WO2018062318A1 - METHOD AND APPARATUS FOR PRODUCING SiC SINGLE CRYSTAL, AND SEED SHAFT USED IN PRODUCTION OF SiC SINGLE CRYSTAL - Google Patents

METHOD AND APPARATUS FOR PRODUCING SiC SINGLE CRYSTAL, AND SEED SHAFT USED IN PRODUCTION OF SiC SINGLE CRYSTAL Download PDF

Info

Publication number
WO2018062318A1
WO2018062318A1 PCT/JP2017/035055 JP2017035055W WO2018062318A1 WO 2018062318 A1 WO2018062318 A1 WO 2018062318A1 JP 2017035055 W JP2017035055 W JP 2017035055W WO 2018062318 A1 WO2018062318 A1 WO 2018062318A1
Authority
WO
WIPO (PCT)
Prior art keywords
seed
crystal
solution
sic single
single crystal
Prior art date
Application number
PCT/JP2017/035055
Other languages
French (fr)
Japanese (ja)
Inventor
楠 一彦
和明 関
寛典 大黒
幹尚 加渡
雅喜 土井
Original Assignee
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トヨタ自動車株式会社 filed Critical トヨタ自動車株式会社
Priority to JP2018542805A priority Critical patent/JP6627984B2/en
Publication of WO2018062318A1 publication Critical patent/WO2018062318A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B19/00Liquid-phase epitaxial-layer growth
    • C30B19/02Liquid-phase epitaxial-layer growth using molten solvents, e.g. flux
    • C30B19/04Liquid-phase epitaxial-layer growth using molten solvents, e.g. flux the solvent being a component of the crystal composition
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/36Carbides

Definitions

  • the present invention relates to a method and an apparatus for manufacturing a SiC single crystal, and a seed shaft used for manufacturing a SiC single crystal.
  • SiC Silicon carbide
  • SiC is a thermally and chemically stable compound semiconductor.
  • the SiC single crystal has excellent physical properties as compared with the Si single crystal.
  • a SiC single crystal has a large band gap, a high breakdown voltage, a high thermal conductivity, and a high electron saturation rate compared to a Si single crystal. For this reason, SiC single crystals are attracting attention as next-generation semiconductor materials.
  • Sublimation recrystallization and solution growth methods are known as methods for producing SiC single crystals.
  • an SiC single crystal is grown on a seed crystal by supplying a raw material onto the SiC seed crystal in a gas phase state.
  • a SiC seed crystal is brought into contact with a Si—C solution to grow a SiC single crystal on the seed crystal.
  • a raw material containing Si is placed in a crucible, and the crucible is heated to melt the raw material, thereby producing a Si—C solution.
  • the SiC single crystal is manufactured by bringing the seed crystal into contact with the Si—C solution and supersaturating the Si—C solution in the vicinity of the seed crystal.
  • the Si—C solution refers to a solution in which carbon is dissolved in a melt of Si or Si alloy.
  • the solution growth method has a lower crystal growth rate than the recrystallization method, and it is a problem to increase the crystal growth rate.
  • Japanese Patent Application Laid-Open No. 2013-147397 discloses a method for producing an SiC single crystal using a seed crystal holding shaft whose side surface is covered with a reflecting member. According to this manufacturing method, the heat removal through the seed crystal holding shaft is improved by the reflecting member, and the growth rate is increased.
  • the reflecting member is disposed with a gap between the reflecting member and the single crystal so as not to come into direct contact with the seed crystal.
  • the solution growth method also has a problem that polycrystals precipitate at a low temperature portion in the solution, and it is also a problem to prevent the polycrystals from adhering to the grown crystals.
  • Japanese Patent Application Laid-Open No. 2010-184838 discloses a SiC single crystal manufacturing apparatus in which a polycrystal generation inhibiting portion having lower wettability with respect to a solution than a carbon rod is provided on a side surface portion at the lower end of the carbon rod.
  • Japanese Patent Laid-Open No. 2013-1619 discloses a SiC single crystal manufacturing apparatus including a crucible including an inner lid and an upper lid.
  • SiC single crystal When a SiC single crystal is manufactured, regardless of the manufacturing method, polycrystal generation, mixing of different crystal polymorphs, introduction of crystal defects and dislocations, etc. may occur, and the quality of the SiC single crystal may deteriorate.
  • the SiC single crystal is required to be further improved in quality.
  • Japanese Patent Application Laid-Open No. 2014-201508 discloses a method for producing a SiC single crystal that can increase the thickness of the SiC single crystal formed on the crystal growth surface of the SiC seed crystal.
  • This manufacturing method includes a preparation process, a generation process, and a growth process.
  • a manufacturing apparatus including a crucible in which a raw material of the Si—C solution is accommodated and a high-frequency coil disposed around the side wall of the crucible is prepared.
  • the raw material in the crucible is heated and melted by a high frequency coil to produce a Si—C solution.
  • a SiC seed crystal is brought into contact with the Si—C solution to grow a SiC single crystal on the seed crystal.
  • the growth process includes a maintenance process.
  • the maintaining step at least one of the crucible and the high frequency coil is moved relative to the other in the height direction, and the separation distance in the height direction between the liquid level of the Si—C solution and the height center of the high frequency coil is within a predetermined range. Keep in.
  • the growth of the SiC single crystal proceeds or the Si—C solution evaporates, so that the liquid level of the Si—C solution decreases.
  • the heating condition of the Si—C solution by the high frequency coil changes, and the temperature of the Si—C solution near the SiC seed crystal changes. Thereby, the supersaturation degree of SiC in the region changes. Therefore, stable growth of the SiC single crystal is inhibited, and the quality of the SiC single crystal is lowered.
  • the separation distance in the height direction between the liquid surface of the Si—C solution and the height center of the high-frequency coil is maintained within a predetermined range. Therefore, the heating condition of the Si—C solution by the high frequency coil is difficult to change. As a result, it is possible to suppress a change in the temperature near the SiC single crystal and, in turn, the degree of supersaturation near the SiC single crystal.
  • the manufacturing method of the SiC single crystal described in JP 2014-151509 A also includes a preparation step, a generation step, and a growth step.
  • the growth process includes a formation process and a maintenance process.
  • the forming step a meniscus is formed between the growth interface of the SiC single crystal and the liquid surface of the Si—C solution.
  • the maintaining step at least one of the seed shaft and the crucible is moved relative to the other in the height direction to maintain the fluctuation range of the meniscus height within a predetermined range.
  • the SiC single crystal when the SiC single crystal is grown, the fluctuation range of the meniscus height is maintained within a predetermined range. Therefore, it is possible to suppress a change in the degree of supersaturation in the vicinity of the seed crystal due to the fluctuation of the meniscus height.
  • An object of the present invention is to provide a manufacturing method and a manufacturing apparatus capable of manufacturing a SiC single crystal having a high quality and a large crystal thickness, and a seed shaft used in these.
  • a manufacturing method includes a method for growing a SiC single crystal by a solution growth method, in which a crystal growth surface of a seed crystal attached to a lower end surface of a seed shaft is brought into contact with a Si—C solution to grow a SiC single crystal.
  • a method for producing a Si—C solution by heating and melting a raw material contained in a crucible; bringing the crystal growth surface into contact with the Si—C solution; And growing the SiC single crystal.
  • the seed shaft has a gas permeability of 5 ⁇ 10 ⁇ 5 m 2 / s or less in at least a region between the lower end and a position 30 mm from the lower end other than the region to which the seed crystal is attached. It is.
  • a manufacturing apparatus is a manufacturing apparatus used for manufacturing a SiC single crystal by a solution growth method, a crucible in which a Si—C solution is accommodated, and a seed shaft to which a seed crystal is attached at a lower end surface.
  • the seed shaft has a gas permeability of 5 ⁇ 10 ⁇ 5 m 2 / s or less in at least a region between the lower end and a position 30 mm from the lower end other than the region to which the seed crystal is attached. It is.
  • a seed shaft according to an embodiment of the present invention is a method for producing a SiC single crystal by a solution growth method in which a seed crystal is attached to a lower end surface, and a SiC single crystal is grown by bringing a crystal growth surface of the seed crystal into contact with a Si—C solution.
  • the gas permeability of the surface layer is 5 ⁇ 10 ⁇ 5 m 2 at least in the region between the lower end and the position 30 mm from the lower end other than the region to which the seed crystal is attached. / S or less.
  • a manufacturing method and a manufacturing apparatus capable of manufacturing a SiC single crystal having a high quality and a large crystal thickness, and a seed shaft used for these can be obtained.
  • FIG. 1 is a flowchart of a method for producing a SiC single crystal according to the first embodiment of the present invention.
  • FIG. 2 is a schematic cross-sectional view of an example of a manufacturing apparatus used for manufacturing a SiC single crystal by a solution growth method.
  • FIG. 3 is a schematic view of a gas permeability measuring device.
  • FIG. 4 is a schematic diagram of a gas permeability measuring device.
  • FIG. 5 is a schematic cross-sectional view of another example of a manufacturing apparatus used for manufacturing a SiC single crystal by a solution growth method.
  • FIG. 6 is a schematic diagram of a gas permeability measuring device.
  • FIG. 1 is a flowchart of a method for producing a SiC single crystal according to the first embodiment of the present invention.
  • FIG. 2 is a schematic cross-sectional view of an example of a manufacturing apparatus used for manufacturing a SiC single crystal by a solution growth method.
  • FIG. 3 is a schematic view of a gas permeabil
  • FIG. 7 is a schematic cross-sectional view of another example of a manufacturing apparatus used for manufacturing a SiC single crystal by a solution growth method.
  • FIG. 8 is a schematic diagram of a meniscus of a Si—C solution.
  • FIG. 9 is a schematic cross-sectional view of the grown SiC single crystal.
  • the present inventors examined a method for stably producing a SiC single crystal by a solution growth method for a long time. As a result, the following knowledge was obtained.
  • a SiC seed crystal is attached to the lower end surface of the seed shaft, and the SiC crystal is grown by bringing the crystal growth surface of the seed crystal into contact with the Si—C solution.
  • the seed shaft is generally made of a carbonaceous material such as graphite and has a porous structure having pores.
  • the invading steam may chemically react with carbon or the like constituting the seed shaft, or it may be liquefied inside the seed shaft and remain as a metal (hereinafter referred to as both steam and seed shaft). Are referred to as “reactive”).
  • the thermal conductivity of the seed shaft is increased.
  • the degree of supersaturation near the seed crystal increases.
  • the supersaturation degree in the vicinity of the seed crystal becomes excessively large, the two-dimensional growth changes to a three-dimensional growth surface form. As a result, solvent inclusion is easily formed, and the quality of the SiC single crystal is lowered.
  • FIG. 1 is a flowchart of a method for producing a SiC single crystal according to the first embodiment of the present invention.
  • This manufacturing method is a method for manufacturing a SiC single crystal by a solution growth method, and includes a preparation step (Step S1), a generation step (Step S2) for generating a Si—C solution, and a seed crystal in a Si—C solution. And a growth step (step S3) in which a SiC single crystal is grown in contact with each other.
  • Step S1 preparation step
  • Step S2 generation step
  • step S3 a growth step in which a SiC single crystal is grown in contact with each other.
  • step S1 a manufacturing apparatus, a SiC seed crystal, and a raw material for the Si—C solution are prepared.
  • FIG. 2 is a schematic cross-sectional view of a manufacturing apparatus 100 which is an example of a manufacturing apparatus used for manufacturing a SiC single crystal by a solution growth method.
  • the configuration of the manufacturing apparatus 100 illustrated in FIG. 2 is an exemplification, and the configuration of the manufacturing apparatus used in the present embodiment is not limited to this.
  • the manufacturing apparatus 100 includes a chamber 1, a crucible 2, a heat insulating material 3, a high frequency coil 4, a rotating shaft 5, and a seed shaft 6.
  • the chamber 1 accommodates the crucible 2, the heat insulating material 3, and the high frequency coil 4.
  • the chamber 1 is water-cooled.
  • the crucible 2 includes a cylinder part 21 and a bottom part 22 arranged at the lower end of the cylinder part 21.
  • the crucible 2 accommodates the raw material for the Si—C solution 7.
  • the crucible 2 preferably contains carbon. When the crucible 2 contains carbon, the crucible 2 becomes a carbon supply source to the Si—C solution 7.
  • the heat insulating material 3 is disposed so as to surround the crucible 2.
  • the heat insulating material 3 keeps the crucible 2 warm.
  • the high frequency coil 4 is disposed outside the crucible 2 and the heat insulating material 3.
  • the high frequency coil 4 induction-heats the crucible 2.
  • the vertical length of the high-frequency coil 4 is preferably longer than the vertical length of the Si—C solution 7. More preferably, the vertical length of the high-frequency coil 4 is equal to or greater than the vertical length of the crucible 2.
  • the rotary shaft 5 is arranged so that the axial direction is parallel to the vertical direction.
  • the rotating shaft 5 supports the crucible 2 at one end.
  • the other end of the rotating shaft 5 is connected to a drive device 59 disposed below the chamber 1.
  • the drive device 59 rotates the rotating shaft 5 around the axial direction. According to this configuration, the crucible 2 can be rotated.
  • the drive device 59 may have a function of moving the rotary shaft 5 up and down. According to this configuration, the temperature distribution of the Si—C solution 7 can be adjusted by changing the relative position of the crucible 2 and the coil 4.
  • the seed shaft 6 is arranged so that the axial direction is parallel to the vertical direction.
  • An SiC seed crystal 8 is attached to the lower end surface of the seed shaft 6.
  • the other end of the seed shaft 6 is connected to a driving device 69 disposed above the chamber 1.
  • the drive device 69 moves the seed shaft 6 up and down. As will be described later, in the growth process, after the Si—C solution 7 is generated, the seed shaft 6 is lowered to bring the seed crystal 8 and the Si—C solution 7 into contact with each other.
  • the drive device 69 may have a function of rotating the seed shaft 6 around the axial direction.
  • the growth process is performed at 1600 to 2050 ° C., for example.
  • At least a portion of the seed shaft 6 located inside the heat insulating material 3 is formed of a material that can withstand such a high temperature.
  • the seed shaft 6 is made of, for example, a refractory metal, a refractory metal carbide, or carbon.
  • the seed shaft 6 is preferably made of carbon from an economical viewpoint.
  • the seed shaft 6 preferably has an outer diameter of 25 mm or more, more preferably an outer diameter of 40 mm or more, and further preferably an outer diameter of 45 mm or more.
  • the gas permeability of the surface layer in the vicinity of the lower end of the seed shaft 6 is set to 5 ⁇ 10 ⁇ 5 m 2 / s or less. Specifically, in a region between the lower end and a position separated by a height h from the lower end (hereinafter referred to as “region 61”), the gas permeability of the surface layer is set to 5 ⁇ 10 ⁇ 5 m 2 / s or less. To do.
  • the gas permeability of the surface layer is preferably 5 ⁇ 10 ⁇ 6 m 2 / s or less, more preferably 5 ⁇ 10 ⁇ 7 m 2 / s or less.
  • the “surface gas permeability” refers to the gas permeability in a region from the surface to a depth of 3 mm. If the gas permeability of the surface layer is high, even if the internal gas permeability is low, the seed shaft 6 reacts with the vapor of the Si—C solution 7 in the surface layer, so that the change in the thermal characteristics of the seed shaft 6 cannot be suppressed. . On the other hand, if the gas permeability of the surface layer is low, the internal gas permeability may be high.
  • the seed shaft 6 may be formed of different materials for the surface layer and the inside.
  • the seed shaft 6 may be hollow. By forming the inside of the seed shaft 6 from another material or making it hollow, the amount of heat removed from the seed shaft 6 during crystal growth can be adjusted.
  • the height h of the region 61 is at least 30 mm. As the height h is larger, the influence of the vapor of the Si—C solution 7 can be reduced.
  • the height h is preferably 40 mm or more, and more preferably 50 mm or more.
  • the seed shaft 6 may have a gas permeability of 5 ⁇ 10 ⁇ 5 m 2 / s or less over the entire length.
  • a portion of the region 61 where the seed crystal 8 is attached may have a high gas permeability. This is because this portion is covered with the seed crystal 8 and does not come into contact with the vapor of the Si—C solution 7.
  • the seed shaft 6 may have a surface layer gas permeability of 5 ⁇ 10 ⁇ 5 m 2 / s or less in at least the region 61 other than the region where the seed crystal 8 is attached.
  • the diameter of the seed crystal 8 is larger than the diameter of the seed shaft 6. Therefore, the lower end surface of the seed shaft 6 is entirely covered with the seed crystal 8.
  • the gas permeability of the surface layer on the lower end surface may be 5 ⁇ 10 ⁇ 5 m 2 / s or less, or may be higher than 5 ⁇ 10 ⁇ 5 m 2 / s.
  • the gas permeability of the surface layer of the seed shaft 6 can be controlled by, for example, applying a carbon adhesive to the surface of the seed shaft 6 and reducing the open porosity of the seed shaft 6.
  • the carbon adhesive is obtained by kneading carbon powder into a resin.
  • the gas permeability can be adjusted depending on the blending and application amount of the carbon adhesive.
  • the gas permeability of the surface layer of the seed shaft 6 can be controlled by coating with SiC or pyrolytic graphite (PG).
  • PG pyrolytic graphite
  • CVD chemical vapor deposition
  • the gas permeability can be adjusted by the mixing ratio and flow rate of the gas used in the CVD method.
  • the gas permeability of the surface layer of the seed shaft 6 is described in Toshiaki Sogabe, Masaki Okada, “Gas Permeability of Large Cylindrical Isotropic Graphite”, Carbon, 1995 (No. 168), pp. 176-178. According to, measurement is performed as follows.
  • FIG. 3 is a schematic diagram of the gas permeability measuring device 9.
  • the measuring device 9 includes a first chamber 91 and a second chamber 92.
  • the cylindrical test piece 6A including the surface layer is collected from the region 61 (FIG. 2) of the seed shaft 6.
  • the inside is cut out into a cylindrical shape.
  • One opening of the test piece 6 ⁇ / b> A is arranged so as to communicate with the chamber 92, and the other opening is closed with a lid 93.
  • the end of the test piece 6A is sealed with a packing 94. In this state, the test piece 6A is accommodated in the first chamber 91.
  • the first chamber 91 is filled with nitrogen, and a predetermined pressure (for example, 100 to 300 kPa) is applied to the outside of the test piece 6A.
  • a predetermined pressure for example, 100 to 300 kPa
  • the inside of the second chamber 92 is evacuated and decompressed.
  • the nitrogen gas in the first chamber 91 flows to the second chamber 92 through the test piece 6A, and the pressure in the second chamber 92 increases.
  • the gas permeability K (m 2 / s) of the test piece 6A is obtained by the following equation.
  • ⁇ P is the pressure difference (Pa) between the inside and outside of the test piece 6A
  • L is the thickness (m) of the test piece 6A
  • A is the gas permeation area (m 2 )
  • P B1 is the pressure in the second chamber 92 at time t1 ( Pa) and P B2 are the pressure (Pa) of the second chamber 92 at time t2
  • V B is the volume (m 3 ) of the second chamber 91.
  • transmission area be the logarithm average of the surface area of the outer periphery and inner periphery of 6 A of test pieces.
  • the gas permeability is an amount normalized by the reciprocal of the thickness of the test piece and the gas permeation area. Theoretically, the gas permeability value does not depend on the dimension of the test piece 6A if the gas permeability of the test piece 6A is uniform throughout.
  • the measured gas permeability value is an average value of the gas permeability in the entire test piece 6A.
  • the gas permeability is controlled by the above-described method of applying a carbon adhesive to the seed shaft 6 or the method of coating the seed shaft 6, the gas permeability of the seed shaft 6 is considered to be lower as it is closer to the surface. Therefore, if the gas permeability is 5 ⁇ 10 ⁇ 5 m 2 / s or less as measured with a test piece including a region 3 mm or more from the surface, the gas permeability in a region from the surface to a depth of 3 mm is also 5 ⁇ 10. It can be concluded that it is ⁇ 5 m 2 / s or less.
  • a SiC seed crystal 8 is prepared.
  • the seed crystal 8 is a single crystal of SiC.
  • the seed crystal 8 is attached to the lower end surface of the seed shaft 6 so that the crystal growth surface 81 faces the bottom 22 of the crucible 2.
  • the seed crystal 8 is preferably an SiC single crystal having the same crystal structure as the SiC single crystal to be manufactured.
  • a 4H polymorphic SiC single crystal it is preferable to use a 4H polymorphic seed crystal.
  • the crystal growth surface 81 is a (0001) plane or (000-1) plane, or a plane inclined at an angle of 8 ° or less from the (0001) plane or (000-1) plane; It is preferable to do. By using these surfaces, the SiC single crystal can be stably grown.
  • the raw material of the Si—C solution 7 is placed in the crucible 2.
  • the raw material may be, for example, only silicon, or a mixture of silicon and other metal elements.
  • the metal element include titanium, manganese, chromium, cobalt, vanadium, and iron.
  • the raw material may be, for example, a lump or a powder.
  • Step S2 The chamber 1 is filled with an inert gas.
  • the crucible 2 is induction-heated by the high-frequency coil 4 and the raw material in the crucible 2 is heated to the melting point or higher.
  • the crucible 2 contains carbon
  • the carbon is dissolved from the crucible 2 into the melt, and the Si—C solution 7 is generated.
  • the crucible 2 does not contain carbon, carbon may be supplied from the outside.
  • carbon dissolves in the Si—C solution 7, the carbon solubility in the Si—C solution 7 approaches the saturation concentration.
  • step S3 The seed shaft 6 is lowered by the driving device 69, and the crystal growth surface 81 of the seed crystal 8 is brought into contact with the Si—C solution 7.
  • the high frequency coil 4 is controlled to keep the Si—C solution 7 in the vicinity of the seed crystal 8 at the crystal growth temperature.
  • the crystal growth temperature is, for example, 1600 to 2050 ° C., preferably 1850 to 2000 ° C.
  • the vicinity of the seed crystal 8 is set to a low temperature, and SiC is supersaturated. When SiC becomes supersaturated, a SiC single crystal grows on the crystal growth surface 81.
  • the method for lowering the temperature near the seed crystal 8 is not particularly limited.
  • the high-frequency coil 4 may be controlled so that the temperature in the vicinity of the seed crystal 8 is lower than the temperature in other regions.
  • the vicinity of the seed crystal 8 may be cooled by a refrigerant.
  • a coolant may be circulated inside the seed shaft 6.
  • the refrigerant is, for example, an inert gas such as helium or argon.
  • the rotating shaft 5 and the crucible 2 it is preferable to rotate the rotating shaft 5 and the crucible 2 by the driving device 59. Further, it is preferable to rotate the seed shaft 6 and the seed crystal 8 by the driving device 69.
  • the rotation direction of the crucible 2 and the rotation direction of the seed crystal 8 may be the same or opposite. Each rotation speed may be constant or may be varied.
  • the thermal characteristics of the seed shaft 6 change, the amount of heat removed from the seed shaft 6 due to heat transfer and radiation changes. As a result, the supersaturation degree of the Si—C solution 7 in the vicinity of the seed crystal 8 also changes. If the supersaturation is outside the proper range, stable SiC single crystals cannot be grown. Specifically, different types of polymorphs and crystals with different orientations are likely to be formed, and solvent inclusions are likely to be formed.
  • the seed shaft 6 has a gas permeability of 5 ⁇ 10 ⁇ 5 m 2 / s or less at least in the region 61 other than the region to which the seed crystal 8 is attached. It is. By reducing the gas permeability of the surface layer of the seed shaft 6, it is possible to suppress the vapor of the Si—C solution 7 from entering the inside of the seed shaft 6.
  • the manufacturing method according to the present embodiment is not limited to this, but is suitable when the diameter of the seed shaft 6 is large, for example, when the diameter of the seed shaft is 25 mm or more.
  • the manufacturing method according to the present embodiment is particularly suitable when the diameter of the seed shaft 6 is 40 mm or more.
  • the manufacturing method according to the present embodiment is not limited to this, but is suitable when the growth time is long, for example, when the growth time is 30 hours or more. This is because the longer the growth time, the more obvious the influence of the reaction between the seed shaft 6 and the steam.
  • the manufacturing method according to the present embodiment is particularly suitable when the growth time is 40 hours or more.
  • FIG. 5 is a schematic cross-sectional view of a manufacturing apparatus 200 as another example of a manufacturing apparatus used for manufacturing a SiC single crystal by a solution growth method.
  • the manufacturing apparatus 200 differs in the structure of the crucible compared with the manufacturing apparatus 100 (FIG. 2).
  • the manufacturing apparatus 200 includes a crucible 25 instead of the crucible 2 of the manufacturing apparatus 100.
  • the crucible 25 further includes an inner lid 23 in addition to the cylindrical portion 21 and the bottom portion 22 disposed at the lower end of the cylindrical portion 21.
  • the inner lid 23 is disposed so as to be positioned above the liquid surface of the Si—C solution 7 in a state where the Si—C solution 7 is accommodated in the main body of the crucible 25 including the cylindrical portion 21 and the bottom portion 22.
  • the inner lid 23 has a through hole 23 a through which the seed shaft 6 is passed.
  • the structure of the crucible 25 radiation from the liquid surface of the Si—C solution 7 is blocked by the inner lid 23. Therefore, the space between the liquid level of the Si—C solution 7 and the inner lid 23 is kept warm. According to this configuration, the temperature of the region other than the vicinity of the seed crystal 8 of the Si—C solution 7 can be made uniform.
  • the inner lid 23 is made of a material that can withstand high temperatures, like the seed shaft 6.
  • the inner lid 23 is preferably made of carbon.
  • the inner lid 23 reacts with the vapor of the Si—C solution 7 when the growth time is lengthened, and the thermal characteristics change from the initial state. As a result, the temperature distribution in the space between the liquid level of the Si—C solution 7 and the inner lid 23 also changes from the initial state.
  • the gas permeability of the surface layer of at least the lower surface 231 of the inner lid 23 is set to 5 ⁇ 10 ⁇ 5 m 2 / s or less. According to this configuration, the reaction of the vapor of the Si—C solution 7 and the inner lid 23 can be suppressed even if the growth time is extended. Therefore, the thermal characteristics of the inner lid 23 can be maintained in the initial state for a long time.
  • the gas permeability of the surface layer of the lower surface 231 of the inner lid 23 is preferably 5 ⁇ 10 ⁇ 6 m 2 / s or less, more preferably 5 ⁇ 10 ⁇ 7 m 2 / s or less.
  • the inner lid 23 only needs to have a gas permeability of 5 ⁇ 10 ⁇ 5 m 2 / s or less on the surface layer on the lower surface in contact with the vapor of the Si—C solution 7.
  • the gas permeability of the inside and upper surfaces of the inner lid 23 is arbitrary.
  • the gas permeability of the surface layer on the lower surface of the inner lid 23 can be controlled by applying a carbon adhesive to the inner lid 23 or coating the inner lid 23 with SiC or PG. .
  • the gas permeability of the surface layer of the inner lid 23 can be measured in the same manner as in the case of the seed shaft 6 (FIGS. 3 and 4) by collecting a test piece 23A from the inner lid 23. .
  • FIG. 7 is a schematic cross-sectional view of a manufacturing apparatus 300 which is another example of a manufacturing apparatus used for manufacturing a SiC single crystal by a solution growth method.
  • the manufacturing apparatus 300 differs from the manufacturing apparatus 100 (FIG. 2) in the configuration of the seed shaft.
  • the manufacturing apparatus 300 includes a seed shaft 65 instead of the seed shaft 6 of the manufacturing apparatus 100.
  • the seed shaft 65 includes a main body 66 and a pedestal 67 attached to the lower end surface of the main body 66.
  • the main body 66 and the pedestal 67 may be connected by screws, for example, or may be fixed by an adhesive. Further, the main body 66 and the pedestal 67 may be configured integrally. That is, the seed shaft 65 may be composed of a single member.
  • the seed crystal 8 is attached to the lower end surface of the pedestal 67. According to this configuration, the amount of heat removed from the seed shaft 65 can be adjusted by adjusting the diameters of the main body 66 and the pedestal 67, and the degree of supersaturation in the vicinity of the seed crystal 8 can be controlled. In the example shown in FIG. 7, the diameter of the seed crystal 8 is smaller than the diameter of the main body 66 and larger than the diameter of the pedestal 67.
  • the gas permeability of the surface layer of the seed shaft 65 is set to 5 ⁇ 10 ⁇ 5 m 2 / s or less in a region between the lower end of the seed shaft 65 and a position separated from the lower end by the height h. .
  • a region between the lower end of the seed shaft 65 and a position away from the lower end by a height h includes a partial region 661 of the main body 66 and a pedestal 67. That is, in this embodiment, the gas permeability of the surface layer of the region 661 and the pedestal 67 is 5 ⁇ 10 ⁇ 5 m 2 / s or less.
  • the portion to which the seed crystal 8 is attached may have a high gas permeability.
  • the lower end surface of the pedestal 67 is entirely covered with the seed crystal 8. Therefore, the surface layer of the lower end surface of the pedestal 67 may have a high gas permeability.
  • the gas permeability of the surface layer needs to be 5 ⁇ 10 ⁇ 5 m 2 / s or less in this portion.
  • the seed shaft 65 can suppress the reaction with the vapor of the Si—C solution 7 even if the growth time is lengthened. Therefore, the thermal characteristics of the seed shaft 65 can be maintained in the initial state for a long time.
  • the method for producing a SiC single crystal according to the second embodiment of the present invention differs from the first embodiment in the growth process (step S3 in FIG. 1).
  • the seed shaft 6 is raised by a predetermined distance.
  • a meniscus 71 is formed between the seed crystal 8 and the Si—C solution 7 as shown in FIG.
  • the height of the meniscus 71 can be controlled by the distance d between the seed crystal 8 and the liquid surface of the Si—C solution 7.
  • the enlargement angle of the SiC single crystal can be adjusted by the meniscus 71.
  • the growth of the SiC single crystal proceeds or the Si—C solution 7 evaporates, so that the liquid level of the Si—C solution 7 decreases.
  • the distance d between the seed crystal 8 and the liquid level of the Si—C solution 7 changes, and the shape of the meniscus 71 changes from the initial state.
  • the shape of the meniscus 71 changes, the supersaturation degree in the vicinity of the seed crystal 8 also changes accordingly.
  • both the seed shaft 6 and the crucible 2 may be moved so that the distance d between the seed crystal 8 and the liquid surface of the Si—C solution 7 is constant.
  • the SiC single crystal was manufactured by changing the gas permeability of the seed shaft and the quality of the manufactured SiC single crystal was evaluated.
  • Example 1 The SiC single crystal was manufactured using the apparatus according to the manufacturing apparatus 100 (FIG. 2).
  • the seed crystal was a 4H polymorphic SiC single crystal having a diameter of 50.8 mm, and the crystal growth plane was a (000-1) plane.
  • the seed shaft made of isotropic graphite and having a diameter of 46 mm was used.
  • the seed shaft was coated with a thin and thin carbon adhesive on the side and bottom surfaces to close the open pores and reduce the gas permeability.
  • the application area of the carbon adhesive was an area between the lower end of the seed shaft and 50 mm from the lower end.
  • the seed shaft was baked at 250 ° C. for 1 hour in an air atmosphere to volatilize the binder component of the carbon adhesive.
  • a specimen was collected from the seed shaft adjusted under the same conditions, and the gas permeability of the surface layer was measured at room temperature. The gas permeability was 5 ⁇ 10 ⁇ 5 m 2 / s.
  • crystal growth was performed by bringing the seed crystal into contact with the Si—C solution.
  • the crystal growth temperature was 1950 ° C., and the temperature gradient near the seed crystal was 12 ° C./cm.
  • the seed shaft was raised by 0.5 mm to form a meniscus.
  • the seed shaft was raised to separate the seed crystal from the Si—C solution, thereby terminating the crystal growth.
  • Example 2 The amount of carbon adhesive applied to the seed shaft was changed to improve the degree of opening of the open pores.
  • Other conditions were the same as in Example 1 to produce a SiC single crystal.
  • Example 3 instead of applying the carbon adhesive to the seed shaft, about 10 ⁇ m of SiC was coated by the CVD method.
  • the gas permeability of the surface layer at room temperature measured with a test piece collected from a seed shaft adjusted under the same conditions was 5 ⁇ 10 ⁇ 7 m 2 / s.
  • Other conditions were the same as in Example 1 to produce a SiC single crystal.
  • Example 4 The SiC single crystal was manufactured using the apparatus according to the manufacturing apparatus 200 (FIG. 5).
  • a graphite inner lid having a thickness of 5 mm was placed at a position 10 mm above the surface of the Si—C solution.
  • a carbon adhesive was applied to both sides (including side surfaces) of the inner lid. After applying the carbon adhesive, the inner lid was baked at 250 ° C. for 1 hour in an air atmosphere to volatilize the binder component of the carbon adhesive.
  • the gas permeability of the surface layer at room temperature measured with a test piece collected from the inner lid adjusted under the same conditions was 5 ⁇ 10 ⁇ 5 m 2 / s. Other conditions were the same as in Example 1 to produce a SiC single crystal.
  • a SiC single crystal was manufactured using an apparatus according to the manufacturing apparatus 300 (FIG. 7).
  • the seed shaft used was a solid body with a diameter of 75 mm and a base with a diameter of 46 mm and a height of 5 mm attached to the lower end.
  • the body and pedestal are both isotropic graphite.
  • a seed crystal having a diameter of 50.8 mm was attached to the lower end surface of the pedestal.
  • a carbon adhesive was applied thinly and thinly on the side and bottom surfaces of the main body and the side surface of the pedestal to close the open pores and reduce the gas permeability.
  • the application area of the carbon adhesive was an area between the lower end of the seed shaft and a position 50 mm from the lower end.
  • the seed shaft was baked at 250 ° C. for 1 hour in an air atmosphere to volatilize the binder component of the carbon adhesive.
  • a specimen was collected from the seed shaft adjusted under the same conditions, and the gas permeability of the surface layer was measured at room temperature. The gas permeability was 5 ⁇ 10 ⁇ 5 m 2 / s. Other conditions were the same as in Example 1 to produce a SiC single crystal.
  • the main body of the seed shaft has a hollow structure with an outer diameter of 75 mm and an inner diameter of 69 mm. Other conditions were the same as in Example 5 to produce a SiC single crystal.
  • Example 7 During the crystal growth, the seed shaft was driven to descend 1.0 mm so that the meniscus height coincided with the initial state. Other conditions were the same as in Example 6 to produce a SiC single crystal.
  • the graphite material was used as it was as a seed shaft.
  • the gas permeability of the surface layer at room temperature measured by a test piece collected from a seed shaft adjusted under the same conditions was 8 ⁇ 10 ⁇ 4 m 2 / s.
  • Other conditions were the same as in Example 1 to produce a SiC single crystal.
  • the manufactured SiC single crystal was cut, the cut surface was polished, and the growth thickness of the SiC single crystal was measured. As shown in FIG. 9, when a polycrystal or inclusion is formed on the surface of the SiC single crystal, the thickness up to that is defined as “uniform growth thickness”, and the uniform growth thickness of each SiC single crystal was measured. .
  • the case where the uniform growth thickness was 3.0 mm or more was evaluated as “excellent”, the case where it was 2.0 mm or more and less than 3.0 mm was evaluated as “good”, and the case where it was less than 2.0 mm was evaluated as “impossible”.
  • the uniform growth thickness can be increased by lowering the gas permeability. It can also be seen that by setting the gas permeability to 5 ⁇ 10 ⁇ 5 m / s or less, the uniform growth thickness can be set to 2.0 mm or more. Furthermore, as shown in Example 7, it can be seen that the uniform growth thickness can be increased to 3.0 mm or more by combining the meniscus height control.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

