WO2014064953A1 - Method for suppressing chatter of operating machine - Google Patents

Method for suppressing chatter of operating machine Download PDF

Info

Publication number
WO2014064953A1
WO2014064953A1 PCT/JP2013/060569 JP2013060569W WO2014064953A1 WO 2014064953 A1 WO2014064953 A1 WO 2014064953A1 JP 2013060569 W JP2013060569 W JP 2013060569W WO 2014064953 A1 WO2014064953 A1 WO 2014064953A1
Authority
WO
WIPO (PCT)
Prior art keywords
chatter
vibration
frequency
machining
spindle
Prior art date
Application number
PCT/JP2013/060569
Other languages
French (fr)
Japanese (ja)
Inventor
保宏 駒井
洋光 盛田
Original Assignee
エヌティーエンジニアリング株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by エヌティーエンジニアリング株式会社 filed Critical エヌティーエンジニアリング株式会社
Publication of WO2014064953A1 publication Critical patent/WO2014064953A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q17/00Arrangements for observing, indicating or measuring on machine tools
    • B23Q17/09Arrangements for observing, indicating or measuring on machine tools for indicating or measuring cutting pressure or for determining cutting-tool condition, e.g. cutting ability, load on tool
    • B23Q17/0952Arrangements for observing, indicating or measuring on machine tools for indicating or measuring cutting pressure or for determining cutting-tool condition, e.g. cutting ability, load on tool during machining
    • B23Q17/0971Arrangements for observing, indicating or measuring on machine tools for indicating or measuring cutting pressure or for determining cutting-tool condition, e.g. cutting ability, load on tool during machining by measuring mechanical vibrations of parts of the machine
    • B23Q17/0976Detection or control of chatter
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q15/00Automatic control or regulation of feed movement, cutting velocity or position of tool or work
    • B23Q15/007Automatic control or regulation of feed movement, cutting velocity or position of tool or work while the tool acts upon the workpiece
    • B23Q15/12Adaptive control, i.e. adjusting itself to have a performance which is optimum according to a preassigned criterion
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/34Director, elements to supervisory
    • G05B2219/34048Fourier transformation, analysis, fft
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/37Measurements
    • G05B2219/37432Detected by accelerometer, piezo electric
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/37Measurements
    • G05B2219/37433Detected by acoustic emission, microphone
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/41Servomotor, servo controller till figures
    • G05B2219/41166Adaptive filter frequency as function of oscillation, rigidity, inertia load
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/41Servomotor, servo controller till figures
    • G05B2219/41256Chattering control
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/49Nc machine tool, till multiple
    • G05B2219/49074Control cutting speed

