and a chatter vibration for determining whether or not chatter vibration is occurring. A judgment step, a judgment period judgment step for judging that it is a sign period in which the chatter vibration is shifted from the normal condition when it is judged that the chatter vibration is not generated and not in the normal state, and the sign period When it is determined that the machining state is, the machining state in the precursor period is monitored, and the precursor period monitoring step for displaying the machining state in the precursor period on the screen is provided. For this reason, by obtaining characteristic information from the machining state in the predictive period, it is possible to respond quickly and effectively before chatter vibration occurs.
特開2016−083759号公報Japanese Patent Laid-Open No. 2006-083759
 本発明は、上記の技術的思想に関連してなされたものであり、簡単な工程及び構成で、加工状態の良否判断を高精度且つ効率的に遂行可能な作業機械の振動監視方法及びシステムを提供することを目的とする。 The present invention has been made in connection with the above technical idea, and provides a vibration monitoring method and system for a work machine that can accurately and efficiently determine the quality of a machining state with a simple process and configuration. The purpose is to provide.
 本発明は、機械加工時に検出される加工振動を、フーリエ級数展開により周波数と加速度とからなる周波数スペクトルに展開する作業機械の振動監視方法及びシステムに関するものである。 The present invention relates to a vibration monitoring method and system for a work machine that develops machining vibration detected during machining into a frequency spectrum composed of frequency and acceleration by Fourier series expansion.
 この振動監視方法は、加工工具の回転数及び刃数から算出された工具通過周波数でのピーク加速度であるTPFピークが、周波数スペクトルに予め設定された前記工具通過周波数のピークしきい値であるTPFしきい値と比較され、前記TPFピークが前記TPFしきい値を越えた回数を、TPFしきい値越え積算表示部に表示させる工程と、前記工具通過周波数の整数倍の高調波周波数でのピーク加速度である高調波TPFピークが、前記周波数スペクトルに予め設定された前記高調波周波数のピークしきい値である高調波TPFしきい値と比較され、前記高調波TPFピークが前記高調波TPFしきい値を越えた回数を、高調波TPFしきい値越え積算表示部に表示させる工程と、TPFしきい値越え回数と高調波TPFしきい値越え回数とを比較して変化表示部に表示させる工程と、を有している。 In this vibration monitoring method, a TPF peak, which is a peak acceleration at a tool passing frequency calculated from the number of rotations and the number of blades of a machining tool, is a TPF that is a peak threshold value of the tool passing frequency preset in a frequency spectrum. A step of displaying the number of times that the TPF peak has exceeded the TPF threshold on the TPF threshold value exceeding display unit, and a peak at a harmonic frequency that is an integral multiple of the tool passing frequency. A harmonic TPF peak that is acceleration is compared with a harmonic TPF threshold that is a peak threshold of the harmonic frequency preset in the frequency spectrum, and the harmonic TPF peak is compared with the harmonic TPF threshold. The number of times the value is exceeded is displayed on the harmonic TPF threshold value excess integration display section, and the number of times the TPF threshold value is exceeded and the harmonic TPF threshold value is exceeded. It has a step of displaying the change display unit by comparing the number, the.
 また、この振動監視方法では、高調波TPFしきい値越え積算表示部は、少なくとも、工具通過周波数の2倍の高調波周波数での第1高調波TPFピークが高調波TPFしきい値を越えた回数を表示させる第1高調波TPFしきい値越え積算表示部と、前記工具通過周波数の3倍の高調波周波数での第2高調波TPFピークが前記高調波TPFしきい値を越えた回数を表示させる第2高調波TPFしきい値越え積算表示部と、を有し、前記変化表示部は、前記TPFしきい値越え回数と、少なくとも第1高調波TPFしきい値越え回数及び第2高調波TPFしきい値越え回数の和とを比較して表示させることが好ましい。 Further, in this vibration monitoring method, the harmonic TPF threshold value exceeding integrated display unit has at least the first harmonic TPF peak at the harmonic frequency twice the tool passing frequency exceeds the harmonic TPF threshold value. The first harmonic TPF threshold value exceeding integrated display section for displaying the number of times, and the number of times that the second harmonic TPF peak at the harmonic frequency three times the tool passing frequency exceeds the harmonic TPF threshold value. A second harmonic TPF threshold value exceeding integrated display unit to be displayed, wherein the change display unit includes the TPF threshold value exceeding number, at least the first harmonic TPF threshold value exceeding number and the second harmonic value. It is preferable to compare and display the sum of the number of times the wave TPF threshold is exceeded.
 さらに、この振動監視システムは、加工工具の回転数及び刃数から算出された工具通過周波数でのピーク加速度であるTPFピークが、周波数スペクトルに予め設定された前記工具通過周波数のピークしきい値であるTPFしきい値と比較され、前記TPFピークが前記TPFしきい値を越えた回数を表示させるTPFしきい値越え積算表示部と、前記工具通過周波数の整数倍の高調波周波数でのピーク加速度である高調波TPFピークが、前記周波数スペクトルに予め設定された前記高調波周波数のピークしきい値である高調波TPFしきい値と比較され、前記高調波TPFピークが前記高調波TPFしきい値を越えた回数を表示させる高調波TPFしきい値越え積算表示部と、TPFしきい値越え回数と高調波TPFしきい値越え回数とを比較して表示させる変化表示部と、を備えている。 Further, this vibration monitoring system is configured such that the TPF peak, which is the peak acceleration at the tool passing frequency calculated from the number of rotations of the machining tool and the number of blades, is a peak threshold value of the tool passing frequency preset in the frequency spectrum. A TPF threshold value exceeding display section for comparing with a TPF threshold value and displaying the number of times the TPF peak exceeds the TPF threshold value; and peak acceleration at a harmonic frequency that is an integral multiple of the tool passing frequency. Is compared with a harmonic TPF threshold that is a peak threshold of the harmonic frequency preset in the frequency spectrum, and the harmonic TPF peak is compared with the harmonic TPF threshold. Harmonic TPF threshold value overrun display section that displays the number of times the frequency exceeds TPF, TPF threshold value exceeded frequency, and harmonic TPF threshold value exceeded frequency And a, a change display unit for displaying compare.
 さらに、この振動監視システムでは、高調波TPFしきい値越え積算表示部は、少なくとも、工具通過周波数の2倍の高調波周波数での第1高調波TPFピークが前記高調波TPFしきい値を越えた回数を表示させる第1高調波TPFしきい値越え積算表示部と、前記工具通過周波数の3倍の高調波周波数での第2高調波TPFピークが前記高調波TPFしきい値を越えた回数を表示させる第2高調波TPFしきい値越え積算表示部と、を備え、前記変化表示部は、前記TPFしきい値越え回数と、少なくとも第1高調波TPFしきい値越え回数及び第2高調波TPFしきい値越え回数の和とを比較して表示させていることが好ましい。 Furthermore, in this vibration monitoring system, the harmonic TPF threshold value exceeding integrated display unit has at least the first harmonic TPF peak at the harmonic frequency twice the tool passing frequency exceeding the harmonic TPF threshold value. 1st harmonic TPF threshold value exceeding integrated display section for displaying the number of times the second harmonic TPF peak has exceeded the harmonic TPF threshold value at a harmonic frequency three times the tool passing frequency. A second harmonic TPF threshold value exceeding integration display unit, and the change display unit displays the TPF threshold value exceeding number, the at least first harmonic TPF threshold value exceeding number, and the second harmonic value. It is preferable to compare and display the sum of the number of times the wave TPF threshold is exceeded.
