JP2014518194A - Silicon carbide single crystal growth apparatus and method - Google Patents

Silicon carbide single crystal growth apparatus and method Download PDF

Info

Publication number
JP2014518194A
JP2014518194A JP2014518793A JP2014518793A JP2014518194A JP 2014518194 A JP2014518194 A JP 2014518194A JP 2014518793 A JP2014518793 A JP 2014518793A JP 2014518793 A JP2014518793 A JP 2014518793A JP 2014518194 A JP2014518194 A JP 2014518194A
Authority
JP
Japan
Prior art keywords
silicon carbide
crucible
single crystal
carbide single
heating element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014518793A
Other languages
Japanese (ja)
Other versions
JP5979739B2 (en
Inventor
ユン ショル キム
スン ヒュク ベ
スン ワン ホン
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SK Innovation Co Ltd
SK Energy Co Ltd
Original Assignee
SK Innovation Co Ltd
SK Energy Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SK Innovation Co Ltd, SK Energy Co Ltd filed Critical SK Innovation Co Ltd
Publication of JP2014518194A publication Critical patent/JP2014518194A/en
Application granted granted Critical
Publication of JP5979739B2 publication Critical patent/JP5979739B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B9/00Single-crystal growth from melt solutions using molten solvents
    • C30B9/04Single-crystal growth from melt solutions using molten solvents by cooling of the solution
    • C30B9/06Single-crystal growth from melt solutions using molten solvents by cooling of the solution using as solvent a component of the crystal composition
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/36Carbides
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B11/00Single-crystal growth by normal freezing or freezing under temperature gradient, e.g. Bridgman-Stockbarger method
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B23/00Single-crystal growth by condensing evaporated or sublimed materials

Abstract

本発明は、液相成長(Solution growth)により炭化珪素単結晶を成長させるための装置およびその方法に関する。本発明に係る炭化珪素単結晶の成長装置は、所定の圧力状態の反応室と、前記反応室の内部に設けられ、内部にシリコン(Si)または炭化珪素(SiC)粉末またはこれらの混合物が装入され、内側上部rfに炭化珪素が成長する炭化珪素種結晶および前記炭化珪素種結晶から延長して形成された種結晶連結棒を有する黒鉛材質のルツボと、前記ルツボを加熱するための発熱体と、を含む。前記ルツボの内部には、少なくとも一部または全部が前記ルツボの内周面に沿って形成された少なくとも一つ以上の黒鉛材質の突出段部が設けられている。
【選択図】図1
The present invention relates to an apparatus and a method for growing a silicon carbide single crystal by solution growth. A silicon carbide single crystal growth apparatus according to the present invention is provided in a reaction chamber in a predetermined pressure state, and inside the reaction chamber, in which silicon (Si) or silicon carbide (SiC) powder or a mixture thereof is loaded. And a graphite crucible having a silicon carbide seed crystal in which silicon carbide grows on the inner upper side rf and a seed crystal connecting rod formed extending from the silicon carbide seed crystal, and a heating element for heating the crucible And including. Inside the crucible, at least one or more projecting step portions made of a graphite material, which are formed at least partially or entirely along the inner peripheral surface of the crucible, are provided.
[Selection] Figure 1

Description

本発明は、液相成長(Solution growth)により炭化珪素単結晶を成長させるための装置およびその方法に関し、黒鉛(Graphite)ルツボに含有された炭素が主原料のシリコン液相中にスムーズに溶け込むようにして、炭化珪素単結晶を迅速に成長させるための装置および方法に関する。   The present invention relates to an apparatus and a method for growing a silicon carbide single crystal by solution growth, so that carbon contained in a graphite crucible is smoothly dissolved in a silicon liquid phase as a main material. Thus, the present invention relates to an apparatus and method for rapidly growing a silicon carbide single crystal.

現在、半導体の材料として最も広く用いられているシリコンより優れた特性を有する次世代半導体の材料として、炭化珪素(SiC)、窒化ガリウム(GaN)および窒化アルミニウムなどの化合物半導体の材料について広く研究されている。その中でも特に炭化珪素は、機械的強度に優れるだけでなく、熱安定性および化学的安定性に優れており、熱伝導度が4W/cm以上と非常に高いだけでなく、動作限界温度が200℃以下のシリコンのそれと比較して650℃以下と非常に高い。また、結晶構造が3C炭化珪素、4H炭化珪素、6H炭化珪素の場合に、バンドギャップがすべて2.5eV以上と、シリコンの2倍以上であるため、高電力および低損失変換装置用半導体の材料として非常に優れており、近年、LEDのような光半導体および電力変換用半導体の材料として注目されている。 Currently, compound semiconductor materials such as silicon carbide (SiC), gallium nitride (GaN), and aluminum nitride have been widely studied as materials for next-generation semiconductors that have characteristics superior to silicon, which is currently the most widely used semiconductor material. ing. Among them, silicon carbide is not only excellent in mechanical strength but also excellent in thermal stability and chemical stability, and not only has a very high thermal conductivity of 4 W / cm 2 or more, but also has an operating temperature limit. It is very high at 650 ° C. or lower compared with that of silicon at 200 ° C. or lower. Further, when the crystal structure is 3C silicon carbide, 4H silicon carbide, or 6H silicon carbide, the band gaps are all 2.5 eV or more, which is twice or more that of silicon. In recent years, it has attracted attention as a material for optical semiconductors such as LEDs and semiconductors for power conversion.