Definitions

  • the present invention relates to a chatter suppressing method for a working machine for suppressing occurrence of chatter when a workpiece is processed through a processing tool.
  • various machine tools are used to process a workpiece through a processing tool.
  • a boring tool provided with a boring tool (cutting edge) is attached to a rotating spindle (spindle) of a machine tool, and the boring tool is sequentially fed along a pilot hole while rotating at a high speed.
  • a highly accurate hole is processed at a predetermined position with the cutting edge diameter.
  • chatter suppressing method and apparatus for a work machine disclosed in JP 2010-247316 A is known.
  • This chatter suppressing method is detected when a machining tool or workpiece starts to rotate, a step of setting a vibration during idling of the machine spindle as a threshold, and a machining spindle is detected during machining. Determining whether or not the machining vibration exceeds the threshold, and when it is determined that the machining vibration exceeds the threshold, the machining vibration is analyzed by Fourier series expansion, and frequency ⁇ 60 ⁇ number of blades ( Or a step of adjusting the number of rotations of the mechanical spindle from an arithmetic expression.
  • the vibration frequency (frequency) of chatter is the same value as the natural frequency of a processing tool or a workpiece that is a rotating body. However, it has been found that there is a slight difference between the frequency of chatter when chatter occurs and the frequency data of the natural frequency.
  • the present invention can correct a difference between a chatter frequency and a natural frequency by a simple process, prevent chattering as much as possible, and perform a highly accurate machining operation efficiently.
  • An object is to provide a chatter suppressing method.
  • the present invention relates to a chatter suppressing method for a working machine for suppressing chatter from occurring when a workpiece is processed through a processing tool.
  • This chatter suppressing method is detected when a machining tool or workpiece starts to rotate, a step of setting a vibration during idling of the machine spindle as a threshold, and a machining spindle is detected during machining. Determining whether or not the machining vibration exceeds the threshold, and when it is determined that the machining vibration exceeds the threshold, the machining vibration is analyzed by Fourier series expansion to calculate a frequency due to regenerative chatter.
  • the estimated damping ratio is estimated based on the natural frequency of the machining tool or the workpiece.
  • the estimated attenuation ratio is preferably set within a range of 0.01 to 0.05.
  • vibration is detected from the start of rotation, and the vibration is analyzed by Fourier series expansion to calculate a frequency due to regenerative chatter. Then, a playback chatter avoidance frequency is obtained by adding an estimated attenuation ratio to the calculated playback chatter frequency.
  • FIG. 1 is a schematic explanatory diagram of a chatter suppressing device for a work machine according to an embodiment of the present invention. It is explanatory drawing of the chatter suppression controller which comprises the said chatter suppression apparatus. It is a front
  • a chatter suppressing device 10 that performs a chatter suppressing method according to an embodiment of the present invention is applied to a machine tool (work machine) 12.
  • the machine tool 12 includes a spindle (machine spindle) 18 that is rotatably provided in a housing 14 via a bearing 16, and a boring bar (processing tool) 20 that is detachable from the spindle 18.
  • a boring tool 22 for boring is attached to the tip.
  • a work W is placed on the work table 24.
  • the chatter suppressing device 10 includes an acceleration sensor (vibration detection mechanism) 26 attached to a side portion of the housing 14 in order to detect vibration generated when rotation of the boring bar 20 is started, and rotation of the boring bar 20.
  • the vibration detection controller 30 analyzes the vibration detected from the start by Fourier series expansion, adjusts the rotation speed of the main shaft 18, and outputs an updated value to the machine control device 28.
  • the machine control device 28 controls the machine tool 12 and is connected to the control operation panel 32.
  • a microphone 34 that acquires vibration sound using sound waves is used.
  • the acceleration sensor 26 may be attached to the work W side, for example, the work table 24 instead of the housing 14.
  • the chatter suppression controller 30 includes a chatter suppression arithmetic unit (arithmetic mechanism) 38 that amplifies and captures mechanical vibration (machining vibration) detected by the acceleration sensor 26 and the like by an amplifier and filter circuit 36. .
  • a chatter suppression arithmetic unit arithmetic mechanism 38 that amplifies and captures mechanical vibration (machining vibration) detected by the acceleration sensor 26 and the like by an amplifier and filter circuit 36.
  • the chatter suppression calculation unit 38 has processing conditions such as an instruction unit 40 for instructing a threshold value (to be described later) for starting calculation processing from the vibration monitoring state, the number of rotations of the spindle 18 and the number of blades of the cutting tool 22.
  • Processing condition input unit 42 for inputting, estimated attenuation ratio input unit 43 for inputting an estimated attenuation ratio for complementation (described later), a display unit 44 for displaying the machining state and the like, and arithmetic processing described later Is connected to an update value output unit 46 for outputting the spindle rotational speed adjusted by the above.
  • the updated value output unit 46 automatically outputs the updated spindle rotational speed to the machine tool control device 28 of the machine tool 12.
  • chatter suppressing method by the chatter suppressing apparatus 10 configured as described above will be described below with reference to flowcharts shown in FIG.
  • the spindle 18 to which the boring bar 20 is attached is driven to rotate along the prepared hole Wa of the workpiece W. Then, the boring bar 20 moves relatively to the prepared hole Wa side of the workpiece W. For this reason, the boring bar 20 rotates, and boring is performed on the inner wall surface constituting the prepared hole Wa via the cutting tool 22 attached to the boring bar 20.
  • the chatter suppressing device 10 starts monitoring the machining vibration by the acceleration sensor 26 (and / or the microphone 34) at the same time as the spindle 18 starts to rotate (step S1) (step S2).
  • the vibration analysis threshold value is calculated with the vibration at the time of idling of the spindle 18 as an allowable value.
  • step S3 when it is determined that the machining vibration has exceeded the threshold value (YES in step S3), the process proceeds to step S4, and the operational analysis is performed by Fourier transformation (Fourier series expansion) of the machining vibration.
  • the temporal vibration f (t) ⁇ (a j cos 2 ⁇ Jt + b j sin2 ⁇ Jt).
  • a j is the cosine harmonic component Fourier coefficient of frequency J
  • b j is the sine harmonic component Fourier coefficient of frequency J.
  • the integration interval is 0 to T, and the integration interval T is an integer multiple of the period 1 / J.
  • the number of data for analysis is minimized by limiting to the vibration frequency that actually causes chatter, for example, 20 Hz to 4000 Hz.
  • Coarse search refers to roughly scanning a power spectrum peak of a vibration signal subjected to Fourier series expansion processing and searching for a peak value in the peak. Specifically, a frequency range between 20 Hz and 4000 Hz is scanned every 10 Hz (first frequency).
  • step S7 If there is no peak value (NO in step S7), the process returns to step S2 and the vibration monitoring process is performed. On the other hand, if it is determined that there is a peak value (YES in step S7), the process proceeds to step S8, and a rough search of the peak value roughly searched is performed. In the fine search, scanning is performed every 1 Hz (second frequency) for the number + Hz before and after the roughly searched peak value.
  • step S9 when there is no peak value (in step S9, NO), it returns to step S2 and a vibration monitoring process is performed.
  • step S9 if it is determined that there is a peak value (YES in step S9), the process proceeds to step S10, and the frequency peak (fundamental wave) with the maximum power is searched.
  • a fundamental frequency component and its harmonic component are calculated.
  • the harmonic component is a frequency that is an integral multiple of the fundamental frequency, and is an unnecessary signal that is not linked to the physical cause of the vibration having the original fundamental frequency. For this reason, when it is determined in step S11 that a harmonic component is present (YES in step S11), the process proceeds to step S12 to delete this harmonic. Thereby, only the fundamental wave connected with the cause of vibration is obtained.
  • FIG. 6 shows a change in the limit cut at which chattering occurs with respect to the rotational speed of the main shaft 18, and there is a so-called stability pocket in which the stability limit is partially increased.
  • the calculated frequency components include, for example, a fundamental frequency component (the number of rotations of the spindle 18 when idling) A, a vibration component B before chatter growth, a second harmonic component C, and A third harmonic component D is included.
  • the fundamental frequency component A is a numerical value input in advance to the machining condition input unit 42 and does not instruct to change the numerical value.
  • the acquired vibration frequency is expanded into a Fourier series and then converted into a power spectrum, and the frequency with the highest power peak is selected from the data.
  • a frequency that is an integral multiple of that is used as a harmonic is calculated and compared with the peak value of the power spectrum.
  • the comparison is performed in order from the lowest frequency peak, and if there is a match, it is deleted.
  • the fundamental frequency component from which the harmonics (second-order harmonic component C and third-order harmonic component D) are deleted remains, and this is a vibration frequency that is not directly corrected and is associated with the physical cause of vibration. Only this is detected (see FIG. 8).
  • step S13 the next frequency peak (fundamental wave) with the maximum power is searched (step S13), and if it is determined that there is no next peak (YES in step S14), the process proceeds to step S15 to determine whether chatter vibration is present. Judgment is made.
  • the vibration frequency is the rotation frequency of the main shaft 18 (including harmonics), and the number of teeth of the cutting tool 22 used for the rotation. Includes the multiplied frequency (including harmonics) and the chatter frequency associated with machining.
  • the number of rotations of the spindle 18 and the number of blades of the cutting tool 22 are input to the chatter suppressing operation unit 38 in advance. Accordingly, vibrations that do not correspond to the vibration frequency obtained by multiplying the rotation frequency of the main shaft 18 and the number of blades of the cutting tool 22 are chatter vibration frequencies or signs thereof. For this reason, if these series of processes are always performed from the start of machining, a sign of chatter vibration is automatically calculated from the mechanical vibration.
  • the peak value of the calculation frequency from which the harmonic component has been deleted is the frequency of the rotation speed of the spindle 18 (rotation speed ⁇ 60) input in advance as a machining condition, or the vibration frequency (rotation speed of the cutting tool 22).
  • the number is compared with the number of blades / 60) (step S16 and step S17).
  • step S18 when the peak value of the calculation frequency coincides with these pre-input information values (YES in steps S16 and S17), this is a change in machining force generated as the main shaft 18 rotates, or a bite 22 Is determined to be forced vibration due to intermittent cutting of the cutting edge (step S18), and the process returns to vibration monitoring (step S19).
  • step S20 if an arithmetic frequency peak that does not meet this condition is detected (NO in steps S16 and S17), it is determined as the vibration frequency of playback chatter (step S20). Then, the process proceeds to step S21, and a process of obtaining a playback chatter avoidance frequency by adding an estimated attenuation ratio to the frequency due to playback chatter is performed.
  • the applicant of the present invention has found through a demonstration experiment that a slight difference occurs between the frequency due to the chatter and the frequency data of the natural frequency of the measurement object (spindle 18 and bite 22). Specifically, in the machine tool 12, the tip of the boring bar 20 attached to the spindle 18 was vibrated with an impact hammer, and the vibration state of the measurement object was obtained as a signal by the acceleration sensor.
  • the vibration signal from the acceleration sensor was output, and these were taken into an FFT analyzer for Fourier analysis and calculation. Furthermore, the natural frequency and damping ratio were obtained using the output / input as a transfer function.
  • the data of the FFT analyzer obtained by the measurement of the natural frequency is shown, for example, on the upper side of FIG.
  • the upper part on the upper side represents the state of vibration input by the impact hammer
  • the middle part on the upper side represents the degree of vibration of the measurement object as the output of the acceleration sensor 26, and the lower part on the upper side transmits the output / input.
  • (Fn) indicated by a vertical line represents the natural frequency (Hz) of the measurement object.
  • a machining experiment was performed using the same machine tool 12 as described above, and vibration data such as a regenerative chatter generation state was acquired.
  • the machining vibration (including chatter vibration) was acquired by the acceleration sensor 26, and the machining experiment was performed while observing the vibration amplitude and the power spectrum by taking this into the FFT analyzer and analyzing it.
  • the lower side of FIG. 9 shows a state in which regenerative chatter occurs during processing.
  • the lower part on the lower side represents the power spectrum when regenerative chatter occurs at the chatter frequency (fc), and the upper part on the lower side represents the vibration waveform at that time.
  • chatter frequency (fc) when regenerative chatter occurs and the natural frequency (fn) acquired in advance. That is, it has been found that the chatter frequency (fc) is a numerical value (for example, 0.03) higher than the natural frequency (fn).
  • the playback chatter avoidance frequency is calculated by feeding back the frequency due to playback chatter in consideration of the frequency difference ⁇ f1.
  • the frequency difference ⁇ f1 is the same as the half width ( ⁇ f2) of the natural frequency measurement (see FIG. 10).
  • regenerative chatter avoidance frequency (Hz) regenerative chatter frequency / (1 + estimated damping ratio)
  • RPM regenerative chatter avoidance rotation speed
  • the estimated damping ratio is set to 0.01 to 0.05.
  • the value of the damping ratio of the natural vibration characteristics (fn) of the spindle system and jig work system is in the range of 0.01 to 0.05 in a general use example, and this value is reflected as a feedback value (complementation) This is because chatter avoidance processing with high accuracy is performed.
  • step S21 after being converted to the regenerative chatter avoidance frequency, the process proceeds to an instruction to change the mechanical rotational speed for adjusting the rotational speed of the spindle 18 (step S22).
  • step S22 in order to suppress chatter vibration, the machining state is monitored in real time, and when a predictive vibration of chatter occurs, the regenerative chatter avoidance frequency based on the stable pocket method with the supplemented frequency ⁇ 60 ⁇ . The number of teeth (or its multiplication) is calculated. As a result, the updated rotational speed of the main shaft 18 is calculated, which automatically represents the central rotational speed of the stable pocket method.
  • the chatter suppressing arithmetic unit 38 displays the calculated updated rotation speed of the main spindle 18 on the display unit 44, and as a machine rotation speed change signal (for example, an override instruction from the outside of the rotation speed of the main spindle 18). Automatic feedback output from the update value output unit 46 to the machine tool controller 28 is performed. For this reason, the machine tool 12 is immediately changed to the instructed number of rotations of the main shaft 18, and cutting without harmful chatter becomes possible.
  • a machine rotation speed change signal for example, an override instruction from the outside of the rotation speed of the main spindle 18.
  • vibration is detected from the start of rotation, and the vibration is analyzed by Fourier series expansion to calculate the frequency due to regenerative chatter. Then, a playback chatter avoidance frequency is obtained by adding an estimated attenuation ratio to the calculated playback chatter frequency.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Automatic Control Of Machine Tools (AREA)
  • Numerical Control (AREA)

