WO2018061960A1 - Method and device for obtaining exposure intensity distribution in multibeam electron beam lithography device - Google Patents

Method and device for obtaining exposure intensity distribution in multibeam electron beam lithography device Download PDF

Info

Publication number
WO2018061960A1
WO2018061960A1 PCT/JP2017/034033 JP2017034033W WO2018061960A1 WO 2018061960 A1 WO2018061960 A1 WO 2018061960A1 JP 2017034033 W JP2017034033 W JP 2017034033W WO 2018061960 A1 WO2018061960 A1 WO 2018061960A1
Authority
WO
WIPO (PCT)
Prior art keywords
calculation
matrix
pixel
cell
electron beam
Prior art date
Application number
PCT/JP2017/034033
Other languages
French (fr)
Japanese (ja)
Inventor
剛哉 下村
洋平 大川
Original Assignee
大日本印刷株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2017171637A external-priority patent/JP6881168B2/en
Application filed by 大日本印刷株式会社 filed Critical 大日本印刷株式会社
Publication of WO2018061960A1 publication Critical patent/WO2018061960A1/en

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/30Electron-beam or ion-beam tubes for localised treatment of objects
    • H01J37/305Electron-beam or ion-beam tubes for localised treatment of objects for casting, melting, evaporating or etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/027Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34

Definitions

  • the present invention relates to a method and apparatus for obtaining an exposure intensity distribution in a multi-beam electron beam drawing apparatus, and in particular, relates to an exposure intensity distribution when a predetermined pattern is exposed and drawn on a molding layer using the multi-beam electron beam drawing apparatus. It relates to the technology required by simulation.
  • Patent Document 1 discloses an electron beam drawing apparatus of a single beam method (VSB method: Variable Shape Beam) and a drawing method of drawing a desired pattern using the device.
  • Patent Document 2 a multi-beam type electron beam drawing apparatus capable of simultaneously irradiating a plurality of electron beams is put into practical use.
  • Patent Document 2 a plurality of electron beams are generated by passing an expanded electron beam through an aperture plate having a plurality of openings, and these are individually controlled ON / OFF using a blanking plate.
  • a multi-beam electron beam drawing apparatus for drawing a predetermined pattern on the surface is disclosed.
  • Patent Document 3 draws a grayscale pattern with gradation by performing beam exposure a plurality of times on the same portion of the sample surface using such a multi-beam type electron beam drawing apparatus.
  • a method is disclosed.
  • the proximity effect is caused by the phenomenon that electrons with a small mass spread while being scattered by molecules in the resist (forward scattering) when the molding layer composed of a resist layer or the like is irradiated with an electron beam. This is explained as a phenomenon (backscattering) in which electrons scattered and bounced near the surface of a metal substrate or the like underneath are diffused in the resist layer.
  • Patent Document 4 discloses a method of obtaining an exposure intensity distribution that will actually occur by computer simulation in consideration of the proximity effect.
  • Patent Document 4 discloses a method for obtaining such an exposure intensity distribution by computer simulation. This method assumes that the electrons irradiated to the resist layer are distributed according to the intensity distribution indicated by the Gaussian error function, and performs a convolution operation to obtain the exposure intensity distribution for the entire resist layer. Is executed.
  • the conventional method disclosed in the above-mentioned Patent Document 4 is basically a method suitable for a single beam type electron beam drawing apparatus, and the method is directly applied to a multi-beam type electron beam drawing apparatus.
  • the exposure intensity distribution cannot be estimated accurately.
  • the number of beams becomes enormous. Therefore, if the conventional method is applied as it is, the calculation burden becomes heavy and a large calculation time is required for the simulation.
  • the present invention provides a simulation method capable of obtaining the exposure intensity distribution on the electron beam irradiation surface with high accuracy in a multi-beam electron beam lithography apparatus, and exposure intensity distribution calculation capable of implementing the method.
  • An object is to provide an apparatus. It is another object of the present invention to provide a simulation method capable of performing such a calculation for obtaining the exposure intensity distribution in a short time, and to provide an exposure intensity distribution calculating apparatus capable of performing the method. .
  • a first aspect of the present invention is a simulation method for obtaining an exposure intensity distribution when a predetermined pattern is exposed and drawn on a molding layer using a multi-beam electron beam drawing apparatus. For each of a number of reference points defined in the electron beam irradiation region, individual evaluation is performed by performing convolution integration of a function indicating the electron beam irradiation intensity and a point spread function indicating the degree of influence of the reference point on the surroundings. Calculate the total exposure intensity at the point, As the point spread function, a function including an aperture size parameter determined based on the aperture size of the aperture of the electron beam drawing apparatus is used.
  • psf (X, Y) 1/4 ⁇ (erf ((B / 2 ⁇ X) / ⁇ ) ⁇ erf (( ⁇ B / 2 ⁇ X) / ⁇ )) ⁇ (erf ((B / 2 ⁇ Y) / ⁇ ) ⁇ erf (( ⁇ B / 2 ⁇ Y) / ⁇ )).
  • psf (X, Y) 1/4 ⁇ (arctan ((B / 2 ⁇ X) / ⁇ ) ⁇ arctan (( ⁇ B / 2 ⁇ X) / ⁇ )) ⁇ (arctan ((B / 2 ⁇ Y) / ⁇ ) ⁇ arctan (( ⁇ B / 2 ⁇ Y) / ⁇ )).
  • a seventh aspect of the present invention in the simulation method according to the fourth aspect described above, as a point spread function, an error function erf, a predetermined constant C, a backscattering parameter ⁇ , and a proximity effect correction parameter ⁇ are included.
  • An eighth aspect of the present invention is the simulation method according to the first to seventh aspects described above,
  • the diameter of the circle is the aperture size of the aperture
  • the length of one side of the square is the aperture
  • the aperture size is obtained by multiplying the aperture size by the reduction magnification of the projection lens of the electron beam drawing apparatus and used as an aperture size parameter determined based on the aperture size of the aperture.
  • a drawing data input stage for inputting drawing data consisting of an array of pixels having data representing a pattern drawn by the electron beam drawing apparatus and having a pixel value indicating the irradiation intensity at each irradiation position of the beam;
  • a parameter setting stage in which a computer sets an aperture size parameter determined based on the aperture size of the aperture of the electron beam lithography apparatus;
  • a computer prepares two sets of empty calculation matrices made up of a set of calculation cells obtained by dividing each pixel of drawing data into a plurality of cells, and each cell of the first calculation matrix includes By giving a predetermined cell value based on the pixel value of the pixel including the cell, an irradiation intensity matrix showing a planar distribution of the electron beam irradiation intensity is created, and an aperture size parameter is set for each cell of the second calculation matrix.
  • a calculation matrix creation stage for creating a point spread matrix indicating a plane distribution of the degree of influence indicated by the point spread function by giving a cell value according to a predetermined point spread function including: A computer performs a convolution integral using an irradiation intensity matrix and a point spread matrix to obtain a total exposure intensity at each evaluation point; Is to do.
  • An eleventh aspect of the present invention is the simulation method according to the tenth aspect described above, When creating an irradiation intensity matrix in the computation matrix creation stage, one or more computation cells located at the center of the pixel are selected as representative cells among the plurality of computation cells included in the same pixel, and the others The calculation cell is a non-representative cell.
  • a twelfth aspect of the present invention is the simulation method according to the eleventh aspect described above,
  • each pixel of the drawing data is divided into odd and vertical numbers, and one calculation cell located at the center of each pixel is used as a representative cell.
  • the cell is a non-representative cell, the pixel value of the pixel including the representative cell is given to the representative cell as the cell value, and the cell value 0 is given to the non-representative cell.
  • each pixel of the drawing data is divided into an even number for each of the vertical and horizontal directions, and the four calculation cells located at the center of each pixel are used as representative cells.
  • the cell is a non-representative cell, and a value of 1 ⁇ 4 of the pixel value of the pixel including the representative cell is given to the representative cell as the cell value, and a cell value of 0 is given to the non-representative cell.
  • a sixteenth aspect of the present invention includes a drawing data input stage, a parameter setting stage, a calculation matrix creation stage, and a convolution calculation stage in the simulation methods according to the ninth to fifteenth aspects described above.
  • a program is built into a computer and executed.
  • an exposure intensity distribution calculation device that performs an operation for obtaining an exposure intensity distribution when a predetermined pattern is exposed and drawn on a molding layer using a multi-beam electron beam drawing apparatus.
  • a drawing data input unit for inputting drawing data composed of an array of pixels having pixel values indicating the irradiation intensity at each irradiation position of the beam, which is data indicating a pattern drawn by the electron beam drawing apparatus;
  • a parameter setting unit for setting an aperture size parameter determined based on the aperture size of the aperture of the electron beam lithography apparatus;
  • an irradiation intensity matrix creating unit for creating an irradiation intensity matrix indicating a planar distribution of electron beam irradiation intensity, A point spread matrix showing a plane distribution of
  • the point spread matrix creation unit uses a function in which the width of the flat portion of the graph is influenced by the opening size parameter B as the point spread function.
  • the point spread matrix creation unit uses a function including a parameter ⁇ that affects the slope of the slope of the graph in addition to the aperture size parameter B as the point spread function.
  • the irradiation intensity matrix creation unit gives a predetermined value determined based on the pixel value of the pixel only for a specific representative cell among a plurality of calculation cells included in the same pixel as a cell value, and other non-representatives The cell value 0 is given for the cell.
  • the irradiation intensity matrix creation unit uses one or a plurality of calculation cells located at the center of the pixel as a representative cell among a plurality of calculation cells included in the same pixel, and sets the other calculation cells as non-representative cells. It is made to do.
  • the irradiation intensity matrix creation unit divides each pixel of the drawing data into an odd number in the vertical and horizontal directions.
  • One calculation cell located at the center of each pixel is set as a representative cell, and the other calculation cells are set as non-representative cells.
  • the pixel value of the pixel including the representative cell is given as the cell value, and the cell value 0 is given to the non-representative cell.
  • the irradiation intensity matrix creation unit divides each pixel of the drawing data into an even number, both vertically and horizontally, and sets the four calculation cells located at the center of each pixel as representative cells and the other calculation cells as non-representative cells.
  • a value of 1/4 of the pixel value of the pixel including the representative cell is given as the cell value, and a cell value of 0 is given to the non-representative cell.
  • the irradiation intensity matrix creation unit uses, as a representative cell, a calculation cell that exists at a position displaced by a predetermined offset amount in a predetermined direction from the center of the pixel among a plurality of calculation cells included in the same pixel.
  • the calculation cell is a non-representative cell,
  • the point spread matrix creating unit creates a point spread matrix indicating a plane distribution of the degree of influence indicated by the point spread function corrected in the opposite direction to the predetermined direction by the offset amount.
  • the convolution operation part A first calculation unit that creates an irradiation intensity frequency matrix by performing Fourier transform on the irradiation intensity matrix; A second arithmetic unit for creating a point spread frequency matrix by performing Fourier transform on the point spread matrix; A third calculation unit for creating an exposure intensity frequency matrix having a cell value that is a product of the corresponding calculation cells of the irradiation intensity frequency matrix and the point spread frequency matrix; A fourth calculation unit that creates an exposure intensity matrix indicating a planar distribution of the total exposure intensity at each evaluation point by performing inverse Fourier transform on the exposure intensity frequency matrix; It is made to have.
  • the exposure intensity distribution calculation apparatus according to the above-described seventeenth to twenty-fifth aspects is configured by incorporating a program into a computer.
  • the irradiation intensity distribution function of the electron beam generated based on the drawing data, the point spread function indicating the degree of the influence on the surroundings By performing the convolution integral, it is possible to obtain the exposure intensity distribution generated in the molding layer. Moreover, since a function including an aperture size parameter determined based on the aperture size of the aperture of the electron beam lithography apparatus is used as the point spread function, it is possible to perform an optimum simulation for a multi-beam electron beam lithography apparatus, It becomes possible to obtain the exposure intensity distribution with high accuracy.
  • the calculation burden of convolution integration can be greatly reduced.
  • the calculation for obtaining the exposure intensity distribution can be performed in a short time.
  • FIG. 1 is a front view showing a basic structure of a general multi-beam type electron beam drawing apparatus and its drawing principle (partly a sectional view). It is a graph which shows distribution of the energy density (intensity) of a general electron beam.
  • FIG. 6 is a plan view (upper (a)) and a graph (lower (b)) showing the relationship between the two-dimensional pixel array constituting the drawing data and the intensity distribution of the electron beam irradiated based on the drawing data. It is a graph which shows the principle which controls stepwise exposure intensity by performing beam irradiation as many times as a pixel value.
  • FIG. 6 is a plan view (upper stage (a)) of a pattern having a width Da in the x-axis direction and a graph (lower stage (b)) showing the principle of exposing the pattern with multi-beams.
  • FIG. 15 is a one-dimensional graph showing an example of a point spread function psf (X, Y) shown in Expression (3) of FIG. It is a figure which shows the type
  • FIG. 19 is a diagram illustrating a correspondence relationship between the irradiation intensity matrix D (x ′, y ′) created in step S30 of FIG. 18 and the point spread matrix psf (X, Y). It is a figure which shows the concept of the process which performs the convolution operation by step S40 of FIG. 18 based on the drawing data shown to FIG.
  • FIG. 1 is a front view showing a basic structure of a multi-beam electron beam drawing apparatus and its drawing principle (partly a sectional view).
  • the electron beam 20 irradiated from the electron gun 10 is expanded by a condenser lens 30 that performs an electromagnetic action, and is irradiated to an aperture plate 40 (shown as a sectional view in the figure).
  • a large number of openings 41 are formed in the aperture plate 40, and only the electron beam 21 that has passed through the openings 41 is reduced and projected onto the lower sample substrate 60 through the projection lens 50 that also performs an electromagnetic action.
  • the surface to be exposed of a layer to be molded (usually a resist layer) 61 formed on the upper surface is irradiated.
  • the sample substrate 60 is placed on the moving stage 70, and can be moved in the horizontal direction in the figure and in the depth direction in the figure.
  • an aperture plate 40 having openings 41 arranged in a 512 ⁇ 512 two-dimensional matrix is used, and the upper surface of the molding layer 61 is simultaneously exposed by 250,000 or more electron beams 21 to form a fine pattern.
  • An apparatus having a drawing function has been put into practical use.
  • a blanking plate (not shown) is disposed on the lower surface of the aperture plate 40, and a function of individually turning on / off each electron beam 21 that has passed through the opening 41 is provided.
  • the individual openings 41 formed in the aperture plate 40 usually have a circular cross section, and the cross sections of the individual electron beams 21 that have passed through the openings 41 are circular. In some cases, an opening having a rectangular cross section may be used.
  • the opening 41 has a circular cross section, and one electron beam is formed on the upper surface (exposed surface) of the layer 61 to be molded. The description will be made assuming that a circular irradiation spot is formed by the irradiation of 21.
  • the opening 41 is a circle having a diameter of 4 ⁇ m and the reduction magnification of the projection lens 50 is 1/200, a circular irradiation spot (strictly, a slightly larger spot) having a diameter of about 20 nm is formed on the exposure target surface. Formed).
  • the energy density of a general electron beam has a distribution according to a Gaussian error function with its central axis as a peak.
  • a special function is used instead of a Gaussian error function as a function indicating the energy density of one electron beam 21 that has passed through the opening 41. The following description will be given on the assumption that the energy density of the electron beam 21 has a distribution corresponding to a Gaussian error function.
  • the energy density E (irradiation intensity of the electron beam) of the circular irradiation spot formed on the exposure target surface of the molding target layer 61 by one electron beam 21 is as shown in the graph M of FIG. Distribution according to the Gaussian error function.
  • the horizontal axis of this graph indicates the position in the one-dimensional direction expressed in units of nm, and the position of the numerical value 0 on the horizontal axis corresponds to the position where the central axis of one electron beam 21 is irradiated.
  • a circular irradiation spot having a two-dimensional spread is formed on the exposure target surface, and the graph showing the energy density E is obtained by rotating the graph M shown in FIG. 2 around its central axis. Become a rotating body.
  • the dimension ⁇ on the horizontal axis in the graph of FIG. 2 corresponds to the diameter of the circular irradiation spot thus formed on the exposure target surface. Therefore, when one electron beam having an energy density E as shown in FIG. 2 is irradiated, the inside of a circle with a diameter ⁇ is exposed on the surface to be exposed, and the irradiation intensity of each part is from the center to the periphery. It decreases with a distribution according to the Gaussian error function.
  • the beam size is shown as a beam diameter indicating the half width value of the graph of FIG. 2, but for convenience of explanation, the dimension ⁇ shown in FIG. 2 is referred to as a spot diameter, and a numerical value corresponding to the beam diameter. Will be treated as
  • an electron beam drawing apparatus of a single beam method (VSB method: Variable Shape Beam) since only one electron beam is irradiated on the sample substrate 60, its cross-sectional shape is processed into an arbitrary shape such as a rectangle, and an arbitrary shape is obtained. Irradiation can be performed with the intensity adjusted.
  • the multi-beam type electron beam drawing apparatus has an advantage that drawing can be performed at a very high speed using a large number of electron beams 21, but the cross-sectional shape of each beam can be controlled individually. It is difficult to individually control the intensity of each beam. In fact, in the case of an apparatus that generates as many as 250,000 beams, it is not possible to provide a mechanism for individually shaping or individually adjusting the intensity of each electron beam that has passed through the opening 41 of the fine aperture plate.
  • a general multi-beam electron beam lithography system currently used can form a large number of circular irradiation spots having a diameter ⁇ on the surface to be exposed, but the irradiation spots can be formed in any shape. Therefore, it is necessary to adopt a method of performing drawing by ON / OFF control of individual electron beams. Therefore, in order to perform drawing control of the multi-beam type electron beam drawing apparatus, drawing data (also referred to as a quantization map) configured by a two-dimensional pixel array is used.
  • FIG. 3 (a) is a plan view (upper (a)) and graph (lower) showing the relationship between the two-dimensional pixel array constituting the drawing data and the intensity distribution of the electron beam irradiated based on the drawing data.
  • an xy two-dimensional coordinate system is defined on the exposure target surface, and a square pixel P as shown in FIG. 3 (a) is hatched in the upper right corner of FIG. Define an array.
  • the width of each pixel P in the horizontal direction (x-axis direction) and the vertical direction (y-axis direction) is d. This width d corresponds to the horizontal and vertical pitches of the pixels P.
  • an irradiation reference point Q is defined at the center position of each pixel P, and a value indicating the intensity of the electron beam to be irradiated to the irradiation reference point Q is given as the pixel value of the pixel P.
  • the drawing apparatus performs electron beam exposure having a predetermined intensity distribution on the exposure target surface based on the drawing data. It can be performed. For example, exposure with a circular irradiation spot S1 is performed on the exposure target surface (xy plane) by the electron beam irradiated to the irradiation reference point Q1 defined at the center of the pixel P1 shown in FIG. The exposure by the circular irradiation spot S2 is performed on the exposure target surface (xy plane) by the electron beam irradiated to the irradiation reference point Q2 defined at the center of the.
  • the exposure intensity by the irradiation spot S1 is determined based on the pixel value E1 of the pixel P1
  • the exposure intensity by the irradiation spot S2 is determined by the pixel value E2 of the pixel P2.
  • the individual pixel values E1 and E2 indicate the peak value of the distribution according to the Gaussian error function
  • the exposure intensity distribution by the electron beam irradiated around the irradiation reference point Q1 is a mountain having a width ⁇ as shown in the graph M1
  • the exposure intensity distribution by the electron beam irradiated around the irradiation reference point Q2 is It becomes a mountain having a width ⁇ as in the graph M2.
  • the width ⁇ is the diameter of the circular irradiation spot as described above.
  • FIG. 3 shows a state in which the irradiation spots S1 and S2 are formed for the irradiation reference points Q1 and Q2 of the two pixels P1 and P2, respectively, for convenience of explanation.
  • An irradiation reference point Q is defined at the center position of P, and each irradiation reference point Q is irradiated with an electron beam.
  • the vertical and horizontal arrangement pitch of the irradiation reference point Q is the pitch d as in the vertical and horizontal arrangement pitch of the pixels P.
  • the intensity of a large number of electron beams cannot be individually controlled. Therefore, in the example shown in FIG. 3, the electron beam irradiated to the irradiation reference point Q1 and the electron beam irradiated to the irradiation reference point Q2 must be electron beams having the same intensity. However, it is possible to individually turn on / off individual electron beams by controlling the blanking plate. Therefore, for each irradiation reference point Q, a method of changing the exposure intensity by individually controlling ON / OFF of the irradiated electron beam and changing the exposure time is adopted. In the case of the above example, by setting the irradiation time to the irradiation reference point Q1 longer than the irradiation time to the irradiation reference point Q2, an exposure intensity distribution as shown in the graph of FIG. .
  • Such control of the exposure time is actually performed in the form of control of the number of exposures.
  • a large number of electron beams 21 are two-dimensionally formed on the molding layer 61 while moving the moving stage 70 in two dimensions (left and right direction and depth direction in FIG. 1). This is because the drawing is performed while scanning.
  • an exposure time of several nanoseconds is set as a unit exposure time for one electron beam irradiation, and the moving stage 70 is moved in the x-axis direction by a pitch d each time one electron beam irradiation is completed. If the next electron beam irradiation is performed, a specific irradiation reference point Q is exposed for a unit exposure time by a different electron beam (adjacent electron beam) each time. . At this time, if individual ON / OFF control is performed for each individual electron beam each time, it is possible to set a specific exposure intensity for each irradiation reference point Q although it is stepwise.
  • an exposure intensity distribution like the graph M1 in FIG. 3B is obtained by performing exposure 10 times on the irradiation reference point Q1, the irradiation reference point Q2 By performing the exposure five times, an exposure intensity distribution like the graph M2 in FIG. 3B is obtained.
  • FIG. 4 is a graph showing the principle of controlling the exposure intensity in 16 steps by changing the number of exposures for each irradiation reference point Q as described above.
  • the exposure intensity distribution graphs M (15), M (10), and M (5) shown in FIG. 4 have peak intensities E (15), E (10), and E (5), respectively, and have the same spot diameter ⁇ .
  • the graph is a distribution according to a Gaussian error function with a spread.
  • the two pixels P1 and P2 that are sufficiently separated from each other are each irradiated with a separate electron beam.
  • the electron beams irradiated to the two irradiation reference points Q1 and Q2 that are separated by the spot diameter ⁇ or more do not interfere with each other.
  • the electron beams irradiated to a plurality of irradiation reference points arranged close to each other at a distance less than the spot diameter ⁇ cause mutual interference.
  • the pixel pitch d (the pitch of the irradiation reference point Q) is set to a value smaller than the spot diameter ⁇ of the electron beam. In this case, the exposure target surface is subjected to superimposed exposure by a plurality of electron beams.
  • FIG. 5A is a plan view showing an example of a state in which superimposed exposure occurs on the exposure target surface due to the relationship between the pixel pitch d and the spot diameter ⁇ of each electron beam
  • FIG. It is a graph which shows exposure intensity distribution about each electron beam in case such superposition exposure has arisen.
  • the five pixels P1 to P5 arranged adjacent to each other in the x-axis direction and the five irradiation reference points Q1 to Q5 defined at the center positions of these pixels are irradiated.
  • the exposure intensity distribution graphs M1 to M5 shown in FIG. 5B show the exposure intensity distributions in the x-axis direction for the irradiation spots S1 to S5, respectively. Since the individual irradiation spots S1 to S5 are partially overlapped, the individual exposure intensity distribution graphs M1 to M5 are also partially overlapped. This is given as the sum of the exposure intensity distribution graphs M1 to M5.
  • the irradiation reference point Q3 in the pixel P3 indicated by a bold line in the drawing is irradiated with an electron beam that generates a circular irradiation spot S3.
  • the exposure intensity distribution of the circular irradiation spot S3 is a mountain as shown by the graph M3. However, as shown in the figure, the ridges of the other adjacent graphs M1, M2, M4, and M5 are also located in the pixel P3. Therefore, after all, the total exposure intensity in the pixel P3 is an intensity obtained by superimposing all these peaks.
  • the multi-beam type electron beam drawing apparatus can draw a gray scale pattern with gradation on the molding layer, and develop the exposed molding layer by developing it.
  • a pattern having a desired shape can be formed.
  • FIG. 6A is a plan view of a pattern having a width Da in the x-axis direction
  • FIG. 6B is a graph showing the principle of exposing the pattern by multi-beams.
  • the x-axis shown as a horizontal axis in FIG. 6 (b) corresponds to the x-axis indicating the horizontal direction of FIG. 6 (a), and the graph of FIG. 6 (b) is shown in FIG. 6 (a).
  • FIG. 6B shows nine exposure intensity distribution graphs M1 to M9 (hereinafter referred to as “small mountains”) composed of small peaks and one exposure intensity distribution graph MM (hereinafter referred to as “large mountains”) composed of large peaks. It is shown.
  • Koyama M1 to M9 show exposure intensity distributions based on individual electron beams irradiated to the irradiation reference points Q1 to Q9, respectively, and overlap each other at the base as in the example shown in FIG. ing.
  • the irradiation reference points Q1 to Q9 are points defined as center points of the pixels P1 to P9 (not shown), and are arranged at a predetermined pitch d.
  • the height (peak intensity) of each of the small mountains M1 to M9 is a value corresponding to the pixel value of each of the pixels P1 to P9.
  • Oyama MM shown in FIG. 6 (b) is a graph showing the distribution of the total exposure intensity obtained when all the mounds M1 to M9 are superimposed, and is a graph corresponding to the sum of the mounds M1 to M9. (For convenience of illustration, it does not indicate an exact sum).
  • Oyama MM shown in FIG. 6 (b) is a graph showing the distribution of the total exposure intensity obtained when all the mounds M1 to M9 are superimposed, and is a graph corresponding to the sum of the mounds M1 to M9. (For convenience of illustration, it does not indicate an exact sum).
  • the molding layer 61 is composed of a resist layer that changes in composition when irradiated with an electron beam.
  • a resist layer that changes in composition when irradiated with an electron beam.
  • the energy density to be irradiated exceeds a predetermined critical value, the composition layer suddenly changes nonlinearly. It has sex. Therefore, even when a gentle total exposure intensity distribution is obtained as shown in the illustrated Oyama MM, an area where the total exposure intensity in the molding layer 61 is equal to or greater than a predetermined threshold Eth is defined as an exposure area a and a total exposure.
  • the composition of the exposed region a changes greatly compared to the composition of the non-exposed region b. For this reason, when the developing process is performed on the layer 61, pattern formation based on the difference between the exposed area a and the non-exposed area b can be performed.
  • FIG. 6 shows an example in which an exposure region a having a width corresponding to the width Da when the Oyama MM is cut at a level corresponding to the threshold Eth is shown.
  • the scaling of the vertical axis of the graph and the value of the threshold Eth vary depending on the exposure conditions such as the intensity (energy density) of the irradiating electron beam and the single exposure time, and the development conditions such as the type of resist material and developer used. However, if these conditions are fixed, the threshold Eth on the vertical axis of the graph also becomes a fixed value. Therefore, the obtained pattern width Da can be controlled by the shape of Oyama MM. As described above, the Oyama MM is obtained as the sum of the Oyama M1 to M9, so that the pattern width Da can be controlled by the drawing data defining the pixel values of the individual pixels P1 to P9. .
  • FIG. 7B shows a pixel array constituting drawing data for exposing the linear pattern.
  • FIG. 7A In the manufacturing process of a semiconductor device, it is necessary to form a large number of linear patterns having a minute line width such as a wiring layer.
  • a linear pattern (hatched portion) shown in FIG. 7A is an elongated pattern having a minute line width used in such a process.
  • the actual linear pattern has an extremely large line length (length in the y-axis direction in the figure) compared to the line width (width in the x-axis direction in the figure), and is literally understood as “one line”.
  • a linear pattern with a greatly reduced line length is taken as an example. I will explain.
  • the drawing data shown in FIG. 7 (b) is data given to the multi-beam electron beam drawing apparatus to form a linear pattern as shown in FIG. 7 (a) on the layer to be molded. It is configured by a two-dimensional pixel array in which a predetermined pixel value p is defined. As already described in ⁇ 1, the individual pixels P constituting this two-dimensional pixel array irradiate a number of irradiation reference points Q arranged at predetermined pitches d vertically and horizontally on the exposure target surface on the molding layer. It has a pixel value p indicating the power electron beam intensity.
  • d 5 nm
  • the drawing data shown in FIG. 7 (b) is obtained by defining such a two-dimensional pixel array on the exposure target surface (xy plane) and giving each pixel a predetermined pixel value.
  • Each pixel serves to designate one of 16 exposure intensity distributions as shown in FIG. 4 by its pixel value p.
  • the irradiation of the electron beam is performed 15 times at the irradiation reference point position corresponding to.
  • the small mountain M shown in FIG. 4 is added to form a large mountain MM, and the exposure as shown in FIG. 7 (a) is performed on the exposure target surface with a predetermined threshold value Eth as a reference.
  • Region a (region where the total exposure intensity is greater than or equal to the threshold Eth) and non-exposure region b (region where the total exposure intensity is less than the threshold Eth) are formed.
  • the linear pattern is obtained when the linear pattern is arranged on the two-dimensional pixel array.
  • pixels that are completely included in the pattern hereinafter referred to as complete pixels
  • the line width Da is exactly five times the pixel pitch d. Therefore, when designing a linear pattern, it is possible to design such that the contour lines on both the left and right sides match the contour of the pixel. If such a design is performed and pattern formation processing (exposure processing and development processing) is performed under the standard patterning conditions, a physical pattern having dimensions as designed can be obtained. That is, the line width depends on the molding layer remaining as the exposure region a (when the molding layer is a negative resist) or the molding layer remaining as the non-exposure region b (when the molding layer is a positive resist). A physical pattern with 25 nm can be formed.
  • FIG. 8B is a pixel array that constitutes drawing data for exposing the linear pattern.
  • the increase in width of 2 nm is a fractional dimension at a sub-pixel level that is less than the pixel pitch d.
  • the pixel column of the eighth column is a pixel partially including a linear pattern (hereinafter referred to as an incomplete pixel), and therefore a gradation value determined according to the content rate of the linear pattern is set. This is a result given as a pixel value p.
  • the classification based on the predetermined threshold Eth is performed, as shown in FIG.
  • Patent Document 4 discloses a method suitable for a single beam electron beam lithography apparatus as an example of such an exposure intensity distribution estimation method. Therefore, here, the basic principle of the exposure intensity distribution estimation method according to the present invention will be described while comparing the single beam method and the multi-beam method.
  • FIG. 9 is a diagram comparing the procedure for drawing the same pattern by the single beam method and the procedure for drawing by the multi-beam method, and FIG. 9A shows the procedure for drawing by the single beam method. b) shows the procedure for drawing by the multi-beam method. In either case, the procedure for drawing the “L-shaped” pattern on the exposure target surface is shown.
  • the single beam method is also called VSB method (Variable Shape Beam), which employs a method in which exposure is performed by irradiating one shaped electron beam with an arbitrary intensity.
  • the region of the shape (usually an arbitrary rectangular shape) can be exposed.
  • an exposure operation is performed on the rectangular area A1 using one electron beam formed into a square, and then the rectangular area A2 is processed using one electron beam formed into a rectangle. It is the example which performed the exposure operation
  • the evaluation point V1 included in the rectangular area A2 is a point that has been directly irradiated with an electron beam during the second exposure operation.
  • the evaluation point V2 is a point where no direct irradiation of the electron beam was received.
  • the exposure intensity at the evaluation point V1 is higher than the exposure intensity at the evaluation point V2.
  • some energy is accumulated at the evaluation point V1 even during the first exposure operation for the rectangular area A1.
  • some energy is accumulated in the evaluation point V2 during a total of two exposure operations.
  • the total exposure intensity at the evaluation point V1 is the sum of the energy accumulated by the proximity effect in the first exposure operation and the energy accumulated by the direct irradiation in the second exposure operation.
  • the total exposure intensity at the evaluation point V2 is the sum of the energy accumulated by the proximity effect during the total two exposure operations. Since such a proximity effect occurs, the exposure intensity distribution actually obtained on the exposure target surface is not a simple “L-shaped” pattern as shown in FIG. It will be spread to.
  • the exposure work may be performed with the irradiation intensity set to 255 for both the rectangular areas A1 and A2.
  • the irradiation is performed during the first exposure work for the rectangular area A1. Correction processing is performed such that the intensity is set to 255 and the irradiation intensity is set to 230 in the second exposure operation for the rectangular area A2.
  • FIG. 9 (b) shows the drawing data given to the electron beam drawing apparatus when the “L-shaped” pattern shown in FIG. 9 (a) is exposed using a multi-beam electron beam drawing apparatus. Is shown.
  • This drawing data is constituted by a two-dimensional pixel array, similarly to the drawing data shown in FIG. 7B and FIG. 8B.
  • Each pixel of the drawing data corresponds to an individual electron beam irradiated by the multi-beam electron beam drawing apparatus, and each pixel value indicates the irradiation intensity of the electron beam.
  • the outline indicated by the broken line in FIG. 9 (a) ⁇ ⁇ corresponds to the outline of the two-dimensional pixel array shown in FIG. 9 (b).
  • a pattern similar to the “L-shaped” pattern shown in FIG. 9A can be formed by using the drawing data shown in FIG. Easy to understand.
  • one electron beam does not irradiate only the region corresponding to one pixel, and as shown in FIG.
  • One evaluation point defined on the surface accumulates energy from multiple electron beams.
  • the energy is supplied by the proximity effect from the electron beam irradiated at a position far from the evaluation point, the final stored energy is determined for each evaluation point defined on the exposure target surface.
  • the process for determining the amount (total exposure intensity) must be quite complicated.
  • This estimation method is suitable for a single-beam electron beam lithography system, assuming that the electron irradiated to the exposure target surface spreads around in the intensity distribution indicated by the Gaussian error function. By performing the calculation, the exposure intensity distribution for the entire resist layer is calculated.
  • FIG. 10 is a plan view showing the calculation principle of the total exposure intensity at an arbitrary evaluation point V (x, y) when drawing by the single beam method.
  • V (x, y) the amount of energy stored at an arbitrary evaluation point V (x, y) when the first exposure operation is performed on the rectangular area A1 shown in FIG. 9A.
  • an xy two-dimensional orthogonal coordinate system is defined on the exposure target surface and the rectangular area A1 is arranged at a regular position on the coordinate system as shown in the figure.
  • one rectangular electron beam is irradiated onto the rectangular area A1, and each part in the rectangular area A1 is irradiated with electrons.
  • electrons reach the position outside the rectangular area A1 due to proximity effects such as forward scattering and backscattering, so that the energy is affected by the influence. Will be accumulated.
  • the reference point T (x ′, y ′) is defined at the position of the coordinate (x ′, y ′) in the rectangular area A1 to be irradiated with the electron beam, and in the first exposure operation, Consider how much the amount of energy stored in the evaluation point V (x, y) is affected by the electrons irradiated to the reference point T (x ′, y ′).
  • the degree of influence of electrons irradiated to the reference point T (x ′, y ′) on the surroundings is a function depending on the distance from the reference point T (x ′, y ′), and the evaluation point V
  • v (x, y) which is the final stored energy amount (total exposure intensity) at an arbitrary evaluation point V (x, y) shown in FIG. 10 is obtained by the equation (1-1) in FIG. (In this application, the evaluation point is indicated by a capital letter V and the amount of stored energy is indicated by a small letter v.) .
  • the function psf (R) is a function generally called a point spread function, and is a function indicating the degree of influence of a reference point T on the surroundings. Usually, the degree of influence tends to decrease as the distance R from the reference point T increases.
  • the term of the double integral on the right side of the equation (1-1) indicates that the point spread function psf (R) for the reference point T (x ′, y ′) shown in FIG. This is a term for integration from the left end of the area A1 to the right end) and from y coordinate values b to t (from the lower end to the upper end of the rectangular area A1), and Di is an exposure operation for the i-th rectangular area Ai. This is the irradiation intensity (dose amount) of the electron beam. Further, ⁇ is a forward scattering parameter determined by the electron acceleration voltage of the electron beam lithography apparatus, the resist material, and the like.
  • the summation ⁇ at the beginning of the right side of the equation (1-1) is for adding the results of the exposure work performed on a plurality of N areas.
  • FIG. 12 is a plan view showing the calculation principle of the total exposure intensity at an arbitrary evaluation point V (x, y) when drawing by the multi-beam method. Compared to the single beam system shown in FIG. 10, the difference is that the rectangular area A1 is replaced with a pixel P (i, j).
  • the process of calculating the total exposure intensity v (x, y) at the evaluation point V (x, y) is performed based on the equation of FIG. Therefore, in the calculation in the multi-beam method shown in FIG. 12, the calculation is performed by moving the reference point T (x ′, y ′) within the range of the pixel P (i, j) in the i-th row and j-th column. Is performed for all the pixels constituting the drawing data, thereby calculating the total exposure intensity v (x, y) at the evaluation point V (x, y).
  • FIG. 13 is a diagram showing an example of an arithmetic expression used for the arithmetic principle shown in FIG.
  • the final stored energy amount (total exposure intensity) at an arbitrary evaluation point V (x, y) shown in FIG. 12 can be obtained by equation (2-1) in FIG. .
  • This equation (2-1) corresponds to the equation (1-1) in FIG. 11, and is obtained by replacing the summation ⁇ in the equation (1-1) with an integral.
  • N is an enormous value of 250,000 or more.
  • the summation intensity v (x, y) is calculated in a form in which the summation ⁇ is replaced by integration and integration is performed for all pixels constituting the drawing data.
  • the function psf (R) is a point spread function as described above, and indicates the degree of influence of a reference point T on the surroundings.
  • D (x ′, y ′) is the irradiation intensity (dose amount) of the electron beam at the position of the reference point T (x ′, y ′) indicated by the coordinates (x ′, y ′). The value is determined based on the pixel value p of (i, j).
  • the integration range is in the range from minus infinity to plus infinity in both the x-axis direction and the y-axis direction. This is because the entire exposure target surface is a calculation target.
  • the equation (2-1) in FIG. 13 is obtained from the function D (x ′, y ′) indicating the electron beam irradiation intensity for a number of reference points T (x ′, y ′) defined in the electron beam irradiation region. ) And the point spread function psf (R) indicating the degree of influence of the reference point T (x ′, y ′) on the surroundings, the total at each evaluation point V (x, y) is obtained. It can be said that the exposure intensity v (x, y) is calculated.
  • the present invention proposes a new simulation method for obtaining an exposure intensity distribution when a predetermined pattern is exposed and drawn on a molding layer using a multi-beam electron beam drawing apparatus. Here, the characteristics of this new simulation method will be described.
  • the first feature is that, based on the equation (2-3) shown in FIG. 13, the total exposure intensity v (x, y) at an arbitrary evaluation point V (x, y) located at the coordinates (x, y). ) Is calculated.
  • the second feature is that a function including an aperture size parameter determined based on the aperture size of the aperture of the electron beam lithography apparatus is used as the point spread function psf (X, Y) in the equation (2-3). is there.
  • FIG. 14 is a diagram showing an example of an arithmetic expression used for calculating the exposure intensity distribution by the simulation method according to the present invention when drawing is performed by the multi-beam method.
  • equations (3), (4), and (5) illustrated will be described.
  • equation (3) is exactly the same as equation (2-3) shown in FIG. 13, and is the basic equation used in the simulation method according to the present invention.
  • v (x, y) on the left side is the total exposure intensity at an arbitrary evaluation point V (x, y) located at the coordinates (x, y), and the value v (x, y) for all coordinate positions. If y) is calculated, an exposure intensity distribution on the exposure target surface can be obtained.
  • this equation (3) is a function D (x ′, y ′) indicating the electron beam irradiation intensity for the reference point T (x ′, y ′) defined in the electron beam irradiation region, It is an expression showing a convolution integral of a point spread function psf (X, Y) indicating the degree of influence of the reference point T (x ′, y ′) on the surroundings.
  • X x′ ⁇ x
  • Y y′ ⁇ y.
  • the evaluation point V (x, y) located at the coordinates (x, y) is defined.
  • the effect of the reference point T (x ′, y ′) located at the coordinates (x ′, y ′) is expressed as a function D (x indicating the electron beam irradiation intensity at the reference point T (x ′, y ′).
  • Equation (4) is an equation showing a specific example of the point spread function psf (X, Y) used in Equation (3).
  • the function erf included in the equation (4) is a Gaussian error function erf ( ⁇ ) shown in the equation (5), but the variable ⁇ part is replaced with an equation using the parameters B and ⁇ .
  • the parameter B is an aperture size parameter related to the above-described second feature of the present invention, and is a value determined based on the aperture size K of the aperture 41 of the electron beam lithography apparatus.
  • the parameter ⁇ is a forward scattering parameter, and is a value determined by the electron acceleration voltage of the electron beam lithography apparatus, the resist material, and the like.
  • FIG. 15 is a one-dimensional graph showing an example of the point spread function psf (X, Y) shown in Equation (4) of FIG. 14, where the horizontal axis represents the X axis and the vertical axis represents the energy density E.
  • the feature is a trapezoidal shape in which a flat portion H having a width w is formed in the central portion.
  • the opening size parameter B in the equation (4) is a parameter that affects the width w of the flat portion H of the graph shown in FIG. 15.
  • the forward scattering parameter ⁇ in Expression (4) is a parameter that affects the slopes of the left and right inclined portions U1 and U2 in the graph shown in FIG. become.
  • FIG. 15 shows a one-dimensional distribution graph in which the horizontal axis is the X axis. Actually, a distribution graph having the same shape is also obtained in the Y-axis direction. Therefore, the graph of the point spread function psf (X, Y) shown in Expression (4) is actually a three-dimensional plateau-like graph that rises on the XY plane, and the vertical and horizontal widths are w at the top.
  • Flat portion H is formed, and an inclined portion is formed around the flat portion H.
  • a function including the aperture size parameter B and the forward scattering parameter ⁇ is used as the point spread function psf (X, Y).
  • the aperture size parameter B is a parameter that determines the width of the flat portion H of the graph
  • the forward scattering parameter ⁇ is a parameter that determines the inclination of the inclined portions U1 and U2 of the graph.
  • the simulation method disclosed in the above-mentioned Patent Document 4 is based on the premise of a single beam type electron beam drawing apparatus, and is expressed as a point spread function psf (X, Y) shown in Expression (1-3) of FIG.
  • a general Gaussian error function as shown in the graph of FIG. 2 is used.
  • a simulation using a point spread function psf as shown in the graph of FIG. When it is assumed that a multi-beam type electron beam drawing apparatus is used, it has been found preferable to use a point spread function psf having a flat portion H as shown in the graph of FIG.
  • the width w of the flat portion H it is preferable to set the width w of the flat portion H to a value corresponding to the aperture size K of the aperture of the electron beam drawing apparatus to be used.
  • a point spread function psf that increases the width w of the flat portion H if the aperture 41 of the aperture is large. This is because, in the case of a multi-beam electron beam lithography apparatus as shown in FIG. 1, the energy density distribution of the cross section of the electron beam 20 generated by the electron gun 10 is a general Gaussian error as shown in the graph of FIG.
  • the distribution depends on the function, when an individual electron beam passing through the aperture 41 of the aperture is irradiated onto the molding layer 61, the exposure intensity distribution in consideration of the proximity effect in the molding layer 61 is shown in FIG. This is probably because the distribution has a flat portion H as shown in the graph.
  • the aperture size K of the aperture has a value that affects the cross-sectional size of each electron beam that has passed through the aperture 41 (diameter in the case of a circular cross-section, length of one side in the case of a square cross-section).
  • psf (X, Y) a function represented by a graph having a flat portion H having a width w corresponding to the cross-sectional size of each electron beam passing through the opening 41 is used. It is preferable to use
  • the aperture 41 of the aperture of the electron beam lithography apparatus has a circular shape
  • the diameter of the circle is used as the aperture size K of the aperture
  • the aperture 41 has a square shape. If it is, the length of one side of the square may be used as the aperture size of the aperture. Then, a value obtained by multiplying the aperture size K by the reduction ratio m by the projection lens 50 of the electron beam drawing apparatus may be used as the aperture size parameter B determined based on the aperture size of the aperture.
  • the aperture size parameter B is a value corresponding to the beam diameter or spot diameter ⁇ of one electron beam formed on the exposure target surface.
  • Equation (4) is a value obtained by dividing the difference between the radius B / 2 of the electron beam and the distance X by the forward scattering parameter ⁇ . Corresponds to a Gaussian error function as a variable.
  • the expression (4) includes the forward scattering parameter ⁇ in addition to the aperture size parameter B, it is necessary to determine the value of the parameter ⁇ when performing the calculation.
  • the forward scattering parameter ⁇ is a value determined by the electron acceleration voltage of the electron beam lithography system, the resist material, and the like. Therefore, in practice, electrons are applied at a specific acceleration voltage to a resist of a specific material. If the exposure distribution at the time of skipping is actually measured and the value of the forward scattering parameter ⁇ for the combination of the resist of the specific material and the specific acceleration voltage is determined by back calculation based on the actual measurement result, Good.
  • the graph of this function is a plate-like graph having a flat portion H having a width w corresponding to the spot size ⁇ of the irradiated electron beam, as shown in FIG.
  • the point spread function psf (X, Y) having such characteristics is not limited to the function represented by the equation (4) in FIG.
  • This function includes the inverse trigonometric function arctan (( ⁇ B / 2 ⁇ Y) / ⁇ )).
  • the Gaussian error function erf is used.
  • equation (7) in FIG. 17 is a diagram showing another example of a function suitable for use as the point spread function psf (X, Y) in equation (3) in FIG.
  • Psf (X, Y) C / (1 + ⁇ ) ⁇ (1 / 4 ⁇ 2 ⁇ (erf ((B / 2 ⁇ X) / ⁇ ) including predetermined constant C, backscattering parameter ⁇ , and proximity effect correction parameter ⁇ ⁇ erf (( ⁇ B / 2 ⁇ X) / ⁇ )) ⁇ (erf ((B / 2 ⁇ Y) / ⁇ ) ⁇ erf (( ⁇ B / 2 ⁇ Y) / ⁇ )) + ⁇ / ⁇ 2 ⁇ exp A function ( ⁇ (X 2 + Y 2 ) / ⁇ 2 )) is shown.
  • the Gaussian error function erf is used as in the equation (4) of FIG. 14, but in addition to the aperture size parameter B and the forward scattering parameter ⁇ as parameters, A backscattering parameter ⁇ and a proximity effect correction parameter ⁇ are used.
  • the backscattering parameter ⁇ is the degree of backscattering in which the electrons scattered and bounced near the surface of the sample substrate 60 under the layer to be molded (resist layer) 61 in FIG.
  • the proximity effect correction parameter ⁇ is a parameter indicating the ratio between the resist exposure due to forward scattering of the electron beam and the resist exposure due to back scattering.
  • C is a predetermined constant.
  • the parameters ⁇ and ⁇ are well-known parameters disclosed in, for example, the above-mentioned Patent Document 4 and so on, and thus detailed description thereof is omitted here.
  • the formula (7) in FIG. 17 is also a formula showing a graph having a flat portion H having a width w corresponding to the opening size parameter B as shown in FIG. , An expression showing an example of a function suitable for use as the point spread function psf (X, Y).
  • Procedure of simulation method according to the present invention is actually executed by arithmetic processing using a computer.
  • a specific procedure for executing this simulation method using a computer will be described.
  • FIG. 18 is a flowchart showing the basic procedure of the simulation method according to the present invention. As shown in the figure, this basic procedure includes steps of a drawing data input step S10, a parameter setting step S20, a calculation matrix creation step S30, and a convolution calculation step S40. Each step is executed by a computer based on a dedicated program.
  • the drawing data is data indicating a pattern drawn by the electron beam drawing apparatus. For example, as illustrated in FIG. 9B, from the array of pixels having pixel values indicating the irradiation intensity at each irradiation position of the beam. It becomes the data that becomes.
  • the purpose of the simulation performed here is to expose the layer to be molded that is supposed to be obtained when it is assumed that such drawing data is given to the electron beam drawing apparatus and the exposure process is performed on the layer to be molded. It is to obtain an intensity distribution.
  • the aperture size parameter B corresponds to the beam diameter or spot diameter ⁇ of one electron beam formed on the exposure target surface, and is used in an arithmetic expression in the convolution calculation stage of step S40. .
  • a fixed value may be set as the value of the aperture size parameter B, but these are variable electron beams.
  • the simulation of the drawing apparatus it is necessary to input and set the value of the opening size parameter B.
  • the calculation matrix creation stage of step S30 is a preparation stage of the convolution calculation stage of step S40, and here, an operation of creating an irradiation intensity matrix and a point spread matrix is performed.
  • These matrices are matrix data used by the computer to execute the calculation of the equation (3) in FIG. 14, and the irradiation intensity matrix corresponds to D (x ′, y ′) in the equation (3).
  • the matrix data indicates the planar distribution of the irradiation intensity.
  • the point spread matrix corresponds to psf (X, Y) in the equation (3), and is matrix data indicating a planar distribution of the degree of influence indicated by a predetermined point spread function.
  • Expression (3) in FIG. 14 is a theoretical expression showing the convolution integral of the function D (x ′, y ′) and the function psf (X, Y), and is based on this theoretical expression in the convolution operation stage of step S40. An operation is performed. However, since the calculation is performed by a computer, in practice, calculation using discrete values is inevitably performed instead of calculation using continuous variables.
  • the irradiation intensity matrix D (x ′, y ′) is a calculation matrix indicating the value of the function D (x ′, y ′) when a predetermined discrete value is adopted as the variable x ′, y ′.
  • the matrix psf (X, Y) is a calculation matrix indicating values of the function psf (X, Y) when a predetermined discrete value is adopted as the variables X and Y. The actual calculation is performed using these two sets of calculation matrices.
  • the sample intervals as discrete values of the variables x ′ and y ′ and the variables X and Y may be determined according to the resolution of the exposure intensity distribution obtained by calculation.
  • the accumulated energy amount at a predetermined evaluation point V (x, y) on the exposure plane is influenced by the influence from a large number of reference points T (x ′, y ′). Calculated as an integrated value of degree.
  • the spatial distribution of the stored energy amount obtained for a large number of evaluation points V (x, y) is the finally obtained exposure intensity distribution.
  • the exposure intensity distribution obtained by the simulation method according to the present invention is used for correcting drawing data used in actual exposure processing.
  • the pixel value “6” of the pixels in the eighth column needs to be slightly reduced. There is.
  • calculation cells are defined by dividing each pixel of the drawing data into a plurality of sets, and two sets of sets of calculation cells are formed. Prepare an empty calculation matrix.
  • Each cell of the first calculation matrix is given a predetermined cell value based on the pixel value of the pixel including the cell, thereby providing an irradiation intensity matrix D (x ′, y ′) is created.
  • D irradiation intensity matrix
  • each cell of the second calculation matrix a cell value corresponding to a predetermined point spread function including the aperture size parameter B set in step S20, the degree of influence indicated by the point spread function A point spread matrix psf (X, Y) indicating the plane distribution of the.
  • each pixel constituting the drawing data is given a predetermined pixel value p (12 or 15 in the illustrated example), and each pixel value p is an electron irradiated to the position of each pixel.
  • the irradiation intensity of the beam is shown.
  • Directional and lateral pitches can also be set to 1 nm. That is, the interval between the evaluation points V11 and V12 arranged adjacent to the horizontal direction (x-axis direction) is 1 nm, and the interval between the evaluation points V11 and V21 arranged adjacent to the vertical direction (y-axis direction) is also set. 1 nm. Accordingly, in the case of the embodiment shown in FIG. 19, the total exposure intensity can be obtained for the evaluation points arranged in a grid at intervals of 1 nm in the vertical and horizontal directions, and an exposure intensity distribution having a resolution of 1 nm can be obtained.
  • FIG. 19B the pixel P (i, j) in the i-th row and j-th column of the pixel array constituting the drawing data shown in FIG.
  • the state where the calculation cell C (m, n) is generated is shown. Since a pixel having a size of 5 ⁇ 5 nm is divided into 25 to define 25 calculation cells, the size of each cell is 1 ⁇ 1 nm. Thus, after defining 25 empty calculation cells, a predetermined cell value based on the pixel value of the pixel including the cell is given to each cell. In the case of the example shown on the left side of FIG. 19B, the pixel value “12” of the pixel P (i, j) including the cell is given as it is as the cell value to all 25 calculation cells. The cell values of all the calculation cells are “12”.
  • the calculation matrix corresponding to the drawing data is composed of 625 calculation cells.
  • Each calculation cell is given the pixel value of the pixel including the cell (12 or 15 in the illustrated example). That is, in the case of the illustrated example, the irradiation intensity matrix D (x ′, y ′) is composed of an array of calculation cells in 25 rows and 25 columns, and calculation cells C (m, n) in the m-th row and the n-th column. ) Is given a predetermined cell value based on the pixel value of the pixel including the cell.
  • the pixel values of the pixels including the cell are given to all the cells as cell values as they are, and the irradiation intensity matrix D (x ′, y ′).
  • D the irradiation intensity matrix
  • the example shown on the right side of FIG. 19 (b) is an example of such a device.
  • the central cell is referred to as a representative cell
  • the other 24 cells are referred to as non-representative cells.
  • the pixel value “12” of the pixel P (i, j) including the cell is directly given as the cell value, and for the non-representative cell, the cell value “0” is given. The reason why the calculation burden in step S40 is reduced by such a device will be described later.
  • the point spread matrix psf (X, Y) is matrix data indicating the plane distribution of the degree of influence indicated by the point spread function psf (X, Y) on the exposure target surface by the resolution of the pitch g of the operation cells.
  • g is set to 1 nm, and it is constituted by a set of operation cells arranged at a pitch of 1 nm in length and width.
  • the cell value of each calculation cell is determined based on the formula (4) in FIG. 14 according to the position of the cell (vertical position X and horizontal position Y) (of course, the formula in FIG. 16). (6) or equation (7) in FIG. 17 may be used).
  • the cell value distribution corresponds to the graph of FIG. 15, and generally, a cell closer to the center of the matrix is given a larger cell value.
  • the irradiation intensity matrix D (x ′, y ′) and the point spread matrix psf (X, Y) are generated in the calculation matrix creation stage of step S30
  • the irradiation intensity is set in the convolution calculation stage of step S40.
  • Convolution integration using the matrix D (x ′, y ′) and the point spread matrix psf (X, Y) is performed, and the total exposure at each evaluation point V (x, y) located at the coordinates (x, y).
  • Strength (amount of stored energy) v (x, y) is obtained.
  • a matrix in which the pitch g of each cell is set to 1 nm is prepared as the irradiation intensity matrix D (x ′, y ′) and the point spread matrix psf (X, Y). Therefore, an exposure intensity distribution indicating the distribution of the total exposure intensity v (x, y) of each evaluation point V (x, y) can be obtained with a resolution of 1 nm in the vertical and horizontal pitches.
  • the size of the pattern that will remain when the molding layer 61 (resist layer) is developed is estimated, and if necessary, the original drawing data Correction for each pixel value is performed.
  • description of such a correction method is omitted.
  • FIG. 20 is a diagram showing a correspondence relationship between the irradiation intensity matrix D (x ′, y ′) created in step S30 of FIG. 18 and the point spread matrix psf (X, Y).
  • the upper part of FIG. 20 shows the arrangement of calculation cells constituting the irradiation intensity matrix D (x ′, y ′) created based on the drawing data shown in FIG.
  • a region surrounded by a thick line frame shown in the drawing indicates one pixel P (i, j) constituting the drawing data, and a region surrounded by the thin line frame indicates one calculation cell C (m, n). Show.
  • the pixel P (i, j) is a square having a side of 5 nm
  • the calculation cell C (m, n) is a square having a side of 1 nm. Therefore, one pixel P (i, j) includes 25 calculation cells C (m, n), and the irradiation intensity matrix D (x ′, y ′) includes a total of 625 cells.
  • the calculation cell is included. Each calculation cell is given a predetermined cell value based on the pixel value of the pixel including the cell (in FIG. 20, display of the cell value of each calculation cell is omitted).
  • a device for reducing the calculation burden only a specific representative cell among a plurality of calculation cells included in the same pixel is determined based on the pixel value of the pixel. Is given as a cell value, and a cell value of 0 is given to other non-representative cells.
  • the example shown in FIG. 20 is an example in which one calculation cell located at the center of each pixel is a representative cell, and the other calculation cells are non-representative cells. Only the representative cell is shown in black. is there. Therefore, the representative cell shown in black in the figure is given the same value as the pixel value (12 or 15) of the pixel at the corresponding position in FIG. All of the non-representative cells shown are given a cell value of 0.
  • the irradiation intensity matrix D (x ′, y ′) created in step S30 gives a cell value of 12 or 15 to the black cells shown in the upper part of FIG. 20, and 0 to the white cells. This is a cell array given the cell value.
  • the graph psf shown in the lower part of FIG. 20 shows the cell values of the operation cells arranged in a specific row (for example, the row located in the center in the vertical direction) of the point spread matrix psf (X, Y). ing.
  • the point spread function psf (X, Y) used in the present invention has a flat portion H having a width w corresponding to the aperture size parameter B and an inclination having an inclination corresponding to the forward scattering parameter ⁇ . It becomes a trapezoidal function having the parts U1 and U2. Therefore, the graph psf shown in the lower part of FIG. 20 is also a graph having a flat portion H and inclined portions U1 and U2.
  • the point spread matrix psf (X, Y) created in step S30 is a cell array having cell value distributions in the X-axis direction and the Y-axis direction according to the graph psf shown in the lower part of FIG. become.
  • the convolution operation shown in the equation (3) in FIG. 14 has a cell value distribution corresponding to the graph psf in the lower part of FIG. 20 with respect to the irradiation intensity matrix D (x ′, y ′) shown in the upper part of FIG.
  • the spread matrix psf (X, Y) can be moved by two-dimensionally moving at a pitch of 1 nm while accumulating the product of cell values of cells at corresponding positions in both matrices.
  • the lower part of FIG. 20 shows a point spread matrix psf at the center position of the calculation cell C (m, n) of the irradiation intensity matrix arranged at the center of the pixel P (i, j) in the i-th row and j-th column.
  • a graph psf when the center positions of (X, Y) are superimposed is drawn.
  • FIG. 21 is a diagram showing a concept of a process for performing a convolution operation based on the drawing data shown in FIG.
  • FIG. 21A is a graph showing the pixel values D of the five pixels in the third row of the drawing data shown in FIG. 19A.
  • the horizontal axis is the x axis
  • the vertical axis is the pixel value. D is taken.
  • each pixel value D indicates the irradiation intensity of the electron beam irradiated to the pixel position.
  • FIG. 21B is a graph showing the cell value of each calculation cell obtained by dividing one pixel into 25, and the x-axis is taken on the horizontal axis and the cell value D is taken on the vertical axis. .
  • 25 calculation cells are arranged on the horizontal axis.
  • Each of these cells is a cell obtained by cutting five pixels in the third row of the drawing data shown in FIG. Yes, it corresponds to the cells C (13, 1) to C (13, 25) in the first to 25th columns of the 13th row in the cell array of all 25 rows and 25 columns.
  • This example corresponds to the example shown on the left side of FIG. 19 (b), and for all cells, the pixel value D of the pixel including the cell (the pixel at the corresponding position in FIG. 21 (a)). Is given the same cell value (ie 12 or 15).
  • FIG. 21 (c) ⁇ corresponds to the example shown on the right side of FIG. 19 (b) and is located at the center of each pixel among the 25 cells arranged in the 13th row. Only the representative cell is given the same cell value as the pixel value D of the pixel including the cell, and the other non-representative cells are given the cell value 0. Specifically, for the representative cells C (13, 3), C (13, 8), C (13, 13), C (13, 18), C (13, 23) in the 13th row The cell value 12 or 15 is given, and the cell value 0 is given to other non-representative cells.
  • FIG. 21 (d) shows one arrangement of the graph f of the point spread function pfs corresponding to the point spread matrix psf (X, Y).
  • the product of the cell values of the matrix cells) is cumulatively added.
  • the graph f (13, 13) shown in FIG. 21 (d) shows a state where the graph f is arranged so that the center thereof coincides with the center position of the representative cell C (13, 13) shown in FIG. 21 (c). Show. In such an arrangement, the cell values (12 or 15) of the five representative cells shown in FIG. 21 (c) and the same coordinate position as each representative cell of the graph f (13, 13) shown in FIG. 21 (d). The product with the function value f is obtained.
  • FIG. 21 (e) shows the total exposure intensity obtained by accumulating the product of cell values at each position while moving the graph f (13, 13) shown in FIG. 21 (d) to the left and right.
  • a distribution graph F is shown.
  • a graph f (13, 3) indicated by a broken line indicates a state in which the graph f is arranged so as to coincide with the center position of the representative cell C (13, 3), and a graph f (13, 8) indicated by a one-dot chain line.
  • a graph F shown in FIG. 21 (e) is a distribution graph of the total exposure intensity obtained by performing such a convolution operation, and the total exposure intensity v (x, y) shown in the equation (3) of FIG. It corresponds to the graph shown.
  • FIG. 21 (b) IV when the irradiation intensity matrix D (x ′, y ′) is created by giving the same cell value as the pixel value D to all the cells, the product for all the cells is obtained.
  • the irradiation intensity matrix D (x ′, y ′) is created by giving the same cell value as the pixel value D to all the cells, the product for all the cells is obtained.
  • FIG. 21 (e) is a distribution graph of the total exposure intensity obtained by performing such a convolution operation, and the total exposure intensity v (x, y) shown in the equation (3) of FIG. It corresponds to the graph shown.
  • FIG. 21 (b) IV when the irradiation intensity matrix D (x ′, y ′) is created
  • FIGS. 20 and 21 is an example in which the calculation cell located at the center of each pixel constituting the drawing data is the representative cell, but the representative cell is not necessarily located at the cell located at the center of each pixel. It is not necessary to set any cell as a representative cell.
  • FIG. 22 is a diagram illustrating a modification example in which a calculation cell located at the lower left of each pixel is a representative cell.
  • FIG. 22 (a) shows the arrangement of calculation cells constituting the irradiation intensity matrix D (x ′, y ′) as in the upper diagram of FIG.
  • a square region having a size of 1 represents one arithmetic cell C (m, n).
  • the cells shown in black in the figure are representative cells, and the cells shown in white in the figure are non-representative cells.
  • a black representative cell is arranged at the center of each pixel.
  • a black representative cell is arranged at the lower left of each pixel. Has been.
  • a calculation cell is defined by dividing one pixel P (i, j) shown in FIG. 22 (a) ⁇ into 25, and a predetermined cell value is given to each calculation cell.
  • FIG. Since the lower left cell indicated by a bold frame in the figure is a representative cell, this representative cell is given a cell value “12” (pixel value of the pixel P (i, j)), and other non-representative cells A cell value of “0” is given. If the embodiment shown on the right side of FIG. 19B is compared with the modification shown in FIG. 22B, in the latter case, the position of the representative cell is the lower left position from the center position of the pixel P (i, j). It can be seen that it is displaced by a predetermined offset amount (in this example, 2 ⁇ 2 nm).
  • a predetermined offset amount in this example, 2 ⁇ 2 nm
  • the irradiation intensity matrix D (x ′, y ′) is created in the computation matrix creation stage in step S30, a plurality of computation cells included in the same pixel are created.
  • the calculation cell existing at a position displaced by a predetermined offset amount in the predetermined direction from the center of the pixel is a representative cell, and the other calculation cells are non-representative cells. It can be said that the pixel value of the pixel including the cell is directly given as the cell value, and the cell value 0 is given to each non-representative cell.
  • a point spread matrix psf (X, Y) is created.
  • a point spread function psf (X, Y) corrected by the offset amount in a direction opposite to the predetermined direction is defined, and a point spread matrix indicating a plane distribution of the degree of influence indicated by the point spread function is defined.
  • a point spread function psf (X, Y) shown in equation (4 ′) in FIG. Use it to create a point spread matrix.
  • the right side of Expression (4 ′) is obtained by replacing the variable X on the right side of Expression (4) with the variable “X + ⁇ x” and replacing the variable Y with the variable “Y + ⁇ y”.
  • ⁇ x is an offset amount in the x-axis direction
  • FIG. 23 is a diagram showing a concept of a process for performing a convolution operation when the modified example shown in FIG. 22 is adopted.
  • FIG. 23A is the same diagram as FIG. 21A and is a graph showing the pixel values D of the five pixels constituting the drawing data.
  • FIG. 23 (b) is the same diagram as FIG. 21 (b), and is a graph showing an example in which the pixel values of the pixels including the cell are given as they are to the cell for calculation.
  • FIG. 23 (c) the lower left cell of each pixel is a representative cell, and only for this representative cell, the pixel of the pixel including the cell is displayed.
  • the same cell value as the value D is given, and the cell value 0 is given for the other non-representative cells.
  • the representative cells C (15, 1), C (15, 6), C (15, 11), C (15, 16), C (15, 21) in the 15th row
  • the cell value 12 or 15 is given, and the cell value 0 is given to other non-representative cells.
  • FIG. 21C and FIG. 23C in the latter, the position of the bar indicating the cell value of the representative cell is shifted to the left by two cells (offset amount ⁇ x in the x-axis direction). I understand that.
  • FIG. 23 (d) shows one arrangement of the graph f of the point spread function pfs corresponding to the point spread matrix psf (X, Y), similarly to FIG. 21 (d).
  • a graph f (15, 11) shown in FIG. 23 (d) shows a state where the center of the graph f is arranged at a position corresponding to the representative cell C (15, 11) shown in FIG. 23 (c). .
  • the center position of the graph f (15, 11) does not coincide with the center position of the representative cell C (15, 11), but is shifted to the right by the offset amount ⁇ x in the x-axis direction.
  • the offset amount ⁇ y is also shifted in the y-axis direction.
  • the center position of the graph f (15, 11) coincides with the center position of the non-representative cell (13, 13).
  • the position of the graph f (15, 11) shown in FIG. 23 (d) coincides with the position of the graph f (13, 13) shown in FIG. 21 (d), and the graph f (15, 11).
  • the correction using the offset amounts ⁇ x and ⁇ y is performed by convolution using the point spread matrix psf (X, Y) arranged at appropriate positions. This is so that the calculation is performed.
  • FIG. 23 (e) shows the process of accumulating the product of cell values at each position while moving the graph f (15, 11) to the left and right as in FIG. 21 (e). Further, a distribution graph F of the total exposure intensity finally obtained by the process is shown. Since the irradiation intensity matrix D (x ′, y ′) is created by giving the same cell value as the pixel value D only for the representative cell located at the lower left of each pixel, the product for the non-representative cell is 0. Substantially, the calculation for the non-representative cell can be omitted.
  • a cell value corresponding to the pixel value of the pixel is given only to a specific representative cell, and a cell value of 0 is given to other non-representative cells.
  • many calculation processes can be omitted and the calculation time can be shortened.
  • only one of a plurality of calculation cells included in one pixel is set as a representative cell, and the remaining cells are set as non-representative cells.
  • a plurality of representative cells can be set for the pixel. Therefore, when creating the irradiation intensity matrix in the computation matrix creation stage, if the basic policy of setting the cell located at the center of each pixel as the representative cell is taken, multiple computations included in the same pixel Of the cells, one or more calculation cells located at the center of the pixel may be designated as representative cells, and the other calculation cells may be non-representative cells.
  • each pixel of the drawing data is divided into odd and vertical numbers, one computation cell located at the center of each pixel is used as the representative cell, Other calculation cells may be non-representative cells, the pixel value of the pixel including the representative cell may be given to the representative cell, and the cell value 0 may be given to the non-representative cell.
  • the embodiment shown in FIG. 20 is an example in which each pixel is divided into five vertically and horizontally, and one arithmetic cell located at the center of each pixel is set as a representative cell.
  • each pixel of the drawing data is divided into even numbers in the vertical and horizontal directions, four calculation cells are arranged at the center of each pixel.
  • these four calculation cells may be set as representative cells, and the other calculation cells may be non-representative cells.
  • a value of 1 ⁇ 4 of the pixel value of the pixel including the representative cell may be given to the four representative cells, and a cell value of 0 may be given to the non-representative cell.
  • a calculation cell C (m, n) is created. Since each pixel is divided into even numbers in the vertical and horizontal directions, four calculation cells are arranged at the center of each pixel. Therefore, all the four calculation cells are set as representative cells for the pixel. That is, the cells shown in black in FIG. 24A are representative cells, and the cells shown in white in the figure are non-representative cells. Each representative cell is given a value that is 1 ⁇ 4 of the pixel value of the pixel including the representative cell, and a cell value of 0 is given to the non-representative cell.
  • FIG. 24 (b) (gives a predetermined cell value to each of a total of 100 operation cells C (m, n) included in one pixel P (i, j) shown in FIG. 24 (a). It is a figure which shows a state.
  • the cell values “3” are assigned to the four sets of representative cells indicated by the bold frame in the figure, respectively, when the pixel value p of the pixel P (i, j) is “12”. It is an example. That is, a value “3” that is a quarter of the pixel value “12” of the pixel including the representative cell is given to each representative cell as the cell value. Also, cell values of 0 are given to all non-representative cells.
  • one pixel is evenly divided into 100 cells, and four representative cells are defined in the vicinity of the center, and each pixel is 1/4 of the pixel value “12”.
  • the value “3” is given as the cell value. This is a consideration for arranging the representative cell at the center of the pixel. As in the example shown in FIG. 22, if a method of correcting the function psf (X, Y) by a predetermined offset amount is employed, It is also possible to arrange a single representative cell at an arbitrary position.
  • the example shown in FIG. 25 (a) is an example in which one pixel is divided into an even number of 100 cells, as in the example shown in FIG. 24 (a) ⁇ .
  • This is an example in which only the cell in the lower left corner shown in FIG. 6 is a single representative cell (the black cell is omitted for the convenience of drawing an arrow indicating the offset amount for the representative cell of the upper right pixel).
  • 25 (b) b gives a predetermined cell value to each of a total of 100 operation cells C (m, n) included in one pixel P (i, j) shown in FIG. 25 (a). It is a figure which shows a state.
  • the cell value “12” is given to the representative cell in the lower left corner indicated by the bold frame in the figure. This is because the pixel value p of the pixel P (i, j) is “12”. It is an example.
  • the remaining 99 non-representative cells are all given a cell value of 0.
  • the function psf (X, Y) may be corrected by the same offset amount in the upper right direction.
  • a point spread function psf (X, Y) shown in equation (4 ′) in FIG. Use it to create a point spread matrix.
  • the calculation time can be shortened by applying a calculation method using Fourier transform to the calculation for calculating the convolution integral of two functions f (A) and f (B).
  • functions f (A) and f (B) are obtained by performing Fourier transform on the functions f (A) and f (B), respectively, to obtain the functions f ′ (A) and f ′ (B) having the spatial frequency values as variables.
  • Function f ′ (C) f ′ (A) ⁇ f ′ (B) is calculated
  • the function f ′ (C) is obtained by performing inverse Fourier transform on the function f ′ (C).
  • (C) shows the convolution integral of the two functions f (A) and f (B).
  • Step S40 in FIG. 18 describes four steps of processing, that is, a first calculation step S41, a second calculation step S42, a third calculation step S43, and a fourth calculation step S44. This is nothing but a process for performing a convolution operation using the Fourier transform described in ⁇ 7.
  • FIG. 26 is a diagram showing the principle of performing the convolution operation in step S40 of FIG. 18 using Fourier transform.
  • Expression (8) in FIG. 26 is exactly the same as expression (3) shown in FIG. 14, and is an expression showing the essence of the convolution operation performed in step S40.
  • an operation equivalent to the equation (8) is performed by the following procedure to calculate the exposure intensity distribution v (x, y).
  • an irradiation intensity frequency matrix D ′ (f, g) is created by performing Fourier transform on the irradiation intensity matrix D (x ′, y ′) as shown in Equation (9). To do.
  • the irradiation intensity matrix D (x ′, y ′) is a matrix showing a spatial distribution of irradiation intensity values in the horizontal direction (x′-axis direction) and the vertical direction (y′-axis direction).
  • the intensity frequency matrix D ′ (f, g) is a matrix in which the f-axis indicating the spatial frequency in the x′-axis direction in the horizontal direction and the g-axis indicating the spatial frequency in the y′-axis direction in the vertical direction.
  • the matrix D is a complex matrix indicating spatial frequency components in the x′-axis direction and the y′-axis direction of the matrix D (x ′, y ′).
  • the point spread matrix psf (X, Y) is Fourier-transformed to create a point spread frequency matrix psf '(f, g). .
  • the point spread matrix psf (X, Y) is a matrix indicating a spatial distribution of the degree of influence in the horizontal direction (X-axis direction) and the vertical direction (Y-axis direction), whereas the point spread frequency matrix psf.
  • F, g is a matrix in which the f-axis indicating the spatial frequency in the X-axis direction in the horizontal direction and the g-axis indicating the spatial frequency in the Y-axis direction in the vertical direction, and the point spread matrix psf (X, Y ) Of the complex numbers indicating the spatial frequency components in the X-axis direction and the Y-axis direction.
  • the corresponding calculation is performed for the irradiation intensity frequency matrix D ′ (f, g) and the point spread frequency matrix psf ′ (f, g), respectively.
  • a product of complex numbers of the cells for use is obtained, and an exposure intensity frequency matrix v ′ (f, g) having the product as a cell value is created.
  • the exposure intensity matrix v (x, y) is created by performing inverse Fourier transform on the exposure intensity frequency matrix v ′ (f, g) obtained by the equation (11). .
  • This exposure intensity matrix v (x, y) is a matrix indicating a planar distribution of the total exposure intensity at each evaluation point indicated by coordinates (x, y), that is, an exposure intensity distribution to be obtained by simulation according to the present invention. It becomes the matrix shown.
  • FIG. 27 is a diagram for explaining the principle of reducing the computational burden of the Fourier transform process, and shows a specific procedure of the Fourier transform process shown in Equation (9).
  • FIG. 27 (a) is a diagram showing a cell arrangement of the irradiation intensity matrix D (x ′, y ′). Each cell contains a cell value corresponding to the pixel value of the original drawing data.
  • the irradiation intensity frequency matrix D ′ (f, g) by performing Fourier transform on the irradiation intensity matrix D (x ′, y ′) according to the equation (9), first, the horizontal direction (x ′ axis The cell values arranged in the (direction) are subjected to Fourier transform, the spatial frequency is obtained, and processing for creating an irradiation intensity intermediate matrix D ′′ (f, y) as shown in FIG.
  • the irradiation intensity intermediate matrix D ′′ (f, y) has a frequency f axis on the horizontal axis and a y ′ axis on the vertical axis, and x for each cell value of the original irradiation intensity matrix D (x ′, y ′).
  • each cell in the first row shown in FIG. 27 (a) surrounded by a thick line frame extending in the horizontal direction contains predetermined cell values. If the spatial frequency components are extracted and the values of the extracted components are arranged as cell values on the frequency f axis, a cell in the first row shown in FIG. 27 (b) is surrounded by a thick line frame extending in the horizontal direction. It is done.
  • the cell in the first row is a one-dimensional array along the frequency f axis, and the value of the higher component of the spatial frequency f is accommodated as the cell value from the left to the right.
  • irradiation intensity intermediate matrix D ′′ (f, y) a Fourier transform is performed on the cell values arranged in the vertical direction (y′-axis direction), and the spatial frequency is obtained.
  • An irradiation intensity frequency matrix D '(f, g) as shown in (9) is obtained.
  • the horizontal axis is the frequency f axis and the vertical axis is the frequency g axis, and x for each cell value of the original irradiation intensity matrix D (x ′, y ′).
  • This is a matrix indicating spatial frequency components in the ′ -axis direction and the y′-axis direction.
  • each cell in the second column shown in FIG. 27 (b) surrounded by a bold line extending in the vertical direction contains predetermined cell values. If spatial frequency components are extracted and the values of the extracted components are arranged as cell values on the frequency g axis, the cells in the second column shown in FIG. 27 (c) are surrounded by a thick line frame extending in the vertical direction. It is done.
  • the cells in the second column are one-dimensional arrays along the frequency g axis, and values of higher components of the spatial frequency g are accommodated as cell values from the top to the bottom.
  • the irradiation intensity matrix D (x ′, y ′) may have a cell value corresponding to the pixel value only for a specific representative cell, and a cell value 0 for other non-representative cells.
  • the calculation load of the Fourier transform process is greatly reduced. This is because when the irradiation intensity matrix D (x ′, y ′) shown in FIG. 27A is converted into the irradiation intensity intermediate matrix D ′′ (f, y) shown in FIG. This is because an operation can be omitted for a line that only includes the line.
  • the cell values of the cells in the first and second rows are all 0. It has become.
  • the result of Fourier transform of a row containing only the value 0 becomes a row (row along the f-axis) that also contains only the value 0.
  • the Fourier transform process can be omitted for such a row. For this reason, if a method of giving a substantial cell value only for the representative cell and setting the cell value of the non-representative cell to 0 is adopted, the calculation burden of the Fourier transform process can be greatly reduced. The calculation time can be shortened.
  • Exposure intensity distribution calculation apparatus >> So far, the present invention has been described as a method invention in the form of a simulation method for obtaining an exposure intensity distribution in a multi-beam electron beam lithography apparatus. Here, the present invention will be described as an apparatus invention in the form of an exposure intensity distribution calculation apparatus used in a multi-beam electron beam drawing apparatus.
  • FIG. 28 is a block diagram showing a basic configuration of an exposure intensity distribution calculation apparatus according to the present invention.
  • This exposure intensity distribution calculation device is a device having a function for obtaining an exposure intensity distribution when a predetermined pattern is exposed and drawn on a molding layer using a multi-beam electron beam drawing device.
  • a unit 110, an irradiation intensity matrix creation unit 120, a parameter setting unit 130, a point spread matrix creation unit 140, and a convolution calculation execution unit 150 is realized by a cooperative operation of a computer and a program incorporated in the computer, and this exposure intensity distribution calculation device incorporates a dedicated program in the computer. Can be configured.
  • the drawing data input unit 110 is a component for inputting drawing data Din.
  • the drawing data Din is data indicating a pattern drawn by the electron beam drawing apparatus, and is data including an array of pixels having pixel values indicating the irradiation intensity at each irradiation position of the beam.
  • the parameter setting unit 130 is a component that sets an aperture size parameter B that is determined based on the aperture size of the aperture of the electron beam drawing apparatus.
  • the aperture size K of the aperture is a value defined as the size of the aperture 41 formed in the aperture plate 40.
  • the aperture size parameter B a value obtained by multiplying the aperture size K by the reduction magnification m by the projection lens 50 of the electron beam drawing apparatus can be used.
  • the parameter setting unit 130 sets the value of the fixed value m ⁇ K to the aperture size parameter B. Set it as a value.
  • the parameter setting unit 130 is provided with a function for inputting the aperture size K and the reduction magnification m each time, and based on the input values, m ⁇ K May be set as the value of the aperture size parameter B.
  • the irradiation intensity matrix creation unit 120 prepares an empty calculation matrix composed of a collection of calculation cells obtained by dividing each pixel of the drawing data input by the drawing data input unit 110 into a plurality of pieces. This is a component that creates an irradiation intensity matrix D (x ′, y ′) indicating a planar distribution of electron beam irradiation intensity by giving a predetermined cell value based on the pixel value of a pixel including the cell to the cell.
  • D (x ′, y ′) A specific method of creating the irradiation intensity matrix D (x ′, y ′) is as already described in Section 5 with reference to FIG.
  • the irradiation intensity matrix creation unit 120 has a predetermined value determined based on the pixel value of the pixel only for a specific representative cell among a plurality of calculation cells included in the same pixel. It is preferable to give a value as a cell value and give a cell value of 0 for other non-representative cells. Specifically, among a plurality of calculation cells included in the same pixel, one or more calculation cells located at the center of the pixel are designated as representative cells, and the other calculation cells are designated as non-representative cells. That's fine.
  • the irradiation intensity matrix creation unit 120 divides each pixel of the drawing data into odd and vertical numbers to define a calculation cell, one calculation cell located at the center of each pixel is used as a representative cell, and the others The calculation cell is a non-representative cell, the pixel value of the pixel including the representative cell is given to the representative cell as a cell value, and the cell value 0 can be given to the non-representative cell.
  • the irradiation intensity matrix creation unit 120 divides each pixel of the drawing data into an even number in each of the vertical and horizontal directions to define the calculation cell, the four calculation cells positioned at the center of each pixel are represented.
  • a non-representative cell is set as a cell, and a non-representative cell is given to the representative cell as a cell value that is 1/4 of the pixel value of the pixel including the representative cell, and a cell value of 0 is given to the non-representative cell. be able to. The details of both are as already described in ⁇ 6.
  • the point spread matrix creating unit 140 is a cell corresponding to a predetermined point spread function psf (X, Y) including the opening size parameter B set by the parameter setting unit 130 in each calculation cell of the empty calculation matrix.
  • this is a component that creates a point spread matrix psf (X, Y) indicating a plane distribution of the degree of influence indicated by the point spread function psf.
  • the point spread function psf as illustrated in FIG. 15, the width w of the flat portion H of the graph is influenced by the aperture size parameter B, and the inclinations of the inclined portions U1 and U2 of the graph are influenced by the forward scattering parameter ⁇ .
  • Use functions. Specific examples of the point spread function psf (X, Y) are as illustrated as Expression (4) in FIG. 14, Expression (6) in FIG. 16, and Expression (7) in FIG.
  • the irradiation intensity matrix creation unit 120 is displaced by a predetermined offset amount in a predetermined direction from the center of the pixel among a plurality of calculation cells included in the same pixel.
  • the irradiation intensity matrix D (x ′, y ′) can also be created using the calculation cell existing at the position as a representative cell and the other calculation cells as non-representative cells.
  • the point spread matrix creating unit 140 creates a point spread matrix psf (X, Y) indicating a plane distribution of the degree of influence indicated by the point spread function corrected by the offset amount in the direction opposite to the predetermined direction. (See FIG. 22 (c) IV).
  • the convolution operation execution unit 150 includes an irradiation intensity matrix D (x ′, y ′) created by the irradiation intensity matrix creation unit 120, a point spread matrix psf (X, Y) created by the point spread matrix creation unit 140, and the like. Is a component that performs a calculation to obtain a total exposure intensity at each evaluation point.
  • the convolution operation execution unit 150 has a function of performing convolution integration using Fourier transform. Therefore, the convolution calculation execution unit 150 performs a Fourier transform on the irradiation intensity matrix D (x ′, y ′), thereby creating a first calculation unit 151 (FIG. 15) that creates the irradiation intensity frequency matrix D ′ (f, g). 26) and a second arithmetic unit that creates a point spread frequency matrix psf ′ (f, g) by performing Fourier transform on the point spread matrix psf (X, Y). 152 (means for executing the processing of the equation (10) in FIG.
  • a third calculation unit 153 (means for executing the processing of the expression (11) in FIG. 26) for creating an exposure intensity frequency matrix v ′ (f, g) having a cell value as a cell value;
  • a fourth operation unit 154 that generates an exposure intensity matrix v (x, y) indicating a planar distribution of the total exposure intensity at each evaluation point by performing inverse Fourier transform on ′ (f, g). ing.
  • the specific processing procedure of the convolution integral using the Fourier transform is as described in ⁇ 7.
  • the exposure intensity matrix v (x, y) created by the fourth calculation unit 154 is output as exposure intensity distribution data Dout.
  • FIG. 29 is a view showing a first example of the exposure intensity distribution obtained by the simulation method according to the invention.
  • FIG. 29 (a) is a diagram showing drawing data prepared for drawing a linear pattern having a width of 50 nm as a gray-tone image.
  • pixel values corresponding to the gray tone densities are shown as legends.
  • the pixel value 15 is given to the pixels inside the linear pattern, and the pixel value 0 is given to the external pixels.
  • FIG. 29 (b) shows the irradiation intensity matrix D (x ′, y ′) created based on the drawing data shown in FIG. 29 (a) as a gray-tone image.
  • This irradiation intensity matrix is composed of a collection of operation cells arranged at a pitch g.
  • a small black dot shown in the figure is a representative cell located at the center of each pixel, and the same 15 as the pixel value is given as the cell value.
  • FIG. 29 (c) is obtained by a convolution integral operation for the irradiation intensity matrix D (x ′, y ′) shown in FIG. 29 (b) and a predetermined point spread matrix psf (X, Y) not shown.
  • It is a figure which shows the obtained exposure intensity matrix v (x, y), ie, exposure intensity distribution, as a gray tone image.
  • cell values calculated values of v (x, y)
  • the two white lines in the figure indicate the outline of the linear pattern shown in FIG. 29 (a).
  • the result shown in FIG. 29C shows the appropriate exposure intensity distribution obtained when the exposure process is performed based on the drawing data shown in FIG.
  • FIG. 30A is a diagram showing another drawing data prepared for drawing a linear pattern having a width of 50 nm as a gray-tone image. Pixel values corresponding to the respective densities are shown as legends.
  • Each of the four pixels arranged in the horizontal direction near the center of the linear pattern is given a pixel value of 15; however, each of the one pixel arranged on the left side and the one pixel arranged on the right side has both A pixel value of 7 is given.
  • FIG. 30B is a diagram showing an irradiation intensity matrix D (x ′, y ′) created based on the drawing data shown in FIG. 30A as a gray-tone image.
  • This irradiation intensity matrix is composed of a collection of operation cells arranged at a pitch g.
  • FIG. 30 (c) c is obtained by a convolution integral operation on the irradiation intensity matrix D (x ′, y ′) shown in FIG. 30 (b) and a predetermined point spread matrix psf (X, Y) not shown. It is a figure which shows the obtained exposure intensity matrix v (x, y), ie, exposure intensity distribution, as a gray tone image. On the left side of the figure, cell values (calculated values of v (x, y)) corresponding to the gray tone densities are shown as legends. The closer to black, the greater the exposure intensity (accumulated energy amount). The two white lines in the figure indicate the outline of the linear pattern shown in FIG. 30 (a). As described above, the result shown in FIG. 30C also shows an appropriate exposure intensity distribution obtained when the exposure process is performed based on the drawing data shown in FIG.
  • FIG. 29 and the example shown in FIG. 30 both show the results obtained by performing the convolution operation using the Fourier transform described in ⁇ 7, and the calculation time until the result is obtained is greatly increased. Has been shortened to.
  • a method and apparatus for obtaining an exposure intensity distribution in a multi-beam electron beam lithography apparatus provides an exposure intensity distribution in a field where a specific material layer needs to be finely patterned, such as a semiconductor device manufacturing process. Can be widely used as a technique for estimating by computer simulation.
  • Electron gun 20 Expanded electron beam 21: Individual electron beam 30 constituting a multi-beam 30: Condenser lens 40: Aperture plate 41: Aperture 50: Projection lens 60: Sample substrate 61: Molded layer (resist layer ) 70: Movement stage 110: Drawing data input unit 120: Irradiation intensity matrix creation unit 130: Parameter setting unit 140: Point spread matrix creation unit 150: Convolution calculation execution unit 151: First calculation unit 152: Second calculation unit 153 : Third computing unit 154: fourth computing unit A1, A2: rectangular area a: exposure area B: aperture size parameter b: non-exposure area C: constant C (m, n) used for point spread function: m rows Calculation cell Da in the n-th column: width Di in the x-axis direction of the pattern: irradiation intensity (dose amount) of the electron beam at the i-th exposure operation Din: drawing data Dout: exposure intensity distribution data D (x ′, y ′): dose amount / irradi