 本発明に係る振動監視方法及びシステムでは、加工工具を介してワークに加工処理を施す際、工具通過周波数(TPF)でのピーク発生回数と高調波周波数でのピーク発生回数との相関関係を見ることができる。良好な加工状態では、相対的に工具通過周波数でのピーク発生回数が顕著になる一方、不良な加工状態では、前記工具通過周波数と共に高調波周波数でのピーク発生回数が増加する。このため、両者の関係の変化から、加工状態の良否判断が高精度且つ効率的に遂行可能になる。 In the vibration monitoring method and system according to the present invention, when a workpiece is machined through a machining tool, the correlation between the number of peak occurrences at the tool passing frequency (TPF) and the number of peak occurrences at the harmonic frequency is observed. be able to. In a good machining state, the number of peak occurrences at the tool passing frequency becomes relatively significant, while in a poor machining state, the number of peak occurrences at the harmonic frequency increases with the tool passing frequency. For this reason, the quality determination of the machining state can be performed with high accuracy and efficiency from the change in the relationship between the two.
図1は、本発明の実施形態に係る作業機械の振動監視システムが適用される作業機械の概略説明図である。FIG. 1 is a schematic explanatory diagram of a work machine to which a work machine vibration monitoring system according to an embodiment of the present invention is applied. 図2は、前記振動監視システムを構成するコントローラの説明図である。FIG. 2 is an explanatory diagram of a controller constituting the vibration monitoring system. 図3は、前記振動監視システムを構成する表示ユニットの構成説明図である。FIG. 3 is an explanatory diagram of a configuration of a display unit constituting the vibration monitoring system. 図4は、前記表示ユニットを構成する周波数スペクトル表示部に表示される良好な加工振動の説明図である。FIG. 4 is an explanatory diagram of a favorable machining vibration displayed on the frequency spectrum display section constituting the display unit. 図5は、図4に示す加工振動をフーリエ変換して得られたスペクトルの説明図である。FIG. 5 is an explanatory diagram of a spectrum obtained by Fourier transforming the processing vibration shown in FIG. 図6は、前記周波数スペクトル表示部に表示される不良な加工振動の説明図である。FIG. 6 is an explanatory diagram of defective machining vibration displayed on the frequency spectrum display unit. 図7は、図6に示す加工振動をフーリエ変換して得られたスペクトルの説明図である。FIG. 7 is an explanatory diagram of a spectrum obtained by Fourier transforming the machining vibration shown in FIG. 図8は、良好な加工状態における累積比較値の経時変化を表示する説明図である。FIG. 8 is an explanatory diagram for displaying the change over time of the cumulative comparison value in a good machining state. 図9は、不良な加工状態における累積比較値の経時変化を表示する説明図である。FIG. 9 is an explanatory diagram for displaying the change over time of the cumulative comparison value in a defective machining state.
 図1に示すように、本発明の実施形態に係る作業機械の加工状態監視システム(振動監視システム)10は、工作機械12に適用される。工作機械12は、後述する加速度センサ26やマイクロフォン28並びにコントローラ30を機能的にまとめたシステムの作業機械に適用される。 As shown in FIG. 1, a working machine machining state monitoring system (vibration monitoring system) 10 according to an embodiment of the present invention is applied to a machine tool 12. The machine tool 12 is applied to a work machine of a system in which an acceleration sensor 26, a microphone 28, and a controller 30 described later are functionally integrated.
 工作機械12は、ハウジング14内にベアリング16を介して回転可能に設けられるスピンドル(主軸)18と、前記スピンドル18に着脱自在なツールホルダ(加工工具)20とを備える。ツールホルダ20の先端には、カッタ22が装着されている。作業テーブル24上には、ワークWが載置されている。 The machine tool 12 includes a spindle (main shaft) 18 that is rotatably provided in a housing 14 via a bearing 16 and a tool holder (processing tool) 20 that is detachably attached to the spindle 18. A cutter 22 is attached to the tip of the tool holder 20. A work W is placed on the work table 24.
 加工状態監視システム10は、カッタ22による加工が開始される際に発生する振動を検出するために、ハウジング14の側部に装着される加速度センサ26又は音波により振動音を取得するマイクロフォン28の少なくとも一方を備える。加速度センサ26及び(又は)マイクロフォン28は、コントローラ30に接続されるとともに、前記コントローラ30は、機械制御盤32に接続される。機械制御盤32は、工作機械12を制御するものであり、制御操作盤34に接続される。 The machining state monitoring system 10 includes at least an acceleration sensor 26 attached to a side portion of the housing 14 or a microphone 28 that obtains vibration sound using sound waves in order to detect vibration generated when machining by the cutter 22 is started. Provide one side. The acceleration sensor 26 and / or the microphone 28 are connected to a controller 30, and the controller 30 is connected to a machine control panel 32. The machine control panel 32 controls the machine tool 12 and is connected to the control operation panel 34.
 図2に示すように、コントローラ30は、加速度センサ26及び(又は)マイクロフォン28により検出された機械的振動(加工振動)をアンプ及びフィルタ回路36により増幅して取り込む演算ユニット(演算機構)38を備える。 As shown in FIG. 2, the controller 30 includes an arithmetic unit (arithmetic mechanism) 38 that amplifies and takes in mechanical vibration (machining vibration) detected by the acceleration sensor 26 and / or the microphone 28 by an amplifier and filter circuit 36. Prepare.
 演算ユニット38には、スピンドル18の回転数、カッタ22の刃数及び固有振動数等を入力する入力設定ユニット(入力設定部)40が接続される。入力設定ユニット40では、監視や識別判定のためのしきい値や、しきい値越えの振動が発生した際の信号の処理手順等が設定可能である。入力設定ユニット40には、必要に応じてリピートカウンタ(回路)42が設けられる。 The calculation unit 38 is connected to an input setting unit (input setting unit) 40 for inputting the number of rotations of the spindle 18, the number of blades of the cutter 22, the natural frequency, and the like. The input setting unit 40 can set a threshold for monitoring and identification determination, a signal processing procedure when vibration exceeding the threshold occurs, and the like. The input setting unit 40 is provided with a repeat counter (circuit) 42 as necessary.
 演算ユニット38には、加工状態判断ユニット44と、後述する演算判断処理した信号を出力するための入出力ユニット46とが接続される。演算ユニット38には、演算結果や検出結果等を画面表示する表示ユニット48が接続される。演算ユニット38から加工状態判断ユニット44には、更新されたデータが、例えば、毎秒送られる。 The machining unit 38 is connected to the machining state determination unit 44 and an input / output unit 46 for outputting a signal subjected to calculation determination processing described later. The calculation unit 38 is connected to a display unit 48 that displays calculation results and detection results on the screen. The updated data is sent from the arithmetic unit 38 to the machining state determination unit 44, for example, every second.