通常、炭化珪素単結晶を成長させるためには、例えば、炭素とシリカを2000℃以上の高温電気炉で反応させるアチソン(Acheson)法、および炭化珪素(SiC)を原料とし2000℃以上の高温で昇華させて単結晶を成長させる昇華法が用いられる。その他にも、ガス源を用いて化学的に蒸着させる方法が用いられている。   Usually, in order to grow a silicon carbide single crystal, for example, an Acheson method in which carbon and silica are reacted in a high-temperature electric furnace of 2000 ° C. or higher, and silicon carbide (SiC) as a raw material at a high temperature of 2000 ° C. or higher. A sublimation method in which a single crystal is grown by sublimation is used. In addition, a chemical vapor deposition method using a gas source is used.

しかし、アチソン(Acheson)法では、高純度の炭化珪素単結晶を得るのが非常に困難であり、化学的気相蒸着法では、薄膜としてのみ厚さが制限された水準に成長させることができる。そのため、高温で炭化珪素を昇華させて結晶を成長させる昇華法に関する研究が集中的に行われてきた。しかし、昇華法もまた、通常2200℃以上の高温で行われており、微細欠陥(micropipe)および積層欠陥(stacking fault)のような多くの欠陥が生じる可能性が高く、生産コスト面で限界があるという問題を抱えている。   However, it is very difficult to obtain a high-purity silicon carbide single crystal by the Acheson method, and the chemical vapor deposition method can be grown to a limited thickness only as a thin film. . Therefore, research on a sublimation method in which silicon carbide is sublimated at a high temperature to grow a crystal has been concentrated. However, the sublimation method is also usually performed at a high temperature of 2200 ° C. or more, and many defects such as micro defects and stacking faults are likely to occur, and there is a limit in terms of production cost. I have a problem.

かかる昇華法の問題を解決するために、チョクラルスキー法(Czochralski method;結晶引上げ法(crystal pulling method))を応用した液相成長法が導入された。チョクラルスキー法は、融液から単結晶を育成する方法である。結晶の形状や性質は、引上げ速度(成長速度)、回転速度、温度勾配または結晶方位に応じて決まる。炭化珪素単結晶のための液相成長法は、通常、黒鉛ルツボの中にシリコンまたは炭化珪素粉末を装入した後、約1600℃から1900℃の高温に昇温して、ルツボの上部に位置する炭化珪素種結晶の表面から結晶が成長するようにする。しかし、このような方法では、結晶成長の速度が50μm/hr以下と非常に遅いため経済性に劣る。   In order to solve the problem of the sublimation method, a liquid phase growth method using the Czochralski method (crystal pulling method) has been introduced. The Czochralski method is a method for growing a single crystal from a melt. The shape and properties of the crystal are determined according to the pulling rate (growth rate), rotational speed, temperature gradient, or crystal orientation. The liquid phase growth method for silicon carbide single crystal is usually performed by placing silicon or silicon carbide powder in a graphite crucible and then raising the temperature to a high temperature of about 1600 ° C. to 1900 ° C. The crystal is grown from the surface of the silicon carbide seed crystal. However, such a method is inferior in economic efficiency because the crystal growth rate is very slow at 50 μm / hr or less.

日本特開2004−2173号公報では、シリコンの他に、チタン(Ti)あるいはマンガン(Mn)を所定の割合でシリコン(Si)とともに混合することで結晶の成長速度を高めている。   In Japanese Unexamined Patent Application Publication No. 2004-2173, titanium (Ti) or manganese (Mn) is mixed with silicon (Si) at a predetermined ratio in addition to silicon to increase the crystal growth rate.

また、日本特開2006−143555号公報には、シリコンの他にも、鉄(Fe)とコバルト(Co)を所定の割合でシリコン(Si)とともに使用することで結晶の成長速度を高めることについて開示されている。かかる方法は、シリコン以外の金属を混合して共融点(Eutectic point)を形成してシリコン溶液内の炭素溶解度を高める効果を奏し、これにより炭化珪素単結晶の速度が上がった。しかし、炭素源として用いられる黒鉛ルツボの内部表面積のうち、金属溶融物と接触する面積が小さいという限界点が依然として存在する。   Japanese Patent Application Laid-Open No. 2006-143555 discloses that, in addition to silicon, iron (Fe) and cobalt (Co) are used together with silicon (Si) at a predetermined ratio to increase the crystal growth rate. It is disclosed. Such a method has the effect of increasing the carbon solubility in the silicon solution by mixing a metal other than silicon to form an eutectic point, thereby increasing the speed of the silicon carbide single crystal. However, there is still a limit that the area in contact with the metal melt is small in the internal surface area of the graphite crucible used as the carbon source.

また、炭化珪素単結晶を成長させるための液相成長法の場合、結晶成長用の炭素は、通常、黒鉛(Graphite)ルツボ(crucible)を用いる。すなわち、黒鉛ルツボを構成している炭素原子が液相に分離されて、以降、溶液中に広がってからその一部が炭化珪素単結晶の成長点に移動して単結晶が成長する。しかし、炭素原子が供給されるルツボ周辺の炭素濃度と、炭素原子が炭化珪素に合成されて消滅する単結晶成長周辺の炭素濃度とに差が生じる。そのため、高温で稼働され、密閉された成長炉の中でルツボ内の溶液中の炭素濃度を均一にすることで、実際に単結晶成長周辺の炭素濃度を高める必要がある。このために、通常、チョクラルスキー法に用いられる方法のように、種結晶が固定されている種結晶固定棒を回転させるかおよび/またはルツボを回転させて溶液中の炭素濃度の均一度を高める。   In the case of a liquid phase growth method for growing a silicon carbide single crystal, graphite for the crystal growth is usually a graphite crucible. That is, the carbon atoms constituting the graphite crucible are separated into a liquid phase, and thereafter, after spreading into the solution, a part thereof moves to the growth point of the silicon carbide single crystal to grow a single crystal. However, there is a difference between the carbon concentration around the crucible to which carbon atoms are supplied and the carbon concentration around single crystal growth where carbon atoms are synthesized into silicon carbide and disappear. Therefore, it is necessary to actually increase the carbon concentration around the single crystal growth by making the carbon concentration in the solution in the crucible uniform in a closed growth furnace operated at a high temperature. For this purpose, as in the method used in the Czochralski method, the seed crystal fixing rod on which the seed crystal is fixed is rotated and / or the crucible is rotated to increase the uniformity of the carbon concentration in the solution. Increase.