Abstract

A chatter suppression method for an operating machine detects vibration generated when rotation of a turning tool (22) or a work piece (W) starts, and when the vibration detected from the rotation start time is determined to exceed a vibration threshold value during idling of the machine main shaft, the vibration is analyzed using Fourier series expansion and the frequency due to regenerative chatter is calculated, and an estimated damping ratio is further added to the frequency due to the regenerative chatter to obtain a regenerative chatter avoidance frequency in order to adjust the speed of the main shaft (18).

Description

作業機械のびびり抑制方法Chatter control method for work machines
 本発明は、加工工具を介してワークに加工処理を施す際に、びびりが発生することを抑制するための作業機械のびびり抑制方法に関する。 The present invention relates to a chatter suppressing method for a working machine for suppressing occurrence of chatter when a workpiece is processed through a processing tool.
 一般的に、加工工具を介してワークに加工処理を施すために、各種の工作機械が使用されている。例えば、ボーリング加工は、中ぐり用バイト(刃先)が設けられたボーリングツールを工作機械の回転主軸(スピンドル)に取り付け、前記ボーリングツールを高速で回転させながら下穴に沿って順次繰り出すことにより、その刃先加工径で所定の位置に高精度な孔部を加工するものである。 Generally, various machine tools are used to process a workpiece through a processing tool. For example, in the boring process, a boring tool provided with a boring tool (cutting edge) is attached to a rotating spindle (spindle) of a machine tool, and the boring tool is sequentially fed along a pilot hole while rotating at a high speed. A highly accurate hole is processed at a predetermined position with the cutting edge diameter.
 この種の作業機械では、主軸や加工工具やワークに、切削抵抗による撓みが発生し易い。そして、この撓みに起因して加工工具やワークに振動が惹起され、この振動がびびり(所謂、再生びびりを含む)となって加工に表れる場合がある。上記のびびりを抑えるために、例えば、特開2010−247316号公報に開示された作業機械のびびり抑制方法及び装置が知られている。 ¡In this type of work machine, bending due to cutting resistance is likely to occur in the spindle, processing tool and workpiece. Then, due to this bending, vibration is induced in the machining tool or workpiece, and this vibration may become chatter (including so-called regenerative chatter) and appear in machining. In order to suppress the above chatter, for example, a chatter suppressing method and apparatus for a work machine disclosed in JP 2010-247316 A is known.
 このびびり抑制方法は、加工工具又はワークの回転が開始される際に発生する振動を検出する工程と、機械主軸の空転時の振動を閾値に設定する工程と、前記機械主軸の加工時に検出される加工振動が、前記閾値を超えたか否かを判断する工程と、前記加工振動が前記閾値を越えたと判断された際、前記加工振動をフーリエ級数展開により解析し、周波数×60÷刃数(又はその逓倍)の演算式から、前記機械主軸の回転数を調整する工程とを有している。 This chatter suppressing method is detected when a machining tool or workpiece starts to rotate, a step of setting a vibration during idling of the machine spindle as a threshold, and a machining spindle is detected during machining. Determining whether or not the machining vibration exceeds the threshold, and when it is determined that the machining vibration exceeds the threshold, the machining vibration is analyzed by Fourier series expansion, and frequency × 60 ÷ number of blades ( Or a step of adjusting the number of rotations of the mechanical spindle from an arithmetic expression.
 一般的に、びびりの振動数(周波数)は、回転体である加工工具やワークの固有振動数と同一の値であると認識されている。ところが、びびりが発生した際のびびりの周波数と、固有周波数の周波数データとの間に、わずかな差が生じることが判明した。 Generally, it is recognized that the vibration frequency (frequency) of chatter is the same value as the natural frequency of a processing tool or a workpiece that is a rotating body. However, it has been found that there is a slight difference between the frequency of chatter when chatter occurs and the frequency data of the natural frequency.
 本発明は、簡単な工程で、びびり周波数と固有周波数との差を補正することができ、びびりの発生を可及的に阻止して高精度な加工作業が効率的に遂行可能な作業機械のびびり抑制方法を提供することを目的とする。 The present invention can correct a difference between a chatter frequency and a natural frequency by a simple process, prevent chattering as much as possible, and perform a highly accurate machining operation efficiently. An object is to provide a chatter suppressing method.
 本発明は、加工工具を介してワークに加工処理を施す際に、びびりが発生することを抑制するための作業機械のびびり抑制方法に関するものである。 The present invention relates to a chatter suppressing method for a working machine for suppressing chatter from occurring when a workpiece is processed through a processing tool.
 このびびり抑制方法は、加工工具又はワークの回転が開始される際に発生する振動を検出する工程と、機械主軸の空転時の振動を閾値に設定する工程と、前記機械主軸の加工時に検出される加工振動が、前記閾値を超えたか否かを判断する工程と、前記加工振動が前記閾値を越えたと判断された際、前記加工振動をフーリエ級数展開により解析し、再生びびりによる周波数を算出する工程と、算出された前記再生びびりによる周波数に、推定減衰比を加味して再生びびり回避周波数を得る工程と、前記再生びびり回避周波数×60÷刃数(又はその逓倍)の演算式から、前記機械主軸の回転数を調整する工程とを有している。 This chatter suppressing method is detected when a machining tool or workpiece starts to rotate, a step of setting a vibration during idling of the machine spindle as a threshold, and a machining spindle is detected during machining. Determining whether or not the machining vibration exceeds the threshold, and when it is determined that the machining vibration exceeds the threshold, the machining vibration is analyzed by Fourier series expansion to calculate a frequency due to regenerative chatter. From the step, a step of obtaining a regenerative chatter avoidance frequency by adding an estimated damping ratio to the calculated frequency due to the regenerative chatter, and a regenerative chatter avoidance frequency × 60 ÷ the number of blades (or its multiplication) Adjusting the rotational speed of the machine spindle.
 また、このびびり抑制方法では、推定減衰比は、加工工具又はワークの固有振動数に基づいて推定されることが好ましい。 Further, in this chatter suppressing method, it is preferable that the estimated damping ratio is estimated based on the natural frequency of the machining tool or the workpiece.
 さらに、このびびり抑制方法では、推定減衰比は、0.01~0.05の範囲内に設定されることが好ましい。 Furthermore, in this chatter suppressing method, the estimated attenuation ratio is preferably set within a range of 0.01 to 0.05.
 本発明に係る作業機械のびびり抑制方法では、回転開始時から振動を検出し、前記振動をフーリエ級数展開により解析して再生びびりによる周波数を算出している。そして、算出された再生びびりによる周波数に、推定減衰比を加味して再生びびり回避周波数が得られている。 In the chatter suppressing method for a work machine according to the present invention, vibration is detected from the start of rotation, and the vibration is analyzed by Fourier series expansion to calculate a frequency due to regenerative chatter. Then, a playback chatter avoidance frequency is obtained by adding an estimated attenuation ratio to the calculated playback chatter frequency.
 このため、推定減衰比を加味してフィードバックすることにより、高精度な再生びびり回避周波数を得ることができる。これにより、実際にびびりによる影響が生じる前に、機械主軸の回転数を調整するとともに、再生びびりの発生を可及的に抑制することが可能になる。 For this reason, a feedback chatter avoidance frequency with high accuracy can be obtained by feeding back the estimated damping ratio. As a result, it is possible to adjust the rotational speed of the machine spindle and to suppress the occurrence of regenerative chatter as much as possible before the effect of chatter actually occurs.
本発明の実施形態に係る作業機械のびびり抑制装置の概略説明図である。1 is a schematic explanatory diagram of a chatter suppressing device for a work machine according to an embodiment of the present invention. 前記びびり抑制装置を構成するびびり抑制コントローラの説明図である。It is explanatory drawing of the chatter suppression controller which comprises the said chatter suppression apparatus. 前記びびり抑制装置によるびびり制御方法を説明するフローチャートの前段である。It is a front | former stage of the flowchart explaining the chatter control method by the said chatter suppression apparatus. 前記フローチャートの後段である。It is the latter part of the flowchart. 空転時の振動と切削時の振動との説明図である。It is explanatory drawing of the vibration at the time of idling, and the vibration at the time of cutting. 主軸回転数が安定領域にある際の説明図である。It is explanatory drawing when a main shaft rotation speed exists in a stable area | region. 安定加工時の説明図である。It is explanatory drawing at the time of stable processing. 安定加工時の高調波が除去された状態の説明図である。It is explanatory drawing of the state from which the harmonic at the time of stable processing was removed. FFTアナライザにより取得された固有振動数とびびり振動数とにおける種々の波形説明図である。It is explanatory drawing of various waveforms in the natural frequency and chatter frequency which were acquired with the FFT analyzer. 減衰比の説明図である。It is explanatory drawing of a damping ratio.