 図3に示すように、表示ユニット48は、周波数スペクトル表示部52、しきい値越え積算表示部56及び変化表示部58を備える。周波数スペクトル表示部52では、帯域別や指定周波数別にしきい値が設定可能であり、設定しきい値を越える振動が発生した際には、しきい値越えとしてカウントし、カウント数がしきい値越え積算表示部56に累積表示される。しきい値越え積算表示部56には、予め設定された帯域別や指定周波数別のしきい値越えカウントアップ信号に連動した複数の種別表示窓である第1表示欄(TPFしきい値越え積算表示部)56a、第2表示欄(高調波TPFしきい値越え積算表示部)56b、第3表示欄(高調波TPFしきい値越え積算表示部)56c、第4表示欄(高調波TPFしきい値越え積算表示部)56d及び第5表示欄56eが設定される。変化表示部58では、指定されたしきい値越え積算表示部56の種別表示窓に累積された値同士の間の経時変化が表示される。 As shown in FIG. 3, the display unit 48 includes a frequency spectrum display unit 52, a threshold value exceeding display unit 56, and a change display unit 58. The frequency spectrum display unit 52 can set a threshold value for each band or for each specified frequency. When vibration exceeding the set threshold value occurs, it is counted as exceeding the threshold value, and the count number is the threshold value. Accumulated and displayed on the overrun display 56. The threshold value exceeding integration display unit 56 includes a first display field (TPF threshold value exceeding integration value) which is a plurality of type display windows linked to preset threshold value exceeding count-up signals for each band or each specified frequency. Display portion) 56a, second display column (harmonic TPF threshold value exceeding integrated display portion) 56b, third display field (harmonic TPF threshold value exceeding integrated display portion) 56c, fourth display column (harmonic TPF threshold displaying value) The threshold value exceeding integration display section) 56d and the fifth display field 56e are set. In the change display section 58, a change over time between the values accumulated in the type display window of the designated threshold value exceeding display section 56 is displayed.
 このように構成される加工状態監視システム10による振動監視方法について、以下に説明する。 The vibration monitoring method by the machining state monitoring system 10 configured as described above will be described below.
 図1に示すように、工作機械12では、先端にカッタ22が装着されたツールホルダ20を取り付けたスピンドル18が回転駆動されるとともに、ワークWの下穴Waに沿って繰り出される。そして、ツールホルダ20がワークWの下穴Wa側に相対的に移動する。このため、ツールホルダ20と一体にカッタ22が回転し、前記カッタ22を介してワークWの内壁面に加工が施される。 As shown in FIG. 1, in the machine tool 12, the spindle 18 attached with the tool holder 20 with the cutter 22 attached to the tip is rotationally driven and fed along the pilot hole Wa of the workpiece W. And the tool holder 20 moves relatively to the prepared hole Wa side of the workpiece W. For this reason, the cutter 22 rotates integrally with the tool holder 20, and the inner wall surface of the workpiece W is processed through the cutter 22.
 コントローラ30では、機械加工を開始する前に、スピンドル18の空転時の振動を加速度センサ26及び(又は)マイクロフォン28により取得し、この値を無負荷状態の振動量として以降に取得される振動レベルの設定しきい値とする。そして、スピンドル18により加工が開始され、加工振動がアンプ及びフィルタ回路36を介して演算ユニット38に取り込まれる。演算ユニット38では、加工振動がフーリエ変換(フーリエ級数展開)による演算解析が行われる。具体的には、時間振動f(t)は、 In the controller 30, before starting machining, the vibration at the time of idle rotation of the spindle 18 is acquired by the acceleration sensor 26 and / or the microphone 28, and this value is used as the vibration amount in the no-load state to be acquired thereafter. The set threshold value. Then, machining is started by the spindle 18, and machining vibration is taken into the arithmetic unit 38 via the amplifier and filter circuit 36. In the arithmetic unit 38, the processing vibration is subjected to arithmetic analysis by Fourier transform (Fourier series expansion). Specifically, the temporal vibration f (t) is
 f(t)=Σ(acos2ΠJt+bsin2ΠJt)で表される。なお、aは、周波数Jの余弦調和成分フーリエ係数であり、bは、周波数Jの正弦調和成分フーリエ係数である。 f (t) = Σ (a j cos2ΠJt + b j sin2ΠJt). Here, a j is the cosine harmonic component Fourier coefficient of frequency J, and b j is the sine harmonic component Fourier coefficient of frequency J.
 そして、周波数Jに対するフーリエ係数は、a=1/2T∫f(t)cos(2ΠJt)dt、及びb=1/2T∫f(t)sin(2ΠJt)dtに基づいて、フーリエ級数展開を行う。なお、積分区間は、0~Tであり、この積分区間Tは、周期1/Jの整数倍とする。ここで、実際に加工による振動周波数、例えば、10Hz~10,000Hzが取得される。 The Fourier coefficient for the frequency J is Fourier series expansion based on a j = 1 / 2T∫f (t) cos (2ΠJt) dt and b j = 1 / 2T∫f (t) sin (2ΠJt) dt. I do. The integration interval is 0 to T, and the integration interval T is an integer multiple of the period 1 / J. Here, a vibration frequency actually obtained by processing, for example, 10 Hz to 10,000 Hz is acquired.
 図3に示すように、表示ユニット48には、周波数スペクトル表示部52が設けられている。周波数スペクトル表示部52では、フーリエ解析により演算された周波数Hzを横軸に、加速度(振動の強さ)Gを縦軸にした周波数スペクトルが表示される。 As shown in FIG. 3, the display unit 48 is provided with a frequency spectrum display unit 52. The frequency spectrum display unit 52 displays a frequency spectrum having the frequency Hz calculated by Fourier analysis as the horizontal axis and the acceleration (vibration intensity) G as the vertical axis.
 周波数スペクトル表示部52には、種々の加工振動が表示される。例えば、図4には、良好な加工状態の加工振動が示されている一方、図6には、加工が荒れている状態(不良な加工状態)の加工振動が示されている。以下に、具体的に説明する。 The frequency spectrum display unit 52 displays various processing vibrations. For example, FIG. 4 shows machining vibration in a good machining state, while FIG. 6 shows machining vibration in a rough machining state (bad machining state). This will be specifically described below.
 図4に示す加工振動は、ワークWとして鉄系部材を使用し、2刃のカッタ22により、3800RPMの主軸回転速度で加工を行った時に発生したものである。図5は、図4に示す加工振動量を時間経過軸(縦軸に加速度G、横軸に測定開始からの経過秒数)で表しており、これをフーリエ変換して周波数別のスペクトル(横軸に周波数Hz、縦軸に加速度G)で表している。 The machining vibration shown in FIG. 4 occurs when an iron-based member is used as the workpiece W and machining is performed at a spindle rotation speed of 3800 RPM by a two-blade cutter 22. FIG. 5 shows the amount of machining vibration shown in FIG. 4 on the time lapse axis (acceleration G on the vertical axis and the number of seconds elapsed from the start of measurement on the horizontal axis). The axis represents frequency Hz and the vertical axis represents acceleration G).
 ここで、加工刃先がワークWに当接する工具通過周波数(Tool−Passing−Frequency)は、(主軸の回転数RPM/60)×刃数から得られる。図5に示すように、工具通過周波数は、127Hz(以下、TPF1という)である。さらに、TPF1の2倍(整数倍)の高調波周波数は、253Hz(以下、TPF2という)とし、前記TPF1の3倍(整数倍)の高調波周波数は、380Hz(以下、TPF3という)とし、前記TPF1の4倍(整数倍)の高調波周波数は、507Hz(以下、TPF4という)とする。なお、必要に応じて、TPF1の5倍(整数倍)以上の高調波周波数(TPFn)を設定してもよい。 Here, the tool passing frequency (Tool-Passing-Frequency) at which the cutting edge comes into contact with the workpiece W is obtained from (rotational speed RPM / 60 of the spindle) × the number of teeth. As shown in FIG. 5, the tool passing frequency is 127 Hz (hereinafter referred to as TPF1). Further, the harmonic frequency twice (integer multiple) of TPF1 is 253 Hz (hereinafter referred to as TPF2), and the harmonic frequency three times (integer multiple) of TPF1 is 380 Hz (hereinafter referred to as TPF3). The harmonic frequency four times (integer multiple) of TPF1 is 507 Hz (hereinafter referred to as TPF4). In addition, you may set the harmonic frequency (TPFn) more than 5 times (integer multiple) of TPF1 as needed.