本発明は、従来技術の限界点を改善するために導き出されたものであって、本発明の目的は、炭化珪素単結晶の成長をより迅速に行える炭化珪素成長装置およびその方法を提供することにある。   The present invention has been derived in order to improve the limitations of the prior art, and an object of the present invention is to provide a silicon carbide growth apparatus and method that can more rapidly grow a silicon carbide single crystal. It is in.

前記およびその他の目的を達成するために、本発明は、所定の圧力状態の反応室と、前記反応室の内部に設けられ、内部にシリコン(Si)または炭化珪素(SiC)粉末またはこれらの混合物が装入され、内側上部に炭化珪素が成長する炭化珪素種結晶および前記炭化珪素種結晶から延長して形成された種結晶連結棒を有する黒鉛材質のルツボと、前記ルツボを加熱するための発熱体と、を含み、前記ルツボの内部には、少なくとも一部または全部が前記ルツボの内周面に沿って形成された少なくとも一つ以上の黒鉛材質の突出段部が設けられている炭化珪素単結晶の成長装置を提供する。   In order to achieve the above and other objects, the present invention provides a reaction chamber in a predetermined pressure state, a silicon (Si) or silicon carbide (SiC) powder or a mixture thereof provided in the reaction chamber. And a graphite crucible having a silicon carbide seed crystal in which silicon carbide grows on the inner upper part and a seed crystal connecting rod formed extending from the silicon carbide seed crystal, and heat generated to heat the crucible A silicon carbide unit provided with at least one or more graphite protruding step portions formed along the inner peripheral surface of the crucible at least partially or entirely inside the crucible. A crystal growth apparatus is provided.

本発明において、前記突出段部の一部または全部が、ルツボの内部に装入されるシリコン溶液の流れを妨げない構造に形状化されることが好ましく、特に、例えば、ドーナツ状の形状を有することが好ましい。   In the present invention, it is preferable that a part or all of the protruding stepped portion is formed into a structure that does not hinder the flow of the silicon solution charged into the crucible, and in particular has a donut shape, for example. It is preferable.

本発明において、前記炭化珪素種結晶は、前記種結晶連結棒により前記ルツボに対して回転自在に設けられることもできる。それだけでなく、このような炭化珪素種結晶は、種結晶連結棒により前記ルツボに対して上下に移動自在に設けられる。このような炭化珪素種結晶の回転および上下移動が可能な構造により、ルツボの内部の温度分布を容易に制御することができる。   In the present invention, the silicon carbide seed crystal may be provided so as to be rotatable with respect to the crucible by the seed crystal connecting rod. In addition, such a silicon carbide seed crystal is provided so as to be movable up and down with respect to the crucible by a seed crystal connecting rod. With such a structure capable of rotating and vertically moving the silicon carbide seed crystal, the temperature distribution inside the crucible can be easily controlled.

本発明において、好ましくは、前記ルツボの下部に、前記ルツボを回転させるために設けられた回転支持体をさらに含むことができる。このような回転支持体により、反応室の内部に配置されたルツボそのものの回転が可能となり、これにより、ルツボの内部に充填されているシリコン(Si)と炭素がより迅速に接触する機会が与えられて、炭化珪素単結晶の成長速度が高まる。   In the present invention, it is preferable that a rotation support provided to rotate the crucible is further included below the crucible. Such a rotating support allows rotation of the crucible itself disposed inside the reaction chamber, thereby providing an opportunity for more rapid contact between silicon (Si) and carbon filled in the crucible. As a result, the growth rate of the silicon carbide single crystal is increased.

本発明において、前記発熱体は、ルツボ周辺のいずれの位置に配置されてもよく、ルツボの内部に設けられている突出段部を介するよりスムーズな流れのために、ルツボの外周面に沿って配置されることが好ましい。このような発熱体としては、発熱特性または発熱作動を有するいかなる発熱体でも可能であるが、代表的に、例えば、抵抗式発熱体または誘導加熱式発熱体が用いられてもよい。前記発熱体によるルツボの内部における温度勾配を上下方向に5℃/cm以上にすることが好ましい。 In the present invention, the heating element may be disposed at any position around the crucible, and along the outer peripheral surface of the crucible for a smoother flow through the protruding step provided inside the crucible. Preferably they are arranged. As such a heating element, any heating element having a heating characteristic or a heating operation is possible, but typically, for example, a resistance heating element or an induction heating heating element may be used. The temperature gradient inside the crucible by the heating element is preferably 5 ° C./cm 2 or more in the vertical direction.

本発明において、前記反応室の内部にはアルゴンまたはヘリウムガスのような不活性ガスが充填されており、反応室の内部の圧力が0.3〜50kgf/cmに維持される。このような圧力を維持するために、例えば、真空ポンプおよび雰囲気制御用ガスシリンダーが弁を介して連結されてもよい。本明細書を熟知した当業者であれば、反応室の内部を真空状態に維持できる様々な他の手段を認知しているであろう。 In the present invention, the reaction chamber is filled with an inert gas such as argon or helium gas, and the pressure inside the reaction chamber is maintained at 0.3 to 50 kgf / cm 2 . In order to maintain such a pressure, for example, a vacuum pump and an atmosphere control gas cylinder may be connected via a valve. Those skilled in the art will be aware of various other means by which the interior of the reaction chamber can be maintained in a vacuum.