Abstract

The purpose of the present invention is to obtain, in a highly accurate manner and in a short period of time, the exposure intensity distribution on a layer to be shaped. The exposure intensity distribution, when lithography data in which pixels P(i, j) having pixel values represented by the intensity of an electron beam at each respective irradiation position are arranged at a pitch d is inputted into a multibeam electron beam lithography device, is computationally obtained. Each of the pixels P (i, j) is split vertically and horizontally into five parts and cells (m, n) having a width g are defined. An irradiation intensity matrix representing the electron beam irradiation intensity distribution is created by an aggregation of a large number of the cells C (m, n). A representative cell, which is at the center of each of the pixels, is imparted with a pixel value of the pixel in question, and the other cells are imparted with a value of zero. A point spread matrix, which corresponds to a point spread function psf representing the distribution of the degree of effect from the center position to the surroundings, is created. The exposure intensity distribution is obtained by convolution integration using the two matrices. A function that has a flat section H having a width corresponding to the opening size of the aperture of the electron beam lithography device is used as the point spread function psf.

Description

マルチビーム電子線描画装置における露光強度分布を求める方法および装置Method and apparatus for determining exposure intensity distribution in multi-beam electron beam lithography system
 本発明は、マルチビーム電子線描画装置における露光強度分布を求める方法および装置に関し、特に、マルチビーム電子線描画装置を用いて被成形層に所定のパターンを露光描画する際の露光強度分布をコンピュータシミュレーションによって求める技術に関する。 The present invention relates to a method and apparatus for obtaining an exposure intensity distribution in a multi-beam electron beam drawing apparatus, and in particular, relates to an exposure intensity distribution when a predetermined pattern is exposed and drawn on a molding layer using the multi-beam electron beam drawing apparatus. It relates to the technology required by simulation.
 半導体デバイスの製造プロセスなど、特定の材料層に対して微細なパターニング加工を施す必要がある分野において、電子線描画装置を利用したパターニング方法が広く利用されている。電子線描画装置を用いると、与えられた描画データに基づいて、被成形層に微細パターンを露光することができるので、極めて細い線状パターンを形成することが可能になる。たとえば、下記の特許文献1には、シングルビーム方式(VSB方式:Variable Shape Beam)の電子線描画装置および当該装置を用いて所望のパターンを描画する描画方法が開示されている。 2. Description of the Related Art Patterning methods using an electron beam drawing apparatus are widely used in fields where it is necessary to perform fine patterning on a specific material layer, such as a semiconductor device manufacturing process. When an electron beam drawing apparatus is used, a fine pattern can be exposed on the layer to be molded based on given drawing data, so that an extremely thin linear pattern can be formed. For example, the following Patent Document 1 discloses an electron beam drawing apparatus of a single beam method (VSB method: Variable Shape Beam) and a drawing method of drawing a desired pattern using the device.
 一方、最近では、同時に複数の電子ビームを照射することが可能なマルチビーム方式の電子線描画装置も実用化されている。たとえば、特許文献2には、広げた電子ビームを複数の開口部を有するアパーチャープレートを通すことにより複数の電子ビームを生成し、これらをブランキングプレートを用いて個別にON/OFF制御しながら試料表面に所定のパターンを描画するマルチビーム方式の電子線描画装置が開示されている。また、特許文献3には、このようなマルチビーム方式の電子線描画装置を用いて、試料表面の同一箇所に複数回のビーム露光を行うことにより、階調をもったグレースケールパターンを描画する方法が開示されている。 On the other hand, recently, a multi-beam type electron beam drawing apparatus capable of simultaneously irradiating a plurality of electron beams has been put into practical use. For example, in Patent Document 2, a plurality of electron beams are generated by passing an expanded electron beam through an aperture plate having a plurality of openings, and these are individually controlled ON / OFF using a blanking plate. A multi-beam electron beam drawing apparatus for drawing a predetermined pattern on the surface is disclosed. Further, Patent Document 3 draws a grayscale pattern with gradation by performing beam exposure a plurality of times on the same portion of the sample surface using such a multi-beam type electron beam drawing apparatus. A method is disclosed.
 ただ、この電子線描画装置を利用したパターニング方法には、近接効果と呼ばれる要因により、実際に形成されるべきパターンの寸法に変動が生じることが知られている。この近接効果は、レジスト層などから構成される被成形層に電子ビームを照射したときに、質量の小さい電子が、レジスト内で分子に散乱されながら拡がっていく現象(前方散乱)や、レジスト層の下にある金属基板などの表面付近で散乱されて跳ね返ってきた電子がレジスト層内で拡散してゆく現象(後方散乱)として説明される。 However, it is known that in the patterning method using this electron beam drawing apparatus, the dimension of the pattern to be actually formed varies due to a factor called the proximity effect. This proximity effect is caused by the phenomenon that electrons with a small mass spread while being scattered by molecules in the resist (forward scattering) when the molding layer composed of a resist layer or the like is irradiated with an electron beam. This is explained as a phenomenon (backscattering) in which electrons scattered and bounced near the surface of a metal substrate or the like underneath are diffused in the resist layer.
 したがって、精度の高いパターニングを行うためには、電子線描画装置に与える描画データに対して、この近接効果を考慮した補正を施す必要がある。このような補正を行うためには、特定の描画データを用いて被成形層に電子線描画を行った場合に実際に生じるであろう露光強度分布を、コンピュータシミュレーションによって推定する方法が有効である。シミュレーションの結果、露光強度分布に誤差が生じているようであれば、当該誤差を解消するように描画データに対する適切な補正を加えることができる。たとえば、特許文献4には、近接効果を考慮して、実際に生じるであろう露光強度分布をコンピュータシミュレーションによって求める方法が開示されている。 Therefore, in order to perform patterning with high accuracy, it is necessary to correct the drawing data given to the electron beam drawing apparatus in consideration of the proximity effect. In order to perform such correction, it is effective to estimate the exposure intensity distribution that would actually occur when electron beam drawing is performed on the molding layer using specific drawing data by computer simulation. . If there is an error in the exposure intensity distribution as a result of the simulation, an appropriate correction can be applied to the drawing data so as to eliminate the error. For example, Patent Document 4 discloses a method of obtaining an exposure intensity distribution that will actually occur by computer simulation in consideration of the proximity effect.
特開2009-253124号公報JP 2009-253124 A 特開2014-003279号公報JP 2014-003279 A 特開2010-123966号公報JP 2010-123966 A 特許第5864424号公報Japanese Patent No. 5864424
 上述したとおり、電子線描画装置を用いて精度の高いパターニングを行うためには、描画データに対して、電子ビームの近接効果を考慮した補正が必要になる。そして、そのような補正を行うためには、被成形層に形成される露光強度分布を正確に推定する手法が必要である。前掲の特許文献4には、このような露光強度分布をコンピュータシミュレーションによって求める方法が開示されている。この方法では、レジスト層に照射された電子がガウスの誤差関数で示される強度分布に応じて分布するものと仮定して、畳み込み演算を行うことにより、レジスト層全体についての露光強度分布を求めるシミュレーションが実行される。 As described above, in order to perform highly accurate patterning using an electron beam drawing apparatus, it is necessary to correct the drawing data in consideration of the proximity effect of the electron beam. And in order to perform such correction | amendment, the method of estimating correctly the exposure intensity distribution formed in a to-be-molded layer is required. Patent Document 4 described above discloses a method for obtaining such an exposure intensity distribution by computer simulation. This method assumes that the electrons irradiated to the resist layer are distributed according to the intensity distribution indicated by the Gaussian error function, and performs a convolution operation to obtain the exposure intensity distribution for the entire resist layer. Is executed.
 上述したとおり、近年はマルチビーム方式の電子線描画装置も普及してきている。しかしながら、前掲の特許文献4に開示された従来の方法は、基本的には、シングルビーム方式の電子線描画装置に適した方法であり、当該方法をそのままマルチビーム方式の電子線描画装置に適用した場合、露光強度分布を正確に推定することができない。また、マルチビーム方式の場合、ビームの数が膨大になるため、従来の方法をそのまま適用した場合、演算負担が重くなり、シミュレーションに多大な演算時間が必要になる。 As described above, in recent years, multi-beam electron beam drawing apparatuses have become widespread. However, the conventional method disclosed in the above-mentioned Patent Document 4 is basically a method suitable for a single beam type electron beam drawing apparatus, and the method is directly applied to a multi-beam type electron beam drawing apparatus. In this case, the exposure intensity distribution cannot be estimated accurately. In the case of the multi-beam method, the number of beams becomes enormous. Therefore, if the conventional method is applied as it is, the calculation burden becomes heavy and a large calculation time is required for the simulation.
 そこで本発明は、マルチビーム方式の電子線描画装置において、電子線照射面についての露光強度分布を高精度で求めることが可能なシミュレーション方法を提供し、また、当該方法を実施できる露光強度分布演算装置を提供することを目的とする。更に、本発明は、そのような露光強度分布を求める演算を短時間で行うことが可能なシミュレーション方法を提供し、また、当該方法を実施できる露光強度分布演算装置を提供することを目的とする。 Therefore, the present invention provides a simulation method capable of obtaining the exposure intensity distribution on the electron beam irradiation surface with high accuracy in a multi-beam electron beam lithography apparatus, and exposure intensity distribution calculation capable of implementing the method. An object is to provide an apparatus. It is another object of the present invention to provide a simulation method capable of performing such a calculation for obtaining the exposure intensity distribution in a short time, and to provide an exposure intensity distribution calculating apparatus capable of performing the method. .
 (1)  本発明の第1の態様は、マルチビーム電子線描画装置を用いて被成形層に所定のパターンを露光描画する際の露光強度分布を求めるシミュレーション方法において、
 電子線照射領域内に定義された多数の参照点について、電子線照射強度を示す関数と当該参照点が周囲へ及ぼす影響の度合いを示す点拡がり関数との畳み込み積分を行うことにより、個々の評価点における総露光強度を演算するようにし、
 点拡がり関数として、電子線描画装置のアパーチャーの開口サイズに基づいて定まる開口サイズパラメータを含む関数を用いるようにしたものである。
(1) A first aspect of the present invention is a simulation method for obtaining an exposure intensity distribution when a predetermined pattern is exposed and drawn on a molding layer using a multi-beam electron beam drawing apparatus.
For each of a number of reference points defined in the electron beam irradiation region, individual evaluation is performed by performing convolution integration of a function indicating the electron beam irradiation intensity and a point spread function indicating the degree of influence of the reference point on the surroundings. Calculate the total exposure intensity at the point,
As the point spread function, a function including an aperture size parameter determined based on the aperture size of the aperture of the electron beam drawing apparatus is used.
 (2)  本発明の第2の態様は、上述した第1の態様に係るシミュレーション方法において、
 電子線の照射面として二次元xy直交座標系のxy平面を定義し、
 座標(x,y)に位置する評価点V(x,y)に対して、座標(x′,y′)に位置する参照点T(x′,y′)が及ぼす影響を、参照点T(x′,y′)についての電子線照射強度を示す関数D(x′,y′)と、X=x′-x、Y=y′-yとして定義された点拡がり関数psf(X,Y)と、についてのx軸方向およびy軸方向に関する畳み込み積分によって算出し、
 点拡がり関数psf(X,Y)として、変数X,Yに加えて、電子線描画装置のアパーチャーの開口サイズに基づいて定まる開口サイズパラメータBを含む関数を用いるようにしたものである。
(2) According to a second aspect of the present invention, in the simulation method according to the first aspect described above,
Define an xy plane of a two-dimensional xy orthogonal coordinate system as an electron beam irradiation surface,
The influence of the reference point T (x ′, y ′) positioned at the coordinates (x ′, y ′) on the evaluation point V (x, y ′) positioned at the coordinates (x, y) is referred to as the reference point T A function D (x ′, y ′) indicating the electron beam irradiation intensity with respect to (x ′, y ′) and a point spread function psf (X, y defined as X = x′−x, Y = y′−y) Y) and a convolution integral with respect to the x-axis direction and the y-axis direction for
As the point spread function psf (X, Y), in addition to the variables X and Y, a function including an aperture size parameter B determined based on the aperture size of the aperture of the electron beam drawing apparatus is used.
 (3)  本発明の第3の態様は、上述した第2の態様に係るシミュレーション方法において、
 点拡がり関数psf(X,Y)として、開口サイズパラメータBによりグラフの平坦部の幅が左右される関数を用いるようにしたものである。
(3) According to a third aspect of the present invention, in the simulation method according to the second aspect described above,
As the point spread function psf (X, Y), a function in which the width of the flat portion of the graph is influenced by the aperture size parameter B is used.
 (4)  本発明の第4の態様は、上述した第3の態様に係るシミュレーション方法において、
 点拡がり関数psf(X,Y)として、開口サイズパラメータBに加えて、グラフの傾斜部の傾きを左右するパラメータσを含む関数を用いるようにしたものである。
(4) According to a fourth aspect of the present invention, in the simulation method according to the third aspect described above,
As the point spread function psf (X, Y), in addition to the aperture size parameter B, a function including a parameter σ that affects the inclination of the inclined portion of the graph is used.
 (5)  本発明の第5の態様は、上述した第4の態様に係るシミュレーション方法において、
 点拡がり関数として、誤差関数erfを含む、
 psf(X,Y)=1/4・(erf((B/2-X)/σ)-erf((-B/2-X)/σ))・(erf((B/2-Y)/σ)-erf((-B/2-Y)/σ))なる関数を用いるようにしたものである。
(5) According to a fifth aspect of the present invention, in the simulation method according to the fourth aspect described above,
Including error function erf as point spread function,
psf (X, Y) = 1/4 · (erf ((B / 2−X) / σ) −erf ((− B / 2−X) / σ)) · (erf ((B / 2−Y) / Σ) −erf ((− B / 2−Y) / σ)).
 (6)  本発明の第6の態様は、上述した第4の態様に係るシミュレーション方法において、
 点拡がり関数として、逆三角関数arctanを含む、
 psf(X,Y)=1/4・(arctan((B/2-X)/σ)-arctan((-B/2-X)/σ))・(arctan((B/2-Y)/σ)-arctan((-B/2-Y)/σ))なる関数を用いるようにしたものである。
(6) According to a sixth aspect of the present invention, in the simulation method according to the fourth aspect described above,
Including the inverse trigonometric function arctan as the point spread function,
psf (X, Y) = 1/4 · (arctan ((B / 2−X) / σ) −arctan ((− B / 2−X) / σ)) · (arctan ((B / 2−Y) / Σ) −arctan ((− B / 2−Y) / σ)).
 (7)  本発明の第7の態様は、上述した第4の態様に係るシミュレーション方法において、
 点拡がり関数として、誤差関数erf、所定の定数C、後方散乱パラメータβ、近接効果補正パラメータηを含む、
 psf(X,Y)=C/(1+η)・(1/4σ・(erf((B/2-X)/σ)-erf((-B/2-X)/σ))・(erf((B/2-Y)/σ)-erf((-B/2-Y)/σ))+η/β・exp(-(X+Y)/β))
なる関数を用いるようにしたものである。
(7) According to a seventh aspect of the present invention, in the simulation method according to the fourth aspect described above,
As a point spread function, an error function erf, a predetermined constant C, a backscattering parameter β, and a proximity effect correction parameter η are included.
psf (X, Y) = C / (1 + η) · (1 / 4σ 2 · (erf ((B / 2−X) / σ) −erf ((− B / 2−X) / σ)) · (erf ((B / 2−Y) / σ) −erf ((− B / 2−Y) / σ)) + η / β 2 · exp (− (X 2 + Y 2 ) / β 2 ))
This function is used.
 (8)  本発明の第8の態様は、上述した第1~第7の態様に係るシミュレーション方法において、
 電子線描画装置のアパーチャーの開口部が円形をしている場合は、当該円の直径をアパーチャーの開口サイズとし、開口部が正方形をしている場合は、当該正方形の一辺の長さをアパーチャーの開口サイズとし、この開口サイズに、電子線描画装置のプロジェクションレンズによる縮小倍率を乗じた値を、アパーチャーの開口サイズに基づいて定まる開口サイズパラメータとして用いるようにしたものである。
(8) An eighth aspect of the present invention is the simulation method according to the first to seventh aspects described above,
When the aperture of the electron beam lithography system has a circular shape, the diameter of the circle is the aperture size of the aperture, and when the aperture has a square shape, the length of one side of the square is the aperture The aperture size is obtained by multiplying the aperture size by the reduction magnification of the projection lens of the electron beam drawing apparatus and used as an aperture size parameter determined based on the aperture size of the aperture.
 (9)  本発明の第9の態様は、上述した第1~第8の態様に係るシミュレーション方法において、
 コンピュータが、電子線描画装置が描画するパターンを示すデータであって、ビームの各照射位置の照射強度を示す画素値を有する画素の配列からなる描画データを入力する描画データ入力段階と、
 コンピュータが、電子線描画装置のアパーチャーの開口サイズに基づいて定まる開口サイズパラメータを設定するパラメータ設定段階と、
 コンピュータが、描画データの各画素を複数に分割することにより得られる演算用セルの集合体からなる2組の空の演算用マトリックスを用意し、第1の演算用マトリックスの各セルには、当該セルを含む画素の画素値に基づく所定のセル値を与えることにより、電子線照射強度の平面分布を示す照射強度マトリックスを作成し、第2の演算用マトリックスの各セルには、開口サイズパラメータを含む所定の点拡がり関数に応じたセル値を与えることにより、点拡がり関数によって示される影響の度合いの平面分布を示す点拡がりマトリックスを作成する演算用マトリックス作成段階と、
 コンピュータが、照射強度マトリックスと点拡がりマトリックスとを用いた畳み込み積分を行い、個々の評価点における総露光強度を求める畳み込み演算段階と、
 を行うようにしたものである。
(9) According to a ninth aspect of the present invention, in the simulation method according to the first to eighth aspects described above,
A drawing data input stage for inputting drawing data consisting of an array of pixels having data representing a pattern drawn by the electron beam drawing apparatus and having a pixel value indicating the irradiation intensity at each irradiation position of the beam;
A parameter setting stage in which a computer sets an aperture size parameter determined based on the aperture size of the aperture of the electron beam lithography apparatus;
A computer prepares two sets of empty calculation matrices made up of a set of calculation cells obtained by dividing each pixel of drawing data into a plurality of cells, and each cell of the first calculation matrix includes By giving a predetermined cell value based on the pixel value of the pixel including the cell, an irradiation intensity matrix showing a planar distribution of the electron beam irradiation intensity is created, and an aperture size parameter is set for each cell of the second calculation matrix. A calculation matrix creation stage for creating a point spread matrix indicating a plane distribution of the degree of influence indicated by the point spread function by giving a cell value according to a predetermined point spread function including:
A computer performs a convolution integral using an irradiation intensity matrix and a point spread matrix to obtain a total exposure intensity at each evaluation point;
Is to do.
 (10) 本発明の第10の態様は、上述した第9の態様に係るシミュレーション方法において、
 演算用マトリックス作成段階で照射強度マトリックスを作成する際に、同一画素に含まれる複数の演算用セルのうち、特定の代表セルについてのみ当該画素の画素値に基づいて定められる所定の値をセル値として与え、それ以外の非代表セルについてはセル値0を与えるようにしたものである。
(10) According to a tenth aspect of the present invention, in the simulation method according to the ninth aspect described above,
When creating an irradiation intensity matrix in the computation matrix creation stage, a predetermined value determined based on the pixel value of the pixel only for a specific representative cell among a plurality of computation cells included in the same pixel The cell value 0 is given to other non-representative cells.
 (11) 本発明の第11の態様は、上述した第10の態様に係るシミュレーション方法において、
 演算用マトリックス作成段階で照射強度マトリックスを作成する際に、同一画素に含まれる複数の演算用セルのうち、当該画素の中心に位置する1つもしくは複数の演算用セルを代表セルとし、それ以外の演算用セルを非代表セルとするようにしたものである。
(11) An eleventh aspect of the present invention is the simulation method according to the tenth aspect described above,
When creating an irradiation intensity matrix in the computation matrix creation stage, one or more computation cells located at the center of the pixel are selected as representative cells among the plurality of computation cells included in the same pixel, and the others The calculation cell is a non-representative cell.
 (12) 本発明の第12の態様は、上述した第11の態様に係るシミュレーション方法において、
 演算用マトリックス作成段階で照射強度マトリックスを作成する際に、描画データの各画素を縦横それぞれ奇数に分割し、各画素の中心に位置する1つの演算用セルを代表セルとし、それ以外の演算用セルを非代表セルとし、代表セルには当該代表セルを含む画素の画素値をセル値として与え、非代表セルについてはセル値0を与えるようにしたものである。
(12) A twelfth aspect of the present invention is the simulation method according to the eleventh aspect described above,
When creating the irradiation intensity matrix at the stage of creating the calculation matrix, each pixel of the drawing data is divided into odd and vertical numbers, and one calculation cell located at the center of each pixel is used as a representative cell. The cell is a non-representative cell, the pixel value of the pixel including the representative cell is given to the representative cell as the cell value, and the cell value 0 is given to the non-representative cell.
 (13) 本発明の第13の態様は、上述した第11の態様に係るシミュレーション方法において、
 演算用マトリックス作成段階で照射強度マトリックスを作成する際に、描画データの各画素を縦横それぞれ偶数に分割し、各画素の中心に位置する4つの演算用セルを代表セルとし、それ以外の演算用セルを非代表セルとし、代表セルには当該代表セルを含む画素の画素値の1/4の値をセル値として与え、非代表セルについてはセル値0を与えるようにしたものである。
(13) According to a thirteenth aspect of the present invention, in the simulation method according to the eleventh aspect described above,
When creating the irradiation intensity matrix in the calculation matrix creation stage, each pixel of the drawing data is divided into an even number for each of the vertical and horizontal directions, and the four calculation cells located at the center of each pixel are used as representative cells. The cell is a non-representative cell, and a value of ¼ of the pixel value of the pixel including the representative cell is given to the representative cell as the cell value, and a cell value of 0 is given to the non-representative cell.
 (14) 本発明の第14の態様は、上述した第10の態様に係るシミュレーション方法において、
 演算用マトリックス作成段階で照射強度マトリックスを作成する際に、同一画素に含まれる複数の演算用セルのうち、当該画素の中心から所定方向に所定のオフセット量だけ変位した位置に存在する演算用セルを代表セルとし、それ以外の演算用セルを非代表セルとし、
 演算用マトリックス作成段階で点拡がりマトリックスを作成する際に、上記所定方向とは逆方向に上記オフセット量だけ補正した点拡がり関数によって示される影響の度合いの平面分布を示す点拡がりマトリックスを作成するようにしたものである。
(14) According to a fourteenth aspect of the present invention, in the simulation method according to the tenth aspect described above,
When creating an irradiation intensity matrix in the computation matrix creation stage, among the plurality of computation cells included in the same pixel, a computation cell that exists at a position displaced from the center of the pixel by a predetermined offset amount in a predetermined direction As a representative cell, and other calculation cells as non-representative cells,
When creating a point spread matrix in the calculation matrix creation stage, a point spread matrix showing a plane distribution of the degree of influence indicated by the point spread function corrected by the offset amount in the direction opposite to the predetermined direction is created. It is a thing.
 (15) 本発明の第15の態様は、上述した第9~第14の態様に係るシミュレーション方法において、
 畳み込み演算段階で、
 照射強度マトリックスをフーリエ変換することにより、照射強度周波数マトリックスを作成する第1の演算段階と、
 点拡がりマトリックスをフーリエ変換することにより、点拡がり周波数マトリックスを作成する第2の演算段階と、
 照射強度周波数マトリックスと点拡がり周波数マトリックスとの対応する演算用セルの積をセル値とする露光強度周波数マトリックスを作成する第3の演算段階と、
 露光強度周波数マトリックスを逆フーリエ変換することにより、個々の評価点における総露光強度の平面分布を示す露光強度マトリックスを作成する第4の演算段階と、
 を実行するようにしたものである。
(15) According to a fifteenth aspect of the present invention, in the simulation methods according to the ninth to fourteenth aspects described above,
In the convolution operation stage,
A first calculation step of creating an irradiation intensity frequency matrix by Fourier transforming the irradiation intensity matrix;
A second stage of creating a point spread frequency matrix by Fourier transforming the point spread matrix;
A third calculation stage for creating an exposure intensity frequency matrix having a cell value as a product of the corresponding calculation cells of the irradiation intensity frequency matrix and the point spread frequency matrix;
A fourth calculation stage for creating an exposure intensity matrix showing a planar distribution of the total exposure intensity at each evaluation point by performing an inverse Fourier transform on the exposure intensity frequency matrix;
Is to be executed.
 (16) 本発明の第16の態様は、上述した第9~第15の態様に係るシミュレーション方法における描画データ入力段階と、パラメータ設定段階と、演算用マトリックス作成段階と、畳み込み演算段階と、をコンピュータにプログラムを組み込んで実行させるようにしたものである。 (16) A sixteenth aspect of the present invention includes a drawing data input stage, a parameter setting stage, a calculation matrix creation stage, and a convolution calculation stage in the simulation methods according to the ninth to fifteenth aspects described above. A program is built into a computer and executed.
 (17) 本発明の第17の態様は、マルチビーム電子線描画装置を用いて被成形層に所定のパターンを露光描画する際の露光強度分布を求める演算を行う露光強度分布演算装置において、
 電子線描画装置が描画するパターンを示すデータであって、ビームの各照射位置の照射強度を示す画素値を有する画素の配列からなる描画データを入力する描画データ入力部と、
 電子線描画装置のアパーチャーの開口サイズに基づいて定まる開口サイズパラメータを設定するパラメータ設定部と、
 描画データの各画素を複数に分割することにより得られる演算用セルの集合体からなる空の演算用マトリックスを用意し、各演算用セルに、当該セルを含む画素の画素値に基づく所定のセル値を与えることにより、電子線照射強度の平面分布を示す照射強度マトリックスを作成する照射強度マトリックス作成部と、
 上記空の演算用マトリックスの各演算用セルに、開口サイズパラメータを含む所定の点拡がり関数に応じたセル値を与えることにより、点拡がり関数によって示される影響の度合いの平面分布を示す点拡がりマトリックスを作成する点拡がりマトリックス作成部と、
 照射強度マトリックスと点拡がりマトリックスとを用いた畳み込み積分を行い、個々の評価点における総露光強度を求める畳み込み演算実行部と、
 を設けるようにしたものである。
(17) According to a seventeenth aspect of the present invention, in an exposure intensity distribution calculation device that performs an operation for obtaining an exposure intensity distribution when a predetermined pattern is exposed and drawn on a molding layer using a multi-beam electron beam drawing apparatus.
A drawing data input unit for inputting drawing data composed of an array of pixels having pixel values indicating the irradiation intensity at each irradiation position of the beam, which is data indicating a pattern drawn by the electron beam drawing apparatus;
A parameter setting unit for setting an aperture size parameter determined based on the aperture size of the aperture of the electron beam lithography apparatus;
Prepare an empty calculation matrix consisting of a set of calculation cells obtained by dividing each pixel of drawing data into a plurality of cells, and each calculation cell has a predetermined cell based on the pixel value of the pixel including the cell By providing a value, an irradiation intensity matrix creating unit for creating an irradiation intensity matrix indicating a planar distribution of electron beam irradiation intensity,
A point spread matrix showing a plane distribution of the degree of influence indicated by the point spread function by giving a cell value corresponding to a predetermined point spread function including an aperture size parameter to each calculation cell of the empty calculation matrix. A point spread matrix creation part for creating
A convolution operation execution unit that performs convolution integration using an irradiation intensity matrix and a point spread matrix, and calculates a total exposure intensity at each evaluation point;
Is provided.
 (18) 本発明の第18の態様は、上述した第17の態様に係る露光強度分布演算装置において、
 点拡がりマトリックス作成部が、点拡がり関数として、開口サイズパラメータBによりグラフの平坦部の幅が左右される関数を用いるようにしたものである。
(18) According to an eighteenth aspect of the present invention, in the exposure intensity distribution calculating apparatus according to the seventeenth aspect described above,
The point spread matrix creation unit uses a function in which the width of the flat portion of the graph is influenced by the opening size parameter B as the point spread function.
 (19) 本発明の第19の態様は、上述した第18の態様に係る露光強度分布演算装置において、
 点拡がりマトリックス作成部が、点拡がり関数として、開口サイズパラメータBに加えて、グラフの傾斜部の傾きを左右するパラメータσを含む関数を用いるようにしたものである。
(19) According to a nineteenth aspect of the present invention, in the exposure intensity distribution calculating apparatus according to the eighteenth aspect described above,
The point spread matrix creation unit uses a function including a parameter σ that affects the slope of the slope of the graph in addition to the aperture size parameter B as the point spread function.
 (20) 本発明の第20の態様は、上述した第17~第19の態様に係る露光強度分布演算装置において、
 照射強度マトリックス作成部が、同一画素に含まれる複数の演算用セルのうち、特定の代表セルについてのみ当該画素の画素値に基づいて定められる所定の値をセル値として与え、それ以外の非代表セルについてはセル値0を与えるようにしたものである。
(20) According to a twentieth aspect of the present invention, in the exposure intensity distribution calculating apparatus according to the seventeenth to nineteenth aspects described above,
The irradiation intensity matrix creation unit gives a predetermined value determined based on the pixel value of the pixel only for a specific representative cell among a plurality of calculation cells included in the same pixel as a cell value, and other non-representatives The cell value 0 is given for the cell.
 (21) 本発明の第21の態様は、上述した第20の態様に係る露光強度分布演算装置において、
 照射強度マトリックス作成部が、同一画素に含まれる複数の演算用セルのうち、当該画素の中心に位置する1つもしくは複数の演算用セルを代表セルとし、それ以外の演算用セルを非代表セルとするようにしたものである。
(21) According to a twenty-first aspect of the present invention, in the exposure intensity distribution calculating apparatus according to the twentieth aspect described above,
The irradiation intensity matrix creation unit uses one or a plurality of calculation cells located at the center of the pixel as a representative cell among a plurality of calculation cells included in the same pixel, and sets the other calculation cells as non-representative cells. It is made to do.
 (22) 本発明の第22の態様は、上述した第21の態様に係る露光強度分布演算装置において、
 照射強度マトリックス作成部が、描画データの各画素を縦横それぞれ奇数に分割し、各画素の中心に位置する1つの演算用セルを代表セルとし、それ以外の演算用セルを非代表セルとし、代表セルには当該代表セルを含む画素の画素値をセル値として与え、非代表セルについてはセル値0を与えるようにしたものである。
(22) According to a twenty-second aspect of the present invention, in the exposure intensity distribution calculating apparatus according to the twenty-first aspect described above,
The irradiation intensity matrix creation unit divides each pixel of the drawing data into an odd number in the vertical and horizontal directions. One calculation cell located at the center of each pixel is set as a representative cell, and the other calculation cells are set as non-representative cells. In the cell, the pixel value of the pixel including the representative cell is given as the cell value, and the cell value 0 is given to the non-representative cell.
 (23) 本発明の第23の態様は、上述した第21の態様に係る露光強度分布演算装置において、
 照射強度マトリックス作成部が、描画データの各画素を縦横それぞれ偶数に分割し、各画素の中心に位置する4つの演算用セルを代表セルとし、それ以外の演算用セルを非代表セルとし、代表セルには当該代表セルを含む画素の画素値の1/4の値をセル値として与え、非代表セルについてはセル値0を与えるようにしたものである。
(23) According to a twenty-third aspect of the present invention, in the exposure intensity distribution calculating apparatus according to the twenty-first aspect described above,
The irradiation intensity matrix creation unit divides each pixel of the drawing data into an even number, both vertically and horizontally, and sets the four calculation cells located at the center of each pixel as representative cells and the other calculation cells as non-representative cells. In the cell, a value of 1/4 of the pixel value of the pixel including the representative cell is given as the cell value, and a cell value of 0 is given to the non-representative cell.
 (24) 本発明の第24の態様は、上述した第20の態様に係る露光強度分布演算装置において、
 照射強度マトリックス作成部が、同一画素に含まれる複数の演算用セルのうち、当該画素の中心から所定方向に所定のオフセット量だけ変位した位置に存在する演算用セルを代表セルとし、それ以外の演算用セルを非代表セルとし、
 点拡がりマトリックス作成部が、上記所定方向とは逆方向に上記オフセット量だけ補正した点拡がり関数によって示される影響の度合いの平面分布を示す点拡がりマトリックスを作成するようにしたものである。
(24) According to a twenty-fourth aspect of the present invention, in the exposure intensity distribution calculating apparatus according to the twentieth aspect described above,
The irradiation intensity matrix creation unit uses, as a representative cell, a calculation cell that exists at a position displaced by a predetermined offset amount in a predetermined direction from the center of the pixel among a plurality of calculation cells included in the same pixel. The calculation cell is a non-representative cell,
The point spread matrix creating unit creates a point spread matrix indicating a plane distribution of the degree of influence indicated by the point spread function corrected in the opposite direction to the predetermined direction by the offset amount.
 (25) 本発明の第25の態様は、上述した第17~第24の態様に係る露光強度分布演算装置において、
 畳み込み演算部が、
 照射強度マトリックスをフーリエ変換することにより、照射強度周波数マトリックスを作成する第1の演算部と、
 点拡がりマトリックスをフーリエ変換することにより、点拡がり周波数マトリックスを作成する第2の演算部と、
 照射強度周波数マトリックスと点拡がり周波数マトリックスとの対応する演算用セルの積をセル値とする露光強度周波数マトリックスを作成する第3の演算部と、
 露光強度周波数マトリックスを逆フーリエ変換することにより、個々の評価点における総露光強度の平面分布を示す露光強度マトリックスを作成する第4の演算部と、
 を有するようにしたものである。
(25) According to a twenty-fifth aspect of the present invention, in the exposure intensity distribution calculating apparatus according to the seventeenth to twenty-fourth aspects described above,
The convolution operation part
A first calculation unit that creates an irradiation intensity frequency matrix by performing Fourier transform on the irradiation intensity matrix;
A second arithmetic unit for creating a point spread frequency matrix by performing Fourier transform on the point spread matrix;
A third calculation unit for creating an exposure intensity frequency matrix having a cell value that is a product of the corresponding calculation cells of the irradiation intensity frequency matrix and the point spread frequency matrix;
A fourth calculation unit that creates an exposure intensity matrix indicating a planar distribution of the total exposure intensity at each evaluation point by performing inverse Fourier transform on the exposure intensity frequency matrix;
It is made to have.
 (26) 本発明の第26の態様は、上述した第17~第25の態様に係る露光強度分布演算装置を、コンピュータにプログラムを組み込むことにより構成したものである。 (26) According to a twenty-sixth aspect of the present invention, the exposure intensity distribution calculation apparatus according to the above-described seventeenth to twenty-fifth aspects is configured by incorporating a program into a computer.
 本発明に係る露光強度分布のシミュレーション方法および露光強度分布演算装置によれば、描画データに基づいて生成された電子線の照射強度分布関数と、周囲への影響の度合いを示す点拡がり関数と、の畳み込み積分を行うことにより、被成形層に生じる露光強度分布を求めることができる。しかも、点拡がり関数として、電子線描画装置のアパーチャーの開口サイズに基づいて定まる開口サイズパラメータを含む関数を用いるようにしたため、マルチビーム方式の電子線描画装置に最適のシミュレーションを行うことができ、露光強度分布を高精度で求めることが可能になる。 According to the exposure intensity distribution simulation method and the exposure intensity distribution calculation device according to the present invention, the irradiation intensity distribution function of the electron beam generated based on the drawing data, the point spread function indicating the degree of the influence on the surroundings, By performing the convolution integral, it is possible to obtain the exposure intensity distribution generated in the molding layer. Moreover, since a function including an aperture size parameter determined based on the aperture size of the aperture of the electron beam lithography apparatus is used as the point spread function, it is possible to perform an optimum simulation for a multi-beam electron beam lithography apparatus, It becomes possible to obtain the exposure intensity distribution with high accuracy.
 また、電子線の照射強度分布を示す照射強度マトリックスとして、代表セル以外のセル値を0にしたマトリックスを用いた演算を行うようにすれば、畳み込み積分の演算負担を大幅に軽減することができ、露光強度分布を求める演算を短時間で行うことが可能になる。 In addition, if the calculation is performed using a matrix in which cell values other than the representative cell are set to 0 as the irradiation intensity matrix indicating the irradiation intensity distribution of the electron beam, the calculation burden of convolution integration can be greatly reduced. The calculation for obtaining the exposure intensity distribution can be performed in a short time.
一般的なマルチビーム方式の電子線描画装置の基本構造およびその描画原理を示す正面図である(一部は断面図)。BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a front view showing a basic structure of a general multi-beam type electron beam drawing apparatus and its drawing principle (partly a sectional view). 一般的な電子ビームのエネルギー密度(強度)の分布を示すグラフである。It is a graph which shows distribution of the energy density (intensity) of a general electron beam. 描画データを構成する二次元画素配列と、当該描画データに基づいて照射される電子ビームの強度分布との関係を示す平面図(上段(a) )およびグラフ(下段(b) )である。FIG. 6 is a plan view (upper (a)) and a graph (lower (b)) showing the relationship between the two-dimensional pixel array constituting the drawing data and the intensity distribution of the electron beam irradiated based on the drawing data. 画素値に応じた回数だけビーム照射を行うことにより、段階的な露光強度の制御を行う原理を示すグラフである。It is a graph which shows the principle which controls stepwise exposure intensity by performing beam irradiation as many times as a pixel value. 画素ピッチdと個々の電子ビームのスポット径φとの関係により、重複露光が生じる状態の一例を示す平面図(上段(a) )および個々の電子ビームについての強度分布を示すグラフ(下段(b) )である。A plan view (upper (a)) showing an example of a state in which overlapping exposure occurs due to the relationship between the pixel pitch d and the spot diameter φ of each electron beam, and a graph (lower (b )). x軸方向の幅Daをもつパターンの平面図(上段(a) )および当該パターンをマルチビームにより露光する原理を示すグラフ(下段(b) )である。FIG. 6 is a plan view (upper stage (a)) of a pattern having a width Da in the x-axis direction and a graph (lower stage (b)) showing the principle of exposing the pattern with multi-beams. x軸方向の幅Da=25nmをもつ線状パターンの平面図(上段(a) )および当該線状パターンを露光するための描画データを構成する画素配列を示す図(下段(b) )である。FIG. 6 is a plan view (upper (a)) of a linear pattern having a width Da = 25 nm in the x-axis direction and a diagram (lower (b)) showing a pixel arrangement constituting drawing data for exposing the linear pattern. . x軸方向の幅Da=27nmをもつ線状パターンの平面図(上段(a) )および当該線状パターンを露光するための描画データを構成する画素配列を示す図(下段(b) )である。FIG. 6 is a plan view (upper (a)) of a linear pattern having a width Da = 27 nm in the x-axis direction and a diagram (lower (b)) showing a pixel arrangement constituting drawing data for exposing the linear pattern. . 同じパターンを、シングルビーム方式で描画する手順(図(a) )とマルチビーム方式で描画する手順(図(b) )とを比較する図である。It is a figure which compares the procedure (Drawing (a)) which draws the same pattern with a single beam method, and the drawing procedure (Drawing (b)) with a multi-beam method. シングルビーム方式で描画を行う際の任意の評価点V(x,y)における総露光強度の演算原理を示す平面図である。It is a top view which shows the calculation principle of the total exposure intensity in the arbitrary evaluation points V (x, y) at the time of drawing by a single beam system. 図10に示す演算原理に用いる演算式の一例を示す図である。It is a figure which shows an example of the calculating formula used for the calculating principle shown in FIG. マルチビーム方式で描画を行う際の任意の評価点V(x,y)における総露光強度の演算原理を示す平面図である。It is a top view which shows the calculation principle of the total exposure intensity in the arbitrary evaluation points V (x, y) at the time of drawing by a multi-beam system. 図12に示す演算原理に用いる演算式の一例を示す図である。It is a figure which shows an example of the calculating formula used for the calculating principle shown in FIG. マルチビーム方式で描画を行う際に、本発明に係るシミュレーション方法で露光強度分布を求める演算に用いる演算式の一例を示す図である。It is a figure which shows an example of the computing equation used for the calculation which calculates | requires exposure intensity distribution with the simulation method which concerns on this invention, when drawing by a multi-beam system. 図14の式(3)に示す点拡がり関数psf(X,Y)の一例を示す一次元グラフである。15 is a one-dimensional graph showing an example of a point spread function psf (X, Y) shown in Expression (3) of FIG. 図14の式(3)に用いるのに適した別な点拡がり関数psf(X,Y)の式を示す図である。It is a figure which shows the type | formula of another point spread function psf (X, Y) suitable for using for Formula (3) of FIG. 図14の式(3)に用いるのに適した更に別な点拡がり関数psf(X,Y)の式を示す図である。It is a figure which shows the type | formula of another point spread function psf (X, Y) suitable for using for Formula (3) of FIG. 本発明に係るシミュレーション方法の基本手順を示す流れ図である。It is a flowchart which shows the basic procedure of the simulation method which concerns on this invention. 図18のステップS30による照射強度マトリックスD(x′,y′)の具体的な作成例を示す図である。It is a figure which shows the specific example of creation of the irradiation intensity matrix D (x ', y') by step S30 of FIG. 図18のステップS30により作成された照射強度マトリックスD(x′,y′)と点拡がりマトリックスpsf(X,Y)との対応関係を示す図である。FIG. 19 is a diagram illustrating a correspondence relationship between the irradiation intensity matrix D (x ′, y ′) created in step S30 of FIG. 18 and the point spread matrix psf (X, Y). 図19(a) に示す描画データに基づいて、図18のステップS40による畳み込み演算を行うプロセスの概念を示す図である。It is a figure which shows the concept of the process which performs the convolution operation by step S40 of FIG. 18 based on the drawing data shown to FIG. 図18のステップS30により作成される照射強度マトリックスD(x′,y′)と点拡がりマトリックスpsf(X,Y)の変形例を示す図である。It is a figure which shows the modification of irradiation intensity matrix D (x ', y') and point spread matrix psf (X, Y) produced by step S30 of FIG. 図22に示す例について、図18のステップS40による畳み込み演算を行うプロセスの概念を示す図である。It is a figure which shows the concept of the process which performs the convolution operation by FIG.18 S40 about the example shown in FIG. 図18のステップS30により作成される照射強度マトリックスD(x′,y′)の別な変形例を示す図である。It is a figure which shows another modification of the irradiation intensity matrix D (x ', y') produced by step S30 of FIG. 図18のステップS30により作成される照射強度マトリックスD(x′,y′)の更に別な変形例を示す図である。It is a figure which shows another modification of the irradiation intensity matrix D (x ', y') produced by step S30 of FIG. 図18のステップS40による畳み込み演算を、フーリエ変換を利用して行う原理を示す図である。It is a figure which shows the principle which performs the convolution operation by step S40 of FIG. 18 using Fourier transformation. 代表セルを定めてフーリエ変換を利用した畳み込み演算を行うことにより、演算負担が軽減される原理を示す図である。It is a figure which shows the principle by which the calculation burden is eased by determining the representative cell and performing the convolution calculation using Fourier transform. 本発明に係る露光強度分布演算装置の基本構成を示すブロック図である。It is a block diagram which shows the basic composition of the exposure intensity distribution calculating apparatus which concerns on this invention. 本発明に係るシミュレーション方法によって得られた露光強度分布の第1の実例を示す図である。It is a figure which shows the 1st example of exposure intensity distribution obtained by the simulation method which concerns on this invention. 本発明に係るシミュレーション方法によって得られた露光強度分布の第2の実例を示す図である。It is a figure which shows the 2nd example of exposure intensity distribution obtained by the simulation method which concerns on this invention.
 以下、本発明を図示する実施形態に基づいて説明する。 Hereinafter, the present invention will be described based on the illustrated embodiment.
 <<< §1. マルチビーム電子線描画装置による描画原理 >>>
 本発明は、マルチビーム電子線描画装置における露光強度分布を求める技術を前提とするものである。そこで、まず、説明の便宜上、一般的なマルチビーム電子線描画装置による描画原理を簡単に説明しておく。図1は、マルチビーム電子線描画装置の基本構造およびその描画原理を示す正面図である(一部は断面図)。
<<< §1. Drawing principle with multi-beam electron beam drawing system >>
The present invention is premised on a technique for obtaining an exposure intensity distribution in a multi-beam electron beam lithography apparatus. Therefore, for the convenience of explanation, the drawing principle by a general multi-beam electron beam drawing apparatus will be briefly described first. FIG. 1 is a front view showing a basic structure of a multi-beam electron beam drawing apparatus and its drawing principle (partly a sectional view).
 図示のとおり、電子銃10から照射された電子ビーム20は、電磁気的な作用を施すコンデンサレンズ30によって拡大され、アパーチャープレート40(図では、断面図として示す)に照射される。アパーチャープレート40には、多数の開口部41が形成されており、この開口部41を通過した電子ビーム21のみが、やはり電磁気的な作用を施すプロジェクションレンズ50を通して下方の試料基板60へと縮小投影され、その上面に形成されている被成形層(通常はレジスト層)61の露光対象面に照射される。試料基板60は、移動ステージ70の上に載置され、図の左右方向および図の奥行き方向に移動させることができる。 As shown in the figure, the electron beam 20 irradiated from the electron gun 10 is expanded by a condenser lens 30 that performs an electromagnetic action, and is irradiated to an aperture plate 40 (shown as a sectional view in the figure). A large number of openings 41 are formed in the aperture plate 40, and only the electron beam 21 that has passed through the openings 41 is reduced and projected onto the lower sample substrate 60 through the projection lens 50 that also performs an electromagnetic action. Then, the surface to be exposed of a layer to be molded (usually a resist layer) 61 formed on the upper surface is irradiated. The sample substrate 60 is placed on the moving stage 70, and can be moved in the horizontal direction in the figure and in the depth direction in the figure.
 最近では、512×512の二次元マトリックス状に配置された開口部41をもったアパーチャープレート40を用い、25万本以上の電子ビーム21によって被成形層61の上面を同時に露光して微細パターンを描画する機能をもった装置も実用化されている。通常、アパーチャープレート40の下面には、ブランキングプレート(図示省略)が配置されており、開口部41を通過した個々の電子ビーム21を個別にON/OFF制御する機能が設けられる。 Recently, an aperture plate 40 having openings 41 arranged in a 512 × 512 two-dimensional matrix is used, and the upper surface of the molding layer 61 is simultaneously exposed by 250,000 or more electron beams 21 to form a fine pattern. An apparatus having a drawing function has been put into practical use. Usually, a blanking plate (not shown) is disposed on the lower surface of the aperture plate 40, and a function of individually turning on / off each electron beam 21 that has passed through the opening 41 is provided.
 アパーチャープレート40に形成された個々の開口部41は、通常、円形断面を有しており、開口部41を通過した個々の電子ビーム21の断面は円形になる。場合によっては、矩形断面を有する開口部が用いられることもあるが、以下、開口部41が円形断面を有するものとし、被成形層61の上面(露光対象面)には、1本の電子ビーム21の照射により円形の照射スポットが形成されるものとして説明を行う。たとえば、開口部41が直径4μmの円であり、プロジェクションレンズ50の縮小倍率が1/200であったとすると、露光対象面には、直径20nm程度の円形の照射スポット(厳密には、若干大きなスポットになる)が形成される。 The individual openings 41 formed in the aperture plate 40 usually have a circular cross section, and the cross sections of the individual electron beams 21 that have passed through the openings 41 are circular. In some cases, an opening having a rectangular cross section may be used. Hereinafter, it is assumed that the opening 41 has a circular cross section, and one electron beam is formed on the upper surface (exposed surface) of the layer 61 to be molded. The description will be made assuming that a circular irradiation spot is formed by the irradiation of 21. For example, if the opening 41 is a circle having a diameter of 4 μm and the reduction magnification of the projection lens 50 is 1/200, a circular irradiation spot (strictly, a slightly larger spot) having a diameter of about 20 nm is formed on the exposure target surface. Formed).
 一般的な電子ビームのエネルギー密度は、その中心軸をピークとしたガウスの誤差関数に応じた分布になるとされている。後述するように、本発明では、開口部41を通った1本の電子ビーム21のエネルギー密度を示す関数として、ガウスの誤差関数の代わりに特殊な関数を用いることになるが、ここでは、この電子ビーム21のエネルギー密度がガウスの誤差関数に応じた分布になるものとして、以下の説明を行う。 It is said that the energy density of a general electron beam has a distribution according to a Gaussian error function with its central axis as a peak. As will be described later, in the present invention, a special function is used instead of a Gaussian error function as a function indicating the energy density of one electron beam 21 that has passed through the opening 41. The following description will be given on the assumption that the energy density of the electron beam 21 has a distribution corresponding to a Gaussian error function.
 このような前提では、1本の電子ビーム21によって被成形層61の露光対象面に形成される円形の照射スポットのエネルギー密度E(電子ビームの照射強度)は、図2のグラフMに示すようなガウスの誤差関数に応じた分布になる。このグラフの横軸は、nmの単位で示される一次元方向の位置を示しており、横軸上の数値0の位置は、1本の電子ビーム21の中心軸が照射される位置に対応する。実際には、露光対象面上には二次元的な広がりをもつ円形の照射スポットが形成され、そのエネルギー密度Eを示すグラフは、図2に示すグラフMを、その中心軸まわりに回転させた回転体になる。 Under such a premise, the energy density E (irradiation intensity of the electron beam) of the circular irradiation spot formed on the exposure target surface of the molding target layer 61 by one electron beam 21 is as shown in the graph M of FIG. Distribution according to the Gaussian error function. The horizontal axis of this graph indicates the position in the one-dimensional direction expressed in units of nm, and the position of the numerical value 0 on the horizontal axis corresponds to the position where the central axis of one electron beam 21 is irradiated. . Actually, a circular irradiation spot having a two-dimensional spread is formed on the exposure target surface, and the graph showing the energy density E is obtained by rotating the graph M shown in FIG. 2 around its central axis. Become a rotating body.
 図2のグラフにおける横軸上の寸法φは、こうして露光対象面上に形成される円形の照射スポットの直径に相当する。したがって、図2に示すようなエネルギー密度Eをもった1本の電子ビームが照射された場合、露光対象面上では直径φの円形内が露光することになり、各部の照射強度は中心から周囲に向かってガウスの誤差関数に応じた分布で減少する。通常、ビームの大きさは、図2のグラフの半値幅の値を示すビーム径として示されるが、ここでは説明の便宜上、図2に示す寸法φをスポット径と呼び、ビーム径に対応する数値として取り扱うことにする。 The dimension φ on the horizontal axis in the graph of FIG. 2 corresponds to the diameter of the circular irradiation spot thus formed on the exposure target surface. Therefore, when one electron beam having an energy density E as shown in FIG. 2 is irradiated, the inside of a circle with a diameter φ is exposed on the surface to be exposed, and the irradiation intensity of each part is from the center to the periphery. It decreases with a distribution according to the Gaussian error function. Normally, the beam size is shown as a beam diameter indicating the half width value of the graph of FIG. 2, but for convenience of explanation, the dimension φ shown in FIG. 2 is referred to as a spot diameter, and a numerical value corresponding to the beam diameter. Will be treated as
 シングルビーム方式(VSB方式:Variable Shape Beam)の電子線描画装置の場合、試料基板60上には1本の電子ビームしか照射されないので、その断面形状を矩形等の任意形状に加工し、任意の強度に調節した状態で照射することが可能である。ところが、マルチビーム方式の電子線描画装置の場合、多数の電子ビーム21を用いて極めて高速な描画を行うことができるメリットを有しているが、個々のビームの断面形状を個別に制御したり、個々のビームの強度を個別に制御したりすることは困難である。実際、25万本ものビームを生成する装置の場合、微細なアパーチャープレートの開口部41を通過した個々の電子ビームを個別に成形したり、個別に強度調節したりする機構を設けることはできない。 In the case of an electron beam drawing apparatus of a single beam method (VSB method: Variable Shape Beam), since only one electron beam is irradiated on the sample substrate 60, its cross-sectional shape is processed into an arbitrary shape such as a rectangle, and an arbitrary shape is obtained. Irradiation can be performed with the intensity adjusted. However, the multi-beam type electron beam drawing apparatus has an advantage that drawing can be performed at a very high speed using a large number of electron beams 21, but the cross-sectional shape of each beam can be controlled individually. It is difficult to individually control the intensity of each beam. In fact, in the case of an apparatus that generates as many as 250,000 beams, it is not possible to provide a mechanism for individually shaping or individually adjusting the intensity of each electron beam that has passed through the opening 41 of the fine aperture plate.
 結局、現在利用されている一般的なマルチビーム方式の電子線描画装置では、露光対象面上に直径φをもった多数の円形の照射スポットを形成することができるものの、照射スポットを任意の形状に成形することはできず、個々の電子ビームのON/OFF制御により描画を行う方法を採らざるを得ない。そこで、このマルチビーム方式の電子線描画装置の描画制御を行うために、二次元画素配列によって構成される描画データ(量子化マップとも呼ばれている)が利用される。 In the end, a general multi-beam electron beam lithography system currently used can form a large number of circular irradiation spots having a diameter φ on the surface to be exposed, but the irradiation spots can be formed in any shape. Therefore, it is necessary to adopt a method of performing drawing by ON / OFF control of individual electron beams. Therefore, in order to perform drawing control of the multi-beam type electron beam drawing apparatus, drawing data (also referred to as a quantization map) configured by a two-dimensional pixel array is used.
 図3(a) は、この描画データを構成する二次元画素配列と、当該描画データに基づいて照射される電子ビームの強度分布との関係を示す平面図(上段(a) )およびグラフ(下段(b) )である。いま、露光対象面上にxy二次元座標系を定義し、この座標系上に図3(a) の右上隅にハッチングを施して示すような正方形状の画素Pを縦横に配置した二次元画素配列を定義する。ここでは、個々の画素Pの横方向(x軸方向)および縦方向(y軸方向)の幅がいずれもdであるものとする。この幅dは、画素Pの横方向および縦方向のピッチに相当する。 FIG. 3 (a) (is a plan view (upper (a)) and graph (lower) showing the relationship between the two-dimensional pixel array constituting the drawing data and the intensity distribution of the electron beam irradiated based on the drawing data. (b)). Now, an xy two-dimensional coordinate system is defined on the exposure target surface, and a square pixel P as shown in FIG. 3 (a) is hatched in the upper right corner of FIG. Define an array. Here, it is assumed that the width of each pixel P in the horizontal direction (x-axis direction) and the vertical direction (y-axis direction) is d. This width d corresponds to the horizontal and vertical pitches of the pixels P.
 ここで、個々の画素Pの中心位置に照射基準点Qを定義し、画素Pの画素値として、当該照射基準点Qに照射すべき電子線の強度を示す値を与えることにする。このような画素配列からなる描画データをマルチビーム方式の電子線描画装置に与えたとすれば、描画装置は、当該描画データに基づいて、露光対象面上に所定の強度分布をもった電子線露光を行うことができる。たとえば、図3に示す画素P1の中心に定義された照射基準点Q1に照射された電子ビームにより、露光対象面(xy平面)上には、円形の照射スポットS1による露光が行われ、画素P2の中心に定義された照射基準点Q2に照射された電子ビームにより、露光対象面(xy平面)上には、円形の照射スポットS2による露光が行われる。 Here, an irradiation reference point Q is defined at the center position of each pixel P, and a value indicating the intensity of the electron beam to be irradiated to the irradiation reference point Q is given as the pixel value of the pixel P. If drawing data having such a pixel array is supplied to a multi-beam electron beam drawing apparatus, the drawing apparatus performs electron beam exposure having a predetermined intensity distribution on the exposure target surface based on the drawing data. It can be performed. For example, exposure with a circular irradiation spot S1 is performed on the exposure target surface (xy plane) by the electron beam irradiated to the irradiation reference point Q1 defined at the center of the pixel P1 shown in FIG. The exposure by the circular irradiation spot S2 is performed on the exposure target surface (xy plane) by the electron beam irradiated to the irradiation reference point Q2 defined at the center of the.
 この場合、照射スポットS1による露光強度は画素P1のもつ画素値E1に基づいて決定され、照射スポットS2による露光強度は画素P2のもつ画素値E2に基づいて決定される。たとえば、個々の画素値E1,E2が、ガウスの誤差関数に応じた分布のピーク値を示しているものとすると、図3(a) に示す照射スポットS1,S2によるx軸方向に関する露光強度分布は、図3(b) に示すグラフのようになる。すなわち、照射基準点Q1を中心として照射された電子ビームによる露光強度分布はグラフM1のような幅φをもった山になり、照射基準点Q2を中心として照射された電子ビームによる露光強度分布はグラフM2のような幅φをもった山になる。ここで、幅φは、前述したとおり、円形の照射スポットの直径である。 In this case, the exposure intensity by the irradiation spot S1 is determined based on the pixel value E1 of the pixel P1, and the exposure intensity by the irradiation spot S2 is determined by the pixel value E2 of the pixel P2. For example, assuming that the individual pixel values E1 and E2 indicate the peak value of the distribution according to the Gaussian error function, the exposure intensity distribution in the x-axis direction by the irradiation spots S1 and S2 shown in FIG. Is as shown in the graph of FIG. That is, the exposure intensity distribution by the electron beam irradiated around the irradiation reference point Q1 is a mountain having a width φ as shown in the graph M1, and the exposure intensity distribution by the electron beam irradiated around the irradiation reference point Q2 is It becomes a mountain having a width φ as in the graph M2. Here, the width φ is the diameter of the circular irradiation spot as described above.
 なお、図3では、説明の便宜上、2つの画素P1,P2の照射基準点Q1,Q2について、それぞれ照射スポットS1,S2が形成されている状態を示すが、もちろん、実際には、すべての画素Pの中心位置にそれぞれ照射基準点Qが定義され、各照射基準点Qに対してそれぞれ電子ビームの照射が行われることになる。ここで、照射基準点Qの縦横の配置ピッチは、画素Pの縦横の配置ピッチと同様にピッチdということになる。 3 shows a state in which the irradiation spots S1 and S2 are formed for the irradiation reference points Q1 and Q2 of the two pixels P1 and P2, respectively, for convenience of explanation. An irradiation reference point Q is defined at the center position of P, and each irradiation reference point Q is irradiated with an electron beam. Here, the vertical and horizontal arrangement pitch of the irradiation reference point Q is the pitch d as in the vertical and horizontal arrangement pitch of the pixels P.
 ところで、マルチビーム方式の電子線描画装置では、多数の電子ビームの強度を個別に制御することはできない。したがって、図3に示す例において、照射基準点Q1に照射される電子ビームも、照射基準点Q2に照射される電子ビームも、同じ強度の電子ビームにならざるを得ない。ただ、ブランキングプレートを制御することにより、個々の電子ビームを個別にON/OFFすることは可能である。そこで、個々の照射基準点Qごとに、それぞれ照射する電子ビームを個別にON/OFF制御し、露光時間を変えることにより露光強度を変える方法を採る。上例の場合、照射基準点Q1への照射時間を照射基準点Q2への照射時間よりも長く設定することにより、図3(b) のグラフに示すような露光強度分布が得られることになる。 By the way, in the multi-beam type electron beam drawing apparatus, the intensity of a large number of electron beams cannot be individually controlled. Therefore, in the example shown in FIG. 3, the electron beam irradiated to the irradiation reference point Q1 and the electron beam irradiated to the irradiation reference point Q2 must be electron beams having the same intensity. However, it is possible to individually turn on / off individual electron beams by controlling the blanking plate. Therefore, for each irradiation reference point Q, a method of changing the exposure intensity by individually controlling ON / OFF of the irradiated electron beam and changing the exposure time is adopted. In the case of the above example, by setting the irradiation time to the irradiation reference point Q1 longer than the irradiation time to the irradiation reference point Q2, an exposure intensity distribution as shown in the graph of FIG. .
 このような露光時間の制御は、実際には、露光回数の制御という形で行われる。これは、図1に示すように、実際には、移動ステージ70を二次元的(図1の左右方向および奥行き方向)に移動させながら、多数の電子ビーム21を被成形層61上で二次元的に走査しながら描画を行うためである。 Such control of the exposure time is actually performed in the form of control of the number of exposures. As shown in FIG. 1, in practice, a large number of electron beams 21 are two-dimensionally formed on the molding layer 61 while moving the moving stage 70 in two dimensions (left and right direction and depth direction in FIG. 1). This is because the drawing is performed while scanning.
 たとえば、数ナノ秒程度の露光時間を1回の電子ビーム照射時の単位露光時間と定めておき、1回の電子ビーム照射が完了するたびに、移動ステージ70をx軸方向にピッチdだけ移動させ、次の回の電子ビーム照射を行うようにすれば、特定の照射基準点Qに対しては、毎回異なる電子ビーム(隣接する電子ビーム)によって単位露光時間分の露光が行われることになる。このとき、毎回、個々の電子ビームごとに個別のON/OFF制御を行えば、段階的ではあるものの、個々の照射基準点Qごとに固有の露光強度を設定することが可能になる。 For example, an exposure time of several nanoseconds is set as a unit exposure time for one electron beam irradiation, and the moving stage 70 is moved in the x-axis direction by a pitch d each time one electron beam irradiation is completed. If the next electron beam irradiation is performed, a specific irradiation reference point Q is exposed for a unit exposure time by a different electron beam (adjacent electron beam) each time. . At this time, if individual ON / OFF control is performed for each individual electron beam each time, it is possible to set a specific exposure intensity for each irradiation reference point Q although it is stepwise.
 具体的には、たとえば、照射基準点Q1に対して10回の露光を行うことにより、図3(b) のグラフM1のような露光強度分布が得られるのであれば、照射基準点Q2に対して5回の露光を行うことにより、図3(b) のグラフM2のような露光強度分布が得られることになる。 Specifically, for example, if an exposure intensity distribution like the graph M1 in FIG. 3B is obtained by performing exposure 10 times on the irradiation reference point Q1, the irradiation reference point Q2 By performing the exposure five times, an exposure intensity distribution like the graph M2 in FIG. 3B is obtained.
 図4は、このように、個々の照射基準点Qごとに露光回数を変えることにより、16通りの段階的な露光強度の制御を行う原理を示すグラフである。ここでは、図示の便宜上、段階0,5,10,15の4通りの段階についての例のみが示されているが、実際には、これらの間の中間段階も設定され、段階0~15までの全16通りの段階が設定される。図4に示す露光強度分布グラフM(15),M(10),M(5)は、それぞれピーク強度E(15),E(10),E(5)をもち、同一のスポット径φの広がりをもったガウスの誤差関数に応じた分布のグラフになっている。 FIG. 4 is a graph showing the principle of controlling the exposure intensity in 16 steps by changing the number of exposures for each irradiation reference point Q as described above. Here, for convenience of illustration, only examples of four stages 0, 5, 10, and 15 are shown, but in reality, intermediate stages between them are also set and stages 0 to 15 are set. All 16 stages are set. The exposure intensity distribution graphs M (15), M (10), and M (5) shown in FIG. 4 have peak intensities E (15), E (10), and E (5), respectively, and have the same spot diameter φ. The graph is a distribution according to a Gaussian error function with a spread.
 たとえば、画素P(15),P(10),P(5),P(0)の画素値pがそれぞれp=15,p=10,p=5,p=0であった場合、これらの画素の中心位置に定義された照射基準点Q(15),Q(10),Q(5),Q(0)の近傍には、図4に示す露光強度分布グラフM(15),M(10),M(5),M(0)に相当する強度分布をもった露光が行われることになる。各露光強度分布グラフのピーク値は、それぞれの照射基準点位置における露光回数(=画素値p)に対応した値になる。 For example, if the pixel values p of the pixels P (15), P (10), P (5), and P (0) are p = 15, p = 10, p = 5, and p = 0, respectively In the vicinity of the irradiation reference points Q (15), Q (10), Q (5), Q (0) defined at the center position of the pixel, exposure intensity distribution graphs M (15), M ( 10), M (5), and exposure having an intensity distribution corresponding to M (0) are performed. The peak value of each exposure intensity distribution graph is a value corresponding to the number of exposures (= pixel value p) at each irradiation reference point position.
 すなわち、画素値p=0に対応する照射基準点Q(0)には、電子ビームの照射は1回も行われず、グラフM(0)は、実際には実体のある山状のグラフにはならない。一方、画素値p=5に対応する照射基準点Q(5)には、電子ビームの照射が5回行われ、グラフM(5)は、ピーク強度E(5)をもった山になる。同様に、画素値p=10に対応する照射基準点Q(10)には、電子ビームの照射が10回行われ、グラフM(10)は、ピーク強度E(10)をもった山になり、画素値p=15に対応する照射基準点Q(15)には、電子ビームの照射が15回行われ、グラフM(15)は、ピーク強度E(15)をもった山になる。 That is, the irradiation reference point Q (0) corresponding to the pixel value p = 0 is never irradiated with an electron beam, and the graph M (0) is actually a substantial mountain-shaped graph. Don't be. On the other hand, the irradiation reference point Q (5) corresponding to the pixel value p = 5 is irradiated with the electron beam five times, and the graph M (5) becomes a mountain having the peak intensity E (5). Similarly, the irradiation reference point Q (10) corresponding to the pixel value p = 10 is irradiated with the electron beam ten times, and the graph M (10) becomes a mountain having the peak intensity E (10). The irradiation reference point Q (15) corresponding to the pixel value p = 15 is irradiated with the electron beam 15 times, and the graph M (15) becomes a mountain having the peak intensity E (15).
 ところで、図3では、互いに十分に離れた位置にある2つの画素P1,P2に、それぞれ別個の電子ビームを照射した例を述べた。この例のように、スポット径φ以上に離れた2つの照射基準点Q1,Q2に照射された電子ビームは、相互に干渉を及ぼすことはない。しかしながら、スポット径φに満たない距離に近接配置されている複数の照射基準点に照射された電子ビームについては、相互に干渉が生じることになる。通常、画素ピッチd(照射基準点Qのピッチ)は、電子ビームのスポット径φよりも小さな値に設定される。この場合、露光対象面は、複数の電子ビームによる重畳露光を受けることになる。 Incidentally, in FIG. 3, an example is described in which the two pixels P1 and P2 that are sufficiently separated from each other are each irradiated with a separate electron beam. As in this example, the electron beams irradiated to the two irradiation reference points Q1 and Q2 that are separated by the spot diameter φ or more do not interfere with each other. However, the electron beams irradiated to a plurality of irradiation reference points arranged close to each other at a distance less than the spot diameter φ cause mutual interference. Usually, the pixel pitch d (the pitch of the irradiation reference point Q) is set to a value smaller than the spot diameter φ of the electron beam. In this case, the exposure target surface is subjected to superimposed exposure by a plurality of electron beams.
 図5(a) は、画素ピッチdと個々の電子ビームのスポット径φとの関係により、露光対象面上に重畳露光が生じる状態の一例を示す平面図であり、図5(b) は、このような重畳露光が生じている場合の個々の電子ビームについての露光強度分布を示すグラフである。ここに示す例は、画素ピッチd(照射基準点Qのピッチ)と電子ビームのスポット径φとの間に、φ=4dとなるような関係を設定した場合の例である。図5(a) には、x軸方向に隣接して配置された5つの画素P1~P5と、これら各画素の中心位置に定義された5つの照射基準点Q1~Q5に対して照射された電子ビームによって形成される5つの円形照射スポットS1~S5が示されている。図示のとおり、各円形照射スポットS1~S5は相互に重なりを生じており、露光対象面の各部は、複数の照射スポットによる重畳露光を受けることになる。 FIG. 5A is a plan view showing an example of a state in which superimposed exposure occurs on the exposure target surface due to the relationship between the pixel pitch d and the spot diameter φ of each electron beam, and FIG. It is a graph which shows exposure intensity distribution about each electron beam in case such superposition exposure has arisen. The example shown here is an example in the case where a relationship of φ = 4d is set between the pixel pitch d (the pitch of the irradiation reference point Q) and the spot diameter φ of the electron beam. In FIG. 5 (a), the five pixels P1 to P5 arranged adjacent to each other in the x-axis direction and the five irradiation reference points Q1 to Q5 defined at the center positions of these pixels are irradiated. Five circular irradiation spots S1 to S5 formed by the electron beam are shown. As shown in the figure, the circular irradiation spots S1 to S5 are overlapped with each other, and each part of the exposure target surface is subjected to superposition exposure by a plurality of irradiation spots.
 図5(b) に示す露光強度分布グラフM1~M5は、それぞれ照射スポットS1~S5についてのx軸方向に関する露光強度分布を示している。個々の照射スポットS1~S5が部分的に重なりを生じているため、個々の露光強度分布グラフM1~M5も部分的に重なりを生じることになり、各部の実際の露光強度分布は、これら個々の露光強度分布グラフM1~M5の総和として与えられる。たとえば、図に太線で示されている画素P3内の照射基準点Q3には、円形照射スポットS3を生じさせる電子ビームが照射されることになる。この円形照射スポットS3の露光強度分布はグラフM3で示すような山になるが、図示のとおり、画素P3内には、隣接する別なグラフM1,M2,M4,M5の山の裾野も位置しているため、結局、画素P3内の総露光強度は、これらすべての山を重ね合わせた強度ということになる。 The exposure intensity distribution graphs M1 to M5 shown in FIG. 5B show the exposure intensity distributions in the x-axis direction for the irradiation spots S1 to S5, respectively. Since the individual irradiation spots S1 to S5 are partially overlapped, the individual exposure intensity distribution graphs M1 to M5 are also partially overlapped. This is given as the sum of the exposure intensity distribution graphs M1 to M5. For example, the irradiation reference point Q3 in the pixel P3 indicated by a bold line in the drawing is irradiated with an electron beam that generates a circular irradiation spot S3. The exposure intensity distribution of the circular irradiation spot S3 is a mountain as shown by the graph M3. However, as shown in the figure, the ridges of the other adjacent graphs M1, M2, M4, and M5 are also located in the pixel P3. Therefore, after all, the total exposure intensity in the pixel P3 is an intensity obtained by superimposing all these peaks.
 マルチビーム方式の電子線描画装置は、このような原理に基づいて、被成形層上に階調をもったグレースケールパターンを描画することができ、露光を受けた被成形層を現像することにより、所望の形状をもったパターン形成を行うことができる。 Based on such a principle, the multi-beam type electron beam drawing apparatus can draw a gray scale pattern with gradation on the molding layer, and develop the exposed molding layer by developing it. A pattern having a desired shape can be formed.
 図6(a) は、x軸方向の幅Daをもつパターンの平面図であり、図6(b) は、当該パターンをマルチビームにより露光する原理を示すグラフである。図6(b) に横軸として示されているx軸は、図6(a) の横方向を示すx軸に対応するものであり、図6(b) のグラフは、図6(a) に示すパターンを描画する際のx軸方向に関する露光強度分布を示している。 FIG. 6A is a plan view of a pattern having a width Da in the x-axis direction, and FIG. 6B is a graph showing the principle of exposing the pattern by multi-beams. The x-axis shown as a horizontal axis in FIG. 6 (b) corresponds to the x-axis indicating the horizontal direction of FIG. 6 (a), and the graph of FIG. 6 (b) is shown in FIG. 6 (a). The exposure intensity distribution in the x-axis direction when drawing the pattern shown in FIG.
 図6(b) には、小さな山からなる9つの露光強度分布グラフM1~M9(以下、小山と呼ぶ)と、大きな山からなる1つの露光強度の分布グラフMM(以下、大山と呼ぶ)とが示されている。小山M1~M9は、それぞれ照射基準点Q1~Q9に照射される個別の電子ビームに基づく露光強度分布を示すものであり、図5(b) に示す例と同様に、互いに裾野に重なりを生じている。照射基準点Q1~Q9は、図示されていない画素P1~P9の中心点として定義される点であり、所定ピッチdで配置されている。そして、各小山M1~M9の高さ(ピーク強度)は、個々の画素P1~P9の画素値に応じた値になる。 FIG. 6B shows nine exposure intensity distribution graphs M1 to M9 (hereinafter referred to as “small mountains”) composed of small peaks and one exposure intensity distribution graph MM (hereinafter referred to as “large mountains”) composed of large peaks. It is shown. Koyama M1 to M9 show exposure intensity distributions based on individual electron beams irradiated to the irradiation reference points Q1 to Q9, respectively, and overlap each other at the base as in the example shown in FIG. ing. The irradiation reference points Q1 to Q9 are points defined as center points of the pixels P1 to P9 (not shown), and are arranged at a predetermined pitch d. The height (peak intensity) of each of the small mountains M1 to M9 is a value corresponding to the pixel value of each of the pixels P1 to P9.
 図4に示す例の場合、画素値pは0~15の16段階、すなわち、4ビットのデータで表現され、p=0~15とすることにより、それぞれ高さが異なる16通りの小山M(p)を定義することができる。そして、小山M(p)に応じた強度分布を形成するために、合計p回の露光が行われる。図6(b) に示す小山M1~M9は、この16段階の小山のいずれかである。たとえば、両端の画素P1,P9の画素値がp=7、中間の画素P2~P8の画素値がp=15であった場合、図示のとおり、両端の小山M1,M9は中程度の高さをもった山になり、中間の小山M2~M8は最大の高さをもった山になる。 In the case of the example shown in FIG. 4, the pixel value p is expressed in 16 steps from 0 to 15, that is, 4 bits of data, and by setting p = 0 to 15, 16 kinds of mounds M ( p) can be defined. Then, a total of p exposures are performed to form an intensity distribution according to the small mountain M (p). The hills M1 to M9 shown in FIG. 6 (b) are one of these 16 stages. For example, when the pixel values of the pixels P1 and P9 at both ends are p = 7 and the pixel values of the intermediate pixels P2 to P8 are p = 15, the small mountains M1 and M9 at both ends are at a medium height as shown in the figure. Mountains M2 to M8 in the middle are the mountains with the highest height.
 一方、図6(b) に示す大山MMは、すべての小山M1~M9を重畳したときに得られる総露光強度の分布を示すグラフであり、小山M1~M9の総和に相当するグラフということになる(図示の便宜上、正確な総和を示すものにはなっていない)。結局、照射基準点Q1~Q9に対して、それぞれ画素P1~P9の画素値に応じた回数の露光を実行すると、露光対象面上には、x軸方向に関して、大山MMによって示される総露光強度分布が得られることになる。 On the other hand, Oyama MM shown in FIG. 6 (b) is a graph showing the distribution of the total exposure intensity obtained when all the mounds M1 to M9 are superimposed, and is a graph corresponding to the sum of the mounds M1 to M9. (For convenience of illustration, it does not indicate an exact sum). Eventually, when exposure is performed for the irradiation reference points Q1 to Q9 by the number of times corresponding to the pixel values of the pixels P1 to P9, the total exposure intensity indicated by Oyama MM in the x-axis direction on the exposure target surface. A distribution will be obtained.
 被成形層61に対して、このような露光を行うための電子線照射プロセスが完了すると、続いて、被成形層61に対する現像プロセスが実行される。被成形層61は、電子線照射によって組成変化を生じるレジスト層によって構成されており、一般的なレジストの場合、照射されるエネルギー密度が所定の臨界値を越えると、急激に組成変化を生じる非線形性を有している。したがって、図示する大山MMのように、なだらかな総露光強度分布が得られた場合であっても、被成形層61における総露光強度が所定の閾値Eth以上となる領域を露光領域a、総露光強度が所定の閾値Eth未満となる領域を非露光領域bとすれば、露光領域aの組成は非露光領域bの組成に比べて大きく変化する。このため、被成形層61に対する現像プロセスを行うと、露光領域aと非露光領域bとの相違に基づくパターン形成を行うことができる。 When the electron beam irradiation process for performing such exposure on the molding layer 61 is completed, a developing process for the molding layer 61 is subsequently performed. The molding layer 61 is composed of a resist layer that changes in composition when irradiated with an electron beam. In the case of a general resist, when the energy density to be irradiated exceeds a predetermined critical value, the composition layer suddenly changes nonlinearly. It has sex. Therefore, even when a gentle total exposure intensity distribution is obtained as shown in the illustrated Oyama MM, an area where the total exposure intensity in the molding layer 61 is equal to or greater than a predetermined threshold Eth is defined as an exposure area a and a total exposure. If the region where the intensity is less than the predetermined threshold Eth is defined as the non-exposed region b, the composition of the exposed region a changes greatly compared to the composition of the non-exposed region b. For this reason, when the developing process is performed on the layer 61, pattern formation based on the difference between the exposed area a and the non-exposed area b can be performed.
 具体的には、レジスト層としてポジ型レジスト材料を用いた場合、現像プロセスにより、被成形層61の露光領域aのみが現像液に溶解し、残存した非露光領域b内の被成形層によりパターン形成が行われ、レジスト層としてネガ型レジスト材料を用いた場合、現像プロセスにより、被成形層61の非露光領域bのみが現像液に溶解し、残存した露光領域a内の被成形層によりパターン形成が行われる。図6には、大山MMを、閾値Ethに相当するレベルで切ったときの幅Daに応じた幅を有する露光領域aが形成された例が示されている。 Specifically, when a positive resist material is used as the resist layer, only the exposed area a of the molding layer 61 is dissolved in the developer by the development process, and the pattern is formed by the remaining molding layer in the non-exposed area b. When a negative resist material is used as the resist layer, only the non-exposed area b of the molding layer 61 is dissolved in the developer by the development process, and the pattern is formed by the remaining molding layer in the exposed area a. Formation takes place. FIG. 6 shows an example in which an exposure region a having a width corresponding to the width Da when the Oyama MM is cut at a level corresponding to the threshold Eth is shown.
 もちろん、グラフの縦軸のスケーリングや閾値Ethの値は、照射する電子ビームの強度(エネルギー密度)や1回の露光時間といった露光条件と、用いるレジスト材料や現像液の種類といった現像条件とによって変化することになるが、これらの条件を固定しておけば、グラフの縦軸上の閾値Ethも固定された値になる。したがって、得られるパターン幅Daは、大山MMの形状によって制御することができる。上述したように、大山MMは、小山M1~M9の総和として得られるものであるので、結局、個々の画素P1~P9の画素値を定義した描画データによって、パターン幅Daの制御が可能になる。 Of course, the scaling of the vertical axis of the graph and the value of the threshold Eth vary depending on the exposure conditions such as the intensity (energy density) of the irradiating electron beam and the single exposure time, and the development conditions such as the type of resist material and developer used. However, if these conditions are fixed, the threshold Eth on the vertical axis of the graph also becomes a fixed value. Therefore, the obtained pattern width Da can be controlled by the shape of Oyama MM. As described above, the Oyama MM is obtained as the sum of the Oyama M1 to M9, so that the pattern width Da can be controlled by the drawing data defining the pixel values of the individual pixels P1 to P9. .
 なお、これまでの説明では、便宜上、被成形層に対するx軸方向に関するパターニングの原理を述べたが、実際のパターニングプロセスは、xy平面上に広がる被成形層に対して行われ、y軸方向に関しても同様のパターニングが行われることになる。すなわち、図6(b) に示す大山MMは、x軸方向に関する露光強度分布を示すものであるが、描画データは、二次元画素配列として与えられるため、y軸方向に関しても同様の露光強度分布が得られることになる。そして、図6(a) に示すパターンの上下方向の幅は、このy軸方向に関する露光強度分布に基づいて決定されることになる。 In the description so far, for the sake of convenience, the principle of patterning in the x-axis direction with respect to the layer to be molded has been described. However, the actual patterning process is performed on the layer to be molded spreading on the xy plane, The same patterning will be performed. That is, Oyama MM shown in FIG. 6 (b) represents an exposure intensity distribution in the x-axis direction, but since drawing data is given as a two-dimensional pixel array, the same exposure intensity distribution in the y-axis direction is also provided. Will be obtained. Then, the vertical width of the pattern shown in FIG. 6A is determined based on the exposure intensity distribution in the y-axis direction.
 以上、従来用いられている一般的なマルチビーム電子線描画装置による描画原理を説明したが、もちろん、上述の説明は、マルチビーム電子線描画装置の一例を用いた説明であり、本発明を実施するにあたって用いるマルチビーム電子線描画装置は、上述の説明に用いた例に限定されるものではない。 As described above, the drawing principle by the general multi-beam electron beam drawing apparatus conventionally used has been described. Of course, the above description is an explanation using an example of the multi-beam electron beam drawing apparatus, and the present invention is implemented. The multi-beam electron beam drawing apparatus used for this is not limited to the example used in the above description.
 <<< §2. 線状パターンを描画するための描画データ >>>
 ここでは、§1で述べた描画原理に基づいて線状パターンを描画する場合に用いられる具体的な描画データについての説明を行う。図7(a) は、x軸方向の幅Da=25nmをもつ線状パターンの平面図であり、図7(b) は、当該線状パターンを露光するための描画データを構成する画素配列を示す図である。半導体デバイスの製造プロセスでは、配線層など、微小な線幅をもった線状パターンを多数形成する必要がある。図7(a) に示す線状パターン(ハッチング部分)は、そのようなプロセスで用いられる微小な線幅をもった細長いパターンである。なお、実際の線状パターンは、線幅(図のx軸方向に関する幅)に比べて、線長(図のy軸方向に関する長さ)は極めて大きくなり、文字通り「1本の線」として把握されるべきパターンであるが、本願では、図示の便宜上、線長を大幅に縮小した線状パターン(図7(a) のハッチング部分のように「矩形」として把握されるパターン)を例にとった説明を行うことにする。
<<< §2. Drawing data for drawing linear patterns >>
Here, specific drawing data used when drawing a linear pattern based on the drawing principle described in §1 will be described. FIG. 7A is a plan view of a linear pattern having a width Da = 25 nm in the x-axis direction, and FIG. 7B shows a pixel array constituting drawing data for exposing the linear pattern. FIG. In the manufacturing process of a semiconductor device, it is necessary to form a large number of linear patterns having a minute line width such as a wiring layer. A linear pattern (hatched portion) shown in FIG. 7A is an elongated pattern having a minute line width used in such a process. Note that the actual linear pattern has an extremely large line length (length in the y-axis direction in the figure) compared to the line width (width in the x-axis direction in the figure), and is literally understood as “one line”. In this application, for the sake of illustration, in this application, a linear pattern with a greatly reduced line length (a pattern grasped as a “rectangle” like the hatched portion in FIG. 7A) is taken as an example. I will explain.
 図7(b) に示す描画データは、被成形層上に図7(a) に示すような線状パターンを形成するために、マルチビーム電子線描画装置に与えるデータであり、それぞれの画素に所定の画素値pが定義された二次元画素配列によって構成される。既に§1で説明したとおり、この二次元画素配列を構成する個々の画素Pは、被成形層上の露光対象面に縦横にそれぞれ所定ピッチdで配置された多数の照射基準点Qに照射すべき電子線強度を示す画素値pを有している。以下、この二次元画素配列の縦方向および横方向の画素ピッチdをd=5nmに設定した例について説明を行うことにする。したがって、照射基準点Qの縦方向および横方向のピッチdも同じくd=5nmに設定される。 The drawing data shown in FIG. 7 (b) is data given to the multi-beam electron beam drawing apparatus to form a linear pattern as shown in FIG. 7 (a) on the layer to be molded. It is configured by a two-dimensional pixel array in which a predetermined pixel value p is defined. As already described in §1, the individual pixels P constituting this two-dimensional pixel array irradiate a number of irradiation reference points Q arranged at predetermined pitches d vertically and horizontally on the exposure target surface on the molding layer. It has a pixel value p indicating the power electron beam intensity. Hereinafter, an example in which the vertical and horizontal pixel pitch d of this two-dimensional pixel array is set to d = 5 nm will be described. Accordingly, the vertical and horizontal pitches d of the irradiation reference point Q are also set to d = 5 nm.
 図7(b) に示す描画データは、露光対象面(xy平面)上にこのような二次元画素配列を定義し、個々の画素にそれぞれ所定の画素値を付与したものである。この例の場合、個々の画素値pとして、p=0~15の範囲の数字を付与しているため、この描画データは、いわば4ビットの階調値をもったグレースケールの画像データということになり、個々の画素は、図4に示すような16通りの露光強度分布のうちの1つをその画素値pによって指定する役割を果たす。 The drawing data shown in FIG. 7 (b) is obtained by defining such a two-dimensional pixel array on the exposure target surface (xy plane) and giving each pixel a predetermined pixel value. In this example, as the individual pixel values p, numbers in the range of p = 0 to 15 are assigned, so that the drawing data is so-called grayscale image data having 4-bit gradation values. Each pixel serves to designate one of 16 exposure intensity distributions as shown in FIG. 4 by its pixel value p.
 なお、図7(b) に示す描画データの場合、個々の画素の画素値pは、p=0(最小値)もしくはp=15(最大値)のいずれかをとっており、中間の画素値p=1~14をとる画素は存在しない。これは、図7(a) に示す線状パターンの輪郭線が、画素の輪郭に一致しているため、中間の画素値を用いなくても、線状パターンの形成が可能になるためである。すなわち、図示の例の場合、線状パターン内に完全に含まれる画素については画素値p=15(最大値)を与え、線状パターンを全く含まない画素については画素値p=0(最小値)を与えることにより、描画データが構成されている。 In the case of the drawing data shown in FIG. 7B, the pixel value p of each pixel takes either p = 0 (minimum value) or p = 15 (maximum value), and the intermediate pixel value. There is no pixel that takes p = 1-14. This is because the outline of the linear pattern shown in FIG. 7A corresponds to the outline of the pixel, so that the linear pattern can be formed without using an intermediate pixel value. . That is, in the case of the illustrated example, a pixel value p = 15 (maximum value) is given to a pixel that is completely included in the linear pattern, and a pixel value p = 0 (minimum value) is given to a pixel that does not include any linear pattern. ), The drawing data is configured.
 このような描画データを電子線描画装置に与えると、画素値p=0をもつ画素に対応する照射基準点位置には電子ビームの照射は1回も行われず、画素値p=15をもつ画素に対応する照射基準点位置には電子ビームの照射が15回行われることになる。その結果、図4に示す小山M(15)を足し合わせることにより、大山MMが形成され、露光対象面上には、所定の閾値Ethを基準にして、図7(a) に示すような露光領域a(総露光強度が閾値Eth以上となる領域)と非露光領域b(総露光強度が閾値Eth未満となる領域)とが形成されることになる。 When such drawing data is given to the electron beam drawing apparatus, the irradiation reference point position corresponding to the pixel having the pixel value p = 0 is not irradiated with the electron beam once, and the pixel having the pixel value p = 15. The irradiation of the electron beam is performed 15 times at the irradiation reference point position corresponding to. As a result, the small mountain M (15) shown in FIG. 4 is added to form a large mountain MM, and the exposure as shown in FIG. 7 (a) is performed on the exposure target surface with a predetermined threshold value Eth as a reference. Region a (region where the total exposure intensity is greater than or equal to the threshold Eth) and non-exposure region b (region where the total exposure intensity is less than the threshold Eth) are formed.
 図7(a) に示す例のように、線状パターンの輪郭線が、画素の輪郭に一致するような設計を行うと、二次元画素配列上に線状パターンを配置したときに、線状パターン内に完全に含まれる画素(以下、完全画素と呼ぶ)と、線状パターンを全く含まない画素(以下、空画素と呼ぶ)との2種類の画素のみが定義されることになる。そこで、完全画素については画素値p=15(最大値:電子ビームを最大回数だけ照射することを示す画素値)を与え、空画素については画素値p=0(最小値:電子ビームを1回も照射しないことを示す画素値)を与えるようにすれば、図7(b) に示すような描画データが得られる。 When the design is made such that the outline of the linear pattern coincides with the outline of the pixel as in the example shown in FIG. 7A, the linear pattern is obtained when the linear pattern is arranged on the two-dimensional pixel array. Only two types of pixels are defined: pixels that are completely included in the pattern (hereinafter referred to as complete pixels) and pixels that do not include any linear pattern (hereinafter referred to as empty pixels). Therefore, a pixel value p = 15 (maximum value: a pixel value indicating that the electron beam is irradiated the maximum number of times) is given for the complete pixel, and a pixel value p = 0 (minimum value: the electron beam is applied once) for the empty pixel. If a pixel value indicating that no irradiation is performed) is given, drawing data as shown in FIG. 7B is obtained.
 一般的なマルチビーム電子線描画装置を用いたパターニングプロセスの場合、通常、輪郭線が画素の輪郭に一致するような線状パターンを示す描画データを与えた場合に、寸法誤差のない正確なパターンが形成されるような標準パターニング条件を設定した運用が行われる。したがって、一般に、線幅Daが、画素の線幅方向ピッチdの整数倍となるような線状パターンを形成する場合、当該線状パターンの輪郭線が、画素の輪郭に一致するような位置合わせを行った設計を行えば、標準パターニング条件により、寸法誤差のない正確なパターン形成を行うことができる。 In the case of a patterning process using a general multi-beam electron beam lithography system, an accurate pattern with no dimensional error is usually given when drawing data showing a linear pattern whose contour line matches the pixel contour is given. An operation is performed in which standard patterning conditions are set so as to form. Therefore, in general, when forming a linear pattern in which the line width Da is an integer multiple of the pixel line width direction pitch d, alignment is performed so that the outline of the linear pattern matches the outline of the pixel. If the design is performed, accurate pattern formation without dimensional errors can be performed under standard patterning conditions.
 図7に示す例の場合、画素ピッチd=5nmであり、しかも線状パターンの線幅Daは25nmであるため、線幅Daは、画素ピッチdのちょうど5倍になっている。したがって、線状パターンの設計時には、左右両側の輪郭線が画素の輪郭に一致するような設計を行うことが可能である。そのような設計を行い、上記標準パターニング条件でパターン形成処理(露光処理および現像処理)を行えば、設計どおりの寸法をもった物理的パターンが得られる。すなわち、露光領域aとして残存する被成形層(被成形層がネガ型レジストの場合)、もしくは、非露光領域bとして残存する被成形層(被成形層がポジ型レジストの場合)によって、線幅25nmをもった物理的なパターンを形成することができる。 In the case of the example shown in FIG. 7, since the pixel pitch d = 5 nm and the line width Da of the linear pattern is 25 nm, the line width Da is exactly five times the pixel pitch d. Therefore, when designing a linear pattern, it is possible to design such that the contour lines on both the left and right sides match the contour of the pixel. If such a design is performed and pattern formation processing (exposure processing and development processing) is performed under the standard patterning conditions, a physical pattern having dimensions as designed can be obtained. That is, the line width depends on the molding layer remaining as the exposure region a (when the molding layer is a negative resist) or the molding layer remaining as the non-exposure region b (when the molding layer is a positive resist). A physical pattern with 25 nm can be formed.
 一方、画素ピッチdに満たないサブピクセルレベルの端数寸法の線幅をもった線状パターンを形成する場合には、輪郭線の内側直近部における当該端数寸法に相当する画素について、中間的な画素値を与えるようにすればよい。図8(a) は、x軸方向の幅Da=27nmをもつ線状パターンの平面図であり、図8(b) は、当該線状パターンを露光するための描画データを構成する画素配列を示す図である。図7に示す線状パターンの線幅DaがDa=25nmであったのに対して、図8に示す線状パターンの線幅DaはDa=27nmであり、2nmだけ幅が広くなっている。図示の例の場合、画素ピッチdは5nmであるので、この2nmの幅増加分は、画素ピッチdに満たないサブピクセルレベルの端数寸法ということになる。 On the other hand, when forming a linear pattern having a line width of a fractional dimension at a sub-pixel level that is less than the pixel pitch d, an intermediate pixel is used for pixels corresponding to the fractional dimension in the innermost portion of the contour line. A value should be given. FIG. 8A is a plan view of a linear pattern having a width Da = 27 nm in the x-axis direction, and FIG. 8B is a pixel array that constitutes drawing data for exposing the linear pattern. FIG. Whereas the line width Da of the linear pattern shown in FIG. 7 is Da = 25 nm, the line width Da of the linear pattern shown in FIG. 8 is Da = 27 nm, which is wider by 2 nm. In the case of the illustrated example, since the pixel pitch d is 5 nm, the increase in width of 2 nm is a fractional dimension at a sub-pixel level that is less than the pixel pitch d.
 そこで、図8(b) に示す描画データでは、この2nmの幅増加分を、画素値pとして、p=6という中間的な階調値をもった画素列を設けることにより補填している。すなわち、図8に示す例の場合、Da=27nmなる線幅をもつ線状パターンについて、その左側の輪郭線が画素の輪郭に一致するような設計を行っているため、第3列目~第7列目までの画素列については、図7に示す例と同様に、画素値p=15(最大値)が付与されているが、第8列目の画素列には、画素値p=6が付与されている。これは、この第8列目の画素列が、線状パターンを部分的に含む画素(以下、不完全画素と呼ぶ)であるため、当該線状パターンの含有率に応じて定まる階調値を画素値pとして与えた結果である。 Therefore, in the drawing data shown in FIG. 8B, this 2 nm width increase is compensated by providing a pixel row having an intermediate gradation value of p = 6 as the pixel value p. That is, in the case of the example shown in FIG. 8, since the left side contour line of the linear pattern having a line width of Da = 27 nm is designed to match the pixel contour, As for the pixel columns up to the seventh column, the pixel value p = 15 (maximum value) is given as in the example shown in FIG. 7, but the pixel value p = 6 is assigned to the eighth pixel column. Is granted. This is because the pixel column of the eighth column is a pixel partially including a linear pattern (hereinafter referred to as an incomplete pixel), and therefore a gradation value determined according to the content rate of the linear pattern is set. This is a result given as a pixel value p.
 上述したとおり、ここに示す例の場合、線状パターン内に完全に含まれる完全画素(第3列目~第7列目までの画素)については最大画素値p=15を与え、線状パターンを全く含まない空画素(第1,2,9,10列目の画素)については最小画素値p=0を与えることになる。そして、線状パターンを部分的に含む不完全画素(第8列目の画素)については、線状パターンの含有率「4/10」を最大画素値p=15に乗じることにより得られる積6を画素値として与えている。 As described above, in the case of the example shown here, the maximum pixel value p = 15 is given to the complete pixels (pixels from the third column to the seventh column) that are completely included in the linear pattern, and the linear pattern For empty pixels (pixels in the first, second, ninth, and tenth columns) that do not contain any pixel number, the minimum pixel value p = 0 is given. For an incomplete pixel (a pixel in the eighth column) partially including the linear pattern, the product 6 obtained by multiplying the maximum pixel value p = 15 by the linear pattern content “4/10”. Is given as a pixel value.
 この図8(b) に示す描画データを電子線描画装置に与えれば、画素値p=0をもつ画素に対応する照射基準点位置には電子ビームの照射は1回も行われず、画素値p=6,p=15をもつ画素に対応する照射基準点位置には、電子ビームの照射が、それぞれ6回,15回行われることになる。そして、これらの各露光処理によって形成される露光強度分布の小山を足し合わせることにより得られる大山MMについて、所定の閾値Ethを基準にした区分けを行うことにより、図8(a) に示すような露光領域a(総露光強度が閾値Eth以上となる領域)と非露光領域b(総露光強度が閾値Eth未満となる領域)とが形成され、実際に現像を行えば、線幅Da=27nmをもった物理的な線状パターンが形成されることになる。 If the drawing data shown in FIG. 8B is given to the electron beam drawing apparatus, the irradiation reference point position corresponding to the pixel having the pixel value p = 0 is not irradiated with the electron beam even once, and the pixel value p The irradiation reference point position corresponding to the pixel having = 6 and p = 15 is irradiated with the electron beam 6 times and 15 times, respectively. Then, with respect to the large mountain MM obtained by adding the small peaks of the exposure intensity distribution formed by each of these exposure processes, the classification based on the predetermined threshold Eth is performed, as shown in FIG. An exposure area a (area where the total exposure intensity is greater than or equal to the threshold Eth) and a non-exposure area b (area where the total exposure intensity is less than the threshold Eth) are formed, and if development is actually performed, the line width Da = 27 nm is obtained. A physical linear pattern is formed.
 <<< §3. 本発明における露光強度分布の推定原理 >>>
 既に述べたとおり、電子線描画装置を利用したパターニングでは、近接効果により、実際に形成されるべきパターンに寸法変動が生じる。そのため、実用上は、特定の描画データを用いて被成形層に電子線描画を行った場合に、実際に得られるであろう露光強度分布をコンピュータシミュレーションによって推定し、その結果に基づいて元の描画データを補正する必要がある。
<<< §3. Estimation principle of exposure intensity distribution in the present invention >>
As already described, in patterning using an electron beam drawing apparatus, a dimensional variation occurs in a pattern to be actually formed due to the proximity effect. Therefore, in practice, when electron beam drawing is performed on a layer to be molded using specific drawing data, the exposure intensity distribution that would actually be obtained is estimated by computer simulation, and the original result is based on the result. It is necessary to correct the drawing data.
 前掲の特許文献4には、このような露光強度分布の推定方法の一例として、シングルビーム方式の電子線描画装置に適した方法が開示されている。そこで、ここでは、シングルビーム方式とマルチビーム方式とを対比しながら、本発明に係る露光強度分布の推定方法の基本原理を説明する。 The above-mentioned Patent Document 4 discloses a method suitable for a single beam electron beam lithography apparatus as an example of such an exposure intensity distribution estimation method. Therefore, here, the basic principle of the exposure intensity distribution estimation method according to the present invention will be described while comparing the single beam method and the multi-beam method.
 図9は、同じパターンを、シングルビーム方式で描画する手順とマルチビーム方式で描画する手順とを比較する図であり、図9(a) はシングルビーム方式で描画する手順を示し、図9(b) はマルチビーム方式で描画する手順を示している。いずれも露光対象面上に「L字状」のパターンを描画する手順を示しているが、両者は大きく相違する。 FIG. 9 is a diagram comparing the procedure for drawing the same pattern by the single beam method and the procedure for drawing by the multi-beam method, and FIG. 9A shows the procedure for drawing by the single beam method. b) shows the procedure for drawing by the multi-beam method. In either case, the procedure for drawing the “L-shaped” pattern on the exposure target surface is shown.
 まず、図9(a) に示すシングルビーム方式で描画する手順では、合計2回の露光作業を行うだけで済む。シングルビーム方式は、VSB方式(Variable Shape Beam)とも呼ばれ、成形した1本の電子ビームを任意の強度で照射して露光を行う方式を採用するものであり、1回の露光作業で、所望の形状(通常は、任意の矩形形状)の領域を露光することができる。図9(a) に示す例は、正方形に成形した1本の電子ビームを用いて矩形領域A1に対する露光作業を行い、続いて、長方形に成形した1本の電子ビームを用いて矩形領域A2に対する露光作業を行った例である。 First, in the procedure of drawing by the single beam method shown in FIG. 9 (a), it is only necessary to perform a total of two exposure operations. The single beam method is also called VSB method (Variable Shape Beam), which employs a method in which exposure is performed by irradiating one shaped electron beam with an arbitrary intensity. The region of the shape (usually an arbitrary rectangular shape) can be exposed. In the example shown in FIG. 9 (a), an exposure operation is performed on the rectangular area A1 using one electron beam formed into a square, and then the rectangular area A2 is processed using one electron beam formed into a rectangle. It is the example which performed the exposure operation | work.
 この例の場合、図にx印で示すような評価点V1,V2を定義すると、矩形領域A2に含まれる評価点V1は、2回目の露光作業時に電子ビームの直接照射を受けた点ということになり、評価点V2は、電子ビームの直接照射を全く受けなかった点ということになる。当然、評価点V1の露光強度の方が評価点V2の露光強度よりも高くなる。しかしながら、近接効果の影響により、評価点V1には、矩形領域A1を対象とした第1回目の露光作業時にも若干のエネルギーが蓄積することになる。同様に、評価点V2には、合計2回の露光作業時に、若干のエネルギーが蓄積することになる。 In the case of this example, if evaluation points V1 and V2 as shown by x in the figure are defined, the evaluation point V1 included in the rectangular area A2 is a point that has been directly irradiated with an electron beam during the second exposure operation. Thus, the evaluation point V2 is a point where no direct irradiation of the electron beam was received. Naturally, the exposure intensity at the evaluation point V1 is higher than the exposure intensity at the evaluation point V2. However, due to the influence of the proximity effect, some energy is accumulated at the evaluation point V1 even during the first exposure operation for the rectangular area A1. Similarly, some energy is accumulated in the evaluation point V2 during a total of two exposure operations.
 したがって、評価点V1の総露光強度は、第1回目の露光作業時における近接効果で蓄積されたエネルギーと第2回目の露光作業時における直接照射で蓄積されたエネルギーとの和になる。同様に、評価点V2の総露光強度は、合計2回の露光作業時における近接効果で蓄積されたエネルギーの和になる。このような近接効果が生じるため、露光対象面上に実際に得られる露光強度分布は、図9(a) に示すような単純な「L字状」のパターンにはならず、境界部分が外側に広がったものになる。 Therefore, the total exposure intensity at the evaluation point V1 is the sum of the energy accumulated by the proximity effect in the first exposure operation and the energy accumulated by the direct irradiation in the second exposure operation. Similarly, the total exposure intensity at the evaluation point V2 is the sum of the energy accumulated by the proximity effect during the total two exposure operations. Since such a proximity effect occurs, the exposure intensity distribution actually obtained on the exposure target surface is not a simple “L-shaped” pattern as shown in FIG. It will be spread to.
 このため、実際に2回の露光作業を行うときには、近接効果を考慮して、電子ビームの形状や照射強度を補正する必要がある。たとえば、近接効果がなければ、矩形領域A1,A2ともに照射強度を255に設定して露光作業を行えばよいところを、実際には、矩形領域A1を対象とする第1回目の露光作業時には照射強度を255とし、矩形領域A2を対象とする第2回目の露光作業時には照射強度を230とする、といった補正処理が行われることになる。 For this reason, when actually performing the exposure operation twice, it is necessary to correct the shape and irradiation intensity of the electron beam in consideration of the proximity effect. For example, if there is no proximity effect, the exposure work may be performed with the irradiation intensity set to 255 for both the rectangular areas A1 and A2. In practice, the irradiation is performed during the first exposure work for the rectangular area A1. Correction processing is performed such that the intensity is set to 255 and the irradiation intensity is set to 230 in the second exposure operation for the rectangular area A2.
 一方、図9(b) は、図9(a) に示す「L字状」のパターンを、マルチビーム方式の電子線描画装置を用いて露光する際に、当該電子線描画装置に与える描画データを示している。この描画データは、図7(b) や図8(b) に示す描画データと同様に、二次元画素配列によって構成されている。この描画データの各画素は、マルチビーム電子線描画装置によって照射される個々の電子ビームに対応し、各画素値は当該電子ビームの照射強度を示している。 On the other hand, FIG. 9 (b) shows the drawing data given to the electron beam drawing apparatus when the “L-shaped” pattern shown in FIG. 9 (a) is exposed using a multi-beam electron beam drawing apparatus. Is shown. This drawing data is constituted by a two-dimensional pixel array, similarly to the drawing data shown in FIG. 7B and FIG. 8B. Each pixel of the drawing data corresponds to an individual electron beam irradiated by the multi-beam electron beam drawing apparatus, and each pixel value indicates the irradiation intensity of the electron beam.
 図9(a) に破線で示す輪郭線は、図9(b) に示す二次元画素配列の輪郭線に対応する。§2で述べた描画データの役割を考慮すれば、図9(b) に示す描画データを用いることにより、図9(a) に示す「L字状」のパターンと同様のパターンが形成できることが容易に理解できよう。§2で述べたとおり、画素値p=15をもつ画素に対応する照射位置には電子ビームの照射が15回行われ、画素値p=7をもつ画素に対応する照射位置には電子ビームの照射が7回行われ、画素値p=4をもつ画素に対応する照射位置には電子ビームの照射が4回行われることになり、各照射位置には、照射回数に応じたエネルギーが蓄積される。 The outline indicated by the broken line in FIG. 9 (a) 輪 郭 corresponds to the outline of the two-dimensional pixel array shown in FIG. 9 (b). In consideration of the role of the drawing data described in §2, a pattern similar to the “L-shaped” pattern shown in FIG. 9A can be formed by using the drawing data shown in FIG. Easy to understand. As described in §2, the irradiation position corresponding to the pixel having the pixel value p = 15 is irradiated with the electron beam 15 times, and the irradiation position corresponding to the pixel having the pixel value p = 7 is irradiated with the electron beam. Irradiation is performed seven times, and irradiation with an electron beam is performed four times at an irradiation position corresponding to a pixel having a pixel value p = 4, and energy corresponding to the number of irradiations is accumulated at each irradiation position. The
 もちろん、1本の電子ビームは、1つの画素に対応する領域にのみ照射されるわけではなく、図5に示すように、隣接する画素にも重畳して照射されることになるので、露光対象面上に定義した1つの評価点には、多数の電子ビームからのエネルギーが蓄積されることになる。その上、評価点からかなり離れた位置に照射された電子ビームからも、近接効果によるエネルギー供給がなされることになるので、露光対象面上に定義された各評価点について、最終的な蓄積エネルギー量(総露光強度)を求めるプロセスはかなり複雑にならざるを得ない。 Of course, one electron beam does not irradiate only the region corresponding to one pixel, and as shown in FIG. One evaluation point defined on the surface accumulates energy from multiple electron beams. In addition, since the energy is supplied by the proximity effect from the electron beam irradiated at a position far from the evaluation point, the final stored energy is determined for each evaluation point defined on the exposure target surface. The process for determining the amount (total exposure intensity) must be quite complicated.
 ここでは、説明の便宜上、前掲の特許文献4に開示されている露光強度分布の推定方法の基本概念を簡単に述べておく。この推定方法は、シングルビーム方式の電子線描画装置に適した方法であり、露光対象面に照射された電子が、ガウスの誤差関数で示される強度分布で周囲に広がるものと仮定して、畳み込み演算を行うことにより、レジスト層全体についての露光強度分布が算出される。 Here, for convenience of explanation, the basic concept of the exposure intensity distribution estimation method disclosed in the above-mentioned Patent Document 4 will be briefly described. This estimation method is suitable for a single-beam electron beam lithography system, assuming that the electron irradiated to the exposure target surface spreads around in the intensity distribution indicated by the Gaussian error function. By performing the calculation, the exposure intensity distribution for the entire resist layer is calculated.
 図10は、シングルビーム方式で描画を行う際の任意の評価点V(x,y)における総露光強度の演算原理を示す平面図である。ここでは、図9(a) に示す矩形領域A1に対する第1回目の露光作業が行われた際に、任意の評価点V(x,y)に蓄積されるエネルギー量を考えてみる。いま、図示のとおり、露光対象面上にxy二次元直交座標系を定義し、矩形領域A1が、当該座標系上において正則な位置に配置されているものとしよう。具体的には、矩形領域A1の左辺は座標値x=l(leftの意)の位置に配置され、右辺は座標値x=r(rightの意)の位置に配置され、上辺は座標値y=t(topの意)の位置に配置され、下辺は座標値y=b(bottomの意)の位置に配置されているものとする。 FIG. 10 is a plan view showing the calculation principle of the total exposure intensity at an arbitrary evaluation point V (x, y) when drawing by the single beam method. Here, let us consider the amount of energy stored at an arbitrary evaluation point V (x, y) when the first exposure operation is performed on the rectangular area A1 shown in FIG. 9A. Assume that an xy two-dimensional orthogonal coordinate system is defined on the exposure target surface and the rectangular area A1 is arranged at a regular position on the coordinate system as shown in the figure. Specifically, the left side of the rectangular area A1 is arranged at the position of the coordinate value x = 1 (meaning left), the right side is arranged at the position of the coordinate value x = r (meaning right), and the upper side is the coordinate value y. = T (meaning top), and the lower side is located at the position of coordinate value y = b (meaning bottom).
 第1回目の露光作業では、矩形領域A1に対して、矩形状に成形された1本の電子ビームが照射され、矩形領域A1内の各部に電子が照射される。ただ、図示の評価点V(x,y)のように、矩形領域A1の外側の位置にも、前方散乱や後方散乱といった近接効果によって電子が到達することになるので、その影響を受けてエネルギーの蓄積が生じることになる。そこで、ここでは、電子ビームの照射対象となる矩形領域A1内の座標(x′,y′)の位置に参照点T(x′,y′)を定義し、第1回目の露光作業において、この参照点T(x′,y′)に照射された電子により、評価点V(x,y)の蓄積エネルギー量にどの程度の影響が及ぶかを考えてみる。 In the first exposure operation, one rectangular electron beam is irradiated onto the rectangular area A1, and each part in the rectangular area A1 is irradiated with electrons. However, as shown in the illustrated evaluation point V (x, y), electrons reach the position outside the rectangular area A1 due to proximity effects such as forward scattering and backscattering, so that the energy is affected by the influence. Will be accumulated. Therefore, here, the reference point T (x ′, y ′) is defined at the position of the coordinate (x ′, y ′) in the rectangular area A1 to be irradiated with the electron beam, and in the first exposure operation, Consider how much the amount of energy stored in the evaluation point V (x, y) is affected by the electrons irradiated to the reference point T (x ′, y ′).
 この場合、参照点T(x′,y′)に照射された電子が周囲へ及ぼす影響の度合いは、参照点T(x′,y′)からの距離に依存した関数になり、評価点V(x,y)が参照点T(x′,y′)に近いほど、参照点T(x′,y′)に照射された電子から受ける影響が大きくなる。したがって、図10に示す例の場合、評価点V(x,y)が参照点T(x′,y′)から受ける影響の度合いは、両点間の距離Rの関数になる。もちろん、評価点V(x,y)の蓄積エネルギー値は、図示の参照点T(x′,y′)だけでなく、矩形領域A1内のすべての点に照射された電子からの影響を受けることになる。また、実際には、複数N個の領域に対して、順番に露光作業が繰り返されることになる(図9に示す例の場合は、N=2として、矩形領域A1,A2の2つの領域)。 In this case, the degree of influence of electrons irradiated to the reference point T (x ′, y ′) on the surroundings is a function depending on the distance from the reference point T (x ′, y ′), and the evaluation point V The closer (x, y) is to the reference point T (x ′, y ′), the greater the influence received from the electrons irradiated to the reference point T (x ′, y ′). Therefore, in the example shown in FIG. 10, the degree of influence of the evaluation point V (x, y) from the reference point T (x ′, y ′) is a function of the distance R between the two points. Of course, the stored energy value of the evaluation point V (x, y) is influenced not only by the illustrated reference point T (x ′, y ′) but also by electrons irradiated to all points in the rectangular area A1. It will be. Actually, the exposure operation is repeated in order for a plurality of N areas (in the case of the example shown in FIG. 9, N = 2 and two areas of the rectangular areas A1 and A2). .
 したがって、図10に示す任意の評価点V(x,y)における最終的な蓄積エネルギー量(総露光強度)であるv(x,y)は、図11の式(1-1)によって求めることができる(本願では、評価点を大文字Vで示し、その蓄積エネルギー量を小文字vで示す。)
。ここで、関数psf(R)は、一般に点拡がり関数(point spread function)と呼ばれる関数であり、ある参照点Tが周囲へ及ぼす影響の度合いを示す関数である。通常、参照点Tからの距離Rが大きくなるほど、影響の度合いは低減する傾向を示す。
Therefore, v (x, y) which is the final stored energy amount (total exposure intensity) at an arbitrary evaluation point V (x, y) shown in FIG. 10 is obtained by the equation (1-1) in FIG. (In this application, the evaluation point is indicated by a capital letter V and the amount of stored energy is indicated by a small letter v.)
. Here, the function psf (R) is a function generally called a point spread function, and is a function indicating the degree of influence of a reference point T on the surroundings. Usually, the degree of influence tends to decrease as the distance R from the reference point T increases.
 式(1-1)の右辺における二重積分の項は、図10に示す参照点T(x′,y′)についての点拡がり関数psf(R)を、x座標値l~rまで(矩形領域A1の左端から右端まで)、かつ、y座標値b~tまで(矩形領域A1の下端から上端まで)積分するための項であり、Diは、第i番目の矩形領域Aiに対する露光作業における電子ビームの照射強度(ドーズ量)である。また、σは、電子線描画装置の電子加速電圧やレジストの材質などによって定まる前方散乱パラメータである。 The term of the double integral on the right side of the equation (1-1) indicates that the point spread function psf (R) for the reference point T (x ′, y ′) shown in FIG. This is a term for integration from the left end of the area A1 to the right end) and from y coordinate values b to t (from the lower end to the upper end of the rectangular area A1), and Di is an exposure operation for the i-th rectangular area Ai. This is the irradiation intensity (dose amount) of the electron beam. Further, σ is a forward scattering parameter determined by the electron acceleration voltage of the electron beam lithography apparatus, the resist material, and the like.
 式(1-1)の右辺先頭のサメーションΣは、複数N個の領域に対して行われる露光作業による結果を加算するためのものである。図9(a) に示す例の場合、N=2に設定し、第1回目の露光作業(i=1として矩形領域A1に対して行われる露光作業)によって蓄積されるエネルギー量と、第2回目の露光作業(i=2として矩形領域A2に対して行われる露光作業)によって蓄積されるエネルギー量との和が、評価点V(x,y)の総露光強度v(x,y)ということになる。 The summation Σ at the beginning of the right side of the equation (1-1) is for adding the results of the exposure work performed on a plurality of N areas. In the case of the example shown in FIG. 9A, the energy amount accumulated by the first exposure operation (exposure operation performed on the rectangular area A1 with i = 1) is set to N = 2, and the second The sum of the amount of energy accumulated by the first exposure operation (exposure operation performed on the rectangular area A2 with i = 2) is referred to as the total exposure intensity v (x, y) of the evaluation point V (x, y). It will be.
 図10に示すとおり、R=√((x′-x)+(y′-y))であるから、図11の式(1-1)は、式(1-2)のように書き直すことができる。ここで、x′-x=X,y′-y=Yとおけば、点拡がり関数psf(R)は、X,Yの関数としてpsf(X,Y)と表現できるので、式(1-2)は式(1-3)のように表すことができる。点拡がり関数psf(X,Y)は、特定の参照点Tから、x軸方向に距離Xだけ離れ、y軸方向に距離Yだけ離れた位置にある評価点Vにおける影響の度合いを示す関数である。前掲の特許文献4には、この点拡がり関数psf(X,Y)として、二次元のガウスの誤差関数を用いた例が示されている。 As shown in FIG. 10, since R = √ ((x′−x) 2 + (y′−y) 2 ), the expression (1-1) in FIG. 11 becomes as shown in the expression (1-2) Can be rewritten. Here, if x′−x = X, y′−y = Y, the point spread function psf (R) can be expressed as psf (X, Y) as a function of X and Y. 2) can be expressed as in formula (1-3). The point spread function psf (X, Y) is a function indicating the degree of influence at the evaluation point V at a position away from the specific reference point T by the distance X in the x-axis direction and by the distance Y in the y-axis direction. is there. The above-mentioned Patent Document 4 shows an example in which a two-dimensional Gaussian error function is used as the point spread function psf (X, Y).
 そこで、ここではまず、図11の各式で示すシングルビーム方式を前提とした露光強度分布の演算方法を、マルチビーム方式に適用することを考えてみる。図12は、マルチビーム方式で描画を行う際の任意の評価点V(x,y)における総露光強度の演算原理を示す平面図である。図10に示すシングルビーム方式の場合と比較すると、矩形領域A1を画素P(i,j)に置き換えた点が異なっている。 Therefore, here, first, let us consider applying the exposure intensity distribution calculation method based on the single beam method shown in the equations of FIG. 11 to the multi-beam method. FIG. 12 is a plan view showing the calculation principle of the total exposure intensity at an arbitrary evaluation point V (x, y) when drawing by the multi-beam method. Compared to the single beam system shown in FIG. 10, the difference is that the rectangular area A1 is replaced with a pixel P (i, j).
 図10に示すシングルビーム方式における演算では、第i番目の矩形領域Aiの範囲内で参照点T(x′,y′)を移動させて畳み込みを行う演算を、i=1~Nについて行うことにより、評価点V(x,y)における総露光強度v(x,y)を算出する処理が、図11の式に基づいて行われる。したがって、図12に示すマルチビーム方式における演算では、第i行第j列目の画素P(i,j)の範囲内で参照点T(x′,y′)を移動させて畳み込みを行う演算を、描画データを構成する全画素について行うことにより、評価点V(x,y)における総露光強度v(x,y)を算出する処理を行えばよい。 In the calculation in the single beam method shown in FIG. 10, the calculation for performing the convolution by moving the reference point T (x ′, y ′) within the range of the i-th rectangular area Ai is performed for i = 1 to N. Thus, the process of calculating the total exposure intensity v (x, y) at the evaluation point V (x, y) is performed based on the equation of FIG. Therefore, in the calculation in the multi-beam method shown in FIG. 12, the calculation is performed by moving the reference point T (x ′, y ′) within the range of the pixel P (i, j) in the i-th row and j-th column. Is performed for all the pixels constituting the drawing data, thereby calculating the total exposure intensity v (x, y) at the evaluation point V (x, y).
 図13は、図12に示す演算原理に用いる演算式の一例を示す図である。図12に示す任意の評価点V(x,y)における最終的な蓄積エネルギー量(総露光強度)であるv(x,y)は、図13の式(2-1)によって求めることができる。この式(2-1)は、図11の式(1-1)に対応するものであり、式(1-1)のサメーションΣを積分に置き換えたものである。前述したとおり、最近では、25万本以上の電子ビームを照射可能なマルチビーム電子線描画装置が利用されており、そのような電子線描画装置に与える描画データは、25万個以上の画素をもった画素配列になる。したがって、図11の式(1-1)では、Nが25万以上という膨大な値になる。 FIG. 13 is a diagram showing an example of an arithmetic expression used for the arithmetic principle shown in FIG. The final stored energy amount (total exposure intensity) at an arbitrary evaluation point V (x, y) shown in FIG. 12 can be obtained by equation (2-1) in FIG. . This equation (2-1) corresponds to the equation (1-1) in FIG. 11, and is obtained by replacing the summation Σ in the equation (1-1) with an integral. As described above, recently, a multi-beam electron beam drawing apparatus capable of irradiating 250,000 or more electron beams has been used, and drawing data given to such an electron beam drawing apparatus includes 250,000 or more pixels. It has a pixel array. Therefore, in the equation (1-1) in FIG. 11, N is an enormous value of 250,000 or more.
 そこで、図13の式(2-1)では、サメーションΣを積分に置き換え、描画データを構成する全画素について積分を行う形式で、総露光強度v(x,y)を算出している。ここで、関数psf(R)は、前述したとおり点拡がり関数であり、ある参照点Tが周囲へ及ぼす影響の度合いを示している。一方、D(x′,y′)は、座標(x′,y′)で示される参照点T(x′,y′)の位置における電子ビームの照射強度(ドーズ量)であり、画素P(i,j)の画素値pに基づいて決定される値になる。なお、積分範囲は、x軸方向およびy軸方向ともに、マイナス無限大~プラス無限大の範囲をとっているが、これは露光対象面全体を演算対象としたためである。 Therefore, in equation (2-1) in FIG. 13, the summation intensity v (x, y) is calculated in a form in which the summation Σ is replaced by integration and integration is performed for all pixels constituting the drawing data. Here, the function psf (R) is a point spread function as described above, and indicates the degree of influence of a reference point T on the surroundings. On the other hand, D (x ′, y ′) is the irradiation intensity (dose amount) of the electron beam at the position of the reference point T (x ′, y ′) indicated by the coordinates (x ′, y ′). The value is determined based on the pixel value p of (i, j). The integration range is in the range from minus infinity to plus infinity in both the x-axis direction and the y-axis direction. This is because the entire exposure target surface is a calculation target.
 結局、図13の式(2-1)は、電子線照射領域内に定義された多数の参照点T(x′,y′)について、電子線照射強度を示す関数D(x′,y′)と当該参照点T(x′,y′)が周囲へ及ぼす影響の度合いを示す点拡がり関数psf(R)との畳み込み積分を行うことにより、個々の評価点V(x,y)における総露光強度v(x,y)を演算する式ということができる。 As a result, the equation (2-1) in FIG. 13 is obtained from the function D (x ′, y ′) indicating the electron beam irradiation intensity for a number of reference points T (x ′, y ′) defined in the electron beam irradiation region. ) And the point spread function psf (R) indicating the degree of influence of the reference point T (x ′, y ′) on the surroundings, the total at each evaluation point V (x, y) is obtained. It can be said that the exposure intensity v (x, y) is calculated.
 ここでも、図12に示すとおり、R=√((x′-x)+(y′-y))であるから、図13の式(2-1)は、式(2-2)のように書き直すことができる。ここで、x′-x=X,y′-y=Yとおけば、点拡がり関数psf(R)は、X,Yの関数としてpsf(X,Y)と表現できるので、式(2-2)は式(2-3)のように表すことができる。ここでも、点拡がり関数psf(X,Y)は、特定の参照点Tから、x軸方向に距離Xだけ離れ、y軸方向に距離Yだけ離れた位置にある評価点Vにおける影響の度合いを示す関数である。 Again, as shown in FIG. 12, since R = √ ((x′−x) 2 + (y′−y) 2 ), the equation (2-1) in FIG. Can be rewritten as Here, if x′−x = X, y′−y = Y, the point spread function psf (R) can be expressed as psf (X, Y) as a function of X and Y. 2) can be expressed as in formula (2-3). Again, the point spread function psf (X, Y) indicates the degree of influence at the evaluation point V at a position away from the specific reference point T by the distance X in the x-axis direction and by the distance Y in the y-axis direction. It is a function to show.
 <<< §4. 本発明に係るシミュレーション方法の特徴 >>>
 本発明は、マルチビーム電子線描画装置を用いて被成形層に所定のパターンを露光描画する際の露光強度分布を求める新たなシミュレーション方法を提案するものである。ここでは、この新たなシミュレーション方法の特徴を説明する。
<<< §4. Features of the simulation method according to the present invention >>
The present invention proposes a new simulation method for obtaining an exposure intensity distribution when a predetermined pattern is exposed and drawn on a molding layer using a multi-beam electron beam drawing apparatus. Here, the characteristics of this new simulation method will be described.
 まず、第1の特徴は、図13に示す式(2-3)に基づいて、座標(x,y)に位置する任意の評価点V(x,y)における総露光強度v(x,y)を算出する点にある。そして、第2の特徴は、この式(2-3)における点拡がり関数psf(X,Y)として、電子線描画装置のアパーチャーの開口サイズに基づいて定まる開口サイズパラメータを含む関数を用いる点にある。 First, the first feature is that, based on the equation (2-3) shown in FIG. 13, the total exposure intensity v (x, y) at an arbitrary evaluation point V (x, y) located at the coordinates (x, y). ) Is calculated. The second feature is that a function including an aperture size parameter determined based on the aperture size of the aperture of the electron beam lithography apparatus is used as the point spread function psf (X, Y) in the equation (2-3). is there.
 図14は、マルチビーム方式で描画を行う際に、本発明に係るシミュレーション方法で露光強度分布を求める演算に用いる演算式の一例を示す図である。以下、図示されている式(3),(4),(5)について説明する。 FIG. 14 is a diagram showing an example of an arithmetic expression used for calculating the exposure intensity distribution by the simulation method according to the present invention when drawing is performed by the multi-beam method. Hereinafter, the equations (3), (4), and (5) illustrated will be described.
 まず、式(3)は、図13に示す式(2-3)と全く同じ式であり、本発明に係るシミュレーション方法に用いられる基本式になる。上述したとおり、左辺のv(x,y)は、座標(x,y)に位置する任意の評価点V(x,y)における総露光強度であり、すべての座標位置について値v(x,y)を算出すれば、露光対象面上の露光強度分布が得られる。この式(3)は、上述したとおり、電子線照射領域内に定義された参照点T(x′,y′)についての電子線照射強度を示す関数D(x′,y′)と、当該参照点T(x′,y′)が周囲へ及ぼす影響の度合いを示す点拡がり関数psf(X,Y)と、の畳み込み積分を示す式である。前述したとおり、X=x′-x、Y=y′-yである。 First, equation (3) is exactly the same as equation (2-3) shown in FIG. 13, and is the basic equation used in the simulation method according to the present invention. As described above, v (x, y) on the left side is the total exposure intensity at an arbitrary evaluation point V (x, y) located at the coordinates (x, y), and the value v (x, y) for all coordinate positions. If y) is calculated, an exposure intensity distribution on the exposure target surface can be obtained. As described above, this equation (3) is a function D (x ′, y ′) indicating the electron beam irradiation intensity for the reference point T (x ′, y ′) defined in the electron beam irradiation region, It is an expression showing a convolution integral of a point spread function psf (X, Y) indicating the degree of influence of the reference point T (x ′, y ′) on the surroundings. As described above, X = x′−x and Y = y′−y.
 結局、本発明に係るシミュレーション方法では、電子線の照射面として二次元xy直交座標系のxy平面を定義した場合に、座標(x,y)に位置する評価点V(x,y)に対して、座標(x′,y′)に位置する参照点T(x′,y′)が及ぼす影響を、参照点T(x′,y′)についての電子線照射強度を示す関数D(x′,y′)と、X=x′-x、Y=y′-yとして定義された点拡がり関数psf(X,Y)と、についてのx軸方向およびy軸方向に関する畳み込み積分によって算出する処理が行われることになる。しかも、点拡がり関数psf(X,Y)として、変数X,Yに加えて、電子線描画装置のアパーチャーの開口サイズKに基づいて定まる開口サイズパラメータBを含む関数が用いられる。 After all, in the simulation method according to the present invention, when the xy plane of the two-dimensional xy orthogonal coordinate system is defined as the electron beam irradiation surface, the evaluation point V (x, y) located at the coordinates (x, y) is defined. Thus, the effect of the reference point T (x ′, y ′) located at the coordinates (x ′, y ′) is expressed as a function D (x indicating the electron beam irradiation intensity at the reference point T (x ′, y ′). ′, Y ′) and the point spread function psf (X, Y) defined as X = x′−x, Y = y′−y, are calculated by the convolution integral in the x-axis direction and the y-axis direction. Processing will be performed. Moreover, as the point spread function psf (X, Y), a function including an aperture size parameter B determined based on the aperture size K of the aperture of the electron beam drawing apparatus is used in addition to the variables X and Y.
 式(4)は、式(3)に用いる点拡がり関数psf(X,Y)の具体的な一例を示す式である。この式(4)に含まれている関数erfは、式(5)に示すガウスの誤差関数erf(ξ)であるが、変数ξの部分が、パラメータB,σを用いた式に置き換えられている。ここで、パラメータBは、上述した本発明の第2の特徴にかかわる開口サイズパラメータであり、電子線描画装置のアパーチャー41の開口サイズKに基づいて定まる値になる。一方、パラメータσは、前方散乱パラメータであり、電子線描画装置の電子加速電圧やレジストの材質などによって定まる値になる。 Equation (4) is an equation showing a specific example of the point spread function psf (X, Y) used in Equation (3). The function erf included in the equation (4) is a Gaussian error function erf (ξ) shown in the equation (5), but the variable ξ part is replaced with an equation using the parameters B and σ. Yes. Here, the parameter B is an aperture size parameter related to the above-described second feature of the present invention, and is a value determined based on the aperture size K of the aperture 41 of the electron beam lithography apparatus. On the other hand, the parameter σ is a forward scattering parameter, and is a value determined by the electron acceleration voltage of the electron beam lithography apparatus, the resist material, and the like.
 図15は、図14の式(4)に示す点拡がり関数psf(X,Y)の一例を示す一次元グラフであり、横軸はX軸、縦軸はエネルギー密度Eを示す。このグラフは、X=0の位置を中心として照射された電子ビームが周囲へ及ぼす影響の度合いを示している。図2も同種のグラフであるが、図2のグラフが純然たるガウスの誤差関数のグラフであるのに対して、図15のグラフは、開口サイズパラメータBを含む点拡がり関数のグラフであるため、中央部分に幅wをもった平坦部Hが形成された台形状をしている点が特徴になる。 FIG. 15 is a one-dimensional graph showing an example of the point spread function psf (X, Y) shown in Equation (4) of FIG. 14, where the horizontal axis represents the X axis and the vertical axis represents the energy density E. This graph shows the degree of influence of the electron beam irradiated around the position of X = 0 on the surroundings. 2 is the same kind of graph, but the graph of FIG. 2 is a pure Gaussian error function graph, whereas the graph of FIG. 15 is a point spread function graph including the aperture size parameter B. The feature is a trapezoidal shape in which a flat portion H having a width w is formed in the central portion.
 式(4)の開口サイズパラメータBは、図15に示すグラフの平坦部Hの幅wを左右するパラメータになり、パラメータBが大きいほど、幅wも大きくなる。一方、式(4)の前方散乱パラメータσは、図15に示すグラフの左右の傾斜部U1,U2の傾きを左右するパラメータになり、パラメータσが大きいほど、傾斜部U1,U2の傾きは緩やかになる。なお、図15は、横軸にX軸をとった一次元の分布グラフを示すものであるが、実際には、Y軸方向に関しても同じ形状の分布グラフが得られる。したがって、式(4)に示す点拡がり関数psf(X,Y)のグラフは、実際には、XY平面上にそびえる三次元の台地状のグラフになり、頂上部分には、縦横の幅がwの平坦部Hが形成され、その周囲に傾斜部が形成されていることになる。 The opening size parameter B in the equation (4) is a parameter that affects the width w of the flat portion H of the graph shown in FIG. 15. On the other hand, the forward scattering parameter σ in Expression (4) is a parameter that affects the slopes of the left and right inclined portions U1 and U2 in the graph shown in FIG. become. FIG. 15 shows a one-dimensional distribution graph in which the horizontal axis is the X axis. Actually, a distribution graph having the same shape is also obtained in the Y-axis direction. Therefore, the graph of the point spread function psf (X, Y) shown in Expression (4) is actually a three-dimensional plateau-like graph that rises on the XY plane, and the vertical and horizontal widths are w at the top. Flat portion H is formed, and an inclined portion is formed around the flat portion H.
 要するに、本発明に係るシミュレーション方法では、点拡がり関数psf(X,Y)として、開口サイズパラメータBと前方散乱パラメータσとを含む関数が用いられることになる。ここで、開口サイズパラメータBは、グラフの平坦部Hの幅を左右するパラメータになり、前方散乱パラメータσは、グラフの傾斜部U1,U2の傾きを左右するパラメータになる。 In short, in the simulation method according to the present invention, a function including the aperture size parameter B and the forward scattering parameter σ is used as the point spread function psf (X, Y). Here, the aperture size parameter B is a parameter that determines the width of the flat portion H of the graph, and the forward scattering parameter σ is a parameter that determines the inclination of the inclined portions U1 and U2 of the graph.
 前掲の特許文献4に開示されたシミュレーション方法は、シングルビーム方式の電子線描画装置を前提としたものであり、図11の式(1-3)に示す点拡がり関数psf(X,Y)として、図2のグラフに示すような一般的なガウスの誤差関数を用いるものである。しかしながら、本願発明者が行った種々の実験によると、シングルビーム方式の電子線描画装置を前提とした場合は、図2のグラフに示すような点拡がり関数psfを用いたシミュレーションが適切であるが、マルチビーム方式の電子線描画装置を前提とした場合は、図15のグラフに示すような平坦部Hを有する点拡がり関数psfを用いた方が好ましいことが判明した。 The simulation method disclosed in the above-mentioned Patent Document 4 is based on the premise of a single beam type electron beam drawing apparatus, and is expressed as a point spread function psf (X, Y) shown in Expression (1-3) of FIG. A general Gaussian error function as shown in the graph of FIG. 2 is used. However, according to various experiments conducted by the inventor of the present application, a simulation using a point spread function psf as shown in the graph of FIG. When it is assumed that a multi-beam type electron beam drawing apparatus is used, it has been found preferable to use a point spread function psf having a flat portion H as shown in the graph of FIG.
 しかも、平坦部Hの幅wを、用いる電子線描画装置のアパーチャーの開口サイズKに応じた値に設定するのが好ましい。別言すれば、アパーチャーの開口部41が大きければ、それだけ平坦部Hの幅wが大きくなるような点拡がり関数psfを用いるのが好ましい。これは、図1に示すようなマルチビーム電子線描画装置の場合、電子銃10で生成された電子ビーム20の断面のエネルギー密度分布は、図2のグラフに示すような一般的なガウスの誤差関数に応じた分布になるが、アパーチャーの開口部41を通った個々の電子ビームを被成形層61に照射した場合、被成形層61内の近接効果を考慮した露光強度分布は、図15のグラフに示すような平坦部Hを有する分布になるためと考えられる。 In addition, it is preferable to set the width w of the flat portion H to a value corresponding to the aperture size K of the aperture of the electron beam drawing apparatus to be used. In other words, it is preferable to use a point spread function psf that increases the width w of the flat portion H if the aperture 41 of the aperture is large. This is because, in the case of a multi-beam electron beam lithography apparatus as shown in FIG. 1, the energy density distribution of the cross section of the electron beam 20 generated by the electron gun 10 is a general Gaussian error as shown in the graph of FIG. Although the distribution depends on the function, when an individual electron beam passing through the aperture 41 of the aperture is irradiated onto the molding layer 61, the exposure intensity distribution in consideration of the proximity effect in the molding layer 61 is shown in FIG. This is probably because the distribution has a flat portion H as shown in the graph.
 ここで、アパーチャーの開口サイズKは、開口部41を通った個々の電子ビームの断面サイズ(円形断面の場合は直径、正方形断面の場合は一辺の長さ)を左右する値になるので、結局、式(3)に用いる点拡がり関数psf(X,Y)としては、開口部41を通った個々の電子ビームの断面サイズに応じた幅wをもった平坦部Hを有するグラフで示される関数を用いるのが好ましいことになる。 Here, the aperture size K of the aperture has a value that affects the cross-sectional size of each electron beam that has passed through the aperture 41 (diameter in the case of a circular cross-section, length of one side in the case of a square cross-section). As the point spread function psf (X, Y) used in Equation (3), a function represented by a graph having a flat portion H having a width w corresponding to the cross-sectional size of each electron beam passing through the opening 41 is used. It is preferable to use
 したがって、本発明を実施する際には、電子線描画装置のアパーチャーの開口部41が円形をしている場合は、当該円の直径をアパーチャーの開口サイズKとして用い、開口部41が正方形をしている場合は、当該正方形の一辺の長さをアパーチャーの開口サイズとして用いればよい。そして、この開口サイズKに、電子線描画装置のプロジェクションレンズ50による縮小倍率mを乗じた値を、アパーチャーの開口サイズに基づいて定まる開口サイズパラメータBとして用いるようにすればよい。 Therefore, when carrying out the present invention, if the aperture 41 of the aperture of the electron beam lithography apparatus has a circular shape, the diameter of the circle is used as the aperture size K of the aperture, and the aperture 41 has a square shape. If it is, the length of one side of the square may be used as the aperture size of the aperture. Then, a value obtained by multiplying the aperture size K by the reduction ratio m by the projection lens 50 of the electron beam drawing apparatus may be used as the aperture size parameter B determined based on the aperture size of the aperture.
 具体的には、図1に示す電子線描画装置の場合は、アパーチャーの開口サイズKにプロジェクションレンズ50による縮小倍率mを乗じた値m・Kに基づいて、開口サイズパラメータBを、B=m・Kなる式で定義すればよい。たとえば、アパーチャーの開口部41が直径4μmの円形をしており、プロジェクションレンズ50による縮小倍率が1/200であった場合、B=20nmなる値に定めることができる。この場合、開口サイズパラメータBは、露光対象面上に形成される1本の電子ビームのビーム径もしくはスポット径φに対応した値になる。したがって、たとえば、式(4)における「erf((B/2-X)/σ)」なる項は、電子ビームの半径B/2と距離Xとの差を前方散乱パラメータσで除した値を変数とするガウスの誤差関数に相当する。 Specifically, in the case of the electron beam drawing apparatus shown in FIG. 1, the aperture size parameter B is set to B = m based on a value m · K obtained by multiplying the aperture size K of the aperture by the reduction ratio m by the projection lens 50.・ It may be defined by the expression K. For example, if the aperture 41 of the aperture has a circular shape with a diameter of 4 μm and the reduction magnification of the projection lens 50 is 1/200, the value can be set to B = 20 nm. In this case, the aperture size parameter B is a value corresponding to the beam diameter or spot diameter φ of one electron beam formed on the exposure target surface. Therefore, for example, the term “erf ((B / 2−X) / σ)” in Equation (4) is a value obtained by dividing the difference between the radius B / 2 of the electron beam and the distance X by the forward scattering parameter σ. Corresponds to a Gaussian error function as a variable.
 このように、式(4)には、開口サイズパラメータBの他に、前方散乱パラメータσも含まれているので、演算を行う際には、パラメータσの値も決定する必要がある。この前方散乱パラメータσは、前述したとおり、電子線描画装置の電子加速電圧やレジストの材質などによって定まる値であるので、実用上は、特定の材質のレジストに対して特定の加速電圧で電子を飛ばしたときの露光分布を実測し、この実測結果に基づく逆算によって、当該特定の材質のレジストと当該特定の加速電圧との組み合わせについての前方散乱パラメータσの値を決定する作業を行っておけばよい。 Thus, since the expression (4) includes the forward scattering parameter σ in addition to the aperture size parameter B, it is necessary to determine the value of the parameter σ when performing the calculation. As described above, the forward scattering parameter σ is a value determined by the electron acceleration voltage of the electron beam lithography system, the resist material, and the like. Therefore, in practice, electrons are applied at a specific acceleration voltage to a resist of a specific material. If the exposure distribution at the time of skipping is actually measured and the value of the forward scattering parameter σ for the combination of the resist of the specific material and the specific acceleration voltage is determined by back calculation based on the actual measurement result, Good.
 図14の式(4)は、アパーチャーの開口サイズKに基づいて定まる開口サイズパラメータBを含む点拡がり関数psf(X,Y)の一例であり、psf(X,Y)=1/4・(erf((B/2-X)/σ)-erf((-B/2-X)/σ))・(erf((B/2-Y)/σ)-erf((-B/2-Y)/σ))なる誤差関数erfを含む関数である。この関数のグラフは、図15に示すように、照射される電子ビームのスポットサイズφに応じた幅wをもった平坦部Hを有する台地状のグラフになる。もっとも、このような特徴をもつ点拡がり関数psf(X,Y)は、図14の式(4)で示される関数に限定されるものではない。 Expression (4) in FIG. 14 is an example of a point spread function psf (X, Y) including an aperture size parameter B determined based on the aperture size K of the aperture, and psf (X, Y) = 1/4 · ( erf ((B / 2−X) / σ) −erf ((− B / 2−X) / σ)) · (erf ((B / 2−Y) / σ) −erf ((− B / 2− Y) / σ)) and an error function erf. The graph of this function is a plate-like graph having a flat portion H having a width w corresponding to the spot size φ of the irradiated electron beam, as shown in FIG. However, the point spread function psf (X, Y) having such characteristics is not limited to the function represented by the equation (4) in FIG.
 たとえば、図16の式(6)は、図14の式(3)における点拡がり関数psf(X,Y)として用いるのに適した別な関数の例を示す図であり、psf(X,Y)=1/4・(arctan((B/2-X)/σ)-arctan((-B/2-X)/σ))・(arctan((B/2-Y)/σ)-arctan((-B/2-Y)/σ))なる逆三角関数arctanを含む関数である。図14の式(4)では、ガウスの誤差関数erfが用いられていたが、図16の式(6)は、その代わりに逆三角関数arctanを用いたものである。形状が若干異なるものの、本質的には、図15に示すように、開口サイズパラメータBに応じた幅wをもった平坦部Hと、前方散乱パラメータσに応じた傾斜をもった傾斜部U1,U2と、を有するグラフが得られる。 For example, equation (6) in FIG. 16 is a diagram illustrating an example of another function suitable for use as the point spread function psf (X, Y) in equation (3) in FIG. 14, and psf (X, Y ) = 1/4 · (arctan ((B / 2−X) / σ) −arctan ((− B / 2−X) / σ)) · (arctan ((B / 2−Y) / σ) −arctan This function includes the inverse trigonometric function arctan ((−B / 2−Y) / σ)). In the equation (4) in FIG. 14, the Gaussian error function erf is used. However, the equation (6) in FIG. 16 uses the inverse trigonometric function arctan instead. Although the shapes are slightly different, essentially, as shown in FIG. 15, a flat portion H having a width w corresponding to the aperture size parameter B and an inclined portion U1, having an inclination corresponding to the forward scattering parameter σ. A graph having U2 is obtained.
 また、図17の式(7)は、図14の式(3)における点拡がり関数psf(X,Y)として用いるのに適した更に別な関数の例を示す図であり、誤差関数erf、所定の定数C、後方散乱パラメータβ、近接効果補正パラメータηを含む、psf(X,Y)=C/(1+η)・(1/4σ・(erf((B/2-X)/σ)-erf((-B/2-X)/σ))・(erf((B/2-Y)/σ)-erf((-B/2-Y)/σ))+η/β・exp(-(X+Y)/β))なる関数を示している。 Also, equation (7) in FIG. 17 is a diagram showing another example of a function suitable for use as the point spread function psf (X, Y) in equation (3) in FIG. Psf (X, Y) = C / (1 + η) · (1 / 4σ 2 · (erf ((B / 2−X) / σ) including predetermined constant C, backscattering parameter β, and proximity effect correction parameter η −erf ((− B / 2−X) / σ)) · (erf ((B / 2−Y) / σ) −erf ((− B / 2−Y) / σ)) + η / β 2 · exp A function (− (X 2 + Y 2 ) / β 2 )) is shown.
 この図17の式(7)では、図14の式(4)と同様にガウスの誤差関数erfが用いられているが、パラメータとして、開口サイズパラメータBおよび前方散乱パラメータσに加えて、更に、後方散乱パラメータβおよび近接効果補正パラメータηが用いられている。後方散乱パラメータβは、図1における被成形層(レジスト層)61の下にある試料基板60の表面付近で散乱されて跳ね返ってきた電子がレジスト層61内で拡散してゆく後方散乱の程度を示すパラメータであり、近接効果補正パラメータηは、電子ビームの前方散乱によるレジストの感光量と後方散乱によるレジストの感光量との比を示すパラメータである。なお、Cは所定の定数である。パラメータβ,ηは、たとえば、前掲の特許文献4などに開示されている公知のパラメータであるため、ここでは詳しい説明は省略する。 In the equation (7) of FIG. 17, the Gaussian error function erf is used as in the equation (4) of FIG. 14, but in addition to the aperture size parameter B and the forward scattering parameter σ as parameters, A backscattering parameter β and a proximity effect correction parameter η are used. The backscattering parameter β is the degree of backscattering in which the electrons scattered and bounced near the surface of the sample substrate 60 under the layer to be molded (resist layer) 61 in FIG. The proximity effect correction parameter η is a parameter indicating the ratio between the resist exposure due to forward scattering of the electron beam and the resist exposure due to back scattering. C is a predetermined constant. The parameters β and η are well-known parameters disclosed in, for example, the above-mentioned Patent Document 4 and so on, and thus detailed description thereof is omitted here.
 やはり図17の式(7)も、形状が若干異なるものの、図15に示すように、開口サイズパラメータBに応じた幅wをもった平坦部Hを有するグラフを示す式になるので、本発明において、点拡がり関数psf(X,Y)として用いるのに適した関数の一例を示す式になる。 The formula (7) in FIG. 17 is also a formula showing a graph having a flat portion H having a width w corresponding to the opening size parameter B as shown in FIG. , An expression showing an example of a function suitable for use as the point spread function psf (X, Y).
 <<< §5. 本発明に係るシミュレーション方法の手順 >>>
 本発明に係るシミュレーション方法は、実際には、コンピュータを用いた演算処理によって実行される。ここでは、このシミュレーション方法をコンピュータを用いて実行する際の具体的な手順を述べる。
<<< §5. Procedure of simulation method according to the present invention >>
The simulation method according to the present invention is actually executed by arithmetic processing using a computer. Here, a specific procedure for executing this simulation method using a computer will be described.
 図18は、本発明に係るシミュレーション方法の基本手順を示す流れ図である。図示のとおり、この基本手順は、描画データ入力段階S10、パラメータ設定段階S20、演算用マトリックス作成段階S30、畳み込み演算段階S40の各ステップを有している。各ステップは、いずれも専用のプログラムに基づいて、コンピュータによって実行される。 FIG. 18 is a flowchart showing the basic procedure of the simulation method according to the present invention. As shown in the figure, this basic procedure includes steps of a drawing data input step S10, a parameter setting step S20, a calculation matrix creation step S30, and a convolution calculation step S40. Each step is executed by a computer based on a dedicated program.
 まず、ステップS10の描画データ入力段階では、描画データを入力する処理が行われる。この描画データは、電子線描画装置が描画するパターンを示すデータであり、たとえば、図9(b) に例示するように、ビームの各照射位置の照射強度を示す画素値を有する画素の配列からなるデータになる。ここで行われるシミュレーションの目的は、このような描画データを電子線描画装置に与えて被成形層に対する露光処理を行ったとした仮定した場合に、得られるであろうと推定される被成形層の露光強度分布を求めることにある。 First, in the drawing data input stage of step S10, processing for inputting drawing data is performed. The drawing data is data indicating a pattern drawn by the electron beam drawing apparatus. For example, as illustrated in FIG. 9B, from the array of pixels having pixel values indicating the irradiation intensity at each irradiation position of the beam. It becomes the data that becomes. The purpose of the simulation performed here is to expose the layer to be molded that is supposed to be obtained when it is assumed that such drawing data is given to the electron beam drawing apparatus and the exposure process is performed on the layer to be molded. It is to obtain an intensity distribution.
 続く、ステップS20のパラメータ設定段階では、電子線描画装置のアパーチャーの開口サイズに基づいて定まる開口サイズパラメータBの設定が行われる。たとえば、前述した例のように、アパーチャーの開口部41が直径4μmの円形をしており、プロジェクションレンズ50による縮小倍率が1/200であった場合、B=20nmなる値が設定される。この開口サイズパラメータBは、露光対象面上に形成される1本の電子ビームのビーム径もしくはスポット径φに相当するものであり、ステップS40の畳み込み演算段階における演算式で利用されることになる。 Subsequently, in the parameter setting stage of step S20, an aperture size parameter B determined based on the aperture size of the aperture of the electron beam drawing apparatus is set. For example, if the aperture 41 of the aperture has a circular shape with a diameter of 4 μm and the reduction magnification by the projection lens 50 is 1/200 as in the example described above, a value of B = 20 nm is set. The aperture size parameter B corresponds to the beam diameter or spot diameter φ of one electron beam formed on the exposure target surface, and is used in an arithmetic expression in the convolution calculation stage of step S40. .
 アパーチャーの開口部41およびプロジェクションレンズ50による縮小倍率が固定の電子線描画装置のシミュレーションを行う場合は、開口サイズパラメータBの値として固定値を設定しておけばよいが、これらが可変の電子線描画装置のシミュレーションを行う場合は、その都度、開口サイズパラメータBの値を入力して設定する必要がある。 When simulating an electron beam drawing apparatus in which the reduction ratio of the aperture 41 of the aperture and the projection lens 50 is fixed, a fixed value may be set as the value of the aperture size parameter B, but these are variable electron beams. Each time the simulation of the drawing apparatus is performed, it is necessary to input and set the value of the opening size parameter B.
 ステップS30の演算用マトリックス作成段階は、ステップS40の畳み込み演算段階の準備段階であり、ここでは照射強度マトリックスと点拡がりマトリックスとを作成する作業が行われる。これらのマトリックスは、コンピュータが図14の式(3)の演算を実行するために用いる行列データであり、照射強度マトリックスは、式(3)のD(x′,y′)に相当し、電子線照射強度の平面分布を示す行列データになる。一方、点拡がりマトリックスは、式(3)のpsf(X,Y)に相当し、所定の点拡がり関数によって示される影響の度合いの平面分布を示す行列データになる。以下、説明の便宜上、照射強度マトリックスについては、式(3)の関数D(x′,y′)と同じ「D(x′,y′)」なる符号を用い、点拡がりマトリックスについては、式(3)の関数psf(X,Y)と同じ「psf(X,Y)」なる符号を用いて示すことにする。 The calculation matrix creation stage of step S30 is a preparation stage of the convolution calculation stage of step S40, and here, an operation of creating an irradiation intensity matrix and a point spread matrix is performed. These matrices are matrix data used by the computer to execute the calculation of the equation (3) in FIG. 14, and the irradiation intensity matrix corresponds to D (x ′, y ′) in the equation (3). The matrix data indicates the planar distribution of the irradiation intensity. On the other hand, the point spread matrix corresponds to psf (X, Y) in the equation (3), and is matrix data indicating a planar distribution of the degree of influence indicated by a predetermined point spread function. Hereinafter, for convenience of explanation, the same symbol “D (x ′, y ′)” as the function D (x ′, y ′) of the equation (3) is used for the irradiation intensity matrix, and the point spread matrix is expressed by the equation The same symbol “psf (X, Y)” as the function psf (X, Y) in (3) is used.
 図14の式(3)は、関数D(x′,y′)と関数psf(X,Y)との畳み込み積分を示す理論式であり、ステップS40の畳み込み演算段階では、この理論式に基づく演算が行われる。ただ、コンピュータによる演算であるため、実際には、連続的な変数を用いた演算ではなく、離散値を用いた演算を行わざるを得ない。照射強度マトリックスD(x′,y′)は、変数x′,y′として所定の離散値を採用した場合の関数D(x′,y′)の値を示す演算用マトリックスであり、点拡がりマトリックスpsf(X,Y)は、変数X,Yとして所定の離散値を採用した場合の関数psf(X,Y)の値を示す演算用マトリックスである。実際の演算は、これら2組の演算用マトリックスを用いて実行される。 Expression (3) in FIG. 14 is a theoretical expression showing the convolution integral of the function D (x ′, y ′) and the function psf (X, Y), and is based on this theoretical expression in the convolution operation stage of step S40. An operation is performed. However, since the calculation is performed by a computer, in practice, calculation using discrete values is inevitably performed instead of calculation using continuous variables. The irradiation intensity matrix D (x ′, y ′) is a calculation matrix indicating the value of the function D (x ′, y ′) when a predetermined discrete value is adopted as the variable x ′, y ′. The matrix psf (X, Y) is a calculation matrix indicating values of the function psf (X, Y) when a predetermined discrete value is adopted as the variables X and Y. The actual calculation is performed using these two sets of calculation matrices.
 変数x′,y′や変数X,Yの離散値としてのサンプル間隔は、演算によって求める露光強度分布の解像度に応じて定めればよい。図12を用いて説明したように、本発明では、露光平面上の所定の評価点V(x,y)の蓄積エネルギー量を、多数の参照点T(x′,y′)からの影響の度合いの集積値として算出する。そして、多数の評価点V(x,y)について求めた蓄積エネルギー量の空間的な分布が、最終的に求める露光強度分布ということになる。したがって、たとえば、評価点V(x,y)を縦横1nmの間隔で定義した解像度をもつ露光強度分布を求めたい場合は、変数x′,y′や変数X,Yの離散値として、縦横1nmの間隔でサンプリングした値を設定する必要がある。この場合、照射強度マトリックスD(x′,y′)および点拡がりマトリックスpsf(X,Y)としては、セルの縦横のピッチを1nmに想定したマトリックスを用意する必要がある。 The sample intervals as discrete values of the variables x ′ and y ′ and the variables X and Y may be determined according to the resolution of the exposure intensity distribution obtained by calculation. As described with reference to FIG. 12, in the present invention, the accumulated energy amount at a predetermined evaluation point V (x, y) on the exposure plane is influenced by the influence from a large number of reference points T (x ′, y ′). Calculated as an integrated value of degree. The spatial distribution of the stored energy amount obtained for a large number of evaluation points V (x, y) is the finally obtained exposure intensity distribution. Therefore, for example, when it is desired to obtain an exposure intensity distribution having a resolution in which the evaluation points V (x, y) are defined at intervals of 1 nm in the vertical and horizontal directions, 1 nm in the vertical and horizontal directions as discrete values of the variables x ′ and y ′ and the variables X and Y It is necessary to set a value sampled at intervals of. In this case, as the irradiation intensity matrix D (x ′, y ′) and the point spread matrix psf (X, Y), it is necessary to prepare a matrix assuming the vertical and horizontal pitches of the cells to be 1 nm.
 本発明に係るシミュレーション方法で求めた露光強度分布は、実際の露光処理に用いる描画データに対する補正に利用される。たとえば、図8(b) に示す描画データは、図8(a) に示すように、Da=27nmの幅をもった線状パターンを形成するために用意された描画データである。したがって、シミュレーションの結果、Da=27nmの幅をもった線状パターンが形成される露光強度分布(現像した場合に、Da=27nmの幅をもった部分が残存すると想定される分布)が得られた場合は、特に補正は必要ない。ところが、形成される線状パターンの幅が、たとえば、Da=28nmになると想定される露光強度分布が得られた場合には、第8列目の画素の画素値「6」を若干減少させる必要がある。 The exposure intensity distribution obtained by the simulation method according to the present invention is used for correcting drawing data used in actual exposure processing. For example, the drawing data shown in FIG. 8B is drawing data prepared for forming a linear pattern having a width of Da = 27 nm as shown in FIG. 8A. Accordingly, as a result of simulation, an exposure intensity distribution (a distribution in which a portion having a width of Da = 27 nm is assumed to remain when developed) is obtained in which a linear pattern having a width of Da = 27 nm is formed. If this happens, no correction is required. However, when an exposure intensity distribution is obtained in which the width of the formed linear pattern is assumed to be, for example, Da = 28 nm, the pixel value “6” of the pixels in the eighth column needs to be slightly reduced. There is.
 図8に示す実施例の場合、描画データを構成する画素のピッチdはd=5nmであるが、線幅Daの予想値は、この画素ピッチdに比べて小さな精度(たとえば、1nmの単位)で求める必要がある。すなわち、シミュレーションによって求める露光強度分布の解像度は、画素のピッチdよりも小さく設定する必要があり、ステップS30で作成する演算用マトリックスを構成するセルのピッチgは、画素のピッチdよりも小さく設定しなければならない。そこで、以下、演算用セルのピッチgを、画素のピッチdの整数分の1に設定する実施例を述べることにする。 In the case of the embodiment shown in FIG. 8, the pitch d of the pixels constituting the drawing data is d = 5 nm, but the expected value of the line width Da is smaller than the pixel pitch d (for example, in units of 1 nm). It is necessary to ask for. That is, the resolution of the exposure intensity distribution obtained by the simulation needs to be set smaller than the pixel pitch d, and the cell pitch g constituting the calculation matrix created in step S30 is set smaller than the pixel pitch d. Must. Therefore, an embodiment in which the calculation cell pitch g is set to 1 / integer of the pixel pitch d will be described below.
 ここで述べる実施例の場合、ステップS30の演算用マトリックス作成段階では、まず、描画データの各画素を複数に分割することにより演算用セルを定義し、この演算用セルの集合体からなる2組の空の演算用マトリックスを用意する。そして、第1の演算用マトリックスの各セルには、当該セルを含む画素の画素値に基づく所定のセル値を与えることにより、電子線照射強度の平面分布を示す照射強度マトリックスD(x′,y′)を作成する。一方、第2の演算用マトリックスの各セルには、ステップS20で設定した開口サイズパラメータBを含む所定の点拡がり関数に応じたセル値を与えることにより、当該点拡がり関数によって示される影響の度合いの平面分布を示す点拡がりマトリックスpsf(X,Y)を作成する。 In the case of the embodiment described here, in the calculation matrix creation stage of step S30, first, calculation cells are defined by dividing each pixel of the drawing data into a plurality of sets, and two sets of sets of calculation cells are formed. Prepare an empty calculation matrix. Each cell of the first calculation matrix is given a predetermined cell value based on the pixel value of the pixel including the cell, thereby providing an irradiation intensity matrix D (x ′, y ′) is created. On the other hand, by giving each cell of the second calculation matrix a cell value corresponding to a predetermined point spread function including the aperture size parameter B set in step S20, the degree of influence indicated by the point spread function A point spread matrix psf (X, Y) indicating the plane distribution of the.
 ここでは、図19を参照しながら、照射強度マトリックスD(x′,y′)を作成する具体的な手順を説明しよう。いま、図19(a) に示すように、5行5列の画素配列からなる単純な描画データに基づくシミュレーションを行う例を考えてみる。この描画データを構成する各画素には、それぞれ所定の画素値p(図示の例の場合は、12もしくは15)が与えられており、各画素値pは、各画素の位置に照射される電子ビームの照射強度を示している。ここでは、この描画データを構成する画素のピッチdが、d=5nmであるものとし、各演算用マトリックスを構成する演算用セルのピッチgをg=1nmに設定したものとしよう。 Here, a specific procedure for creating the irradiation intensity matrix D (x ′, y ′) will be described with reference to FIG. Consider an example in which a simulation based on simple drawing data having a pixel array of 5 rows and 5 columns is performed as shown in FIG. Each pixel constituting the drawing data is given a predetermined pixel value p (12 or 15 in the illustrated example), and each pixel value p is an electron irradiated to the position of each pixel. The irradiation intensity of the beam is shown. Here, it is assumed that the pitch d of the pixels constituting the drawing data is d = 5 nm, and the pitch g of the computation cells constituting each computation matrix is set to g = 1 nm.
 このように、演算用セルのピッチgをg=1nmに設定すると、図19(a) の右下に示すように、露光対象面上に定義される各評価点V(x,y)の縦方向および横方向のピッチも1nmに設定することができる。すなわち、横方向(x軸方向)に隣接して配置された評価点V11,V12の間隔は1nmになり、縦方向(y軸方向)に隣接して配置された評価点V11,V21の間隔も1nmになる。したがって、図19に示す実施例の場合、縦横1nmの間隔で格子状に並んだ評価点について、それぞれ総露光強度を求めることができ、1nmの解像度をもった露光強度分布を得ることができる。 As described above, when the calculation cell pitch g is set to g = 1 nm, as shown in the lower right of FIG. 19A, the vertical direction of each evaluation point V (x, y) defined on the exposure target surface. Directional and lateral pitches can also be set to 1 nm. That is, the interval between the evaluation points V11 and V12 arranged adjacent to the horizontal direction (x-axis direction) is 1 nm, and the interval between the evaluation points V11 and V21 arranged adjacent to the vertical direction (y-axis direction) is also set. 1 nm. Accordingly, in the case of the embodiment shown in FIG. 19, the total exposure intensity can be obtained for the evaluation points arranged in a grid at intervals of 1 nm in the vertical and horizontal directions, and an exposure intensity distribution having a resolution of 1 nm can be obtained.
 図19(b) は、図19(a) に示す描画データを構成する画素配列の第i行第j列目の画素P(i,j)を縦横にそれぞれ5分割して、合計25個の演算用セルC(m,n)を生成した状態を示している。5×5nmのサイズの画素を25分割して25個の演算用セルを定義しているため、各セルのサイズは1×1nmになる。こうして、25個の空の演算用セルを定義した後、個々のセルに、当該セルを含む画素の画素値に基づく所定のセル値を与える。図19(b) の左側に示す例の場合、25個の演算用セルのすべてに、当該セルを含む画素P(i,j)の画素値「12」をそのままセル値として与えており、25個の全演算用セルのセル値は「12」になっている。 In FIG. 19B, the pixel P (i, j) in the i-th row and j-th column of the pixel array constituting the drawing data shown in FIG. The state where the calculation cell C (m, n) is generated is shown. Since a pixel having a size of 5 × 5 nm is divided into 25 to define 25 calculation cells, the size of each cell is 1 × 1 nm. Thus, after defining 25 empty calculation cells, a predetermined cell value based on the pixel value of the pixel including the cell is given to each cell. In the case of the example shown on the left side of FIG. 19B, the pixel value “12” of the pixel P (i, j) including the cell is given as it is as the cell value to all 25 calculation cells. The cell values of all the calculation cells are “12”.
 実際には、図19(a) に示す25個の画素Pのすべてがそれぞれ25分割されるため、この描画データに対応する演算用マトリックスは、625個の演算用セルによって構成されることになり、各演算用セルには、当該セルを含む画素の画素値(図示の例の場合、12もしくは15)が与えられることになる。すなわち、図示の例の場合、照射強度マトリックスD(x′,y′)は、25行25列の演算用セルの配列によって構成され、第m行第n列の演算用セルC(m,n)には、当該セルを含む画素の画素値に基づく所定のセル値が与えられていることになる。結局、この照射強度マトリックスD(x′,y′)は、露光対象面上における電子線照射強度の平面分布を、演算用セルのピッチg(この例ではg=1nm)の解像度で示す行列データということになる。 Actually, since all of the 25 pixels P shown in FIG. 19A are divided into 25, the calculation matrix corresponding to the drawing data is composed of 625 calculation cells. Each calculation cell is given the pixel value of the pixel including the cell (12 or 15 in the illustrated example). That is, in the case of the illustrated example, the irradiation intensity matrix D (x ′, y ′) is composed of an array of calculation cells in 25 rows and 25 columns, and calculation cells C (m, n) in the m-th row and the n-th column. ) Is given a predetermined cell value based on the pixel value of the pixel including the cell. Eventually, the irradiation intensity matrix D (x ′, y ′) is matrix data indicating the plane distribution of the electron beam irradiation intensity on the exposure target surface with the resolution of the calculation cell pitch g (in this example, g = 1 nm). It turns out that.
 もちろん、原理的には、図19(b) の左側に示す例のように、すべてのセルに当該セルを含む画素の画素値をそのままセル値として与えて照射強度マトリックスD(x′,y′)を作成してもよいが、実用上は、ステップS40における演算負担を軽減するための工夫を施すようにするのが好ましい。図19(b) の右側に示す例は、このような工夫を施した例である。 Of course, in principle, as in the example shown on the left side of FIG. 19B, the pixel values of the pixels including the cell are given to all the cells as cell values as they are, and the irradiation intensity matrix D (x ′, y ′ However, in practice, it is preferable to devise a device for reducing the calculation burden in step S40. The example shown on the right side of FIG. 19 (b) is an example of such a device.
 具体的には、図19(b) の右側に示す例の場合、図19(b) の左側に示すマトリックスの25個のセルのうち、図に太線枠で示す中央の1セル以外の24個のセルについて、セル値を0にする修正が行われている。ここでは、中央のセルを代表セルと呼び、それ以外の24個のセルを非代表セルと呼ぶことにする。代表セルについては、当該セルを含む画素P(i,j)の画素値「12」がそのままセル値として与えられ、非代表セルについては、セル値「0」が与えられていることになる。このような工夫により、ステップS40における演算負担が軽減される理由については後述する。 Specifically, in the case of the example shown on the right side of FIG. 19B, 24 cells other than the central one cell indicated by a bold frame in the figure out of the 25 cells of the matrix shown on the left side of FIG. 19B. The cell value is corrected to 0 for these cells. Here, the central cell is referred to as a representative cell, and the other 24 cells are referred to as non-representative cells. For the representative cell, the pixel value “12” of the pixel P (i, j) including the cell is directly given as the cell value, and for the non-representative cell, the cell value “0” is given. The reason why the calculation burden in step S40 is reduced by such a device will be described later.
 一方、点拡がりマトリックスpsf(X,Y)は、露光対象面上における点拡がり関数psf(X,Y)によって示される影響の度合いの平面分布を、演算用セルのピッチgの解像度で示す行列データであり、ここで述べる実施例の場合、g=1nmとして、縦横1nmのピッチで配列された演算用セルの集合体によって構成される。各演算用セルのセル値は、当該セルの位置(縦方向の位置Xと横方向の位置Y)に応じて、図14の式(4)に基づいて決定される(もちろん、図16の式(6)や図17の式(7)を用いてもよい)。セル値の分布は、図15のグラフに応じたものになり、一般的に、マトリックスの中心に近いセルほど、大きなセル値が与えられる。 On the other hand, the point spread matrix psf (X, Y) is matrix data indicating the plane distribution of the degree of influence indicated by the point spread function psf (X, Y) on the exposure target surface by the resolution of the pitch g of the operation cells. In the case of the embodiment described here, g is set to 1 nm, and it is constituted by a set of operation cells arranged at a pitch of 1 nm in length and width. The cell value of each calculation cell is determined based on the formula (4) in FIG. 14 according to the position of the cell (vertical position X and horizontal position Y) (of course, the formula in FIG. 16). (6) or equation (7) in FIG. 17 may be used). The cell value distribution corresponds to the graph of FIG. 15, and generally, a cell closer to the center of the matrix is given a larger cell value.
 こうして、ステップS30の演算用マトリックス作成段階において、照射強度マトリックスD(x′,y′)と点拡がりマトリックスpsf(X,Y)とが作成されると、ステップS40の畳み込み演算段階において、照射強度マトリックスD(x′,y′)と点拡がりマトリックスpsf(X,Y)とを用いた畳み込み積分を行い、座標(x,y)に位置する個々の評価点V(x,y)における総露光強度(蓄積エネルギー量)v(x,y)が求められる。 Thus, when the irradiation intensity matrix D (x ′, y ′) and the point spread matrix psf (X, Y) are generated in the calculation matrix creation stage of step S30, the irradiation intensity is set in the convolution calculation stage of step S40. Convolution integration using the matrix D (x ′, y ′) and the point spread matrix psf (X, Y) is performed, and the total exposure at each evaluation point V (x, y) located at the coordinates (x, y). Strength (amount of stored energy) v (x, y) is obtained.
 上述したように、ここで述べる実施例の場合、照射強度マトリックスD(x′,y′)および点拡がりマトリックスpsf(X,Y)として、各セルのピッチg=1nmに設定したマトリックスを用意しているので、縦横のピッチ1nmの解像度で個々の評価点V(x,y)の総露光強度v(x,y)の分布を示す露光強度分布が得られることになる。実際には、こうして得られた露光強度分布に基づいて、被成形層61(レジスト層)を現像した場合に残存するであろうパターンの寸法を推定し、必要に応じて、元の描画データの各画素値に対する補正を行うことになる。ここでは、このような補正方法についての説明は省略する。 As described above, in the embodiment described here, a matrix in which the pitch g of each cell is set to 1 nm is prepared as the irradiation intensity matrix D (x ′, y ′) and the point spread matrix psf (X, Y). Therefore, an exposure intensity distribution indicating the distribution of the total exposure intensity v (x, y) of each evaluation point V (x, y) can be obtained with a resolution of 1 nm in the vertical and horizontal pitches. Actually, based on the exposure intensity distribution thus obtained, the size of the pattern that will remain when the molding layer 61 (resist layer) is developed is estimated, and if necessary, the original drawing data Correction for each pixel value is performed. Here, description of such a correction method is omitted.
 <<< §6. 畳み込み演算の具体的な処理 >>>
 ここでは、図18の流れ図におけるステップS40の畳み込み演算段階の具体的な処理を説明する。上述したとおり、この処理は、照射強度マトリックスD(x′,y′)と点拡がりマトリックスpsf(X,Y)という2組の演算用マトリックスを用いた畳み込み積分の処理であり、理論的には、図14の式(3)に示す演算式に基づく畳み込み演算を行うことになる。なお、演算用マトリックスは、離散的に定義された演算用セル(上述の例の場合、縦横1nmのピッチで配置されたセル)の集合体であるから、厳密に言えば、ステップS40で行われる演算は「畳み込み積分」ではなく、「畳み込み和」を求める演算ということになるが、実用上は、膨大な数の演算用セルを用いた演算になるため、本願では便宜上、「畳み込み積分」という文言を用いることにする。
<<< §6. Specific processing of convolution calculation >>>
Here, specific processing in the convolution calculation stage in step S40 in the flowchart of FIG. 18 will be described. As described above, this process is a convolution integral process using two sets of calculation matrices, that is, an irradiation intensity matrix D (x ′, y ′) and a point spread matrix psf (X, Y). Thus, the convolution operation based on the arithmetic expression shown in Expression (3) in FIG. 14 is performed. Note that the calculation matrix is an aggregate of discretely defined calculation cells (cells arranged at a pitch of 1 nm in the vertical and horizontal directions in the above example), and strictly speaking, is performed in step S40. The calculation is not a “convolution integration” but an operation for obtaining a “convolution sum”, but in practice it is an operation using a large number of calculation cells. I will use the wording.
 図20は、図18のステップS30により作成された照射強度マトリックスD(x′,y′)と点拡がりマトリックスpsf(X,Y)との対応関係を示す図である。図20の上段には、図19(a) に示す描画データに基づいて作成された照射強度マトリックスD(x′,y′)を構成する演算用セルの配置が示されている。図に示す太線枠で囲まれた領域は、描画データを構成する1つの画素P(i,j)を示し、細線枠で囲まれた領域は、1つの演算用セルC(m,n)を示している。 FIG. 20 is a diagram showing a correspondence relationship between the irradiation intensity matrix D (x ′, y ′) created in step S30 of FIG. 18 and the point spread matrix psf (X, Y). The upper part of FIG. 20 shows the arrangement of calculation cells constituting the irradiation intensity matrix D (x ′, y ′) created based on the drawing data shown in FIG. A region surrounded by a thick line frame shown in the drawing indicates one pixel P (i, j) constituting the drawing data, and a region surrounded by the thin line frame indicates one calculation cell C (m, n). Show.
 前述したとおり、画素P(i,j)は一辺が5nmの正方形からなり、演算用セルC(m,n)は一辺が1nmの正方形からなる。したがって、1つの画素P(i,j)には、25個の演算用セルC(m,n)が含まれており、この照射強度マトリックスD(x′,y′)には、合計625個の演算用セルが含まれている。そして、個々の演算用セルには、それぞれ当該セルを含む画素の画素値に基づく所定のセル値が与えられる(図20では、各演算用セルのセル値の表示は省略)。 As described above, the pixel P (i, j) is a square having a side of 5 nm, and the calculation cell C (m, n) is a square having a side of 1 nm. Therefore, one pixel P (i, j) includes 25 calculation cells C (m, n), and the irradiation intensity matrix D (x ′, y ′) includes a total of 625 cells. The calculation cell is included. Each calculation cell is given a predetermined cell value based on the pixel value of the pixel including the cell (in FIG. 20, display of the cell value of each calculation cell is omitted).
 ただ、ここで述べる実施例の場合、演算負担を軽減するための工夫として、同一画素に含まれる複数の演算用セルのうち、特定の代表セルについてのみ当該画素の画素値に基づいて定められる所定の値をセル値として与え、それ以外の非代表セルについてはセル値0を与えるようにしている。 However, in the case of the embodiment described here, as a device for reducing the calculation burden, only a specific representative cell among a plurality of calculation cells included in the same pixel is determined based on the pixel value of the pixel. Is given as a cell value, and a cell value of 0 is given to other non-representative cells.
 図20に示す例は、各画素の中心に位置する1つの演算用セルを代表セルとし、それ以外の演算用セルを非代表セルとした例であり、代表セルのみを黒塗りにして示してある。したがって、図に黒塗りで示されている代表セルには、図19(a) の対応位置にある画素の画素値(12もしくは15)と同じ値がセル値として与えられ、図に白塗りで示されている非代表セルには、いずれもセル値0が与えられることになる。結局、ステップS30で作成された照射強度マトリックスD(x′,y′)は、図20の上段に示されている黒塗りのセルに12もしくは15なるセル値を与え、白塗りのセルに0なるセル値を与えたセル配列ということになる。 The example shown in FIG. 20 is an example in which one calculation cell located at the center of each pixel is a representative cell, and the other calculation cells are non-representative cells. Only the representative cell is shown in black. is there. Therefore, the representative cell shown in black in the figure is given the same value as the pixel value (12 or 15) of the pixel at the corresponding position in FIG. All of the non-representative cells shown are given a cell value of 0. Eventually, the irradiation intensity matrix D (x ′, y ′) created in step S30 gives a cell value of 12 or 15 to the black cells shown in the upper part of FIG. 20, and 0 to the white cells. This is a cell array given the cell value.
 一方、図20の下段に示すグラフpsfは、点拡がりマトリックスpsf(X,Y)の特定の行(たとえば、縦方向の中央に位置する行)に配置された各演算用セルのセル値を示している。図15に示すとおり、本発明で用いる点拡がり関数psf(X,Y)は、開口サイズパラメータBに応じた幅wをもった平坦部Hと、前方散乱パラメータσに応じた傾斜をもった傾斜部U1,U2と、を有する台形状の関数になる。したがって、図20の下段に示すグラフpsfも、平坦部Hと傾斜部U1,U2とを有するグラフになっている。結局、ステップS30で作成された点拡がりマトリックスpsf(X,Y)は、図20の下段に示されているグラフpsfに応じたセル値分布をX軸方向およびY軸方向に有するセル配列ということになる。 On the other hand, the graph psf shown in the lower part of FIG. 20 shows the cell values of the operation cells arranged in a specific row (for example, the row located in the center in the vertical direction) of the point spread matrix psf (X, Y). ing. As shown in FIG. 15, the point spread function psf (X, Y) used in the present invention has a flat portion H having a width w corresponding to the aperture size parameter B and an inclination having an inclination corresponding to the forward scattering parameter σ. It becomes a trapezoidal function having the parts U1 and U2. Therefore, the graph psf shown in the lower part of FIG. 20 is also a graph having a flat portion H and inclined portions U1 and U2. After all, the point spread matrix psf (X, Y) created in step S30 is a cell array having cell value distributions in the X-axis direction and the Y-axis direction according to the graph psf shown in the lower part of FIG. become.
 図14の式(3)に示す畳み込み演算は、図20の上段に示す照射強度マトリックスD(x′,y′)に対して、図20の下段のグラフpsfに応じたセル値分布を有する点拡がりマトリックスpsf(X,Y)を、1nmピッチで二次元的に移動させながら、両マトリックスの対応位置にあるセルのセル値の積を累積加算してゆく処理によって行うことができる。図20の下段には、第i行第j列目の画素P(i,j)の中心に配置された照射強度マトリックスの演算用セルC(m,n)の中心位置に、点拡がりマトリックスpsf(X,Y)の中心位置を重ね合わせた場合のグラフpsfが描かれている。 The convolution operation shown in the equation (3) in FIG. 14 has a cell value distribution corresponding to the graph psf in the lower part of FIG. 20 with respect to the irradiation intensity matrix D (x ′, y ′) shown in the upper part of FIG. The spread matrix psf (X, Y) can be moved by two-dimensionally moving at a pitch of 1 nm while accumulating the product of cell values of cells at corresponding positions in both matrices. The lower part of FIG. 20 shows a point spread matrix psf at the center position of the calculation cell C (m, n) of the irradiation intensity matrix arranged at the center of the pixel P (i, j) in the i-th row and j-th column. A graph psf when the center positions of (X, Y) are superimposed is drawn.
 図21は、図19(a) に示す描画データに基づいて畳み込み演算を行うプロセスの概念を示す図である。以下、この図21を参照しながら、畳み込み演算の基本プロセスを説明する。まず、図21(a) は、図19(a) に示す描画データの第3行目の5つの画素の画素値Dを示すグラフであり、横軸にはx軸、縦軸には画素値Dがとられている。図示のとおり、両端の画素P(3,1),P(3,5)には画素値D=12が与えられ、これらに挟まれた3つの画素P(3,2),P(3,3),P(3,4)には画素値D=15が与えられている。ここで、各画素値Dは、当該画素位置に照射される電子ビームの照射強度を示している。 FIG. 21 is a diagram showing a concept of a process for performing a convolution operation based on the drawing data shown in FIG. Hereinafter, the basic process of the convolution operation will be described with reference to FIG. First, FIG. 21A is a graph showing the pixel values D of the five pixels in the third row of the drawing data shown in FIG. 19A. The horizontal axis is the x axis, and the vertical axis is the pixel value. D is taken. As shown in the figure, a pixel value D = 12 is given to the pixels P (3, 1) and P (3, 5) at both ends, and three pixels P (3, 2) and P (3, sandwiched between them are provided. The pixel value D = 15 is given to 3) and P (3, 4). Here, each pixel value D indicates the irradiation intensity of the electron beam irradiated to the pixel position.
 図21(b) は、1つの画素を25分割して得られる各演算用セルのセル値を示すグラフであり、やはり横軸にはx軸、縦軸にはセル値Dがとられている。横軸上には25個の演算用セルが並んでいるが、これらの各セルは、図19(a) に示す描画データの第3行目の5つの画素を切断したときに得られるセルであり、全25行25列のセル配列のうち、第13行目の第1~25列目のセルC(13,1)~C(13,25)に相当する。この例は、図19(b) の左側に示す例に相当するものであり、すべてのセルに対して、当該セルを含む画素(図21(a) の対応位置にある画素)の画素値Dと同じセル値(すなわち、12もしくは15)が与えられている。 FIG. 21B is a graph showing the cell value of each calculation cell obtained by dividing one pixel into 25, and the x-axis is taken on the horizontal axis and the cell value D is taken on the vertical axis. . On the horizontal axis, 25 calculation cells are arranged. Each of these cells is a cell obtained by cutting five pixels in the third row of the drawing data shown in FIG. Yes, it corresponds to the cells C (13, 1) to C (13, 25) in the first to 25th columns of the 13th row in the cell array of all 25 rows and 25 columns. This example corresponds to the example shown on the left side of FIG. 19 (b), and for all cells, the pixel value D of the pixel including the cell (the pixel at the corresponding position in FIG. 21 (a)). Is given the same cell value (ie 12 or 15).
 これに対して、図21(c) は、図19(b) の右側に示す例に相当するものであり、第13行目に並んだ25個のセルのうち、各画素の中心に位置する代表セルについてのみ、当該セルを含む画素の画素値Dと同じセル値を与え、それ以外の非代表セルについては、セル値0を与えたものである。具体的には、第13行目の代表セルC(13,3),C(13,8),C(13,13),C(13,18),C(13,23)に対しては、セル値12もしくは15が与えられ、その他の非代表セルについては、セル値0が与えられている。 On the other hand, FIG. 21 (c) 例 corresponds to the example shown on the right side of FIG. 19 (b) and is located at the center of each pixel among the 25 cells arranged in the 13th row. Only the representative cell is given the same cell value as the pixel value D of the pixel including the cell, and the other non-representative cells are given the cell value 0. Specifically, for the representative cells C (13, 3), C (13, 8), C (13, 13), C (13, 18), C (13, 23) in the 13th row The cell value 12 or 15 is given, and the cell value 0 is given to other non-representative cells.
 一方、図21(d) は、点拡がりマトリックスpsf(X,Y)に相当する点拡がり関数pfsのグラフfの1つの配置を示している。畳み込み演算では、このグラフfを演算用セルのピッチg(この例ではg=1nm)の単位で二次元的に移動させながら、対応位置にある2組のセル(照射強度マトリックスのセルと点拡がりマトリックスのセル)のセル値の積を累積加算してゆくことになる。図21(d) に示すグラフf(13,13)は、グラフfを、その中心が図21(c) に示す代表セルC(13,13)の中心位置に一致するように配置した状態を示している。このような配置では、図21(c) に示す5つの代表セルのセル値(12もしくは15)と、図21(d) に示すグラフf(13,13)の各代表セルと同じ座標位置における関数値fとの積が求められることになる。 On the other hand, FIG. 21 (d) shows one arrangement of the graph f of the point spread function pfs corresponding to the point spread matrix psf (X, Y). In the convolution calculation, the graph f is moved two-dimensionally in units of a calculation cell pitch g (g = 1 nm in this example), and two sets of cells at the corresponding positions (cells of the irradiation intensity matrix and point spread). The product of the cell values of the matrix cells) is cumulatively added. The graph f (13, 13) shown in FIG. 21 (d) shows a state where the graph f is arranged so that the center thereof coincides with the center position of the representative cell C (13, 13) shown in FIG. 21 (c). Show. In such an arrangement, the cell values (12 or 15) of the five representative cells shown in FIG. 21 (c) and the same coordinate position as each representative cell of the graph f (13, 13) shown in FIG. 21 (d). The product with the function value f is obtained.
 図21(e) は、図21(d) に示すグラフf(13,13)を左右に移動させながら、各位置でのセル値の積を累積加算してゆくことにより得られる総露光強度の分布グラフFを示している。ここで、破線で示すグラフf(13,3)は、グラフfを代表セルC(13,3)の中心位置に一致するように配置した状態を示し、一点鎖線で示すグラフf(13,8)は、グラフfを代表セルC(13,8)の中心位置に一致するように配置した状態を示し、実線で示すグラフf(13,13)は、グラフfを代表セルC(13,13)の中心位置に一致するように配置した状態を示し、一点鎖線で示すグラフf(13,18)は、グラフfを代表セルC(13,18)の中心位置に一致するように配置した状態を示し、破線で示すグラフf(13,23)は、グラフfを代表セルC(13,23)の中心位置に一致するように配置した状態を示している。 FIG. 21 (e) shows the total exposure intensity obtained by accumulating the product of cell values at each position while moving the graph f (13, 13) shown in FIG. 21 (d) to the left and right. A distribution graph F is shown. Here, a graph f (13, 3) indicated by a broken line indicates a state in which the graph f is arranged so as to coincide with the center position of the representative cell C (13, 3), and a graph f (13, 8) indicated by a one-dot chain line. ) Shows a state in which the graph f is arranged so as to coincide with the center position of the representative cell C (13, 8), and the graph f (13, 13) indicated by a solid line indicates the graph f as the representative cell C (13, 13). The graph f (13, 18) indicated by the alternate long and short dash line indicates a state in which the graph f is arranged so as to match the center position of the representative cell C (13, 18). A graph f (13, 23) indicated by a broken line indicates a state in which the graph f is arranged so as to coincide with the center position of the representative cell C (13, 23).
 図21(e) に示すグラフFは、このような畳み込み演算を行うことによって得られる総露光強度の分布グラフであり、図14の式(3)に示す総露光強度v(x,y)を示すグラフに相当する。なお、図21(b) に示すように、すべてのセルに対して画素値Dと同じセル値を与えて照射強度マトリックスD(x′,y′)を作成した場合は、すべてのセルについて積を求める演算を行う必要があるが、図21(c) に示すように、各画素の中心に位置する代表セルについてのみ画素値Dと同じセル値を与えて照射強度マトリックスD(x′,y′)を作成した場合は、非代表セルについての積は0になるので、実質的に、非代表セルについての演算は省略することができる。 A graph F shown in FIG. 21 (e) is a distribution graph of the total exposure intensity obtained by performing such a convolution operation, and the total exposure intensity v (x, y) shown in the equation (3) of FIG. It corresponds to the graph shown. As shown in FIG. 21 (b) IV, when the irradiation intensity matrix D (x ′, y ′) is created by giving the same cell value as the pixel value D to all the cells, the product for all the cells is obtained. However, as shown in FIG. 21C, only the representative cell located at the center of each pixel is given the same cell value as the pixel value D, and the irradiation intensity matrix D (x ′, y When ') is created, the product for the non-representative cell is 0, so that the operation for the non-representative cell can be substantially omitted.
 図20および図21に示す実施例は、描画データを構成する各画素の中心に位置する演算用セルを代表セルとした例であるが、代表セルは、必ずしも各画素の中心に位置するセルにする必要はなく、任意のセルを代表セルに設定してもかまわない。図22は、各画素の左下に位置する演算用セルを代表セルとした変形例を示す図である。 The embodiment shown in FIGS. 20 and 21 is an example in which the calculation cell located at the center of each pixel constituting the drawing data is the representative cell, but the representative cell is not necessarily located at the cell located at the center of each pixel. It is not necessary to set any cell as a representative cell. FIG. 22 is a diagram illustrating a modification example in which a calculation cell located at the lower left of each pixel is a representative cell.
 図22(a) には、図20の上段の図と同様に、照射強度マトリックスD(x′,y′)を構成する演算用セルの配置が示されている。図に示す太線枠で囲まれた一辺d=5nmのサイズをもった正方形の領域は、描画データを構成する1つの画素P(i,j)を示し、細線枠で囲まれた一辺d=1nmのサイズをもった正方形の領域は、1つの演算用セルC(m,n)を示している。ここで、図に黒塗りで示されているセルは代表セルであり、図に白塗りで示されているセルは非代表セルである。図20の上段に示す実施例では、各画素の中心に黒塗りの代表セルが配置されているが、図22(a) に示す変形例では、各画素の左下に黒塗りの代表セルが配置されている。 FIG. 22 (a) shows the arrangement of calculation cells constituting the irradiation intensity matrix D (x ′, y ′) as in the upper diagram of FIG. A square region having a size of one side d = 5 nm surrounded by a thick line frame shown in the drawing indicates one pixel P (i, j) constituting the drawing data, and one side d = 1 nm surrounded by a thin line frame. A square region having a size of 1 represents one arithmetic cell C (m, n). Here, the cells shown in black in the figure are representative cells, and the cells shown in white in the figure are non-representative cells. In the embodiment shown in the upper part of FIG. 20, a black representative cell is arranged at the center of each pixel. However, in the modification shown in FIG. 22A, a black representative cell is arranged at the lower left of each pixel. Has been.
 図22(b) は、図22(a) に示す1つの画素P(i,j)を25分割することによって演算用セルを定義し、各演算用セルに所定のセル値を与えた状態を示す図である。図に太線枠で示す左下のセルが代表セルになるため、この代表セルにはセル値「12」(画素P(i,j)の画素値)が与えられ、それ以外の非代表セルにはセル値「0」が与えられる。図19(b) の右側に示す実施例と、図22(b) に示す変形例とを対比すれば、後者では、代表セルの位置が、画素P(i,j)の中心位置から左下位置へ所定のオフセット量(この例の場合、2√2nm)だけ変位していることがわかる。 In FIG. 22 (b), a calculation cell is defined by dividing one pixel P (i, j) shown in FIG. 22 (a) 、 into 25, and a predetermined cell value is given to each calculation cell. FIG. Since the lower left cell indicated by a bold frame in the figure is a representative cell, this representative cell is given a cell value “12” (pixel value of the pixel P (i, j)), and other non-representative cells A cell value of “0” is given. If the embodiment shown on the right side of FIG. 19B is compared with the modification shown in FIG. 22B, in the latter case, the position of the representative cell is the lower left position from the center position of the pixel P (i, j). It can be seen that it is displaced by a predetermined offset amount (in this example, 2√2 nm).
 別言すれば、図22に示す変形例は、ステップS30の演算用マトリックス作成段階で照射強度マトリックスD(x′,y′)を作成する際に、同一画素に含まれる複数の演算用セルのうち、当該画素の中心から所定方向に所定のオフセット量だけ変位した位置に存在する演算用セルを代表セルとし、それ以外の演算用セルを非代表セルとした例であり、各代表セルには、当該セルを含む画素の画素値をそのままセル値として与え、各非代表セルには、セル値0を与えた例ということができる。 In other words, in the modification shown in FIG. 22, when the irradiation intensity matrix D (x ′, y ′) is created in the computation matrix creation stage in step S30, a plurality of computation cells included in the same pixel are created. Among them, the calculation cell existing at a position displaced by a predetermined offset amount in the predetermined direction from the center of the pixel is a representative cell, and the other calculation cells are non-representative cells. It can be said that the pixel value of the pixel including the cell is directly given as the cell value, and the cell value 0 is given to each non-representative cell.
 このように、照射強度マトリックスD(x′,y′)を作成する際に、代表セルの位置を画素の中心から所定方向に所定のオフセット量だけ変位させる変形例を採用する場合には、点拡がりマトリックスpsf(X,Y)を作成する際にも、当該オフセット量を考慮した修正を行うようにするのが好ましい。これは、個々の電子ビームが、各画素の中心を照射目標として照射されるため、図20の下段のグラフに示すとおり、点拡がり関数psfのグラフは、その中心が各画素の中心に一致するように配置するのが好ましいためである。 In this way, when the irradiation intensity matrix D (x ′, y ′) is created, if a modification example is adopted in which the position of the representative cell is displaced from the center of the pixel in a predetermined direction by a predetermined offset amount, When creating the spread matrix psf (X, Y), it is preferable to perform correction in consideration of the offset amount. This is because each electron beam is irradiated with the center of each pixel as an irradiation target. As shown in the lower graph of FIG. 20, the center of the graph of the point spread function psf coincides with the center of each pixel. This is because it is preferable to arrange them as described above.
 したがって、この図22に示す変形例のように、代表セルを、画素の中心から所定方向に所定のオフセット量だけ変位した位置に設定する場合には、点拡がりマトリックスpsf(X,Y)を作成する際に、上記所定方向とは逆方向に上記オフセット量だけ補正した点拡がり関数psf(X,Y)を定義し、当該点拡がり関数によって示される影響の度合いの平面分布を示す点拡がりマトリックスを作成するようにすればよい。 Therefore, when the representative cell is set at a position displaced by a predetermined offset amount from the center of the pixel in a predetermined direction as in the modification shown in FIG. 22, a point spread matrix psf (X, Y) is created. In this case, a point spread function psf (X, Y) corrected by the offset amount in a direction opposite to the predetermined direction is defined, and a point spread matrix indicating a plane distribution of the degree of influence indicated by the point spread function is defined. Just create it.
 具体的には、図14の式(4)に示す点拡がり関数psf(X,Y)の代わりに、図22(c) の式(4′)に示す点拡がり関数psf(X,Y)を用いて点拡がりマトリックスを作成すればよい。式(4′)の右辺は、式(4)の右辺における変数Xを変数「X+Δx」に置き換え、変数Yを変数「Y+Δy」に置き換えたものである。ここで、Δxは、x軸方向に関するオフセット量、Δyは、y軸方向に関するオフセット量であり、図22に示す例の場合、Δx=2nm、Δy=2nmということになる。 Specifically, instead of the point spread function psf (X, Y) shown in equation (4) in FIG. 14, a point spread function psf (X, Y) shown in equation (4 ′) in FIG. Use it to create a point spread matrix. The right side of Expression (4 ′) is obtained by replacing the variable X on the right side of Expression (4) with the variable “X + Δx” and replacing the variable Y with the variable “Y + Δy”. Here, Δx is an offset amount in the x-axis direction, and Δy is an offset amount in the y-axis direction. In the example shown in FIG. 22, Δx = 2 nm and Δy = 2 nm.
 図23は、図22に示す変形例を採用した場合の畳み込み演算を行うプロセスの概念を示す図である。ここで、図23(a) は図21(a) と全く同じ図であり、描画データを構成する5つの画素の画素値Dを示すグラフである。また、図23(b) は図21(b) と全く同じ図であり、すべての演算用セルに、当該セルを含む画素の画素値をそのままセル値として与えた例を示すグラフである。 FIG. 23 is a diagram showing a concept of a process for performing a convolution operation when the modified example shown in FIG. 22 is adopted. Here, FIG. 23A is the same diagram as FIG. 21A and is a graph showing the pixel values D of the five pixels constituting the drawing data. FIG. 23 (b) is the same diagram as FIG. 21 (b), and is a graph showing an example in which the pixel values of the pixels including the cell are given as they are to the cell for calculation.
 これに対して、図23(c) は、図22(a) ,(b) に示すように、各画素の左下のセルを代表セルとして、この代表セルについてのみ、当該セルを含む画素の画素値Dと同じセル値を与え、それ以外の非代表セルについては、セル値0を与えたものである。具体的には、第15行目の代表セルC(15,1),C(15,6),C(15,11),C(15,16),C(15,21)に対しては、セル値12もしくは15が与えられ、その他の非代表セルについては、セル値0が与えられている。図21(c) と図23(c) とを比較すると、後者では、代表セルのセル値を示すバーの位置が、左側に2セル分(x軸方向に関するオフセット量Δx)だけシフトしていることがわかる。 On the other hand, in FIG. 23 (c), as shown in FIGS. 22 (a) and (b), the lower left cell of each pixel is a representative cell, and only for this representative cell, the pixel of the pixel including the cell is displayed. The same cell value as the value D is given, and the cell value 0 is given for the other non-representative cells. Specifically, for the representative cells C (15, 1), C (15, 6), C (15, 11), C (15, 16), C (15, 21) in the 15th row The cell value 12 or 15 is given, and the cell value 0 is given to other non-representative cells. Comparing FIG. 21C and FIG. 23C, in the latter, the position of the bar indicating the cell value of the representative cell is shifted to the left by two cells (offset amount Δx in the x-axis direction). I understand that.
 一方、図23(d) は、図21(d) と同様に、点拡がりマトリックスpsf(X,Y)に相当する点拡がり関数pfsのグラフfの1つの配置を示している。図23(d) に示すグラフf(15,11)は、グラフfを、その中心が図23(c) に示す代表セルC(15,11)に応じた位置に配置した状態を示している。ただ、グラフf(15,11)の中心位置は、代表セルC(15,11)の中心位置には一致せず、x軸方向に関するオフセット量Δxだけ右へシフトした位置になっている。図には現れていないが、y軸方向に関してもオフセット量Δyだけシフトしている。その結果、グラフf(15,11)の中心位置は、非代表セル(13,13)の中心位置に一致することになる。 On the other hand, FIG. 23 (d) shows one arrangement of the graph f of the point spread function pfs corresponding to the point spread matrix psf (X, Y), similarly to FIG. 21 (d). A graph f (15, 11) shown in FIG. 23 (d) shows a state where the center of the graph f is arranged at a position corresponding to the representative cell C (15, 11) shown in FIG. 23 (c). . However, the center position of the graph f (15, 11) does not coincide with the center position of the representative cell C (15, 11), but is shifted to the right by the offset amount Δx in the x-axis direction. Although not shown in the figure, the offset amount Δy is also shifted in the y-axis direction. As a result, the center position of the graph f (15, 11) coincides with the center position of the non-representative cell (13, 13).
 結局、図23(d) に示すグラフf(15,11)の位置は、図21(d) に示すグラフf(13,13)の位置と一致することになり、グラフf(15,11)は、画素P(3,3)の中心を照射目標として照射された電子ビームが照射点から周囲へ及ぼす影響の度合いを示す点拡がり関数psfのグラフとして適切なグラフになる。図22(c) の式(4′)において、オフセット量Δx,Δyを用いた補正が行われているのは、適切な位置に配置された点拡がりマトリックスpsf(X,Y)を用いた畳み込み演算が行われるようにするためである。 Eventually, the position of the graph f (15, 11) shown in FIG. 23 (d) coincides with the position of the graph f (13, 13) shown in FIG. 21 (d), and the graph f (15, 11). Is an appropriate graph as a graph of the point spread function psf indicating the degree of influence of the electron beam irradiated with the center of the pixel P (3, 3) as the irradiation target from the irradiation point to the surroundings. In the equation (4 ′) in FIG. 22 (c), the correction using the offset amounts Δx and Δy is performed by convolution using the point spread matrix psf (X, Y) arranged at appropriate positions. This is so that the calculation is performed.
 図23(e) は、図21(e) と同様に、グラフf(15,11)を左右に移動させながら、各位置でのセル値の積を累積加算してゆくプロセスを示しており、更に、当該プロセスにより最終的に得られる総露光強度の分布グラフFを示している。やはり、各画素の左下に位置する代表セルについてのみ画素値Dと同じセル値を与えて照射強度マトリックスD(x′,y′)を作成したため、非代表セルについての積は0になるので、実質的に、非代表セルについての演算は省略することができる。 FIG. 23 (e) shows the process of accumulating the product of cell values at each position while moving the graph f (15, 11) to the left and right as in FIG. 21 (e). Further, a distribution graph F of the total exposure intensity finally obtained by the process is shown. Since the irradiation intensity matrix D (x ′, y ′) is created by giving the same cell value as the pixel value D only for the representative cell located at the lower left of each pixel, the product for the non-representative cell is 0. Substantially, the calculation for the non-representative cell can be omitted.
 このように、個々の画素に含まれる複数の演算用セルのうち、特定の代表セルについてのみ当該画素の画素値に応じたセル値を与え、それ以外の非代表セルについてはセル値0を与える方法を採用すると、多くの演算プロセスを省略することができ、演算時間を短縮することができる。 As described above, among a plurality of calculation cells included in each pixel, a cell value corresponding to the pixel value of the pixel is given only to a specific representative cell, and a cell value of 0 is given to other non-representative cells. When the method is employed, many calculation processes can be omitted and the calculation time can be shortened.
 なお、これまで述べてきた実施例では、1つの画素に含まれる複数の演算用セルのうち、いずれか1つだけを代表セルに設定し、残りのセルを非代表セルとしているが、1つの画素について、複数の代表セルを設定することも可能である。したがって、演算用マトリックス作成段階で照射強度マトリックスを作成する際に、各画素の中心に位置するセルを代表セルに設定する、という基本方針を採る場合には、同一画素に含まれる複数の演算用セルのうち、当該画素の中心に位置する1つもしくは複数の演算用セルを代表セルとし、それ以外の演算用セルを非代表セルとすればよい。 In the embodiments described so far, only one of a plurality of calculation cells included in one pixel is set as a representative cell, and the remaining cells are set as non-representative cells. A plurality of representative cells can be set for the pixel. Therefore, when creating the irradiation intensity matrix in the computation matrix creation stage, if the basic policy of setting the cell located at the center of each pixel as the representative cell is taken, multiple computations included in the same pixel Of the cells, one or more calculation cells located at the center of the pixel may be designated as representative cells, and the other calculation cells may be non-representative cells.
 一般に、演算用マトリックス作成段階で照射強度マトリックスを作成する際に、描画データの各画素を縦横それぞれ奇数に分割した場合には、各画素の中心に位置する1つの演算用セルを代表セルとし、それ以外の演算用セルを非代表セルとし、代表セルには当該代表セルを含む画素の画素値を与え、非代表セルについてはセル値0を与えるようにすればよい。図20に示す実施例は、各画素を縦横それぞれ5つに分割した例であり、各画素の中心に位置する1つの演算用セルが代表セルに設定されている。 In general, when creating the irradiation intensity matrix in the computation matrix creation stage, if each pixel of the drawing data is divided into odd and vertical numbers, one computation cell located at the center of each pixel is used as the representative cell, Other calculation cells may be non-representative cells, the pixel value of the pixel including the representative cell may be given to the representative cell, and the cell value 0 may be given to the non-representative cell. The embodiment shown in FIG. 20 is an example in which each pixel is divided into five vertically and horizontally, and one arithmetic cell located at the center of each pixel is set as a representative cell.
 これに対して、描画データの各画素を縦横それぞれ偶数に分割した場合には、各画素の中心には4つの演算用セルが配置されることになる。このような場合は、この4つの演算用セルを代表セルに設定し、それ以外の演算用セルを非代表セルとすればよい。そして、4つの代表セルには当該代表セルを含む画素の画素値の1/4の値を与え、非代表セルについてはセル値0を与えるようにすればよい。 On the other hand, when each pixel of the drawing data is divided into even numbers in the vertical and horizontal directions, four calculation cells are arranged at the center of each pixel. In such a case, these four calculation cells may be set as representative cells, and the other calculation cells may be non-representative cells. Then, a value of ¼ of the pixel value of the pixel including the representative cell may be given to the four representative cells, and a cell value of 0 may be given to the non-representative cell.
 図24(a) は、縦横のピッチd=10nmで、3行3列に配置された9個の画素の画素配列からなる描画データについて、各画素P(i,j)を縦横それぞれ10分割することにより、演算用セルC(m,n)を作成した例である。各画素が縦横それぞれ偶数分割されているため、各画素の中心には4つの演算用セルが配置される。そこで、この4つの演算用セルをすべて当該画素についての代表セルに設定している。すなわち、図24(a) において黒塗りで示されているセルは代表セルであり、図に白塗りで示されているセルは非代表セルである。各代表セルには、当該代表セルを含む画素の画素値の1/4の値が与えられ、非代表セルについてはセル値0が与えられる。 FIG. 24 (a) divides each pixel P (i, j) into 10 parts vertically and horizontally for drawing data composed of a pixel array of 9 pixels arranged in 3 rows and 3 columns at a vertical and horizontal pitch d = 10 nm. This is an example in which a calculation cell C (m, n) is created. Since each pixel is divided into even numbers in the vertical and horizontal directions, four calculation cells are arranged at the center of each pixel. Therefore, all the four calculation cells are set as representative cells for the pixel. That is, the cells shown in black in FIG. 24A are representative cells, and the cells shown in white in the figure are non-representative cells. Each representative cell is given a value that is ¼ of the pixel value of the pixel including the representative cell, and a cell value of 0 is given to the non-representative cell.
 図24(b) は、図24(a) に示す1つの画素P(i,j)に含まれる合計100個の演算用セルC(m,n)のそれぞれに、所定のセル値を与えた状態を示す図である。図に太線枠で示す4組の代表セルには、それぞれセル値「3」が与えられているが、これは、画素P(i,j)のもつ画素値pが「12」であった場合の例である。すなわち、各代表セルには、当該代表セルを含む画素の画素値「12」の1/4の値「3」がセル値として与えられる。また、非代表セルについては、すべてセル値0が与えられている。 24 (b) (gives a predetermined cell value to each of a total of 100 operation cells C (m, n) included in one pixel P (i, j) shown in FIG. 24 (a). It is a figure which shows a state. The cell values “3” are assigned to the four sets of representative cells indicated by the bold frame in the figure, respectively, when the pixel value p of the pixel P (i, j) is “12”. It is an example. That is, a value “3” that is a quarter of the pixel value “12” of the pixel including the representative cell is given to each representative cell as the cell value. Also, cell values of 0 are given to all non-representative cells.
 このように、1つの画素について複数の代表セルを設定すると、これら複数の代表セルのそれぞれについての演算が必要になるが、やはり非代表セルについての演算を省略することができるので、演算時間を短縮する効果が得られる。もちろん、このように1つの画素について複数の代表セルを設定する場合にも、各代表セルの位置を、画素の中心から所定方向に所定のオフセット量だけ変位させるようにしてもかまわない。 As described above, when a plurality of representative cells are set for one pixel, calculation for each of the plurality of representative cells is required. However, since calculation for non-representative cells can be omitted, the calculation time is reduced. The effect of shortening is obtained. Of course, even when a plurality of representative cells are set for one pixel in this way, the position of each representative cell may be displaced from the center of the pixel by a predetermined offset amount in a predetermined direction.
 もっとも、偶数分割した場合、必ずしも複数の代表セルを設定する必要はなく、1つの画素に単一の代表セルのみを設定するようにしてもかまわない。偶数分割した場合は、単一の代表セルを画素の中心に配置することはできないので、当該代表セルは、画素の中心から必ず所定方向に所定のオフセット量だけずれた位置に配置されることになる。この場合、図22に示す例と同様に、点拡がりマトリックスpsf(X,Y)を作成する際に、逆方向に上記オフセット量だけ補正した関数psf(X,Y)を定義するようにすればよい。 However, in the case of even division, it is not always necessary to set a plurality of representative cells, and only a single representative cell may be set for one pixel. In the case of even division, a single representative cell cannot be arranged at the center of the pixel, so that the representative cell is always arranged at a position offset by a predetermined offset amount in a predetermined direction from the center of the pixel. Become. In this case, as in the example shown in FIG. 22, when creating the point spread matrix psf (X, Y), the function psf (X, Y) corrected in the reverse direction by the offset amount is defined. Good.
 図24(b) に示す例では、1つの画素を100個のセルに偶数分割し、中心付近に4つの代表セルを定義して、それぞれに対して、画素値「12」の1/4の値「3」をセル値として与えている。これは、代表セルを画素の中心に配置するための配慮であるが、図22に示す例と同様に、所定のオフセット量だけ関数psf(X,Y)に対する補正を行う手法を採用すれば、単一の代表セルを任意の位置に配置することも可能である。 In the example shown in FIG. 24B, one pixel is evenly divided into 100 cells, and four representative cells are defined in the vicinity of the center, and each pixel is 1/4 of the pixel value “12”. The value “3” is given as the cell value. This is a consideration for arranging the representative cell at the center of the pixel. As in the example shown in FIG. 22, if a method of correcting the function psf (X, Y) by a predetermined offset amount is employed, It is also possible to arrange a single representative cell at an arbitrary position.
 たとえば、図25(a) に示す例は、図24(a) に示す例と同様に、1つの画素を100個のセルに偶数分割した例であるが、中心付近ではなく、図に黒塗りで示した左下隅のセルだけを単一の代表セルとした例である(右上画素の代表セルについては、オフセット量を示す矢印を描く便宜上、黒塗りは省略した)。図25(b) は、図25(a) に示す1つの画素P(i,j)に含まれる合計100個の演算用セルC(m,n)のそれぞれに、所定のセル値を与えた状態を示す図である。図に太線枠で示す左下隅の代表セルには、セル値「12」が与えられているが、これは、画素P(i,j)のもつ画素値pが「12」であった場合の例である。また、残りの99個の非代表セルについては、すべてセル値0が与えられている。 For example, the example shown in FIG. 25 (a) is an example in which one pixel is divided into an even number of 100 cells, as in the example shown in FIG. 24 (a) 、. This is an example in which only the cell in the lower left corner shown in FIG. 6 is a single representative cell (the black cell is omitted for the convenience of drawing an arrow indicating the offset amount for the representative cell of the upper right pixel). 25 (b) b gives a predetermined cell value to each of a total of 100 operation cells C (m, n) included in one pixel P (i, j) shown in FIG. 25 (a). It is a figure which shows a state. The cell value “12” is given to the representative cell in the lower left corner indicated by the bold frame in the figure. This is because the pixel value p of the pixel P (i, j) is “12”. It is an example. The remaining 99 non-representative cells are all given a cell value of 0.
 図25(a) の右上の画素について矢印で示されているとおり、左下隅の代表セルの中心は、画素の中心から左下方向に所定のオフセット量(横にΔx=4.5nm,縦にΔy=4.5nm)だけずれた位置に配置されているため、関数psf(X,Y)については右上方向に同じオフセット量だけ補正を施すようにすればよい。具体的には、図14の式(4)に示す点拡がり関数psf(X,Y)の代わりに、図22(c) の式(4′)に示す点拡がり関数psf(X,Y)を用いて点拡がりマトリックスを作成すればよい。式(4′)の右辺は、式(4)の右辺における変数Xを変数「X+Δx」に置き換え、変数Yを変数「Y+Δy」に置き換えたものであり、符号を考慮すると、上例の場合、Δx=-4.5nm,Δy=-4.5nmとして式(4′)を適用すればよい。 As indicated by an arrow for the upper right pixel in FIG. 25 (a), the center of the representative cell in the lower left corner is a predetermined offset amount (Δx = 4.5 nm horizontally, Δy vertically) from the pixel center to the lower left direction. = 4.5 nm), the function psf (X, Y) may be corrected by the same offset amount in the upper right direction. Specifically, instead of the point spread function psf (X, Y) shown in equation (4) in FIG. 14, a point spread function psf (X, Y) shown in equation (4 ′) in FIG. Use it to create a point spread matrix. The right side of the equation (4 ′) is obtained by replacing the variable X on the right side of the equation (4) with the variable “X + Δx” and replacing the variable Y with the variable “Y + Δy”. Equation (4 ′) may be applied with Δx = −4.5 nm and Δy = −4.5 nm.
 <<< §7. フーリエ変換を利用した畳み込み演算 >>>
 §6では、図18の流れ図におけるステップS40の畳み込み演算段階の具体的な処理として、照射強度マトリックスD(x′,y′)と点拡がりマトリックスpsf(X,Y)という2組の演算用マトリックスを用いた畳み込み積分の処理の手順を説明した。ここでは、この畳み込み積分を、フーリエ変換を利用して行う演算を説明する。
<<< §7. Convolution calculation using Fourier transform >>>
In §6, as specific processing in the convolution calculation stage of step S40 in the flowchart of FIG. 18, two sets of calculation matrices, that is, an irradiation intensity matrix D (x ′, y ′) and a point spread matrix psf (X, Y) Explained the procedure of the convolution integration using. Here, the calculation which performs this convolution integral using Fourier transform is demonstrated.
 一般に、2つの関数f(A),f(B)の畳み込み積分を計算する演算には、フーリエ変換を利用した演算方法を適用すると、演算時間を短縮できることが知られている。原理的には、まず、関数f(A),f(B)をそれぞれフーリエ変換することにより、空間周波数値を変数とする関数f′(A),f′(B)を求め、その積として、関数f′(C)=f′(A)×f′(B)を算出し、最後に、関数f′(C)を逆フーリエ変換して関数f(C)を求めれば、当該関数f(C)は、2つの関数f(A),f(B)の畳み込み積分を示すものになる。 Generally, it is known that the calculation time can be shortened by applying a calculation method using Fourier transform to the calculation for calculating the convolution integral of two functions f (A) and f (B). In principle, first, functions f (A) and f (B) are obtained by performing Fourier transform on the functions f (A) and f (B), respectively, to obtain the functions f ′ (A) and f ′ (B) having the spatial frequency values as variables. , Function f ′ (C) = f ′ (A) × f ′ (B) is calculated, and finally the function f ′ (C) is obtained by performing inverse Fourier transform on the function f ′ (C). (C) shows the convolution integral of the two functions f (A) and f (B).
 そこで、本発明を実施する際にも、実用上は、フーリエ変換を利用した畳み込み演算を行うようにするのが好ましい。図18のステップS40には、第1の演算段階S41,第2の演算段階S42,第3の演算段階S43,第4の演算段階S44という4段階の処理が記載されているが、これは、この§7で述べるフーリエ変換を利用した畳み込み演算を行うための処理に他ならない。 Therefore, when implementing the present invention, it is preferable in practice to perform a convolution operation using Fourier transform. Step S40 in FIG. 18 describes four steps of processing, that is, a first calculation step S41, a second calculation step S42, a third calculation step S43, and a fourth calculation step S44. This is nothing but a process for performing a convolution operation using the Fourier transform described in §7.
 図26は、図18のステップS40による畳み込み演算を、フーリエ変換を利用して行う原理を示す図である。図26の式(8)は、図14に示す式(3)と全く同じ式であり、ステップS40で行われる畳み込み演算の本質を示す式である。ここで述べるフーリエ変換を利用した畳み込み演算を利用する場合は、次のような手順によって、式(8)と等価な演算を行い、露光強度分布v(x,y)を算出することになる。 FIG. 26 is a diagram showing the principle of performing the convolution operation in step S40 of FIG. 18 using Fourier transform. Expression (8) in FIG. 26 is exactly the same as expression (3) shown in FIG. 14, and is an expression showing the essence of the convolution operation performed in step S40. When the convolution operation using the Fourier transform described here is used, an operation equivalent to the equation (8) is performed by the following procedure to calculate the exposure intensity distribution v (x, y).
 まず、第1の演算段階S41において、式(9)に示すように、照射強度マトリックスD(x′,y′)をフーリエ変換することにより、照射強度周波数マトリックスD′(f,g)を作成する。照射強度マトリックスD(x′,y′)が、横方向(x′軸方向)および縦方向(y′軸方向)に関する照射強度値の空間的な分布を示す行列であるのに対して、照射強度周波数マトリックスD′(f,g)は、横方向にx′軸方向に関する空間周波数を示すf軸、縦方向にy′軸方向に関する空間周波数を示すg軸をとった行列であり、照射強度マトリックスD(x′,y′)のx′軸方向およびy′軸方向に関する空間周波数成分を示す複素数の行列になる。 First, in the first calculation step S41, an irradiation intensity frequency matrix D ′ (f, g) is created by performing Fourier transform on the irradiation intensity matrix D (x ′, y ′) as shown in Equation (9). To do. The irradiation intensity matrix D (x ′, y ′) is a matrix showing a spatial distribution of irradiation intensity values in the horizontal direction (x′-axis direction) and the vertical direction (y′-axis direction). The intensity frequency matrix D ′ (f, g) is a matrix in which the f-axis indicating the spatial frequency in the x′-axis direction in the horizontal direction and the g-axis indicating the spatial frequency in the y′-axis direction in the vertical direction. The matrix D is a complex matrix indicating spatial frequency components in the x′-axis direction and the y′-axis direction of the matrix D (x ′, y ′).
 次に、第2の演算段階S42において、式(10)に示すように、点拡がりマトリックスpsf(X,Y)をフーリエ変換することにより、点拡がり周波数マトリックスpsf′(f,g)を作成する。点拡がりマトリックスpsf(X,Y)が、横方向(X軸方向)および縦方向(Y軸方向)に関する影響の度合いの空間的な分布を示す行列であるのに対して、点拡がり周波数マトリックスpsf′(f,g)は、横方向にX軸方向に関する空間周波数を示すf軸、縦方向にY軸方向に関する空間周波数を示すg軸をとった行列であり、点拡がりマトリックスpsf(X,Y)のX軸方向およびY軸方向に関する空間周波数成分を示す複素数の行列になる。 Next, in the second calculation step S42, as shown in Expression (10), the point spread matrix psf (X, Y) is Fourier-transformed to create a point spread frequency matrix psf '(f, g). . The point spread matrix psf (X, Y) is a matrix indicating a spatial distribution of the degree of influence in the horizontal direction (X-axis direction) and the vertical direction (Y-axis direction), whereas the point spread frequency matrix psf. ′ (F, g) is a matrix in which the f-axis indicating the spatial frequency in the X-axis direction in the horizontal direction and the g-axis indicating the spatial frequency in the Y-axis direction in the vertical direction, and the point spread matrix psf (X, Y ) Of the complex numbers indicating the spatial frequency components in the X-axis direction and the Y-axis direction.
 続いて、第3の演算段階S43において、式(11)に示すように、照射強度周波数マトリックスD′(f,g)と点拡がり周波数マトリックスpsf′(f,g)とについて、それぞれ対応する演算用セルの複素数の積を求め、当該積をセル値とする露光強度周波数マトリックスv′(f,g)を作成する。 Subsequently, in the third calculation step S43, as shown in the equation (11), the corresponding calculation is performed for the irradiation intensity frequency matrix D ′ (f, g) and the point spread frequency matrix psf ′ (f, g), respectively. A product of complex numbers of the cells for use is obtained, and an exposure intensity frequency matrix v ′ (f, g) having the product as a cell value is created.
 そして、最後の第4の演算段階S44において、式(11)により求めた露光強度周波数マトリックスv′(f,g)を逆フーリエ変換することにより、露光強度マトリックスv(x,y)を作成する。この露光強度マトリックスv(x,y)は、座標(x,y)で示される個々の評価点における総露光強度の平面分布を示す行列、すなわち、本発明に係るシミュレーションによって求めるべき露光強度分布を示す行列になる。 Then, in the final fourth calculation step S44, the exposure intensity matrix v (x, y) is created by performing inverse Fourier transform on the exposure intensity frequency matrix v ′ (f, g) obtained by the equation (11). . This exposure intensity matrix v (x, y) is a matrix indicating a planar distribution of the total exposure intensity at each evaluation point indicated by coordinates (x, y), that is, an exposure intensity distribution to be obtained by simulation according to the present invention. It becomes the matrix shown.
 なお、§6で述べたように、ステップS30の演算用マトリックス作成段階で照射強度マトリックスD(x′,y′)を作成する際に、代表セルについてのみ画素値に応じたセル値を与え、非代表セルについてはセル値0を与える方法を採用すると、式(9)および式(10)に示すフーリエ変換処理の演算負担を大幅に軽減することができ、演算時間を短縮することができる。 As described in §6, when the irradiation intensity matrix D (x ′, y ′) is created in the calculation matrix creation stage of step S30, only the representative cell is given a cell value corresponding to the pixel value, If a method of giving a cell value of 0 is adopted for non-representative cells, the computational burden of Fourier transform processing shown in equations (9) and (10) can be greatly reduced, and the computation time can be shortened.
 図27は、フーリエ変換処理の演算負担が軽減される原理を説明する図であり、式(9)に示すフーリエ変換処理の具体的な手順が示されている。まず、図27(a) は、照射強度マトリックスD(x′,y′)のセル配置を示す図である。個々のセルには、元の描画データの画素値に応じたセル値が収容されている。 FIG. 27 is a diagram for explaining the principle of reducing the computational burden of the Fourier transform process, and shows a specific procedure of the Fourier transform process shown in Equation (9). First, FIG. 27 (a) is a diagram showing a cell arrangement of the irradiation intensity matrix D (x ′, y ′). Each cell contains a cell value corresponding to the pixel value of the original drawing data.
 式(9)に従って、この照射強度マトリックスD(x′,y′)に対してフーリエ変換を行い、照射強度周波数マトリックスD′(f,g)を求めるには、まず、横方向(x′軸方向)に並んだセル値に対してフーリエ変換を行い、その空間周波数を求め、図27(b) に示すような照射強度中間マトリックスD''(f,y)を作成する処理が行われる。照射強度中間マトリックスD''(f,y)は、横軸が周波数f軸、縦軸がy′軸であり、元の照射強度マトリックスD(x′,y′)の各セル値についてのx′軸方向の空間周波数成分を示す行列になる。 In order to obtain the irradiation intensity frequency matrix D ′ (f, g) by performing Fourier transform on the irradiation intensity matrix D (x ′, y ′) according to the equation (9), first, the horizontal direction (x ′ axis The cell values arranged in the (direction) are subjected to Fourier transform, the spatial frequency is obtained, and processing for creating an irradiation intensity intermediate matrix D ″ (f, y) as shown in FIG. The irradiation intensity intermediate matrix D ″ (f, y) has a frequency f axis on the horizontal axis and a y ′ axis on the vertical axis, and x for each cell value of the original irradiation intensity matrix D (x ′, y ′). A matrix indicating spatial frequency components in the axial direction.
 たとえば、図27(a) に横方向に伸びた太線枠で囲って示す1行目のセルには、それぞれ所定のセル値が収容されているが、このセル値の一次元的な並びについての空間周波数成分を抽出し、抽出した各成分の値を周波数f軸上にセル値として配置すれば、図27(b) に横方向に伸びた太線枠で囲って示す1行目のセルが得られる。この1行目のセルは、周波数f軸に沿った一次元配列であり、左から右へゆくにしたがって、空間周波数fのより高い成分の値がセル値として収容されている。 For example, each cell in the first row shown in FIG. 27 (a) surrounded by a thick line frame extending in the horizontal direction contains predetermined cell values. If the spatial frequency components are extracted and the values of the extracted components are arranged as cell values on the frequency f axis, a cell in the first row shown in FIG. 27 (b) is surrounded by a thick line frame extending in the horizontal direction. It is done. The cell in the first row is a one-dimensional array along the frequency f axis, and the value of the higher component of the spatial frequency f is accommodated as the cell value from the left to the right.
 続いて、この照射強度中間マトリックスD''(f,y)について、縦方向(y′軸方向)に並んだセル値に対してフーリエ変換を行い、その空間周波数を求めれば、図27(c) に示すような照射強度周波数マトリックスD′(f,g)が得られる。この照射強度周波数マトリックスD′(f,g)は、横軸が周波数f軸、縦軸が周波数g軸であり、元の照射強度マトリックスD(x′,y′)の各セル値についてのx′軸方向およびy′軸方向の空間周波数成分を示す行列になる。 Subsequently, with respect to the irradiation intensity intermediate matrix D ″ (f, y), a Fourier transform is performed on the cell values arranged in the vertical direction (y′-axis direction), and the spatial frequency is obtained. ) An irradiation intensity frequency matrix D '(f, g) as shown in (9) is obtained. In this irradiation intensity frequency matrix D ′ (f, g), the horizontal axis is the frequency f axis and the vertical axis is the frequency g axis, and x for each cell value of the original irradiation intensity matrix D (x ′, y ′). This is a matrix indicating spatial frequency components in the ′ -axis direction and the y′-axis direction.
 たとえば、図27(b) に縦方向に伸びた太線枠で囲って示す2列目のセルには、それぞれ所定のセル値が収容されているが、このセル値の一次元的な並びについての空間周波数成分を抽出し、抽出した各成分の値を周波数g軸上にセル値として配置すれば、図27(c) に縦方向に伸びた太線枠で囲って示す2列目のセルが得られる。この2列目のセルは、周波数g軸に沿った一次元配列であり、上から下へゆくにしたがって、空間周波数gのより高い成分の値がセル値として収容されている。 For example, each cell in the second column shown in FIG. 27 (b) surrounded by a bold line extending in the vertical direction contains predetermined cell values. If spatial frequency components are extracted and the values of the extracted components are arranged as cell values on the frequency g axis, the cells in the second column shown in FIG. 27 (c) are surrounded by a thick line frame extending in the vertical direction. It is done. The cells in the second column are one-dimensional arrays along the frequency g axis, and values of higher components of the spatial frequency g are accommodated as cell values from the top to the bottom.
 セル値の一次元的な並びについて、フーリエ変換を行うことにより、その空間周波数成分を抽出する具体的な処理は、FFT(Fast Fourier Transform)などの手法が公知であるため、ここでは詳しい説明は省略するが、照射強度マトリックスD(x′,y′)が、特定の代表セルについてのみ画素値に応じたセル値を有し、それ以外の非代表セルについてはセル値0を有するマトリックスであれば、フーリエ変換処理の演算負担は大幅に軽減される。これは、図27(a) に示す照射強度マトリックスD(x′,y′)を図27(b) に示す照射強度中間マトリックスD''(f,y)に変換する際に、セル値0しか含まれていない行については、演算を省略することができるためである。 A specific process for extracting the spatial frequency component of a one-dimensional array of cell values by performing a Fourier transform is known in the art because FFT (Fast Fourier Transform) is a well-known method. Although omitted, the irradiation intensity matrix D (x ′, y ′) may have a cell value corresponding to the pixel value only for a specific representative cell, and a cell value 0 for other non-representative cells. For example, the calculation load of the Fourier transform process is greatly reduced. This is because when the irradiation intensity matrix D (x ′, y ′) shown in FIG. 27A is converted into the irradiation intensity intermediate matrix D ″ (f, y) shown in FIG. This is because an operation can be omitted for a line that only includes the line.
 たとえば、図19(b) の右側に示すマトリックス、図22(b) に示すマトリックス、図24(b) に示すマトリックスでは、第1行目や第2行目などのセルのセル値がすべて0になっている。このように、値0しか含まれていない行(x′軸に沿った行)をフーリエ変換した結果は、やはり値0しか含まれていない行(f軸に沿った行)になるので、そのような行に対しては、実際には、フーリエ変換処理を省略することができる。このような理由から、代表セルについてのみ実質的なセル値を与え、非代表セルのセル値を0とする方法を採用すれば、フーリエ変換処理の演算負担を大幅に軽減することができ、全体的な演算時間の短縮化を図ることができる。 For example, in the matrix shown on the right side of FIG. 19 (b) 、, the matrix shown in FIG. 22 (b), and the matrix shown in FIG. 24 (b), the cell values of the cells in the first and second rows are all 0. It has become. Thus, the result of Fourier transform of a row containing only the value 0 (row along the x′-axis) becomes a row (row along the f-axis) that also contains only the value 0. In fact, the Fourier transform process can be omitted for such a row. For this reason, if a method of giving a substantial cell value only for the representative cell and setting the cell value of the non-representative cell to 0 is adopted, the calculation burden of the Fourier transform process can be greatly reduced. The calculation time can be shortened.
 <<< §8. 本発明に係る露光強度分布演算装置 >>>
 これまで、本発明を、マルチビーム電子線描画装置における露光強度分布を求めるシミュレーション方法という形で、方法発明として捉えた説明を行ってきた。ここでは、本発明を、マルチビーム電子線描画装置に用いる露光強度分布演算装置という形で、装置発明として捉えた説明を行う。
<<< §8. Exposure intensity distribution calculation apparatus according to the present invention >>
So far, the present invention has been described as a method invention in the form of a simulation method for obtaining an exposure intensity distribution in a multi-beam electron beam lithography apparatus. Here, the present invention will be described as an apparatus invention in the form of an exposure intensity distribution calculation apparatus used in a multi-beam electron beam drawing apparatus.
 図28は、本発明に係る露光強度分布演算装置の基本構成を示すブロック図である。この露光強度分布演算装置は、マルチビーム電子線描画装置を用いて被成形層に所定のパターンを露光描画する際の露光強度分布を求める機能をもった装置であり、図示のとおり、描画データ入力部110、照射強度マトリックス作成部120、パラメータ設定部130、点拡がりマトリックス作成部140、畳み込み演算実行部150を備えている。実際には、これらの各構成要素は、コンピュータと、当該コンピュータに組み込まれたプログラムとの協働動作によって実現されることになり、この露光強度分布演算装置は、コンピュータに専用のプログラムを組み込むことにより構成することができる。 FIG. 28 is a block diagram showing a basic configuration of an exposure intensity distribution calculation apparatus according to the present invention. This exposure intensity distribution calculation device is a device having a function for obtaining an exposure intensity distribution when a predetermined pattern is exposed and drawn on a molding layer using a multi-beam electron beam drawing device. A unit 110, an irradiation intensity matrix creation unit 120, a parameter setting unit 130, a point spread matrix creation unit 140, and a convolution calculation execution unit 150. Actually, each of these components is realized by a cooperative operation of a computer and a program incorporated in the computer, and this exposure intensity distribution calculation device incorporates a dedicated program in the computer. Can be configured.
 描画データ入力部110は、描画データDinを入力するための構成要素である。この描画データDinは、既に説明したとおり、電子線描画装置が描画するパターンを示すデータであって、ビームの各照射位置の照射強度を示す画素値を有する画素の配列からなるデータである。 The drawing data input unit 110 is a component for inputting drawing data Din. As described above, the drawing data Din is data indicating a pattern drawn by the electron beam drawing apparatus, and is data including an array of pixels having pixel values indicating the irradiation intensity at each irradiation position of the beam.
 パラメータ設定部130は、電子線描画装置のアパーチャーの開口サイズに基づいて定まる開口サイズパラメータBを設定する構成要素である。アパーチャーの開口サイズKは、図示のとおり、アパーチャープレート40に形成された開口部41の開口寸法として定義される値であり、前述したとおり、開口部41が円形をしている場合は、当該円の直径をアパーチャーの開口サイズKとして用い、開口部41が正方形をしている場合は、当該正方形の一辺の長さをアパーチャーの開口サイズとして用いればよい。そして、開口サイズパラメータBとしては、この開口サイズKに、電子線描画装置のプロジェクションレンズ50による縮小倍率mを乗じた値を用いることができる。 The parameter setting unit 130 is a component that sets an aperture size parameter B that is determined based on the aperture size of the aperture of the electron beam drawing apparatus. As illustrated, the aperture size K of the aperture is a value defined as the size of the aperture 41 formed in the aperture plate 40. As described above, when the aperture 41 has a circular shape, Is used as the aperture size K of the aperture, and when the aperture 41 has a square shape, the length of one side of the square may be used as the aperture size of the aperture. As the aperture size parameter B, a value obtained by multiplying the aperture size K by the reduction magnification m by the projection lens 50 of the electron beam drawing apparatus can be used.
 アパーチャーの開口部41の開口サイズKおよびプロジェクションレンズ50による縮小倍率mが固定の電子線描画装置のシミュレーションを行う場合は、パラメータ設定部130に、固定値m・Kの値を開口サイズパラメータBの値として設定しておけばよい。これらが可変の電子線描画装置のシミュレーションを行う場合は、パラメータ設定部130に、開口サイズKおよび縮小倍率mをその都度入力する機能を設けておき、入力された値に基づいて、m・Kの値を開口サイズパラメータBの値として設定するようにすればよい。 When simulating an electron beam drawing apparatus in which the aperture size K of the aperture 41 of the aperture and the reduction magnification m by the projection lens 50 are fixed, the parameter setting unit 130 sets the value of the fixed value m · K to the aperture size parameter B. Set it as a value. When simulating an electron beam drawing apparatus in which these are variable, the parameter setting unit 130 is provided with a function for inputting the aperture size K and the reduction magnification m each time, and based on the input values, m · K May be set as the value of the aperture size parameter B.
 照射強度マトリックス作成部120は、描画データ入力部110が入力した描画データの各画素を複数に分割することにより得られる演算用セルの集合体からなる空の演算用マトリックスを用意し、各演算用セルに、当該セルを含む画素の画素値に基づく所定のセル値を与えることにより、電子線照射強度の平面分布を示す照射強度マトリックスD(x′,y′)を作成する構成要素である。照射強度マトリックスD(x′,y′)の具体的な作成方法は、図19等を参照して、既に§5で説明したとおりである。 The irradiation intensity matrix creation unit 120 prepares an empty calculation matrix composed of a collection of calculation cells obtained by dividing each pixel of the drawing data input by the drawing data input unit 110 into a plurality of pieces. This is a component that creates an irradiation intensity matrix D (x ′, y ′) indicating a planar distribution of electron beam irradiation intensity by giving a predetermined cell value based on the pixel value of a pixel including the cell to the cell. A specific method of creating the irradiation intensity matrix D (x ′, y ′) is as already described in Section 5 with reference to FIG.
 なお、演算負担を軽減するためには、照射強度マトリックス作成部120は、同一画素に含まれる複数の演算用セルのうち、特定の代表セルについてのみ当該画素の画素値に基づいて定められる所定の値をセル値として与え、それ以外の非代表セルについてはセル値0を与えるようにするのが好ましい。具体的には、同一画素に含まれる複数の演算用セルのうち、当該画素の中心に位置する1つもしくは複数の演算用セルを代表セルとし、それ以外の演算用セルを非代表セルとすればよい。 Note that, in order to reduce the calculation burden, the irradiation intensity matrix creation unit 120 has a predetermined value determined based on the pixel value of the pixel only for a specific representative cell among a plurality of calculation cells included in the same pixel. It is preferable to give a value as a cell value and give a cell value of 0 for other non-representative cells. Specifically, among a plurality of calculation cells included in the same pixel, one or more calculation cells located at the center of the pixel are designated as representative cells, and the other calculation cells are designated as non-representative cells. That's fine.
 照射強度マトリックス作成部120が、描画データの各画素を縦横それぞれ奇数に分割して演算用セルを定義する場合には、各画素の中心に位置する1つの演算用セルを代表セルとし、それ以外の演算用セルを非代表セルとし、代表セルには当該代表セルを含む画素の画素値をセル値として与え、非代表セルについてはセル値0を与えることができる。これに対して、照射強度マトリックス作成部120が、描画データの各画素を縦横それぞれ偶数に分割して演算用セルを定義する場合には、各画素の中心に位置する4つの演算用セルを代表セルとし、それ以外の演算用セルを非代表セルとし、代表セルには当該代表セルを含む画素の画素値の1/4の値をセル値として与え、非代表セルについてはセル値0を与えることができる。いずれも、その詳細は、既に§6で説明したとおりである。 When the irradiation intensity matrix creation unit 120 divides each pixel of the drawing data into odd and vertical numbers to define a calculation cell, one calculation cell located at the center of each pixel is used as a representative cell, and the others The calculation cell is a non-representative cell, the pixel value of the pixel including the representative cell is given to the representative cell as a cell value, and the cell value 0 can be given to the non-representative cell. On the other hand, when the irradiation intensity matrix creation unit 120 divides each pixel of the drawing data into an even number in each of the vertical and horizontal directions to define the calculation cell, the four calculation cells positioned at the center of each pixel are represented. A non-representative cell is set as a cell, and a non-representative cell is given to the representative cell as a cell value that is 1/4 of the pixel value of the pixel including the representative cell, and a cell value of 0 is given to the non-representative cell. be able to. The details of both are as already described in §6.
 一方、点拡がりマトリックス作成部140は、空の演算用マトリックスの各演算用セルに、パラメータ設定部130が設定した開口サイズパラメータBを含む所定の点拡がり関数psf(X,Y)に応じたセル値を与えることにより、当該点拡がり関数psfによって示される影響の度合いの平面分布を示す点拡がりマトリックスpsf(X,Y)を作成する構成要素である。点拡がり関数psfとしては、図15に例示したように、開口サイズパラメータBによりグラフの平坦部Hの幅wが左右され、前方散乱パラメータσによりグラフの傾斜部U1,U2の傾きが左右される関数を用いるようにする。点拡がり関数psf(X,Y)の具体例は、図14の式(4)、図16の式(6)、図17の式(7)として例示したとおりである。 On the other hand, the point spread matrix creating unit 140 is a cell corresponding to a predetermined point spread function psf (X, Y) including the opening size parameter B set by the parameter setting unit 130 in each calculation cell of the empty calculation matrix. By giving a value, this is a component that creates a point spread matrix psf (X, Y) indicating a plane distribution of the degree of influence indicated by the point spread function psf. As the point spread function psf, as illustrated in FIG. 15, the width w of the flat portion H of the graph is influenced by the aperture size parameter B, and the inclinations of the inclined portions U1 and U2 of the graph are influenced by the forward scattering parameter σ. Use functions. Specific examples of the point spread function psf (X, Y) are as illustrated as Expression (4) in FIG. 14, Expression (6) in FIG. 16, and Expression (7) in FIG.
 なお、図22,図23に示す変形例のように、照射強度マトリックス作成部120は、同一画素に含まれる複数の演算用セルのうち、当該画素の中心から所定方向に所定のオフセット量だけ変位した位置に存在する演算用セルを代表セルとし、それ以外の演算用セルを非代表セルとして、照射強度マトリックスD(x′,y′)を作成することもできる。この場合、点拡がりマトリックス作成部140は、上記所定方向とは逆方向に上記オフセット量だけ補正した点拡がり関数によって示される影響の度合いの平面分布を示す点拡がりマトリックスpsf(X,Y)を作成すればよい(図22(c) 参照)。 22 and FIG. 23, the irradiation intensity matrix creation unit 120 is displaced by a predetermined offset amount in a predetermined direction from the center of the pixel among a plurality of calculation cells included in the same pixel. The irradiation intensity matrix D (x ′, y ′) can also be created using the calculation cell existing at the position as a representative cell and the other calculation cells as non-representative cells. In this case, the point spread matrix creating unit 140 creates a point spread matrix psf (X, Y) indicating a plane distribution of the degree of influence indicated by the point spread function corrected by the offset amount in the direction opposite to the predetermined direction. (See FIG. 22 (c) IV).
 畳み込み演算実行部150は、照射強度マトリックス作成部120によって作成された照射強度マトリックスD(x′,y′)と、点拡がりマトリックス作成部140によって作成された点拡がりマトリックスpsf(X,Y)とを用いた畳み込み積分を行い、個々の評価点における総露光強度を求める演算を行う構成要素である。 The convolution operation execution unit 150 includes an irradiation intensity matrix D (x ′, y ′) created by the irradiation intensity matrix creation unit 120, a point spread matrix psf (X, Y) created by the point spread matrix creation unit 140, and the like. Is a component that performs a calculation to obtain a total exposure intensity at each evaluation point.
 図示の実施例の場合、畳み込み演算実行部150は、フーリエ変換を利用した畳み込み積分を行う機能を有している。このため、畳み込み演算実行部150は、照射強度マトリックスD(x′,y′)をフーリエ変換することにより、照射強度周波数マトリックスD′(f,g)を作成する第1の演算部151(図26の式(9)の処理を実行する手段)と、点拡がりマトリックスpsf(X,Y)をフーリエ変換することにより、点拡がり周波数マトリックスpsf′(f,g)を作成する第2の演算部152(図26の式(10)の処理を実行する手段)と、照射強度周波数マトリックスD′(f,g)と点拡がり周波数マトリックスpsf′(f,g)との対応する演算用セルの積をセル値とする露光強度周波数マトリックスv′(f,g)を作成する第3の演算部153(図26の式(11)の処理を実行する手段)と、露光強度周波数マトリックスv′(f,g)を逆フーリエ変換することにより、個々の評価点における総露光強度の平面分布を示す露光強度マトリックスv(x,y)を作成する第4の演算部154と、を有している。 In the illustrated embodiment, the convolution operation execution unit 150 has a function of performing convolution integration using Fourier transform. Therefore, the convolution calculation execution unit 150 performs a Fourier transform on the irradiation intensity matrix D (x ′, y ′), thereby creating a first calculation unit 151 (FIG. 15) that creates the irradiation intensity frequency matrix D ′ (f, g). 26) and a second arithmetic unit that creates a point spread frequency matrix psf ′ (f, g) by performing Fourier transform on the point spread matrix psf (X, Y). 152 (means for executing the processing of the equation (10) in FIG. 26), the product of the calculation cells corresponding to the irradiation intensity frequency matrix D ′ (f, g) and the point spread frequency matrix psf ′ (f, g). A third calculation unit 153 (means for executing the processing of the expression (11) in FIG. 26) for creating an exposure intensity frequency matrix v ′ (f, g) having a cell value as a cell value; A fourth operation unit 154 that generates an exposure intensity matrix v (x, y) indicating a planar distribution of the total exposure intensity at each evaluation point by performing inverse Fourier transform on ′ (f, g). ing.
 このようなフーリエ変換を利用した畳み込み積分の具体的な処理手順は、§7で述べたとおりである。こうして、第4の演算部154によって作成された露光強度マトリックスv(x,y)は、露光強度分布データDout として出力される。 The specific processing procedure of the convolution integral using the Fourier transform is as described in §7. Thus, the exposure intensity matrix v (x, y) created by the fourth calculation unit 154 is output as exposure intensity distribution data Dout.
 <<< §9. 本発明を利用して得られた露光強度分布の実例 >>>
 最後に、本発明を利用して得られた露光強度分布の実例を示しておく。図29は、発明に係るシミュレーション方法によって得られた露光強度分布の第1の実例を示す図である。図29(a) は、幅50nmをもった線状パターンを描画するために用意された描画データをグレートーンの画像として示す図である。図の左脇には、グレートーンの各濃度に対応する画素値が凡例として示されている。図示のとおり、線状パターンの内部の画素には画素値15が与えられ、外部の画素には画素値0が与えられている。画素のピッチdは、d=5nmに設定されており、線状パターンの横幅方向には、画素値15をもった画素が10個並んでいる。
<<< §9. Example of exposure intensity distribution obtained using the present invention >>>
Finally, an actual example of the exposure intensity distribution obtained by using the present invention will be shown. FIG. 29 is a view showing a first example of the exposure intensity distribution obtained by the simulation method according to the invention. FIG. 29 (a) is a diagram showing drawing data prepared for drawing a linear pattern having a width of 50 nm as a gray-tone image. On the left side of the figure, pixel values corresponding to the gray tone densities are shown as legends. As shown in the figure, the pixel value 15 is given to the pixels inside the linear pattern, and the pixel value 0 is given to the external pixels. The pixel pitch d is set to d = 5 nm, and 10 pixels having the pixel value 15 are arranged in the horizontal width direction of the linear pattern.
 図29(b) は、図29(a) に示す描画データに基づいて作成された照射強度マトリックスD(x′,y′)をグレートーンの画像として示す図である。この照射強度マトリックスは、ピッチgで配列された演算用セルの集合体によって構成される。この例は、図20に示す例のように、1つの画素を縦横に5分割して演算用セルを定義した例であり、セルのピッチgは、g=1nmに設定されている。図に小さな黒い点として示されているのは、各画素の中央に位置する代表セルであり、セル値として画素値と同じ15が与えられている。 FIG. 29 (b) shows the irradiation intensity matrix D (x ′, y ′) created based on the drawing data shown in FIG. 29 (a) as a gray-tone image. This irradiation intensity matrix is composed of a collection of operation cells arranged at a pitch g. This example is an example in which a calculation cell is defined by dividing one pixel vertically and horizontally as in the example shown in FIG. 20, and the cell pitch g is set to g = 1 nm. A small black dot shown in the figure is a representative cell located at the center of each pixel, and the same 15 as the pixel value is given as the cell value.
 図29(c) は、図29(b) に示す照射強度マトリックスD(x′,y′)と、図示されていない所定の点拡がりマトリックスpsf(X,Y)と、についての畳み込み積分演算によって得られた露光強度マトリックスv(x,y)、すなわち、露光強度分布をグレートーンの画像として示す図である。図の左脇には、グレートーンの各濃度に対応するセル値(v(x,y)の演算値)が凡例として示されている。黒に近いほど、露光強度(蓄積エネルギー量)が大きいことを示している。図の2本の白線は、図29(a) に示す線状パターンの輪郭線を示している。このように、図29(c) に示す結果は、図29(a) に示す描画データに基づいて露光処理を行った場合に得られる適切な露光強度分布を示している。 FIG. 29 (c) is obtained by a convolution integral operation for the irradiation intensity matrix D (x ′, y ′) shown in FIG. 29 (b) and a predetermined point spread matrix psf (X, Y) not shown. It is a figure which shows the obtained exposure intensity matrix v (x, y), ie, exposure intensity distribution, as a gray tone image. On the left side of the figure, cell values (calculated values of v (x, y)) corresponding to the gray tone densities are shown as legends. The closer to black, the higher the exposure intensity (accumulated energy amount). The two white lines in the figure indicate the outline of the linear pattern shown in FIG. 29 (a). As described above, the result shown in FIG. 29C shows the appropriate exposure intensity distribution obtained when the exposure process is performed based on the drawing data shown in FIG.
 一方、図30(a) は、やはり幅50nmをもった線状パターンを描画するために用意された別な描画データをグレートーンの画像として示す図であり、図の左脇には、グレートーンの各濃度に対応する画素値が凡例として示されている。この例の場合、画素のピッチdは、d=10nmに設定されており、線状パターンの横幅方向には、合計6画素が並んでいることになる。線状パターンの中心付近に横方向に並んだ4画素には、いずれも画素値15が与えられているが、その左側に配置された1画素および右側に配置された1画素には、いずれも画素値7が与えられている。 On the other hand, FIG. 30A is a diagram showing another drawing data prepared for drawing a linear pattern having a width of 50 nm as a gray-tone image. Pixel values corresponding to the respective densities are shown as legends. In the case of this example, the pixel pitch d is set to d = 10 nm, and a total of 6 pixels are arranged in the horizontal width direction of the linear pattern. Each of the four pixels arranged in the horizontal direction near the center of the linear pattern is given a pixel value of 15; however, each of the one pixel arranged on the left side and the one pixel arranged on the right side has both A pixel value of 7 is given.
 図30(b) は、図30(a) に示す描画データに基づいて作成された照射強度マトリックスD(x′,y′)をグレートーンの画像として示す図である。この照射強度マトリックスは、ピッチgで配列された演算用セルの集合体によって構成される。この例は、図24に示す例のように、1つの画素を縦横に10分割して演算用セルを定義した例であり、セルのピッチgは、g=1nmに設定されている。図に小さなグレーの点として示されているのは、各画素の中央に位置する4つの代表セルであり、セル値として画素値15の1/4に相当する値が与えられている。 FIG. 30B is a diagram showing an irradiation intensity matrix D (x ′, y ′) created based on the drawing data shown in FIG. 30A as a gray-tone image. This irradiation intensity matrix is composed of a collection of operation cells arranged at a pitch g. This example is an example in which a calculation cell is defined by dividing one pixel vertically and horizontally as in the example shown in FIG. 24, and the cell pitch g is set to g = 1 nm. Shown as small gray dots in the figure are four representative cells located at the center of each pixel, and a value corresponding to 1/4 of the pixel value 15 is given as the cell value.
 図30(c) は、図30(b) に示す照射強度マトリックスD(x′,y′)と、図示されていない所定の点拡がりマトリックスpsf(X,Y)と、についての畳み込み積分演算によって得られた露光強度マトリックスv(x,y)、すなわち、露光強度分布をグレートーンの画像として示す図である。図の左脇には、グレートーンの各濃度に対応するセル値(v(x,y)の演算値)が凡例として示されている。やはり黒に近いほど、露光強度(蓄積エネルギー量)が大きいことを示している。図の2本の白線は、図30(a) に示す線状パターンの輪郭線を示している。このように、図30(c) に示す結果も、図30(a) に示す描画データに基づいて露光処理を行った場合に得られる適切な露光強度分布を示している。 30 (c) c is obtained by a convolution integral operation on the irradiation intensity matrix D (x ′, y ′) shown in FIG. 30 (b) and a predetermined point spread matrix psf (X, Y) not shown. It is a figure which shows the obtained exposure intensity matrix v (x, y), ie, exposure intensity distribution, as a gray tone image. On the left side of the figure, cell values (calculated values of v (x, y)) corresponding to the gray tone densities are shown as legends. The closer to black, the greater the exposure intensity (accumulated energy amount). The two white lines in the figure indicate the outline of the linear pattern shown in FIG. 30 (a). As described above, the result shown in FIG. 30C also shows an appropriate exposure intensity distribution obtained when the exposure process is performed based on the drawing data shown in FIG.
 図29に示す実例および図30に示す実例は、いずれも§7で述べたフーリエ変換を利用した畳み込み演算を行うことにより得られた結果を示しており、結果が得られるまでの演算時間は大幅に短縮されている。 The example shown in FIG. 29 and the example shown in FIG. 30 both show the results obtained by performing the convolution operation using the Fourier transform described in §7, and the calculation time until the result is obtained is greatly increased. Has been shortened to.
 本発明に係るマルチビーム電子線描画装置における露光強度分布を求める方法および装置は、半導体デバイスの製造プロセスなど、特定の材料層に対して微細なパターニング加工を施す必要がある分野において、露光強度分布をコンピュータシミュレーションによって推定する技術として広く利用することができる。 A method and apparatus for obtaining an exposure intensity distribution in a multi-beam electron beam lithography apparatus according to the present invention provides an exposure intensity distribution in a field where a specific material layer needs to be finely patterned, such as a semiconductor device manufacturing process. Can be widely used as a technique for estimating by computer simulation.
10:電子銃
20:拡大された電子ビーム
21:マルチビームを構成する個々の電子ビーム
30:コンデンサレンズ
40:アパーチャープレート
41:開口部
50:プロジェクションレンズ
60:試料基板
61:被成形層(レジスト層)
70:移動ステージ
110:描画データ入力部
120:照射強度マトリックス作成部
130:パラメータ設定部
140:点拡がりマトリックス作成部
150:畳み込み演算実行部
151:第1の演算部
152:第2の演算部
153:第3の演算部
154:第4の演算部
A1,A2:矩形領域
a:露光領域
B:開口サイズパラメータ
b:非露光領域
C:点拡がり関数に用いる定数
C(m,n):m行n列目の演算用セル
Da:パターンのx軸方向の幅
Di:第i番目の露光作業時の電子ビームの照射強度(ドーズ量)
Din:描画データ
Dout :露光強度分布データ
D(x′,y′):参照点T(x′,y′)におけるドーズ量/照射強度マトリックス
D′(f,g):照射強度周波数マトリックス
D''(f,y):照射強度中間マトリックス
d:画素のピッチ
E,E1,E2:電子ビームの強度(エネルギー密度)
E(5),E(10),E(15):電子ビームの強度(エネルギー密度)
Eth:総露光強度の閾値
F:総露光強度の分布グラフ
f:周波数軸
f(m,n):点拡がり関数psfのグラフ
g:演算用セルのピッチ/周波数軸
H:グラフの平坦部
K:アパーチャーの開口サイズ
M,M1~M9:露光強度分布グラフ(小山)
M(5),M(10),M(15):露光強度分布グラフ(小山)
MM:総露光強度の分布グラフ(大山)
N:露光作業の回数
P,P1~P5:描画データを構成する二次元画素配列の個々の画素
P(i,j):i行j列目の画素
psf:点拡がり関数(Point Spread Function)
psf(X,Y):点拡がりマトリックス
psf′(f,g):点拡がり周波数マトリックス
Q,Q1~Q9:露光対象面上に定義された個々の照射基準点
Q(0),Q(5),Q(10),Q(15):露光対象面上に定義された個々の照射基準点
R:参照点Tと評価点Vとの距離
S1~S5:電子ビームの照射スポット
S10~S44:流れ図の各ステップ
T(x′,y′):座標(x′,y′)に位置する参照点
U1,U2:グラフの傾斜部
V1,V2,V11,V12,V21:評価点
V(x,y):座標(x,y)に位置する評価点
v(x,y):評価点V(x,y)の蓄積エネルギー量(総露光強度)/露光強度マトリックス
v′(f,g):露光強度周波数マトリックス
w:グラフの平坦部Hの幅
X:参照点Tと評価点Vとの横方向距離
x,x′:露光対象面上に定義された横方向座標軸/横方向座標値
Y:参照点Tと評価点Vとの縦方向距離
y,y′:露光対象面上に定義された縦方向座標軸/縦方向座標値
β:後方散乱パラメータ
Δx,Δy:オフセット量
η:近接効果補正パラメータ
φ:ビームのスポット径
σ:前方散乱パラメータ
10: Electron gun 20: Expanded electron beam 21: Individual electron beam 30 constituting a multi-beam 30: Condenser lens 40: Aperture plate 41: Aperture 50: Projection lens 60: Sample substrate 61: Molded layer (resist layer )
70: Movement stage 110: Drawing data input unit 120: Irradiation intensity matrix creation unit 130: Parameter setting unit 140: Point spread matrix creation unit 150: Convolution calculation execution unit 151: First calculation unit 152: Second calculation unit 153 : Third computing unit 154: fourth computing unit A1, A2: rectangular area a: exposure area B: aperture size parameter b: non-exposure area C: constant C (m, n) used for point spread function: m rows Calculation cell Da in the n-th column: width Di in the x-axis direction of the pattern: irradiation intensity (dose amount) of the electron beam at the i-th exposure operation
Din: drawing data Dout: exposure intensity distribution data D (x ′, y ′): dose amount / irradiation intensity matrix D ′ (f, g) at reference point T (x ′, y ′): irradiation intensity frequency matrix D ′ '(F, y): irradiation intensity intermediate matrix d: pixel pitch E, E1, E2: electron beam intensity (energy density)
E (5), E (10), E (15): Electron beam intensity (energy density)
Eth: Threshold value of total exposure intensity F: Distribution graph of total exposure intensity f: Frequency axis f (m, n): Graph of point spread function psf g: Pitch / frequency axis of calculation cell H: Flat part K of graph: Aperture aperture size M, M1 to M9: Exposure intensity distribution graph (Oyama)
M (5), M (10), M (15): Exposure intensity distribution graph (Oyama)
MM: Total exposure intensity distribution graph (Oyama)
N: number of exposure operations P, P1 to P5: individual pixels P (i, j) of the two-dimensional pixel array constituting the drawing data: pixel psf in the i-th row and j-th column: point spread function
psf (X, Y): Point spread matrix psf ′ (f, g): Point spread frequency matrix Q, Q1 to Q9: Individual irradiation reference points Q (0), Q (5) defined on the exposure target surface , Q (10), Q (15): Individual irradiation reference points R defined on the exposure target surface: Distances between reference points T and evaluation points V S1 to S5: Electron beam irradiation spots S10 to S44: Flow chart Steps T (x ′, y ′): reference points U1, U2 located at coordinates (x ′, y ′): slopes V1, V2, V11, V12, V21 of the graph: evaluation points V (x, y) ): Evaluation point v (x, y) located at coordinates (x, y): Accumulated energy amount (total exposure intensity) / exposure intensity matrix v ′ (f, g) at evaluation point V (x, y): Exposure Intensity frequency matrix w: width of flat portion H of graph X: between reference point T and evaluation point V Directional distance x, x ′: Horizontal coordinate axis / horizontal coordinate value defined on the exposure target surface Y: Vertical distance y, y ′ between the reference point T and the evaluation point V: Defined on the exposure target surface Longitudinal coordinate axis / longitudinal coordinate value β: backscattering parameter Δx, Δy: offset amount η: proximity effect correction parameter φ: beam spot diameter σ: forward scattering parameter

Claims (26)

  1.  マルチビーム電子線描画装置を用いて被成形層(61)に所定のパターンを露光描画する際の露光強度分布(MM)を求めるシミュレーション方法であって、
     電子線照射領域内に定義された多数の参照点(T(x′,y′))について、電子線照射強度を示す関数(D(x′,y′))と当該参照点が周囲へ及ぼす影響の度合いを示す点拡がり関数(psf)との畳み込み積分を行うことにより、個々の評価点(V(x,y))における総露光強度(v(x,y))を演算する過程を含み、
     前記点拡がり関数(psf)として、電子線描画装置のアパーチャー(40)の開口サイズに基づいて定まる開口サイズパラメータ(B)を含む関数を用いることを特徴とするマルチビーム電子線描画装置における露光強度分布を求めるシミュレーション方法。
    A simulation method for obtaining an exposure intensity distribution (MM) when a predetermined pattern is exposed and drawn on a molding layer (61) using a multi-beam electron beam drawing apparatus,
    For a number of reference points (T (x ′, y ′)) defined in the electron beam irradiation region, a function (D (x ′, y ′)) indicating the electron beam irradiation intensity and the reference points affect the surroundings. Including a process of calculating the total exposure intensity (v (x, y)) at each evaluation point (V (x, y)) by performing convolution integration with a point spread function (psf) indicating the degree of influence. ,
    An exposure intensity in a multi-beam electron beam lithography system using a function including an aperture size parameter (B) determined based on the aperture size of the aperture (40) of the electron beam lithography system as the point spread function (psf) A simulation method for obtaining the distribution.
  2.  請求項1に記載のシミュレーション方法において、
     電子線の照射面として二次元xy直交座標系のxy平面を定義し、
     座標(x,y)に位置する評価点V(x,y)に対して、座標(x′,y′)に位置する参照点T(x′,y′)が及ぼす影響を、参照点T(x′,y′)についての電子線照射強度を示す関数D(x′,y′)と、X=x′-x、Y=y′-yとして定義された点拡がり関数psf(X,Y)と、についてのx軸方向およびy軸方向に関する畳み込み積分によって算出し、
     点拡がり関数psf(X,Y)として、変数X,Yに加えて、電子線描画装置のアパーチャーの開口サイズに基づいて定まる開口サイズパラメータBを含む関数を用いることを特徴とするマルチビーム電子線描画装置における露光強度分布を求めるシミュレーション方法。
    The simulation method according to claim 1,
    Define an xy plane of a two-dimensional xy orthogonal coordinate system as an electron beam irradiation surface,
    The influence of the reference point T (x ′, y ′) positioned at the coordinates (x ′, y ′) on the evaluation point V (x, y ′) positioned at the coordinates (x, y) is referred to as the reference point T A function D (x ′, y ′) indicating the electron beam irradiation intensity with respect to (x ′, y ′) and a point spread function psf (X, y defined as X = x′−x, Y = y′−y) Y) and a convolution integral with respect to the x-axis direction and the y-axis direction for
    A multi-beam electron beam using a function including an aperture size parameter B determined based on the aperture size of the aperture of the electron beam drawing apparatus in addition to the variables X and Y as the point spread function psf (X, Y) A simulation method for obtaining an exposure intensity distribution in a drawing apparatus.
  3.  請求項2に記載のシミュレーション方法において、
     点拡がり関数psf(X,Y)として、開口サイズパラメータBによりグラフの平坦部の幅が左右される関数を用いることを特徴とするマルチビーム電子線描画装置における露光強度分布を求めるシミュレーション方法。
    The simulation method according to claim 2,
    A simulation method for obtaining an exposure intensity distribution in a multi-beam electron beam drawing apparatus, wherein a function in which a width of a flat portion of a graph is influenced by an aperture size parameter B is used as the point spread function psf (X, Y).
  4.  請求項3に記載のシミュレーション方法において、
     点拡がり関数psf(X,Y)として、開口サイズパラメータBに加えて、グラフの傾斜部の傾きを左右するパラメータσを含む関数を用いることを特徴とするマルチビーム電子線描画装置における露光強度分布を求めるシミュレーション方法。
    In the simulation method according to claim 3,
    Exposure intensity distribution in a multi-beam electron beam drawing apparatus using a function including a parameter σ that affects the inclination of the inclined portion of the graph in addition to the aperture size parameter B as the point spread function psf (X, Y) Simulation method to find out.
  5.  請求項4に記載のシミュレーション方法において、
     点拡がり関数として、誤差関数erfを含む、
     psf(X,Y)=1/4・(erf((B/2-X)/σ)-erf((-B/2-X)/σ))・(erf((B/2-Y)/σ)-erf((-B/2-Y)/σ))なる関数を用いることを特徴とするマルチビーム電子線画装置における露光強度分布を求めるシミュレーション方法。
    The simulation method according to claim 4,
    Including error function erf as point spread function,
    psf (X, Y) = 1/4 · (erf ((B / 2−X) / σ) −erf ((− B / 2−X) / σ)) · (erf ((B / 2−Y) / Σ) −erf ((− B / 2−Y) / σ)). A simulation method for obtaining an exposure intensity distribution in a multi-beam electron beam imaging apparatus.
  6.  請求項4に記載のシミュレーション方法において、
     点拡がり関数として、逆三角関数arctanを含む、
     psf(X,Y)=1/4・(arctan((B/2-X)/σ)-arctan((-B/2-X)/σ))・(arctan((B/2-Y)/σ)-arctan((-B/2-Y)/σ))なる関数を用いることを特徴とするマルチビーム電子線画装置における露光強度分布を求めるシミュレーション方法。
    The simulation method according to claim 4,
    Including the inverse trigonometric function arctan as the point spread function,
    psf (X, Y) = 1/4 · (arctan ((B / 2−X) / σ) −arctan ((− B / 2−X) / σ)) · (arctan ((B / 2−Y) / Σ) -arctan ((−B / 2−Y) / σ)) is used. A simulation method for obtaining an exposure intensity distribution in a multi-beam electron beam imaging apparatus.
  7.  請求項4に記載のシミュレーション方法において、
     点拡がり関数として、誤差関数erf、所定の定数C、後方散乱パラメータβ、近接効果補正パラメータηを含む、
     psf(X,Y)=C/(1+η)・(1/4σ・(erf((B/2-X)/σ)-erf((-B/2-X)/σ))・(erf((B/2-Y)/σ)-erf((-B/2-Y)/σ))+η/β・exp(-(X+Y)/β))
    なる関数を用いることを特徴とするマルチビーム電子線画装置における露光強度分布を求めるシミュレーション方法。
    The simulation method according to claim 4,
    As a point spread function, an error function erf, a predetermined constant C, a backscattering parameter β, and a proximity effect correction parameter η are included.
    psf (X, Y) = C / (1 + η) · (1 / 4σ 2 · (erf ((B / 2−X) / σ) −erf ((− B / 2−X) / σ)) · (erf ((B / 2−Y) / σ) −erf ((− B / 2−Y) / σ)) + η / β 2 · exp (− (X 2 + Y 2 ) / β 2 ))
    A simulation method for obtaining an exposure intensity distribution in a multi-beam electron beam apparatus characterized by using the function
  8.  請求項1~7のいずれかに記載のシミュレーション方法において、
     電子線描画装置のアパーチャー(40)の開口部(41)が円形をしている場合は、当該円の直径をアパーチャーの開口サイズとし、開口部(40)が正方形をしている場合は、当該正方形の一辺の長さをアパーチャーの開口サイズとし、この開口サイズに、電子線描画装置のプロジェクションレンズ(50)による縮小倍率を乗じた値を、アパーチャーの開口サイズに基づいて定まる開口サイズパラメータ(B)として用いることを特徴とするマルチビーム電子線画装置における露光強度分布を求めるシミュレーション方法。
    The simulation method according to any one of claims 1 to 7,
    When the opening (41) of the aperture (40) of the electron beam drawing apparatus is circular, the diameter of the circle is the aperture size of the aperture, and when the opening (40) is square, The length of one side of the square is the aperture size of the aperture, and a value obtained by multiplying this aperture size by the reduction ratio of the projection lens (50) of the electron beam drawing apparatus is determined based on the aperture size of the aperture (B And a simulation method for obtaining an exposure intensity distribution in a multi-beam electron beam imaging apparatus.
  9.  請求項1~8のいずれかに記載のシミュレーション方法において、
     コンピュータが、電子線描画装置が描画するパターンを示すデータであって、ビームの各照射位置の照射強度を示す画素値を有する画素の配列からなる描画データ(Din)を入力する描画データ入力段階(S10)と、
     コンピュータが、電子線描画装置のアパーチャー(40)の開口サイズに基づいて定まる開口サイズパラメータ(B)を設定するパラメータ設定段階(S20)と、
     コンピュータが、前記描画データの各画素(P(i,j))を複数に分割することにより得られる演算用セル(C(m,n))の集合体からなる2組の空の演算用マトリックスを用意し、第1の演算用マトリックスの各セルには、当該セルを含む画素の画素値に基づく所定のセル値を与えることにより、電子線照射強度の平面分布を示す照射強度マトリックス(D(x′,y′))を作成し、第2の演算用マトリックスの各セルには、前記開口サイズパラメータを含む所定の点拡がり関数(psf)に応じたセル値を与えることにより、前記点拡がり関数によって示される影響の度合いの平面分布を示す点拡がりマトリックス(psf(X,Y))を作成する演算用マトリックス作成段階(S30)と、
     コンピュータが、前記照射強度マトリックス(D(x′,y′))と前記点拡がりマトリックス(psf(X,Y))とを用いた畳み込み積分を行い、個々の評価点における総露光強度(v(x,y))を求める畳み込み演算段階(S40)と、
     を有することを特徴とするマルチビーム電子線画装置における露光強度分布を求めるシミュレーション方法。
    The simulation method according to any one of claims 1 to 8,
    A drawing data input stage in which a computer inputs drawing data (Din) consisting of an array of pixels having pixel values indicating the irradiation intensity at each irradiation position of the beam, which is data indicating a pattern drawn by the electron beam drawing apparatus. S10)
    A parameter setting step (S20) in which the computer sets an aperture size parameter (B) determined based on the aperture size of the aperture (40) of the electron beam lithography apparatus;
    Two sets of empty calculation matrices comprising a set of calculation cells (C (m, n)) obtained by the computer dividing each pixel (P (i, j)) of the drawing data into a plurality of pieces. And a predetermined cell value based on the pixel value of the pixel including the cell is given to each cell of the first calculation matrix, whereby an irradiation intensity matrix (D ( x ′, y ′)) and a cell value corresponding to a predetermined point spread function (psf) including the aperture size parameter is given to each cell of the second calculation matrix, thereby the point spread. A calculation matrix creation step (S30) for creating a point spread matrix (psf (X, Y)) indicating a plane distribution of the degree of influence indicated by the function;
    A computer performs convolution integration using the irradiation intensity matrix (D (x ′, y ′)) and the point spread matrix (psf (X, Y)), and calculates the total exposure intensity (v ( x, y)) to obtain a convolution operation step (S40);
    A simulation method for obtaining an exposure intensity distribution in a multi-beam electron beam imaging apparatus.
  10.  請求項9に記載のシミュレーション方法において、
     演算用マトリックス作成段階(S30)で照射強度マトリックス(D(x′,y′))を作成する際に、同一画素(P(i,j))に含まれる複数の演算用セル(C(m,n))のうち、特定の代表セルについてのみ当該画素の画素値に基づいて定められる所定の値をセル値として与え、それ以外の非代表セルについてはセル値0を与えることを特徴とするマルチビーム電子線画装置における露光強度分布を求めるシミュレーション方法。
    The simulation method according to claim 9, wherein
    When the irradiation intensity matrix (D (x ′, y ′)) is created in the computation matrix creation stage (S30), a plurality of computation cells (C (m) included in the same pixel (P (i, j)) are created. , N)), a predetermined value determined based on the pixel value of the pixel is given as a cell value only for a specific representative cell, and a cell value of 0 is given to other non-representative cells. A simulation method for obtaining an exposure intensity distribution in a multi-beam electron beam imaging apparatus.
  11.  請求項10に記載のシミュレーション方法において、
     演算用マトリックス作成段階(S30)で照射強度マトリックス(D(x′,y′))を作成する際に、同一画素(P(i,j))に含まれる複数の演算用セル(C(m,n))のうち、当該画素の中心に位置する1つもしくは複数の演算用セルを代表セルとし、それ以外の演算用セルを非代表セルとすることを特徴とするマルチビーム電子線画装置における露光強度分布を求めるシミュレーション方法。
    The simulation method according to claim 10, wherein
    When the irradiation intensity matrix (D (x ′, y ′)) is created in the computation matrix creation stage (S30), a plurality of computation cells (C (m) included in the same pixel (P (i, j)) are created. , N)), one or a plurality of calculation cells located at the center of the pixel are designated as representative cells, and the other calculation cells are designated as non-representative cells. A simulation method for obtaining an exposure intensity distribution.
  12.  請求項11に記載のシミュレーション方法において、
     演算用マトリックス作成段階(S30)で照射強度マトリックス(D(x′,y′))を作成する際に、描画データの各画素を縦横それぞれ奇数に分割し、各画素(P(i,j))の中心に位置する1つの演算用セルを代表セルとし、それ以外の演算用セルを非代表セルとし、前記代表セルには当該代表セルを含む画素の画素値をセル値として与え、前記非代表セルについてはセル値0を与えることを特徴とするマルチビーム電子線画装置における露光強度分布を求めるシミュレーション方法。
    The simulation method according to claim 11,
    When the irradiation intensity matrix (D (x ′, y ′)) is created in the calculation matrix creation stage (S30), each pixel of the drawing data is divided into odd and vertical numbers, and each pixel (P (i, j)) ) Is set as a representative cell, the other calculation cells are set as non-representative cells, and the pixel value of the pixel including the representative cell is given to the representative cell as a cell value. A simulation method for obtaining an exposure intensity distribution in a multi-beam electron beam imaging apparatus, wherein a cell value of 0 is given to a representative cell.
  13.  請求項11に記載のシミュレーション方法において、
     演算用マトリックス作成段階(S30)で照射強度マトリックス(D(x′,y′))を作成する際に、描画データの各画素(P(i,j))を縦横それぞれ偶数に分割し、各画素の中心に位置する4つの演算用セルを代表セルとし、それ以外の演算用セルを非代表セルとし、前記代表セルには当該代表セルを含む画素の画素値の1/4の値をセル値として与え、前記非代表セルについてはセル値0を与えることを特徴とするマルチビーム電子線画装置における露光強度分布を求めるシミュレーション方法。
    The simulation method according to claim 11,
    When the irradiation intensity matrix (D (x ′, y ′)) is created in the calculation matrix creation stage (S30), each pixel (P (i, j)) of the drawing data is divided into even numbers in the vertical and horizontal directions. The four calculation cells located at the center of the pixel are designated as representative cells, the other calculation cells are designated as non-representative cells, and the representative cell has a value of ¼ of the pixel value of the pixel including the representative cell. A simulation method for obtaining an exposure intensity distribution in a multi-beam electron beam imaging apparatus, characterized in that a non-representative cell is given as a value and a cell value of 0 is given.
  14.  請求項10に記載のシミュレーション方法において、
     演算用マトリックス作成段階(S30)で照射強度マトリックス(D(x′,y′))を作成する際に、同一画素(P(i,j))に含まれる複数の演算用セルのうち、当該画素の中心から所定方向に所定のオフセット量(Δx,Δy)だけ変位した位置に存在する演算用セルを代表セルとし、それ以外の演算用セルを非代表セルとし、
     演算用マトリックス作成段階(S30)で点拡がりマトリックス(psf(X,Y))を作成する際に、前記所定方向とは逆方向に前記オフセット量(Δx,Δy)だけ補正した点拡がり関数によって示される影響の度合いの平面分布を示す点拡がりマトリックス(psf(X,Y))を作成することを特徴とするマルチビーム電子線画装置における露光強度分布を求めるシミュレーション方法。
    The simulation method according to claim 10, wherein
    Among the plurality of calculation cells included in the same pixel (P (i, j)) when the irradiation intensity matrix (D (x ′, y ′)) is generated in the calculation matrix generation stage (S30), The calculation cell existing at a position displaced by a predetermined offset amount (Δx, Δy) in the predetermined direction from the center of the pixel is a representative cell, and the other calculation cells are non-representative cells.
    When the point spread matrix (psf (X, Y)) is created in the calculation matrix creation stage (S30), the point spread function is corrected by the offset amount (Δx, Δy) in the opposite direction to the predetermined direction. A simulation method for obtaining an exposure intensity distribution in a multi-beam electron beam imaging apparatus, wherein a point spread matrix (psf (X, Y)) indicating a planar distribution of the degree of influence is generated.
  15.  請求項9~14のいずれかに記載のシミュレーション方法において、
     畳み込み演算段階(S40)で、
     照射強度マトリックス(D(x′,y′))をフーリエ変換することにより、照射強度周波数マトリックス(D′(f,g))を作成する第1の演算段階(S41)と、
     点拡がりマトリックス(psf(X,Y))をフーリエ変換することにより、点拡がり周波数マトリックス(psf′(f,g))を作成する第2の演算段階(S42)と、
     前記照射強度周波数マトリックス(D′(f,g))と前記点拡がり周波数マトリックス(psf′(f,g))との対応する演算用セルの積をセル値とする露光強度周波数マトリックス(v′(f,g))を作成する第3の演算段階(S43)と、
     前記露光強度周波数マトリックス(v′(f,g))を逆フーリエ変換することにより、個々の評価点(V(x,y))における総露光強度の平面分布を示す露光強度マトリックス(v(x,y))を作成する第4の演算段階(S44)と、
     を実行することを特徴とするマルチビーム電子線画装置における露光強度分布を求めるシミュレーション方法。
    The simulation method according to any one of claims 9 to 14,
    In the convolution operation stage (S40),
    A first calculation step (S41) for creating an irradiation intensity frequency matrix (D ′ (f, g)) by Fourier transforming the irradiation intensity matrix (D (x ′, y ′));
    A second calculation step (S42) for creating a point spread frequency matrix (psf ′ (f, g)) by performing a Fourier transform on the point spread matrix (psf (X, Y));
    An exposure intensity frequency matrix (v ′) having a cell value as the product of the corresponding calculation cells of the irradiation intensity frequency matrix (D ′ (f, g)) and the point spread frequency matrix (psf ′ (f, g)). A third computation stage (S43) for creating (f, g));
    An exposure intensity matrix (v (x) indicating a planar distribution of the total exposure intensity at each evaluation point (V (x, y)) by performing an inverse Fourier transform on the exposure intensity frequency matrix (v ′ (f, g)). , Y)) to create a fourth computation stage (S44);
    A simulation method for obtaining an exposure intensity distribution in a multi-beam electron beam imaging apparatus.
  16.  請求項9~15のいずれかに記載のシミュレーション方法における描画データ入力段階(S10)と、パラメータ設定段階(S20)と、演算用マトリックス作成段階(S30)と、畳み込み演算段階(S40)と、をコンピュータに実行させるプログラム。 A drawing data input step (S10), a parameter setting step (S20), a calculation matrix creation step (S30), and a convolution calculation step (S40) in the simulation method according to any one of claims 9 to 15. A program to be executed by a computer.
  17.  マルチビーム電子線描画装置を用いて被成形層(61)に所定のパターンを露光描画する際の露光強度分布(MM)を求める演算を行う露光強度分布演算装置であって、
     電子線描画装置が描画するパターンを示すデータであって、ビームの各照射位置の照射強度を示す画素値を有する画素の配列からなる描画データ(Din)を入力する描画データ入力部(110)と、
     電子線描画装置のアパーチャー(40)の開口サイズに基づいて定まる開口サイズパラメータ(B)を設定するパラメータ設定部(130)と、
     前記描画データの各画素(P(i,j))を複数に分割することにより得られる演算用セル(C(m,n))の集合体からなる空の演算用マトリックスを用意し、各演算用セルに、当該セルを含む画素の画素値に基づく所定のセル値を与えることにより、電子線照射強度の平面分布を示す照射強度マトリックス(D(x′,y′))を作成する照射強度マトリックス作成部(120)と、
     前記空の演算用マトリックスの各演算用セルに、前記開口サイズパラメータ(B)を含む所定の点拡がり関数(psf)に応じたセル値を与えることにより、前記点拡がり関数によって示される影響の度合いの平面分布を示す点拡がりマトリックス(psf(X,Y))を作成する点拡がりマトリックス作成部(140)と、
     前記照射強度マトリックスと前記点拡がりマトリックスとを用いた畳み込み積分を行い、個々の評価点(V(x,y))における総露光強度(v(x,y))を求める畳み込み演算実行部(150)と、
     を備えることを特徴とするマルチビーム電子線描画装置に用いる露光強度分布演算装置。
    An exposure intensity distribution calculation apparatus that performs an operation for obtaining an exposure intensity distribution (MM) when a predetermined pattern is exposed and drawn on a molding layer (61) using a multi-beam electron beam drawing apparatus,
    A drawing data input unit (110) for inputting drawing data (Din) including data indicating a pattern drawn by the electron beam drawing apparatus and having a pixel value indicating the irradiation intensity at each irradiation position of the beam; ,
    A parameter setting unit (130) for setting an aperture size parameter (B) determined based on the aperture size of the aperture (40) of the electron beam lithography apparatus;
    An empty calculation matrix comprising a set of calculation cells (C (m, n)) obtained by dividing each pixel (P (i, j)) of the drawing data into a plurality is prepared. Irradiation intensity for creating an irradiation intensity matrix (D (x ′, y ′)) showing a planar distribution of electron beam irradiation intensity by giving a predetermined cell value based on the pixel value of the pixel including the cell to the cell for use A matrix creation unit (120);
    The degree of influence indicated by the point spread function by giving a cell value according to a predetermined point spread function (psf) including the opening size parameter (B) to each calculation cell of the empty calculation matrix A point spread matrix creating unit (140) for creating a point spread matrix (psf (X, Y)) indicating a plane distribution of
    A convolution calculation execution unit (150) that performs convolution integration using the irradiation intensity matrix and the point spread matrix to obtain a total exposure intensity (v (x, y)) at each evaluation point (V (x, y)). )When,
    An exposure intensity distribution calculation apparatus used for a multi-beam electron beam drawing apparatus.
  18.  請求項17に記載の露光強度分布演算装置において、
     点拡がりマトリックス作成部(140)が、点拡がり関数(psf)として、開口サイズパラメータBによりグラフの平坦部の幅が左右される関数を用いることを特徴とするマルチビーム電子線描画装置に用いる露光強度分布演算装置。
    In the exposure intensity distribution calculation apparatus according to claim 17,
    The point spread matrix creating unit (140) uses a function in which the width of the flat portion of the graph is influenced by the aperture size parameter B as the point spread function (psf), and is used for the multi-beam electron beam drawing apparatus. Intensity distribution calculation device.
  19.  請求項18に記載の露光強度分布演算装置において、
     点拡がりマトリックス作成部(140)が、点拡がり関数(psf)として、開口サイズパラメータBに加えて、グラフの傾斜部の傾きを左右するパラメータσを含む関数を用いることを特徴とするマルチビーム電子線描画装置に用いる露光強度分布演算装置。
    In the exposure intensity distribution calculating apparatus according to claim 18,
    The point spread matrix creation unit (140) uses, as the point spread function (psf), in addition to the aperture size parameter B, a function including a parameter σ that affects the inclination of the inclined portion of the graph. An exposure intensity distribution calculation device used in a line drawing apparatus.
  20.  請求項17~19のいずれかに記載の露光強度分布演算装置において、
     照射強度マトリックス作成部(120)が、同一画素(P(i,j))に含まれる複数の演算用セル(C(m,n))のうち、特定の代表セルについてのみ当該画素の画素値に基づいて定められる所定の値をセル値として与え、それ以外の非代表セルについてはセル値0を与えることを特徴とするマルチビーム電子線描画装置に用いる露光強度分布演算装置。
    The exposure intensity distribution calculation apparatus according to any one of claims 17 to 19,
    The irradiation intensity matrix creation unit (120) has the pixel value of the pixel only for a specific representative cell among the plurality of calculation cells (C (m, n)) included in the same pixel (P (i, j)). An exposure intensity distribution calculation device used for a multi-beam electron beam lithography apparatus, wherein a predetermined value determined based on the above is given as a cell value, and a cell value of 0 is given to other non-representative cells.
  21.  請求項20に記載の露光強度分布演算装置において、
     照射強度マトリックス作成部(120)が、同一画素(P(i,j))に含まれる複数の演算用セル(C(m,n))のうち、当該画素の中心に位置する1つもしくは複数の演算用セルを代表セルとし、それ以外の演算用セルを非代表セルとすることを特徴とするマルチビーム電子線描画装置に用いる露光強度分布演算装置。
    In the exposure intensity distribution calculation apparatus according to claim 20,
    The irradiation intensity matrix creation unit (120) includes one or more of the plurality of calculation cells (C (m, n)) included in the same pixel (P (i, j)) positioned at the center of the pixel. An exposure intensity distribution calculation apparatus used for a multi-beam electron beam lithography apparatus, wherein the calculation cell is a representative cell and the other calculation cells are non-representative cells.
  22.  請求項21に記載の露光強度分布演算装置において、
     照射強度マトリックス作成部(120)が、描画データ(Din)の各画素(P(i,j))を縦横それぞれ奇数に分割し、各画素の中心に位置する1つの演算用セルを代表セルとし、それ以外の演算用セルを非代表セルとし、前記代表セルには当該代表セルを含む画素の画素値をセル値として与え、前記非代表セルについてはセル値0を与えることを特徴とするマルチビーム電子線描画装置に用いる露光強度分布演算装置。
    In the exposure intensity distribution calculating apparatus according to claim 21,
    The irradiation intensity matrix creation unit (120) divides each pixel (P (i, j)) of the drawing data (Din) into odd and vertical numbers, and sets one calculation cell located at the center of each pixel as a representative cell. The other calculation cells are non-representative cells, pixel values of pixels including the representative cells are given to the representative cells as cell values, and a cell value of 0 is given to the non-representative cells. An exposure intensity distribution calculation device used for a beam electron beam drawing apparatus.
  23.  請求項21に記載の露光強度分布演算装置において、
     照射強度マトリックス作成部(120)が、描画データ(Din)の各画素(P(i,j))を縦横それぞれ偶数に分割し、各画素の中心に位置する4つの演算用セルを代表セルとし、それ以外の演算用セルを非代表セルとし、前記代表セルには当該代表セルを含む画素の画素値の1/4の値をセル値として与え、前記非代表セルについてはセル値0を与えることを特徴とするマルチビーム電子線描画装置に用いる露光強度分布演算装置。
    In the exposure intensity distribution calculating apparatus according to claim 21,
    The irradiation intensity matrix creation unit (120) divides each pixel (P (i, j)) of the drawing data (Din) into an even number in each of the vertical and horizontal directions, and uses four calculation cells located at the center of each pixel as representative cells. The other calculation cells are set as non-representative cells, and the representative cell is given a cell value that is 1/4 of the pixel value of the pixel including the representative cell, and the non-representative cell is given a cell value of 0. An exposure intensity distribution calculation device used for a multi-beam electron beam lithography apparatus.
  24.  請求項20に記載の露光強度分布演算装置において、
     照射強度マトリックス作成部(120)が、同一画素(P(i,j))に含まれる複数の演算用セル(C(m,n))のうち、当該画素の中心から所定方向に所定のオフセット量(Δx,Δy)だけ変位した位置に存在する演算用セルを代表セルとし、それ以外の演算用セルを非代表セルとし、
     点拡がりマトリックス作成部(140)が、前記所定方向とは逆方向に前記オフセット量(Δx,Δy)だけ補正した点拡がり関数(psf)によって示される影響の度合いの平面分布を示す点拡がりマトリックス(psf(X,Y))を作成することを特徴とするマルチビーム電子線描画装置に用いる露光強度分布演算装置。
    In the exposure intensity distribution calculation apparatus according to claim 20,
    The irradiation intensity matrix creation unit (120) has a predetermined offset in a predetermined direction from the center of the pixel among a plurality of calculation cells (C (m, n)) included in the same pixel (P (i, j)). A calculation cell existing at a position displaced by an amount (Δx, Δy) is a representative cell, and the other calculation cells are non-representative cells.
    A point spread matrix (140) indicating a plane distribution of the degree of influence indicated by the point spread function (psf) corrected by the offset amount (Δx, Δy) in a direction opposite to the predetermined direction by the point spread matrix creation unit (140). psf (X, Y)). An exposure intensity distribution calculation device used for a multi-beam electron beam drawing apparatus.
  25.  請求項17~24のいずれかに記載の露光強度分布演算装置において、
     畳み込み演算部(150)が、
     照射強度マトリックス(D(x′,y′))をフーリエ変換することにより、照射強度周波数マトリックス(D′(f,g))を作成する第1の演算部(151)と、
     点拡がりマトリックス(psf(X,Y))をフーリエ変換することにより、点拡がり周波数マトリックス(psf′(f,g))を作成する第2の演算部(152)と、
     前記照射強度周波数マトリックス(D′(f,g))と前記点拡がり周波数マトリックス(psf′(f,g))との対応する演算用セルの積をセル値とする露光強度周波数マトリックス(v′(f,g))を作成する第3の演算部(153)と、
     前記露光強度周波数マトリックス(v′(f,g))を逆フーリエ変換することにより、個々の評価点(V(x,y))における総露光強度の平面分布を示す露光強度マトリックス(v(x,y))を作成する第4の演算部(154)と、
     を有することを特徴とするマルチビーム電子線描画装置に用いる露光強度分布演算装置。
    The exposure intensity distribution calculation apparatus according to any one of claims 17 to 24,
    The convolution unit (150)
    A first calculation unit (151) for creating an irradiation intensity frequency matrix (D ′ (f, g)) by performing Fourier transform on the irradiation intensity matrix (D (x ′, y ′));
    A second calculation unit (152) that creates a point spread frequency matrix (psf ′ (f, g)) by performing Fourier transform on the point spread matrix (psf (X, Y));
    An exposure intensity frequency matrix (v ′) having a cell value as the product of the corresponding calculation cells of the irradiation intensity frequency matrix (D ′ (f, g)) and the point spread frequency matrix (psf ′ (f, g)). A third calculation unit (153) for creating (f, g));
    An exposure intensity matrix (v (x) indicating a planar distribution of the total exposure intensity at each evaluation point (V (x, y)) by performing an inverse Fourier transform on the exposure intensity frequency matrix (v ′ (f, g)). , Y)) creating a fourth computing unit (154);
    An exposure intensity distribution calculation device used for a multi-beam electron beam lithography apparatus.
  26.  請求項17~25のいずれかに記載の露光強度分布演算装置としてコンピュータを機能させるプログラム。 A program that causes a computer to function as the exposure intensity distribution calculation device according to any one of claims 17 to 25.
PCT/JP2017/034033 2016-09-29 2017-09-21 Method and device for obtaining exposure intensity distribution in multibeam electron beam lithography device WO2018061960A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2016-191102 2016-09-29
JP2016191102 2016-09-29
JP2017-171637 2017-09-07
JP2017171637A JP6881168B2 (en) 2016-09-29 2017-09-07 Method and device for obtaining exposure intensity distribution in multi-beam electron beam lithography system

Publications (1)

Publication Number Publication Date
WO2018061960A1 true WO2018061960A1 (en) 2018-04-05

Family

ID=61760575

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/034033 WO2018061960A1 (en) 2016-09-29 2017-09-21 Method and device for obtaining exposure intensity distribution in multibeam electron beam lithography device

Country Status (1)

Country Link
WO (1) WO2018061960A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113705860A (en) * 2021-08-05 2021-11-26 北京航空航天大学 Real-time intelligent multi-shape manufacturing part layout optimization method and system with strong robustness

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002057090A (en) * 2000-08-10 2002-02-22 Hitachi Ltd Charged particle beam exposing method and apparatus
JP2009529802A (en) * 2006-03-10 2009-08-20 マッパー・リソグラフィー・アイピー・ビー.ブイ. Lithography system and projection method
JP2010212684A (en) * 2009-03-09 2010-09-24 Ims Nanofabrication Ag Global point spread function in multi-beam patterning
JP2016018995A (en) * 2014-07-10 2016-02-01 アイエムエス ナノファブリケーション アーゲー Customization of particle beam drawing machine using convolution kernel

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002057090A (en) * 2000-08-10 2002-02-22 Hitachi Ltd Charged particle beam exposing method and apparatus
JP2009529802A (en) * 2006-03-10 2009-08-20 マッパー・リソグラフィー・アイピー・ビー.ブイ. Lithography system and projection method
JP2010212684A (en) * 2009-03-09 2010-09-24 Ims Nanofabrication Ag Global point spread function in multi-beam patterning
JP2016018995A (en) * 2014-07-10 2016-02-01 アイエムエス ナノファブリケーション アーゲー Customization of particle beam drawing machine using convolution kernel
JP2016029715A (en) * 2014-07-10 2016-03-03 アイエムエス ナノファブリケーション アーゲー Compensation for imaging deflection in particle beam drawing machine using convolution kernel

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113705860A (en) * 2021-08-05 2021-11-26 北京航空航天大学 Real-time intelligent multi-shape manufacturing part layout optimization method and system with strong robustness
CN113705860B (en) * 2021-08-05 2023-10-17 北京航空航天大学 Real-time intelligent robust multi-shape manufactured part layout optimization method and system

Similar Documents

Publication Publication Date Title
KR101843057B1 (en) Multi charged particle beam writing apparatus and multi charged particle beam writing method
US9373482B2 (en) Customizing a particle-beam writer using a convolution kernel
DE102006041436B4 (en) Jet dosing calculation method and writing method and recording medium and writing instrument
KR101778280B1 (en) Multi charged particle beam writing apparatus and multi charged particle beam writing method
TWI596643B (en) Multiple charged particle beam tracing device and multiple charged particle beam tracing method
JP6951922B2 (en) Charged particle beam device and method for correcting misalignment of charged particle beam
JP2018133553A (en) Electron beam apparatus and misalignment correcting method of electron beam
JP2014209599A (en) Charged particle beam drawing device and method for acquiring exposure dose modulation factor of charged particle beam
EP3264442A1 (en) Bias correction for lithography
US9223926B2 (en) Method for correcting electronic proximity effects using the deconvolution of the pattern to be exposed by means of a probabilistic method
JP6881168B2 (en) Method and device for obtaining exposure intensity distribution in multi-beam electron beam lithography system
JP4621076B2 (en) Electron beam exposure system
TWI710006B (en) Method for generating drawing data, computer-readable recording medium for recording program, and multi-charged particle beam drawing device
JP2010250286A (en) Photomask, semiconductor device, and charged beam drawing apparatus
US8710468B2 (en) Method of and apparatus for evaluating an optimal irradiation amount of an electron beam for drawing a pattern onto a sample
WO2018061960A1 (en) Method and device for obtaining exposure intensity distribution in multibeam electron beam lithography device
KR20130110034A (en) Charged particle beam writing apparatus and charged particle beam writing method
JP2002313693A (en) Forming method for mask pattern
JP4189232B2 (en) Pattern forming method and drawing method
JP3120051B2 (en) Proximity effect corrector for charged particle beam writing
JP7206830B2 (en) Drawing data creation method for charged multi-beam writer
WO2013073694A1 (en) Method and device for drawing patterns
WO2012049901A1 (en) Image rendering method and image rendering device
US20150060704A1 (en) Writing data correcting method, writing method, and manufacturing method of mask or template for lithography

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17855915

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17855915

Country of ref document: EP

Kind code of ref document: A1