WO2018062159A1 - Sealing agent for liquid crystal display elements, vertically conducting material and liquid crystal display element - Google Patents

Sealing agent for liquid crystal display elements, vertically conducting material and liquid crystal display element Download PDF

Info

Publication number
WO2018062159A1
WO2018062159A1 PCT/JP2017/034705 JP2017034705W WO2018062159A1 WO 2018062159 A1 WO2018062159 A1 WO 2018062159A1 JP 2017034705 W JP2017034705 W JP 2017034705W WO 2018062159 A1 WO2018062159 A1 WO 2018062159A1
Authority
WO
WIPO (PCT)
Prior art keywords
meth
liquid crystal
crystal display
acrylate
compound
Prior art date
Application number
PCT/JP2017/034705
Other languages
French (fr)
Japanese (ja)
Inventor
秀幸 林
Original Assignee
積水化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 積水化学工業株式会社 filed Critical 積水化学工業株式会社
Priority to CN201780015838.XA priority Critical patent/CN108780249B/en
Priority to KR1020187022776A priority patent/KR102460034B1/en
Priority to JP2017553444A priority patent/JP7000158B2/en
Publication of WO2018062159A1 publication Critical patent/WO2018062159A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/10Materials in mouldable or extrudable form for sealing or packing joints or covers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1339Gaskets; Spacers; Sealing of cells