 図1に示すように、本発明の実施形態に係るびびり抑制方法を実施するびびり抑制装置10は、工作機械(作業機械)12に適用される。 As shown in FIG. 1, a chatter suppressing device 10 that performs a chatter suppressing method according to an embodiment of the present invention is applied to a machine tool (work machine) 12.
 工作機械12は、ハウジング14内にベアリング16を介して回転可能に設けられるスピンドル(機械主軸)18と、前記スピンドル18に着脱自在なボーリングバー(加工工具)20とを備え、前記ボーリングバー20の先端に中ぐり用バイト22が装着されている。作業テーブル24上には、ワークWが載置されている。 The machine tool 12 includes a spindle (machine spindle) 18 that is rotatably provided in a housing 14 via a bearing 16, and a boring bar (processing tool) 20 that is detachable from the spindle 18. A boring tool 22 for boring is attached to the tip. A work W is placed on the work table 24.
 びびり抑制装置10は、ボーリングバー20の回転が開始される際に発生する振動を検出するためにハウジング14の側部に装着される加速度センサ(振動検出機構)26と、前記ボーリングバー20の回転開始時から検出される前記振動をフーリエ級数展開により解析し、主軸18の回転数を調整して機械制御装置28に更新値を出力するびびり抑制コントローラ30とを備える。機械制御装置28は、工作機械12を制御するものであり、制御操作盤32に接続される。 The chatter suppressing device 10 includes an acceleration sensor (vibration detection mechanism) 26 attached to a side portion of the housing 14 in order to detect vibration generated when rotation of the boring bar 20 is started, and rotation of the boring bar 20. The vibration detection controller 30 analyzes the vibration detected from the start by Fourier series expansion, adjusts the rotation speed of the main shaft 18, and outputs an updated value to the machine control device 28. The machine control device 28 controls the machine tool 12 and is connected to the control operation panel 32.
 振動検出機構は、加速度センサ26の他に、音波により振動音を取得するマイクロフォン34が使用される。なお、加速度センサ26は、ハウジング14に代えて、ワークW側、例えば、作業テーブル24に取り付けてもよい。 As the vibration detection mechanism, in addition to the acceleration sensor 26, a microphone 34 that acquires vibration sound using sound waves is used. The acceleration sensor 26 may be attached to the work W side, for example, the work table 24 instead of the housing 14.
 図2に示すように、びびり抑制コントローラ30は、加速度センサ26等により検出された機械的振動(加工振動)をアンプ及びフィルタ回路36により増幅して取り込むびびり抑制演算ユニット(演算機構)38を備える。 As shown in FIG. 2, the chatter suppression controller 30 includes a chatter suppression arithmetic unit (arithmetic mechanism) 38 that amplifies and captures mechanical vibration (machining vibration) detected by the acceleration sensor 26 and the like by an amplifier and filter circuit 36. .
 びびり抑制演算ユニット38には、振動の監視状態から演算処理を開始するための閾値(後述する)を指示するための指示ユニット40、主軸18の回転数やバイト22の刃数等の加工条件を入力するための加工条件入力ユニット42、補完用の推定減衰比(後述する)を入力するための推定減衰比入力ユニット43、加工状態等を外部に表示するための表示ユニット44及び後述する演算処理により調整される主軸回転数を出力するための更新値出力ユニット46とが接続される。更新値出力ユニット46は、工作機械12の工作機械制御装置28に更新された主軸回転数を自動的に出力する。 The chatter suppression calculation unit 38 has processing conditions such as an instruction unit 40 for instructing a threshold value (to be described later) for starting calculation processing from the vibration monitoring state, the number of rotations of the spindle 18 and the number of blades of the cutting tool 22. Processing condition input unit 42 for inputting, estimated attenuation ratio input unit 43 for inputting an estimated attenuation ratio for complementation (described later), a display unit 44 for displaying the machining state and the like, and arithmetic processing described later Is connected to an update value output unit 46 for outputting the spindle rotational speed adjusted by the above. The updated value output unit 46 automatically outputs the updated spindle rotational speed to the machine tool control device 28 of the machine tool 12.
 このように構成されるびびり抑制装置10によるびびり抑制方法について、図3以降に示すフローチャートに沿って、以下に説明する。 The chatter suppressing method by the chatter suppressing apparatus 10 configured as described above will be described below with reference to flowcharts shown in FIG.
 図1に示すように、工作機械12では、ボーリングバー20を取り付けたスピンドル18が回転駆動されるとともに、ワークWの下穴Waに沿って繰り出される。そして、ボーリングバー20がワークWの下穴Wa側に相対的に移動する。このため、ボーリングバー20が回転し、このボーリングバー20に装着されたバイト22を介して下穴Waを構成する内壁面にボーリング加工が施される。 As shown in FIG. 1, in the machine tool 12, the spindle 18 to which the boring bar 20 is attached is driven to rotate along the prepared hole Wa of the workpiece W. Then, the boring bar 20 moves relatively to the prepared hole Wa side of the workpiece W. For this reason, the boring bar 20 rotates, and boring is performed on the inner wall surface constituting the prepared hole Wa via the cutting tool 22 attached to the boring bar 20.
 びびり抑制装置10は、スピンドル18が回転駆動を開始すると同時に(ステップS1)、加速度センサ26(及び/又はマイクロフォン34)による加工振動の監視が開始される(ステップS2)。びびり抑制演算ユニット38では、アンプ及びフイルタ回路36を介して取り込まれる加工振動が、予め自動設定された閾値、例えば、主軸18の空転時の振動を超えたか否かが判断される(ステップS3)。 The chatter suppressing device 10 starts monitoring the machining vibration by the acceleration sensor 26 (and / or the microphone 34) at the same time as the spindle 18 starts to rotate (step S1) (step S2). In the chatter suppression arithmetic unit 38, it is determined whether or not the machining vibration taken in via the amplifier and filter circuit 36 exceeds a preset threshold value, for example, a vibration during idling of the spindle 18 (step S3). .
 ここで、機械加工を開始する前に主軸18の空転時の振動と、切削時の振動とは、実際上、図5に示すように、変化する。そして、主軸18の空転時の振動を許容値として振動解析の閾値を演算しておく。 Here, before starting machining, the vibration at the time of idling of the spindle 18 and the vibration at the time of cutting actually change as shown in FIG. Then, the vibration analysis threshold value is calculated with the vibration at the time of idling of the spindle 18 as an allowable value.
 次いで、加工振動が閾値を超えたと判断されると(ステップS3中、YES)、ステップS4に進んで、前記加工振動のフーリエ変換(フーリエ級数展開)による演算解析が行われる。具体的には、時間振動f(t)は、f(t)=Σ(acos2πJt+bsin2πJt)で表される。なお、aは、周波数Jの余弦調和成分フーリエ係数であり、bは、周波数Jの正弦調和成分フーリエ係数である。 Next, when it is determined that the machining vibration has exceeded the threshold value (YES in step S3), the process proceeds to step S4, and the operational analysis is performed by Fourier transformation (Fourier series expansion) of the machining vibration. Specifically, the temporal vibration f (t) is represented by f (t) = Σ (a j cos 2πJt + b j sin2πJt). Here, a j is the cosine harmonic component Fourier coefficient of frequency J, and b j is the sine harmonic component Fourier coefficient of frequency J.
 そして、周波数Jに対するフーリエ係数は、a=1/2T∫f(t)cos(2πJt)dt、及びb=1/2T∫f(t)sin(2πJt)dtに基づいて、フーリエ級数展開を行う。なお、積分区間は、0~Tであり、この積分区間Tは、周期1/Jの整数倍とする。 And the Fourier coefficient for frequency J is Fourier series expansion based on a j = 1 / 2T∫f (t) cos (2πJt) dt and b j = 1 / 2T∫f (t) sin (2πJt) dt. I do. The integration interval is 0 to T, and the integration interval T is an integer multiple of the period 1 / J.
 ここで、フーリエ級数展開によるリアルタイム性(即時性)の向上を図るため、実際にびびりの生じる振動数、例えば、20Hz~4000Hzに限定し、解析のためのデータ数を最小限にする。 Here, in order to improve the real-time property (immediateness) by the Fourier series expansion, the number of data for analysis is minimized by limiting to the vibration frequency that actually causes chatter, for example, 20 Hz to 4000 Hz.
 さらに、ステップS5に進んで、得られたフーリエ係数に基づいて、パワースペクトルP(J)(最大振動振幅)が、P(J)=a +b から算出される。 In step S5, the power spectrum P (J) (maximum vibration amplitude) is calculated from P (J) = a j 2 + b j 2 based on the obtained Fourier coefficient.
 次いで、ステップS6に進んで、周波数ピークの粗検索が行われる。粗検索とは、フーリエ級数展開処理された振動信号のパワースペクトルのピークを大まかに走査し、その中のピーク値を検索することをいう。具体的には、20Hz~4000Hz間の周波数域を10Hz(第1の周波数)毎に走査する。 Next, the process proceeds to step S6, where a rough search for frequency peaks is performed. Coarse search refers to roughly scanning a power spectrum peak of a vibration signal subjected to Fourier series expansion processing and searching for a peak value in the peak. Specifically, a frequency range between 20 Hz and 4000 Hz is scanned every 10 Hz (first frequency).
 ピーク値がない場合には(ステップS7中、NO)、ステップS2に戻って、振動監視処理が行われる。一方、ピーク値があると判断されると(ステップS7中、YES)、ステップS8に進んで、粗検索されたピーク値の精検索が行われる。精検索とは、粗検索されたピーク値の前後数+Hzを、1Hz(第2の周波数)毎に走査する。 If there is no peak value (NO in step S7), the process returns to step S2 and the vibration monitoring process is performed. On the other hand, if it is determined that there is a peak value (YES in step S7), the process proceeds to step S8, and a rough search of the peak value roughly searched is performed. In the fine search, scanning is performed every 1 Hz (second frequency) for the number + Hz before and after the roughly searched peak value.
 そして、ステップS9に進み、ピーク値がない場合には(ステップS9中、NO)、ステップS2に戻って、振動監視処理が行われる。一方、ピーク値があると判断されると(ステップS9中、YES)、ステップS10に進んで、パワー最大の周波数ピーク(基本波)が検索される。 And it progresses to step S9, and when there is no peak value (in step S9, NO), it returns to step S2 and a vibration monitoring process is performed. On the other hand, if it is determined that there is a peak value (YES in step S9), the process proceeds to step S10, and the frequency peak (fundamental wave) with the maximum power is searched.
 ここで、機械振動をフーリエ級数展開すると、基本周波数成分とその高調波成分(2次高調波、3次高調波等)とが算出される。高調波成分は、基本周波数の整数倍の周波数であり、本来の基本周波数がもっている振動の物理的な原因と結びついていない不要な信号である。このため、ステップS11で、高調波成分が存在していると判断された際には(ステップS11中、YES)、ステップS12に進んで、この高調波を削除する。これにより、振動原因と結びつく基本波のみが得られる。 Here, when the mechanical vibration is expanded by Fourier series, a fundamental frequency component and its harmonic component (second harmonic, third harmonic, etc.) are calculated. The harmonic component is a frequency that is an integral multiple of the fundamental frequency, and is an unnecessary signal that is not linked to the physical cause of the vibration having the original fundamental frequency. For this reason, when it is determined in step S11 that a harmonic component is present (YES in step S11), the process proceeds to step S12 to delete this harmonic. Thereby, only the fundamental wave connected with the cause of vibration is obtained.
 通常、工作機械12により安定加工が行われていると、図6及び図7に示すように、主軸18の回転数は、安定領域にある。なお、図6は、主軸18の回転数に対してびびりが発生する限界切り込みの変化を示しており、安定限界が部分的に高くなる、所謂、安定ポケットが存在している。 Usually, when stable machining is performed by the machine tool 12, as shown in FIGS. 6 and 7, the rotational speed of the spindle 18 is in a stable region. FIG. 6 shows a change in the limit cut at which chattering occurs with respect to the rotational speed of the main shaft 18, and there is a so-called stability pocket in which the stability limit is partially increased.
 一方、図7に示すように、算出される周波数成分は、例えば、基本周波数成分(スピンドル18の空転時の回転数)A、びびりの成長する前の振動成分B、2次高調波成分C及び3次高調波成分Dを含んでいる。なお、基本周波数成分Aは、加工条件入力ユニット42に予め入力された数値であり、その数値を変更指示しない。 On the other hand, as shown in FIG. 7, the calculated frequency components include, for example, a fundamental frequency component (the number of rotations of the spindle 18 when idling) A, a vibration component B before chatter growth, a second harmonic component C, and A third harmonic component D is included. The fundamental frequency component A is a numerical value input in advance to the machining condition input unit 42 and does not instruct to change the numerical value.
 そこで、高調波の削除処理は、先ず取り込んだ振動周波数をフーリエ級数展開した後、パワースペクトルに変換し、そのデータの中からパワーピークの一番高い周波数を選び出す。次に、これを基本波として、その整数倍の周波数を高調波とするとともに、この高調波を算出したパワースペクトルのピーク値と比較をする。 Therefore, in the harmonic elimination process, first, the acquired vibration frequency is expanded into a Fourier series and then converted into a power spectrum, and the frequency with the highest power peak is selected from the data. Next, using this as a fundamental wave, a frequency that is an integral multiple of that is used as a harmonic, and the harmonic is calculated and compared with the peak value of the power spectrum.
 比較は、周波数ピークの低い方から順番に行い、一致するものがあれば、それを削除していく処理とする。その結果、高調波(2次高調波成分C及び3次高調波成分D)が削除された基本周波数成分のみが残ることとなり、これは取りも直さず振動の物理的な原因と結びついた振動周波数のみが検出されたことになる(図8参照)。 The comparison is performed in order from the lowest frequency peak, and if there is a match, it is deleted. As a result, only the fundamental frequency component from which the harmonics (second-order harmonic component C and third-order harmonic component D) are deleted remains, and this is a vibration frequency that is not directly corrected and is associated with the physical cause of vibration. Only this is detected (see FIG. 8).
 同様にして、パワー最大の次なる周波数ピーク(基本波)が検索され(ステップS13)、次なるピークがないと判断されると(ステップS14中、YES)、ステップS15に進み、びびり振動か否かの判定を行う。 Similarly, the next frequency peak (fundamental wave) with the maximum power is searched (step S13), and if it is determined that there is no next peak (YES in step S14), the process proceeds to step S15 to determine whether chatter vibration is present. Judgment is made.
 本実施形態では、実用的な振動範囲内(例えば、20Hz~4000Hz)で行うため、その振動数は、主軸18の回転数の振動数(高調波を含む)、それに使うバイト22の刃数を乗じた振動数(高調波を含む)及び加工に伴うびびり振動数が含まれる。 In the present embodiment, since it is performed within a practical vibration range (for example, 20 Hz to 4000 Hz), the vibration frequency is the rotation frequency of the main shaft 18 (including harmonics), and the number of teeth of the cutting tool 22 used for the rotation. Includes the multiplied frequency (including harmonics) and the chatter frequency associated with machining.
 そこで、予め主軸18の回転数とバイト22の刃数等が、びびり抑制演算ユニット38に入力されている。従って、主軸18の回転数の振動数及びバイト22の刃数を乗じた振動数に該当しない振動は、びびり振動数あるいはその予兆となる。このため、これらの一連の処理を、機械加工開始時点から常時行なえば、機械振動の中からびびり振動の予兆を自動的に算出することとなる。 Therefore, the number of rotations of the spindle 18 and the number of blades of the cutting tool 22 are input to the chatter suppressing operation unit 38 in advance. Accordingly, vibrations that do not correspond to the vibration frequency obtained by multiplying the rotation frequency of the main shaft 18 and the number of blades of the cutting tool 22 are chatter vibration frequencies or signs thereof. For this reason, if these series of processes are always performed from the start of machining, a sign of chatter vibration is automatically calculated from the mechanical vibration.
 具体的には、高調波成分を削除した演算周波数のピーク値が、事前に加工条件として入力した主軸18の回転数の振動数(回転数÷60)、又はバイト22刃数の振動数(回転数×刃数÷60)と一致するかどうかの比較を行う(ステップS16及びステップS17)。 Specifically, the peak value of the calculation frequency from which the harmonic component has been deleted is the frequency of the rotation speed of the spindle 18 (rotation speed ÷ 60) input in advance as a machining condition, or the vibration frequency (rotation speed of the cutting tool 22). The number is compared with the number of blades / 60) (step S16 and step S17).
 ここで、演算周波数のピーク値が、これらの事前入力情報値と一致すると(ステップS16及び17中、YES)、それは主軸18が回転加工をするのに伴い発生する加工力の変動、又はバイト22の切れ刃が断続的に切削を繰り返すことによる強制振動と判断して(ステップS18)、振動監視に戻る(ステップS19)。 Here, when the peak value of the calculation frequency coincides with these pre-input information values (YES in steps S16 and S17), this is a change in machining force generated as the main shaft 18 rotates, or a bite 22 Is determined to be forced vibration due to intermittent cutting of the cutting edge (step S18), and the process returns to vibration monitoring (step S19).
 一方、この条件に合致しない演算周波数ピークが検出されたら(ステップS16及び17中、NO)、それを再生びびりの振動数と判断する(ステップS20)。そして、ステップS21に進んで、再生びびりによる周波数に、推定減衰比を加味して再生びびり回避周波数を得る処理が行われる。 On the other hand, if an arithmetic frequency peak that does not meet this condition is detected (NO in steps S16 and S17), it is determined as the vibration frequency of playback chatter (step S20). Then, the process proceeds to step S21, and a process of obtaining a playback chatter avoidance frequency by adding an estimated attenuation ratio to the frequency due to playback chatter is performed.
 本出願人は、実証実験により、再生びびりによる周波数と、測定対象物(主軸18及びバイト22)の固有周波数の周波数データとの間に、わずかな差が生じることを見出した。具体的には、工作機械12において、スピンドル18に取り付けられたボーリングバー20の先端部を、インパクトハンマーによって加振することにより、測定対象物の振動状態が、加速度センサにより信号として所得された。 The applicant of the present invention has found through a demonstration experiment that a slight difference occurs between the frequency due to the chatter and the frequency data of the natural frequency of the measurement object (spindle 18 and bite 22). Specifically, in the machine tool 12, the tip of the boring bar 20 attached to the spindle 18 was vibrated with an impact hammer, and the vibration state of the measurement object was obtained as a signal by the acceleration sensor.
 次いで、インパクトハンマーの加振力を入力とする一方、加速度センサからの振動信号を出力とし、これらをFFTアナライザに取り込んで、フーリエ解析及び演算が行われた。さらに、出力/入力を伝達関数として、固有振動数及び減衰比等が取得された。 Next, while inputting the excitation force of the impact hammer, the vibration signal from the acceleration sensor was output, and these were taken into an FFT analyzer for Fourier analysis and calculation. Furthermore, the natural frequency and damping ratio were obtained using the output / input as a transfer function.
 この固有振動数の測定により得られたFFTアナライザのデータは、例えば、図9の上部側に示されている。図9の中、上部側上段は、インパクトハンマーによる加振入力状態を表し、上部側中段は、測定対象物の振動度合いを加速度センサ26の出力として表し、上部側下段は、出力/入力を伝達関数として表している。縦線で示す(fn)は、測定対象物の固有振動数(Hz)を表している。 The data of the FFT analyzer obtained by the measurement of the natural frequency is shown, for example, on the upper side of FIG. In FIG. 9, the upper part on the upper side represents the state of vibration input by the impact hammer, the middle part on the upper side represents the degree of vibration of the measurement object as the output of the acceleration sensor 26, and the lower part on the upper side transmits the output / input. Expressed as a function. (Fn) indicated by a vertical line represents the natural frequency (Hz) of the measurement object.
 上記と同一の工作機械12を用いて加工実験を行い、再生びびりの生成状態等の振動データの取得が行われた。加工振動(びびり振動も含む)は、加速度センサ26により取得され、これをFFTアナライザに取り込んで解析することにより、振動振幅とパワースペクトラムを観察しながら、加工実験が行われた。 A machining experiment was performed using the same machine tool 12 as described above, and vibration data such as a regenerative chatter generation state was acquired. The machining vibration (including chatter vibration) was acquired by the acceleration sensor 26, and the machining experiment was performed while observing the vibration amplitude and the power spectrum by taking this into the FFT analyzer and analyzing it.
 ここで、図9の下部側は、加工中に再生びびりが発生した状態を示している。図9の中、下部側下段は、びびり振動数(fc)にて再生びびりが生じた時のパワースペクトラムを表し、下部側上段は、その時の振動波形を表している。 Here, the lower side of FIG. 9 shows a state in which regenerative chatter occurs during processing. In FIG. 9, the lower part on the lower side represents the power spectrum when regenerative chatter occurs at the chatter frequency (fc), and the upper part on the lower side represents the vibration waveform at that time.
 従って、再生びびりが発生した際のびびり振動数(fc)と、予め取得された固有振動数(fn)との間には、わずかな周波数の差Δf1が存在している。すなわち、びびり振動数(fc)は、固有振動数(fn)よも高い数値(例えば、0.03)であることが判明した。 Therefore, there is a slight frequency difference Δf1 between the chatter frequency (fc) when regenerative chatter occurs and the natural frequency (fn) acquired in advance. That is, it has been found that the chatter frequency (fc) is a numerical value (for example, 0.03) higher than the natural frequency (fn).
 この場合、本実施形態では、周波数の差Δf1を加味して、再生びびりによる周波数にフィードバックして再生びびり回避周波数が算出される。その際、周波数の差Δf1は、固有周波数測定の半値半幅(Δf2)と同一であることが判明した(図10参照)。そして、半値半幅(Δf2)は、減衰比ζと固有振動数(fn)との積により算出される。従って、減衰比ζ=Δf2/(2×fn)となる。 In this case, in this embodiment, the playback chatter avoidance frequency is calculated by feeding back the frequency due to playback chatter in consideration of the frequency difference Δf1. At that time, it has been found that the frequency difference Δf1 is the same as the half width (Δf2) of the natural frequency measurement (see FIG. 10). The half width at half maximum (Δf2) is calculated by the product of the damping ratio ζ and the natural frequency (fn). Accordingly, the damping ratio ζ = Δf2 / (2 × fn).
 このため、変更する周波数としては、周波数の差Δf1と同一の値となる固有周波数(fn)の測定データの減衰比ζの値を、推定減衰比としてフィードバック値に代入する。具体的には、再生びびり回避振動数(Hz)=再生びびり振動数/(1+推定減衰比)、及び、再生びびり回避回転数(RPM)=再生びびり振動数/(1+推定減衰比)×60の関係式から算出される。 Therefore, as the frequency to be changed, the value of the attenuation ratio ζ of the measurement data of the natural frequency (fn) that is the same value as the frequency difference Δf1 is substituted into the feedback value as the estimated attenuation ratio. Specifically, regenerative chatter avoidance frequency (Hz) = regenerative chatter frequency / (1 + estimated damping ratio), and regenerative chatter avoidance rotation speed (RPM) = reproduced chatter frequency / (1 + estimated damping ratio) × 60. It is calculated from the relational expression.
 一方、予め固有振動数(fn)が測定されておらず、減衰比ζの値が不明の場合には、推定減衰比は、0.01~0.05に設定される。主軸系や治具ワーク系の固有振動特性(fn)の減衰比の値は、一般的な使用例で、0.01~0.05の範囲内であり、この数値をフィードバック値として反映(補完)させることによって、精度の高いびびり回避処理が遂行されるからである。 On the other hand, when the natural frequency (fn) is not measured in advance and the value of the damping ratio ζ is unknown, the estimated damping ratio is set to 0.01 to 0.05. The value of the damping ratio of the natural vibration characteristics (fn) of the spindle system and jig work system is in the range of 0.01 to 0.05 in a general use example, and this value is reflected as a feedback value (complementation) This is because chatter avoidance processing with high accuracy is performed.
 次に、ステップS21において、再生びびり回避周波数に変換された後、主軸18の回転数を調整するための機械回転数変更の指示へと進む(ステップS22)。ステップS22では、びびり振動を抑制するために、加工状態をリアルタイムに監視し、びびりの予兆振動が発生した場合に、その補完された振動数をもって安定ポケット法に基づく、再生びびり回避周波数×60÷刃数(又はその逓倍)の演算を行う。これにより、主軸18の更新回転数が算出され、それは自動的に安定ポケット法の中心回転数を現すことになる。 Next, in step S21, after being converted to the regenerative chatter avoidance frequency, the process proceeds to an instruction to change the mechanical rotational speed for adjusting the rotational speed of the spindle 18 (step S22). In step S22, in order to suppress chatter vibration, the machining state is monitored in real time, and when a predictive vibration of chatter occurs, the regenerative chatter avoidance frequency based on the stable pocket method with the supplemented frequency × 60 ÷. The number of teeth (or its multiplication) is calculated. As a result, the updated rotational speed of the main shaft 18 is calculated, which automatically represents the central rotational speed of the stable pocket method.
 次いで、びびり抑制演算ユニット38は、算出された主軸18の更新回転数を表示ユニット44に表示するとともに、機械の回転数変更信号(例えば、主軸18の回転数の外部からのオーバーライド指示)として、更新値出力ユニット46から工作機械制御装置28へ自動フィードバック出力する。このため、工作機械12は、指示された主軸18の回転数に直ちに変更され、有害なびびりが出ない切削加工が可能となる。 Next, the chatter suppressing arithmetic unit 38 displays the calculated updated rotation speed of the main spindle 18 on the display unit 44, and as a machine rotation speed change signal (for example, an override instruction from the outside of the rotation speed of the main spindle 18). Automatic feedback output from the update value output unit 46 to the machine tool controller 28 is performed. For this reason, the machine tool 12 is immediately changed to the instructed number of rotations of the main shaft 18, and cutting without harmful chatter becomes possible.
 この場合、本実施形態では、回転開始時から振動を検出し、前記振動をフーリエ級数展開により解析して再生びびりによる周波数を算出している。そして、算出された再生びびりによる周波数に、推定減衰比を加味して再生びびり回避周波数が得られている。 In this case, in this embodiment, vibration is detected from the start of rotation, and the vibration is analyzed by Fourier series expansion to calculate the frequency due to regenerative chatter. Then, a playback chatter avoidance frequency is obtained by adding an estimated attenuation ratio to the calculated playback chatter frequency.
 このため、推定減衰比を加味してフィードバックすることにより、高精度な再生びびり回避周波数を得ることができる。これにより、実際にびびりによる影響が生じる前に、機械主軸の回転数を調整するとともに、再生びびりの発生を可及的に抑制することが可能になるという効果が得られる。 For this reason, a feedback chatter avoidance frequency with high accuracy can be obtained by feeding back the estimated damping ratio. Thereby, before the influence by chatter actually occurs, the rotational speed of the machine spindle can be adjusted and the occurrence of regenerative chatter can be suppressed as much as possible.

Claims (4)

  1.  加工工具(20)を介してワーク(W)に加工処理を施す際に、びびりが発生することを抑制するための作業機械(12)のびびり抑制方法であって、
     前記加工工具(20)又は前記ワーク(W)の回転が開始される際に発生する振動を検出する工程と、
    機械主軸(18)の空転時の振動を閾値に設定する工程と、
     前記機械主軸(18)の加工時に検出される加工振動が、前記閾値を超えたか否かを判断する工程と、
     前記加工振動が前記閾値を越えたと判断された際、前記加工振動をフーリエ級数展開により解析し、再生びびりによる周波数を算出する工程と、
     算出された前記再生びびりによる周波数に、推定減衰比を加味して再生びびり回避周波数を得る工程と、
     前記再生びびり回避周波数×60÷刃数(又はその逓倍)の演算式から、前記機械主軸(18)の回転数を調整する工程と、
     を有することを特徴とする作業機械のびびり抑制方法。
    A chatter suppressing method for the work machine (12) for suppressing chatter from occurring when processing the workpiece (W) via the processing tool (20),
    Detecting vibration generated when rotation of the machining tool (20) or the workpiece (W) is started;
    Setting the vibration during idling of the machine spindle (18) as a threshold;
    Determining whether machining vibration detected during machining of the machine spindle (18) exceeds the threshold;
    Analyzing the machining vibration by Fourier series expansion when it is determined that the machining vibration exceeds the threshold, and calculating a frequency due to regenerative chatter;
    A step of obtaining a playback chatter avoidance frequency by adding an estimated attenuation ratio to the calculated frequency due to the playback chatter;
    Adjusting the rotational speed of the mechanical spindle (18) from the calculation formula of the regenerative chatter avoidance frequency × 60 ÷ the number of blades (or its multiplication);
    A chatter suppressing method for a work machine, comprising:
  2.  請求項1記載のびびり抑制方法において、前記推定減衰比は、前記加工工具(20)又は前記ワーク(W)の固有振動数に基づいて推定されることを特徴とする作業機械のびびり抑制方法。 The chatter suppressing method according to claim 1, wherein the estimated damping ratio is estimated based on a natural frequency of the machining tool (20) or the workpiece (W).
  3.  請求項1記載のびびり抑制方法において、前記推定減衰比は、0.01~0.05の範囲内に設定されることを特徴とする作業機械のびびり抑制方法。 The chatter suppressing method according to claim 1, wherein the estimated damping ratio is set within a range of 0.01 to 0.05.
  4.  請求項2記載のびびり抑制方法において、前記推定減衰比は、0.01~0.05の範囲内に設定されることを特徴とする作業機械のびびり抑制方法。 3. The chatter suppressing method according to claim 2, wherein the estimated damping ratio is set within a range of 0.01 to 0.05.
PCT/JP2013/060569 2012-10-23 2013-04-01 Method for suppressing chatter of operating machine WO2014064953A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012247864A JP5288318B1 (en) 2012-10-23 2012-10-23 Chatter control method for work machines
JP2012-247864 2012-10-23