本発明のより好ましい具体例において、所定の方向に流体の流れを誘導するために前記ルツボの内部の底面に設けられた黒鉛材質の翼状補助具をさらに含むことができる。このような翼状補助具は、炭化珪素種結晶の回転に伴う流体の流れおよび/またはルツボの下部に設けられている回転支持体によるルツボの回転に伴う流体の流れを、一方向に選択的に配向させる機能を果たすことで、炭素などの物質が炭化珪素種結晶に、より迅速かつ頻繁に接触する機会を与えて、炭化珪素単結晶の形成速度を高める。   In a more preferred embodiment of the present invention, it may further include a wing-shaped auxiliary tool made of graphite provided on the bottom surface inside the crucible for inducing a fluid flow in a predetermined direction. Such a wing-like auxiliary tool selectively selects the flow of fluid accompanying rotation of the silicon carbide seed crystal and / or the flow of fluid accompanying rotation of the crucible by the rotating support provided at the lower part of the crucible in one direction. By performing the function of orienting, a material such as carbon is given an opportunity to contact the silicon carbide seed crystal more quickly and frequently, thereby increasing the formation rate of the silicon carbide single crystal.

本発明によれば、炭化珪素種結晶周辺の炭素濃度が増加し、これにより炭化珪素単結晶の成長速度が高まる。   According to the present invention, the carbon concentration around the silicon carbide seed crystal is increased, thereby increasing the growth rate of the silicon carbide single crystal.

本発明の一つの好ましい具体例による炭化珪素単結晶の成長装置の要部を概略的に示す断面図である。It is sectional drawing which shows roughly the principal part of the growth apparatus of the silicon carbide single crystal by one preferable example of this invention. 図1に示された黒鉛材質のルツボの内部の形状の一部を示す部分切開斜視図である。FIG. 2 is a partial cutaway perspective view showing a part of the internal shape of the graphite crucible shown in FIG. 1. 本発明のより好ましい具体例による炭化珪素単結晶の成長装置の要部を概略的に示す断面図である。It is sectional drawing which shows roughly the principal part of the growth apparatus of the silicon carbide single crystal by the more preferable example of this invention. 図3に示された翼状補助具が設けられている黒鉛材質のルツボの内部の形状の一部を概略的に示す部分切開斜視図である。FIG. 4 is a partial cutaway perspective view schematically showing a part of the shape of a graphite crucible provided with the wing-like auxiliary tool shown in FIG. 3.

以下、本発明を添付の図を参照してより詳細に説明する。ただし、本発明を説明するに際し、すでに公知となった機能あるいは構成に関する説明は、本発明の要旨を明瞭にするために省略する。   Hereinafter, the present invention will be described in more detail with reference to the accompanying drawings. However, in describing the present invention, descriptions of functions or configurations already known are omitted for the purpose of clarifying the gist of the present invention.

図1には本発明の一つの好ましい具体例による炭化珪素単結晶の成長装置の要部が概略的に示されており、図2には黒鉛材質のルツボの内部の形状の一部が部分切開されて概略的に示されている。   FIG. 1 schematically shows an essential part of a silicon carbide single crystal growth apparatus according to one preferred embodiment of the present invention, and FIG. 2 shows a partially cut-out portion of the shape of a graphite crucible. And is shown schematically.

図1および図2を参照すると、本発明の一つの好ましい具体例による炭化珪素単結晶の成長装置1は、反応室10と、前記反応室10の内部に設けられているルツボ30と、ルツボ30を加熱するための発熱体50と、を含む。ルツボ30の内部には、図1および図2に示されたように、少なくとも一部または全部がルツボ30の内周面に沿って形成された少なくとも一つ以上の黒鉛材質の突出段部38が設けられる。   1 and 2, a silicon carbide single crystal growth apparatus 1 according to one preferred embodiment of the present invention includes a reaction chamber 10, a crucible 30 provided in the reaction chamber 10, and a crucible 30. And heating element 50 for heating. As shown in FIGS. 1 and 2, at least one or more projecting step portions 38 made of a graphite material formed at least partially or entirely along the inner peripheral surface of the crucible 30 are provided inside the crucible 30. Provided.

反応室10を真空状態に維持した後、アルゴンまたはヘリウムのような不活性ガスが反応室10に充填され、圧力が0.3〜50kgf/cmの水準に調節される。このような雰囲気を維持するために、図には示されていないが、反応室10には、真空ポンプおよび雰囲気制御用ガスシリンダーが、弁を介して連結される。本明細書を熟知した当業者であれば、反応室の雰囲気を維持するための様々な他の手段を認知しているであろう。 After maintaining the reaction chamber 10 in a vacuum state, the reaction chamber 10 is filled with an inert gas such as argon or helium, and the pressure is adjusted to a level of 0.3 to 50 kgf / cm 2 . In order to maintain such an atmosphere, although not shown in the figure, a vacuum pump and an atmosphere control gas cylinder are connected to the reaction chamber 10 via a valve. Those skilled in the art will be aware of various other means for maintaining the reaction chamber atmosphere.

ルツボ30は、上述したように、反応室10の内部に設けられ、ルツボ30の内部には、シリコン(Si)または炭化珪素(SiC)粉末またはこれらの混合物が装入される。ルツボ30は黒鉛材質からなり、ルツボ30そのものが炭素の供給源として活用されてもよい。   As described above, the crucible 30 is provided inside the reaction chamber 10, and silicon (Si) or silicon carbide (SiC) powder or a mixture thereof is charged into the crucible 30. The crucible 30 is made of a graphite material, and the crucible 30 itself may be used as a carbon supply source.