 TPF1、TPF2、TPF3及びTPF4には、それぞれピーク加速度(振動強さ)であるTPF1ピーク、TPF2ピーク、TPF3ピーク及びTPF4ピークが発生している。その際、TPF1ピークの大きさに比べて、その高調波周波数である他のTPF2ピーク、TPF3ピーク及びTPF4ピークが相当に小さな値になっている。さらに、TPF1ピーク~TPF4ピーク以外の他の周波数では、大きなピーク加速度が発生していない。 In TPF1, TPF2, TPF3, and TPF4, a TPF1 peak, a TPF2 peak, a TPF3 peak, and a TPF4 peak, which are peak accelerations (vibration strengths), are generated, respectively. At that time, the other TPF2 peak, TPF3 peak, and TPF4 peak, which are the harmonic frequencies, are considerably smaller than the size of the TPF1 peak. Furthermore, no large peak acceleration occurs at frequencies other than TPF1 peak to TPF4 peak.
 すなわち、加工振動の周波数スペクトルを観察すると、工具通過周波数(TPF1)でのピーク加速度(TPF1ピーク)だけが顕著に出現しており、他に大きな振動周波数が存在しない状態である。このような状態で行われている加工は、良好であり、加工(切削)の加工音は、快削音を示して良好な加工面が得られている。 That is, when the frequency spectrum of the machining vibration is observed, only the peak acceleration (TPF1 peak) at the tool passing frequency (TPF1) appears remarkably, and no other large vibration frequency exists. The processing performed in such a state is good, and the processing sound of processing (cutting) shows free cutting sound and a good processed surface is obtained.
 一方、図6に示す加工振動は、ワークWとして鉄系部材を使用し、2刃のカッタ22により、3060RPMの主軸回転速度で加工を行った時に発生したものである。図7は、図6に示す加工振動量を時間経過軸(縦軸に加速度G、横軸に測定開始からの経過秒数)で表しており、これをフーリエ変換して周波数別のスペクトル(横軸に周波数Hz、縦軸に加速度G)で表している。 On the other hand, the machining vibration shown in FIG. 6 occurs when an iron-based member is used as the workpiece W and machining is performed at a spindle rotation speed of 3060 RPM by a two-blade cutter 22. FIG. 7 shows the amount of machining vibration shown in FIG. 6 on the time lapse axis (acceleration G on the vertical axis and the number of seconds elapsed from the start of measurement on the horizontal axis). The axis represents frequency Hz and the vertical axis represents acceleration G).
 ここで、工具通過周波数(TPF)は、102Hz(以下、TPF1という)である。さらに、TPF1の2倍(整数倍)の高調波周波数は、204Hz(以下、TPF2という)とし、前記TPF1の3倍(整数倍)の高調波周波数は、306Hz(以下、TPF3という)とし、前記TPF1の4倍(整数倍)の高調波周波数は、408Hz(以下、TPF4という)とする。なお、必要に応じて、TPF1の5倍(整数倍)以上の高調波周波数(TPFn)を設定してもよい。 Here, the tool passing frequency (TPF) is 102 Hz (hereinafter referred to as TPF1). Furthermore, the harmonic frequency twice (integer multiple) of TPF1 is 204 Hz (hereinafter referred to as TPF2), and the harmonic frequency three times (integer multiple) of TPF1 is 306 Hz (hereinafter referred to as TPF3). The harmonic frequency four times (integer multiple) of TPF1 is 408 Hz (hereinafter referred to as TPF4). In addition, you may set the harmonic frequency (TPFn) more than 5 times (integer multiple) of TPF1 as needed.
 そして、TPF1のピーク加速度であるTPF1ピークの大きさに対する、TPF2、TPF3及びTPF4のそれぞれのピーク加速度であるTPF2ピーク、TPF3ピーク及びTPF4ピークの大きさを比較する。その際、TPF1ピークの大きさに比べて、その高調波周波数である他のTPF2ピーク、TPF3ピーク及びTPF4ピークの大きさが同様の値になっている。このような状態で行われる加工は、加工振動音が大きくなり、加工音の周波数は、TPF1の音の他、TPF2、TPF3及びTPF4の音が混在するとともに、さらに励起したTPF周波数以外の低周波の音も同時に混在している。従って、振動音量が大きな雑多な加工音として聞こえてしまい、快削性を感じさせるものではなく、しかも加工面も荒れた状態になってしまう。 Then, the magnitudes of the TPF2, PPF3, and TPF4 peaks that are the respective peak accelerations of the TPF2, TPF3, and TPF4 are compared with the magnitude of the TPF1 peak that is the peak acceleration of the TPF1. At that time, the magnitudes of the other TPF2 peak, TPF3 peak, and TPF4 peak, which are the harmonic frequencies, are the same as the magnitude of the TPF1 peak. Processing performed in such a state increases processing vibration sound, and the frequency of processing sound includes TPF1, TPF3, and TPF4 sounds as well as low frequencies other than the excited TPF frequency. Is also mixed at the same time. Therefore, it can be heard as a miscellaneous machining sound with a large vibration volume, and it does not feel free-cutting, and the machining surface is also roughened.
 上記のように、加工状態監視システム10において、加工状態の良否を判断するために、加工における工具通過周波数(TPF)のピーク加速度とその高調波周波数のピーク加速度を常時監視し、TPF1ピークの振動量に対して、TPF2~TPFn(n=3以上の整数)の振動量の変化を比較している。以下に、その詳細を説明する。 As described above, in the machining state monitoring system 10, in order to determine whether the machining state is good or not, the peak acceleration of the tool passing frequency (TPF) and the peak acceleration of its harmonic frequency in the machining are constantly monitored, and the vibration of the TPF1 peak is observed. The change in vibration amount of TPF2 to TPFn (n = an integer of 3 or more) is compared with the amount. The details will be described below.
 図1に示すように、加速度センサ26及び(又は)マイクロフォン28により取得された加工振動は、アンプ及びフィルタ回路36を介して演算ユニット38に送られる。図2に示すように、演算ユニット38では、加工振動がフーリエ変換(フーリエ級数展開)による演算解析され、その値は、周波数スペクトル表示部52に表示されるとともに、その表示は、一定時間毎(通常、1秒間毎)に更新される。一方、入力設定ユニット40において、スピンドル18の回転数、カッタ22の刃数及び固有振動数等の情報が入力されている。この入力情報により、周波数スペクトルの振動情報は、各々TPF1、TPF2、TPF3…TPFn等に区別できるようになっている。 As shown in FIG. 1, the machining vibration acquired by the acceleration sensor 26 and / or the microphone 28 is sent to the arithmetic unit 38 via the amplifier and filter circuit 36. As shown in FIG. 2, in the arithmetic unit 38, the machining vibration is subjected to arithmetic analysis by Fourier transform (Fourier series expansion), and the value is displayed on the frequency spectrum display unit 52, and the display is made at regular intervals ( Usually updated every second). On the other hand, in the input setting unit 40, information such as the number of rotations of the spindle 18, the number of blades of the cutter 22, and the natural frequency are input. With this input information, the vibration information of the frequency spectrum can be distinguished into TPF1, TPF2, TPF3,.
 図3に示すように、周波数スペクトル表示部52に表示される振動強さ(ピーク加速度)が、その周波数の種類によって設定されたしきい値を越えた場合、しきい値越えのカウントアップ値として、しきい値越え積算表示部56の種別表示窓に送られる。また、周波数スペクトル表示部52で検出されたカウントアップ値を、そのまましきい値越え積算表示部56の種別表示窓に積算表示させる前に、別途設けられたリピートカウンタ42を介して、例えば、TPF1のしきい値越えのカウントアップ信号が複数回だされた際に、しきい値越え積算表示部56の種別表示窓に積算表示させることもできる。この場合のリピートカウンタのカウント数の設置は、入力設定ユニット40の設定画面で行われる。 As shown in FIG. 3, when the vibration intensity (peak acceleration) displayed on the frequency spectrum display unit 52 exceeds a threshold set according to the type of the frequency, a count-up value exceeding the threshold is obtained. , And sent to the type display window of the threshold value exceeding display unit 56. Further, before the count-up value detected by the frequency spectrum display unit 52 is integrated and displayed on the type display window of the threshold value excess integration display unit 56 as it is, for example, through a repeat counter 42 provided separately, for example, TPF1 When the count-up signal exceeding the threshold value is issued a plurality of times, the count display signal of the threshold value exceeding integration display section 56 can be integrated and displayed. In this case, the number of repeat counters is set on the setting screen of the input setting unit 40.