Provided is a production method with which it is possible to produce an SiC single crystal of high quality and high crystal thickness. A method for producing an SiC single crystal by a solution growth method in which the crystal growth plane (81) of a seed crystal (8) attached to the lower-end surface of a seed shaft is brought into contact with an Si-C solution (7) to grow an SiC single crystal, wherein the production method is provided with a step for heating and melting a raw material housed in a crucible (2) to produce an Si-C solution (7), and a step for bringing the crystal growth plane (81) into contact with the Si-C solution (7) and growing an SiC single crystal on the crystal growth plane (81). The seed shaft (6) has a surface layer gas permeability of 5 × 10-5m2/s or less in regions other than the region to which the seed crystal (8) is attached, at least in the region (61) between the lower end and a position 30 mm from the lower end.

Description

SiC単結晶の製造方法及び製造装置、並びにSiC単結晶の製造に用いるシードシャフトMethod and apparatus for producing SiC single crystal, and seed shaft used for producing SiC single crystal
 本発明は、SiC単結晶の製造方法及び製造装置、並びにSiC単結晶の製造に用いるシードシャフトに関する。 The present invention relates to a method and an apparatus for manufacturing a SiC single crystal, and a seed shaft used for manufacturing a SiC single crystal.
 炭化珪素(SiC)は、熱的及び化学的に安定な化合物半導体である。SiC単結晶はSi単結晶と比較して、優れた物性を有する。例えば、SiC単結晶はSi単結晶と比較して、大きいバンドギャップ、高い絶縁破壊電圧、及び高い熱伝導率を有し、電子の飽和速度も大きい。そのためSiC単結晶は、次世代の半導体材料として注目されている。 Silicon carbide (SiC) is a thermally and chemically stable compound semiconductor. The SiC single crystal has excellent physical properties as compared with the Si single crystal. For example, a SiC single crystal has a large band gap, a high breakdown voltage, a high thermal conductivity, and a high electron saturation rate compared to a Si single crystal. For this reason, SiC single crystals are attracting attention as next-generation semiconductor materials.
 SiC単結晶を製造する方法として、昇華再結晶法及び溶液成長法等が知られている。昇華再結晶法では、原料を気相の状態にしてSiCの種結晶の上に供給することで、種結晶上にSiC単結晶を成長させる。溶液成長法では、Si-C溶液にSiCの種結晶を接触させて、種結晶上にSiC単結晶を成長させる。具体的には、坩堝内にSiを含む原料を入れ、坩堝を加熱して原料を溶融させ、Si-C溶液を生成する。Si-C溶液に種結晶を接触させて、種結晶近傍のSi-C溶液を過飽和にすることで、SiC単結晶を製造する。ここで、Si-C溶液とは、Si又はSi合金の融液に炭素が溶解した溶液をいう。 Sublimation recrystallization and solution growth methods are known as methods for producing SiC single crystals. In the sublimation recrystallization method, an SiC single crystal is grown on a seed crystal by supplying a raw material onto the SiC seed crystal in a gas phase state. In the solution growth method, a SiC seed crystal is brought into contact with a Si—C solution to grow a SiC single crystal on the seed crystal. Specifically, a raw material containing Si is placed in a crucible, and the crucible is heated to melt the raw material, thereby producing a Si—C solution. The SiC single crystal is manufactured by bringing the seed crystal into contact with the Si—C solution and supersaturating the Si—C solution in the vicinity of the seed crystal. Here, the Si—C solution refers to a solution in which carbon is dissolved in a melt of Si or Si alloy.
 溶液成長法は、再結晶法と比較して結晶成長速度が小さく、結晶成長速度を大きくすることが課題である。特開2013-147397号公報には、側面が反射部材によって覆われた種結晶保持軸を用いるSiC単結晶の製造方法が開示されている。この製造方法によれば、反射部材によって種結晶保持軸を介した抜熱が向上し、成長速度が大きくなる。なおこの製造方法では、反射部材は、種結晶と直接接触しないように単結晶との間に間隙を開けて配置される。 The solution growth method has a lower crystal growth rate than the recrystallization method, and it is a problem to increase the crystal growth rate. Japanese Patent Application Laid-Open No. 2013-147397 discloses a method for producing an SiC single crystal using a seed crystal holding shaft whose side surface is covered with a reflecting member. According to this manufacturing method, the heat removal through the seed crystal holding shaft is improved by the reflecting member, and the growth rate is increased. In this manufacturing method, the reflecting member is disposed with a gap between the reflecting member and the single crystal so as not to come into direct contact with the seed crystal.
 溶液成長法ではまた、溶液内の低温部分で多結晶が析出するという問題があり、この多結晶が成長結晶に付着しないようにすることも課題である。特開2010-184838号公報には、炭素棒下端の側面部に溶液に対して炭素棒より濡れ性の低い多結晶発生阻害部が設けられたSiC単結晶製造装置が開示されている。特開2013-1619号公報には、中蓋及び上蓋を含む坩堝を備えたSiC単結晶の製造装置が開示されている。 The solution growth method also has a problem that polycrystals precipitate at a low temperature portion in the solution, and it is also a problem to prevent the polycrystals from adhering to the grown crystals. Japanese Patent Application Laid-Open No. 2010-184838 discloses a SiC single crystal manufacturing apparatus in which a polycrystal generation inhibiting portion having lower wettability with respect to a solution than a carbon rod is provided on a side surface portion at the lower end of the carbon rod. Japanese Patent Laid-Open No. 2013-1619 discloses a SiC single crystal manufacturing apparatus including a crucible including an inner lid and an upper lid.
 SiC単結晶を製造する際、その製造方法にかかわらず、多結晶の発生、異種の結晶多形の混入、結晶欠陥及び転位の導入等が生じ、SiC単結晶の品質が低下する場合がある。SiC単結晶には、さらなる品質の向上が求められている。また、生産性向上の観点から、結晶の長尺化技術が求められている。 When a SiC single crystal is manufactured, regardless of the manufacturing method, polycrystal generation, mixing of different crystal polymorphs, introduction of crystal defects and dislocations, etc. may occur, and the quality of the SiC single crystal may deteriorate. The SiC single crystal is required to be further improved in quality. In addition, from the viewpoint of productivity improvement, there is a demand for a crystal lengthening technique.
 近年、溶液成長法では、種結晶の結晶成長面上に形成されるSiC単結晶の厚みを厚くすることが検討されている。SiC単結晶の厚みを厚くするためには、SiC単結晶の成長速度を大きくするか、SiC単結晶の成長時間を長くする必要がある。しかし、SiC単結晶の成長時間を長くすると、SiC単結晶の品質が低下するという問題がある。 Recently, in the solution growth method, it has been studied to increase the thickness of the SiC single crystal formed on the crystal growth surface of the seed crystal. In order to increase the thickness of the SiC single crystal, it is necessary to increase the growth rate of the SiC single crystal or lengthen the growth time of the SiC single crystal. However, when the growth time of the SiC single crystal is lengthened, there is a problem that the quality of the SiC single crystal is lowered.
 特開2014-201508号公報には、SiC種結晶の結晶成長面上に形成されるSiC単結晶の厚みを厚くすることができるSiC単結晶の製造方法が開示されている。この製造方法は、準備工程と、生成工程と、成長工程とを備える。準備工程では、Si-C溶液の原料が収容される坩堝と、坩堝の側壁の周囲に配置される高周波コイルとを含む製造装置を準備する。生成工程では、坩堝内の原料を高周波コイルで加熱して溶融させ、Si-C溶液を生成する。成長工程では、Si-C溶液にSiCの種結晶を接触させ、種結晶上でSiC単結晶を成長させる。成長工程は、維持工程を含む。維持工程では、坩堝及び高周波コイルの少なくとも一方を他方に対して高さ方向に相対移動させ、Si-C溶液の液面と高周波コイルの高さ中心との高さ方向における離隔距離を所定の範囲内に維持する。 Japanese Patent Application Laid-Open No. 2014-201508 discloses a method for producing a SiC single crystal that can increase the thickness of the SiC single crystal formed on the crystal growth surface of the SiC seed crystal. This manufacturing method includes a preparation process, a generation process, and a growth process. In the preparation step, a manufacturing apparatus including a crucible in which a raw material of the Si—C solution is accommodated and a high-frequency coil disposed around the side wall of the crucible is prepared. In the production step, the raw material in the crucible is heated and melted by a high frequency coil to produce a Si—C solution. In the growth step, a SiC seed crystal is brought into contact with the Si—C solution to grow a SiC single crystal on the seed crystal. The growth process includes a maintenance process. In the maintaining step, at least one of the crucible and the high frequency coil is moved relative to the other in the height direction, and the separation distance in the height direction between the liquid level of the Si—C solution and the height center of the high frequency coil is within a predetermined range. Keep in.
 SiC単結晶の成長時間を長くすると、SiC単結晶の成長が進行することや、Si-C溶液が蒸発することによって、Si-C溶液の液面が低下する。Si-C溶液の液面が低下すると、高周波コイルによるSi-C溶液の加熱条件が変化し、SiC種結晶近傍のSi-C溶液の温度が変化する。これによって、当該領域のSiCの過飽和度が変化する。そのため、安定したSiC単結晶の成長が阻害され、SiC単結晶の品質が低下する。 When the growth time of the SiC single crystal is lengthened, the growth of the SiC single crystal proceeds or the Si—C solution evaporates, so that the liquid level of the Si—C solution decreases. When the liquid level of the Si—C solution decreases, the heating condition of the Si—C solution by the high frequency coil changes, and the temperature of the Si—C solution near the SiC seed crystal changes. Thereby, the supersaturation degree of SiC in the region changes. Therefore, stable growth of the SiC single crystal is inhibited, and the quality of the SiC single crystal is lowered.
 上記製造方法では、SiC単結晶を成長させるときに、Si-C溶液の液面と高周波コイルの高さ中心との高さ方向における離隔距離を所定の範囲内に維持する。そのため、高周波コイルによるSi-C溶液の加熱条件が変化しにくくなる。その結果、SiC単結晶近傍の温度、延いては、SiC単結晶近傍の過飽和度の変化を抑制することができる。 In the above manufacturing method, when the SiC single crystal is grown, the separation distance in the height direction between the liquid surface of the Si—C solution and the height center of the high-frequency coil is maintained within a predetermined range. Therefore, the heating condition of the Si—C solution by the high frequency coil is difficult to change. As a result, it is possible to suppress a change in the temperature near the SiC single crystal and, in turn, the degree of supersaturation near the SiC single crystal.
 特開2014-201509号公報に記載されたSiC単結晶の製造方法も、準備工程と、生成工程と、成長工程とを備える。この製造方法では、成長工程は、形成工程と、維持工程とを含む。形成工程では、SiC単結晶の成長界面とSi-C溶液の液面との間にメニスカスを形成する。維持工程では、シードシャフト及び坩堝の少なくとも一方を他方に対して高さ方向に相対移動させることにより、メニスカスの高さの変動幅を所定の範囲内に維持する。 The manufacturing method of the SiC single crystal described in JP 2014-151509 A also includes a preparation step, a generation step, and a growth step. In this manufacturing method, the growth process includes a formation process and a maintenance process. In the forming step, a meniscus is formed between the growth interface of the SiC single crystal and the liquid surface of the Si—C solution. In the maintaining step, at least one of the seed shaft and the crucible is moved relative to the other in the height direction to maintain the fluctuation range of the meniscus height within a predetermined range.
 上記製造方法では、SiC単結晶を成長させるときに、メニスカスの高さの変動幅を所定の範囲内に維持する。そのため、メニスカス高さの変動に起因する、種結晶近傍の過飽和度の変化を抑制することができる。 In the above manufacturing method, when the SiC single crystal is grown, the fluctuation range of the meniscus height is maintained within a predetermined range. Therefore, it is possible to suppress a change in the degree of supersaturation in the vicinity of the seed crystal due to the fluctuation of the meniscus height.
 特開2014-201508号公報及び特開2014-201509号公報に開示された技術は、結晶厚みの大きいSiC単結晶を製造するための有効な手段である。しかし、結晶厚みをさらに大きくするためには、制御しなければならない成長条件パラメータがさらに存在することが明らかになった。 The techniques disclosed in Japanese Patent Application Laid-Open Nos. 2014-201508 and 2014-201509 are effective means for manufacturing a SiC single crystal having a large crystal thickness. However, it has become clear that there are more growth condition parameters that must be controlled to increase the crystal thickness.
 本発明の目的は、高品質で結晶厚みの大きいSiC単結晶を製造できる製造方法及び製造装置、並びにこれらに用いるシードシャフトを提供することである。 An object of the present invention is to provide a manufacturing method and a manufacturing apparatus capable of manufacturing a SiC single crystal having a high quality and a large crystal thickness, and a seed shaft used in these.
 本発明の一実施形態による製造方法は、シードシャフトの下端面に取り付けられた種結晶の結晶成長面をSi-C溶液に接触させてSiC単結晶を成長させる、溶液成長法によるSiC単結晶の製造方法であって、坩堝に収容された原料を加熱して溶融させ、前記Si-C溶液を生成する工程と、前記結晶成長面を前記Si-C溶液に接触させ、前記結晶成長面上に前記SiC単結晶を成長させる工程とを備える。前記シードシャフトは、少なくとも、下端と下端から30mmの位置との間の領域のうち、前記種結晶が取り付けられる領域以外の領域において、表層のガス透過率が5×10-5/s以下である。 A manufacturing method according to an embodiment of the present invention includes a method for growing a SiC single crystal by a solution growth method, in which a crystal growth surface of a seed crystal attached to a lower end surface of a seed shaft is brought into contact with a Si—C solution to grow a SiC single crystal. A method for producing a Si—C solution by heating and melting a raw material contained in a crucible; bringing the crystal growth surface into contact with the Si—C solution; And growing the SiC single crystal. The seed shaft has a gas permeability of 5 × 10 −5 m 2 / s or less in at least a region between the lower end and a position 30 mm from the lower end other than the region to which the seed crystal is attached. It is.
 本発明の一実施形態による製造装置は、溶液成長法によるSiC単結晶の製造に用いる製造装置であって、Si-C溶液が収容される坩堝と、下端面に種結晶が取り付けられるシードシャフトとを備える。前記シードシャフトは、少なくとも、下端と下端から30mmの位置との間の領域のうち、前記種結晶が取り付けられる領域以外の領域において、表層のガス透過率が5×10-5/s以下である。 A manufacturing apparatus according to an embodiment of the present invention is a manufacturing apparatus used for manufacturing a SiC single crystal by a solution growth method, a crucible in which a Si—C solution is accommodated, and a seed shaft to which a seed crystal is attached at a lower end surface. Is provided. The seed shaft has a gas permeability of 5 × 10 −5 m 2 / s or less in at least a region between the lower end and a position 30 mm from the lower end other than the region to which the seed crystal is attached. It is.
 本発明の一実施形態によるシードシャフトは、下端面に種結晶を取り付け、前記種結晶の結晶成長面をSi-C溶液に接触させてSiC単結晶を成長させる溶液成長法によるSiC単結晶の製造に用いるシードシャフトであって、少なくとも、下端と下端から30mmの位置との間の領域のうち、前記種結晶が取り付けられる領域以外の領域において、表層のガス透過率が5×10-5/s以下である。 A seed shaft according to an embodiment of the present invention is a method for producing a SiC single crystal by a solution growth method in which a seed crystal is attached to a lower end surface, and a SiC single crystal is grown by bringing a crystal growth surface of the seed crystal into contact with a Si—C solution. The gas permeability of the surface layer is 5 × 10 −5 m 2 at least in the region between the lower end and the position 30 mm from the lower end other than the region to which the seed crystal is attached. / S or less.
 本発明によれば、高品質で結晶厚みの大きいSiC単結晶を製造できる製造方法及び製造装置、並びにこれらに用いるシードシャフトが得られる。 According to the present invention, a manufacturing method and a manufacturing apparatus capable of manufacturing a SiC single crystal having a high quality and a large crystal thickness, and a seed shaft used for these can be obtained.
図1は、本発明の第1の実施形態によるSiC単結晶の製造方法のフロー図である。FIG. 1 is a flowchart of a method for producing a SiC single crystal according to the first embodiment of the present invention. 図2は、溶液成長法によるSiC単結晶の製造に用いる製造装置の一例の模式的断面図である。FIG. 2 is a schematic cross-sectional view of an example of a manufacturing apparatus used for manufacturing a SiC single crystal by a solution growth method. 図3は、ガス透過率の測定装置の模式図である。FIG. 3 is a schematic view of a gas permeability measuring device. 図4は、ガス透過率の測定装置の模式図である。FIG. 4 is a schematic diagram of a gas permeability measuring device. 図5は、溶液成長法によるSiC単結晶の製造に用いる製造装置の他の例の模式的断面図である。FIG. 5 is a schematic cross-sectional view of another example of a manufacturing apparatus used for manufacturing a SiC single crystal by a solution growth method. 図6は、ガス透過率の測定装置の模式図である。FIG. 6 is a schematic diagram of a gas permeability measuring device. 図7は、溶液成長法によるSiC単結晶の製造に用いる製造装置の他の例の模式的断面図である。FIG. 7 is a schematic cross-sectional view of another example of a manufacturing apparatus used for manufacturing a SiC single crystal by a solution growth method. 図8は、Si-C溶液のメニスカスの模式図である。FIG. 8 is a schematic diagram of a meniscus of a Si—C solution. 図9は、成長後のSiC単結晶の模式的断面図である。FIG. 9 is a schematic cross-sectional view of the grown SiC single crystal.
 本発明者らは、溶液成長法によるSiC単結晶の製造を長時間安定して実施する方法について検討した。その結果、以下の知見を得た。 The present inventors examined a method for stably producing a SiC single crystal by a solution growth method for a long time. As a result, the following knowledge was obtained.
 溶液成長法では、シードシャフトの下端面にSiCの種結晶を取り付け、種結晶の結晶成長面をSi-C溶液に接触させてSiC単結晶を成長させる。シードシャフトは、一般的に黒鉛等の炭素質の材料からなり、気孔を有する多孔質構造である。SiC単結晶の成長時間を長くすると、蒸気がシードシャフトの内部まで侵入する。侵入した蒸気は、シードシャフトを構成する炭素等と化学反応する場合もあれば、シードシャフト内部で液化して金属として残存する場合もある(以下では、この両者を合わせて、蒸気とシードシャフトとが「反応」すると称する。)。 In the solution growth method, a SiC seed crystal is attached to the lower end surface of the seed shaft, and the SiC crystal is grown by bringing the crystal growth surface of the seed crystal into contact with the Si—C solution. The seed shaft is generally made of a carbonaceous material such as graphite and has a porous structure having pores. When the growth time of the SiC single crystal is increased, the vapor penetrates into the seed shaft. The invading steam may chemically react with carbon or the like constituting the seed shaft, or it may be liquefied inside the seed shaft and remain as a metal (hereinafter referred to as both steam and seed shaft). Are referred to as “reactive”).
 このように、シードシャフトが長時間Si-C溶液の蒸気に曝されると、一種の複合材料が形成され、初期の状態から熱的特性が変化する。例えば、気孔内に金属等が侵入することによって、シードシャフトの熱伝導率が高くなる。これによって、SiC単結晶の成長中、シードシャフトからの抜熱量が大きくなり、種結晶近傍の過飽和度が大きくなる。種結晶近傍の過飽和度が過剰に大きくなると、2次元的な成長から3次元的な成長表面形態に変化する。その結果、溶媒インクルージョンが形成されやすくなり、SiC単結晶の品質が低下する。 Thus, when the seed shaft is exposed to the vapor of the Si—C solution for a long time, a kind of composite material is formed, and the thermal characteristics change from the initial state. For example, when a metal or the like enters the pores, the thermal conductivity of the seed shaft is increased. As a result, during the growth of the SiC single crystal, the amount of heat removed from the seed shaft increases, and the degree of supersaturation near the seed crystal increases. When the supersaturation degree in the vicinity of the seed crystal becomes excessively large, the two-dimensional growth changes to a three-dimensional growth surface form. As a result, solvent inclusion is easily formed, and the quality of the SiC single crystal is lowered.
 ガス透過率を従来のものに比べて低下させたシードシャフトを用いることで、Si-C溶液の蒸気とシードシャフトとが反応するのを抑制できる。これによって、蒸気との反応によるシードシャフトの熱的特性の変化、及びこれに起因する種結晶近傍の過飽和度の変化を抑制し、SiC単結晶を長時間安定して成長させることができる。 By using a seed shaft having a reduced gas permeability compared to the conventional one, it is possible to suppress the reaction between the vapor of the Si—C solution and the seed shaft. As a result, the change in the thermal characteristics of the seed shaft due to the reaction with the vapor and the change in the supersaturation degree in the vicinity of the seed crystal due to the change can be suppressed, and the SiC single crystal can be stably grown for a long time.
 本発明は、上記の知見に基づいて完成された。以下、図面を参照して、本発明の一実施形態によるSiC単結晶の製造方法及び製造装置、並びにこれらに用いるシードシャフトついて説明する。図面は必ずしも実際の寸法比等を忠実に表したものではない。 The present invention has been completed based on the above findings. Hereinafter, with reference to drawings, the manufacturing method and manufacturing apparatus of SiC single crystal by one embodiment of the present invention, and the seed shaft used for these are explained. The drawings do not necessarily faithfully represent actual dimensional ratios and the like.
 [第1の実施形態]
 図1は、本発明の第1の実施形態によるSiC単結晶の製造方法のフロー図である。この製造方法は、溶液成長法によるSiC単結晶の製造方法であって、準備工程(ステップS1)と、Si-C溶液を生成する生成工程(ステップS2)と、種結晶をSi-C溶液に接触させてSiC単結晶を成長させる成長工程(ステップS3)とを備えている。以下、各工程を詳述する。
[First Embodiment]
FIG. 1 is a flowchart of a method for producing a SiC single crystal according to the first embodiment of the present invention. This manufacturing method is a method for manufacturing a SiC single crystal by a solution growth method, and includes a preparation step (Step S1), a generation step (Step S2) for generating a Si—C solution, and a seed crystal in a Si—C solution. And a growth step (step S3) in which a SiC single crystal is grown in contact with each other. Hereinafter, each process is explained in full detail.
 [準備工程(ステップS1)]
 この工程では、製造装置、SiCの種結晶、及びSi-C溶液の原料を準備する。
[Preparation process (step S1)]
In this step, a manufacturing apparatus, a SiC seed crystal, and a raw material for the Si—C solution are prepared.
 [製造装置の構成]
 図2は、溶液成長法によるSiC単結晶の製造に用いる製造装置の一例である製造装置100の模式的断面図である。図2に示す製造装置100の構成は例示であり、本実施形態に用いる製造装置の構成は、これに限定されない。
[Configuration of manufacturing equipment]
FIG. 2 is a schematic cross-sectional view of a manufacturing apparatus 100 which is an example of a manufacturing apparatus used for manufacturing a SiC single crystal by a solution growth method. The configuration of the manufacturing apparatus 100 illustrated in FIG. 2 is an exemplification, and the configuration of the manufacturing apparatus used in the present embodiment is not limited to this.
 製造装置100は、チャンバ1、坩堝2、断熱材3、高周波コイル4、回転軸5及びシードシャフト6を備えている。 The manufacturing apparatus 100 includes a chamber 1, a crucible 2, a heat insulating material 3, a high frequency coil 4, a rotating shaft 5, and a seed shaft 6.
 チャンバ1は、坩堝2、断熱材3、及び高周波コイル4を収容する。SiC単結晶を製造するとき、チャンバ1は水冷される。 The chamber 1 accommodates the crucible 2, the heat insulating material 3, and the high frequency coil 4. When manufacturing a SiC single crystal, the chamber 1 is water-cooled.
 坩堝2は、筒部21と、筒部21の下端に配置された底部22とを含んでいる。坩堝2は、Si-C溶液7の原料を収容する。坩堝2は、好ましくは、炭素を含有する。坩堝2が炭素を含有する場合、坩堝2は、Si-C溶液7への炭素の供給源となる。 The crucible 2 includes a cylinder part 21 and a bottom part 22 arranged at the lower end of the cylinder part 21. The crucible 2 accommodates the raw material for the Si—C solution 7. The crucible 2 preferably contains carbon. When the crucible 2 contains carbon, the crucible 2 becomes a carbon supply source to the Si—C solution 7.
 断熱材3は、坩堝2の周囲を囲むように配置されている。断熱材3は、坩堝2を保温する。高周波コイル4は、坩堝2及び断熱材3の外側に配置されている。高周波コイル4は、坩堝2を誘導加熱する。高周波コイル4の鉛直方向の長さは、Si-C溶液7の鉛直方向の長さよりも長いことが好ましい。高周波コイル4の鉛直方向の長さは、より好ましくは、坩堝2の鉛直方向の長さ以上である。 The heat insulating material 3 is disposed so as to surround the crucible 2. The heat insulating material 3 keeps the crucible 2 warm. The high frequency coil 4 is disposed outside the crucible 2 and the heat insulating material 3. The high frequency coil 4 induction-heats the crucible 2. The vertical length of the high-frequency coil 4 is preferably longer than the vertical length of the Si—C solution 7. More preferably, the vertical length of the high-frequency coil 4 is equal to or greater than the vertical length of the crucible 2.
 回転軸5は、軸方向が鉛直方向と平行になるように配置されている。回転軸5は、一方の端部で坩堝2を支持する。回転軸5の他方の端部は、チャンバ1の下方に配置された駆動装置59に接続されている。駆動装置59は、回転軸5を軸方向の回りに回転させる。この構成によれば、坩堝2を回転させることができる。駆動装置59は、回転軸5を昇降する機能を備えていてもよい。この構成によれば、坩堝2とコイル4との相対位置を変化させて、Si-C溶液7の温度分布を調整することができる。 The rotary shaft 5 is arranged so that the axial direction is parallel to the vertical direction. The rotating shaft 5 supports the crucible 2 at one end. The other end of the rotating shaft 5 is connected to a drive device 59 disposed below the chamber 1. The drive device 59 rotates the rotating shaft 5 around the axial direction. According to this configuration, the crucible 2 can be rotated. The drive device 59 may have a function of moving the rotary shaft 5 up and down. According to this configuration, the temperature distribution of the Si—C solution 7 can be adjusted by changing the relative position of the crucible 2 and the coil 4.
 シードシャフト6は、軸方向が鉛直方向と平行になるように配置されている。シードシャフト6の下端面には、SiCの種結晶8が取り付けられる。シードシャフト6の他方の端部は、チャンバ1の上方に配置された駆動装置69に接続されている。駆動装置69は、シードシャフト6を昇降する。後述するように、成長工程では、Si-C溶液7を生成後、シードシャフト6を下降させて種結晶8とSi-C溶液7とを接触させる。駆動装置69は、シードシャフト6を軸方向の回りに回転させる機能を備えていてもよい。 The seed shaft 6 is arranged so that the axial direction is parallel to the vertical direction. An SiC seed crystal 8 is attached to the lower end surface of the seed shaft 6. The other end of the seed shaft 6 is connected to a driving device 69 disposed above the chamber 1. The drive device 69 moves the seed shaft 6 up and down. As will be described later, in the growth process, after the Si—C solution 7 is generated, the seed shaft 6 is lowered to bring the seed crystal 8 and the Si—C solution 7 into contact with each other. The drive device 69 may have a function of rotating the seed shaft 6 around the axial direction.
 後述するように、成長工程は、例えば1600~2050℃で実施される。シードシャフト6の少なくとも断熱材3の内側に位置する部分は、このような高温に耐えられる材料で形成されている。シードシャフト6は、例えば高融点金属、高融点金属の炭化物、又は炭素で形成されている。シードシャフト6は、経済的な観点から、炭素で形成されていることが好ましい。 As will be described later, the growth process is performed at 1600 to 2050 ° C., for example. At least a portion of the seed shaft 6 located inside the heat insulating material 3 is formed of a material that can withstand such a high temperature. The seed shaft 6 is made of, for example, a refractory metal, a refractory metal carbide, or carbon. The seed shaft 6 is preferably made of carbon from an economical viewpoint.
 シードシャフト6は、好ましくは外径が25mm以上であり、より好ましくは外径が40mm以上であり、さらに好ましくは外径が45mm以上である。 The seed shaft 6 preferably has an outer diameter of 25 mm or more, more preferably an outer diameter of 40 mm or more, and further preferably an outer diameter of 45 mm or more.
 本実施形態では、シードシャフト6の下端近傍のおける表層のガス透過率を5×10-5/s以下にする。具体的には、下端と下端から高さhだけ離れた位置との間の領域(以下「領域61」と呼ぶ。)において、表層のガス透過率を5×10-5/s以下にする。表層のガス透過率は、好ましくは5×10-6/s以下であり、さらに好ましくは5×10-7/s以下である。 In the present embodiment, the gas permeability of the surface layer in the vicinity of the lower end of the seed shaft 6 is set to 5 × 10 −5 m 2 / s or less. Specifically, in a region between the lower end and a position separated by a height h from the lower end (hereinafter referred to as “region 61”), the gas permeability of the surface layer is set to 5 × 10 −5 m 2 / s or less. To do. The gas permeability of the surface layer is preferably 5 × 10 −6 m 2 / s or less, more preferably 5 × 10 −7 m 2 / s or less.
 シードシャフト6の表層のガス透過率を低くすることで、Si-C溶液7の蒸気がシードシャフト6の内部に侵入するのを抑制できる。ここで「表層のガス透過率」とは、表面から3mmの深さまでの領域におけるガス透過率をいう。表層のガス透過率が高ければ、内部のガス透過率が低くても、表層でシードシャフト6とSi-C溶液7の蒸気とが反応するため、シードシャフト6の熱的特性の変化を抑制できない。一方、表層のガス透過率が低ければ、内部のガス透過率は高くてもよい。 It is possible to suppress the vapor of the Si—C solution 7 from entering the inside of the seed shaft 6 by reducing the gas permeability of the surface layer of the seed shaft 6. Here, the “surface gas permeability” refers to the gas permeability in a region from the surface to a depth of 3 mm. If the gas permeability of the surface layer is high, even if the internal gas permeability is low, the seed shaft 6 reacts with the vapor of the Si—C solution 7 in the surface layer, so that the change in the thermal characteristics of the seed shaft 6 cannot be suppressed. . On the other hand, if the gas permeability of the surface layer is low, the internal gas permeability may be high.
 シードシャフト6は、表層と内部とにおいて異なる材料で形成されていてもよい。また、シードシャフト6は、中空であってもよい。シードシャフト6の内部を別の材料で形成したり、中空にしたりすることで、結晶成長中のシードシャフト6からの抜熱量を調整することができる。 The seed shaft 6 may be formed of different materials for the surface layer and the inside. The seed shaft 6 may be hollow. By forming the inside of the seed shaft 6 from another material or making it hollow, the amount of heat removed from the seed shaft 6 during crystal growth can be adjusted.
 領域61の高さhは、少なくとも30mm以上である。高さhが大きいほど、Si-C溶液7の蒸気の影響を小さくすることができる。高さhは、好ましくは40mm以上であり、さらに好ましくは50mm以上である。シードシャフト6は、全長にわたって表層のガス透過率が5×10-5/s以下であってもよい。 The height h of the region 61 is at least 30 mm. As the height h is larger, the influence of the vapor of the Si—C solution 7 can be reduced. The height h is preferably 40 mm or more, and more preferably 50 mm or more. The seed shaft 6 may have a gas permeability of 5 × 10 −5 m 2 / s or less over the entire length.
 領域61のうち、種結晶8が取り付けられる部分は、ガス透過率が高くてもよい。この部分は、種結晶8に覆われてSi-C溶液7の蒸気と接触しないためである。すなわち、シードシャフト6は、少なくとも、領域61のうち、種結晶8が取り付けられる領域以外の領域において、表層のガス透過率が5×10-5/s以下であればよい。図2に示す例では、種結晶8の径が、シードシャフト6の径よりも大きい。そのため、シードシャフト6の下端面は、種結晶8にすべて覆われる。この場合、下端面の表層のガス透過率は5×10-5/s以下であってもよいし、5×10-5/sよりも高くてもよい。 A portion of the region 61 where the seed crystal 8 is attached may have a high gas permeability. This is because this portion is covered with the seed crystal 8 and does not come into contact with the vapor of the Si—C solution 7. In other words, the seed shaft 6 may have a surface layer gas permeability of 5 × 10 −5 m 2 / s or less in at least the region 61 other than the region where the seed crystal 8 is attached. In the example shown in FIG. 2, the diameter of the seed crystal 8 is larger than the diameter of the seed shaft 6. Therefore, the lower end surface of the seed shaft 6 is entirely covered with the seed crystal 8. In this case, the gas permeability of the surface layer on the lower end surface may be 5 × 10 −5 m 2 / s or less, or may be higher than 5 × 10 −5 m 2 / s.
 シードシャフト6の表層のガス透過率は、例えば、シードシャフト6の表面にカーボン接着材を塗布し、シードシャフト6の開気孔率を下げることで制御できる。カーボン接着材は、樹脂に炭素の粉末を練り込んだものである。この場合、カーボン接着材の配合や塗布量によって、ガス透過率を調整することができる。 The gas permeability of the surface layer of the seed shaft 6 can be controlled by, for example, applying a carbon adhesive to the surface of the seed shaft 6 and reducing the open porosity of the seed shaft 6. The carbon adhesive is obtained by kneading carbon powder into a resin. In this case, the gas permeability can be adjusted depending on the blending and application amount of the carbon adhesive.
 シードシャフト6の表面にカーボン接着剤を塗布して開気孔率を下げる場合、領域61うち、種結晶8が取り付けられる領域以外の領域に隈なくカーボン接着剤を塗布する必要がある。カーボン接着剤が塗布されていない部分が少しでもあると、その部分からガスが浸入するため、ガス透過率を5×10-5/s以下にすることができない。そのため、例えば刷毛等を用いて、領域61のうち、種結晶8が取り付けられる領域以外の領域の全面にカーボン接着剤を塗布するようにする。 When a carbon adhesive is applied to the surface of the seed shaft 6 to reduce the open porosity, it is necessary to apply the carbon adhesive throughout the region 61 other than the region where the seed crystal 8 is attached. If there is even a portion where the carbon adhesive is not applied, the gas permeates from that portion, so that the gas permeability cannot be reduced to 5 × 10 −5 m 2 / s or less. Therefore, for example, using a brush or the like, the carbon adhesive is applied to the entire surface of the region 61 other than the region where the seed crystal 8 is attached.
 あるいは、シードシャフト6の表層のガス透過率は、SiCやパイロリティック・グラファイト(PG)をコーティングすることによっても制御できる。コーティングには例えば、化学気相成長(CVD)法を用いることができる。この場合、CVD法に用いるガスの混合比や流量によって、ガス透過率を調整することができる。 Alternatively, the gas permeability of the surface layer of the seed shaft 6 can be controlled by coating with SiC or pyrolytic graphite (PG). For the coating, for example, a chemical vapor deposition (CVD) method can be used. In this case, the gas permeability can be adjusted by the mixing ratio and flow rate of the gas used in the CVD method.
 シードシャフト6の表層のガス透過率を下げる手段として他に、シードシャフト6の周りをガス透過率の低い遮蔽部材(例えばカーボンシート等)で覆うことが考えられる。しかし、この手段では遮蔽部材の端部からガスが浸入するため、ガス透過率を5×10-5/s以下にすることは困難である。 As another means for reducing the gas permeability of the surface layer of the seed shaft 6, it is conceivable to cover the seed shaft 6 with a shielding member having a low gas permeability (for example, a carbon sheet). However, with this means, since gas enters from the end of the shielding member, it is difficult to reduce the gas permeability to 5 × 10 −5 m 2 / s or less.
 シードシャフト6の表層のガス透過率は、曽我部敏明、岡田雅樹、「大型円筒等方性黒鉛のガス透過率」、炭素、1995(No.168)、第176-178頁に記載されている方法に準じて、次のように測定する。 The gas permeability of the surface layer of the seed shaft 6 is described in Toshiaki Sogabe, Masaki Okada, “Gas Permeability of Large Cylindrical Isotropic Graphite”, Carbon, 1995 (No. 168), pp. 176-178. According to, measurement is performed as follows.
 図3は、ガス透過率の測定装置9の模式図である。この測定装置9は、第1チャンバ91と、第2チャンバ92とを備えている。 FIG. 3 is a schematic diagram of the gas permeability measuring device 9. The measuring device 9 includes a first chamber 91 and a second chamber 92.
 シードシャフト6の領域61(図2)から、表層を含む円筒状の試験片6Aを採取する。シードシャフト6が中実の場合には、内部をくり抜いて円筒状にする。試験片6Aの一方の開口がチャンバ92に通じるように配置し、他方の開口は蓋93で塞いでおく。試験片6Aの端部は、パッキン94でシールしておく。この状態で、試験片6Aを第1チャンバ91に収容する。 The cylindrical test piece 6A including the surface layer is collected from the region 61 (FIG. 2) of the seed shaft 6. When the seed shaft 6 is solid, the inside is cut out into a cylindrical shape. One opening of the test piece 6 </ b> A is arranged so as to communicate with the chamber 92, and the other opening is closed with a lid 93. The end of the test piece 6A is sealed with a packing 94. In this state, the test piece 6A is accommodated in the first chamber 91.
 第1チャンバ91に窒素を充填して、試験片6Aの外側に所定の圧力(例えば、100~300kPa)を加える。一方、第2チャンバ92内は真空排気して減圧する。これによって、第1チャンバ91内の窒素ガスは試験片6Aを通じて第2チャンバ92へ流れ、第2チャンバ92の圧力が上昇する。このとき、試験片6Aのガス透過率K(m/s)は、下記の式で求められる。 The first chamber 91 is filled with nitrogen, and a predetermined pressure (for example, 100 to 300 kPa) is applied to the outside of the test piece 6A. On the other hand, the inside of the second chamber 92 is evacuated and decompressed. Thereby, the nitrogen gas in the first chamber 91 flows to the second chamber 92 through the test piece 6A, and the pressure in the second chamber 92 increases. At this time, the gas permeability K (m 2 / s) of the test piece 6A is obtained by the following equation.
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 ここで、ΔPは試験片6A内外の圧力差(Pa)、Lは試験片6Aの厚み(m)、Aはガス透過面積(m)、PB1は時刻t1における第2チャンバ92の圧力(Pa)、PB2は時刻t2における第2チャンバ92の圧力(Pa)、Vは第2チャンバ91の容積(m)である。なお、ガス透過面積は、試験片6Aの外周と内周の表面積の対数平均とする。 Here, ΔP is the pressure difference (Pa) between the inside and outside of the test piece 6A, L is the thickness (m) of the test piece 6A, A is the gas permeation area (m 2 ), and P B1 is the pressure in the second chamber 92 at time t1 ( Pa) and P B2 are the pressure (Pa) of the second chamber 92 at time t2, and V B is the volume (m 3 ) of the second chamber 91. In addition, let a gas permeation | transmission area be the logarithm average of the surface area of the outer periphery and inner periphery of 6 A of test pieces.
 上記の式のとおり、ガス透過率は、試験片の厚さの逆数及びガス透過面積で規格化された量である。試験片6Aのガス透過率が全体にわたって均質であれば、理論的には、ガス透過率の値は試験片6Aの寸法に依存しない。 As described above, the gas permeability is an amount normalized by the reciprocal of the thickness of the test piece and the gas permeation area. Theoretically, the gas permeability value does not depend on the dimension of the test piece 6A if the gas permeability of the test piece 6A is uniform throughout.
 試験片6Aのガス透過率に分布がある場合、測定されるガス透過率の値は、試験片6A全体におけるガス透過率の平均値になる。上述したシードシャフト6にカーボン接着材を塗布する方法や、シードシャフト6をコーティングする方法によってガス透過率を制御した場合、シードシャフト6は、表面に近いほどガス透過率が低くなると考えられる。そのため、表面から3mm以上の領域を含む試験片で測定してガス透過率が5×10-5/s以下であれば、表面から3mmの深さまでの領域におけるガス透過率も5×10-5/s以下であると結論できる。 When the gas permeability of the test piece 6A has a distribution, the measured gas permeability value is an average value of the gas permeability in the entire test piece 6A. When the gas permeability is controlled by the above-described method of applying a carbon adhesive to the seed shaft 6 or the method of coating the seed shaft 6, the gas permeability of the seed shaft 6 is considered to be lower as it is closer to the surface. Therefore, if the gas permeability is 5 × 10 −5 m 2 / s or less as measured with a test piece including a region 3 mm or more from the surface, the gas permeability in a region from the surface to a depth of 3 mm is also 5 × 10. It can be concluded that it is −5 m 2 / s or less.
 シードシャフト6の下端面を含めてガス透過率を測定する場合、図4に示すように、シードシャフト6から底部を含む有底筒状の試験片6Bを採取し、上記と同様に測定すればよい。 When measuring the gas permeability including the lower end surface of the seed shaft 6, as shown in FIG. 4, a bottomed cylindrical test piece 6 </ b> B including the bottom is collected from the seed shaft 6 and measured in the same manner as described above. Good.
 [種結晶]
 次に、SiCの種結晶8を準備する。種結晶8は、SiCの単結晶である。種結晶8は、結晶成長面81が坩堝2の底部22と対向するように、シードシャフト6の下端面に取り付けられる。
[Seed crystal]
Next, a SiC seed crystal 8 is prepared. The seed crystal 8 is a single crystal of SiC. The seed crystal 8 is attached to the lower end surface of the seed shaft 6 so that the crystal growth surface 81 faces the bottom 22 of the crucible 2.
 種結晶8は、製造するSiC単結晶と同じ結晶構造のSiC単結晶であることが好ましい。例えば、4H多形のSiC単結晶を製造する場合、4H多形の種結晶を用いることが好ましい。4H多形の種結晶を用いる場合、結晶成長面81を(0001)面若しくは(000-1)面、又は(0001)面若しくは(000-1)面から8°以下の角度で傾斜した面とすることが好ましい。これらの面を用いることで、SiC単結晶を安定に成長させることができる。 The seed crystal 8 is preferably an SiC single crystal having the same crystal structure as the SiC single crystal to be manufactured. For example, when producing a 4H polymorphic SiC single crystal, it is preferable to use a 4H polymorphic seed crystal. When a 4H polymorphic seed crystal is used, the crystal growth surface 81 is a (0001) plane or (000-1) plane, or a plane inclined at an angle of 8 ° or less from the (0001) plane or (000-1) plane; It is preferable to do. By using these surfaces, the SiC single crystal can be stably grown.
 [Si-C原料]
 次に、Si-C溶液7の原料を坩堝2に配置する。原料は例えば、シリコンのみであってもよいし、シリコンと他の金属元素との混合物であってもよい。金属元素は例えば、チタン、マンガン、クロム、コバルト、バナジウム、鉄等である。原料は例えば、塊であってもよいし、粉末であってもよい。
[Si-C raw material]
Next, the raw material of the Si—C solution 7 is placed in the crucible 2. The raw material may be, for example, only silicon, or a mixture of silicon and other metal elements. Examples of the metal element include titanium, manganese, chromium, cobalt, vanadium, and iron. The raw material may be, for example, a lump or a powder.
 [生成工程(ステップS2)]
 チャンバ1内に不活性ガスを充填する。高周波コイル4によって坩堝2を誘導加熱し、坩堝2内の原料を融点以上に加熱する。坩堝2が炭素を含有する場合、坩堝2を加熱すると、坩堝2から炭素が融液に溶け込み、Si-C溶液7が生成される。坩堝2が炭素を含有しない場合、外部から炭素を供給するようにしてもよい。炭素がSi-C溶液7に溶け込むと、Si-C溶液7内の炭素溶解度は飽和濃度に近づく。
[Generation Step (Step S2)]
The chamber 1 is filled with an inert gas. The crucible 2 is induction-heated by the high-frequency coil 4 and the raw material in the crucible 2 is heated to the melting point or higher. When the crucible 2 contains carbon, when the crucible 2 is heated, the carbon is dissolved from the crucible 2 into the melt, and the Si—C solution 7 is generated. When the crucible 2 does not contain carbon, carbon may be supplied from the outside. When carbon dissolves in the Si—C solution 7, the carbon solubility in the Si—C solution 7 approaches the saturation concentration.
 [成長工程(ステップS3)]
 駆動装置69によってシードシャフト6を下降させ、Si-C溶液7に種結晶8の結晶成長面81を接触させる。この状態で、高周波コイル4を制御し、種結晶8の近傍のSi-C溶液7を結晶成長温度に保持する。結晶成長温度は、例えば1600~2050℃であり、好ましくは1850~2000℃である。このとき、種結晶8の近傍を低温にして、SiCを過飽和状態にする。SiCが過飽和状態になることによって、結晶成長面81上にSiC単結晶が成長する。
[Growth process (step S3)]
The seed shaft 6 is lowered by the driving device 69, and the crystal growth surface 81 of the seed crystal 8 is brought into contact with the Si—C solution 7. In this state, the high frequency coil 4 is controlled to keep the Si—C solution 7 in the vicinity of the seed crystal 8 at the crystal growth temperature. The crystal growth temperature is, for example, 1600 to 2050 ° C., preferably 1850 to 2000 ° C. At this time, the vicinity of the seed crystal 8 is set to a low temperature, and SiC is supersaturated. When SiC becomes supersaturated, a SiC single crystal grows on the crystal growth surface 81.
 種結晶8の近傍を低温にする方法は、特に限定されない。例えば、高周波コイル4を制御して、種結晶8近傍の温度を他の領域の温度よりも低くしてもよい。あるいは、種結晶8の近傍を冷媒によって冷却してもよい。具体的には、シードシャフト6の内部に冷媒を循環させてもよい。冷媒は例えば、ヘリウムやアルゴン等の不活性ガスである。シードシャフト6の内部に冷媒を循環させることによって、種結晶8が冷却され、種結晶8の近傍の温度も低くすることができる。 The method for lowering the temperature near the seed crystal 8 is not particularly limited. For example, the high-frequency coil 4 may be controlled so that the temperature in the vicinity of the seed crystal 8 is lower than the temperature in other regions. Alternatively, the vicinity of the seed crystal 8 may be cooled by a refrigerant. Specifically, a coolant may be circulated inside the seed shaft 6. The refrigerant is, for example, an inert gas such as helium or argon. By circulating the refrigerant inside the seed shaft 6, the seed crystal 8 is cooled, and the temperature in the vicinity of the seed crystal 8 can be lowered.
 このとき、駆動装置59によって回転軸5及び坩堝2を回転させることが好ましい。また、駆動装置69によってシードシャフト6及び種結晶8を回転させることが好ましい。坩堝2の回転方向と種結晶8の回転方向は、同じであってもよいし、反対であってもよい。それぞれの回転速度は、一定であってもよいし、変動させてもよい。 At this time, it is preferable to rotate the rotating shaft 5 and the crucible 2 by the driving device 59. Further, it is preferable to rotate the seed shaft 6 and the seed crystal 8 by the driving device 69. The rotation direction of the crucible 2 and the rotation direction of the seed crystal 8 may be the same or opposite. Each rotation speed may be constant or may be varied.
 [第1の実施形態の効果]
 種結晶8の近傍を過飽和状態に保持する時間(以下「成長時間」という。)を長くすることで、結晶成長面81上に形成されるSiC単結晶の厚みを厚くすることができる。一方、成長時間を長くすると、Si-C溶液7の蒸気とシードシャフト6との反応が進行し、シードシャフト6の熱的特性が初期状態から変化する。
[Effect of the first embodiment]
By increasing the time for maintaining the vicinity of the seed crystal 8 in the supersaturated state (hereinafter referred to as “growth time”), the thickness of the SiC single crystal formed on the crystal growth surface 81 can be increased. On the other hand, when the growth time is lengthened, the reaction between the vapor of the Si—C solution 7 and the seed shaft 6 proceeds, and the thermal characteristics of the seed shaft 6 change from the initial state.
 シードシャフト6の熱的特性が変化すると、シードシャフト6からの伝熱及び輻射による抜熱量が変化する。これによって、種結晶8の近傍のSi-C溶液7の過飽和度も変化する。過飽和度が適正な範囲を外れると、安定したSiC単結晶の成長ができなくなる。具体的には、異種多形、異方位の結晶が形成されたり、溶媒インクルージョンが形成されたりしやすくなる。 When the thermal characteristics of the seed shaft 6 change, the amount of heat removed from the seed shaft 6 due to heat transfer and radiation changes. As a result, the supersaturation degree of the Si—C solution 7 in the vicinity of the seed crystal 8 also changes. If the supersaturation is outside the proper range, stable SiC single crystals cannot be grown. Specifically, different types of polymorphs and crystals with different orientations are likely to be formed, and solvent inclusions are likely to be formed.
 本実施形態による製造方法によれば、シードシャフト6は、少なくとも、領域61のうち、種結晶8が取り付けられる領域以外の領域において、表層のガス透過率が5×10-5/s以下である。シードシャフト6の表層のガス透過率を低くすることで、Si-C溶液7の蒸気がシードシャフト6の内部に侵入するのを抑制できる。 According to the manufacturing method according to the present embodiment, the seed shaft 6 has a gas permeability of 5 × 10 −5 m 2 / s or less at least in the region 61 other than the region to which the seed crystal 8 is attached. It is. By reducing the gas permeability of the surface layer of the seed shaft 6, it is possible to suppress the vapor of the Si—C solution 7 from entering the inside of the seed shaft 6.
 シードシャフト6を用いて成長工程を実施することで、成長時間を長くしても、Si-C溶液7の蒸気とシードシャフト6とが反応するのを抑制できる。そのため、シードシャフト6の熱的特性を長時間、初期状態に維持することできる。これによって、溶液成長法によるSiC単結晶の製造を長時間安定して実施することができる。そのため、高品質で結晶厚みの大きいSiC単結晶を製造することができる。 By carrying out the growth process using the seed shaft 6, it is possible to suppress the reaction of the vapor of the Si—C solution 7 and the seed shaft 6 even if the growth time is lengthened. Therefore, the thermal characteristics of the seed shaft 6 can be maintained in the initial state for a long time. Thereby, the production of the SiC single crystal by the solution growth method can be carried out stably for a long time. Therefore, a SiC single crystal having a high quality and a large crystal thickness can be manufactured.
 本実施形態による製造方法は、これに限定されないが、シードシャフト6の径が大きい場合、例えばシードシャフトの径が25mm以上の場合に好適である。シードシャフト6の径が大きいほど、シードシャフト6からの抜熱の量が大きくなり、シードシャフト6の特性の変化による結晶成長への影響が大きくなる。本実施形態による製造方法は、シードシャフト6の径が40mm以上の場合、特に好適である。 The manufacturing method according to the present embodiment is not limited to this, but is suitable when the diameter of the seed shaft 6 is large, for example, when the diameter of the seed shaft is 25 mm or more. The larger the diameter of the seed shaft 6, the larger the amount of heat removed from the seed shaft 6, and the greater the influence on the crystal growth due to the change in the characteristics of the seed shaft 6. The manufacturing method according to the present embodiment is particularly suitable when the diameter of the seed shaft 6 is 40 mm or more.
 本実施形態による製造方法は、これに限定されないが、成長時間が長い場合、例えば成長時間が30時間以上の場合に好適である。成長時間が長い程、シードシャフト6と蒸気との反応による影響が顕在化するからである。本実施形態による製造方法は、成長時間が40時間以上の場合、特に好適である。 The manufacturing method according to the present embodiment is not limited to this, but is suitable when the growth time is long, for example, when the growth time is 30 hours or more. This is because the longer the growth time, the more obvious the influence of the reaction between the seed shaft 6 and the steam. The manufacturing method according to the present embodiment is particularly suitable when the growth time is 40 hours or more.
 [製造装置の他の例1]
 図5は、溶液成長法によるSiC単結晶の製造に用いる製造装置の他の例である製造装置200の模式的断面図である。製造装置200は、製造装置100(図2)と比較して、坩堝の構成が異なっている。製造装置200は、製造装置100の坩堝2に代えて、坩堝25を備えている。
[Other example 1 of manufacturing apparatus]
FIG. 5 is a schematic cross-sectional view of a manufacturing apparatus 200 as another example of a manufacturing apparatus used for manufacturing a SiC single crystal by a solution growth method. The manufacturing apparatus 200 differs in the structure of the crucible compared with the manufacturing apparatus 100 (FIG. 2). The manufacturing apparatus 200 includes a crucible 25 instead of the crucible 2 of the manufacturing apparatus 100.
 坩堝25は、筒部21、及び筒部21の下端に配置された底部22に加えて、中蓋23をさらに備えている。中蓋23は、筒部21及び底部22からなる坩堝25の本体にSi-C溶液7が収容された状態で、Si-C溶液7の液面よりも上方に位置するように配置されている。中蓋23は、シードシャフト6を通す貫通孔23aを有している。 The crucible 25 further includes an inner lid 23 in addition to the cylindrical portion 21 and the bottom portion 22 disposed at the lower end of the cylindrical portion 21. The inner lid 23 is disposed so as to be positioned above the liquid surface of the Si—C solution 7 in a state where the Si—C solution 7 is accommodated in the main body of the crucible 25 including the cylindrical portion 21 and the bottom portion 22. . The inner lid 23 has a through hole 23 a through which the seed shaft 6 is passed.
 坩堝25の構成によれば、Si-C溶液7の液面からの輻射が中蓋23によって遮られる。そのため、Si-C溶液7の液面と中蓋23との間の空間が保温される。この構成によれば、Si-C溶液7の種結晶8近傍以外の領域の温度を均一にすることができる。 According to the structure of the crucible 25, radiation from the liquid surface of the Si—C solution 7 is blocked by the inner lid 23. Therefore, the space between the liquid level of the Si—C solution 7 and the inner lid 23 is kept warm. According to this configuration, the temperature of the region other than the vicinity of the seed crystal 8 of the Si—C solution 7 can be made uniform.
 中蓋23は、シードシャフト6と同様、高温に耐えられる材料で形成されている。中蓋23は、炭素で形成されていることが好ましい。中蓋23は、シードシャフト6と同様、成長時間を長くすると、Si-C溶液7の蒸気と反応し、熱的特性が初期状態から変化する。これによって、Si-C溶液7の液面と中蓋23との間の空間の温度分布も初期状態から変化する。 The inner lid 23 is made of a material that can withstand high temperatures, like the seed shaft 6. The inner lid 23 is preferably made of carbon. As with the seed shaft 6, the inner lid 23 reacts with the vapor of the Si—C solution 7 when the growth time is lengthened, and the thermal characteristics change from the initial state. As a result, the temperature distribution in the space between the liquid level of the Si—C solution 7 and the inner lid 23 also changes from the initial state.
 本実施形態では、中蓋23の少なくとも下面231の表層のガス透過率を5×10-5/s以下にする。この構成によれば、成長時間を長くしても、Si-C溶液7の蒸気と中蓋23とが反応するのを抑制できる。そのため、中蓋23の熱的特性を長時間、初期状態に維持できる。中蓋23の下面231の表層のガス透過率は、好ましくは5×10-6/s以下であり、より好ましくは5×10-7/s以下である。 In the present embodiment, the gas permeability of the surface layer of at least the lower surface 231 of the inner lid 23 is set to 5 × 10 −5 m 2 / s or less. According to this configuration, the reaction of the vapor of the Si—C solution 7 and the inner lid 23 can be suppressed even if the growth time is extended. Therefore, the thermal characteristics of the inner lid 23 can be maintained in the initial state for a long time. The gas permeability of the surface layer of the lower surface 231 of the inner lid 23 is preferably 5 × 10 −6 m 2 / s or less, more preferably 5 × 10 −7 m 2 / s or less.
 中蓋23は、Si-C溶液7の蒸気と接する下面の表層のガス透過率が5×10-5/s以下であればよい。中蓋23の内部及び上面のガス透過率は任意である。 The inner lid 23 only needs to have a gas permeability of 5 × 10 −5 m 2 / s or less on the surface layer on the lower surface in contact with the vapor of the Si—C solution 7. The gas permeability of the inside and upper surfaces of the inner lid 23 is arbitrary.
 中蓋23の下面の表層のガス透過率は、シードシャフト6の場合と同様に、中蓋23にカーボン接着材を塗布したり、中蓋23にSiCやPGをコーティングしたりすることによって制御できる。 As in the case of the seed shaft 6, the gas permeability of the surface layer on the lower surface of the inner lid 23 can be controlled by applying a carbon adhesive to the inner lid 23 or coating the inner lid 23 with SiC or PG. .
 中蓋23の表層のガス透過率は、図6に示すように、中蓋23から試験片23Aを採取し、シードシャフト6の場合(図3及び図4)と同様にして測定することができる。 As shown in FIG. 6, the gas permeability of the surface layer of the inner lid 23 can be measured in the same manner as in the case of the seed shaft 6 (FIGS. 3 and 4) by collecting a test piece 23A from the inner lid 23. .