ルツボ30の内側上部には、図1に示されたように、種結晶連結棒34により炭化珪素が成長する炭化珪素種結晶32が設けられる。種結晶連結棒34は、必要に応じて、ルツボ30の上端部に対して回転自在に設けられる。さらに、種結晶連結棒34は、ルツボ30の上端部に対して上下に移動自在に設けられる。これにより、炭化珪素種結晶32もまた回転自在に設けられ、また、単結晶の成長に伴い、必要なときに上下に移動するように設けられる。このような構成は、図には示されていないが、本明細書を熟知した当業者にとっては自明な事項であろう。   As shown in FIG. 1, a silicon carbide seed crystal 32 on which silicon carbide grows by a seed crystal connecting rod 34 is provided on the inner upper portion of the crucible 30. The seed crystal connecting rod 34 is rotatably provided with respect to the upper end portion of the crucible 30 as necessary. Further, the seed crystal connecting rod 34 is provided to be movable up and down with respect to the upper end portion of the crucible 30. Thereby, the silicon carbide seed crystal 32 is also provided rotatably, and is provided so as to move up and down when necessary as the single crystal grows. Such a configuration is not shown in the figure, but will be obvious to those skilled in the art who are familiar with the present specification.

ルツボ30の外周面側には、図1に示されたように、発熱体50が設けられる。このような発熱体50としては、発熱特性を有するものであればいかなるものを用いてもよく、本発明では、抵抗式発熱体または誘導加熱式発熱体が好ましく用いられる。   As shown in FIG. 1, a heating element 50 is provided on the outer peripheral surface side of the crucible 30. As the heating element 50, any heating element having heat generation characteristics may be used. In the present invention, a resistance heating element or an induction heating heating element is preferably used.

ルツボ30の内部には、少なくとも一部または全部がルツボ30の内周面に沿って形成された少なくとも一つ以上の黒鉛材質の突出段部38が設けられる。かかる黒鉛材質の突出段部38には、ルツボ30の内部に充填されているシリコン含有液とのより多い接触機会を与えるために多数の突起または気孔を形成してもよい。このような突起構造および気孔構造もまた本発明の構成に含まれる。このような突出段部38により、シリコンを含有した溶液中に、より多い炭素が溶解されて単結晶が成長する周辺の炭素濃度を高めることで、炭化珪素単結晶の成長速度を高める。   Inside the crucible 30 is provided at least one or more graphite-made protruding step portions 38 formed at least partially or entirely along the inner peripheral surface of the crucible 30. A number of protrusions or pores may be formed in the projecting step portion 38 made of the graphite material in order to provide more opportunities for contact with the silicon-containing liquid filled in the crucible 30. Such protrusion structure and pore structure are also included in the configuration of the present invention. By such a protruding step portion 38, the growth rate of the silicon carbide single crystal is increased by increasing the carbon concentration in the vicinity where more carbon is dissolved and the single crystal grows in the silicon-containing solution.

かかる突出段部38は、そのものが炭素供給源となるとともに発熱体50によるルツボ30の加熱、必要に応じて、炭化珪素種結晶32の回転および/または後述の回転支持体40の回転によって発生したシリコンおよび添加物の誘導接触または強制接触による接触面の増加により炭素供給源の量が増加し、炭素供給源の供給量および速度がより高まる。この際、ルツボ30の内表面とともに突出段部38からの炭素溶解量が増加し、螺旋状の流れによって炭化珪素種結晶32の結晶成長部位周辺の炭素濃度をより高めるようになり、結果、炭化珪素単結晶の成長速度を高める結果をもたらす。   The protruding step 38 is a carbon supply source and is generated by heating the crucible 30 by the heating element 50 and, if necessary, rotation of the silicon carbide seed crystal 32 and / or rotation of the rotary support 40 described later. Increasing the contact surface due to inductive or forced contact of silicon and additive increases the amount of carbon source and increases the supply and rate of the carbon source. At this time, the amount of carbon dissolved from the protruding step portion 38 increases with the inner surface of the crucible 30, and the carbon concentration around the crystal growth site of the silicon carbide seed crystal 32 is further increased by the spiral flow. This results in increasing the growth rate of the silicon single crystal.

また、ルツボ30の下部には回転支持体40が設けられている。このような回転支持体40は、必要なときに回転作動してルツボ30を所定の速度で回転させる。このような回転によってもルツボ30からの炭素とルツボ30の内部に形成されている突出段部38からの炭素がシリコン含有溶液に迅速に溶解され、そのような回転によって炭化珪素種結晶32周辺の炭素濃度が増加するようになり、炭化珪素単結晶の成長速度がより高まる。   A rotation support body 40 is provided at the lower part of the crucible 30. Such a rotating support 40 rotates when necessary to rotate the crucible 30 at a predetermined speed. Also by such rotation, carbon from the crucible 30 and carbon from the protruding step portion 38 formed inside the crucible 30 are rapidly dissolved in the silicon-containing solution, and by such rotation, around the silicon carbide seed crystal 32 The carbon concentration increases, and the growth rate of the silicon carbide single crystal is further increased.

図3には本発明のより好ましい具体例による炭化珪素単結晶の成長装置の要部が概略的に示されており、図4には黒鉛材質の翼状補助具を介して誘導された流体の流れとともにルツボの内部の形状が概略的に示されている。   FIG. 3 schematically shows a main part of a silicon carbide single crystal growth apparatus according to a more preferred embodiment of the present invention, and FIG. 4 shows a flow of fluid induced through a wing-like auxiliary tool made of graphite. In addition, the internal shape of the crucible is schematically shown.

図3および図4を参照すると、本発明のより好ましい具体例による炭化珪素単結晶の成長装置は、上述した具体例に加えて、ルツボ30の底部に設けられた黒鉛材質の翼状補助具90をさらに含む。   3 and 4, a silicon carbide single crystal growth apparatus according to a more preferred embodiment of the present invention includes a wing-like auxiliary tool 90 made of graphite provided at the bottom of crucible 30 in addition to the above-described embodiment. In addition.