Publications (1)

Publication Number Publication Date
WO2014064953A1 true WO2014064953A1 (en) 2014-05-01

Family

ID=49274084

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/060569 WO2014064953A1 (en) 2012-10-23 2013-04-01 Method for suppressing chatter of operating machine

Country Status (2)

Country Link
JP (1) JP5288318B1 (en)
WO (1) WO2014064953A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108747590A (en) * 2018-06-28 2018-11-06 哈尔滨理工大学 A kind of tool wear measurement method based on rumble spectrum and neural network
WO2019116185A1 (en) * 2017-12-12 2019-06-20 Mandelli Sistemi S.P.A. Method and a system for reducing vibrations in a mechanical processing for removal of chippings
CN112449617A (en) * 2018-08-09 2021-03-05 国立大学法人东海国立大学机构 Machining device and cutting method
US11226001B2 (en) * 2017-01-24 2022-01-18 Thk Co., Ltd. Machining control system and motion guidance device
CN114643496A (en) * 2020-12-21 2022-06-21 财团法人工业技术研究院 Machining monitoring method and system for machine tool

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014140918A (en) * 2013-01-23 2014-08-07 Hitachi Ltd Cutting vibration inhibition method, arithmetic control device, and machine tool
TWI564110B (en) 2014-11-20 2017-01-01 財團法人工業技術研究院 Feedback control numerical machine tool and method thereof
JP6311635B2 (en) * 2015-03-31 2018-04-18 ブラザー工業株式会社 Numerical control device and control method
JP6575814B2 (en) * 2015-10-20 2019-09-18 エヌティーエンジニアリング株式会社 Process state monitoring method and system for work machine
JP6578195B2 (en) * 2015-11-26 2019-09-18 Dmg森精機株式会社 Method for deriving natural frequency of cutting tool, method for creating stability limit curve, and device for deriving natural frequency of cutting tool
JP6953545B2 (en) * 2017-10-25 2021-10-27 三菱重工業株式会社 End mill specification setting method, machining condition setting method and machining method
CN108681647A (en) * 2018-05-24 2018-10-19 东南大学 A kind of design method of power vibration damping boring bar
TWI696577B (en) * 2018-11-30 2020-06-21 財團法人工業技術研究院 Clamping device and clamping system using the same
JP7157290B2 (en) * 2018-12-04 2022-10-20 双葉電子工業株式会社 Measuring device, measuring method, program

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010247316A (en) * 2009-04-10 2010-11-04 Nt Engineering Kk Method and device for suppressing chattering of work machine
JP2012196741A (en) * 2011-03-22 2012-10-18 Okuma Corp Rotational speed display device
JP2013000850A (en) * 2011-06-20 2013-01-07 Osaka Kiko Co Ltd Controller and control method of machine tool

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010247316A (en) * 2009-04-10 2010-11-04 Nt Engineering Kk Method and device for suppressing chattering of work machine
JP2012196741A (en) * 2011-03-22 2012-10-18 Okuma Corp Rotational speed display device
JP2013000850A (en) * 2011-06-20 2013-01-07 Osaka Kiko Co Ltd Controller and control method of machine tool

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11226001B2 (en) * 2017-01-24 2022-01-18 Thk Co., Ltd. Machining control system and motion guidance device
WO2019116185A1 (en) * 2017-12-12 2019-06-20 Mandelli Sistemi S.P.A. Method and a system for reducing vibrations in a mechanical processing for removal of chippings
US11449027B2 (en) 2017-12-12 2022-09-20 Mandelli Srl Method and a system for reducing vibrations in a mechanical processing for removal of chippings
CN108747590A (en) * 2018-06-28 2018-11-06 哈尔滨理工大学 A kind of tool wear measurement method based on rumble spectrum and neural network
CN112449617A (en) * 2018-08-09 2021-03-05 国立大学法人东海国立大学机构 Machining device and cutting method
CN112449617B (en) * 2018-08-09 2022-07-12 国立大学法人东海国立大学机构 Machining device and cutting method
CN114643496A (en) * 2020-12-21 2022-06-21 财团法人工业技术研究院 Machining monitoring method and system for machine tool

Also Published As

Publication number Publication date
JP5288318B1 (en) 2013-09-11
JP2014083674A (en) 2014-05-12

Similar Documents

Publication Publication Date Title
JP5288318B1 (en) Chatter control method for work machines
JP5105102B2 (en) Chatter control method and apparatus for work machine
JP6718107B2 (en) Vibration monitoring method and system for work machine
JP6578195B2 (en) Method for deriving natural frequency of cutting tool, method for creating stability limit curve, and device for deriving natural frequency of cutting tool
JP6021632B2 (en) Processing device control device, processing device, processing device control program, processing device control method, and processing method
US8700201B2 (en) Vibration suppressing device
JP6575814B2 (en) Process state monitoring method and system for work machine
JP6922405B2 (en) Vibration suppression device
US20120101624A1 (en) Method and apparatus for suppressing vibration
JP2015217500A (en) Calculation method of spindle stable rotation number capable of suppressing chattering vibration, information method thereof, spindle rotation number control method, nc program edition method, and device of the same
JP2016083759A (en) Processing state monitoring method and system for work machine
JP6311635B2 (en) Numerical control device and control method
JP5740475B2 (en) Processing abnormality detection method and processing apparatus
JP6354349B2 (en) Vibration detector and machine tool
JP5637840B2 (en) Vibration detection method
JP5215065B2 (en) Vibration control system for machine tools
KR101514147B1 (en) Chatter vibration control method of machine tool using destructive interference effects and apparatus thereof
JP5491350B2 (en) Vibration suppressor for machine tools
JP7084242B2 (en) Tool blade number estimation device and machine tools equipped with it, and tool blade number estimation method
Ding et al. Dual-mode type algorithm for chatter detection in turning considering beat vibration
JP5853437B2 (en) Chatter vibration detection method
WO2022080505A1 (en) Method and system for determining tool damage of work machine
CN114555291A (en) Method and system for monitoring machining state of working machine
JP5384996B2 (en) Machining state evaluation device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13849893

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13849893

Country of ref document: EP

Kind code of ref document: A1