 [製造装置の他の例2]
 図7は、溶液成長法によるSiC単結晶の製造に用いる製造装置の他の例である製造装置300の模式的断面図である。製造装置300は、製造装置100(図2)と比較して、シードシャフトの構成が異なっている。製造装置300は、製造装置100のシードシャフト6に代えて、シードシャフト65を備えている。
[Other example 2 of manufacturing apparatus]
FIG. 7 is a schematic cross-sectional view of a manufacturing apparatus 300 which is another example of a manufacturing apparatus used for manufacturing a SiC single crystal by a solution growth method. The manufacturing apparatus 300 differs from the manufacturing apparatus 100 (FIG. 2) in the configuration of the seed shaft. The manufacturing apparatus 300 includes a seed shaft 65 instead of the seed shaft 6 of the manufacturing apparatus 100.
 シードシャフト65は、本体66と、本体66の下端面に取り付けられた台座67とを備えている。本体66と台座67とは、例えばネジによって接続されていてもよいし、接着材で固定されていてもよい。また、本体66と台座67とが一体的に構成されていてもよい。すなわち、シードシャフト65は、一つの部材から構成されていてもよい。 The seed shaft 65 includes a main body 66 and a pedestal 67 attached to the lower end surface of the main body 66. The main body 66 and the pedestal 67 may be connected by screws, for example, or may be fixed by an adhesive. Further, the main body 66 and the pedestal 67 may be configured integrally. That is, the seed shaft 65 may be composed of a single member.
 種結晶8は、台座67の下端面に取り付けられる。この構成によれば、本体66及び台座67の径を調整することによって、シードシャフト65からの抜熱量を調整し、種結晶8の近傍の過飽和度を制御することができる。図7に示す例では、種結晶8の径は、本体66の径よりも小さく、台座67の径よりも大きい。 The seed crystal 8 is attached to the lower end surface of the pedestal 67. According to this configuration, the amount of heat removed from the seed shaft 65 can be adjusted by adjusting the diameters of the main body 66 and the pedestal 67, and the degree of supersaturation in the vicinity of the seed crystal 8 can be controlled. In the example shown in FIG. 7, the diameter of the seed crystal 8 is smaller than the diameter of the main body 66 and larger than the diameter of the pedestal 67.
 本実施形態においても、シードシャフト65の下端と下端から高さhだけ離れた位置との間の領域において、シードシャフト65の表層のガス透過率を5×10-5/s以下にする。シードシャフト65の下端と下端から高さhだけ離れた位置との間の領域は、本体66の一部の領域661及び台座67を含む。すなわち、本実施形態では、領域661及び台座67の表層のガス透過率が5×10-5/s以下である。 Also in the present embodiment, the gas permeability of the surface layer of the seed shaft 65 is set to 5 × 10 −5 m 2 / s or less in a region between the lower end of the seed shaft 65 and a position separated from the lower end by the height h. . A region between the lower end of the seed shaft 65 and a position away from the lower end by a height h includes a partial region 661 of the main body 66 and a pedestal 67. That is, in this embodiment, the gas permeability of the surface layer of the region 661 and the pedestal 67 is 5 × 10 −5 m 2 / s or less.
 本実施形態においても、種結晶8が取り付けられる部分は、ガス透過率が高くてもよい。図7に示す例では、種結晶8の径は台座67の径よりも大きいので、台座67の下端面は種結晶8によってすべて覆われる。そのため、台座67の下端面の表層はガス透過率が高くてもよい。一方、本体66の下端面は一部露出しているので、この部分では、表層のガス透過率を5×10-5/s以下にする必要がある。 Also in this embodiment, the portion to which the seed crystal 8 is attached may have a high gas permeability. In the example shown in FIG. 7, since the diameter of the seed crystal 8 is larger than the diameter of the pedestal 67, the lower end surface of the pedestal 67 is entirely covered with the seed crystal 8. Therefore, the surface layer of the lower end surface of the pedestal 67 may have a high gas permeability. On the other hand, since the lower end surface of the main body 66 is partially exposed, the gas permeability of the surface layer needs to be 5 × 10 −5 m 2 / s or less in this portion.
 シードシャフト65によっても、シードシャフト6の場合と同様、成長時間を長くしても、Si-C溶液7の蒸気との反応を抑制できる。そのため、シードシャフト65の熱的特性を長時間、初期状態に維持することができる。 As with the seed shaft 6, the seed shaft 65 can suppress the reaction with the vapor of the Si—C solution 7 even if the growth time is lengthened. Therefore, the thermal characteristics of the seed shaft 65 can be maintained in the initial state for a long time.
 [第2の実施形態]
 本発明の第2の実施形態によるSiC単結晶の製造方法は、第1の実施形態と比較して、成長工程(図1のステップS3)が異なっている。
[Second Embodiment]
The method for producing a SiC single crystal according to the second embodiment of the present invention differs from the first embodiment in the growth process (step S3 in FIG. 1).
 本実施形態では、成長工程において、種結晶8をSi-C溶液7に接触させた後、シードシャフト6を所定の距離だけ上昇させる。これによって、図8に示すように、種結晶8とSi-C溶液7との間にメニスカス71が形成される。メニスカス71の高さは、種結晶8とSi-C溶液7の液面との間の距離dによって制御することができる。 In this embodiment, after the seed crystal 8 is brought into contact with the Si—C solution 7 in the growth process, the seed shaft 6 is raised by a predetermined distance. As a result, a meniscus 71 is formed between the seed crystal 8 and the Si—C solution 7 as shown in FIG. The height of the meniscus 71 can be controlled by the distance d between the seed crystal 8 and the liquid surface of the Si—C solution 7.
 本実施形態によれば、メニスカス71によって、SiC単結晶の拡大角を調整することができる。 According to the present embodiment, the enlargement angle of the SiC single crystal can be adjusted by the meniscus 71.
 なお、SiC単結晶の成長時間を長くすると、SiC単結晶の成長が進行することや、Si-C溶液7が蒸発することによって、Si-C溶液7の液面が低下する。Si-C溶液7の液面が低下することによって、種結晶8とSi-C溶液7の液面との間の距離dが変化し、メニスカス71の形状が初期状態から変化する。メニスカス71の形状が変化すると、これに伴って、種結晶8近傍の過飽和度も変化する。安定して長時間の成長を行うためには、Si-C溶液7の液面の低下を補償する方向に、シードシャフト6及び/又は坩堝2を移動させることが好ましい。すなわち、Si-C溶液7の液面が低下する速度を予め見積もっておき、同じ速度でシードシャフト6を下降させるか、同じ速度で坩堝2を上昇させることが好ましい。あるいは、種結晶8とSi-C溶液7の液面との間の距離dが一定となるように、シードシャフト6及び坩堝2の両方を移動させてもよい。 If the growth time of the SiC single crystal is lengthened, the growth of the SiC single crystal proceeds or the Si—C solution 7 evaporates, so that the liquid level of the Si—C solution 7 decreases. As the liquid level of the Si—C solution 7 decreases, the distance d between the seed crystal 8 and the liquid level of the Si—C solution 7 changes, and the shape of the meniscus 71 changes from the initial state. When the shape of the meniscus 71 changes, the supersaturation degree in the vicinity of the seed crystal 8 also changes accordingly. In order to perform stable growth for a long time, it is preferable to move the seed shaft 6 and / or the crucible 2 in a direction to compensate for the drop in the liquid level of the Si—C solution 7. That is, it is preferable to estimate in advance the speed at which the liquid level of the Si—C solution 7 is lowered and to lower the seed shaft 6 at the same speed or raise the crucible 2 at the same speed. Alternatively, both the seed shaft 6 and the crucible 2 may be moved so that the distance d between the seed crystal 8 and the liquid surface of the Si—C solution 7 is constant.
 以下、実施例によって本発明をより具体的に説明する。本発明はこれらの実施例に限定されない。 Hereinafter, the present invention will be described more specifically with reference to examples. The present invention is not limited to these examples.
 シードシャフトのガス透過率等を代えてSiC単結晶を製造し、製造したSiC単結晶の品質を評価した。 The SiC single crystal was manufactured by changing the gas permeability of the seed shaft and the quality of the manufactured SiC single crystal was evaluated.
 [実施例1]
 製造装置100(図2)に準じた装置を用いて、SiC単結晶を製造した。Si-C溶液の原料の組成は、原子比で、Si:Cr=0.6:0.4とした。種結晶は、直径50.8mmの4H多形のSiC単結晶とし、結晶成長面は(000-1)面とした。
[Example 1]
The SiC single crystal was manufactured using the apparatus according to the manufacturing apparatus 100 (FIG. 2). The composition of the raw material of the Si—C solution was Si: Cr = 0.6: 0.4 in atomic ratio. The seed crystal was a 4H polymorphic SiC single crystal having a diameter of 50.8 mm, and the crystal growth plane was a (000-1) plane.
 シードシャフトは等方性の黒鉛からなる、直径46mmの中実のものを使用した。シードシャフトは、側面及び底面にカーボン接着材を隈なく、かつ薄く塗布して、開気孔を閉塞してガス透過率を低下させた。カーボン接着材の塗布領域は、シードシャフトの下端と下端から50mmの間の領域とした。シードシャフトは、カーボン接着材を塗布した後、大気雰囲気下で250℃、1時間焼成し、カーボン接着材のバインダー成分を揮発させた。同じ条件で調整したシードシャフトから試験片を採取し、室温で表層のガス透過率を測定した。ガス透過率は、5×10-5/sであった。 The seed shaft made of isotropic graphite and having a diameter of 46 mm was used. The seed shaft was coated with a thin and thin carbon adhesive on the side and bottom surfaces to close the open pores and reduce the gas permeability. The application area of the carbon adhesive was an area between the lower end of the seed shaft and 50 mm from the lower end. After applying the carbon adhesive, the seed shaft was baked at 250 ° C. for 1 hour in an air atmosphere to volatilize the binder component of the carbon adhesive. A specimen was collected from the seed shaft adjusted under the same conditions, and the gas permeability of the surface layer was measured at room temperature. The gas permeability was 5 × 10 −5 m 2 / s.
 このシードシャフトを用いて、種結晶をSi-C溶液に接触させる結晶成長を実施した。結晶成長温度は1950℃、種結晶近傍の温度勾配は12℃/cmであった。種結晶をSi-C溶液に接触させた後、シードシャフトを0.5mm上昇させてメニスカスを形成した。成長開始から40時間経過した後、シードシャフトを上昇させて種結晶をSi-C溶液から引き離し、結晶成長を終了させた。 Using this seed shaft, crystal growth was performed by bringing the seed crystal into contact with the Si—C solution. The crystal growth temperature was 1950 ° C., and the temperature gradient near the seed crystal was 12 ° C./cm. After bringing the seed crystal into contact with the Si—C solution, the seed shaft was raised by 0.5 mm to form a meniscus. After 40 hours from the start of growth, the seed shaft was raised to separate the seed crystal from the Si—C solution, thereby terminating the crystal growth.
 [実施例2]
 シードシャフトへのカーボン接着材の塗布量を変えて、開気孔の閉塞度合を向上させた。同じ条件で調整したシードシャフトから採取した試験片によって測定した室温における表層のガス透過率は、5×10-6/sであった。その他の条件は実施例1と同様にして、SiC単結晶を製造した。
[Example 2]
The amount of carbon adhesive applied to the seed shaft was changed to improve the degree of opening of the open pores. The gas permeability of the surface layer at room temperature measured with a test piece collected from a seed shaft adjusted under the same conditions was 5 × 10 −6 m 2 / s. Other conditions were the same as in Example 1 to produce a SiC single crystal.
 [実施例3]
 シードシャフトへのカーボン接着材の塗布に代えて、CVD法によってSiCを約10μmコーティングした。同じ条件で調整したシードシャフトから採取した試験片によって測定した室温における表層のガス透過率は、5×10-7/sであった。その他の条件は実施例1と同様にして、SiC単結晶を製造した。
[Example 3]
Instead of applying the carbon adhesive to the seed shaft, about 10 μm of SiC was coated by the CVD method. The gas permeability of the surface layer at room temperature measured with a test piece collected from a seed shaft adjusted under the same conditions was 5 × 10 −7 m 2 / s. Other conditions were the same as in Example 1 to produce a SiC single crystal.
 [実施例4]
 製造装置200(図5)に準じた装置を用いて、SiC単結晶を製造した。Si-C溶液の液面から10mm上の位置に、厚さ5mmの黒鉛製の中蓋を設置した。中蓋の両面(側面も含む)にカーボン接着材を塗布した。中蓋は、カーボン接着材を塗布した後、大気雰囲気下で250℃、1時間焼成し、カーボン接着材のバインダー成分を揮発させた。同じ条件で調整した中蓋から採取した試験片によって測定した室温における表層のガス透過率は、5×10-5/sであった。その他の条件は実施例1と同様にして、SiC単結晶を製造した。
[Example 4]
The SiC single crystal was manufactured using the apparatus according to the manufacturing apparatus 200 (FIG. 5). A graphite inner lid having a thickness of 5 mm was placed at a position 10 mm above the surface of the Si—C solution. A carbon adhesive was applied to both sides (including side surfaces) of the inner lid. After applying the carbon adhesive, the inner lid was baked at 250 ° C. for 1 hour in an air atmosphere to volatilize the binder component of the carbon adhesive. The gas permeability of the surface layer at room temperature measured with a test piece collected from the inner lid adjusted under the same conditions was 5 × 10 −5 m 2 / s. Other conditions were the same as in Example 1 to produce a SiC single crystal.
 [実施例5]
 製造装置300(図7)に準じた装置を用いて、SiC単結晶を製造した。シードシャフトは、直径75mmの中実構造の本体の下端に、直径46mmで高さ5mmの台座を取り付けたものを使用した。本体及び台座はともに等方性の黒鉛である。直径50.8mmの種結晶は台座の下端面に取り付けた。本体の側面及び底面、並びに台座の側面に、カーボン接着材を隈なく、かつ薄く塗布して、開気孔を閉塞してガス透過率を低下させた。カーボン接着材の塗布領域は、シードシャフトの下端と下端から50mmの位置との間の領域とした。シードシャフトは、カーボン接着材を塗布した後、大気雰囲気下で250℃、1時間焼成し、カーボン接着材のバインダー成分を揮発させた。同じ条件で調整したシードシャフトから試験片を採取し、室温で表層のガス透過率を測定した。ガス透過率は、5×10-5/sであった。その他の条件は実施例1と同様にして、SiC単結晶を製造した。
[Example 5]
A SiC single crystal was manufactured using an apparatus according to the manufacturing apparatus 300 (FIG. 7). The seed shaft used was a solid body with a diameter of 75 mm and a base with a diameter of 46 mm and a height of 5 mm attached to the lower end. The body and pedestal are both isotropic graphite. A seed crystal having a diameter of 50.8 mm was attached to the lower end surface of the pedestal. A carbon adhesive was applied thinly and thinly on the side and bottom surfaces of the main body and the side surface of the pedestal to close the open pores and reduce the gas permeability. The application area of the carbon adhesive was an area between the lower end of the seed shaft and a position 50 mm from the lower end. After applying the carbon adhesive, the seed shaft was baked at 250 ° C. for 1 hour in an air atmosphere to volatilize the binder component of the carbon adhesive. A specimen was collected from the seed shaft adjusted under the same conditions, and the gas permeability of the surface layer was measured at room temperature. The gas permeability was 5 × 10 −5 m 2 / s. Other conditions were the same as in Example 1 to produce a SiC single crystal.
 [実施例6]
 シードシャフトの本体を外径75mm、内径69mmの中空構造とした。その他の条件は実施例5と同様にして、SiC単結晶を製造した。
[Example 6]
The main body of the seed shaft has a hollow structure with an outer diameter of 75 mm and an inner diameter of 69 mm. Other conditions were the same as in Example 5 to produce a SiC single crystal.
 [実施例7]
 結晶成長中、メニスカス高さが初期状態と一致するように、シードシャフトを1.0mm下降するように駆動した。その他の条件は実施例6と同様にして、SiC単結晶を製造した。
[Example 7]
During the crystal growth, the seed shaft was driven to descend 1.0 mm so that the meniscus height coincided with the initial state. Other conditions were the same as in Example 6 to produce a SiC single crystal.
 [比較例]
 シードシャフトとして黒鉛材をそのまま使用した。同じ条件で調整したシードシャフトから採取した試験片によって測定した室温における表層のガス透過率は、8×10-4/sであった。その他の条件は実施例1と同様にして、SiC単結晶を製造した。
[Comparative example]
The graphite material was used as it was as a seed shaft. The gas permeability of the surface layer at room temperature measured by a test piece collected from a seed shaft adjusted under the same conditions was 8 × 10 −4 m 2 / s. Other conditions were the same as in Example 1 to produce a SiC single crystal.
 [評価方法]
 製造したSiC単結晶を切断し、切断面を研磨してSiC単結晶の成長厚みを測定した。図9に示すように、SiC単結晶の表面に多結晶やインクルージョンが形成された場合には、そこまでの厚みを「均一成長厚み」と定義し、各SiC単結晶の均一成長厚みを測定した。均一成長厚みが3.0mm以上の場合を「優」、2.0mm以上3.0mm未満の場合を「良」、2.0mm未満の場合を「不可」と評価した。
[Evaluation methods]
The manufactured SiC single crystal was cut, the cut surface was polished, and the growth thickness of the SiC single crystal was measured. As shown in FIG. 9, when a polycrystal or inclusion is formed on the surface of the SiC single crystal, the thickness up to that is defined as “uniform growth thickness”, and the uniform growth thickness of each SiC single crystal was measured. . The case where the uniform growth thickness was 3.0 mm or more was evaluated as “excellent”, the case where it was 2.0 mm or more and less than 3.0 mm was evaluated as “good”, and the case where it was less than 2.0 mm was evaluated as “impossible”.
 製造条件及び評価結果を表1にまとめて示す。 Manufacturing conditions and evaluation results are summarized in Table 1.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 実施例1~3及び比較例の比較から、ガス透過率を低くすることで、均一成長厚みを大きくできることが分かる。また、ガス透過率を5×10-5m/s以下にすることによって、均一成長厚みを2.0mm以上にできることが分かる。さらに、実施例7に示すように、メニスカス高さ制御を組み合わせることで、均一成長厚みを3.0mm以上にできることが分かる From the comparison of Examples 1 to 3 and the comparative example, it can be seen that the uniform growth thickness can be increased by lowering the gas permeability. It can also be seen that by setting the gas permeability to 5 × 10 −5 m / s or less, the uniform growth thickness can be set to 2.0 mm or more. Furthermore, as shown in Example 7, it can be seen that the uniform growth thickness can be increased to 3.0 mm or more by combining the meniscus height control.
 以上、本発明の実施形態を説明したが、上述した実施形態は本発明を実施するための例示にすぎない。よって、本発明は上述した実施形態に限定されることなく、その趣旨を逸脱しない範囲で、上述した実施形態を適宜変形して実施することが可能である。 As mentioned above, although embodiment of this invention was described, embodiment mentioned above is only the illustration for implementing this invention. Therefore, the present invention is not limited to the above-described embodiment, and can be implemented by appropriately modifying the above-described embodiment without departing from the spirit thereof.