 しきい値越え積算表示部56では、例えば、カッタ22による加工時に発生する振動の周波数スペクトルにおいて、TPF1の振動(TPF1ピーク)が、周波数スペクトル表示部52に設定されたしきい値を越えると、そのしきい値越えのカウントアップ値が、前記しきい値越え積算表示部56の第1表示欄56aに送られる。第1表示欄56aには、TPF1のカウントアップ値が累積して表示される。従って、しきい値越え積算表示部56の第1表示欄56aに表示されるグラフは、TPF1のしきい値越えのカウントアップ値が送られる度に累積加算される。 In the threshold value excess integration display unit 56, for example, in the frequency spectrum of vibration generated during machining by the cutter 22, when the vibration of the TPF 1 (TPF 1 peak) exceeds the threshold value set in the frequency spectrum display unit 52, The count-up value exceeding the threshold value is sent to the first display field 56 a of the threshold value exceeding display unit 56. In the first display field 56a, the count-up value of TPF1 is accumulated and displayed. Therefore, the graph displayed in the first display field 56a of the threshold value excess integration display unit 56 is cumulatively added each time a count-up value exceeding the threshold value of TPF1 is sent.
 同様に、加工振動の周波数スペクトルにおいて、高調波周波数のTPF2の振動(TPF2ピーク)が、周波数スペクトル表示部52に設定されたしきい値を越えると、そのしきい値越えのカウントアップ値が、前記しきい値越え積算表示部56の第2表示欄56bに送られる。第2表示欄56bには、TPF2のカウントアップ値が累積して表示される。従って、しきい値越え積算表示部56の第2表示欄56bに表示されるグラフは、TPF2のしきい値越えのカウントアップ値が送られる度に累積加算される。 Similarly, when the vibration of the harmonic frequency TPF2 (TPF2 peak) exceeds the threshold set in the frequency spectrum display unit 52 in the frequency spectrum of the processing vibration, the count-up value exceeding the threshold is The value is sent to the second display field 56b of the threshold value exceeding display unit 56. In the second display field 56b, the count-up value of TPF2 is accumulated and displayed. Accordingly, the graph displayed in the second display field 56b of the threshold value excess integration display unit 56 is cumulatively added every time a count-up value exceeding the threshold value of TPF2 is sent.
 さらに、高調波周波数のTPF3の振動(TPF3ピーク)が、周波数スペクトル表示部52に設定されたしきい値を越えると、そのしきい値越えのカウントアップ値が、前記しきい値越え積算表示部56の第3表示欄56cに送られる。一方、高調波周波数のTPF4の振動(TPF4ピーク)が、周波数スペクトル表示部52に設定されたしきい値を越えると、そのしきい値越えのカウントアップ値が、前記しきい値越え積算表示部56の第4表示欄56dに送られる。さらにまた、TPF1~TPF4以外のTPF高調波周波数の振動は、周波数スペクトル表示部52に設定されたしきい値を越えると、そのしきい値越えのカウントアップ値が、前記しきい値越え積算表示部56の第5表示欄56eにまとめて表示される。 Further, when the vibration of the harmonic frequency TPF3 (TPF3 peak) exceeds the threshold value set in the frequency spectrum display unit 52, the count-up value exceeding the threshold value is displayed as the threshold value exceeding integration display unit. 56 is sent to the third display field 56c. On the other hand, when the vibration of the harmonic frequency TPF4 (TPF4 peak) exceeds the threshold value set in the frequency spectrum display unit 52, the count-up value exceeding the threshold value is the threshold value exceeding integration display unit. 56 is sent to the fourth display field 56d. Furthermore, when the vibration of the TPF harmonic frequency other than TPF1 to TPF4 exceeds the threshold value set in the frequency spectrum display unit 52, the count-up value exceeding the threshold value is displayed as the integrated value exceeding the threshold value. They are collectively displayed in the fifth display field 56e of the part 56.
 変化表示部58では、周波数スペクトル表示部52の第1表示欄56a~第4表示欄56d(必要に応じて第5表示欄56eも含む)の累積カウントアップ値を比較し、経時表示する。その際、比較するパラメータは、別途の設定画面により選択することができる。具体的には、変化表示部58には、累積されたTPF1のカウントアップ値(TPFしきい値越え回数)に対し、累積されたTPF2、TPF3及びTPF4(さらに必要であればTPFn)の各カウントアップ値(高調波TPFしきい値越え回数)の和の値を経時的に比較する。すなわち、(TPF2のカウントアップ値+TPF3のカウントアップ値+TPF4のカウントアップ値+TPFnのカウントアップ値)/TPF1のカウントアップ値=比較値である。 The change display unit 58 compares the accumulated count-up values in the first display column 56a to the fourth display column 56d (including the fifth display column 56e as necessary) of the frequency spectrum display unit 52, and displays them over time. At that time, the parameter to be compared can be selected on a separate setting screen. Specifically, the change display unit 58 counts the accumulated TPF2, TPF3, and TPF4 (and TPFn if necessary) with respect to the accumulated count value of TPF1 (the number of times the TPF threshold has been exceeded). The sum of the up values (the number of times the harmonic TPF threshold is exceeded) is compared over time. That is, (count up value of TPF2 + count up value of TPF3 + count up value of TPF4 + count up value of TPFn) / count up value of TPF1 = comparison value.
 図8に示す変化表示部58には、TPF1の累積されたカウントアップ値に対し、累積されたTPF2、TPF3及びTPF4(さらに必要であればTPFn)の各カウントアップ値の和の累積値が低い場合が表示されている。その比較値は、1以下であり、加工状態が快削な状態であることが検知される。一方、図9に示す変化表示部58には、TPF1の累積されたカウントアップ値に対し、累積されたTPF2、TPF3及びTPF4(さらに必要であればTPFn)の各カウントアップ値の和の累積値が高い場合が表示されている。その比較値は、2.5以上であり、加工状態が快削な状態でないことが検知される。 In the change display section 58 shown in FIG. 8, the cumulative value of the sum of the count-up values of TPF2, TPF3, and TPF4 (and TPFn if necessary) is lower than the count-up value of TPF1. The case is displayed. The comparison value is 1 or less, and it is detected that the machining state is a free-cutting state. On the other hand, in the change display section 58 shown in FIG. 9, the accumulated value of the sum of the count-up values of TPF2, TPF3, and TPF4 (and TPFn if necessary) accumulated with respect to the accumulated count-up value of TPF1. When is high is displayed. The comparison value is 2.5 or more, and it is detected that the machining state is not a free cutting state.
 すなわち、加工振動の周波数スペクトルから、工具通過周波数とその高調波周波数におけるしきい値越えをする顕著な特定信号だけを取り出し、その特定信号の発生状況を比較することで、その加工が良好であるか否かを、数値とグラフで表示させることができる。なお、しきい値越え積算表示部56の種別表示窓の累積値に対し、何と何とを比較するかの選択は、任意である。 In other words, from the frequency spectrum of machining vibration, only the remarkable specific signal that exceeds the threshold value at the tool pass frequency and its harmonic frequency is taken out, and the machining status is good by comparing the generation status of the specific signal. Whether or not can be displayed by a numerical value and a graph. The selection of what to compare with the accumulated value of the type display window of the threshold value exceeding display unit 56 is arbitrary.