Definitions

  • the present invention relates to a sealant for a liquid crystal display element that is excellent in light-shielding part curability and can suppress liquid crystal contamination. Moreover, this invention relates to the vertical conduction material and liquid crystal display element which use this sealing compound for liquid crystal display elements.
  • a liquid crystal dropping method called a dropping method using a photothermal combined curing type sealing agent containing a polymerization initiator and a thermosetting agent is used.
  • a rectangular seal pattern is formed on one of two transparent substrates with electrodes by dispensing.
  • a liquid crystal micro-droplet is dropped on the entire surface of the transparent substrate frame in a state where the sealant is uncured, and the other transparent substrate is immediately overlaid, and the seal portion is irradiated with light such as ultraviolet rays for temporary curing. . Thereafter, heating is performed at the time of liquid crystal annealing to perform main curing, and a liquid crystal display element is manufactured. If the substrates are bonded together under reduced pressure, a liquid crystal display element can be manufactured with extremely high efficiency, and this dripping method is currently the mainstream method for manufacturing liquid crystal display elements.
  • the position of the seal portion is arranged under the black matrix (hereinafter also referred to as a narrow frame design).
  • Patent Document 3 discloses that a highly sensitive photopolymerization initiator is blended with a sealant. However, liquid crystal contamination could not be sufficiently suppressed in the light-shielding part only by blending a highly sensitive photopolymerization initiator.
  • An object of this invention is to provide the sealing compound for liquid crystal display elements which is excellent in sclerosis
  • hardenability of light-shielding part, and can suppress liquid-crystal contamination. Another object of the present invention is to provide a vertical conduction material and a liquid crystal display element using the sealing agent for a liquid crystal display element.
  • the present invention is a sealant for a liquid crystal display element containing a curable resin and a photopolymerization initiator, wherein the curable resin contains a (meth) acryl compound and an aromatic epoxy compound, and the photopolymerization is started.
  • the agent is a sealing agent for liquid crystal display elements that contains a compound represented by the following formula (1) and has a SP value difference of 2.5 or less between the curable resin and the photopolymerization initiator.
  • the present invention is described in detail below.
  • the sealing agent for liquid crystal display elements of this invention contains curable resin.
  • the curable resin contains a (meth) acrylic compound and an aromatic epoxy compound.
  • the obtained sealing agent for liquid crystal display elements is excellent in the effect of achieving both adhesiveness and liquid crystal contamination.
  • the “(meth) acryl” means acryl or methacryl
  • the “(meth) acryl compound” means a compound having a (meth) acryloyl group.
  • the term “(meth) acryloyl group” means an acryloyl group or a methacryloyl group.
  • the “aromatic epoxy compound” means a compound having an aromatic ring and an epoxy group.
  • Examples of the (meth) acrylic compound include (meth) acrylic acid ester compounds, epoxy (meth) acrylates, urethane (meth) acrylates, and the like. Of these, epoxy (meth) acrylate is preferable.
  • the (meth) acrylic compound preferably has two or more (meth) acryloyl groups in the molecule because of its high reactivity.
  • the “(meth) acrylate” means acrylate or methacrylate
  • the “epoxy (meth) acrylate” refers to all the epoxy groups in the epoxy compound and (meth) acrylic acid. It represents the reacted compound.
  • Examples of the monofunctional compounds among the (meth) acrylic acid ester compounds include, for example, methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, n-butyl (meth) acrylate, and isobutyl (meth) acrylate.
  • Examples of the bifunctional compound among the (meth) acrylic acid ester compounds include 1,3-butanediol di (meth) acrylate, 1,4-butanediol di (meth) acrylate, and 1,6-hexane.
  • those having three or more functions include, for example, trimethylolpropane tri (meth) acrylate, ethylene oxide-added trimethylolpropane tri (meth) acrylate, propylene oxide-added trimethylolpropane tri ( (Meth) acrylate, caprolactone-modified trimethylolpropane tri (meth) acrylate, ethylene oxide-added isocyanuric acid tri (meth) acrylate, glycerin tri (meth) acrylate, propylene oxide-added glycerin tri (meth) acrylate, pentaerythritol tri (meth) acrylate, Tris (meth) acryloyloxyethyl phosphate, ditrimethylolpropane tetra (meth) acrylate, pentaerythritol tetra Meth) acrylate, dipentaerythritol pen
  • Examples of the epoxy (meth) acrylate include those obtained by reacting an epoxy compound and (meth) acrylic acid in the presence of a basic catalyst according to a conventional method.
  • Examples of the epoxy compound as a raw material for synthesizing the epoxy (meth) acrylate include bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol S type epoxy resin, and 2,2′-diallyl bisphenol A type epoxy resin. , Hydrogenated bisphenol type epoxy resin, propylene oxide added bisphenol A type epoxy resin, resorcinol type epoxy resin, biphenyl type epoxy resin, sulfide type epoxy resin, diphenyl ether type epoxy resin, dicyclopentadiene type epoxy resin, naphthalene type epoxy resin, phenol Novolac epoxy resin, orthocresol novolac epoxy resin, dicyclopentadiene novolac epoxy resin, biphenyl novolac epoxy resin, naphtha Ren phenol novolak type epoxy resin, glycidyl amine type epoxy resin, alkyl polyol type epoxy resin, rubber-modified epoxy resins, glycidyl ester compounds.
  • Examples of commercially available bisphenol A type epoxy resins include jER828EL, jER1004 (all manufactured by Mitsubishi Chemical Corporation), EPICLON EXA-830CRP, EPICLON EXA-850CRP (manufactured by DIC), and the like.
  • jER806, jER4004 all are the Mitsubishi Chemical company make
  • EPICLONEXA1514 made by DIC Corporation
  • EPICLONEXA1514 made by DIC Corporation
  • Examples of commercially available 2,2′-diallylbisphenol A type epoxy resins include RE-810NM (manufactured by Nippon Kayaku Co., Ltd.). As what is marketed among the said hydrogenated bisphenol-type epoxy resins, EPICLONEXA7015 (made by DIC Corporation) etc. are mentioned, for example.
  • Examples of commercially available propylene oxide-added bisphenol A type epoxy resins include EP-4000S (manufactured by ADEKA).
  • Examples of commercially available resorcinol type epoxy resins include EX-201 (manufactured by Nagase ChemteX Corporation).
  • Examples of commercially available biphenyl type epoxy resins include jER YX-4000H (manufactured by Mitsubishi Chemical Corporation).
  • Examples of commercially available sulfide type epoxy resins include YSLV-50TE (manufactured by Nippon Steel & Sumikin Chemical Co., Ltd.).
  • Examples of commercially available diphenyl ether type epoxy resins include YSLV-80DE (manufactured by Nippon Steel & Sumikin Chemical Co., Ltd.).
  • Examples of commercially available dicyclopentadiene type epoxy resins include EP-4088S (manufactured by ADEKA).
  • Examples of commercially available naphthalene type epoxy resins include EPICLONP 4032 and EPICLONEXA-4700 (both manufactured by DIC).
  • Examples of commercially available phenol novolak epoxy resins include EPICLONN-770 (manufactured by DIC).
  • Examples of commercially available ortho cresol novolac epoxy resins include EPICLONN-670-EXP-S (manufactured by DIC). As what is marketed among the said dicyclopentadiene novolak-type epoxy resins, EPICRONHP7200 (made by DIC) etc. are mentioned, for example.
  • Examples of commercially available biphenyl novolac epoxy resins include NC-3000P (manufactured by Nippon Kayaku Co., Ltd.). Examples of commercially available naphthalene phenol novolac type epoxy resins include ESN-165S (manufactured by Nippon Steel & Sumikin Chemical Co., Ltd.).
  • Examples of commercially available glycidylamine type epoxy resins include jER630 (manufactured by Mitsubishi Chemical Corporation), EPICLON 430 (manufactured by DIC Corporation), TETRAD-X (manufactured by Mitsubishi Gas Chemical Company), and the like.
  • Examples of commercially available alkyl polyol type epoxy resins include ZX-1542 (manufactured by Nippon Steel & Sumikin Chemical Co., Ltd.), EPICLON 726 (manufactured by DIC), Epolite 80MFA (manufactured by Kyoeisha Chemical Co., Ltd.), Denacol EX-611 ( Nagase ChemteX Corporation).
  • Examples of commercially available rubber-modified epoxy resins include YR-450, YR-207 (both manufactured by Nippon Steel & Sumikin Chemical Co., Ltd.), Epolide PB (manufactured by Daicel Corporation), and the like.
  • Examples of commercially available glycidyl ester compounds include Denacol EX-147 (manufactured by Nagase ChemteX Corporation).
  • epoxy compounds include, for example, YDC-1312, YSLV-80XY, YSLV-90CR (all manufactured by Nippon Steel & Sumikin Chemical Co., Ltd.), XAC4151 (manufactured by Asahi Kasei Co., Ltd.), jER1031, jER1032 (all Also, Mitsubishi Chemical Corporation), EXA-7120 (DIC Corporation), TEPIC (Nissan Chemical Corporation) and the like.
  • Examples of commercially available epoxy (meth) acrylates include EBECRYL860, EBECRYL3200, EBECRYL3201, EBECRYL3412, EBECRYL3600, EBECRYL3700, EBECRYL3701, EBECRYL3702, EBECRY370R ), EA-1010, EA-1020, EA-5323, EA-5520, EA-CHD, EMA-1020 (all manufactured by Shin-Nakamura Chemical Co., Ltd.), epoxy ester M-600A, epoxy ester 40EM, epoxy ester 70PA, Epoxy ester 200PA, Epoxy ester 80MF Epoxy ester 3002M, Epoxy ester 3002A, Epoxy ester 1600A, Epoxy ester 3000M, Epoxy ester 3000A, Epoxy ester 200EA, Epoxy ester 400EA (all manufactured by Kyoeisha Chemical Co., Ltd.), Denacol acrylate DA-141, Denacol acrylate DA-3
  • the urethane (meth) acrylate is obtained, for example, by reacting 2 equivalents of a (meth) acrylic acid derivative having a hydroxyl group with 1 equivalent of an isocyanate compound having two isocyanate groups in the presence of a catalytic amount of a tin-based compound. be able to.
  • isocyanate compound examples include isophorone diisocyanate, 2,4-tolylene diisocyanate, 2,6-tolylene diisocyanate, hexamethylene diisocyanate, trimethylhexamethylene diisocyanate, diphenylmethane-4,4′-diisocyanate (MDI), hydrogenated MDI, polymeric MDI, 1,5-naphthalene diisocyanate, norbornane diisocyanate, tolidine diisocyanate, xylylene diisocyanate (XDI), hydrogenated XDI, lysine diisocyanate, triphenylmethane triisocyanate, tris (isocyanatophenyl) thiophosphate, tetramethylxylylene diene Isocyanate, 1,6,11-undecane triisocyanate and the like.
  • MDI diphenylmethane-4,4′-diisocyanate
  • XDI
  • the chain-extended isocyanate compound obtained by reaction with a polyol and excess isocyanate compound can also be used, for example.
  • the polyol include ethylene glycol, propylene glycol, glycerin, sorbitol, trimethylolpropane, carbonate diol, polyether diol, polyester diol, and polycaprolactone diol.
  • Examples of the (meth) acrylic acid derivative having a hydroxyl group include hydroxyalkyl mono (meth) acrylate, mono (meth) acrylate of divalent alcohol, mono (meth) acrylate or di (meth) acrylate of trivalent alcohol. And epoxy (meth) acrylate.
  • Examples of the hydroxyalkyl mono (meth) acrylate include 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 2-hydroxybutyl (meth) acrylate, and 4-hydroxybutyl (meth) acrylate. Can be mentioned.
  • Examples of the divalent alcohol include ethylene glycol, propylene glycol, 1,3-propanediol, 1,3-butanediol, 1,4-butanediol, and polyethylene glycol.
  • Examples of the trivalent alcohol include trimethylolethane, trimethylolpropane, and glycerin.
  • Examples of the epoxy (meth) acrylate include bisphenol A type epoxy acrylate.
  • Examples of commercially available urethane (meth) acrylates include M-1100, M-1200, M-1210, M-1600 (all manufactured by Toagosei Co., Ltd.), EBECRYL210, EBECRYL220, EBECRYL230, EBECRYL270, EBECRYL1290, EBECRYL2220, EBECRYL4827, EBECRYL4842, EBECRYL4858, EBECRYL5129, EBECRYL6700, EBECRYL8402, EBECRYL8803, EBECRYL8804, EBECRYL8804 , Art resin N-1255, Art Resin UN-3320HB, Art Resin UN-7100, Art Resin UN-9000A, Art Resin UN-9000H (all manufactured by Negami Industrial Co., Ltd.), U-2HA, U-2PHA, U-3HA, U- 4HA, U-6H, U-6HA, U-6LPA, U-10H, U-15HA, U
  • the preferable lower limit of the content of the (meth) acrylic compound in 100 parts by weight of the curable resin is 20 parts by weight, and the preferable upper limit is 80 parts by weight.
  • the content of the (meth) acrylic compound is within this range, the obtained sealing agent for liquid crystal display elements is more excellent in light-shielding part curability and low liquid crystal contamination.
  • the minimum with more preferable content of the said (meth) acryl compound is 30 weight part, and a more preferable upper limit is 70 weight part.
  • the partial (meth) acryl-modified epoxy compound means a compound having one or more epoxy groups and (meth) acryloyl groups in one molecule, for example, two in one molecule. It can be obtained by reacting a part of the epoxy group having an epoxy group with (meth) acrylic acid.
  • the preferable lower limit of the content of the aromatic epoxy compound in 100 parts by weight of the curable resin is 10 parts by weight, and the preferable upper limit is 70 parts by weight.
  • the content of the aromatic epoxy compound is within this range, the obtained sealing agent for liquid crystal display elements is more excellent in the effect of achieving both the light-shielding part curability and the adhesiveness.
  • the minimum with more preferable content of the said aromatic epoxy compound is 20 weight part, and a more preferable upper limit is 60 weight part.
  • the (meth) acrylic compound and the aromatic epoxy compound preferably have a bisphenol skeleton.
  • the photopolymerization initiator composed of the compound represented by the formula (1) is more easily dissolved.
  • the curable resin preferably contains a maleimide compound.
  • the photopolymerization initiator composed of the compound represented by the formula (1) is more easily dissolved.
  • the maleimide compound is not included in the photopolymerization initiator but is included in the curable resin.
  • the maleimide compound is preferably a polyfunctional maleimide compound having two or more maleimide groups in one molecule.
  • R 1 represents an alkylene group having 2 to 3 carbon atoms, and n is an integer of 2 to 40.
  • R 2 represents a divalent aliphatic group having 1 to 40 carbon atoms.
  • R 2 preferably has 12 to 36 carbon atoms.
  • R 2 preferably has an aliphatic ring.
  • Specific examples of the compound represented by the above formula (3) include 1,20-bismaleimide-10,11-dioctyl-eicosane (compound represented by the following formula (4-1)), 1- Heptylenemaleimide-2-octylenemaleimide-4-octyl-5-heptylcyclohexane (compound represented by the following formula (4-2)), 1,2-dioctylenemaleimide-3-octyl-4-hexyl And cyclohexane (a compound represented by the following formula (4-3)). These can be synthesized by the method described in US Pat. No. 5,973,166.
  • the minimum with preferable content of the said maleimide compound in 100 weight part of said curable resin is 2 weight part, and a preferable upper limit is 20 weight part.
  • a preferable upper limit is 20 weight part.
  • the minimum with more preferable content of the said maleimide compound is 5 weight part, and a more preferable upper limit is 15 weight part.
  • the said curable resin may contain other curable resins, such as an aliphatic epoxy compound, in the range which does not inhibit the objective of this invention.
  • a preferable upper limit of the average SP value of the entire curable resin is 24.
  • the photopolymerization initiator composed of the compound represented by the formula (1) is more easily dissolved.
  • the upper limit with more preferable average SP value of the said whole curable resin is 23.8.
  • the “SP value” means a solubility parameter, and is calculated by the Fedors estimation method.
  • the “average SP value” is an average of SP values by weight fraction.
  • the minimum with a preferable weight average molecular weight of the said whole curable resin is 340, and a preferable upper limit is 10,000.
  • the weight average molecular weight of the whole curable resin is within this range, the photopolymerization initiator composed of the compound represented by the formula (1) can be more easily dissolved.
  • the more preferable lower limit of the weight average molecular weight of the entire curable resin is 700, and the preferable upper limit is 3000.
  • the “weight average molecular weight” is a value determined by polystyrene conversion after measurement by gel permeation chromatography (GPC). Examples of the column used when measuring the weight average molecular weight in terms of polystyrene by GPC include Shodex LF-804 (manufactured by Showa Denko).
  • the sealing agent for liquid crystal display elements of this invention contains a photoinitiator.
  • the photopolymerization initiator contains a compound represented by the formula (1).
  • the sealing agent for liquid crystal display elements of the present invention has excellent light-shielding part curability.
  • the content of the compound represented by the above formula (1) is preferably 0.1 parts by weight and preferably 5 parts by weight with respect to 100 parts by weight of the curable resin.
  • the content of the compound represented by the above formula (1) is within this range, the obtained sealing agent for liquid crystal display elements is more excellent in the effect of achieving both light-shielding part curability and low liquid crystal contamination.
  • the minimum with more preferable content of the compound represented by the said Formula (1) is 0.5 weight part, and a more preferable upper limit is 2 weight part.
  • the sealing agent for liquid crystal display elements of the present invention may contain other photopolymerization initiator other than the compound represented by the above formula (1) as long as the object of the present invention is not impaired.
  • the difference in SP value between the curable resin and the photopolymerization initiator is 2.5 or less.
  • the difference in SP value between the curable resin and the photopolymerization initiator is 2.5 or less, the obtained sealing agent for liquid crystal display elements is excellent in light-shielding part curability and low liquid crystal contamination.
  • the difference in SP value between the curable resin and the photopolymerization initiator is more preferably 2.3 or less, and even more preferably 2.0 or less.
  • the “SP value difference” means a difference in average SP values. That is, the difference in SP value between the curable resin and the photopolymerization initiator means the difference between the average SP value of the entire curable resin and the average SP value of the entire photopolymerization initiator.
  • the sealing agent for liquid crystal display elements of the present invention may contain a thermal polymerization initiator.
  • a thermal polymerization initiator what consists of an azo compound, an organic peroxide etc. is mentioned, for example.
  • an initiator made of a polymer azo compound (hereinafter also referred to as “polymer azo initiator”) is preferable.
  • the polymer azo compound means a compound having an azo group and generating a radical by heat and having a number average molecular weight of 300 or more.
  • the preferable lower limit of the number average molecular weight of the polymer azo compound is 1000, and the preferable upper limit is 300,000.
  • the more preferable lower limit of the number average molecular weight of the polymer azo compound is 5000, the more preferable upper limit is 100,000, the still more preferable lower limit is 10,000, and the still more preferable upper limit is 90,000.
  • the said number average molecular weight is a value calculated
  • Examples of the polymer azo compound include those having a structure in which a plurality of units such as polyalkylene oxide and polydimethylsiloxane are bonded via an azo group.
  • Examples of the polymer azo compound having a structure in which a plurality of units such as polyalkylene oxide are bonded via the azo group those having a polyethylene oxide structure are preferable.
  • Examples of such a polymer azo initiator include polycondensates of 4,4′-azobis (4-cyanopentanoic acid) and polyalkylene glycol, and 4,4′-azobis (4-cyanopentanoic acid) Examples include polycondensates of polydimethylsiloxane having a terminal amino group.
  • Examples of commercially available polymer azo compounds include VPE-0201, VPE-0401, VPE-0601, VPS-0501, and VPS-1001 (all manufactured by Wako Pure Chemical Industries, Ltd.).
  • Examples of thermal polymerization initiators made of azo compounds that are not polymers include V-65 and V-501 (both manufactured by Wako Pure Chemical Industries, Ltd.).
  • organic peroxide examples include ketone peroxide, peroxyketal, hydroperoxide, dialkyl peroxide, peroxyester, diacyl peroxide, and peroxydicarbonate.
  • the content of the thermal polymerization initiator is preferably 0.05 parts by weight and preferably 10 parts by weight with respect to 100 parts by weight of the curable resin.
  • the thermal polymerization initiator is within this range, the obtained sealing agent for liquid crystal display elements is excellent in storage stability and curability while suppressing liquid crystal contamination.
  • the minimum with more preferable content of the said thermal-polymerization initiator is 0.1 weight part, and a more preferable upper limit is 5 weight part.
  • the sealing agent for liquid crystal display elements of the present invention may contain a thermosetting agent.
  • thermosetting agent include organic acid hydrazides, imidazole derivatives, amine compounds, polyhydric phenol compounds, acid anhydrides, and the like. Of these, organic acid hydrazide is preferably used.
  • organic acid hydrazide examples include sebacic acid dihydrazide, isophthalic acid dihydrazide, adipic acid dihydrazide, malonic acid dihydrazide, and the like.
  • organic acid hydrazides examples include SDH, ADH, MDH (all manufactured by Otsuka Chemical), Amicure VDH, Amicure VDH-J, Amicure UDH, Amicure UDH-J (all Ajinomoto Fine). (Techno).
  • the content of the thermosetting agent is preferably 1 part by weight with respect to 100 parts by weight of the curable resin, and 50 parts by weight with respect to the preferable upper limit.
  • the upper limit with more preferable content of the said thermosetting agent is 30 weight part.
  • the flexible particles include silicone particles, vinyl particles, urethane particles, fluorine particles, and nitrile particles. Of these, silicone particles and vinyl particles are preferable.
  • a silicone rubber particle is preferable from a dispersible viewpoint to resin.
  • (Meth) acrylic particles are preferably used as the vinyl particles.
  • the (meth) acrylic particles can be obtained by polymerizing monomers as raw materials by a known method. Specifically, for example, a method in which a monomer is suspension-polymerized in the presence of a radical polymerization initiator, and a seed particle is swollen by absorbing the monomer into a non-crosslinked seed particle in the presence of a radical polymerization initiator. And a seed polymerization method.
  • Examples of the monomer that is a raw material for forming the (meth) acrylic particles include alkyl (meth) acrylates, oxygen atom-containing (meth) acrylates, nitrile-containing monomers, and fluorine-containing (meth) acrylates. Monofunctional monomers such as the like.
  • alkyl (meth) acrylates examples include methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, butyl (meth) acrylate, hexyl (meth) acrylate, octyl (meth) acrylate, 2- Examples include ethylhexyl (meth) acrylate, lauryl (meth) acrylate, cetyl (meth) acrylate, stearyl (meth) acrylate, cyclohexyl (meth) acrylate, and isobornyl (meth) acrylate.
  • Examples of the oxygen atom-containing (meth) acrylates include 2-hydroxyethyl (meth) acrylate, glycerol (meth) acrylate, polyoxyethylene (meth) acrylate, glycidyl (meth) acrylate, and the like.
  • Examples of the nitrile-containing monomer include (meth) acrylonitrile.
  • Examples of the fluorine-containing (meth) acrylates include trifluoromethyl (meth) acrylate and pentafluoroethyl (meth) acrylate.
  • alkyl (meth) acrylates are preferable because the Tg of the homopolymer is low and the deformation amount when a 1 g load is applied can be increased.
  • tetramethylol methane tetra (meth) acrylate tetramethylol methane tri (meth) acrylate, tetramethylol methane di (meth) acrylate, trimethylol propane tri (meth) acrylate, dipentaerythritol hexa ( (Meth) acrylate, dipentaerythritol penta (meth) acrylate, glycerol tri (meth) acrylate, glycerol di (meth) acrylate, (poly) ethylene glycol di (meth) acrylate, (poly) propylene glycol di (meth) acrylate, ( Poly) tetramethylene di (meth) acrylate, 1,4-butanediol di (meth) acrylate, 1,6-hexanediol di (meth) acrylate, isocyanuric acid
  • the preferable lower limit is 1% by weight and the preferable upper limit is 90% by weight in the whole monomer as a raw material for forming the (meth) acrylic particles.
  • the amount of the crosslinkable monomer used is 1% by weight or more, the solvent resistance is improved, and when kneaded with other sealant components, it does not cause problems such as swelling and is easily dispersed uniformly.
  • the amount of the crosslinkable monomer used is 90% by weight or less, the recovery rate can be lowered.
  • a more preferable lower limit of the amount of the crosslinkable monomer used is 3% by weight, and a more preferable upper limit is 80% by weight.
  • styrene monomers In addition to these acrylic monomers, styrene monomers, vinyl ethers, carboxylic acid vinyl esters, unsaturated hydrocarbons, halogen-containing monomers, triallyl cyanurate, triallyl isocyanurate, Monomers such as triallyl trimellitate, divinylbenzene, diallyl phthalate, diallylacrylamide, diallyl ether, ⁇ - (meth) acryloxypropyltrimethoxysilane, vinyltrimethoxysilane may be used.
  • the styrene monomer include styrene, ⁇ -methylstyrene, trimethoxysilylstyrene, and the like.
  • Examples of the vinyl ethers include methyl vinyl ether, ethyl vinyl ether, propyl vinyl ether, and the like.
  • Examples of the carboxylic acid vinyl esters include vinyl acetate, vinyl butyrate, vinyl laurate, and vinyl stearate.
  • Examples of the unsaturated hydrocarbon include ethylene, propylene, isoprene, butadiene and the like.
  • Examples of the halogen-containing monomer include vinyl chloride, vinyl fluoride, chlorostyrene, and the like.
  • core-shell (meth) acrylate copolymer fine particles are also preferably used.
  • core-shell (meth) acrylate copolymer fine particles include F351 (manufactured by Zeon Kasei Co., Ltd.).
  • vinyl particles for example, polydivinylbenzene particles, polychloroprene particles, butadiene rubber particles and the like may be used.
  • the preferable lower limit of the average particle diameter of the flexible particles is 0.01 ⁇ m, and the preferable upper limit is 10 ⁇ m.
  • the more preferable lower limit of the average particle diameter of the flexible particles is 0.1 ⁇ m, and the more preferable upper limit is 8 ⁇ m.
  • the average particle diameter of the said flexible particle means the value obtained by measuring using the laser diffraction type particle size distribution measuring apparatus about the particle
  • the laser diffraction particle size distribution measuring device Mastersizer 2000 (manufactured by Malvern) or the like can be used.
  • the preferable lower limit of the hardness of the flexible particles is 10, and the preferable upper limit is 50.
  • the more preferable lower limit of the hardness of the soft particles is 20, and the more preferable upper limit is 40.
  • the hardness of the said flexible particle means the durometer A hardness measured by the method based on JISK6253.
  • the preferable lower limit of the content of the flexible particles in 100 parts by weight of the sealing agent for liquid crystal display elements of the present invention is 5 parts by weight, and the preferable upper limit is 50 parts by weight.
  • grain is 10 weight part, and a more preferable upper limit is 30 weight part.
  • the sealing agent for liquid crystal display elements of the present invention preferably contains a filler for the purpose of improving the viscosity, improving the adhesiveness due to the stress dispersion effect, improving the linear expansion coefficient, and the like.
  • Examples of the filler include inorganic fillers and organic fillers other than those contained in the flexible particles.
  • Examples of the inorganic filler include silica, talc, glass beads, asbestos, gypsum, diatomaceous earth, smectite, bentonite, montmorillonite, sericite, activated clay, alumina, zinc oxide, iron oxide, magnesium oxide, tin oxide, and titanium oxide.
  • the preferable lower limit of the content of the filler in 100 parts by weight of the sealant for liquid crystal display elements of the present invention is 10 parts by weight, and the preferable upper limit is 70 parts by weight.
  • the minimum with more preferable content of the said filler is 20 weight part, and a more preferable upper limit is 60 weight part.
  • the sealing compound for liquid crystal display elements of this invention contains a silane coupling agent.
  • the silane coupling agent mainly has a role as an adhesion assistant for favorably bonding the sealing agent and the substrate.
  • silane coupling agent for example, 3-aminopropyltrimethoxysilane, 3-mercaptopropyltrimethoxysilane, 3-glycidoxypropyltrimethoxysilane, 3-isocyanatopropyltrimethoxysilane and the like are preferably used. These are excellent in the effect of improving the adhesion to a substrate or the like, and can suppress the outflow of the curable resin into the liquid crystal by chemically bonding with the curable resin. These silane coupling agents may be used alone or in combination of two or more.
  • the minimum with preferable content of the said silane coupling agent in 100 weight part of sealing compounds for liquid crystal display elements of this invention is 0.1 weight part, and a preferable upper limit is 10 weight part.
  • a preferable upper limit is 10 weight part.
  • the minimum with more preferable content of the said silane coupling agent is 0.3 weight part, and a more preferable upper limit is 5 weight part.
  • the sealing agent for liquid crystal display elements of the present invention may contain a light shielding agent.
  • the sealing compound for liquid crystal display elements of this invention can be used suitably as a light shielding sealing agent.
  • the light-shielding agent examples include iron oxide, titanium black, aniline black, cyanine black, fullerene, carbon black, and resin-coated carbon black. Of these, titanium black is preferred because of its high insulating properties.
  • the above-mentioned titanium black exhibits a sufficient effect even if it is not surface-treated, but the surface is treated with an organic component such as a coupling agent, silicon oxide, titanium oxide, germanium oxide, aluminum oxide, oxidized Surface-treated titanium black such as those coated with an inorganic component such as zirconium or magnesium oxide can also be used. Especially, what is processed with the organic component is preferable at the point which can improve insulation more.
  • the liquid crystal display element produced using the sealing agent for liquid crystal display elements of the present invention containing the above-described titanium black as a light-shielding agent has a sufficient light-shielding property, and thus has high contrast without light leakage. A liquid crystal display element having excellent image display quality can be realized.
  • titanium black examples include 12S, 13M, 13M-C, 13R-N, 14M-C (all manufactured by Mitsubishi Materials Corporation), Tilak D (manufactured by Ako Kasei Co., Ltd.), and the like. Can be mentioned.
  • the preferable lower limit of the specific surface area of the titanium black is 13 m 2 / g, the preferable upper limit is 30 m 2 / g, the more preferable lower limit is 15 m 2 / g, and the more preferable upper limit is 25 m 2 / g.
  • the preferred lower limit of the volume resistance of the titanium black is 0.5 ⁇ ⁇ cm, the preferred upper limit is 3 ⁇ ⁇ cm, the more preferred lower limit is 1 ⁇ ⁇ cm, and the more preferred upper limit is 2.5 ⁇ ⁇ cm.
  • the primary particle diameter of the light-shielding agent is not particularly limited as long as it is not more than the distance between the substrates of the liquid crystal display element, but the preferred lower limit is 1 nm and the preferred upper limit is 5 ⁇ m. When the primary particle diameter of the light-shielding agent is within this range, the light-shielding property can be improved without deteriorating the applicability of the obtained sealing agent for liquid crystal display elements.
  • the more preferable lower limit of the primary particle diameter of the light shielding agent is 5 nm
  • the more preferable upper limit is 200 nm
  • the still more preferable lower limit is 10 nm
  • the still more preferable upper limit is 100 nm.
  • the primary particle size of the light shielding agent can be measured by using NICOMP 380ZLS (manufactured by PARTICS SIZING SYSTEMS) and dispersing the light shielding agent in a solvent (water, organic solvent, etc.).
  • the preferable lower limit of the content of the light-shielding agent in 100 parts by weight of the sealant for liquid crystal display elements of the present invention is 5 parts by weight, and the preferable upper limit is 80 parts by weight.
  • the content of the light-shielding agent is within this range, the liquid crystal display element sealant can exhibit better light-shielding properties without reducing the adhesion to the substrate, the strength after curing, and the drawability. it can.
  • the more preferable lower limit of the content of the light shielding agent is 10 parts by weight, the more preferable upper limit is 70 parts by weight, the still more preferable lower limit is 30 parts by weight, and the still more preferable upper limit is 60 parts by weight.
  • a method for producing the sealing agent for liquid crystal display elements of the present invention for example, using a mixer such as a homodisper, a homomixer, a universal mixer, a planetary mixer, a kneader, or a three roll, a curable resin, a light
  • a mixer such as a homodisper, a homomixer, a universal mixer, a planetary mixer, a kneader, or a three roll, a curable resin, a light
  • a mixer such as a homodisper, a homomixer, a universal mixer, a planetary mixer, a kneader, or a three roll, a curable resin, a light
  • a mixer such as a homodisper, a homomixer, a universal mixer, a planetary mixer, a kneader, or a three roll, a curable resin, a light
  • a vertical conducting material can be produced by blending conductive fine particles with the liquid crystal display element sealant of the present invention.
  • Such a vertical conduction material containing the sealing agent for liquid crystal display elements of the present invention and conductive fine particles is also one aspect of the present invention.
  • the conductive fine particles a metal ball, a resin fine particle formed with a conductive metal layer on the surface, or the like can be used.
  • the one in which the conductive metal layer is formed on the surface of the resin fine particles is preferable because the conductive connection is possible without damaging the transparent substrate due to the excellent elasticity of the resin fine particles.
  • the liquid crystal display element using the sealing agent for liquid crystal display elements of this invention or the vertical conduction material of this invention is also one of this invention.
  • a liquid crystal dropping method is preferably used as a method for producing the liquid crystal display element of the present invention.
  • a method having the following steps First, the liquid crystal display element sealant of the present invention is applied to one of two substrates such as a glass substrate or a polyethylene terephthalate substrate with an electrode such as an ITO thin film by screen printing, dispenser application, etc. The step of forming the seal pattern is performed. Next, in a state where the sealant for a liquid crystal display element of the present invention is uncured, a step of applying droplets of liquid crystals into the frame of the seal pattern of the substrate and superimposing another substrate under vacuum is performed.
  • a liquid crystal display element can be obtained by the method of irradiating light, such as an ultraviolet-ray, to the seal pattern part of the sealing agent for liquid crystal display elements of this invention, and photocuring a sealing agent.
  • a step of heating and thermosetting the sealant may be performed.
  • the sealing compound for liquid crystal display elements which is excellent in light-shielding part curability and can suppress liquid-crystal contamination can be provided.
  • the vertical conduction material and liquid crystal display element which use this sealing compound for liquid crystal display elements can be provided.
  • the triphenylphosphine a reagent manufactured by Tokyo Chemical Industry Co., Ltd. was used.
  • dibutylhydroxytoluene a reagent manufactured by Tokyo Chemical Industry Co., Ltd. was used. After completion of the reaction, washing with distilled water, vacuum drying, and filtration were performed to obtain a bisphenol A type epoxy acrylate oligomer (molecular weight 4500, dispersity 2.5). The structure of the obtained bisphenol A type epoxy acrylate oligomer was confirmed by 1 H-NMR and GC-Ms.
  • the dibutylhydroxytoluene As the dibutylhydroxytoluene, a reagent manufactured by Tokyo Chemical Industry Co., Ltd. was used. After completion of the reaction, washing with distilled water, vacuum drying, and filtration were performed to obtain a bisphenol A type epoxy methacrylate oligomer (molecular weight 3200, dispersity 2.2). The structure of the obtained bisphenol A type epoxy methacrylate oligomer was confirmed by 1 H-NMR and GC-Ms.
  • Examples 1 to 12, Comparative Examples 1 to 5 According to the blending ratios listed in Tables 1 to 3, each material was mixed using a planetary stirrer (“Shinky Co.,“ Awatori Nertaro ”), and then mixed using three rolls. Sealants for liquid crystal display elements of Examples 1 to 12 and Comparative Examples 1 to 5 were prepared.
  • a substrate A on which half of a Corning glass having a thickness of 0.7 mm was vapor-deposited and a substrate B on which the front surface was vapor-deposited were prepared.
  • 1 part by weight of spacer particles having an average particle diameter of 5 ⁇ m manufactured by Sekisui Chemical Co., Ltd., “Micropearl SI-H050” with respect to 100 parts by weight of the sealant for each liquid crystal display device obtained in Examples and Comparative Examples. was uniformly dispersed by a planetary stirrer.
  • the sealing agent in which the spacer particles are dispersed is applied to the central portion of the substrate A (the boundary between the chromium vapor-deposited portion and the non-vapor-deposited portion), and after the substrate B is bonded together, the sealant is sufficiently crushed.
  • a 100 mW / cm 2 ultraviolet ray was irradiated for 30 seconds from the side using a metal halide lamp.
  • the substrates A and B are peeled off using a cutter, and the spectrum is measured by a microscopic IR method for the sealant on a point 50 ⁇ m away from the direct ultraviolet irradiation part (the part shielded from light by chromium vapor deposition).
  • the conversion rate of the inside (meth) acryloyl group was calculated
  • a sealing agent was applied in a frame shape to one of the two transparent electrode substrates with an ITO thin film.
  • fine droplets of TN liquid crystal manufactured by Chisso Corporation, “JC-5001LA”
  • the other transparent electrode substrate is 5 Pa with a vacuum bonding device. Bonding was performed under vacuum to obtain a cell.
  • the obtained cell was irradiated with 100 mW / cm 2 of ultraviolet rays for 30 seconds using a metal halide lamp, and then heated at 120 ° C. for 1 hour to cure the sealant to obtain a liquid crystal display element.
  • the obtained liquid crystal display element visually observe the liquid crystal (especially the corner) around the seal, and if no display irregularities or line afterimages were confirmed, “ ⁇ ”, clearly confirm display irregularities and line afterimages.
  • the display performance (low liquid crystal contamination) of the liquid crystal display element was evaluated with “ ⁇ ” as the case where it was observed and “X” when the severe display unevenness or line afterimage was confirmed.
  • the sealing compound for liquid crystal display elements which is excellent in light-shielding part curability and can suppress liquid-crystal contamination can be provided.
  • the vertical conduction material and liquid crystal display element which use this sealing compound for liquid crystal display elements can be provided.

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Nonlinear Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Mathematical Physics (AREA)
  • Materials Engineering (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Sealing Material Composition (AREA)
  • Liquid Crystal (AREA)
  • Polymerisation Methods In General (AREA)
  • Macromonomer-Based Addition Polymer (AREA)

Abstract

One purpose of the present invention is to provide a sealing agent for liquid crystal display elements, which is capable of suppressing contamination of liquid crystals, while exhibiting excellent curability in a light-blocked part. Another purpose of the present invention is to provide: a vertically conducting material which is obtained using this sealing agent for liquid crystal display elements; and a liquid crystal display element. The present invention is a sealing agent for liquid crystal display elements, which contains a curable resin and a photopolymerization initiator, and wherein: the curable resin contains a (meth)acrylic compound and an aromatic epoxy compound; the photopolymerization initiator contains a compound represented by formula (1); and the difference between the SP value of the curable resin and the SP value of the photopolymerization initiator is 2.5 or less.

Description

液晶表示素子用シール剤、上下導通材料及び液晶表示素子Sealant for liquid crystal display element, vertical conduction material, and liquid crystal display element
本発明は、遮光部硬化性に優れ、かつ、液晶汚染を抑制することができる液晶表示素子用シール剤に関する。また、本発明は、該液晶表示素子用シール剤を用いてなる上下導通材料及び液晶表示素子に関する。 The present invention relates to a sealant for a liquid crystal display element that is excellent in light-shielding part curability and can suppress liquid crystal contamination. Moreover, this invention relates to the vertical conduction material and liquid crystal display element which use this sealing compound for liquid crystal display elements.
近年、液晶表示セル等の液晶表示素子の製造方法としては、タクトタイム短縮、使用液晶量の最適化といった観点から、特許文献1、特許文献2に開示されているような、硬化性樹脂と光重合開始剤と熱硬化剤とを含有する光熱併用硬化型のシール剤を用いた滴下工法と呼ばれる液晶滴下方式が用いられている。
滴下工法では、まず、2枚の電極付き透明基板の一方に、ディスペンスにより長方形状のシールパターンを形成する。次いで、シール剤が未硬化の状態で液晶の微小滴を透明基板の枠内全面に滴下し、すぐに他方の透明基板を重ね合わせ、シール部に紫外線等の光を照射して仮硬化を行う。その後、液晶アニール時に加熱して本硬化を行い、液晶表示素子を作製する。基板の貼り合わせを減圧下で行うようにすれば、極めて高い効率で液晶表示素子を製造することができ、現在この滴下工法が液晶表示素子の製造方法の主流となっている。
In recent years, as a method of manufacturing a liquid crystal display element such as a liquid crystal display cell, a curable resin and a light as disclosed in Patent Document 1 and Patent Document 2 from the viewpoint of shortening tact time and optimizing the amount of liquid crystal used. A liquid crystal dropping method called a dropping method using a photothermal combined curing type sealing agent containing a polymerization initiator and a thermosetting agent is used.
In the dropping method, first, a rectangular seal pattern is formed on one of two transparent substrates with electrodes by dispensing. Next, a liquid crystal micro-droplet is dropped on the entire surface of the transparent substrate frame in a state where the sealant is uncured, and the other transparent substrate is immediately overlaid, and the seal portion is irradiated with light such as ultraviolet rays for temporary curing. . Thereafter, heating is performed at the time of liquid crystal annealing to perform main curing, and a liquid crystal display element is manufactured. If the substrates are bonded together under reduced pressure, a liquid crystal display element can be manufactured with extremely high efficiency, and this dripping method is currently the mainstream method for manufacturing liquid crystal display elements.
ところで、携帯電話、携帯ゲーム機等、各種液晶パネル付きモバイル機器が普及している現代において、装置の小型化は最も求められている課題である。装置の小型化の手法としては、液晶表示部の狭額縁化が挙げられ、例えば、シール部の位置をブラックマトリックス下に配置することが行われている(以下、狭額縁設計ともいう)。 By the way, in the present age when mobile devices with various liquid crystal panels such as mobile phones and portable game machines are widespread, downsizing of devices is the most demanded issue. As a method for reducing the size of the apparatus, there is a narrow frame of the liquid crystal display unit. For example, the position of the seal portion is arranged under the black matrix (hereinafter also referred to as a narrow frame design).
しかしながら、狭額縁設計ではシール剤がブラックマトリックスの直下に配置されるため、滴下工法を行うと、シール剤を光硬化させる際に照射した光が遮られ、シール剤の内部まで光が到達せず硬化が不充分となるという問題があった。このようにシール剤の硬化が不充分となると、未硬化のシール剤成分が液晶中に溶出し、溶出したシール剤成分による硬化反応が液晶中において進行することで液晶汚染が発生するという問題があった。
液晶汚染を抑制する方法として、特許文献3には、シール剤に高感度の光重合開始剤を配合することが開示されている。しかしながら、高感度の光重合開始剤を配合しただけでは、遮光部において充分に液晶汚染を抑制することができなかった。
However, in the narrow frame design, the sealant is placed directly under the black matrix, so when the dripping method is used, the light irradiated when photocuring the sealant is blocked, and the light does not reach the inside of the sealant. There was a problem that the curing was insufficient. If the sealant is insufficiently cured in this manner, the uncured sealant component is eluted in the liquid crystal, and the curing reaction by the eluted sealant component proceeds in the liquid crystal, resulting in liquid crystal contamination. there were.
As a method for suppressing liquid crystal contamination, Patent Document 3 discloses that a highly sensitive photopolymerization initiator is blended with a sealant. However, liquid crystal contamination could not be sufficiently suppressed in the light-shielding part only by blending a highly sensitive photopolymerization initiator.
特開2001-133794号公報JP 2001-133794 A 国際公開第02/092718号International Publication No. 02/092718 国際公開第2012/002028号International Publication No. 2012/002028
本発明は、遮光部硬化性に優れ、かつ、液晶汚染を抑制することができる液晶表示素子用シール剤を提供することを目的とする。また、本発明は、該液晶表示素子用シール剤を用いてなる上下導通材料及び液晶表示素子を提供することを目的とする。 An object of this invention is to provide the sealing compound for liquid crystal display elements which is excellent in sclerosis | hardenability of light-shielding part, and can suppress liquid-crystal contamination. Another object of the present invention is to provide a vertical conduction material and a liquid crystal display element using the sealing agent for a liquid crystal display element.
本発明は、硬化性樹脂と光重合開始剤とを含有する液晶表示素子用シール剤であって、上記硬化性樹脂は、(メタ)アクリル化合物及び芳香族エポキシ化合物を含有し、上記光重合開始剤は、下記式(1)で表される化合物を含有し、上記硬化性樹脂と上記光重合開始剤とのSP値の差が2.5以下である液晶表示素子用シール剤である。 The present invention is a sealant for a liquid crystal display element containing a curable resin and a photopolymerization initiator, wherein the curable resin contains a (meth) acryl compound and an aromatic epoxy compound, and the photopolymerization is started. The agent is a sealing agent for liquid crystal display elements that contains a compound represented by the following formula (1) and has a SP value difference of 2.5 or less between the curable resin and the photopolymerization initiator.
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
以下に本発明を詳述する。
本発明者は、高感度の光重合開始剤を用いても遮光部硬化性を充分に向上させることができない原因が、光重合開始剤の硬化性樹脂に対する低い溶解性にあると考えた。そこで本発明者は、硬化性樹脂及び光重合開始剤として特定の化合物をSP値の差が特定の値以下となるように組み合わせて用いることにより、遮光部硬化性に優れ、かつ、液晶汚染を抑制することができる液晶表示素子用シール剤を得ることができることを見出し、本発明を完成させるに至った。
The present invention is described in detail below.
The inventor considered that the reason why the light-curing portion curability could not be sufficiently improved even when a highly sensitive photopolymerization initiator was used was that the photopolymerization initiator had low solubility in the curable resin. Therefore, the present inventor uses a specific compound as a curable resin and a photopolymerization initiator in combination so that the difference in SP value is not more than a specific value, thereby providing excellent light-shielding part curability and liquid crystal contamination. It has been found that a sealing agent for liquid crystal display elements that can be suppressed can be obtained, and the present invention has been completed.
本発明の液晶表示素子用シール剤は、硬化性樹脂を含有する。
上記硬化性樹脂は、(メタ)アクリル化合物及び芳香族エポキシ化合物を含有する。上記(メタ)アクリル化合物と上記芳香族エポキシ化合物とを組み合わせて用いることにより、得られる液晶表示素子用シール剤が接着性と液晶汚染とを両立する効果に優れるものとなる。
なお、本明細書において、上記「(メタ)アクリル」とは、アクリル又はメタクリルを意味し、上記「(メタ)アクリル化合物」とは、(メタ)アクリロイル基を有する化合物を意味し、上記「(メタ)アクリロイル基」とは、アクリロイル基又はメタクリロイル基を意味する。また、本明細書において、上記「芳香族エポキシ化合物」とは、芳香環とエポキシ基とを有する化合物を意味する。
The sealing agent for liquid crystal display elements of this invention contains curable resin.
The curable resin contains a (meth) acrylic compound and an aromatic epoxy compound. By using a combination of the (meth) acrylic compound and the aromatic epoxy compound, the obtained sealing agent for liquid crystal display elements is excellent in the effect of achieving both adhesiveness and liquid crystal contamination.
In the present specification, the “(meth) acryl” means acryl or methacryl, and the “(meth) acryl compound” means a compound having a (meth) acryloyl group. The term “(meth) acryloyl group” means an acryloyl group or a methacryloyl group. In the present specification, the “aromatic epoxy compound” means a compound having an aromatic ring and an epoxy group.
上記(メタ)アクリル化合物としては、例えば、(メタ)アクリル酸エステル化合物、エポキシ(メタ)アクリレート、ウレタン(メタ)アクリレート等が挙げられる。なかでも、エポキシ(メタ)アクリレートが好ましい。また、上記(メタ)アクリル化合物は、反応性の高さから分子中に(メタ)アクリロイル基を2個以上有するものが好ましい。
なお、本明細書において、上記「(メタ)アクリレート」とは、アクリレート又はメタクリレートを意味し、上記「エポキシ(メタ)アクリレート」とは、エポキシ化合物中の全てのエポキシ基を(メタ)アクリル酸と反応させた化合物のことを表す。
Examples of the (meth) acrylic compound include (meth) acrylic acid ester compounds, epoxy (meth) acrylates, urethane (meth) acrylates, and the like. Of these, epoxy (meth) acrylate is preferable. The (meth) acrylic compound preferably has two or more (meth) acryloyl groups in the molecule because of its high reactivity.
In the present specification, the “(meth) acrylate” means acrylate or methacrylate, and the “epoxy (meth) acrylate” refers to all the epoxy groups in the epoxy compound and (meth) acrylic acid. It represents the reacted compound.
上記(メタ)アクリル酸エステル化合物のうち単官能のものとしては、例えば、メチル(メタ)アクリレート、エチル(メタ)アクリレート、プロピル(メタ)アクリレート、n-ブチル(メタ)アクリレート、イソブチル(メタ)アクリレート、t-ブチル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、n-オクチル(メタ)アクリレート、イソオクチル(メタ)アクリレート、イソノニル(メタ)アクリレート、イソデシル(メタ)アクリレート、ラウリル(メタ)アクリレート、イソミリスチル(メタ)アクリレート、ステアリル(メタ)アクリレート、2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、2-ヒドロキシブチル(メタ)アクリレート、4-ヒドロキシブチル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、イソボルニル(メタ)アクリレート、ビシクロペンテニル(メタ)アクリレート、ベンジル(メタ)アクリレート、2-メトキシエチル(メタ)アクリレート、2-エトキシエチル(メタ)アクリレート、2-ブトキシエチル(メタ)アクリレート、2-フェノキシエチル(メタ)アクリレート、メトキシエチレングリコール(メタ)アクリレート、メトキシポリエチレングリコール(メタ)アクリレート、フェノキシジエチレングリコール(メタ)アクリレート、フェノキシポリエチレングリコール(メタ)アクリレート、テトラヒドロフルフリル(メタ)アクリレート、エチルカルビトール(メタ)アクリレート、2,2,2-トリフルオロエチル(メタ)アクリレート、2,2,3,3-テトラフルオロプロピル(メタ)アクリレート、1H,1H,5H-オクタフルオロペンチル(メタ)アクリレート、イミド(メタ)アクリレート、ジメチルアミノエチル(メタ)アクリレート、ジエチルアミノエチル(メタ)アクリレート、2-(メタ)アクリロイロキシエチルコハク酸、2-(メタ)アクリロイロキシエチルヘキサヒドロフタル酸、2-(メタ)アクリロイロキシエチル2-ヒドロキシプロピルフタレート、2-(メタ)アクリロイロキシエチルホスフェート、グリシジル(メタ)アクリレート等が挙げられる。 Examples of the monofunctional compounds among the (meth) acrylic acid ester compounds include, for example, methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, n-butyl (meth) acrylate, and isobutyl (meth) acrylate. , T-butyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, n-octyl (meth) acrylate, isooctyl (meth) acrylate, isononyl (meth) acrylate, isodecyl (meth) acrylate, lauryl (meth) acrylate, iso Myristyl (meth) acrylate, stearyl (meth) acrylate, 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 2-hydroxybutyl (meth) acrylate, 4-hydroxy Til (meth) acrylate, cyclohexyl (meth) acrylate, isobornyl (meth) acrylate, bicyclopentenyl (meth) acrylate, benzyl (meth) acrylate, 2-methoxyethyl (meth) acrylate, 2-ethoxyethyl (meth) acrylate, 2 -Butoxyethyl (meth) acrylate, 2-phenoxyethyl (meth) acrylate, methoxyethylene glycol (meth) acrylate, methoxypolyethylene glycol (meth) acrylate, phenoxydiethylene glycol (meth) acrylate, phenoxypolyethylene glycol (meth) acrylate, tetrahydrofur Furyl (meth) acrylate, ethyl carbitol (meth) acrylate, 2,2,2-trifluoroethyl (meth) acrylate 2,2,3,3-tetrafluoropropyl (meth) acrylate, 1H, 1H, 5H-octafluoropentyl (meth) acrylate, imide (meth) acrylate, dimethylaminoethyl (meth) acrylate, diethylaminoethyl (meth) ) Acrylate, 2- (meth) acryloyloxyethyl succinic acid, 2- (meth) acryloyloxyethyl hexahydrophthalic acid, 2- (meth) acryloyloxyethyl 2-hydroxypropyl phthalate, 2- (meth) acrylic Examples include leuoxyethyl phosphate and glycidyl (meth) acrylate.
また、上記(メタ)アクリル酸エステル化合物のうち2官能のものとしては、例えば、1,3-ブタンジオールジ(メタ)アクリレート、1,4-ブタンジオールジ(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレート、1,9-ノナンジオールジ(メタ)アクリレート、1,10-デカンジオールジ(メタ)アクリレート、エチレングリコールジ(メタ)アクリレート、ジエチレングリコールジ(メタ)アクリレート、テトラエチレングリコールジ(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート、2-n-ブチル-2-エチル-1,3-プロパンジオールジ(メタ)アクリレート、ジプロピレングリコールジ(メタ)アクリレート、トリプロピレングリコールジ(メタ)アクリレート、ポリプロピレングリコールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、エチレンオキシド付加ビスフェノールAジ(メタ)アクリレート、プロピレンオキシド付加ビスフェノールAジ(メタ)アクリレート、エチレンオキシド付加ビスフェノールFジ(メタ)アクリレート、ジメチロールジシクロペンタジエニルジ(メタ)アクリレート、エチレンオキシド変性イソシアヌル酸ジ(メタ)アクリレート、2-ヒドロキシ-3-(メタ)アクリロイロキシプロピル(メタ)アクリレート、カーボネートジオールジ(メタ)アクリレート、ポリエーテルジオールジ(メタ)アクリレート、ポリエステルジオールジ(メタ)アクリレート、ポリカプロラクトンジオールジ(メタ)アクリレート、ポリブタジエンジオールジ(メタ)アクリレート等が挙げられる。 Examples of the bifunctional compound among the (meth) acrylic acid ester compounds include 1,3-butanediol di (meth) acrylate, 1,4-butanediol di (meth) acrylate, and 1,6-hexane. Diol di (meth) acrylate, 1,9-nonanediol di (meth) acrylate, 1,10-decanediol di (meth) acrylate, ethylene glycol di (meth) acrylate, diethylene glycol di (meth) acrylate, tetraethylene glycol di (Meth) acrylate, polyethylene glycol di (meth) acrylate, 2-n-butyl-2-ethyl-1,3-propanediol di (meth) acrylate, dipropylene glycol di (meth) acrylate, tripropylene glycol di (meth) ) Acrylate, poly Lopylene glycol di (meth) acrylate, neopentyl glycol di (meth) acrylate, ethylene oxide-added bisphenol A di (meth) acrylate, propylene oxide-added bisphenol A di (meth) acrylate, ethylene oxide-added bisphenol F di (meth) acrylate, dimethylol Dicyclopentadienyl di (meth) acrylate, ethylene oxide modified isocyanuric acid di (meth) acrylate, 2-hydroxy-3- (meth) acryloyloxypropyl (meth) acrylate, carbonate diol di (meth) acrylate, polyether diol Di (meth) acrylate, polyester diol di (meth) acrylate, polycaprolactone diol di (meth) acrylate, polybutadiene diol (Meth) acrylate.
また、上記(メタ)アクリル酸エステル化合物のうち3官能以上のものとしては、例えば、トリメチロールプロパントリ(メタ)アクリレート、エチレンオキシド付加トリメチロールプロパントリ(メタ)アクリレート、プロピレンオキシド付加トリメチロールプロパントリ(メタ)アクリレート、カプロラクトン変性トリメチロールプロパントリ(メタ)アクリレート、エチレンオキシド付加イソシアヌル酸トリ(メタ)アクリレート、グリセリントリ(メタ)アクリレート、プロピレンオキシド付加グリセリントリ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、トリス(メタ)アクリロイルオキシエチルフォスフェート、ジトリメチロールプロパンテトラ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート等が挙げられる。 Further, among the above (meth) acrylic acid ester compounds, those having three or more functions include, for example, trimethylolpropane tri (meth) acrylate, ethylene oxide-added trimethylolpropane tri (meth) acrylate, propylene oxide-added trimethylolpropane tri ( (Meth) acrylate, caprolactone-modified trimethylolpropane tri (meth) acrylate, ethylene oxide-added isocyanuric acid tri (meth) acrylate, glycerin tri (meth) acrylate, propylene oxide-added glycerin tri (meth) acrylate, pentaerythritol tri (meth) acrylate, Tris (meth) acryloyloxyethyl phosphate, ditrimethylolpropane tetra (meth) acrylate, pentaerythritol tetra Meth) acrylate, dipentaerythritol penta (meth) acrylate, dipentaerythritol hexa (meth) acrylate.
上記エポキシ(メタ)アクリレートとしては、例えば、エポキシ化合物と(メタ)アクリル酸とを、常法に従って塩基性触媒の存在下で反応することにより得られるもの等が挙げられる。 Examples of the epoxy (meth) acrylate include those obtained by reacting an epoxy compound and (meth) acrylic acid in the presence of a basic catalyst according to a conventional method.
上記エポキシ(メタ)アクリレートを合成するための原料となるエポキシ化合物としては、例えば、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールS型エポキシ樹脂、2,2’-ジアリルビスフェノールA型エポキシ樹脂、水添ビスフェノール型エポキシ樹脂、プロピレンオキシド付加ビスフェノールA型エポキシ樹脂、レゾルシノール型エポキシ樹脂、ビフェニル型エポキシ樹脂、スルフィド型エポキシ樹脂、ジフェニルエーテル型エポキシ樹脂、ジシクロペンタジエン型エポキシ樹脂、ナフタレン型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、オルトクレゾールノボラック型エポキシ樹脂、ジシクロペンタジエンノボラック型エポキシ樹脂、ビフェニルノボラック型エポキシ樹脂、ナフタレンフェノールノボラック型エポキシ樹脂、グリシジルアミン型エポキシ樹脂、アルキルポリオール型エポキシ樹脂、ゴム変性型エポキシ樹脂、グリシジルエステル化合物等が挙げられる。 Examples of the epoxy compound as a raw material for synthesizing the epoxy (meth) acrylate include bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol S type epoxy resin, and 2,2′-diallyl bisphenol A type epoxy resin. , Hydrogenated bisphenol type epoxy resin, propylene oxide added bisphenol A type epoxy resin, resorcinol type epoxy resin, biphenyl type epoxy resin, sulfide type epoxy resin, diphenyl ether type epoxy resin, dicyclopentadiene type epoxy resin, naphthalene type epoxy resin, phenol Novolac epoxy resin, orthocresol novolac epoxy resin, dicyclopentadiene novolac epoxy resin, biphenyl novolac epoxy resin, naphtha Ren phenol novolak type epoxy resin, glycidyl amine type epoxy resin, alkyl polyol type epoxy resin, rubber-modified epoxy resins, glycidyl ester compounds.
上記ビスフェノールA型エポキシ樹脂のうち市販されているものとしては、例えば、jER828EL、jER1004(いずれも三菱化学社製)、EPICLON EXA-830CRP、EPICLON EXA-850CRP(DIC社製)等が挙げられる。
上記ビスフェノールF型エポキシ樹脂のうち市販されているものとしては、例えば、jER806、jER4004(いずれも三菱化学社製)等が挙げられる。
上記ビスフェノールS型エポキシ樹脂のうち市販されているものとしては、例えば、EPICLONEXA1514(DIC社製)等が挙げられる。
上記2,2’-ジアリルビスフェノールA型エポキシ樹脂のうち市販されているものとしては、例えば、RE-810NM(日本化薬社製)等が挙げられる。
上記水添ビスフェノール型エポキシ樹脂のうち市販されているものとしては、例えば、EPICLONEXA7015(DIC社製)等が挙げられる。
上記プロピレンオキシド付加ビスフェノールA型エポキシ樹脂のうち市販されているものとしては、例えば、EP-4000S(ADEKA社製)等が挙げられる。
上記レゾルシノール型エポキシ樹脂のうち市販されているものとしては、例えば、EX-201(ナガセケムテックス社製)等が挙げられる。
上記ビフェニル型エポキシ樹脂のうち市販されているものとしては、例えば、jER YX-4000H(三菱化学社製)等が挙げられる。
上記スルフィド型エポキシ樹脂のうち市販されているものとしては、例えば、YSLV-50TE(新日鉄住金化学社製)等が挙げられる。
上記ジフェニルエーテル型エポキシ樹脂のうち市販されているものとしては、例えば、YSLV-80DE(新日鉄住金化学社製)等が挙げられる。
上記ジシクロペンタジエン型エポキシ樹脂のうち市販されているものとしては、例えば、EP-4088S(ADEKA社製)等が挙げられる。
上記ナフタレン型エポキシ樹脂のうち市販されているものとしては、例えば、EPICLONHP4032、EPICLONEXA-4700(いずれもDIC社製)等が挙げられる。
上記フェノールノボラック型エポキシ樹脂のうち市販されているものとしては、例えば、EPICLONN-770(DIC社製)等が挙げられる。
上記オルトクレゾールノボラック型エポキシ樹脂のうち市販されているものとしては、例えば、EPICLONN-670-EXP-S(DIC社製)等が挙げられる。
上記ジシクロペンタジエンノボラック型エポキシ樹脂のうち市販されているものとしては、例えば、EPICLONHP7200(DIC社製)等が挙げられる。
上記ビフェニルノボラック型エポキシ樹脂のうち市販されているものとしては、例えば、NC-3000P(日本化薬社製)等が挙げられる。
上記ナフタレンフェノールノボラック型エポキシ樹脂のうち市販されているものとしては、例えば、ESN-165S(新日鉄住金化学社製)等が挙げられる。
上記グリシジルアミン型エポキシ樹脂のうち市販されているものとしては、例えば、jER630(三菱化学社製)、EPICLON430(DIC社製)、TETRAD-X(三菱ガス化学社製)等が挙げられる。
上記アルキルポリオール型エポキシ樹脂のうち市販されているものとしては、例えば、ZX-1542(新日鉄住金化学社製)、EPICLON726(DIC社製)、エポライト80MFA(共栄社化学社製)、デナコールEX-611(ナガセケムテックス社製)等が挙げられる。
上記ゴム変性型エポキシ樹脂のうち市販されているものとしては、例えば、YR-450、YR-207(いずれも新日鉄住金化学社製)、エポリードPB(ダイセル社製)等が挙げられる。
上記グリシジルエステル化合物のうち市販されているものとしては、例えば、デナコールEX-147(ナガセケムテックス社製)等が挙げられる。
上記エポキシ化合物のうちその他に市販されているものとしては、例えば、YDC-1312、YSLV-80XY、YSLV-90CR(いずれも新日鉄住金化学社製)、XAC4151(旭化成社製)、jER1031、jER1032(いずれも三菱化学社製)、EXA-7120(DIC社製)、TEPIC(日産化学社製)等が挙げられる。
Examples of commercially available bisphenol A type epoxy resins include jER828EL, jER1004 (all manufactured by Mitsubishi Chemical Corporation), EPICLON EXA-830CRP, EPICLON EXA-850CRP (manufactured by DIC), and the like.
As what is marketed among the said bisphenol F-type epoxy resins, jER806, jER4004 (all are the Mitsubishi Chemical company make) etc. are mentioned, for example.
As what is marketed among the said bisphenol S type epoxy resins, EPICLONEXA1514 (made by DIC Corporation) etc. are mentioned, for example.
Examples of commercially available 2,2′-diallylbisphenol A type epoxy resins include RE-810NM (manufactured by Nippon Kayaku Co., Ltd.).
As what is marketed among the said hydrogenated bisphenol-type epoxy resins, EPICLONEXA7015 (made by DIC Corporation) etc. are mentioned, for example.
Examples of commercially available propylene oxide-added bisphenol A type epoxy resins include EP-4000S (manufactured by ADEKA).
Examples of commercially available resorcinol type epoxy resins include EX-201 (manufactured by Nagase ChemteX Corporation).
Examples of commercially available biphenyl type epoxy resins include jER YX-4000H (manufactured by Mitsubishi Chemical Corporation).
Examples of commercially available sulfide type epoxy resins include YSLV-50TE (manufactured by Nippon Steel & Sumikin Chemical Co., Ltd.).
Examples of commercially available diphenyl ether type epoxy resins include YSLV-80DE (manufactured by Nippon Steel & Sumikin Chemical Co., Ltd.).
Examples of commercially available dicyclopentadiene type epoxy resins include EP-4088S (manufactured by ADEKA).
Examples of commercially available naphthalene type epoxy resins include EPICLONP 4032 and EPICLONEXA-4700 (both manufactured by DIC).
Examples of commercially available phenol novolak epoxy resins include EPICLONN-770 (manufactured by DIC).
Examples of commercially available ortho cresol novolac epoxy resins include EPICLONN-670-EXP-S (manufactured by DIC).
As what is marketed among the said dicyclopentadiene novolak-type epoxy resins, EPICRONHP7200 (made by DIC) etc. are mentioned, for example.
Examples of commercially available biphenyl novolac epoxy resins include NC-3000P (manufactured by Nippon Kayaku Co., Ltd.).
Examples of commercially available naphthalene phenol novolac type epoxy resins include ESN-165S (manufactured by Nippon Steel & Sumikin Chemical Co., Ltd.).
Examples of commercially available glycidylamine type epoxy resins include jER630 (manufactured by Mitsubishi Chemical Corporation), EPICLON 430 (manufactured by DIC Corporation), TETRAD-X (manufactured by Mitsubishi Gas Chemical Company), and the like.
Examples of commercially available alkyl polyol type epoxy resins include ZX-1542 (manufactured by Nippon Steel & Sumikin Chemical Co., Ltd.), EPICLON 726 (manufactured by DIC), Epolite 80MFA (manufactured by Kyoeisha Chemical Co., Ltd.), Denacol EX-611 ( Nagase ChemteX Corporation).
Examples of commercially available rubber-modified epoxy resins include YR-450, YR-207 (both manufactured by Nippon Steel & Sumikin Chemical Co., Ltd.), Epolide PB (manufactured by Daicel Corporation), and the like.
Examples of commercially available glycidyl ester compounds include Denacol EX-147 (manufactured by Nagase ChemteX Corporation).
Other commercially available epoxy compounds include, for example, YDC-1312, YSLV-80XY, YSLV-90CR (all manufactured by Nippon Steel & Sumikin Chemical Co., Ltd.), XAC4151 (manufactured by Asahi Kasei Co., Ltd.), jER1031, jER1032 (all Also, Mitsubishi Chemical Corporation), EXA-7120 (DIC Corporation), TEPIC (Nissan Chemical Corporation) and the like.
上記エポキシ(メタ)アクリレートのうち市販されているものとしては、例えば、EBECRYL860、EBECRYL3200、EBECRYL3201、EBECRYL3412、EBECRYL3600、EBECRYL3700、EBECRYL3701、EBECRYL3702、EBECRYL3703、EBECRYL3800、EBECRYL6040、EBECRYL RDX63182(いずれもダイセル・オルネクス社製)、EA-1010、EA-1020、EA-5323、EA-5520、EA-CHD、EMA-1020(いずれも新中村化学工業社製)、エポキシエステルM-600A、エポキシエステル40EM、エポキシエステル70PA、エポキシエステル200PA、エポキシエステル80MFA、エポキシエステル3002M、エポキシエステル3002A、エポキシエステル1600A、エポキシエステル3000M、エポキシエステル3000A、エポキシエステル200EA、エポキシエステル400EA(いずれも共栄社化学社製)、デナコールアクリレートDA-141、デナコールアクリレートDA-314、デナコールアクリレートDA-911(いずれもナガセケムテックス社製)等が挙げられる。 Examples of commercially available epoxy (meth) acrylates include EBECRYL860, EBECRYL3200, EBECRYL3201, EBECRYL3412, EBECRYL3600, EBECRYL3700, EBECRYL3701, EBECRYL3702, EBECRY370R ), EA-1010, EA-1020, EA-5323, EA-5520, EA-CHD, EMA-1020 (all manufactured by Shin-Nakamura Chemical Co., Ltd.), epoxy ester M-600A, epoxy ester 40EM, epoxy ester 70PA, Epoxy ester 200PA, Epoxy ester 80MF Epoxy ester 3002M, Epoxy ester 3002A, Epoxy ester 1600A, Epoxy ester 3000M, Epoxy ester 3000A, Epoxy ester 200EA, Epoxy ester 400EA (all manufactured by Kyoeisha Chemical Co., Ltd.), Denacol acrylate DA-141, Denacol acrylate DA-314 And Denacol acrylate DA-911 (all manufactured by Nagase ChemteX Corporation).
上記ウレタン(メタ)アクリレートは、例えば、2つのイソシアネート基を有するイソシアネート化合物1当量に対して水酸基を有する(メタ)アクリル酸誘導体2当量を、触媒量のスズ系化合物存在下で反応させることによって得ることができる。 The urethane (meth) acrylate is obtained, for example, by reacting 2 equivalents of a (meth) acrylic acid derivative having a hydroxyl group with 1 equivalent of an isocyanate compound having two isocyanate groups in the presence of a catalytic amount of a tin-based compound. be able to.
上記イソシアネート化合物としては、例えば、イソホロンジイソシアネート、2,4-トリレンジイソシアネート、2,6-トリレンジイソシアネート、ヘキサメチレンジイソシアネート、トリメチルヘキサメチレンジイソシアネート、ジフェニルメタン-4,4’-ジイソシアネート(MDI)、水添MDI、ポリメリックMDI、1,5-ナフタレンジイソシアネート、ノルボルナンジイソシアネート、トリジンジイソシアネート、キシリレンジイソシアネート(XDI)、水添XDI、リジンジイソシアネート、トリフェニルメタントリイソシアネート、トリス(イソシアネートフェニル)チオフォスフェート、テトラメチルキシリレンジイソシアネート、1,6,11-ウンデカントリイソシアネート等が挙げられる。 Examples of the isocyanate compound include isophorone diisocyanate, 2,4-tolylene diisocyanate, 2,6-tolylene diisocyanate, hexamethylene diisocyanate, trimethylhexamethylene diisocyanate, diphenylmethane-4,4′-diisocyanate (MDI), hydrogenated MDI, polymeric MDI, 1,5-naphthalene diisocyanate, norbornane diisocyanate, tolidine diisocyanate, xylylene diisocyanate (XDI), hydrogenated XDI, lysine diisocyanate, triphenylmethane triisocyanate, tris (isocyanatophenyl) thiophosphate, tetramethylxylylene diene Isocyanate, 1,6,11-undecane triisocyanate and the like.
また、上記イソシアネート化合物としては、例えば、ポリオールと過剰のイソシアネート化合物との反応により得られる鎖延長されたイソシアネート化合物も使用することができる。
上記ポリオールとしては、例えば、エチレングリコール、プロピレングリコール、グリセリン、ソルビトール、トリメチロールプロパン、カーボネートジオール、ポリエーテルジオール、ポリエステルジオール、ポリカプロラクトンジオール等が挙げられる。
Moreover, as said isocyanate compound, the chain-extended isocyanate compound obtained by reaction with a polyol and excess isocyanate compound can also be used, for example.
Examples of the polyol include ethylene glycol, propylene glycol, glycerin, sorbitol, trimethylolpropane, carbonate diol, polyether diol, polyester diol, and polycaprolactone diol.
上記水酸基を有する(メタ)アクリル酸誘導体としては、例えば、ヒドロキシアルキルモノ(メタ)アクリレート、二価のアルコールのモノ(メタ)アクリレート、三価のアルコールのモノ(メタ)アクリレート又はジ(メタ)アクリレート、エポキシ(メタ)アクリレート等が挙げられる。
上記ヒドロキシアルキルモノ(メタ)アクリレートとしては、例えば、2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、2-ヒドロキシブチル(メタ)アクリレート、4-ヒドロキシブチル(メタ)アクリレート等が挙げられる。
上記二価のアルコールとしては、例えば、エチレングリコール、プロピレングリコール、1,3-プロパンジオール、1,3-ブタンジオール、1,4-ブタンジオール、ポリエチレングリコール等が挙げられる。
上記三価のアルコールとしては、例えば、トリメチロールエタン、トリメチロールプロパン、グリセリン等が挙げられる。
上記エポキシ(メタ)アクリレートとしては、例えば、ビスフェノールA型エポキシアクリレート等が挙げられる。
Examples of the (meth) acrylic acid derivative having a hydroxyl group include hydroxyalkyl mono (meth) acrylate, mono (meth) acrylate of divalent alcohol, mono (meth) acrylate or di (meth) acrylate of trivalent alcohol. And epoxy (meth) acrylate.
Examples of the hydroxyalkyl mono (meth) acrylate include 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 2-hydroxybutyl (meth) acrylate, and 4-hydroxybutyl (meth) acrylate. Can be mentioned.
Examples of the divalent alcohol include ethylene glycol, propylene glycol, 1,3-propanediol, 1,3-butanediol, 1,4-butanediol, and polyethylene glycol.
Examples of the trivalent alcohol include trimethylolethane, trimethylolpropane, and glycerin.
Examples of the epoxy (meth) acrylate include bisphenol A type epoxy acrylate.
上記ウレタン(メタ)アクリレートのうち市販されているものとしては、例えば、M-1100、M-1200、M-1210、M-1600(いずれも東亞合成社製)、EBECRYL210、EBECRYL220、EBECRYL230、EBECRYL270、EBECRYL1290、EBECRYL2220、EBECRYL4827、EBECRYL4842、EBECRYL4858、EBECRYL5129、EBECRYL6700、EBECRYL8402、EBECRYL8803、EBECRYL8804、EBECRYL8807、EBECRYL9260(いずれもダイセル・オルネクス社製)、アートレジンUN-330、アートレジンSH-500B、アートレジンUN-1200TPK、アートレジンUN-1255、アートレジンUN-3320HB、アートレジンUN-7100、アートレジンUN-9000A、アートレジンUN-9000H(いずれも根上工業社製)、U-2HA、U-2PHA、U-3HA、U-4HA、U-6H、U-6HA、U-6LPA、U-10H、U-15HA、U-108、U-108A、U-122A、U-122P、U-324A、U-340A、U-340P、U-1084A、U-2061BA、UA-340P、UA-4000、UA-4100、UA-4200、UA-4400、UA-5201P、UA-7100、UA-7200、UA-W2A(いずれも新中村化学工業社製)、AH-600、AI-600、AT-600、UA-101I、UA-101T、UA-306H、UA-306I、UA-306T(いずれも共栄社化学社製)等が挙げられる。 Examples of commercially available urethane (meth) acrylates include M-1100, M-1200, M-1210, M-1600 (all manufactured by Toagosei Co., Ltd.), EBECRYL210, EBECRYL220, EBECRYL230, EBECRYL270, EBECRYL1290, EBECRYL2220, EBECRYL4827, EBECRYL4842, EBECRYL4858, EBECRYL5129, EBECRYL6700, EBECRYL8402, EBECRYL8803, EBECRYL8804, EBECRYL8804 , Art resin N-1255, Art Resin UN-3320HB, Art Resin UN-7100, Art Resin UN-9000A, Art Resin UN-9000H (all manufactured by Negami Industrial Co., Ltd.), U-2HA, U-2PHA, U-3HA, U- 4HA, U-6H, U-6HA, U-6LPA, U-10H, U-15HA, U-108, U-108A, U-122A, U-122P, U-324A, U-340A, U-340P, U-1084A, U-2061BA, UA-340P, UA-4000, UA-4100, UA-4200, UA-4400, UA-5201P, UA-7100, UA-7200, UA-W2A (all Shin-Nakamura Chemical Industries AH-600, AI-600, AT-600, UA-101I, UA-101T, UA-306H, A-306I, UA-306T (all manufactured by Kyoeisha Chemical Co., Ltd.).
上記硬化性樹脂100重量部中における上記(メタ)アクリル化合物の含有量の好ましい下限は20重量部、好ましい上限は80重量部である。上記(メタ)アクリル化合物の含有量がこの範囲であることにより、得られる液晶表示素子用シール剤が、遮光部硬化性及び低液晶汚染性により優れるものとなる。上記(メタ)アクリル化合物の含有量のより好ましい下限は30重量部、より好ましい上限は70重量部である。 The preferable lower limit of the content of the (meth) acrylic compound in 100 parts by weight of the curable resin is 20 parts by weight, and the preferable upper limit is 80 parts by weight. When the content of the (meth) acrylic compound is within this range, the obtained sealing agent for liquid crystal display elements is more excellent in light-shielding part curability and low liquid crystal contamination. The minimum with more preferable content of the said (meth) acryl compound is 30 weight part, and a more preferable upper limit is 70 weight part.
上記芳香族エポキシ化合物としては、例えば、上記エポキシ(メタ)アクリレートを合成するための原料となるエポキシ化合物のうち芳香環を有するものや、芳香環を有する部分(メタ)アクリル変性エポキシ化合物等が挙げられる。
なお、本明細書において上記部分(メタ)アクリル変性エポキシ化合物とは、1分子中にエポキシ基と(メタ)アクリロイル基とをそれぞれ1つ以上有する化合物を意味し、例えば、1分子中に2つ以上のエポキシ基を有するエポキシ化合物の一部分のエポキシ基を(メタ)アクリル酸と反応させることによって得ることができる。
As said aromatic epoxy compound, what has an aromatic ring among the epoxy compounds used as the raw material for synthesize | combining the said epoxy (meth) acrylate, the partial (meth) acryl modified epoxy compound which has an aromatic ring, etc. are mentioned, for example. It is done.
In the present specification, the partial (meth) acryl-modified epoxy compound means a compound having one or more epoxy groups and (meth) acryloyl groups in one molecule, for example, two in one molecule. It can be obtained by reacting a part of the epoxy group having an epoxy group with (meth) acrylic acid.
上記硬化性樹脂100重量部中における上記芳香族エポキシ化合物の含有量の好ましい下限は10重量部、好ましい上限は70重量部である。上記芳香族エポキシ化合物の含有量がこの範囲であることにより、得られる液晶表示素子用シール剤が、遮光部硬化性と接着性とを両立する効果により優れるものとなる。上記芳香族エポキシ化合物の含有量のより好ましい下限は20重量部、より好ましい上限は60重量部である。 The preferable lower limit of the content of the aromatic epoxy compound in 100 parts by weight of the curable resin is 10 parts by weight, and the preferable upper limit is 70 parts by weight. When the content of the aromatic epoxy compound is within this range, the obtained sealing agent for liquid crystal display elements is more excellent in the effect of achieving both the light-shielding part curability and the adhesiveness. The minimum with more preferable content of the said aromatic epoxy compound is 20 weight part, and a more preferable upper limit is 60 weight part.
上記(メタ)アクリル化合物及び上記芳香族エポキシ化合物は、ビスフェノール骨格を有することが好ましい。上記(メタ)アクリル化合物及び上記芳香族エポキシ化合物がビスフェノール骨格を有することにより、上記式(1)で表される化合物からなる光重合開始剤をより溶解させ易いものとなる。 The (meth) acrylic compound and the aromatic epoxy compound preferably have a bisphenol skeleton. When the (meth) acrylic compound and the aromatic epoxy compound have a bisphenol skeleton, the photopolymerization initiator composed of the compound represented by the formula (1) is more easily dissolved.
上記硬化性樹脂は、マレイミド化合物を含有することが好ましい。
上記硬化性樹脂が上記マレイミド化合物を含有することにより、上記式(1)で表される化合物からなる光重合開始剤をより溶解させ易いものとなる。
なお、本発明において上記マレイミド化合物は、光重合開始剤には含まず硬化性樹脂に含む。
The curable resin preferably contains a maleimide compound.
When the curable resin contains the maleimide compound, the photopolymerization initiator composed of the compound represented by the formula (1) is more easily dissolved.
In the present invention, the maleimide compound is not included in the photopolymerization initiator but is included in the curable resin.
上記マレイミド化合物は、反応性の観点から、1分子中に2個以上のマレイミド基を有する多官能マレイミド化合物であることが好ましく、下記式(2)で表される化合物及び/又は下記式(3)で表される化合物を含有することがより好ましい。 From the viewpoint of reactivity, the maleimide compound is preferably a polyfunctional maleimide compound having two or more maleimide groups in one molecule. The compound represented by the following formula (2) and / or the following formula (3 It is more preferable to contain the compound represented by this.
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
式(2)中、Rは、炭素数2~3のアルキレン基を表し、nは、2~40の整数である。 In the formula (2), R 1 represents an alkylene group having 2 to 3 carbon atoms, and n is an integer of 2 to 40.
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
式(3)中、Rは、炭素数1~40の2価の脂肪族基を表す。 In the formula (3), R 2 represents a divalent aliphatic group having 1 to 40 carbon atoms.
上記式(3)中、Rの炭素数は、12~36であることが好ましい。また、Rは、脂肪族環を有することが好ましい。
上記式(3)で表される化合物としては、具体的には例えば、1,20-ビスマレイミド-10,11-ジオクチル-エイコサン(下記式(4-1)で表される化合物)、1-ヘプチレンマレイミド-2-オクチレンマレイミド-4-オクチル-5-ヘプチルシクロヘキサン(下記式(4-2)で表される化合物)、1,2-ジオクチレンマレイミド-3-オクチル-4-ヘキシルシクロヘキサン(下記式(4-3)で表される化合物)等が挙げられる。これらは、米国特許第5973166号明細書に記載の方法等によって合成することができる。
In the above formula (3), R 2 preferably has 12 to 36 carbon atoms. R 2 preferably has an aliphatic ring.
Specific examples of the compound represented by the above formula (3) include 1,20-bismaleimide-10,11-dioctyl-eicosane (compound represented by the following formula (4-1)), 1- Heptylenemaleimide-2-octylenemaleimide-4-octyl-5-heptylcyclohexane (compound represented by the following formula (4-2)), 1,2-dioctylenemaleimide-3-octyl-4-hexyl And cyclohexane (a compound represented by the following formula (4-3)). These can be synthesized by the method described in US Pat. No. 5,973,166.
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
上記硬化性樹脂100重量部中における上記マレイミド化合物の含有量の好ましい下限は2重量部、好ましい上限は20重量部である。上記マレイミド化合物の含有量がこの範囲であることにより、上記式(1)で表される化合物からなる光重合開始剤をより溶解させ易くなり、得られる液晶表示素子用シール剤が遮光部硬化性と低液晶汚染性とを両立する効果により優れるものとなる。上記マレイミド化合物の含有量のより好ましい下限は5重量部、より好ましい上限は15重量部である。 The minimum with preferable content of the said maleimide compound in 100 weight part of said curable resin is 2 weight part, and a preferable upper limit is 20 weight part. When the content of the maleimide compound is within this range, it becomes easier to dissolve the photopolymerization initiator composed of the compound represented by the above formula (1), and the obtained sealing agent for the liquid crystal display element has light-shielding part curability. And an effect of achieving both low liquid crystal contamination. The minimum with more preferable content of the said maleimide compound is 5 weight part, and a more preferable upper limit is 15 weight part.
上記硬化性樹脂は、本発明の目的を阻害しない範囲で、脂肪族エポキシ化合物等のその他の硬化性樹脂を含有してもよい。 The said curable resin may contain other curable resins, such as an aliphatic epoxy compound, in the range which does not inhibit the objective of this invention.
上記硬化性樹脂全体の平均SP値の好ましい上限は24である。上記硬化性樹脂全体の平均SP値が24以下であることにより、上記式(1)で表される化合物からなる光重合開始剤をより溶解させ易いものとなる。上記硬化性樹脂全体の平均SP値のより好ましい上限は23.8である。
なお、本明細書において上記「SP値」は、溶解度パラメータを意味し、Fedorsの推算法により算出される。また、上記「平均SP値」は、重量分率によるSP値の平均である。
A preferable upper limit of the average SP value of the entire curable resin is 24. When the average SP value of the entire curable resin is 24 or less, the photopolymerization initiator composed of the compound represented by the formula (1) is more easily dissolved. The upper limit with more preferable average SP value of the said whole curable resin is 23.8.
In the present specification, the “SP value” means a solubility parameter, and is calculated by the Fedors estimation method. The “average SP value” is an average of SP values by weight fraction.
上記硬化性樹脂全体の重量平均分子量の好ましい下限は340、好ましい上限は1万である。上記硬化性樹脂全体の重量平均分子量がこの範囲であることにより、上記式(1)で表される化合物からなる光重合開始剤をより溶解させ易いものとなる。上記硬化性樹脂全体の重量平均分子量のより好ましい下限は700、好ましい上限は3000である。
なお、本明細書において、上記「重量平均分子量」は、ゲルパーミエーションクロマトグラフィー(GPC)で測定を行い、ポリスチレン換算により求められる値である。GPCによってポリスチレン換算による重量平均分子量を測定する際に用いるカラムとしては、例えば、Shodex LF-804(昭和電工社製)等が挙げられる。
The minimum with a preferable weight average molecular weight of the said whole curable resin is 340, and a preferable upper limit is 10,000. When the weight average molecular weight of the whole curable resin is within this range, the photopolymerization initiator composed of the compound represented by the formula (1) can be more easily dissolved. The more preferable lower limit of the weight average molecular weight of the entire curable resin is 700, and the preferable upper limit is 3000.
In the present specification, the “weight average molecular weight” is a value determined by polystyrene conversion after measurement by gel permeation chromatography (GPC). Examples of the column used when measuring the weight average molecular weight in terms of polystyrene by GPC include Shodex LF-804 (manufactured by Showa Denko).
本発明の液晶表示素子用シール剤は、光重合開始剤を含有する。
上記光重合開始剤は、上記式(1)で表される化合物を含有する。上記光重合開始剤として上記式(1)で表される化合物を用いることにより、本発明の液晶表示素子用シール剤は遮光部硬化性に優れるものとなる。
The sealing agent for liquid crystal display elements of this invention contains a photoinitiator.
The photopolymerization initiator contains a compound represented by the formula (1). By using the compound represented by the formula (1) as the photopolymerization initiator, the sealing agent for liquid crystal display elements of the present invention has excellent light-shielding part curability.
上記式(1)で表される化合物の含有量は、上記硬化性樹脂100重量部に対して、好ましい下限が0.1重量部、好ましい上限が5重量部である。上記式(1)で表される化合物の含有量がこの範囲であることにより、得られる液晶表示素子用シール剤が遮光部硬化性と低液晶汚染性とを両立する効果により優れるものとなる。上記式(1)で表される化合物の含有量のより好ましい下限は0.5重量部、より好ましい上限は2重量部である。 The content of the compound represented by the above formula (1) is preferably 0.1 parts by weight and preferably 5 parts by weight with respect to 100 parts by weight of the curable resin. When the content of the compound represented by the above formula (1) is within this range, the obtained sealing agent for liquid crystal display elements is more excellent in the effect of achieving both light-shielding part curability and low liquid crystal contamination. The minimum with more preferable content of the compound represented by the said Formula (1) is 0.5 weight part, and a more preferable upper limit is 2 weight part.
本発明の液晶表示素子用シール剤は、本発明の目的を阻害しない範囲で、上記式(1)で表される化合物以外のその他の光重合開始剤を含有してもよい。 The sealing agent for liquid crystal display elements of the present invention may contain other photopolymerization initiator other than the compound represented by the above formula (1) as long as the object of the present invention is not impaired.
本発明の液晶表示素子用シール剤は、上記硬化性樹脂と上記光重合開始剤とのSP値の差が2.5以下である。上記硬化性樹脂と上記光重合開始剤とのSP値の差が2.5以下であることにより、得られる液晶表示素子用シール剤が遮光部硬化性及び低液晶汚染性に優れるものとなる。上記硬化性樹脂と上記光重合開始剤とのSP値の差は、2.3以下であることがより好ましく、2.0以下であることが更に好ましい。
なお、上記「SP値の差」は、平均SP値の差を意味する。即ち、上記硬化性樹脂と上記光重合開始剤とのSP値の差は、上記硬化性樹脂全体の平均SP値と上記光重合開始剤全体の平均SP値との差を意味する。
In the sealing agent for liquid crystal display elements of the present invention, the difference in SP value between the curable resin and the photopolymerization initiator is 2.5 or less. When the difference in SP value between the curable resin and the photopolymerization initiator is 2.5 or less, the obtained sealing agent for liquid crystal display elements is excellent in light-shielding part curability and low liquid crystal contamination. The difference in SP value between the curable resin and the photopolymerization initiator is more preferably 2.3 or less, and even more preferably 2.0 or less.
The “SP value difference” means a difference in average SP values. That is, the difference in SP value between the curable resin and the photopolymerization initiator means the difference between the average SP value of the entire curable resin and the average SP value of the entire photopolymerization initiator.
本発明の液晶表示素子用シール剤は、熱重合開始剤を含有してもよい。
上記熱重合開始剤としては、例えば、アゾ化合物、有機過酸化物等からなるものが挙げられる。なかでも、高分子アゾ化合物からなる開始剤(以下、「高分子アゾ開始剤」ともいう)が好ましい。
なお、本明細書において高分子アゾ化合物とは、アゾ基を有し、熱によってラジカルを生成する、数平均分子量が300以上の化合物を意味する。
The sealing agent for liquid crystal display elements of the present invention may contain a thermal polymerization initiator.
As said thermal polymerization initiator, what consists of an azo compound, an organic peroxide etc. is mentioned, for example. Among these, an initiator made of a polymer azo compound (hereinafter also referred to as “polymer azo initiator”) is preferable.
In the present specification, the polymer azo compound means a compound having an azo group and generating a radical by heat and having a number average molecular weight of 300 or more.
上記高分子アゾ化合物の数平均分子量の好ましい下限は1000、好ましい上限は30万である。上記高分子アゾ化合物の数平均分子量がこの範囲であることにより、液晶汚染を抑制しつつ、硬化性樹脂と容易に混合することができる。上記高分子アゾ化合物の数平均分子量のより好ましい下限は5000、より好ましい上限は10万であり、更に好ましい下限は1万、更に好ましい上限は9万である。
なお、本明細書において、上記数平均分子量は、ゲルパーミエーションクロマトグラフィー(GPC)で測定を行い、ポリスチレン換算により求められる値である。GPCによってポリスチレン換算による数平均分子量を測定する際のカラムとしては、例えば、Shodex LF-804(昭和電工社製)等が挙げられる。
The preferable lower limit of the number average molecular weight of the polymer azo compound is 1000, and the preferable upper limit is 300,000. When the number average molecular weight of the polymer azo compound is within this range, it can be easily mixed with a curable resin while suppressing liquid crystal contamination. The more preferable lower limit of the number average molecular weight of the polymer azo compound is 5000, the more preferable upper limit is 100,000, the still more preferable lower limit is 10,000, and the still more preferable upper limit is 90,000.
In addition, in this specification, the said number average molecular weight is a value calculated | required by polystyrene conversion by measuring with gel permeation chromatography (GPC). Examples of the column for measuring the number average molecular weight in terms of polystyrene by GPC include Shodex LF-804 (manufactured by Showa Denko KK).
上記高分子アゾ化合物としては、例えば、アゾ基を介してポリアルキレンオキサイドやポリジメチルシロキサン等のユニットが複数結合した構造を有するものが挙げられる。
上記アゾ基を介してポリアルキレンオキサイド等のユニットが複数結合した構造を有する高分子アゾ化合物としては、ポリエチレンオキサイド構造を有するものが好ましい。このような高分子アゾ開始剤としては、例えば、4,4’-アゾビス(4-シアノペンタン酸)とポリアルキレングリコールの重縮合物や、4,4’-アゾビス(4-シアノペンタン酸)と末端アミノ基を有するポリジメチルシロキサンの重縮合物等が挙げられる。
上記高分子アゾ化合物のうち市販されているものとしては、例えば、VPE-0201、VPE-0401、VPE-0601、VPS-0501、VPS-1001(いずれも和光純薬工業社製)等が挙げられる。
また、高分子ではないアゾ化合物からなる熱重合開始剤としては、例えば、V-65、V-501(いずれも和光純薬工業社製)等が挙げられる。
Examples of the polymer azo compound include those having a structure in which a plurality of units such as polyalkylene oxide and polydimethylsiloxane are bonded via an azo group.
As the polymer azo compound having a structure in which a plurality of units such as polyalkylene oxide are bonded via the azo group, those having a polyethylene oxide structure are preferable. Examples of such a polymer azo initiator include polycondensates of 4,4′-azobis (4-cyanopentanoic acid) and polyalkylene glycol, and 4,4′-azobis (4-cyanopentanoic acid) Examples include polycondensates of polydimethylsiloxane having a terminal amino group.
Examples of commercially available polymer azo compounds include VPE-0201, VPE-0401, VPE-0601, VPS-0501, and VPS-1001 (all manufactured by Wako Pure Chemical Industries, Ltd.). .
Examples of thermal polymerization initiators made of azo compounds that are not polymers include V-65 and V-501 (both manufactured by Wako Pure Chemical Industries, Ltd.).
上記有機過酸化物としては、例えば、ケトンパーオキサイド、パーオキシケタール、ハイドロパーオキサイド、ジアルキルパーオキサイド、パーオキシエステル、ジアシルパーオキサイド、パーオキシジカーボネート等が挙げられる。 Examples of the organic peroxide include ketone peroxide, peroxyketal, hydroperoxide, dialkyl peroxide, peroxyester, diacyl peroxide, and peroxydicarbonate.
上記熱重合開始剤の含有量は、硬化性樹脂100重量部に対して、好ましい下限が0.05重量部、好ましい上限が10重量部である。上記熱重合開始剤がこの範囲であることにより、得られる液晶表示素子用シール剤が液晶汚染を抑制しつつ、保存安定性や硬化性により優れるものとなる。上記熱重合開始剤の含有量のより好ましい下限は0.1重量部、より好ましい上限は5重量部である。 The content of the thermal polymerization initiator is preferably 0.05 parts by weight and preferably 10 parts by weight with respect to 100 parts by weight of the curable resin. When the thermal polymerization initiator is within this range, the obtained sealing agent for liquid crystal display elements is excellent in storage stability and curability while suppressing liquid crystal contamination. The minimum with more preferable content of the said thermal-polymerization initiator is 0.1 weight part, and a more preferable upper limit is 5 weight part.
本発明の液晶表示素子用シール剤は、熱硬化剤を含有してもよい。
上記熱硬化剤としては、例えば、有機酸ヒドラジド、イミダゾール誘導体、アミン化合物、多価フェノール系化合物、酸無水物等が挙げられる。なかでも、有機酸ヒドラジドが好適に用いられる。
The sealing agent for liquid crystal display elements of the present invention may contain a thermosetting agent.
Examples of the thermosetting agent include organic acid hydrazides, imidazole derivatives, amine compounds, polyhydric phenol compounds, acid anhydrides, and the like. Of these, organic acid hydrazide is preferably used.
上記有機酸ヒドラジドとしては、例えば、セバシン酸ジヒドラジド、イソフタル酸ジヒドラジド、アジピン酸ジヒドラジド、マロン酸ジヒドラジド等が挙げられる。
上記有機酸ヒドラジドのうち市販されているものとしては、例えば、SDH、ADH、MDH(いずれも大塚化学社製)、アミキュアVDH、アミキュアVDH-J、アミキュアUDH、アミキュアUDH-J(いずれも味の素ファインテクノ社製)等が挙げられる。
Examples of the organic acid hydrazide include sebacic acid dihydrazide, isophthalic acid dihydrazide, adipic acid dihydrazide, malonic acid dihydrazide, and the like.
Examples of commercially available organic acid hydrazides include SDH, ADH, MDH (all manufactured by Otsuka Chemical), Amicure VDH, Amicure VDH-J, Amicure UDH, Amicure UDH-J (all Ajinomoto Fine). (Techno).
上記熱硬化剤の含有量は、上記硬化性樹脂100重量部に対して、好ましい下限が1重量部、好ましい上限が50重量部である。上記熱硬化剤の含有量がこの範囲であることにより、得られる液晶表示素子用シール剤の塗布性等を悪化させることなく、より熱硬化性に優れるものとすることができる。上記熱硬化剤の含有量のより好ましい上限は30重量部である。 The content of the thermosetting agent is preferably 1 part by weight with respect to 100 parts by weight of the curable resin, and 50 parts by weight with respect to the preferable upper limit. When the content of the thermosetting agent is within this range, the thermosetting property can be further improved without deteriorating the applicability of the obtained sealing agent for liquid crystal display elements. The upper limit with more preferable content of the said thermosetting agent is 30 weight part.
本発明の液晶表示素子用シール剤は、硬化物の柔軟性や接着性等を向上させたり、液晶のシール剤への差し込みやシール剤の液晶への溶出を抑制したりする等の観点から、柔軟粒子を含有することが好ましい。 From the standpoint of improving the flexibility and adhesiveness of the cured product, suppressing the elution of the sealing agent into the liquid crystal and the sealing agent for the liquid crystal display element of the present invention, It is preferable to contain soft particles.
上記柔軟粒子としては、例えば、シリコーン系粒子、ビニル系粒子、ウレタン系粒子、フッ素系粒子、ニトリル系粒子等が挙げられる。なかでも、シリコーン系粒子、ビニル系粒子が好ましい。 Examples of the flexible particles include silicone particles, vinyl particles, urethane particles, fluorine particles, and nitrile particles. Of these, silicone particles and vinyl particles are preferable.
上記シリコーン系粒子としては、樹脂への分散性の観点からシリコーンゴム粒子が好ましい。 As said silicone type particle | grain, a silicone rubber particle is preferable from a dispersible viewpoint to resin.
上記ビニル系粒子としては、(メタ)アクリル粒子が好適に用いられる。
上記(メタ)アクリル粒子は、原料となる単量体を公知の方法により重合させることで得ることができる。具体的には例えば、ラジカル重合開始剤の存在下で単量体を懸濁重合する方法、ラジカル重合開始剤の存在下で非架橋の種粒子に単量体を吸収させることにより種粒子を膨潤させてシード重合する方法等が挙げられる。
(Meth) acrylic particles are preferably used as the vinyl particles.
The (meth) acrylic particles can be obtained by polymerizing monomers as raw materials by a known method. Specifically, for example, a method in which a monomer is suspension-polymerized in the presence of a radical polymerization initiator, and a seed particle is swollen by absorbing the monomer into a non-crosslinked seed particle in the presence of a radical polymerization initiator. And a seed polymerization method.
上記(メタ)アクリル粒子を形成するための原料となる単量体としては、例えば、アルキル(メタ)アクリレート類、酸素原子含有(メタ)アクリレート類、ニトリル含有単量体、フッ素含有(メタ)アクリレート類等の単官能単量体が挙げられる。
上記アルキル(メタ)アクリレート類としては、例えば、メチル(メタ)アクリレート、エチル(メタ)アクリレート、プロピル(メタ)アクリレート、ブチル(メタ)アクリレート、ヘキシル(メタ)アクリレート、オクチル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、ラウリル(メタ)アクリレート、セチル(メタ)アクリレート、ステアリル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、イソボルニル(メタ)アクリレート等が挙げられる。
上記酸素原子含有(メタ)アクリレート類としては、例えば、2-ヒドロキシエチル(メタ)アクリレート、グリセロール(メタ)アクリレート、ポリオキシエチレン(メタ)アクリレート、グリシジル(メタ)アクリレート等が挙げられる。
上記ニトリル含有単量体としては、例えば、(メタ)アクリロニトリル等が挙げられる。
上記フッ素含有(メタ)アクリレート類としては、例えば、トリフルオロメチル(メタ)アクリレート、ペンタフルオロエチル(メタ)アクリレート等が挙げられる。
なかでも、単独重合体のTgが低く、1g荷重を加えたときの変形量を大きくすることができることから、アルキル(メタ)アクリレート類が好ましい。
Examples of the monomer that is a raw material for forming the (meth) acrylic particles include alkyl (meth) acrylates, oxygen atom-containing (meth) acrylates, nitrile-containing monomers, and fluorine-containing (meth) acrylates. Monofunctional monomers such as the like.
Examples of the alkyl (meth) acrylates include methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, butyl (meth) acrylate, hexyl (meth) acrylate, octyl (meth) acrylate, 2- Examples include ethylhexyl (meth) acrylate, lauryl (meth) acrylate, cetyl (meth) acrylate, stearyl (meth) acrylate, cyclohexyl (meth) acrylate, and isobornyl (meth) acrylate.
Examples of the oxygen atom-containing (meth) acrylates include 2-hydroxyethyl (meth) acrylate, glycerol (meth) acrylate, polyoxyethylene (meth) acrylate, glycidyl (meth) acrylate, and the like.
Examples of the nitrile-containing monomer include (meth) acrylonitrile.
Examples of the fluorine-containing (meth) acrylates include trifluoromethyl (meth) acrylate and pentafluoroethyl (meth) acrylate.
Among these, alkyl (meth) acrylates are preferable because the Tg of the homopolymer is low and the deformation amount when a 1 g load is applied can be increased.
また、架橋構造を持たせるため、テトラメチロールメタンテトラ(メタ)アクリレート、テトラメチロールメタントリ(メタ)アクリレート、テトラメチロールメタンジ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、グリセロールトリ(メタ)アクリレート、グリセロールジ(メタ)アクリレート、(ポリ)エチレングリコールジ(メタ)アクリレート、(ポリ)プロピレングリコールジ(メタ)アクリレート、(ポリ)テトラメチレンジ(メタ)アクリレート、1,4-ブタンジオールジ(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレート、イソシアヌル酸骨格トリ(メタ)アクリレート等の架橋性単量体を用いてもよい。なかでも、架橋点間分子量が大きく、1g荷重を加えたときの変形量を大きくすることができることから、(ポリ)エチレングリコールジ(メタ)アクリレート、(ポリ)プロピレングリコールジ(メタ)アクリレート、(ポリ)テトラメチレンジ(メタ)アクリレート、1,4-ブタンジオールジ(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレートが好ましい。 Moreover, in order to give a crosslinked structure, tetramethylol methane tetra (meth) acrylate, tetramethylol methane tri (meth) acrylate, tetramethylol methane di (meth) acrylate, trimethylol propane tri (meth) acrylate, dipentaerythritol hexa ( (Meth) acrylate, dipentaerythritol penta (meth) acrylate, glycerol tri (meth) acrylate, glycerol di (meth) acrylate, (poly) ethylene glycol di (meth) acrylate, (poly) propylene glycol di (meth) acrylate, ( Poly) tetramethylene di (meth) acrylate, 1,4-butanediol di (meth) acrylate, 1,6-hexanediol di (meth) acrylate, isocyanuric acid skeleton tri (meth) It may be used a crosslinkable monomer acrylate. Especially, since the molecular weight between cross-linking points is large and the deformation amount when a 1 g load is applied can be increased, (poly) ethylene glycol di (meth) acrylate, (poly) propylene glycol di (meth) acrylate, ( Poly) tetramethylene di (meth) acrylate, 1,4-butanediol di (meth) acrylate, and 1,6-hexanediol di (meth) acrylate are preferred.
上記架橋性単量体の使用量は、上記(メタ)アクリル粒子を形成するための原料となる単量体全体において、好ましい下限は1重量%、好ましい上限は90重量%である。上記架橋性単量体の使用量が1重量%以上であることにより、耐溶剤性が向上し、他のシール剤成分と混練したときに膨潤等の問題を引き起こさず、均一に分散しやすくなる。上記架橋性単量体の使用量が90重量%以下であることにより、回復率を低くすることができる。上記架橋性単量体の使用量のより好ましい下限は3重量%、より好ましい上限は80重量%である。 With respect to the use amount of the crosslinkable monomer, the preferable lower limit is 1% by weight and the preferable upper limit is 90% by weight in the whole monomer as a raw material for forming the (meth) acrylic particles. When the amount of the crosslinkable monomer used is 1% by weight or more, the solvent resistance is improved, and when kneaded with other sealant components, it does not cause problems such as swelling and is easily dispersed uniformly. . When the amount of the crosslinkable monomer used is 90% by weight or less, the recovery rate can be lowered. A more preferable lower limit of the amount of the crosslinkable monomer used is 3% by weight, and a more preferable upper limit is 80% by weight.
更に、これらのアクリル系の単量体に加えて、スチレン系単量体、ビニルエーテル類、カルボン酸ビニルエステル類、不飽和炭化水素、ハロゲン含有単量体、トリアリルシアヌレート、トリアリルイソシアヌレート、トリアリルトリメリテート、ジビニルベンゼン、ジアリルフタレート、ジアリルアクリルアミド、ジアリルエーテル、γ-(メタ)アクリロキシプロピルトリメトキシシラン、ビニルトリメトキシシラン等の単量体を用いてもよい。
上記スチレン系単量体としては、例えば、スチレン、α-メチルスチレン、トリメトキシシリルスチレン等が挙げられる。
上記ビニルエーテル類としては、例えば、メチルビニルエーテル、エチルビニルエーテル、プロピルビニルエーテル等が挙げられる。
上記カルボン酸ビニルエステル類としては、例えば、酢酸ビニル、酪酸ビニル、ラウリン酸ビニル、ステアリン酸ビニル等が挙げられる。
上記不飽和炭化水素としては、例えば、エチレン、プロピレン、イソプレン、ブタジエン等が挙げられる。
上記ハロゲン含有単量体としては、例えば、塩化ビニル、フッ化ビニル、クロルスチレン等が挙げられる。
In addition to these acrylic monomers, styrene monomers, vinyl ethers, carboxylic acid vinyl esters, unsaturated hydrocarbons, halogen-containing monomers, triallyl cyanurate, triallyl isocyanurate, Monomers such as triallyl trimellitate, divinylbenzene, diallyl phthalate, diallylacrylamide, diallyl ether, γ- (meth) acryloxypropyltrimethoxysilane, vinyltrimethoxysilane may be used.
Examples of the styrene monomer include styrene, α-methylstyrene, trimethoxysilylstyrene, and the like.
Examples of the vinyl ethers include methyl vinyl ether, ethyl vinyl ether, propyl vinyl ether, and the like.
Examples of the carboxylic acid vinyl esters include vinyl acetate, vinyl butyrate, vinyl laurate, and vinyl stearate.
Examples of the unsaturated hydrocarbon include ethylene, propylene, isoprene, butadiene and the like.
Examples of the halogen-containing monomer include vinyl chloride, vinyl fluoride, chlorostyrene, and the like.
上記(メタ)アクリル粒子としては、コアシェル(メタ)アクリレート共重合体微粒子も好適に用いられる。
上記コアシェル(メタ)アクリレート共重合体微粒子のうち市販されているものとしては、例えば、F351(ゼオン化成社製)等が挙げられる。
As the (meth) acrylic particles, core-shell (meth) acrylate copolymer fine particles are also preferably used.
Examples of commercially available core-shell (meth) acrylate copolymer fine particles include F351 (manufactured by Zeon Kasei Co., Ltd.).
また、上記ビニル系粒子としては、例えば、ポリジビニルベンゼン粒子、ポリクロロプレン粒子、ブタジエンゴム粒子等を用いてもよい。 Further, as the vinyl particles, for example, polydivinylbenzene particles, polychloroprene particles, butadiene rubber particles and the like may be used.
上記柔軟粒子の平均粒子径の好ましい下限は0.01μm、好ましい上限は10μmである。上記柔軟粒子の平均粒子径がこの範囲であることにより、得られる液晶表示素子用シール剤の硬化物の柔軟性や接着性を向上させる効果により優れるものとなる。上記柔軟粒子の平均粒子径のより好ましい下限は0.1μm、より好ましい上限は8μmである。
なお、本明細書において、上記柔軟粒子の平均粒子径は、シール剤に配合する前の粒子について、レーザー回折式粒度分布測定装置を用いて測定することにより得られる値を意味する。上記レーザー回折式粒度分布測定装置としては、マスターサイザー2000(マルバーン社製)等を用いることができる。
The preferable lower limit of the average particle diameter of the flexible particles is 0.01 μm, and the preferable upper limit is 10 μm. When the average particle diameter of the flexible particles is within this range, the effect of improving the flexibility and adhesiveness of the cured product of the obtained sealing agent for liquid crystal display elements is excellent. The more preferable lower limit of the average particle diameter of the flexible particles is 0.1 μm, and the more preferable upper limit is 8 μm.
In addition, in this specification, the average particle diameter of the said flexible particle means the value obtained by measuring using the laser diffraction type particle size distribution measuring apparatus about the particle | grains before mix | blending with a sealing compound. As the laser diffraction particle size distribution measuring device, Mastersizer 2000 (manufactured by Malvern) or the like can be used.
上記柔軟粒子の硬度の好ましい下限は10、好ましい上限は50である。上記柔軟粒子の硬度がこの範囲であることにより、得られる液晶表示素子用シール剤の硬化物の柔軟性や接着性を向上させる効果により優れるものとなる。上記柔軟粒子の硬度のより好ましい下限は20、より好ましい上限は40である。
なお、本明細書において上記柔軟粒子の硬度は、JIS K 6253に準拠した方法により測定されるデュロメータA硬さを意味する。
The preferable lower limit of the hardness of the flexible particles is 10, and the preferable upper limit is 50. When the hardness of the flexible particles is in this range, the effect of improving the flexibility and adhesiveness of the cured product of the obtained sealing agent for liquid crystal display elements is improved. The more preferable lower limit of the hardness of the soft particles is 20, and the more preferable upper limit is 40.
In addition, in this specification, the hardness of the said flexible particle means the durometer A hardness measured by the method based on JISK6253.
本発明の液晶表示素子用シール剤100重量部中における上記柔軟粒子の含有量の好ましい下限は5重量部、好ましい上限は50重量部である。上記柔軟粒子の含有量がこの範囲であることにより、得られる液晶表示素子用シール剤の硬化物の柔軟性や接着性を向上させる効果により優れるものとなる。上記柔軟粒子の含有量のより好ましい下限は10重量部、より好ましい上限は30重量部である。 The preferable lower limit of the content of the flexible particles in 100 parts by weight of the sealing agent for liquid crystal display elements of the present invention is 5 parts by weight, and the preferable upper limit is 50 parts by weight. When the content of the flexible particles is within this range, the effect of improving the flexibility and adhesiveness of the cured product of the obtained sealing agent for liquid crystal display elements is improved. The minimum with more preferable content of the said flexible particle | grain is 10 weight part, and a more preferable upper limit is 30 weight part.
本発明の液晶表示素子用シール剤は、粘度の向上、応力分散効果による接着性の改善、線膨張率の改善等を目的として充填剤を含有することが好ましい。 The sealing agent for liquid crystal display elements of the present invention preferably contains a filler for the purpose of improving the viscosity, improving the adhesiveness due to the stress dispersion effect, improving the linear expansion coefficient, and the like.
上記充填剤としては、例えば、無機充填剤や上記柔軟粒子に含まれる以外の有機充填剤が挙げられる。
上記無機充填剤としては、例えば、シリカ、タルク、ガラスビーズ、石綿、石膏、珪藻土、スメクタイト、ベントナイト、モンモリロナイト、セリサイト、活性白土、アルミナ、酸化亜鉛、酸化鉄、酸化マグネシウム、酸化錫、酸化チタン、炭酸カルシウム、炭酸マグネシウム、水酸化マグネシウム、水酸化アルミニウム、窒化アルミニウム、窒化珪素、硫酸バリウム、珪酸カルシウム等が挙げられる。
Examples of the filler include inorganic fillers and organic fillers other than those contained in the flexible particles.
Examples of the inorganic filler include silica, talc, glass beads, asbestos, gypsum, diatomaceous earth, smectite, bentonite, montmorillonite, sericite, activated clay, alumina, zinc oxide, iron oxide, magnesium oxide, tin oxide, and titanium oxide. , Calcium carbonate, magnesium carbonate, magnesium hydroxide, aluminum hydroxide, aluminum nitride, silicon nitride, barium sulfate, calcium silicate and the like.
本発明の液晶表示素子用シール剤100重量部中における上記充填剤の含有量の好ましい下限は10重量部、好ましい上限は70重量部である。上記充填剤の含有量がこの範囲であることにより、塗布性等を悪化させることなく、接着性の改善等の効果により優れるものとなる。上記充填剤の含有量のより好ましい下限は20重量部、より好ましい上限は60重量部である。 The preferable lower limit of the content of the filler in 100 parts by weight of the sealant for liquid crystal display elements of the present invention is 10 parts by weight, and the preferable upper limit is 70 parts by weight. When the content of the filler is within this range, the effect of improving adhesiveness and the like is improved without deteriorating applicability and the like. The minimum with more preferable content of the said filler is 20 weight part, and a more preferable upper limit is 60 weight part.
本発明の液晶表示素子用シール剤は、シランカップリング剤を含有することが好ましい。上記シランカップリング剤は、主にシール剤と基板等とを良好に接着するための接着助剤としての役割を有する。 It is preferable that the sealing compound for liquid crystal display elements of this invention contains a silane coupling agent. The silane coupling agent mainly has a role as an adhesion assistant for favorably bonding the sealing agent and the substrate.
上記シランカップリング剤としては、例えば、3-アミノプロピルトリメトキシシラン、3-メルカプトプロピルトリメトキシシラン、3-グリシドキシプロピルトリメトキシシラン、3-イソシアネートプロピルトリメトキシシラン等が好適に用いられる。これらは、基板等との接着性を向上させる効果に優れ、硬化性樹脂と化学結合することにより液晶中への硬化性樹脂の流出を抑制することができる。これらのシランカップリング剤は、単独で用いられてもよいし、2種以上が組み合わせて用いられてもよい。 As the silane coupling agent, for example, 3-aminopropyltrimethoxysilane, 3-mercaptopropyltrimethoxysilane, 3-glycidoxypropyltrimethoxysilane, 3-isocyanatopropyltrimethoxysilane and the like are preferably used. These are excellent in the effect of improving the adhesion to a substrate or the like, and can suppress the outflow of the curable resin into the liquid crystal by chemically bonding with the curable resin. These silane coupling agents may be used alone or in combination of two or more.
本発明の液晶表示素子用シール剤100重量部中における上記シランカップリング剤の含有量の好ましい下限は0.1重量部、好ましい上限は10重量部である。上記シランカップリング剤の含有量がこの範囲であることにより、液晶汚染の発生を抑制しつつ、接着性を向上させる効果により優れるものとなる。上記シランカップリング剤の含有量のより好ましい下限は0.3重量部、より好ましい上限は5重量部である。 The minimum with preferable content of the said silane coupling agent in 100 weight part of sealing compounds for liquid crystal display elements of this invention is 0.1 weight part, and a preferable upper limit is 10 weight part. When the content of the silane coupling agent is within this range, the effect of improving the adhesiveness is suppressed while suppressing the occurrence of liquid crystal contamination. The minimum with more preferable content of the said silane coupling agent is 0.3 weight part, and a more preferable upper limit is 5 weight part.
本発明の液晶表示素子用シール剤は、遮光剤を含有してもよい。上記遮光剤を含有することにより、本発明の液晶表示素子用シール剤は、遮光シール剤として好適に用いることができる。 The sealing agent for liquid crystal display elements of the present invention may contain a light shielding agent. By containing the said light shielding agent, the sealing compound for liquid crystal display elements of this invention can be used suitably as a light shielding sealing agent.
上記遮光剤としては、例えば、酸化鉄、チタンブラック、アニリンブラック、シアニンブラック、フラーレン、カーボンブラック、樹脂被覆型カーボンブラック等が挙げられる。なかでも、絶縁性が高いことから、チタンブラックが好ましい。 Examples of the light-shielding agent include iron oxide, titanium black, aniline black, cyanine black, fullerene, carbon black, and resin-coated carbon black. Of these, titanium black is preferred because of its high insulating properties.
上記チタンブラックは、表面処理されていないものでも充分な効果を発揮するが、表面がカップリング剤等の有機成分で処理されているものや、酸化ケイ素、酸化チタン、酸化ゲルマニウム、酸化アルミニウム、酸化ジルコニウム、酸化マグネシウム等の無機成分で被覆されているもの等、表面処理されたチタンブラックを用いることもできる。なかでも、有機成分で処理されているものは、より絶縁性を向上できる点で好ましい。
また、遮光剤として上記チタンブラックを含有する本発明の液晶表示素子用シール剤を用いて製造した液晶表示素子は、充分な遮光性を有するため、光の漏れ出しがなく高いコントラストを有し、優れた画像表示品質を有する液晶表示素子を実現することができる。
The above-mentioned titanium black exhibits a sufficient effect even if it is not surface-treated, but the surface is treated with an organic component such as a coupling agent, silicon oxide, titanium oxide, germanium oxide, aluminum oxide, oxidized Surface-treated titanium black such as those coated with an inorganic component such as zirconium or magnesium oxide can also be used. Especially, what is processed with the organic component is preferable at the point which can improve insulation more.
In addition, the liquid crystal display element produced using the sealing agent for liquid crystal display elements of the present invention containing the above-described titanium black as a light-shielding agent has a sufficient light-shielding property, and thus has high contrast without light leakage. A liquid crystal display element having excellent image display quality can be realized.
上記チタンブラックのうち市販されているものとしては、例えば、12S、13M、13M-C、13R-N、14M-C(いずれも三菱マテリアル社製)、ティラックD(赤穂化成社製)等が挙げられる。 Examples of commercially available titanium black include 12S, 13M, 13M-C, 13R-N, 14M-C (all manufactured by Mitsubishi Materials Corporation), Tilak D (manufactured by Ako Kasei Co., Ltd.), and the like. Can be mentioned.
上記チタンブラックの比表面積の好ましい下限は13m/g、好ましい上限は30m/gであり、より好ましい下限は15m/g、より好ましい上限は25m/gである。
また、上記チタンブラックの体積抵抗の好ましい下限は0.5Ω・cm、好ましい上限は3Ω・cmであり、より好ましい下限は1Ω・cm、より好ましい上限は2.5Ω・cmである。
The preferable lower limit of the specific surface area of the titanium black is 13 m 2 / g, the preferable upper limit is 30 m 2 / g, the more preferable lower limit is 15 m 2 / g, and the more preferable upper limit is 25 m 2 / g.
Further, the preferred lower limit of the volume resistance of the titanium black is 0.5 Ω · cm, the preferred upper limit is 3 Ω · cm, the more preferred lower limit is 1 Ω · cm, and the more preferred upper limit is 2.5 Ω · cm.
上記遮光剤の一次粒子径は、液晶表示素子の基板間の距離以下であれば特に限定されないが、好ましい下限は1nm、好ましい上限は5μmである。上記遮光剤の一次粒子径がこの範囲であることにより、得られる液晶表示素子用シール剤の塗布性等を悪化させることなく遮光性により優れるものとすることができる。上記遮光剤の一次粒子径のより好ましい下限は5nm、より好ましい上限は200nm、更に好ましい下限は10nm、更に好ましい上限は100nmである。
なお、上記遮光剤の一次粒子径は、NICOMP 380ZLS(PARTICLE SIZING SYSTEMS社製)を用いて、上記遮光剤を溶媒(水、有機溶媒等)に分散させて測定することができる。
The primary particle diameter of the light-shielding agent is not particularly limited as long as it is not more than the distance between the substrates of the liquid crystal display element, but the preferred lower limit is 1 nm and the preferred upper limit is 5 μm. When the primary particle diameter of the light-shielding agent is within this range, the light-shielding property can be improved without deteriorating the applicability of the obtained sealing agent for liquid crystal display elements. The more preferable lower limit of the primary particle diameter of the light shielding agent is 5 nm, the more preferable upper limit is 200 nm, the still more preferable lower limit is 10 nm, and the still more preferable upper limit is 100 nm.
The primary particle size of the light shielding agent can be measured by using NICOMP 380ZLS (manufactured by PARTICS SIZING SYSTEMS) and dispersing the light shielding agent in a solvent (water, organic solvent, etc.).
本発明の液晶表示素子用シール剤100重量部中における上記遮光剤の含有量の好ましい下限は5重量部、好ましい上限は80重量部である。上記遮光剤の含有量がこの範囲であることにより、得られる液晶表示素子用シール剤の基板に対する密着性や硬化後の強度や描画性を低下させることなくより優れた遮光性を発揮することができる。上記遮光剤の含有量のより好ましい下限は10重量部、より好ましい上限は70重量部であり、更に好ましい下限は30重量部、更に好ましい上限は60重量部である。 The preferable lower limit of the content of the light-shielding agent in 100 parts by weight of the sealant for liquid crystal display elements of the present invention is 5 parts by weight, and the preferable upper limit is 80 parts by weight. When the content of the light-shielding agent is within this range, the liquid crystal display element sealant can exhibit better light-shielding properties without reducing the adhesion to the substrate, the strength after curing, and the drawability. it can. The more preferable lower limit of the content of the light shielding agent is 10 parts by weight, the more preferable upper limit is 70 parts by weight, the still more preferable lower limit is 30 parts by weight, and the still more preferable upper limit is 60 parts by weight.
本発明の液晶表示素子用シール剤を製造する方法としては、例えば、ホモディスパー、ホモミキサー、万能ミキサー、プラネタリーミキサー、ニーダー、3本ロール等の混合機を用いて、硬化性樹脂と、光重合開始剤と、必要に応じて添加するシランカップリング剤等の添加剤とを混合する方法等が挙げられる。 As a method for producing the sealing agent for liquid crystal display elements of the present invention, for example, using a mixer such as a homodisper, a homomixer, a universal mixer, a planetary mixer, a kneader, or a three roll, a curable resin, a light Examples thereof include a method of mixing a polymerization initiator and an additive such as a silane coupling agent added as necessary.
本発明の液晶表示素子用シール剤に、導電性微粒子を配合することにより、上下導通材料を製造することができる。このような本発明の液晶表示素子用シール剤と導電性微粒子とを含有する上下導通材料もまた、本発明の1つである。 A vertical conducting material can be produced by blending conductive fine particles with the liquid crystal display element sealant of the present invention. Such a vertical conduction material containing the sealing agent for liquid crystal display elements of the present invention and conductive fine particles is also one aspect of the present invention.
上記導電性微粒子としては、金属ボール、樹脂微粒子の表面に導電金属層を形成したもの等を用いることができる。なかでも、樹脂微粒子の表面に導電金属層を形成したものは、樹脂微粒子の優れた弾性により、透明基板等を損傷することなく導電接続が可能であることから好適である。 As the conductive fine particles, a metal ball, a resin fine particle formed with a conductive metal layer on the surface, or the like can be used. Among them, the one in which the conductive metal layer is formed on the surface of the resin fine particles is preferable because the conductive connection is possible without damaging the transparent substrate due to the excellent elasticity of the resin fine particles.
本発明の液晶表示素子用シール剤又は本発明の上下導通材料を用いてなる液晶表示素子もまた、本発明の1つである。 The liquid crystal display element using the sealing agent for liquid crystal display elements of this invention or the vertical conduction material of this invention is also one of this invention.
本発明の液晶表示素子を製造する方法としては、液晶滴下工法が好適に用いられ、具体的には例えば、以下の各工程を有する方法等が挙げられる。
まず、ITO薄膜等の電極が付いた、ガラス基板やポリエチレンテレフタレート基板等の2枚の基板の一方に、本発明の液晶表示素子用シール剤を、スクリーン印刷、ディスペンサー塗布等により塗布して枠状のシールパターンを形成する工程を行う。次いで、本発明の液晶表示素子用シール剤が未硬化の状態で液晶の微小滴を基板のシールパターンの枠内に滴下塗布し、真空下で別の基板を重ね合わせる工程を行う。その後、本発明の液晶表示素子用シール剤のシールパターン部分に紫外線等の光を照射してシール剤を光硬化させる工程を行う方法により、液晶表示素子を得ることができる。また、上記シール剤を光硬化させる工程に加えて、シール剤を加熱して熱硬化させる工程を行ってもよい。
As a method for producing the liquid crystal display element of the present invention, a liquid crystal dropping method is preferably used. Specific examples include a method having the following steps.
First, the liquid crystal display element sealant of the present invention is applied to one of two substrates such as a glass substrate or a polyethylene terephthalate substrate with an electrode such as an ITO thin film by screen printing, dispenser application, etc. The step of forming the seal pattern is performed. Next, in a state where the sealant for a liquid crystal display element of the present invention is uncured, a step of applying droplets of liquid crystals into the frame of the seal pattern of the substrate and superimposing another substrate under vacuum is performed. Then, a liquid crystal display element can be obtained by the method of irradiating light, such as an ultraviolet-ray, to the seal pattern part of the sealing agent for liquid crystal display elements of this invention, and photocuring a sealing agent. In addition to the step of photocuring the sealant, a step of heating and thermosetting the sealant may be performed.
本発明によれば、遮光部硬化性に優れ、かつ、液晶汚染を抑制することができる液晶表示素子用シール剤を提供することができる。また、本発明によれば、該液晶表示素子用シール剤を用いてなる上下導通材料及び液晶表示素子を提供することができる。 ADVANTAGE OF THE INVENTION According to this invention, the sealing compound for liquid crystal display elements which is excellent in light-shielding part curability and can suppress liquid-crystal contamination can be provided. Moreover, according to this invention, the vertical conduction material and liquid crystal display element which use this sealing compound for liquid crystal display elements can be provided.
以下に実施例を掲げて本発明を更に詳しく説明するが、本発明はこれら実施例のみに限定されない。 Hereinafter, the present invention will be described in more detail with reference to examples. However, the present invention is not limited to these examples.
(ビスフェノールA型エポキシアクリレートオリゴマーの合成)
冷却管、撹拌羽根付き4つ口フラスコにビスフェノールA型エポキシ樹脂を170g(0.5mol)、アクリル酸86.5g(1.2mol)、トリフェニルフォスフィン2.6g(0.01mol)、及び、ジブチルヒドロキシトルエン0.2g(0.001mol)を入れ、オイルバス中で120℃で12時間撹拌した。上記ビスフェノールA型エポキシ樹脂としては、DIC社製の試薬を用いた。上記アクリル酸としては、東京化成工業社製の試薬を用いた。上記トリフェニルフォスフィンとしては、東京化成工業社製の試薬を用いた。上記ジブチルヒドロキシトルエンとしては、東京化成工業社製の試薬を用いた。
反応終了後、蒸留水での洗浄、真空乾燥、及び、ろ過を行い、ビスフェノールA型エポキシアクリレートオリゴマー(分子量4500、分散度2.5)を得た。
なお、得られたビスフェノールA型エポキシアクリレートオリゴマーは、H-NMR及びGC-Msから構造の確認を行なった。
(Synthesis of bisphenol A type epoxy acrylate oligomer)
170 g (0.5 mol) of bisphenol A type epoxy resin, 86.5 g (1.2 mol) of acrylic acid, 2.6 g (0.01 mol) of triphenylphosphine in a four-necked flask equipped with a cooling tube and stirring blades, and Dibutylhydroxytoluene 0.2 g (0.001 mol) was added and stirred in an oil bath at 120 ° C. for 12 hours. As the bisphenol A type epoxy resin, a reagent manufactured by DIC was used. As the acrylic acid, a reagent manufactured by Tokyo Chemical Industry Co., Ltd. was used. As the triphenylphosphine, a reagent manufactured by Tokyo Chemical Industry Co., Ltd. was used. As the dibutylhydroxytoluene, a reagent manufactured by Tokyo Chemical Industry Co., Ltd. was used.
After completion of the reaction, washing with distilled water, vacuum drying, and filtration were performed to obtain a bisphenol A type epoxy acrylate oligomer (molecular weight 4500, dispersity 2.5).
The structure of the obtained bisphenol A type epoxy acrylate oligomer was confirmed by 1 H-NMR and GC-Ms.
(ビスフェノールA型エポキシメタクリレートオリゴマーの合成)
冷却管、撹拌羽根付き4つ口フラスコにビスフェノールA型エポキシ樹脂を170g(0.5mol)、メタクリル酸103.3g(1.2mol)、トリフェニルフォスフィン2.6g(0.01mol)、及び、ジブチルヒドロキシトルエン0.2g(0.001mol)を入れ、オイルバス中で120℃で12時間撹拌した。上記ビスフェノールA型エポキシ樹脂としては、DIC社製の試薬を用いた。上記メタクリル酸としては、東京化成工業社製の試薬を用いた。上記トリフェニルフォスフィンとしては、東京化成工業社製の試薬を用いた。上記ジブチルヒドロキシトルエンとしては、東京化成工業社製の試薬を用いた。
反応終了後、蒸留水での洗浄、真空乾燥、及び、ろ過を行い、ビスフェノールA型エポキシメタクリレートオリゴマー(分子量3200、分散度2.2)を得た。
なお、得られたビスフェノールA型エポキシメタクリレートオリゴマーは、H-NMR及びGC-Msから構造の確認を行なった。
(Synthesis of bisphenol A type epoxy methacrylate oligomer)
170 g (0.5 mol) of bisphenol A type epoxy resin, 103.3 g (1.2 mol) of methacrylic acid, 2.6 g (0.01 mol) of triphenylphosphine, Dibutylhydroxytoluene 0.2 g (0.001 mol) was added and stirred in an oil bath at 120 ° C. for 12 hours. As the bisphenol A type epoxy resin, a reagent manufactured by DIC was used. As the methacrylic acid, a reagent manufactured by Tokyo Chemical Industry Co., Ltd. was used. As the triphenylphosphine, a reagent manufactured by Tokyo Chemical Industry Co., Ltd. was used. As the dibutylhydroxytoluene, a reagent manufactured by Tokyo Chemical Industry Co., Ltd. was used.
After completion of the reaction, washing with distilled water, vacuum drying, and filtration were performed to obtain a bisphenol A type epoxy methacrylate oligomer (molecular weight 3200, dispersity 2.2).
The structure of the obtained bisphenol A type epoxy methacrylate oligomer was confirmed by 1 H-NMR and GC-Ms.
(実施例1~12、比較例1~5)
表1~3に記載された配合比に従い、各材料を遊星式撹拌機(シンキー社製、「あわとり練太郎」)を用いて混合した後、更に3本ロールを用いて混合することにより実施例1~12、比較例1~5の液晶表示素子用シール剤を調製した。
(Examples 1 to 12, Comparative Examples 1 to 5)
According to the blending ratios listed in Tables 1 to 3, each material was mixed using a planetary stirrer (“Shinky Co.,“ Awatori Nertaro ”), and then mixed using three rolls. Sealants for liquid crystal display elements of Examples 1 to 12 and Comparative Examples 1 to 5 were prepared.
<評価>
実施例及び比較例で得られた各液晶表示素子用シール剤について以下の評価を行った。結果を表1~3に示した。
<Evaluation>
The following evaluation was performed about each sealing compound for liquid crystal display elements obtained by the Example and the comparative example. The results are shown in Tables 1-3.
(光重合開始剤の溶解性)
実施例及び比較例で得られた各液晶表示素子用シール剤について、各シール剤で用いた硬化性樹脂100g中に各シール剤で用いた光重合開始剤2gを入れ、120℃のオーブンで加熱した。加熱開始から、5分未満で完全に溶解した場合を「○○○」、5分以上10分未満で完全に溶解した場合を「○○」、10分以上30分未満で完全に溶解した場合を「○」、30分で溶解したものの、溶け残りが発生した場合を「△」、30分経過しても全く溶解しなかった場合を「×」として光重合開始剤の溶解性を評価した。
(Solubility of photopolymerization initiator)
About each sealing agent for liquid crystal display elements obtained by the Example and the comparative example, 2 g of photoinitiators used by each sealing agent are put into 100 g of curable resin used by each sealing agent, and it heats in 120 degreeC oven. did. When fully dissolved in less than 5 minutes from the start of heating, “XX”, when completely dissolved in 5 minutes to less than 10 minutes “○○”, when completely dissolved in 10 minutes to less than 30 minutes "○", the solubility of the photopolymerization initiator was evaluated as "△" when the residue was dissolved but "△" when the residue was not dissolved and "X" when it was not dissolved at all even after 30 minutes. .
(遮光部硬化性)
まず、厚さ0.7mmのコーニングガラスの半面をクロム蒸着した基板Aと、前面をクロム蒸着した基板Bとを準備した。次に、実施例及び比較例で得られた各液晶表示素子用シール剤100重量部に対して平均粒子径5μmのスペーサー粒子(積水化学工業社製、「ミクロパールSI-H050」)1重量部を遊星式撹拌装置によって均一に分散させた。次いで、該スペーサー粒子を分散させたシール剤を基板Aの中央部(クロム蒸着部と非蒸着部との境界)に塗布し、基板Bを貼り合わせてからシール剤を充分に押し潰し、基板A側からメタルハライドランプを用いて100mW/cmの紫外線を30秒照射した。
その後、カッターを用いて基板A及びBを剥がし、紫外線直接照射部の際から50μm離れた点(クロム蒸着により遮光されていた部分)上のシール剤について顕微IR法によってスペクトルを測定し、シール剤中の(メタ)アクリロイル基の転化率を以下の方法により求めた。即ち、815~800cm-1のピーク面積を(メタ)アクリロイル基のピーク面積とし、845~820cm-1のピーク面積をリファレンスピーク面積として、下記式により(メタ)アクリロイル基の転化率を算出した。(メタ)アクリロイル基の転化率が80%以上であった場合を「○」、30%以上80%未満であった場合を「△」、30%未満であった場合を「×」として遮光部硬化性を評価した。
(メタ)アクリロイル基の転化率=(1-(紫外線照射後の(メタ)アクリロイル基のピーク面積/紫外線照射後のリファレンスピーク面積)/(紫外線照射前の(メタ)アクリロイル基のピーク面積/紫外線照射前のリファレンスピーク面積))×100
(Light-shielding part curability)
First, a substrate A on which half of a Corning glass having a thickness of 0.7 mm was vapor-deposited and a substrate B on which the front surface was vapor-deposited were prepared. Next, 1 part by weight of spacer particles having an average particle diameter of 5 μm (manufactured by Sekisui Chemical Co., Ltd., “Micropearl SI-H050”) with respect to 100 parts by weight of the sealant for each liquid crystal display device obtained in Examples and Comparative Examples. Was uniformly dispersed by a planetary stirrer. Next, the sealing agent in which the spacer particles are dispersed is applied to the central portion of the substrate A (the boundary between the chromium vapor-deposited portion and the non-vapor-deposited portion), and after the substrate B is bonded together, the sealant is sufficiently crushed. A 100 mW / cm 2 ultraviolet ray was irradiated for 30 seconds from the side using a metal halide lamp.
Thereafter, the substrates A and B are peeled off using a cutter, and the spectrum is measured by a microscopic IR method for the sealant on a point 50 μm away from the direct ultraviolet irradiation part (the part shielded from light by chromium vapor deposition). The conversion rate of the inside (meth) acryloyl group was calculated | required with the following method. That is, the conversion ratio of the (meth) acryloyl group was calculated by the following formula, with the peak area of 815 to 800 cm −1 as the peak area of the (meth) acryloyl group and the peak area of 845 to 820 cm −1 as the reference peak area. A light shielding part where the conversion rate of the (meth) acryloyl group was 80% or more, “◯”, the case of 30% or more and less than 80% was “Δ”, and the case of less than 30% was “X”. The curability was evaluated.
Conversion rate of (meth) acryloyl group = (1- (peak area of (meth) acryloyl group after UV irradiation / reference peak area after UV irradiation) / (peak area of (meth) acryloyl group before UV irradiation / ultraviolet light) Reference peak area before irradiation)) x 100
(液晶表示素子の表示性能(低液晶汚染性))
実施例及び比較例で得られた各液晶表示素子用シール剤100重量部に対して平均粒子径5μmのスペーサー粒子(積水化学工業社製、「ミクロパールSI-H050」)1重量部を遊星式撹拌装置によって均一に分散させた。次いで、該スペーサー微粒子を分散させたシール剤をディスペンス用のシリンジ(武蔵エンジニアリング社製、「PSY-10E」)に充填し、脱泡処理を行ってから、ディスペンサー(武蔵エンジニアリング社製、「SHOTMASTER300」)にて、2枚のITO薄膜付きの透明電極基板の一方にシール剤を枠状に塗布した。続いて、TN液晶(チッソ社製、「JC-5001LA」)の微小滴を液晶滴下装置にてシール剤の枠内に滴下塗布し、他方の透明電極基板を、真空貼り合わせ装置にて5Paの真空下にて貼り合わせ、セルを得た。得られたセルに、メタルハライドランプを用いて100mW/cmの紫外線を30秒照射した後、120℃で1時間加熱してシール剤を硬化させ、液晶表示素子を得た。
得られた液晶表示素子について、シール部周辺の液晶(特にコーナー部)を目視にて観察し、表示むらや線残像が確認されなかった場合を「○」、はっきりと表示むらや線残像が確認された場合を「△」、酷い表示むらや線残像が確認された場合を「×」として液晶表示素子の表示性能(低液晶汚染性)を評価した。
(Display performance of liquid crystal display elements (low liquid crystal contamination))
One part by weight of spacer particles (Sekisui Chemical Co., Ltd., “Micropearl SI-H050”) having an average particle size of 5 μm is used for 100 parts by weight of each liquid crystal display element sealing agent obtained in Examples and Comparative Examples. It was uniformly dispersed by a stirrer. Next, the sealing agent in which the spacer fine particles are dispersed is filled in a dispensing syringe (“PSY-10E” manufactured by Musashi Engineering Co., Ltd.) and defoamed, and then a dispenser (“SHOTMASTER 300” manufactured by Musashi Engineering Co., Ltd.). ), A sealing agent was applied in a frame shape to one of the two transparent electrode substrates with an ITO thin film. Subsequently, fine droplets of TN liquid crystal (manufactured by Chisso Corporation, “JC-5001LA”) are applied dropwise to the frame of the sealing agent with a liquid crystal dropping device, and the other transparent electrode substrate is 5 Pa with a vacuum bonding device. Bonding was performed under vacuum to obtain a cell. The obtained cell was irradiated with 100 mW / cm 2 of ultraviolet rays for 30 seconds using a metal halide lamp, and then heated at 120 ° C. for 1 hour to cure the sealant to obtain a liquid crystal display element.
For the obtained liquid crystal display element, visually observe the liquid crystal (especially the corner) around the seal, and if no display irregularities or line afterimages were confirmed, “○”, clearly confirm display irregularities and line afterimages. The display performance (low liquid crystal contamination) of the liquid crystal display element was evaluated with “Δ” as the case where it was observed and “X” when the severe display unevenness or line afterimage was confirmed.
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000010
本発明によれば、遮光部硬化性に優れ、かつ、液晶汚染を抑制することができる液晶表示素子用シール剤を提供することができる。また、本発明によれば、該液晶表示素子用シール剤を用いてなる上下導通材料及び液晶表示素子を提供することができる。 ADVANTAGE OF THE INVENTION According to this invention, the sealing compound for liquid crystal display elements which is excellent in light-shielding part curability and can suppress liquid-crystal contamination can be provided. Moreover, according to this invention, the vertical conduction material and liquid crystal display element which use this sealing compound for liquid crystal display elements can be provided.

Claims (8)

  1. 硬化性樹脂と光重合開始剤とを含有する液晶表示素子用シール剤であって、
    前記硬化性樹脂は、(メタ)アクリル化合物及び芳香族エポキシ化合物を含有し、
    前記光重合開始剤は、下記式(1)で表される化合物を含有し、
    前記硬化性樹脂と前記光重合開始剤とのSP値の差が2.5以下である
    ことを特徴とする液晶表示素子用シール剤。
    Figure JPOXMLDOC01-appb-C000001
    A sealing agent for a liquid crystal display element containing a curable resin and a photopolymerization initiator,
    The curable resin contains a (meth) acrylic compound and an aromatic epoxy compound,
    The photopolymerization initiator contains a compound represented by the following formula (1),
    A sealant for a liquid crystal display element, wherein a difference in SP value between the curable resin and the photopolymerization initiator is 2.5 or less.
    Figure JPOXMLDOC01-appb-C000001
  2. (メタ)アクリル化合物及び芳香族エポキシ化合物は、ビスフェノール骨格を有することを特徴とする請求項1記載の液晶表示素子用シール剤。 The sealing agent for liquid crystal display elements according to claim 1, wherein the (meth) acrylic compound and the aromatic epoxy compound have a bisphenol skeleton.
  3. 硬化性樹脂は、マレイミド化合物を含有することを特徴とする請求項1又は2記載の液晶表示素子用シール剤。 The sealing agent for liquid crystal display elements according to claim 1, wherein the curable resin contains a maleimide compound.
  4. マレイミド化合物として、下記式(2)で表される化合物及び/又は下記式(3)で表される化合物を含有することを特徴とする請求項3記載の液晶表示素子用シール剤。
    Figure JPOXMLDOC01-appb-C000002
    式(2)中、Rは、炭素数2~3のアルキレン基を表し、nは、2~40の整数である。
    Figure JPOXMLDOC01-appb-C000003
    式(3)中、Rは、炭素数1~40の2価の脂肪族基を表す。
    The sealing compound for liquid crystal display elements according to claim 3, comprising a compound represented by the following formula (2) and / or a compound represented by the following formula (3) as the maleimide compound.
    Figure JPOXMLDOC01-appb-C000002
    In the formula (2), R 1 represents an alkylene group having 2 to 3 carbon atoms, and n is an integer of 2 to 40.
    Figure JPOXMLDOC01-appb-C000003
    In the formula (3), R 2 represents a divalent aliphatic group having 1 to 40 carbon atoms.
  5. 硬化性樹脂全体の平均SP値が24以下であることを特徴とする請求項1、2、3又は4記載の液晶表示素子用シール剤。 5. The sealing agent for liquid crystal display elements according to claim 1, wherein the average SP value of the entire curable resin is 24 or less.
  6. 硬化性樹脂全体の重量平均分子量が340~1万であることを特徴とする請求項1、2、3、4又は5記載の液晶表示素子用シール剤。 6. The sealant for a liquid crystal display element according to claim 1, wherein the entire curable resin has a weight average molecular weight of 340 to 10,000.
  7. 請求項1、2、3、4、5又は6記載の液晶表示素子用シール剤と導電性微粒子とを含有することを特徴とする上下導通材料。 A vertical conduction material comprising the liquid crystal display element sealing agent according to claim 1, 2, 3, 4, 5 or 6, and conductive fine particles.
  8. 請求項1、2、3、4、5若しくは6記載の液晶表示素子用シール剤又は請求項7記載の上下導通材料を用いてなることを特徴とする液晶表示素子。 A liquid crystal display element comprising the sealing agent for a liquid crystal display element according to claim 1, 2, 3, 4, 5 or 6, or the vertical conduction material according to claim 7.
PCT/JP2017/034705 2016-09-29 2017-09-26 Sealing agent for liquid crystal display elements, vertically conducting material and liquid crystal display element WO2018062159A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201780015838.XA CN108780249B (en) 2016-09-29 2017-09-26 Sealing agent for liquid crystal display element, vertical conduction material, and liquid crystal display element
KR1020187022776A KR102460034B1 (en) 2016-09-29 2017-09-26 Sealing agent for liquid crystal display elements, vertical conduction material and liquid crystal display element
JP2017553444A JP7000158B2 (en) 2016-09-29 2017-09-26 Sealing agent for liquid crystal display element, vertical conduction material and liquid crystal display element

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016191494 2016-09-29
JP2016-191494 2016-09-29

Publications (1)

Publication Number Publication Date
WO2018062159A1 true WO2018062159A1 (en) 2018-04-05

Family

ID=61760390

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/034705 WO2018062159A1 (en) 2016-09-29 2017-09-26 Sealing agent for liquid crystal display elements, vertically conducting material and liquid crystal display element

Country Status (5)

Country Link
JP (1) JP7000158B2 (en)
KR (1) KR102460034B1 (en)
CN (1) CN108780249B (en)
TW (1) TWI745437B (en)
WO (1) WO2018062159A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019221026A1 (en) * 2018-05-18 2019-11-21 積水化学工業株式会社 Liquid crystal display element sealing agent, liquid crystal display element, and liquid crystal display element production method
JP2022179492A (en) * 2019-02-26 2022-12-02 味の素株式会社 resin composition
WO2022270453A1 (en) * 2021-06-21 2022-12-29 積水化学工業株式会社 Sealing agent for liquid crystal display element and liquid crystal display element

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006120998A1 (en) * 2005-05-09 2006-11-16 Sekisui Chemical Co., Ltd. Sealing material for the liquid crystal dispensing method, transferring material and liquid crystal display devices
JP2010286640A (en) * 2009-06-11 2010-12-24 Nippon Kayaku Co Ltd Visible light-curable liquid crystal sealing agent and liquid crystal display cell using the same
JP2014006325A (en) * 2012-06-22 2014-01-16 Nippon Kayaku Co Ltd Liquid crystal sealing agent and liquid crystal display cell using the same

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5973166A (en) * 1998-03-02 1999-10-26 The Dexter Corporation Method for the preparation of maleimides
JP3583326B2 (en) 1999-11-01 2004-11-04 協立化学産業株式会社 Sealant for dripping method of LCD panel
US7253131B2 (en) 2001-05-16 2007-08-07 Sekisui Chemical Co., Ltd. Curing resin composition and sealants and end-sealing materials for displays
JP4380359B2 (en) * 2004-02-20 2009-12-09 Jsr株式会社 Radiation-sensitive resin composition for spacer formation, spacer, method for forming the spacer, and liquid crystal display element
JP5205940B2 (en) * 2006-12-22 2013-06-05 住友化学株式会社 Photosensitive resin composition
JP5592081B2 (en) 2008-06-13 2014-09-17 ヘンケル コーポレイション Sealant for liquid crystal dropping method and method for producing liquid crystal display device
WO2012002028A1 (en) 2010-06-28 2012-01-05 株式会社Adeka Curable resin composition
CN103781870B (en) * 2011-09-15 2015-12-16 汉高股份有限及两合公司 Encapsulant composition

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006120998A1 (en) * 2005-05-09 2006-11-16 Sekisui Chemical Co., Ltd. Sealing material for the liquid crystal dispensing method, transferring material and liquid crystal display devices
JP2010286640A (en) * 2009-06-11 2010-12-24 Nippon Kayaku Co Ltd Visible light-curable liquid crystal sealing agent and liquid crystal display cell using the same
JP2014006325A (en) * 2012-06-22 2014-01-16 Nippon Kayaku Co Ltd Liquid crystal sealing agent and liquid crystal display cell using the same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019221026A1 (en) * 2018-05-18 2019-11-21 積水化学工業株式会社 Liquid crystal display element sealing agent, liquid crystal display element, and liquid crystal display element production method
JP2022179492A (en) * 2019-02-26 2022-12-02 味の素株式会社 resin composition
JP7444212B2 (en) 2019-02-26 2024-03-06 味の素株式会社 resin composition
WO2022270453A1 (en) * 2021-06-21 2022-12-29 積水化学工業株式会社 Sealing agent for liquid crystal display element and liquid crystal display element
JP7219370B1 (en) * 2021-06-21 2023-02-07 積水化学工業株式会社 Sealant for liquid crystal display element and liquid crystal display element

Also Published As

Publication number Publication date
KR102460034B1 (en) 2022-10-27
CN108780249A (en) 2018-11-09
CN108780249B (en) 2021-11-30
TW201819505A (en) 2018-06-01
JP7000158B2 (en) 2022-01-19
TWI745437B (en) 2021-11-11
JPWO2018062159A1 (en) 2019-07-11
KR20190053132A (en) 2019-05-17

Similar Documents

Publication Publication Date Title
JP5685346B1 (en) Liquid crystal dropping method sealing agent, vertical conduction material, and liquid crystal display element
WO2019198631A1 (en) Photopolymerization initiator, sealant for display elements, vertical conduction material, display element, and compound
WO2017119406A1 (en) Sealant for liquid crystal display element, vertical conduction material, and liquid crystal display element
JP6539160B2 (en) Sealant for liquid crystal display element and vertical conduction material
JP6795400B2 (en) Sealing agent for liquid crystal display element, vertical conduction material, and liquid crystal display element
JP7000158B2 (en) Sealing agent for liquid crystal display element, vertical conduction material and liquid crystal display element
JP6386377B2 (en) Liquid crystal dropping method sealing agent, vertical conduction material, and liquid crystal display element
JP6216260B2 (en) Sealant for liquid crystal display element, vertical conduction material, and liquid crystal display element
JP6235766B1 (en) Sealant for liquid crystal display element, vertical conduction material, and liquid crystal display element
JP6126756B1 (en) Sealant for liquid crystal display element, vertical conduction material, and liquid crystal display element
JP6046868B1 (en) Liquid crystal dropping method sealing agent, vertical conduction material, and liquid crystal display element
WO2018062166A1 (en) Sealing agent for liquid crystal display elements, vertically conducting material and liquid crystal display element
JP7000159B2 (en) Sealing agent for liquid crystal display element, vertical conduction material, and liquid crystal display element
JP6078698B1 (en) Liquid crystal dropping method sealing agent, vertical conduction material, and liquid crystal display element
JP2019184730A (en) Liquid crystal display element sealant, epoxy compound, method of manufacturing epoxy compound, vertical conduction material, and liquid crystal display element
JP6630871B1 (en) Composition for electronic material, sealant for liquid crystal display element, vertical conductive material, and liquid crystal display element
JP7007196B2 (en) Sealing agent for liquid crystal display element, vertical conduction material, and liquid crystal display element
WO2019221026A1 (en) Liquid crystal display element sealing agent, liquid crystal display element, and liquid crystal display element production method
WO2017119407A1 (en) Sealant for liquid crystal display element, vertical conduction material, and liquid crystal display element
JP2017003989A (en) Sealant for liquid crystal display elements, vertical conduction material, and liquid crystal display element

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2017553444

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 20187022776

Country of ref document: KR

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17856109

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17856109

Country of ref document: EP

Kind code of ref document: A1