本発明では、本発明の一部の構成に属する黒鉛材質の翼状補助具90が、上述した突出段部38とともに設けられているが、本明細書を十分熟知した当業者であれば、ルツボの内周面に沿って形成された突出段部38なしに黒鉛材質の翼状補助具90が単独で設けられてもよいことを認知するであろう。   In the present invention, the wing-like auxiliary tool 90 made of graphite belonging to a part of the configuration of the present invention is provided together with the above-described protruding step portion 38. It will be appreciated that the wing-like assisting tool 90 made of graphite may be provided alone without the protruding step 38 formed along the inner peripheral surface.

また、図3および図4を参照すると、本発明の一部の構成に属する黒鉛材質の翼状補助具90は、ルツボ30の底部に所定の配向の流体の流れを誘導するために設けられる。翼状補助具90は単独で設けられてもよく、上述した突出段部38とともに設けられてもよい。翼状補助具90が上述した突出段部38とともに設けられる場合、突出段部38と並んでともに設けられるか、最下端に設けられた突出段部38と所定の距離だけ離隔した状態で別に設けられてもよい。   3 and 4, the wing-like auxiliary tool 90 made of graphite belonging to a part of the configuration of the present invention is provided at the bottom of the crucible 30 in order to induce a flow of fluid having a predetermined orientation. The wing-shaped auxiliary tool 90 may be provided alone, or may be provided together with the protruding step portion 38 described above. When the wing-shaped auxiliary tool 90 is provided together with the protruding step portion 38 described above, it is provided alongside the protruding step portion 38 or separately from the protruding step portion 38 provided at the lowermost end by a predetermined distance. May be.

翼状補助具90は、特に図4に示されたように、一方向に流体が流れるように構成される。また、翼状補助具90は、黒鉛材質からなるため、そのものが炭素供給源として用いられる。かかる一方向の流れを誘導できる翼状補助具90は、発熱体50による加熱、炭化珪素種結晶32および/または回転支持体40による回転流れが発生する場合、その流れをより増加させて炭化珪素種結晶32周辺の炭素濃度を高める。炭化珪素種結晶32および/または回転支持体40による回転流れがない場合にも発熱体40によるルツボ30の加熱によって発生した流体の流れを一方向に誘導することにより、炭化珪素種結晶32周辺の炭素濃度を高めて最終的には炭化珪素単結晶が成長する周辺での炭素濃度を高めることができる。本発明では、翼状補助具90として二つの翼の構造のみが示されているが、翼の数および形状は、図3および図4に示された数と構造に限定されない。   The wing-shaped auxiliary tool 90 is configured to allow fluid to flow in one direction, particularly as shown in FIG. Further, since the wing-shaped auxiliary tool 90 is made of a graphite material, it itself is used as a carbon supply source. The wing-like auxiliary tool 90 capable of guiding the flow in one direction increases the flow when heating by the heating element 50, rotation of the silicon carbide seed crystal 32 and / or rotation support 40 is generated, and increases the silicon carbide species. The carbon concentration around the crystal 32 is increased. Even when there is no rotating flow by the silicon carbide seed crystal 32 and / or the rotating support 40, the flow of the fluid generated by heating the crucible 30 by the heating element 40 is guided in one direction, so that The carbon concentration in the vicinity where the silicon carbide single crystal grows can finally be increased by increasing the carbon concentration. In the present invention, only the structure of two wings is shown as the wing-shaped auxiliary tool 90, but the number and shape of the wings are not limited to the number and structure shown in FIGS.

以上、本発明の好ましい具体例を参照して説明しているが、当該技術分野において熟練された当業者であれば、下記の特許請求の範囲に記載の本発明の思想および領域から外れない範囲内で本発明を多様に修正および変更できることを理解することができる。   The present invention has been described above with reference to the preferred specific examples. However, those skilled in the art will appreciate that the scope of the present invention described in the following claims does not depart from the spirit and scope of the present invention. It can be understood that various modifications and changes can be made to the present invention.

10 反応室
30 (黒鉛材質の)ルツボ
32 炭化珪素種結晶
34 種結晶連結棒
38 突出段部
50 発熱体
90 翼状補助具
DESCRIPTION OF SYMBOLS 10 Reaction chamber 30 Crucible (of graphite material) 32 Silicon carbide seed crystal 34 Seed crystal connecting rod 38 Projection step part 50 Heating element 90 Wing-like auxiliary tool

Claims (9)