 この場合、本実施形態では、カッタ22を介してワークWに加工処理を施す際、工具通過周波数(TPF1)でのピーク発生回数と高調波周波数(TPF2~)でのピーク発生回数との相関関係を見ることができる。そして、良好な加工状態では、相対的に工具通過周波数でのピーク発生回数が顕著になる一方、不良な加工状態では、前記工具通過周波数と共に高調波周波数でのピーク発生回数が増加する。このため、両者の関係の変化から、加工状態の良否判断を高精度且つ効率的に遂行可能になるという効果が得られる。 In this case, in this embodiment, when the workpiece W is processed through the cutter 22, the correlation between the number of peak occurrences at the tool passing frequency (TPF1) and the number of peak occurrences at the harmonic frequency (TPF2˜). Can see. In a good machining state, the number of peak occurrences at the tool passing frequency becomes relatively significant, whereas in a poor machining state, the number of peak occurrences at the harmonic frequency increases with the tool passing frequency. For this reason, from the change in the relationship between the two, it is possible to obtain an effect that the quality determination of the machining state can be performed with high accuracy and efficiency.
 また、変化表示部58には、工具通過周波数(TPF1)でのピーク発生回数と、複数の高調波周波数(TPF2~)でのピーク発生回数の和との比の変化を判定するためのしきい値が設定され、比較した状態の判定信号が出力されている。例えば、比較値が1以下の場合には、快削性を示す(良好な加工状態)としてOK信号が出力される。さらに、比較値が1を超える場合には、出力信号は、+OK信号となり、予兆状態にあることを示す一方、比較値が2.5を超える場合には、NG信号が出力され、非快削状態(不良な加工状態)にあることが出力される。 Further, the change display unit 58 has a threshold for determining a change in the ratio between the number of peak occurrences at the tool passing frequency (TPF1) and the sum of the number of peak occurrences at a plurality of harmonic frequencies (TPF2˜). A value is set, and a determination signal in a compared state is output. For example, when the comparison value is 1 or less, an OK signal is output as indicating free-cutting properties (good machining state). Further, if the comparison value exceeds 1, the output signal becomes a + OK signal, indicating that it is in a predictive state, while if the comparison value exceeds 2.5, an NG signal is output and non-free cutting It is output that it is in a state (bad machining state).
 しかも、加工振動の周波数スペクトルに含まれるTPF1での振動と高調波周波数(TPF2~)での振動との関係を監視することにより、時々の加工状態の判断が有効に行われる他、自動加工が行われる際には、比較値を監視することにより、快削な加工が遂行されているか否かの判断を自動化することができる。 Moreover, by monitoring the relationship between the vibration at the TPF1 and the vibration at the harmonic frequency (TPF2 ~) included in the frequency spectrum of the machining vibration, it is possible to effectively judge the machining state from time to time, and to perform automatic machining. When performed, it is possible to automate the determination of whether or not free-cutting is being performed by monitoring the comparison value.
 ここで、変化表示部58に表示される累積比較値が、工具刃先の摩耗と関連する場合には、比較値信号の出力を工具交換の信号として利用することが可能である。例えば、加工刃先が鋭利且つ鋭角な場合は、累積比較値の変化が小さいものの、加工が進んで刃先の摩耗が進行すると、該累積比較値の変化が大きくなる。このため、刃先交換の時期を判断するために、累積比較値を用いることにより、効果的な刃先交換処理が遂行可能になる。 Here, when the cumulative comparison value displayed on the change display unit 58 is related to the wear of the tool edge, the output of the comparison value signal can be used as a tool change signal. For example, when the cutting edge is sharp and acute, the change in the cumulative comparison value is small. However, as the machining progresses and the wear of the blade advances, the change in the cumulative comparison value increases. For this reason, an effective cutting edge replacement process can be performed by using the cumulative comparison value to determine the timing of cutting edge replacement.
 さらにまた、例えば、加工中に刃先にチッピングが発生したり、ワークWの加工取り代が不要に大きく変わる等、加工の負荷が加工中に変動する場合は、工具通過周波数でのピーク発生回数に比べて、高調波周波数(TPF2~)でのピーク発生回数が増加する傾向がある。従って、変化表示部58に表示される累積比較値を、加工状態の監視機能として使用することができる。 Furthermore, if the machining load fluctuates during machining, for example, chipping occurs at the cutting edge during machining or the machining allowance of the workpiece W changes unnecessarily, the number of peaks occurring at the tool passing frequency will be In comparison, there is a tendency that the number of peaks occurring at the harmonic frequency (TPF2˜) increases. Therefore, the cumulative comparison value displayed on the change display unit 58 can be used as a machining state monitoring function.
 また、図4と図6では、回転数の違いによる加工(切削)の振動状態の相違を示したが、切削する回転数を変更しながら最適の回転数を検索する場合、いずれの回転数が快削性を示すかを判断する手段として使用することができる。具体的には、比較値が小さくなった回転数を、良好な加工条件であると判断することに利用することが可能である。 4 and 6 show the difference in the vibration state of machining (cutting) due to the difference in the number of revolutions, but when searching for the optimum number of revolutions while changing the number of revolutions to cut, It can be used as a means for judging whether to show free-cutting properties. Specifically, it is possible to use the rotational speed at which the comparison value is reduced to determine that the processing conditions are good.
 本発明に係る振動監視方法及びシステムでは、加工工具を介してワークに加工処理を施す際、工具通過周波数(TPF)でのピーク発生回数と高調波周波数でのピーク発生回数との相関関係を見ることができる。良好な加工状態では、相対的に工具通過周波数でのピーク発生回数が顕著になる一方、不良な加工状態では、前記工具通過周波数と共に高調波周波数でのピーク発生回数が増加する。このため、両者の関係の変化から、加工状態の良否判断が高精度且つ効率的に遂行可能になる。 In the vibration monitoring method and system according to the present invention, when a workpiece is machined through a machining tool, the correlation between the number of peak occurrences at the tool passing frequency (TPF) and the number of peak occurrences at the harmonic frequency is observed. be able to. In a good machining state, the number of peak occurrences at the tool passing frequency becomes relatively significant, while in a poor machining state, the number of peak occurrences at the harmonic frequency increases with the tool passing frequency. For this reason, the quality determination of the machining state can be performed with high accuracy and efficiency from the change in the relationship between the two.
10…加工状態監視システム    12…工作機械
14…ハウジング         18…スピンドル
20…ツールホルダ        22…カッタ
26…加速度センサ        28…マイクロフォン
30…コントローラ        32…機械制御盤
34…制御操作盤         38…演算ユニット
40…入力設定ユニット       44…加工状態判断ユニット
46…入出力ユニット        48…表示ユニット
52…周波数スペクトル表示部    56…しきい値越え積算表示部
56a~56e…表示欄       58…変化表示部
DESCRIPTION OF SYMBOLS 10 ... Machining state monitoring system 12 ... Machine tool 14 ... Housing 18 ... Spindle 20 ... Tool holder 22 ... Cutter 26 ... Acceleration sensor 28 ... Microphone 30 ... Controller 32 ... Machine control board 34 ... Control operation board 38 ... Arithmetic unit 40 ... Input Setting unit 44 ... Processing state determination unit 46 ... Input / output unit 48 ... Display unit 52 ... Frequency spectrum display unit 56 ... Over-threshold integration display units 56a to 56e ... Display field 58 ... Change display unit

Claims (4)

  1.  機械加工時に検出される加工振動を、フーリエ級数展開により周波数と加速度とからなる周波数スペクトルに展開する作業機械の振動監視方法であって、
     加工工具の回転数及び刃数から算出された工具通過周波数でのピーク加速度であるTPFピークが、前記周波数スペクトルに予め設定された前記工具通過周波数のピークしきい値であるTPFしきい値と比較され、前記TPFピークが前記TPFしきい値を越えた回数を、TPFしきい値越え積算表示部に表示させる工程と、
     前記工具通過周波数の整数倍の高調波周波数でのピーク加速度である高調波TPFピークが、前記周波数スペクトルに予め設定された前記高調波周波数のピークしきい値である高調波TPFしきい値と比較され、前記高調波TPFピークが前記高調波TPFしきい値を越えた回数を、高調波TPFしきい値越え積算表示部に表示させる工程と、
     TPFしきい値越え回数と高調波TPFしきい値越え回数とを比較して変化表示部に表示させる工程と、
     を有することを特徴とする作業機械の振動監視方法。
    A vibration monitoring method for a working machine that develops a processing vibration detected during machining into a frequency spectrum composed of frequency and acceleration by Fourier series expansion,
    The TPF peak, which is the peak acceleration at the tool passing frequency calculated from the number of rotations of the machining tool and the number of blades, is compared with the TPF threshold value, which is the peak threshold value of the tool passing frequency set in advance in the frequency spectrum. Displaying the number of times the TPF peak has exceeded the TPF threshold on the TPF threshold value exceeding display section;
    A harmonic TPF peak that is a peak acceleration at a harmonic frequency that is an integral multiple of the tool passing frequency is compared with a harmonic TPF threshold that is a peak threshold of the harmonic frequency preset in the frequency spectrum. And displaying the number of times the harmonic TPF peak exceeds the harmonic TPF threshold on the harmonic TPF threshold exceeding integrated display section;
    Comparing the number of times the TPF threshold has been exceeded and the number of times the harmonic TPF threshold has been exceeded and displaying the comparison on the change display section;
    A vibration monitoring method for a work machine, comprising:
  2.  請求項1記載の振動監視方法であって、前記高調波TPFしきい値越え積算表示部は、少なくとも、前記工具通過周波数の2倍の高調波周波数での第1高調波TPFピークが前記高調波TPFしきい値を越えた回数を表示させる第1高調波TPFしきい値越え積算表示部と、
     前記工具通過周波数の3倍の高調波周波数での第2高調波TPFピークが前記高調波TPFしきい値を越えた回数を表示させる第2高調波TPFしきい値越え積算表示部と、
     を有し、
     前記変化表示部は、前記TPFしきい値越え回数と、少なくとも第1高調波TPFしきい値越え回数及び第2高調波TPFしきい値越え回数の和とを比較して表示させることを特徴とする作業機械の振動監視方法。
    2. The vibration monitoring method according to claim 1, wherein the harmonic TPF threshold value exceeding integrated display unit has at least a first harmonic TPF peak at a harmonic frequency twice the tool passing frequency as the harmonic. A first harmonic TPF threshold value exceeding integration display section for displaying the number of times the TPF threshold value is exceeded;
    A second harmonic TPF threshold value overrun display section for displaying the number of times the second harmonic TPF peak at the harmonic frequency three times the tool passing frequency exceeds the harmonic TPF threshold value;
    Have
    The change display unit displays the TPF threshold value exceeding number by comparing at least the sum of the first harmonic TPF threshold value exceeding number and the second harmonic TPF threshold value exceeding number. Monitoring method for working machine.
  3.  機械加工時に検出される加工振動を、フーリエ級数展開により周波数と加速度とからなる周波数スペクトルに展開する作業機械の振動監視システムであって、
     加工工具の回転数及び刃数から算出された工具通過周波数でのピーク加速度であるTPFピークが、前記周波数スペクトルに予め設定された前記工具通過周波数のピークしきい値であるTPFしきい値と比較され、前記TPFピークが前記TPFしきい値を越えた回数を表示させるTPFしきい値越え積算表示部と、
     前記工具通過周波数の整数倍の高調波周波数でのピーク加速度である高調波TPFピークが、前記周波数スペクトルに予め設定された前記高調波周波数のピークしきい値である高調波TPFしきい値と比較され、前記高調波TPFピークが前記高調波TPFしきい値を越えた回数を表示させる高調波TPFしきい値越え積算表示部と、
     TPFしきい値越え回数と高調波TPFしきい値越え回数とを比較して表示させる変化表示部と、
     を備えていることを特徴とする作業機械の振動監視システム。
    A vibration monitoring system for a working machine that develops processing vibration detected during machining into a frequency spectrum composed of frequency and acceleration by Fourier series expansion,
    The TPF peak, which is the peak acceleration at the tool passing frequency calculated from the number of rotations of the machining tool and the number of blades, is compared with the TPF threshold value, which is the peak threshold value of the tool passing frequency set in advance in the frequency spectrum. A TPF threshold value exceeding integration display unit for displaying the number of times the TPF peak exceeds the TPF threshold value;
    A harmonic TPF peak that is a peak acceleration at a harmonic frequency that is an integral multiple of the tool passing frequency is compared with a harmonic TPF threshold that is a peak threshold of the harmonic frequency preset in the frequency spectrum. A harmonic TPF threshold value exceeding integration display section for displaying the number of times that the harmonic TPF peak exceeds the harmonic TPF threshold value;
    A change display section for comparing and displaying the number of times the TPF threshold is exceeded and the number of times the harmonic TPF threshold is exceeded;
    A vibration monitoring system for a work machine, comprising:
  4.  請求項3記載の振動監視システムであって、前記高調波TPFしきい値越え積算表示部は、少なくとも、前記工具通過周波数の2倍の高調波周波数での第1高調波TPFピークが前記高調波TPFしきい値を越えた回数を表示させる第1高調波TPFしきい値越え積算表示部と、
     前記工具通過周波数の3倍の高調波周波数での第2高調波TPFピークが前記高調波TPFしきい値を越えた回数を表示させる第2高調波TPFしきい値越え積算表示部と、
     を備え、
     前記変化表示部は、前記TPFしきい値越え回数と、少なくとも第1高調波TPFしきい値越え回数及び第2高調波TPFしきい値越え回数の和とを比較して表示させていることを特徴とする作業機械の振動監視システム。
    4. The vibration monitoring system according to claim 3, wherein the harmonic TPF threshold value exceeding integrated display unit has at least a first harmonic TPF peak at a harmonic frequency twice as high as the tool passing frequency. A first harmonic TPF threshold value exceeding integration display section for displaying the number of times the TPF threshold value is exceeded;
    A second harmonic TPF threshold value overrun display section for displaying the number of times the second harmonic TPF peak at the harmonic frequency three times the tool passing frequency exceeds the harmonic TPF threshold value;
    With
    The change display unit displays the comparison of the number of times the TPF threshold is exceeded and at least the sum of the number of times the first harmonic TPF threshold is exceeded and the number of times the second harmonic TPF threshold is exceeded. Features a vibration monitoring system for work machines.
PCT/JP2017/035366 2016-09-28 2017-09-22 Work machine vibration monitoring method and system WO2018062445A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
DE112017004081.7T DE112017004081T5 (en) 2016-09-28 2017-09-22 Method and system for vibration monitoring for operating a machine
CN201780058842.4A CN109863376B (en) 2016-09-28 2017-09-22 Vibration monitoring method and system for work machine