Claims (8)

  1.  シードシャフトの下端面に取り付けられた種結晶の結晶成長面をSi-C溶液に接触させてSiC単結晶を成長させる、溶液成長法によるSiC単結晶の製造方法であって、
     坩堝に収容された原料を加熱して溶融させ、前記Si-C溶液を生成する工程と、
     前記結晶成長面を前記Si-C溶液に接触させ、前記結晶成長面上に前記SiC単結晶を成長させる工程とを備え、
     前記シードシャフトは、少なくとも、下端と下端から30mmの位置との間の領域のうち、前記種結晶が取り付けられる領域以外の領域において、表層のガス透過率が5×10-5/s以下である、製造方法。
    A method for producing a SiC single crystal by a solution growth method, wherein a crystal growth surface of a seed crystal attached to a lower end surface of a seed shaft is brought into contact with a Si—C solution to grow a SiC single crystal,
    Heating and melting the raw material contained in the crucible to produce the Si-C solution;
    Contacting the crystal growth surface with the Si-C solution and growing the SiC single crystal on the crystal growth surface,
    The seed shaft has a gas permeability of 5 × 10 −5 m 2 / s or less in at least a region between the lower end and a position 30 mm from the lower end other than the region to which the seed crystal is attached. A manufacturing method.
  2.  請求項1に記載の製造方法であって、
     前記坩堝は、
     筒部、及び前記筒部の下端部に配置される底部を含む本体と、
     前記本体に前記Si-C溶液が収容された状態で、前記Si-C溶液の液面の上方であって前記筒部内に位置し、前記シードシャフトを通す貫通孔を有する中蓋とを備え、
     前記中蓋の少なくとも下面の表層のガス透過率が5×10-5/s以下である、製造方法。
    The manufacturing method according to claim 1,
    The crucible is
    A main body including a cylindrical portion and a bottom portion disposed at a lower end portion of the cylindrical portion;
    An inner lid having a through-hole passing through the seed shaft and positioned in the cylindrical portion above the Si-C solution level in a state where the Si-C solution is accommodated in the main body;
    The manufacturing method wherein the gas permeability of the surface layer on at least the lower surface of the inner lid is 5 × 10 −5 m 2 / s or less.
  3.  請求項1又は2に記載の製造方法であって、
     前記シードシャフトは、25mm以上の外径を有する、製造方法。
    The manufacturing method according to claim 1 or 2,
    The seed shaft has an outer diameter of 25 mm or more.
  4.  請求項1~3のいずれか一項に記載の製造方法であって、
     前記成長させる工程において、前記結晶成長面を前記Si-C溶液に接触させる時間が30時間以上である、製造方法。
    The production method according to any one of claims 1 to 3,
    In the growing step, the time for bringing the crystal growth surface into contact with the Si—C solution is 30 hours or more.
  5.  溶液成長法によるSiC単結晶の製造に用いる製造装置であって、
     Si-C溶液が収容される坩堝と、
     下端面に種結晶が取り付けられるシードシャフトとを備え、
     前記シードシャフトは、少なくとも、下端と下端から30mmの位置との間の領域のうち、前記種結晶が取り付けられる領域以外の領域において、表層のガス透過率が5×10-5/s以下である、製造装置。
    A manufacturing apparatus used for manufacturing a SiC single crystal by a solution growth method,
    A crucible containing a Si-C solution;
    A seed shaft to which a seed crystal is attached to the lower end surface;
    The seed shaft has a gas permeability of 5 × 10 −5 m 2 / s or less in at least a region between the lower end and a position 30 mm from the lower end other than the region to which the seed crystal is attached. Is a manufacturing device.
  6.  請求項5に記載の製造装置であって、
     前記シードシャフトは、25mm以上の外径を有する、製造装置。
    The manufacturing apparatus according to claim 5,
    The seed shaft is a manufacturing apparatus having an outer diameter of 25 mm or more.
  7.  下端面に種結晶を取り付け、前記種結晶の結晶成長面をSi-C溶液に接触させてSiC単結晶を成長させる溶液成長法によるSiC単結晶の製造に用いるシードシャフトであって、
     少なくとも、下端と下端から30mmの位置との間の領域のうち、前記種結晶が取り付けられる領域以外の領域において、表層のガス透過率が5×10-5/s以下である、シードシャフト。
    A seed shaft used for manufacturing a SiC single crystal by a solution growth method in which a seed crystal is attached to a lower end surface and a crystal growth surface of the seed crystal is brought into contact with a Si-C solution to grow a SiC single crystal,
    A seed shaft having a gas permeability of 5 × 10 −5 m 2 / s or less in a region other than a region to which the seed crystal is attached, at least in a region between a lower end and a position 30 mm from the lower end .
  8.  請求項7に記載のシードシャフトであって、
     25mm以上の外径を有する、シードシャフト。
    The seed shaft according to claim 7,
    A seed shaft having an outer diameter of 25 mm or more.
PCT/JP2017/035055 2016-09-27 2017-09-27 METHOD AND APPARATUS FOR PRODUCING SiC SINGLE CRYSTAL, AND SEED SHAFT USED IN PRODUCTION OF SiC SINGLE CRYSTAL WO2018062318A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018542805A JP6627984B2 (en) 2016-09-27 2017-09-27 Method and apparatus for producing SiC single crystal, and seed shaft used for producing SiC single crystal

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016188674 2016-09-27
JP2016-188674 2016-09-27

Publications (1)

Publication Number Publication Date
WO2018062318A1 true WO2018062318A1 (en) 2018-04-05

Family

ID=61763393

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/035055 WO2018062318A1 (en) 2016-09-27 2017-09-27 METHOD AND APPARATUS FOR PRODUCING SiC SINGLE CRYSTAL, AND SEED SHAFT USED IN PRODUCTION OF SiC SINGLE CRYSTAL

Country Status (2)

Country Link
JP (1) JP6627984B2 (en)
WO (1) WO2018062318A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012501040A (en) * 2008-08-29 2012-01-12 パナソニック株式会社 Manganese battery
JP2013071870A (en) * 2011-09-28 2013-04-22 Kyocera Corp Apparatus for growing crystal and method for growing crystal

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012501040A (en) * 2008-08-29 2012-01-12 パナソニック株式会社 Manganese battery
JP2013071870A (en) * 2011-09-28 2013-04-22 Kyocera Corp Apparatus for growing crystal and method for growing crystal

Also Published As

Publication number Publication date
JP6627984B2 (en) 2020-01-08
JPWO2018062318A1 (en) 2019-03-07

Similar Documents

Publication Publication Date Title
JP4736401B2 (en) Method for producing silicon carbide single crystal
JP2014518194A (en) Silicon carbide single crystal growth apparatus and method
JP5439353B2 (en) SiC single crystal manufacturing apparatus and crucible used therefor
JP2018168023A (en) Device and method for manufacturing silicon carbide single crystal ingot
TW201938855A (en) Production method for silicon carbide single crystal
JP6784220B2 (en) Method for manufacturing SiC single crystal
KR101636435B1 (en) Porous graphite crucible and the manufacturing method of SiC single crystal via solution growth using the same
US9783911B2 (en) Apparatus for producing SiC single crystal by solution growth method, and method for producing SiC single crystal by using the production apparatus and crucible used in the production apparatus
KR20190058963A (en) Reactor for growing silicon carbide single crystal
JP6627984B2 (en) Method and apparatus for producing SiC single crystal, and seed shaft used for producing SiC single crystal
WO2017135272A1 (en) Method for manufacturing sic single crystal and sic seed crystal
JP6409955B2 (en) Method for producing SiC single crystal
WO2018062224A1 (en) METHOD FOR PRODUCING SiC SINGLE CRYSTAL, AND SiC SEED CRYSTAL
JP2010275190A (en) Method for producing silicon carbide single crystal
JP2006096578A (en) Method for producing silicon carbide single crystal and ingot of silicon carbide single crystal
KR20210004200A (en) Manufacturing apparatus for siliconcarbide single crystal
JP6821896B2 (en) Silicon-based molten composition and method for producing a silicon carbide single crystal using the same
WO2016148207A1 (en) SiC SINGLE CRYSTAL PRODUCTION METHOD
WO2014192573A1 (en) SiC-SINGLE-CRYSTAL PRODUCTION DEVICE, AND SiC-SINGLE-CRYSTAL PRODUCTION METHOD USING SAID PRODUCTION DEVICE
KR20180026186A (en) Manufacturing apparatus for silicon carbide single crystal
KR20210004199A (en) Manufacturing apparatus for siliconcarbide single crystal
KR20200041167A (en) Manufacturing apparatus for silicon carbide single crystal and manufacturing method of silicon carbide single crystal
EP4130347A1 (en) Method for producing sic single crystal
KR102609883B1 (en) Silicon based melting composition and manufacturing method for silicon carbide single crystal using the same
KR102302753B1 (en) Silicon based melting composition and manufacturing method for silicon carbide single crystal using the same

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018542805

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17856267

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17856267

Country of ref document: EP

Kind code of ref document: A1