所定の圧力状態の反応室と、
前記反応室の内部に設けられ、内部にシリコン(Si)または炭化珪素(SiC)粉末またはこれらの混合物が装入され、内側上部に炭化珪素が成長する炭化珪素種結晶および前記炭化珪素種結晶から延長して形成された種結晶連結棒を有する黒鉛材質のルツボと、
前記ルツボを加熱するための発熱体と、を含み、
前記ルツボの内部には、少なくとも一部または全部が前記ルツボの内周面に沿って形成された少なくとも一つ以上の黒鉛材質の突出段部が設けられている、炭化珪素単結晶の成長装置。
A reaction chamber in a predetermined pressure state;
A silicon carbide seed crystal that is provided inside the reaction chamber, in which silicon (Si) or silicon carbide (SiC) powder or a mixture thereof is charged, and silicon carbide grows on an inner upper part; and the silicon carbide seed crystal A graphite crucible having a seed crystal connecting rod formed by extension;
A heating element for heating the crucible,
An apparatus for growing a silicon carbide single crystal, wherein the crucible is provided with at least one or more projecting step portions made of graphite formed at least partially or entirely along the inner peripheral surface of the crucible.
所定の方向に流体の流れを誘導するために前記突出段部の下部に設けられた黒鉛材質の翼状補助具をさらに含む、請求項1に記載の炭化珪素単結晶の成長装置。   The apparatus for growing a silicon carbide single crystal according to claim 1, further comprising a wing-like auxiliary tool made of graphite provided at a lower portion of the protruding step portion for inducing a fluid flow in a predetermined direction. 前記突出段部の少なくとも一部がドーナツ状の形状を有することを特徴とする、請求項2に記載の炭化珪素単結晶の成長装置。   3. The silicon carbide single crystal growth apparatus according to claim 2, wherein at least a part of the protruding step portion has a donut shape. 前記炭化珪素種結晶が、前記種結晶連結棒により前記ルツボに対して回転自在に設けられていることを特徴とする、請求項1または2に記載の炭化珪素単結晶の成長装置。   3. The silicon carbide single crystal growth apparatus according to claim 1, wherein the silicon carbide seed crystal is provided so as to be rotatable with respect to the crucible by the seed crystal connecting rod. 前記ルツボの下部に配置されて、前記ルツボを回転させるために設けられた回転支持体をさらに含む、請求項1または2に記載の炭化珪素単結晶の成長装置。   The silicon carbide single crystal growth apparatus according to claim 1, further comprising a rotation support disposed at a lower portion of the crucible and provided to rotate the crucible. 前記発熱体が、前記ルツボの外周面に配置されていることを特徴とする、請求項1または2に記載の炭化珪素単結晶の成長装置。   The silicon carbide single crystal growth apparatus according to claim 1, wherein the heating element is arranged on an outer peripheral surface of the crucible. 前記発熱体が、抵抗式発熱体または誘導加熱式発熱体であることを特徴とする、請求項6に記載の炭化珪素単結晶の成長装置。   The silicon carbide single crystal growth apparatus according to claim 6, wherein the heating element is a resistance heating element or an induction heating heating element. 前記発熱体によるルツボの内部における温度勾配が、上下方向に5℃/cm以上であることを特徴とする、請求項1または2に記載の炭化珪素単結晶の成長装置。 3. The silicon carbide single crystal growth apparatus according to claim 1, wherein a temperature gradient inside the crucible by the heating element is 5 ° C./cm 2 or more in the vertical direction. 前記反応室の内部にアルゴンまたはヘリウムガスが充填されており、前記反応室の内部の真空度が0.3〜50kgf/cmであるとを特徴とする、請求項1または2に記載の炭化珪素単結晶の成長装置。 The carbonization according to claim 1 or 2, wherein the inside of the reaction chamber is filled with argon or helium gas, and the degree of vacuum inside the reaction chamber is 0.3 to 50 kgf / cm 2. Silicon single crystal growth equipment.
JP2014518793A 2011-06-29 2012-06-26 Silicon carbide single crystal growth apparatus and method Expired - Fee Related JP5979739B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
KR1020110063669A KR20130002616A (en) 2011-06-29 2011-06-29 Reactor and method for growing silicon carbide single crystal
KR10-2011-0063669 2011-06-29
PCT/KR2012/005045 WO2013002539A2 (en) 2011-06-29 2012-06-26 Apparatus and method for growing silicon carbide single crystal

Publications (2)

Publication Number Publication Date
JP2014518194A true JP2014518194A (en) 2014-07-28
JP5979739B2 JP5979739B2 (en) 2016-08-31

Family

ID=47424653

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014518793A Expired - Fee Related JP5979739B2 (en) 2011-06-29 2012-06-26 Silicon carbide single crystal growth apparatus and method

Country Status (3)

Country Link
JP (1) JP5979739B2 (en)
KR (1) KR20130002616A (en)
WO (1) WO2013002539A2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014019608A (en) * 2012-07-18 2014-02-03 Nippon Steel & Sumitomo Metal APPARATUS FOR MANUFACTURING SiC SINGLE CRYSTAL TO BE USED FOR SOLUTION-GROWTH METHOD, CRUCIBLE TO BE USED FOR THE SAME, AND METHOD FOR MANUFACTURING SiC SINGLE CRYSTAL USING THE SAME
JPWO2014017648A1 (en) * 2012-07-27 2016-07-11 京セラ株式会社 Crucible, crystal growth apparatus and crystal growth method
WO2017115466A1 (en) * 2015-12-28 2017-07-06 東洋炭素株式会社 METHOD FOR MANUFACTURING SINGLE-CRYSTAL SiC, AND HOUSING CONTAINER

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101636435B1 (en) * 2014-10-22 2016-07-06 한국세라믹기술원 Porous graphite crucible and the manufacturing method of SiC single crystal via solution growth using the same
KR102049021B1 (en) * 2016-03-09 2019-11-26 주식회사 엘지화학 Apparatus for the growth of silicon carbide single crystal
WO2017183747A1 (en) * 2016-04-21 2017-10-26 한국세라믹기술원 Crucible for growing solution and method for growing solution inside crucible
KR102122739B1 (en) * 2017-12-19 2020-06-16 한국세라믹기술원 A crucible designed with protrusion for crystal growth using solution
KR102643619B1 (en) * 2019-06-28 2024-03-04 주식회사 엘지화학 Single crystal growth device
CN111676519A (en) * 2020-08-05 2020-09-18 郑红军 Silicon carbide crystal melt growing device
CN113816382B (en) * 2021-11-17 2023-05-12 哈尔滨工业大学 Method for preparing ultra-long SiC nanowires with high efficiency and low cost
CN114481317A (en) * 2022-01-27 2022-05-13 北京青禾晶元半导体科技有限责任公司 Device and method for manufacturing silicon carbide crystal
CN115467027B (en) * 2022-08-15 2024-02-06 上海汉虹精密机械有限公司 Conductive structure for silicon carbide furnace chamber
CN117230530B (en) * 2023-11-15 2024-01-30 常州臻晶半导体有限公司 Crystal growth heating system and working method thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5795893A (en) * 1980-12-03 1982-06-14 Fujitsu Ltd Liquid phase epitaxially growing method
JPH02221187A (en) * 1989-02-20 1990-09-04 Sumitomo Electric Ind Ltd Liquid phase epitaxy
JP2001039791A (en) * 1999-05-22 2001-02-13 Japan Science & Technology Corp Method and device for growing high quality single crystal
JP2006347852A (en) * 2005-06-20 2006-12-28 Toyota Motor Corp Method for producing silicon carbide single crystal
JP2011098870A (en) * 2009-11-09 2011-05-19 Toyota Motor Corp APPARATUS AND METHOD FOR PRODUCING SiC SINGLE CRYSTAL