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-203922 2016-09-28
JP2016203922A JP6718107B2 (en) 2016-09-28 2016-09-28 Vibration monitoring method and system for work machine

Publications (1)

Publication Number Publication Date
WO2018062445A1 true WO2018062445A1 (en) 2018-04-05

Family

ID=61760797

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/035366 WO2018062445A1 (en) 2016-09-28 2017-09-22 Work machine vibration monitoring method and system

Country Status (4)

Country Link
JP (1) JP6718107B2 (en)
CN (1) CN109863376B (en)
DE (1) DE112017004081T5 (en)
WO (1) WO2018062445A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021075584A1 (en) * 2019-10-18 2021-04-22 エヌティーエンジニアリング株式会社 Method and system for monitoring working state of work machine
CN114061922A (en) * 2020-07-30 2022-02-18 宝山钢铁股份有限公司 Disc shear abnormal condition early warning method based on vibration data
CN114683508A (en) * 2022-03-22 2022-07-01 杭州中祥通讯器材有限公司 Preparation process of reinforced communication pipe with lead

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7353798B2 (en) * 2018-05-29 2023-10-02 Tdk株式会社 Pre-processing equipment, processing equipment and processing state detection equipment
JP7170510B2 (en) * 2018-11-12 2022-11-14 オークマ株式会社 Monitoring device and monitoring method
JP7058210B2 (en) * 2018-12-10 2022-04-21 Dmg森精機株式会社 Machine tools, defect detection methods, and defect detection programs
US11344987B2 (en) 2019-09-04 2022-05-31 Tsinghua Shenzhen International Graduate School Method for monitoring chatter in machining process
CN110561195B (en) * 2019-09-04 2020-09-25 清华大学深圳研究生院 Method for monitoring flutter in machining process
JP6944103B2 (en) * 2019-10-22 2021-10-06 エヌティーエンジニアリング株式会社 Machining status monitoring method and system for work machines
JP2022064795A (en) * 2020-10-14 2022-04-26 エヌティーエンジニアリング株式会社 Work machine tool damage determination method and system
KR102420874B1 (en) * 2020-12-17 2022-07-15 한국생산기술연구원 Method for monitoring of joining quality for self piercing rivet, process for joining of self piercing rivet, and apparatus system for the same
KR20230172233A (en) 2022-06-15 2023-12-22 한국생산기술연구원 Method for evaluating of joining quality for self piercing rivet based on artificial neural network and system for the same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62193750A (en) * 1986-02-19 1987-08-25 Ichiro Inazaki Multi-blade tool damage detecting device
US20060188351A1 (en) * 2005-02-23 2006-08-24 Chung Yuan Christian University Computer assisted detecting and restraining systems for cutting tool chatter
WO2010116825A1 (en) * 2009-04-10 2010-10-14 エヌティーエンジニアリング株式会社 Method and device for suppressing chattering of work machine
JP2016083759A (en) * 2014-10-28 2016-05-19 エヌティーエンジニアリング株式会社 Processing state monitoring method and system for work machine
WO2017069290A1 (en) * 2015-10-20 2017-04-27 エヌティーエンジニアリング株式会社 Method and system for monitoring work state of operating machine

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3733892A (en) * 1972-04-03 1973-05-22 Northrop Corp Synchronous vibrational analyzer for rotating machinery
US5847658A (en) * 1995-08-15 1998-12-08 Omron Corporation Vibration monitor and monitoring method
JP2006077938A (en) * 2004-09-13 2006-03-23 Nsk Ltd Abnormality diagnosing device
JP2006113002A (en) * 2004-10-18 2006-04-27 Nsk Ltd Anomaly diagnosis system for mechanical equipment
CN101770218B (en) * 2008-12-30 2012-11-21 西门子公司 NC machine tool state monitoring method and device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62193750A (en) * 1986-02-19 1987-08-25 Ichiro Inazaki Multi-blade tool damage detecting device
US20060188351A1 (en) * 2005-02-23 2006-08-24 Chung Yuan Christian University Computer assisted detecting and restraining systems for cutting tool chatter
WO2010116825A1 (en) * 2009-04-10 2010-10-14 エヌティーエンジニアリング株式会社 Method and device for suppressing chattering of work machine
JP2016083759A (en) * 2014-10-28 2016-05-19 エヌティーエンジニアリング株式会社 Processing state monitoring method and system for work machine
WO2017069290A1 (en) * 2015-10-20 2017-04-27 エヌティーエンジニアリング株式会社 Method and system for monitoring work state of operating machine

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021075584A1 (en) * 2019-10-18 2021-04-22 エヌティーエンジニアリング株式会社 Method and system for monitoring working state of work machine
JP2021066006A (en) * 2019-10-18 2021-04-30 エヌティーエンジニアリング株式会社 Processing state monitoring method and system for work machine
CN114061922A (en) * 2020-07-30 2022-02-18 宝山钢铁股份有限公司 Disc shear abnormal condition early warning method based on vibration data
CN114683508A (en) * 2022-03-22 2022-07-01 杭州中祥通讯器材有限公司 Preparation process of reinforced communication pipe with lead
CN114683508B (en) * 2022-03-22 2022-11-08 杭州中祥通讯器材有限公司 Preparation process of reinforced communication pipe with lead

Also Published As

Publication number Publication date
CN109863376A (en) 2019-06-07
CN109863376B (en) 2021-07-02
DE112017004081T5 (en) 2019-04-25
JP2018054587A (en) 2018-04-05
JP6718107B2 (en) 2020-07-08

Similar Documents

Publication Publication Date Title
WO2018062445A1 (en) Work machine vibration monitoring method and system
KR101300301B1 (en) Method and device for suppressing chattering of work machine
JP6575814B2 (en) Process state monitoring method and system for work machine
JP7085370B2 (en) Diagnostic equipment, diagnostic systems, diagnostic methods and programs
JP2016083759A (en) Processing state monitoring method and system for work machine
WO2014064953A1 (en) Method for suppressing chatter of operating machine
JP5507409B2 (en) Method and apparatus for monitoring machine tool, machine tool
JP5937727B1 (en) Tool wear evaluation device
JP2016135511A (en) Irregular machining detecting apparatus and irregular machining detecting method
EP1348296B1 (en) Control embedded machine condition monitor
WO2021075584A1 (en) Method and system for monitoring working state of work machine
JP2022072435A (en) Diagnostic device, diagnostic method, program, and processing system
JP2018111171A (en) Abnormality sign detection system and abnormality detection method
JP7084242B2 (en) Tool blade number estimation device and machine tools equipped with it, and tool blade number estimation method
WO2021079959A1 (en) Method and system for monitoring machining state of work machine
WO2022080505A1 (en) Method and system for determining tool damage of work machine
KR101865081B1 (en) Monitoring method of machine chatter for improving machining accuracy
JP2012137327A (en) Vibration detecting device and vibration detecting method
WO2023063435A1 (en) Working machine bearing quality determining method and system
JP2002059342A (en) Method and device for detecting wear of cutting tool
Hamidieh et al. Drill breakage detection in two spindles station in a dial machine
Sghir et al. Milling cutting tool diagnosis using comparisons of the excitation identified by cepstral techniques

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17856394

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17856394

Country of ref document: EP

Kind code of ref document: A1