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4866005A (en) * 1987-10-26 1989-09-12 North Carolina State University Sublimation of silicon carbide to produce large, device quality single crystals of silicon carbide
KR100749860B1 (en) * 2006-01-02 2007-08-21 학교법인 동의학원 Apparatus for growing single crystal and method for growing single crystal
JP2008037729A (en) * 2006-08-10 2008-02-21 Shin Etsu Chem Co Ltd Single crystal silicon carbide and method for manufacturing the same
KR101028116B1 (en) * 2008-12-09 2011-04-08 한국전기연구원 growth apparatus for multiple silicon carbide single crystal

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5795893A (en) * 1980-12-03 1982-06-14 Fujitsu Ltd Liquid phase epitaxially growing method
JPH02221187A (en) * 1989-02-20 1990-09-04 Sumitomo Electric Ind Ltd Liquid phase epitaxy
JP2001039791A (en) * 1999-05-22 2001-02-13 Japan Science & Technology Corp Method and device for growing high quality single crystal
JP2006347852A (en) * 2005-06-20 2006-12-28 Toyota Motor Corp Method for producing silicon carbide single crystal
JP2011098870A (en) * 2009-11-09 2011-05-19 Toyota Motor Corp APPARATUS AND METHOD FOR PRODUCING SiC SINGLE CRYSTAL

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014019608A (en) * 2012-07-18 2014-02-03 Nippon Steel & Sumitomo Metal APPARATUS FOR MANUFACTURING SiC SINGLE CRYSTAL TO BE USED FOR SOLUTION-GROWTH METHOD, CRUCIBLE TO BE USED FOR THE SAME, AND METHOD FOR MANUFACTURING SiC SINGLE CRYSTAL USING THE SAME
US9783911B2 (en) 2012-07-18 2017-10-10 Toyota Jidosha Kabushiki Kaisha Apparatus for producing SiC single crystal by solution growth method, and method for producing SiC single crystal by using the production apparatus and crucible used in the production apparatus
JPWO2014017648A1 (en) * 2012-07-27 2016-07-11 京セラ株式会社 Crucible, crystal growth apparatus and crystal growth method
WO2017115466A1 (en) * 2015-12-28 2017-07-06 東洋炭素株式会社 METHOD FOR MANUFACTURING SINGLE-CRYSTAL SiC, AND HOUSING CONTAINER

Also Published As

Publication number Publication date
WO2013002539A2 (en) 2013-01-03
KR20130002616A (en) 2013-01-08
WO2013002539A3 (en) 2013-03-14
JP5979739B2 (en) 2016-08-31

Similar Documents

Publication Publication Date Title
JP5979739B2 (en) Silicon carbide single crystal growth apparatus and method
JP5979740B2 (en) Silicon carbide single crystal growth apparatus and method
JP5827338B2 (en) Method and apparatus for producing silicon carbide single crystal
KR102022693B1 (en) Manufacturing apparatus of silicon carbide single crystal
JP5218348B2 (en) Method for producing silicon carbide single crystal
WO2015137439A1 (en) METHOD FOR PRODUCING MONOCRYSTALLINE SiC
JP6784220B2 (en) Method for manufacturing SiC single crystal
KR20190058963A (en) Reactor for growing silicon carbide single crystal
CN204325549U (en) A kind of silicon carbide crystal growing device
US9783911B2 (en) Apparatus for producing SiC single crystal by solution growth method, and method for producing SiC single crystal by using the production apparatus and crucible used in the production apparatus
US20170283982A1 (en) METHOD FOR PRODUCING P-TYPE SiC SINGLE CRYSTAL
CN107532329B (en) Method for producing SiC single crystal
CN107532328B (en) Method for producing SiC single crystal
WO2017135272A1 (en) Method for manufacturing sic single crystal and sic seed crystal
KR102166640B1 (en) Jig of the reactor for growing silicon carbide single crystal
JP6821896B2 (en) Silicon-based molten composition and method for producing a silicon carbide single crystal using the same
KR20190070404A (en) Reactor for growing silicon carbide single crystal
JP6961893B2 (en) Silicon-based molten composition and method for producing a silicon carbide single crystal using the same
JP6766301B2 (en) Silicon-based molten composition and method for producing a silicon carbide single crystal using the same
JP2009023846A (en) Method for producing silicon carbide single crystal and apparatus for producing the same
JP4347325B2 (en) Single crystal SiC, method for manufacturing the same, and apparatus for manufacturing single crystal SiC
JP2011201756A (en) Method for producing single crystal silicon carbide
JPWO2018062318A1 (en) Method and apparatus for producing SiC single crystal, and seed shaft used for producing SiC single crystal
KR20200053817A (en) Crucible and the reactor having the same for growing silicon carbide single crystal
KR20230021599A (en) Method for Producing SiC Single Crystal

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150609

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20151211

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151215

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160315

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160628

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160721

R150 Certificate of patent or registration of utility model

Ref document number: 5979739

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees