JP3120051B2 - Proximity effect corrector for charged particle beam writing - Google Patents

Proximity effect corrector for charged particle beam writing

Info

Publication number
JP3120051B2
JP3120051B2 JP09064530A JP6453097A JP3120051B2 JP 3120051 B2 JP3120051 B2 JP 3120051B2 JP 09064530 A JP09064530 A JP 09064530A JP 6453097 A JP6453097 A JP 6453097A JP 3120051 B2 JP3120051 B2 JP 3120051B2
Authority
JP
Japan
Prior art keywords
irradiation
charged particle
particle beam
scattering
grid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP09064530A
Other languages
Japanese (ja)
Other versions
JPH10261562A (en
Inventor
芳明 服部
智浩 飯島
秀幸 鶴巻
隆幸 阿部
進 大木
みつ子 清水
貴司 上久保
徹 東條
良一 吉川
光庸 片山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Shibaura Machine Co Ltd
Original Assignee
Toshiba Corp
Toshiba Machine Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Toshiba Machine Co Ltd filed Critical Toshiba Corp
Priority to JP09064530A priority Critical patent/JP3120051B2/en
Publication of JPH10261562A publication Critical patent/JPH10261562A/en
Application granted granted Critical
Publication of JP3120051B2 publication Critical patent/JP3120051B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、荷電粒子ビームに
より照射対象面上に図形を描画する荷電ビーム描画装置
において、照射対象面上での荷電粒子散乱の効果を補正
して適切な照射量を求める照射量補正装置に係わり、特
に微細な半導体集積回路の回路パターンの描画に適した
荷電粒子ビーム描画用の近接効果補正装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a charged beam drawing apparatus which draws a figure on a surface to be irradiated by a charged particle beam, and corrects the effect of charged particle scattering on the surface to be irradiated so as to obtain an appropriate dose. The present invention relates to a required dose correction device, and more particularly to a proximity effect correction device for drawing a charged particle beam suitable for drawing a circuit pattern of a fine semiconductor integrated circuit.

【0002】[0002]

【従来の技術】従来、微細な半導体の集積回路の回路パ
ターンをマスク上に描画する場合、電子ビーム描画装置
が用いられている。電子ビーム等の荷電粒子ビームでの
マスク描画では、電子ビームのレジスト内散乱から起こ
る近接効果により、細いパターンやパターンのコーナー
が露光不足となり、寸法精度が劣化したり矩形パターン
が丸くなるなどの不具合を生じる。また、パターンが近
くに配置されているときには、双方のパターンから散乱
される荷電粒子によりパターン以外の部分が露光されて
しまい、レジスト上の描画パターンが歪むなどの問題が
ある。
2. Description of the Related Art Conventionally, when a circuit pattern of a fine semiconductor integrated circuit is drawn on a mask, an electron beam drawing apparatus has been used. When drawing a mask with a charged particle beam such as an electron beam, the proximity effect caused by the scattering of the electron beam in the resist causes inadequate exposure of narrow patterns and corners of the pattern, resulting in poor dimensional accuracy and rounded rectangular patterns. Is generated. In addition, when the patterns are disposed close to each other, there is a problem that a portion other than the patterns is exposed by charged particles scattered from both patterns, and the drawing pattern on the resist is distorted.

【0003】近年、描画すべきマスク上の集積回路パタ
ーンの微細化が進み、近接効果の精度の高い補正が不可
欠となっている。微細なパターンの描画のコントラスト
を改良するために、荷電粒子ビームの加速電圧を上昇さ
せる場合に、近接効果の影響は益々大きなものとなる。
In recent years, integrated circuit patterns on a mask to be drawn have been miniaturized, and high-precision correction of the proximity effect has become indispensable. When the acceleration voltage of the charged particle beam is increased in order to improve the contrast of writing a fine pattern, the influence of the proximity effect becomes even greater.

【0004】このような電子ビームの散乱によるパター
ン寸法誤差を低減するために、従来から様々な近接効果
補正が試みられてきた。一つは、パターン部分の描画と
共に、パターンがない部分に対しても、拡散させたビー
ムで弱く露光する方法である。この方法は、補正計算が
不要であるが、パターン描画に加えて非パターン部分を
描画するため描画に時間がかかる。また、パターンがな
い部分まで露光するため、レジストコントラストが低下
しパターン寸法精度の低下を招く。このため、高精度で
高精細な描画になるほど使えなくなる。
[0004] In order to reduce the pattern dimensional error due to the scattering of the electron beam, various proximity effect corrections have been conventionally attempted. One is a method of weakly exposing a part without a pattern with a diffused beam while writing a pattern part. Although this method does not require correction calculation, it takes a long time to draw a non-pattern portion in addition to pattern drawing. In addition, since exposure is performed to a portion where there is no pattern, the resist contrast is reduced and the pattern dimensional accuracy is reduced. For this reason, the higher the precision and the higher the precision of drawing, the more unusable it becomes.

【0005】もう一つは、隣接するパターンからの影響
を計算し、照射量を電子ビームの描画単位毎に変えなが
ら描画する方法である。この方法は、レジストコントラ
ストの劣化が少なく高精度の描画に有利である。しか
し、半導体の高集積化が益々進む現在では、データ量,
補正計算の処理時間共に膨大なものとなってしまう。
The other is a method of calculating the influence from an adjacent pattern and writing while changing the irradiation amount for each electron beam writing unit. This method is advantageous for high-precision drawing with little deterioration in resist contrast. However, as semiconductors become more highly integrated, the amount of data,
The processing time of the correction calculation is enormous.

【0006】そこで最近、高速に計算処理を行う方法と
して、細かく複雑なパターンの面積密度を用いて補正計
算を行う方法が提案されている。
Therefore, recently, as a method of performing the calculation processing at high speed, a method of performing a correction calculation using the area density of a fine and complicated pattern has been proposed.

【0007】特開平3−225816号公報「荷電粒子
線描画装置」は、照射面積密度による近接効果補正回路
を組み込んだ荷電粒子線描画装置で、露光量を計算する
手段と、部分領域の数値を近傍の部分領域の数値で修正
する手段と、数値により予め設定されていた露光時間を
補正する手段を備えている。
Japanese Unexamined Patent Publication No. Hei 3-225816 "Charged particle beam drawing apparatus" is a charged particle beam drawing apparatus incorporating a proximity effect correction circuit based on an irradiation area density. There are provided means for correcting the numerical value of the nearby partial area, and means for correcting the exposure time set in advance by the numerical value.

【0008】また、特開平4−258111号公報「電
子ビームリトグラフィにおける近接効果を補正する方
法」では、正方形セルのメッシュを用いて、近接マトリ
ックスと細分密度マトリックスから畳み込みを計算し、
ドーズ補正マトリクスを求める方法を提案している。
In Japanese Patent Application Laid-Open No. 4-258111, "Method of Correcting Proximity Effect in Electron Beam Lithography", a convolution is calculated from a proximity matrix and a sub-density matrix using a square cell mesh.
A method for obtaining a dose correction matrix is proposed.

【0009】また、文献(T.Abe,et all,"Representati
ve Fegure Method fer Proximity Effect Correction",
Japanese Journal of Applied Physics.Vol.30.No.3B,p
p.L528-531,1991 )では、パターンの代表図形による計
算処理の高速化方法が示されている。
[0009] Further, a document (T. Abe, et all, "Representati
ve Fegure Method fer Proximity Effect Correction ",
Japanese Journal of Applied Physics.Vol.30.No.3B, p
p.L528-531, 1991) shows a method for speeding up the calculation process using a representative figure of a pattern.

【0010】また、特願平8−36441号「荷電ビー
ム描画方法および描画装置」では、近接効果補正の高精
度化方法として、補正照射量を用いて後方散乱を再計算
することを繰り返すのではなく、照射量の補正式をある
種の摂動展開で表して繰り返し計算回数を減少させる方
法が示されている。
In Japanese Patent Application No. 8-36441, "charged beam drawing method and drawing apparatus", recalculation of backscattering using a corrected irradiation amount is repeated as a method for increasing the accuracy of proximity effect correction. Instead, a method of reducing the number of repetitive calculations by expressing the correction formula of the irradiation dose by a certain perturbation expansion is shown.

【0011】しかしながら、いずれの装置及び方法にあ
っても、近接効果補正のための計算に多大な手間がかか
り、更に高精度の描画が要求されるほど近接効果補正の
ための計算量が増大し、計算時間が膨大となる問題があ
った。つまり、描画精度を上げようとすると計算時間が
膨大となり、その実用化は極めて困難であった。
However, in any of the apparatuses and methods, a great deal of time is required for calculation for the proximity effect correction, and the amount of calculation for the proximity effect correction increases as more accurate drawing is required. However, there is a problem that the calculation time becomes enormous. In other words, the calculation time is enormous when trying to increase the drawing accuracy, and its practical use has been extremely difficult.

【0012】[0012]

【発明が解決しようとする課題】微細な半導体を生産す
るための高精度の電子ビーム描画装置の近接効果を補正
するためには、微細な部分領域に対して最適な電子ビー
ム照射量を求める必要がある。高精度の描画が要求され
るほど、微細な部分領域に対しての最適な電子ビーム照
射量を求める必要がある。しかしながら、この部分領域
を小さくすればするほど、近接効果補正のための計算量
は増大し、計算時間が膨大となり、生産現場での実用性
が低くなる。また、高精細な描画のために電子ビームの
加速電圧を高くすれば、電子ビームの後方散乱の幅が広
くなり、照射に対する散乱影響の計算が必要な領域が広
くなり、計算時間の増加につながる。
In order to correct the proximity effect of a high-precision electron beam lithography system for producing fine semiconductors, it is necessary to find an optimum electron beam irradiation amount for a fine partial region. There is. As more accurate drawing is required, it is necessary to find the optimum electron beam irradiation amount for a fine partial region. However, as this partial area is made smaller, the amount of calculation for correcting the proximity effect increases, the calculation time becomes enormous, and the practicality at the production site decreases. In addition, if the acceleration voltage of the electron beam is increased for high-definition writing, the width of backscattering of the electron beam is widened, the area where the calculation of the scattering effect on the irradiation needs to be widened, and the calculation time increases. .

【0013】従来の技術では、描画面上のある点に対し
て近接効果の影響を考慮する範囲での後方散乱を、その
範囲での全ての照射量の畳み込み計算に、その範囲の面
積に比例する回数の積和演算が必要とされる。詳細な計
算が必要であれば、その範囲を格子領域に分ける分け方
を細かくし、益々計算量が増加する。即ち、高精度の荷
電粒子ビーム描画装置の近接効果補正には、精度要求に
適合する補正計算が短時間に実行できる近接効果補正装
置が必要である。
In the prior art, the backscattering in a range in which the influence of the proximity effect is considered for a certain point on the drawing surface is calculated by convolution calculation of all the irradiation doses in the range and is proportional to the area of the range. The number of product-sum operations is required. If detailed calculation is required, the method of dividing the range into grid regions is made finer, and the calculation amount is further increased. That is, for proximity effect correction of a charged particle beam writing apparatus with high precision, a proximity effect correction apparatus capable of executing correction calculation suitable for accuracy requirements in a short time is required.

【0014】本発明は、上記の事情を考慮して成された
もので、その目的とするところは、高精度の荷電粒子ビ
ーム描画装置において、高精度な近接効果補正を高速で
行うことのできる近接効果補正装置を提供することにあ
る。
The present invention has been made in view of the above circumstances, and an object of the present invention is to enable a high-precision charged particle beam writing apparatus to perform high-accuracy proximity effect correction at high speed. An object of the present invention is to provide a proximity effect correction device.

【0015】[0015]

【課題を解決するための手段】[Means for Solving the Problems]

(構成) 上記課題を解決するために本発明は、次のような構成を
採用している。
(Configuration) In order to solve the above problem, the present invention employs the following configuration.

【0016】即ち、本発明(請求項1)は、荷電粒子ビ
ームを描画対象表面に照射して描画を行う際に、照射ビ
ームの散乱による近接効果を評価して照射量を補正する
荷電粒子ビーム描画用の近接効果補正装置において、照
射対象面へ照射する荷電粒子ビームの照射面積及び照射
強度から、対象表面上の縦横方向に区切られた微小な格
子領域の照射量を求める照射量計算手段と、各々の格子
領域に対して、その周囲の長方形で囲まれる複数の周辺
格子領域に対する前記照射量計算手段で求められた照射
量の散乱による照射影響を評価する散乱影響評価手段
と、前記散乱影響評価手段の結果から、目的の描画図形
パターンを描画するための適切な荷電粒子ビームの補正
照射強度を各格子領域毎に計算する補正照射強度導出手
段とを具備してなり、前記散乱影響評価手段は、前記照
射量計算手段で求めた各周辺格子領域での照射量とガウ
ス分布関数との積による畳み込み計算を行い、かつこの
畳み込み計算を分布関数の広がりのパラメータ値が異な
る2つ以上のガウス分布について散乱率で重み付けして
計算した結果の和として求めることにより近接効果を評
価することを特徴とする。
That is, the present invention (claim 1) provides a charged particle beam for correcting the irradiation amount by evaluating the proximity effect due to the scattering of the irradiation beam when drawing by irradiating the surface of the drawing object with the charged particle beam. In the proximity effect correction device for drawing, from the irradiation area and irradiation intensity of the charged particle beam irradiating the irradiation target surface, the irradiation amount calculation means for obtaining the irradiation amount of a minute grid region divided in the vertical and horizontal directions on the target surface and A scattering effect evaluating means for evaluating, for each lattice area, an irradiation effect due to scattering of the irradiation amount obtained by the irradiation amount calculating means on a plurality of peripheral lattice areas surrounded by a rectangle around the lattice area; A correction irradiation intensity deriving unit for calculating a correction irradiation intensity of a charged particle beam appropriate for drawing a target drawing graphic pattern for each grid region from a result of the evaluation unit. The scattering effect evaluation unit performs convolution calculation by the product of the dose and the Gaussian distribution function at each peripheral grid area which has been determined by the dose calculating means, and the I different parameter values spread of the distribution function convolution calculation
The proximity effect is evaluated by obtaining as a sum of results calculated by weighting two or more Gaussian distributions with the scattering rate.

【0017】また、本発明(請求項)は、荷電粒子ビ
ームを描画対象表面に照射して描画を行う際に、照射ビ
ームの散乱による近接効果を評価して照射量を補正する
荷電粒子ビーム描画用の近接効果補正装置において、照
射対象面へ照射する荷電粒子ビームの照射面積及び照射
強度から、対象表面上の縦横方向に区切られた微小な格
子領域の照射量を求める照射量計算手段と、各々の格子
領域に対して、その周囲の長方形で囲まれる複数の周辺
格子領域に対する前記照射量計算手段で求められた照射
量の散乱による照射影響を評価する散乱影響評価手段
と、前記散乱影響評価手段の結果から、目的の描画図形
パターンを描画するための適切な荷電粒子ビームの補正
照射強度を各格子領域毎に計算する補正照射強度導出手
段とを具備してなり、前記散乱影響評価手段は、前記照
射量計算手段で求めた各周辺格子領域での照射量とガウ
ス分布関数との積による畳み込み計算を、分布関数の広
がり のパラメータ値が異なる2つ以上のガウス分布につ
いて散乱率で重み付けして計算した結果の和として求め
るものであり、かつ各々の畳み込み計算において、前記
格子に沿った一方向について一次元ガウス分布関数を用
いて畳み込み計算を行い、他の直交する方向について前
記の畳み込み計算結果と前記のガウス分布関数と同じ一
次元ガウス分布関数との積で畳み込み計算を行うことを
特徴とする。
Further, according to the present invention (claim 2 ), when performing drawing by irradiating a charged particle beam to a surface to be drawn, a charged particle beam for correcting a dose by evaluating a proximity effect due to scattering of the irradiated beam. In the proximity effect correction device for drawing, from the irradiation area and irradiation intensity of the charged particle beam irradiating the irradiation target surface, the irradiation amount calculation means for obtaining the irradiation amount of a minute grid region divided in the vertical and horizontal directions on the target surface and A scattering effect evaluating means for evaluating, for each lattice area, an irradiation effect due to scattering of the irradiation amount obtained by the irradiation amount calculating means on a plurality of peripheral lattice areas surrounded by a rectangle around the lattice area; A correction irradiation intensity deriving unit for calculating a correction irradiation intensity of a charged particle beam appropriate for drawing a target drawing graphic pattern for each grid region from a result of the evaluation unit. The scattering effect evaluation means, the convolution calculation by the product of the dose and the Gaussian distribution function at each peripheral grid area which has been determined by the dose calculating means, wide distribution function
Are those determined as the sum of the results rising parameter value is calculated by weighting the scattering rate for two or more different Gaussian distribution, and in each of the convolution calculation, a one-dimensional Gaussian distribution function in one direction along said grating Is performed, and the convolution calculation is performed using the product of the convolution calculation result and the same one-dimensional Gaussian distribution function as the Gaussian distribution function in other orthogonal directions.

【0018】また、本発明の望ましい請求項として、
請求項1又は2のいずれかにおいて、投射形状の可変な
荷電粒子ビーム描画装置を用い、前記照射量計算手段に
おいて、1回の荷電粒子ビームの照射を、照射図形の位
置と投射形状から、照射される単数又は複数の格子領域
の各内部における照射図形に分割し、各々の格子領域内
部での照射図形面積を求め、該図形面積にそれぞれ荷電
粒子ビーム照射の強度を乗じて求めた照射量を、各々の
格子領域内部において既に求められている照射量に累積
することで、各格子領域の照射量を求めることを特徴と
する。
Further, as a desirable third aspect of the present invention,
3. The charged particle beam drawing apparatus according to claim 1 , wherein the irradiation amount calculation means irradiates a single irradiation of the charged particle beam from the position of the irradiation figure and the projection shape. Divided into irradiation patterns in each of the single or plural lattice regions to be obtained, an irradiation pattern area in each of the lattice regions is obtained, and the irradiation amount obtained by multiplying the pattern area by the intensity of the charged particle beam irradiation is calculated. The irradiation amount of each lattice region is obtained by accumulating the irradiation amount already obtained inside each lattice region.

【0019】また、本発明の望ましい請求項として、
請求項1〜3のいずれかにおいて、前記各手段によって
求められた補正照射強度を基に再度、前記各手段によっ
て補正照射強度を求めることを特徴とする。
Further, as a desirable claim 4 of the present invention,
In any one of claims 1 to 3 , the correction irradiation intensity is obtained again by each of the means based on the correction irradiation intensity obtained by each of the means.

【0020】また、本発明の望ましい請求項として、
請求項において、2段目以降の照射量計算手段におい
て、既に算出されている各格子領域毎の照射面積と補正
照射強度の積を、各格子領域照射量として算出すること
を特徴とする。
Further, as a desirable claim 5 of the present invention,
According to a fourth aspect of the present invention, in the second and subsequent irradiation dose calculating means, the product of the already calculated irradiation area for each grid region and the corrected irradiation intensity is calculated as each grid region irradiation dose.

【0021】また、本発明の望ましい請求項として、
請求項4又は5において、2段目以降の補正照射強度導
出手段が、新たな補正照射強度でなく、前段までに求め
た補正照射強度と目的の描画図形パターンを描画するた
めの適切な照射量との差の近似値を求めるよう構成され
たことを特徴とする。
Further, as a desirable claim 6 of the present invention,
6. The correction irradiation intensity deriving means of the second and subsequent stages according to claim 4 or 5, wherein the correction irradiation intensity obtained up to the previous stage and an appropriate irradiation amount for drawing a target drawing graphic pattern are used instead of the new correction irradiation intensity. And an approximate value of the difference between the two.

【0022】(作用) 請求項1の発明の構成を図1に示し、そのその作用を説
明する。図中の11は格子領域毎の照射量を計算する照
射量計算手段、21は格子領域の照射量と2次元ガウス
分布による畳み込み計算を2通り以上のガウス分布につ
いて散乱率で重み付けして行い、格子領域毎の出力結果
の和を求める散乱影響評価手段、31は格子領域毎の補
正照射量強度を計算する補正照射強度導出手段である。
(Operation) FIG. 1 shows the structure of the first aspect of the present invention, and its operation will be described. In the figure, 11 is an irradiation amount calculating means for calculating an irradiation amount for each lattice region, 21 is a convolution calculation based on the irradiation amount of the lattice region and a two-dimensional Gaussian distribution weighted by two or more Gaussian distributions with a scattering rate, Scattering effect evaluation means for calculating the sum of the output results for each grid area, and 31 is a corrected irradiation intensity deriving means for calculating a corrected irradiation intensity for each grid area.

【0023】本発明の近接効果補正装置の散乱影響評価
手段は、以下の原理で散乱影響評価を行う。
The scattering effect evaluation means of the proximity effect correction device of the present invention evaluates the scattering effect based on the following principle.

【0024】位置(X,Y)への照射強度D(X,Y)
が、位置(x,y)へ後方散乱する率を、散乱の幅σ及
び全体の後方散乱率ηを用いて、ガウス分布密度関数と
の積である、
Irradiation intensity D (X, Y) at position (X, Y)
Is the product of the rate of backscattering to the location (x, y) with the Gaussian density function using the scattering width σ and the overall backscattering rate η,

【0025】[0025]

【数1】 (Equation 1)

【0026】で、評価するものとする。しかし、後方散
乱は、ガウス分布密度関数に正確に従わない場合もあ
り、上の式でなく、複数のガウス分布密度関数の散乱率
による重み付きの和、
Now, evaluation will be made. However, backscattering may not exactly follow the Gaussian density function, and instead of the above equation, a weighted sum of the scattering rates of multiple Gaussian density functions,

【0027】[0027]

【数2】 (Equation 2)

【0028】で表すものとする。ηb は、それぞれのガ
ウス分布の散乱の幅σb による後方散乱量の前方散乱量
に対する比である。
## EQU2 ## eta b is the ratio forward scattering amount of backscattering amount of width sigma b of the scattering of the respective Gaussian distributions.

【0029】照射図形の存在する領域E内の全ての
(X,Y)について積分することで、荷電粒子ビームの
後方散乱による位置(x,y)での露光影響U(x,
y)が評価される。
By integrating all (X, Y) in the region E where the irradiation figure exists, the exposure effect U (x, y) at the position (x, y) due to the backscattering of the charged particle beam is obtained.
y) is evaluated.

【0030】[0030]

【数3】 (Equation 3)

【0031】照射されない点、即ち領域Eに属さない点
での照射強度D(X,Y)の値を0とすると、この積分
は畳み込み計算となる。2次元のガウス分布密度関数に
よる畳み込みは、1次元のガウス分布密度関数との積に
よるX方向の積分結果に、同じ1次元のガウス分布密度
関数を乗じてY方向に積分するように表すことができ
る。
Assuming that the value of the irradiation intensity D (X, Y) at a point that is not irradiated, that is, at a point that does not belong to the region E, is 0, this integration is a convolution calculation. Convolution using a two-dimensional Gaussian distribution density function can be expressed by multiplying the result of integration with the one-dimensional Gaussian distribution density function in the X direction by the same one-dimensional Gaussian distribution density function and integrating in the Y direction. it can.

【0032】請求項1の近接効果補正装置は、以下の方
法で散乱影響評価手段21での処理を行う。
The proximity effect correction device according to the first aspect performs the processing in the scattering effect evaluation means 21 by the following method.

【0033】(式3)の近似として、以下の手順で荷電
粒子ビーム散乱の影響を評価する。照射量とガウス分布
密度関数を乗じて積分する代わりに、微小格子領域範囲
内の均一の照射強度で照射される面積から求める照射量
とガウス分布密度関数の積を用いて、散乱の影響の及ぶ
範囲内でのそれらの積の総和を求め、畳み込みを近似す
るものである。
As an approximation of (Equation 3), the influence of charged particle beam scattering is evaluated by the following procedure. Instead of multiplying and integrating the dose and the Gaussian density function, the influence of scattering can be obtained by using the product of the dose and the Gaussian density function, which is obtained from the area irradiated at a uniform irradiation intensity within the micro-grating area. The sum of the products within the range is obtained, and the convolution is approximated.

【0034】照射対象面上の間隔Mの2次元の格子領域
を設定する。i行j列目の格子領域[i,j]中の、照
射量計算手段11が求めた照射量をSijとする。S
ijは、格子領域[i,j]に照射される全ての照射の照
射強度と、各照射の面積の積を累積することで求められ
る。格子領域[i,j]に照射される照射Gの照射強度
をDG 、格子領域[i,j]内のその照射の面積をA
Gij とすると、
A two-dimensional lattice area with an interval M on the irradiation target surface is set. The irradiation amount calculated by the irradiation amount calculating means 11 in the grid region [i, j] on the i-th row and the j-th column is defined as S ij . S
ij is obtained by accumulating the product of the irradiation intensity of all irradiations applied to the lattice area [i, j] and the area of each irradiation. The irradiation intensity of the irradiation G applied to the lattice area [i, j] is D G , and the area of the irradiation in the lattice area [i, j] is A
Given Gij ,

【0035】[0035]

【数4】 (Equation 4)

【0036】となる。使用する複数のガウス分布密度関
数は散乱の幅が異なる。b番目のガウス分布密度関数の
1/eの散乱幅をσb とする。σb の値から、誤差評価
の観点で、1つの格子領域に対する散乱影響を評価する
のに考慮すべき最も離れた格子領域との距離を格子数で
表した幅として、1次元方向の格子領域数Kb を選択す
る。座標軸X,Yの各方向について以下のガウス分布密
度関数による畳み込みの離散的な近似Ub,ijを計算す
る。
## EQU1 ## The plurality of Gaussian density functions used have different widths of scattering. Let σ b be the scattering width of 1 / e of the b-th Gaussian distribution density function. From the value of σ b , in terms of error evaluation, the distance from the most distant lattice region to be considered in evaluating the scattering effect on one lattice region is defined as the width expressed by the number of lattices, and the one-dimensional lattice region Select the number Kb . For each direction of the coordinate axes X and Y, a discrete approximation U b, ij of convolution by the following Gaussian distribution density function is calculated.

【0037】[0037]

【数5】 (Equation 5)

【0038】上式の積分計算は、格子領域の幅M、後方
散乱の幅σb 及び畳み込み近似の範囲kb が与えられれ
ば、予め算出しておくことができる。即ち、−kb から
+kb までの範囲の全ての整数xとyの組み合わせに対
して、予めPx,y,b を次式のように計算できる。
The integral calculation of the above equation can be calculated in advance, given the width M of the lattice region, the width σ b of the backscatter, and the range k b of the convolution approximation. That is, for all combinations of integers x and y in the range from -k b to + k b, can be pre-calculated P x, y, and b as follows.

【0039】[0039]

【数6】 (Equation 6)

【0040】以上のようにして、格子領域[i,j]へ
のσb による散乱量Ub,ijが評価される。
As described above, the amount of scattering U b, ij due to σ b on the grid area [i, j] is evaluated.

【0041】b番目のガウス分布密度関数による畳み込
みから、全体の後方散乱量を評価するには、
From the convolution by the b-th Gaussian distribution density function, to evaluate the total backscattering quantity,

【0042】[0042]

【数7】 (Equation 7)

【0043】を計算し、散乱量Uijを算出する。これら
のUijが散乱影響評価手段21の出力となる。
Is calculated, and the scattering amount U ij is calculated. These U ij are the outputs of the scattering influence evaluation means 21.

【0044】補正照射強度導出手段31では、散乱量U
ijから、最終的に描画する図形の散乱影響を考慮した適
切な照射量を、格子領域毎に求める。
In the correction irradiation intensity deriving means 31, the scattering amount U
From ij , an appropriate dose in consideration of the scattering effect of the figure to be finally drawn is obtained for each grid region.

【0045】一般には、Pavkovichの式と呼ば
れる。
Generally, it is called Pavkovich's equation.

【0046】[0046]

【数8】 (Equation 8)

【0047】が用いられることが多い。ここで、D0
標準の照射強度、D(0) ijは適切な照射強度である。
Are often used. Here, D 0 is a standard irradiation intensity, and D (0) ij is an appropriate irradiation intensity.

【0048】また、参考例として、X方向の畳み込み計
算とY方向の畳み込み計算との積で散乱影響評価を行う
近接効果補正装置の構成及び作用を図2に示す。図中の
散乱影響評価手段22が異なるのみで、他の構成11,
31は図1と同様である。
As a reference example, a convolution meter in the X direction is used.
FIG. 2 shows the configuration and operation of the proximity effect correction device for evaluating the scattering effect by the product of the calculation and the convolution calculation in the Y direction . Only the scattering effect evaluation means 22 in the figure is different,
31 is the same as FIG.

【0049】参考例の近接効果補正装置は、以下の方法
で散乱影響評価手段22での処理を行う。
The proximity effect correction device of the reference example performs the processing in the scattering effect evaluation means 22 by the following method.

【0050】前述の(式3)のσb を単にσ、ηb をη
と記し、bによる和をとらずに、
In Equation (3), σ b is simply σ, and η b is η
And without taking the sum by b,

【0051】[0051]

【数9】 (Equation 9)

【0052】とする。上式の下段は、X方向の畳み込み
とY方向の畳み込みを別々に実施できることを表してい
る。誤差評価上十分に離れた格子領域までの格子領域数
kとし、X方向の畳み込み結果を、Y方向畳み込むこと
で以下のような離散的な近似で、散乱影響評価手段を実
現できる。
Assume that: The lower part of the above equation indicates that the convolution in the X direction and the convolution in the Y direction can be performed separately. The scattering effect evaluation means can be realized by the following discrete approximation by convolving the X-direction convolution result in the Y-direction with the number k of lattice regions up to a lattice region sufficiently distant from the error evaluation.

【0053】[0053]

【数10】 (Equation 10)

【0054】座標軸X,Y両方向に共通の積分計算は予
め算出しておくことができる。M、及びσが決定されて
いれば、−kから+kまでの範囲の全ての整数Lに対し
て、予めPL を次式のように計算できる。
An integral calculation common to both directions of the coordinate axes X and Y can be calculated in advance. If M and σ are determined, P L can be calculated in advance for all the integers L in the range from −k to + k as follows.

【0055】[0055]

【数11】 [Equation 11]

【0056】と書き換えられる。Is rewritten as follows.

【0057】請求項の近接効果補正装置の構成及び作
用を図3に示す。図中の散乱影響評価手段23が異なる
のみで、他の構成11,31は図1と同様である。
[0057] Figure 3 shows the structure and operation of the proximity effect correction apparatus according to claim 2. The other configurations 11 and 31 are the same as those in FIG. 1 except for the scattering influence evaluation means 23 in the figure.

【0058】請求項の近接効果補正装置は、以下の方
法で散乱影響評価手段23での処理を行う。
The proximity effect correction device according to the second aspect performs the processing in the scattering effect evaluation means 23 by the following method.

【0059】参考例の(式13)と、散乱の幅の異なる複
数のガウス分布密度関数に適用し、それらのb番目の散
乱の幅をσb 、散乱率をηb とし、
By applying (Equation 13) of the reference example to a plurality of Gaussian distribution density functions having different scattering widths, the b-th scattering width is σ b , and the scattering rate is η b ,

【0060】[0060]

【数12】 (Equation 12)

【0061】として、離散的な畳み込み計算の近似を行
い、Ub,ijから散乱量Uijをbについての和で、即ち請
求項1の説明の(式8)で算出する。
As an approximation of the discrete convolution calculation, the scattering amount U ij is calculated from U b, ij by the sum of b, that is, (Equation 8).

【0062】請求項の近接効果補正装置の構成及び作
用を図4に示す。照射量計算手段12が請求項1又は2
とは異なり、他の構成は請求項1又は2と同様である。
散乱影響評価手段21,22,23は、請求項1又は2
のいずれを選択しても良い。
FIG. 4 shows the structure and operation of the proximity effect correction device according to the third embodiment. 3. The method according to claim 1, wherein the irradiation amount calculation unit is configured to output the irradiation amount.
Different from the above, the other configuration is the same as that of claim 1 or 2 .
The scatter influence evaluation means 21, 22, 23 is the first or second aspect.
May be selected.

【0063】請求項の近接効果補正装置の照射量計算
手段12は、以下のように格子領域の照射量を求める。
The irradiation amount calculating means 12 of the proximity effect correction device according to the third aspect obtains the irradiation amount of the lattice area as follows.

【0064】格子領域1つの幅及び高さをM、1回の荷
電粒子ビーム照射の図形の縦及び横方向の最大長さをN
とし、CをN/M以上の最小の整数とする。MがNに比
べて小さければ、本発明の請求項による効果は大き
い。
The width and height of one lattice region are M, and the maximum length in the vertical and horizontal directions of a figure by one charged particle beam irradiation is N.
And C is a minimum integer equal to or greater than N / M. If M is smaller than N, the effect according to claim 3 of the present invention is large.

【0065】1回の荷電粒子ビーム照射は照射図形の外
接円の中心を中心として、周囲(C+1)×(C+1)
個の正方形に含まれる単数または複数の格子領域に必ず
入っている。
One irradiation of the charged particle beam is performed around the center of the circumscribed circle of the irradiation pattern as a center (C + 1) × (C + 1)
One or more lattice areas included in each square are always included.

【0066】1回ずつの荷電粒子ビーム照射についてこ
れら、(C+1)×(C+1)個の格子領域それぞれの
領域内に分割される荷電粒子ビーム照射図形の面積を算
出し、照射強度を乗じて求めた照射量を、既に算出され
た各格子領域内の荷電粒子ビーム照射量に加え、累積を
行うことで、全ての格子領域内の照射量を求める。
For each charged particle beam irradiation, the area of the charged particle beam irradiation figure divided into each of the (C + 1) × (C + 1) lattice regions is calculated and multiplied by the irradiation intensity. The irradiation amount in all the lattice regions is obtained by adding the calculated irradiation amount to the already calculated irradiation amount of the charged particle beam in each lattice region and performing accumulation.

【0067】請求項の近接効果補正装置の構成を図5
に示す。図中の10は照射量計算手段、20は散乱影響
評価手段、30は補正照射強度導出手段であり、各々の
手段は請求項1又は2のいずれを選択しても良い。
FIG. 5 shows the configuration of the proximity effect correction apparatus according to the fourth aspect .
Shown in In the figure, reference numeral 10 denotes an irradiation amount calculating means, 20 denotes a scattering influence evaluating means, 30 denotes a corrected irradiation intensity deriving means, and each means may select any one of claims 1 and 2 .

【0068】請求項の近接効果補正装置は、照射量計
算手段10において、前段で算出した補正手段強度を次
段で各照射の照射量を求めるために用いる。
In the proximity effect correction apparatus according to the fourth aspect , the irradiation amount calculation means uses the correction means intensity calculated in the preceding stage to obtain the irradiation amount of each irradiation in the next stage.

【0069】請求項の近接効果補正装置の構成及び作
用を図6に示す。基本的な構成は図5と同じである。
FIG. 6 shows the structure and operation of the proximity effect correction device according to the fifth embodiment. The basic configuration is the same as FIG.

【0070】請求項の近接効果補正装置は、照射量計
算手段10において、前段で算出した補正照射強度を、
前段で算出した格子領域毎の照射面積に乗じて、各格子
領域照射量とする。
In the proximity effect correction apparatus according to a fifth aspect , the irradiation amount calculating means 10 calculates the corrected irradiation intensity calculated in the preceding stage by:
By multiplying the irradiation area for each lattice area calculated in the previous stage, the irradiation amount of each lattice area is obtained.

【0071】請求項の近接効果補正装置の構成及び作
用を図7に示す。基本的な構成は図5と同じである。
FIG. 7 shows the structure and operation of the proximity effect correction device according to claim 6 . The basic configuration is the same as FIG.

【0072】請求項の近接効果補正装置は、前段まで
に算出した補正照射強度を漸近的にもっと適切な照射強
度に補正するために、次段では補正照射強度ではなく補
正照射強度の増分を求める。最終的な補正照射強度は各
段の補正照射強度導出手段30の出力結果の和となる。
In the proximity effect correction device according to the sixth aspect , in order to asymptotically correct the corrected irradiation intensity calculated up to the previous stage to a more appropriate irradiation intensity, the next stage uses not the corrected irradiation intensity but the increment of the corrected irradiation intensity. Ask. The final corrected irradiation intensity is the sum of the output results of the corrected irradiation intensity deriving means 30 of each stage.

【0073】各段の補正照射強度導出手段30の計算
は、例えば以下の方法で算出できる。第n段の散乱影響
評価手段の出力結果をU(n) ij、補正照射強度導出手段
の出力をD(n) ij、最適な照射強度をD(0) ij、標準の照
射量をD0 と表すと、
The calculation of the correction irradiation intensity deriving means 30 of each stage can be calculated by, for example, the following method. The output result of the scattering influence evaluation means of the n-th stage is U (n) ij , the output of the corrected irradiation intensity deriving means is D (n) ij , the optimum irradiation intensity is D (0) ij , and the standard irradiation amount is D 0. Can be expressed as

【0074】[0074]

【数13】 (Equation 13)

【0075】で補正照射強度導出手段の出力を求める。
上式の上段のようにn=1の場合は、(式9)に一致す
る。
Then, the output of the corrected irradiation intensity deriving means is obtained.
When n = 1, as in the upper part of the above equation, it corresponds to (Equation 9).

【0076】[0076]

【発明の実施の形態】以下、本発明の詳細を図示の実施
形態によって説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The details of the present invention will be described below with reference to the illustrated embodiments.

【0077】(第1の実施形態) 図8は、本発明の第1の実施形態に係わる近接効果補正
装置を説明するための図である。
(First Embodiment) FIG. 8 is a diagram for explaining a proximity effect correction device according to a first embodiment of the present invention.

【0078】本実施形態は、請求項2及び3の発明の実
施形態で、演算回路を組み合わせて近接効果補正装置を
実施したものであり、パイプライン処理で実現すること
により、実時間で近接効果補正を行う。後方散乱の影響
を、照射位置から25μm以上離れた位置まで評価す
る。
This embodiment is an embodiment of the second and third aspects of the present invention, in which a proximity effect correction device is implemented by combining arithmetic circuits, and is realized by pipeline processing, thereby realizing the proximity effect correction device in real time. Make corrections. The effect of backscattering is evaluated up to a position 25 μm or more away from the irradiation position.

【0079】格子領域の大きさを、縦1μm,横1μm
とし、縦1000μm,横1000μmの領域単位で補
正照射強度の導出を行う。1000μm×1000μm
の領域の補正照射強度計算のために、上下左右の周囲2
5μmずつの領域を含めて、1050μm×1050μ
mの領域を用いて補正照射強度の計算を適用し、中央の
1000μm×1000μmの領域を結果として出力す
る。
The size of the lattice area is 1 μm in length and 1 μm in width.
Then, the correction irradiation intensity is derived for each area of 1000 μm in length and 1000 μm in width. 1000μm × 1000μm
For the calculation of the corrected irradiation intensity for the area
1050μm × 1050μ including the area of 5μm each
The calculation of the corrected irradiation intensity is applied using the region of m, and the central region of 1000 μm × 1000 μm is output as a result.

【0080】本実施形態は、請求項記載の照射量計算
手段12の作用を実施する照射量計算回路112と、請
求項記載の散乱影響評価手段23の作用を実施する散
乱影響評価回路123と、補正照射強度導出手段31の
作用を実施する補正照射強度導出回路131とで構成す
る。
[0080] This embodiment, according to claim 3 and the irradiation amount calculating circuit 112 for implementing the action of dose calculating means 12 according scattered impact assessment circuit 123 to carry out the operation of claim 2, wherein the scattering impact assessment means 23 And a corrected irradiation intensity deriving circuit 131 for performing the operation of the corrected irradiation intensity deriving means 31.

【0081】本実施形態の1回の照射は、1辺が1μm
以下のX,Y軸に平行な辺を持つ正方形で囲むことがで
きる図形に限定されているものとする。
In this embodiment, one irradiation is 1 μm on one side.
It is assumed that the figure is limited to a figure that can be surrounded by a square having sides parallel to the X and Y axes.

【0082】本実施形態の照射量計算回路112を以下
に説明する。図9に本実施形態の照射量計算回路112
の作用を示す。
The dose calculation circuit 112 according to this embodiment will be described below. FIG. 9 shows the dose calculation circuit 112 according to the present embodiment.
The action of

【0083】まず、照射量計算回路112は、照射図形
を入力する照射図形入力部に、各1回の照射図形を順次
入力する。ここで、計算対象とする1050μm×10
50μmに照射される全ての照射図形を抽出したものが
入力部から入力される対象となる。
First, the irradiation amount calculation circuit 112 sequentially inputs each irradiation figure to the irradiation figure input section for inputting the irradiation figure. Here, 1050 μm × 10 to be calculated
Extraction of all the irradiation figures irradiated to 50 μm is a target to be input from the input unit.

【0084】次に、照射図形変換部で、入力した各照射
図形と同一の面積で重心の一致する、一辺が1μm以下
の長方形に、それぞれの照射図形を変換する。格子領域
の大きさが1μm、1回の照射図形の大きさが1μm以
下であるため、変換された長方形は縦2×横2の隣り合
う4格子領域に入れるように選択できる。
Next, the irradiation figure conversion unit converts each irradiation figure into a rectangle having the same area and the same center of gravity as each input irradiation figure and having a side of 1 μm or less. Since the size of the grid area is 1 μm and the size of one irradiation pattern is 1 μm or less, the converted rectangle can be selected to be placed in two adjacent grid areas of 2 × 2.

【0085】変換された長方形は、照射図形分割部へ送
られる。入力された照射のk番目のものの左下座標を
(x(k) ,y(k) )とし、その幅及び高さをw(k) ,h
(k) とする。(x(k) ,y(k) )はi行j列の格子領域
[i,j]に入っているものとする(0≦i≦104
9,0≦j≦1049)。この照射図形は、4格子領域
に含まれる4個の長方形に分割される。分割された長方
形それぞれを4個の並列化された照射量累積部へ出力す
る。
The converted rectangle is sent to the irradiation figure division unit. The lower left coordinate of the k-th input irradiation is (x (k) , y (k) ), and its width and height are w (k) , h
(k) . (X (k) , y (k) ) is assumed to be in a grid area [i, j] of i rows and j columns (0 ≦ i ≦ 104
9,0 ≦ j ≦ 1049). This irradiation pattern is divided into four rectangles included in the four grid regions. Each of the divided rectangles is output to four parallelized dose accumulation units.

【0086】照射量累積部は、入力した図形の面積をま
ず求める。格子領域で分割される左下長方形の辺の幅w
0(k) 、高さh0(k) とし、4分割された各領域中の長方
形のそれぞれの面積を、A(k) i,j ,A(k) ij+1,A(k)
i+1,j ,A(k) i+1,j+1 とする。
The irradiation amount accumulating unit first obtains the area of the input figure. The width w of the side of the lower left rectangle divided by the grid area
0 (k) and height h0 (k), and the area of each rectangle in each of the four divided areas is A (k) i, j , A (k) ij + 1 , A (k)
i + 1, j , A (k) i + 1, j + 1 .

【0087】 A(k) i,j =w0(k) ×h0(k) (k) ij+1=w0(k) ×(h(k) −h0(k) ) A(k) i+1,j =(W(k) −w0(k) )×h0(k) (k) i+1,j+1 =(W(k) −w0(k) )×(h(k) −h0(k) ) これら4個の図形とそれらの面積に対応する4並列の回
路によって、これらの面積と、照射のk番目の照射強度
k の積を、格子領域[i,j],[i,j+1],i
+1,j],[i+1,j+1]のk−1番目までの照
射による照射量にそれぞれ累積加算する。
A (k) i, j = w0 (k) × h0 (k) A (k) ij + 1 = w0 (k) × (h (k) −h0 (k) ) A (k) i + 1, j = (W (k) −w0 (k) ) × h0 (k) A (k) i + 1, j + 1 = (W (k) −w0 (k) ) × (h (k) − h0 (k) ) By the four parallel circuits corresponding to these four figures and their areas, the product of these areas and the k-th irradiation intensity D k of the irradiation is calculated by the lattice areas [i, j], [ i, j + 1], i
+1, j] and [i + 1, j + 1] are cumulatively added to the irradiation amount of the (k−1) th irradiation.

【0088】1050μm×1050μmの領域に関わ
る全ての照射について、上の4並列化された照射量累積
部での処理が完了した後に、4並列の各々で累積された
各格子領域の照射量を、照射量加算部で4並列全てにつ
いて加算し、各格子領域[i,j]の照射量Sijを求め
る。
For all the irradiations relating to the area of 1050 μm × 1050 μm, after the processing in the above-mentioned four parallelized irradiation amount accumulating units is completed, the irradiation amount of each grid region accumulated in each of the four parallels is calculated as The irradiation amount adding unit performs addition for all four parallels to determine the irradiation amount Sij of each grid region [i, j].

【0089】本実施形態の散乱影響評価回路123を以
下に説明する。図10は、本実施形態の散乱影響評価回
路123の3つの散乱幅のうちの1つに対応する横方向
畳み込み部及び縦方向畳み込み部の作用を示す。
The scatter influence evaluation circuit 123 of this embodiment will be described below. FIG. 10 shows the operation of the horizontal convolution unit and the vertical convolution unit corresponding to one of the three scattering widths of the scattering influence evaluation circuit 123 of the present embodiment.

【0090】σ1 ,σ2 ,σ3 の3つの散乱幅で畳み込
み計算を行うものとする。上下左右の25μmの計算領
域マージンがあるため、σ1 ,σ2 ,σ3 の最大のもの
が例えば10μm程度であれば、最大の後方散乱幅の影
響の約99.96%以上を計算することができる。それ
ぞれの散乱率をη1 ,η2 ,η3 とする。散乱影響評価
手段はこれらの3つの散乱幅に対応して、3個の並列な
散乱影響評価回路で散乱影響評価を実施する。各並列の
1つについて、次に説明する。
It is assumed that convolution calculation is performed with three scattering widths of σ 1 , σ 2 and σ 3 . Since there is a calculation area margin of 25 μm at the top, bottom, left and right, if the maximum of σ 1 , σ 2 , σ 3 is, for example, about 10 μm, it is necessary to calculate about 99.96% or more of the influence of the maximum backscattering width. Can be. Let the respective scattering rates be η 1 , η 2 , η 3 . The scattering effect evaluation means performs the scattering effect evaluation with three parallel scattering effect evaluation circuits corresponding to these three scattering widths. One of each parallel will now be described.

【0091】照射量計算回路112の照射量加算部で求
められた、1050μm×1050μmの領域の各格子
領域について、横方向の行の畳み込み計算を、横方向畳
み込み部で求める。横方向畳み込み部は積和演算器を用
いて実施する。積和演算器としては、FIRフィルタと
して市販されている演算器を散乱の幅に応じて必要なだ
けカスケード接続して実施する。格子領域幅1μmで、
計算出力よりも、入力する領域が片側25μm多く設定
されているため、最も広い散乱幅に対して、25格子領
域まで離れた格子領域を含む計算が可能である。積和演
算の幅を51とすると、格子領域[i,j]に対して、
前述の(式14)を適用し、
For each grid region of the 1050 μm × 1050 μm region obtained by the dose adding unit of the dose calculation circuit 112, the horizontal row convolution calculation is performed by the horizontal convolution unit. The horizontal convolution unit is implemented using a product-sum operation unit. As the sum-of-products arithmetic unit, a commercially available arithmetic unit as an FIR filter is cascade-connected as necessary according to the width of scattering. With a grid area width of 1 μm,
Since the input area is set to be larger by 25 μm on one side than the calculation output, it is possible to perform calculation including a grid area distant to 25 grid areas for the widest scattering width. Assuming that the width of the product-sum operation is 51, for the grid area [i, j],
Applying the above (Equation 14),

【0092】[0092]

【数14】 [Equation 14]

【0093】を計算する。RL (Lは−250≦L≦2
5の整数)の値は、予め計算し、積和演算器の系数値と
して格納しておく。
Is calculated. R L (L is -250 ≦ L ≦ 2
The value of (an integer of 5) is calculated in advance and stored as a system value of the product-sum operation unit.

【0094】横方向畳み込み部で求めた結果を、縦方向
畳み込み部で、縦方向の畳み込み演算を行う。縦方向畳
み込み部は横方向畳み込み部と同じ構成であり、格子領
域の縦方向に積和演算器に入力する点だけが異なる。縦
方向畳み込み部は前述の(式14)を適用した、
The result obtained in the horizontal convolution unit is subjected to a vertical convolution operation in the vertical convolution unit. The vertical convolution unit has the same configuration as the horizontal convolution unit, and differs only in that it is input to the product-sum operation unit in the vertical direction of the lattice area. The vertical convolution unit applies the above (Equation 14),

【0095】[0095]

【数15】 (Equation 15)

【0096】を出力する。Is output.

【0097】縦方向畳み込み部の3並列分の出力を、畳
み込み加算部で各格子領域について加算した結果が、散
乱影響評価回路123の出力である。
The output of the scattering effect evaluation circuit 123 is obtained by adding the outputs of three parallels of the vertical convolution unit for each lattice area by the convolution addition unit.

【0098】Uij=U1,ij+U2,ij+U3,ij 本実施形態の補正照射強度導出回路131を以下に説明
する。
U ij = U 1, ij + U 2, ij + U 3, ij The corrected irradiation intensity deriving circuit 131 of this embodiment will be described below.

【0099】補正照射強度導出回路の入力は前記Uij
ある。補正照射強度導出回路131は、適切な照射量D
(0) ijを前記(式9)によって計算し、出力する。
The input of the correction irradiation intensity derivation circuit is the U ij . The correction irradiation intensity deriving circuit 131 calculates the appropriate irradiation amount D
(0) ij is calculated by the above (Equation 9) and output.

【0100】D(O) ij=D0 /(1/2+Uij) このとき、出力する領域の範囲は、格子領域[i,j]
の25≦i≦1024,25≦j≦1024の範囲であ
る。
D (O) ij = D 0 / (1/2 + U ij ) At this time, the range of the output area is the grid area [i, j]
25 ≦ i ≦ 1024, 25 ≦ j ≦ 1024.

【0101】(第2の実施形態) 本発明の第2の実施形態を以下に説明する。本発明の第
2の実施形態の構成を図11に示す。本実施形態は、前
記照射量計算手段12の作用を実施する照射量計算回路
212と、前記散乱影響評価手段23の作用を実施する
散乱影響評価回路223と、前記補正照射強度導出手段
31の作用を実施する補正照射強度導出回路231とで
構成する。
(Second Embodiment) A second embodiment of the present invention will be described below. FIG. 11 shows the configuration of the second embodiment of the present invention. In the present embodiment, the dose calculation circuit 212 that performs the operation of the dose calculation unit 12, the scatter effect evaluation circuit 223 that performs the operation of the scatter effect evaluation unit 23, and the operation of the corrected irradiation intensity derivation unit 31 are described. And a correction irradiation intensity deriving circuit 231 for performing the above.

【0102】本実施形態は、請求項1及び3の発明の実
施形態で、演算回路を組み合わせて近接効果補正装置を
実施したものであり、散乱影響評価手段23の作用を実
施する散乱影響評価回路223を以下のように実施する
こと以外は、第1の実施形態と同じである。
This embodiment is an embodiment of the first and third aspects of the present invention, in which a proximity effect correction device is implemented by combining arithmetic circuits. 223 is the same as the first embodiment except that it is implemented as follows.

【0103】本実施形態の散乱影響評価回路223を以
下に説明する。
The scatter effect evaluation circuit 223 of this embodiment will be described below.

【0104】本実施形態の散乱影響評価回路223にお
いては、第1の実施形態の横方向畳み込み部,縦方向畳
み込み部に代えて、FFT部,乗算部,逆FFT部で構
成する。
The scattering effect evaluation circuit 223 of this embodiment is configured by an FFT unit, a multiplication unit, and an inverse FFT unit instead of the horizontal convolution unit and the vertical convolution unit of the first embodiment.

【0105】(式7)の畳み込み計算を、高速フーリエ
変換(FFT)デジタル信号プロセサを用いて以下のよ
うに実施する。
The convolution calculation of (Equation 7) is performed as follows using a fast Fourier transform (FFT) digital signal processor.

【0106】照射量計算回路212の出力Sijに対し
て、散乱影響評価回路223のFFT部にて2次元の高
速フーリエ変換(FFT)を実施する。その結果をFF
T(Sij)で表す。(式7)のPxyは、(式6)に示す
通りの指数関数で表されるため、定数を省略して、高速
フーリエ変換(FFT)を実施すると、 FFT[ exp {-(x2 +y2 ) /σb }] = exp {-(Vx 2 +Vy 2 ) /σvb2 } で表される。ここで、Vx ,Vy は、座標(x,y)に
対する空間周波数である。
A two-dimensional fast Fourier transform (FFT) is performed on the output S ij of the irradiation amount calculation circuit 212 by the FFT unit of the scattering influence evaluation circuit 223. The result is FF
It is represented by T (S ij ). Since P xy in (Equation 7) is represented by an exponential function as shown in (Equation 6), when the fast Fourier transform (FFT) is performed with the constant omitted, FFT [exp {− (x 2 + y) represented by (V x 2 + V y 2 ) / σ vb2} - 2) / σ b}] = exp {. Here, V x and V y are the spatial frequencies for the coordinates (x, y).

【0107】フーリエ変換に単純に乗算することで、畳
み込み演算を周波数領域での乗算に代替えさせられる。
乗算部でこの乗算を行う。
By simply multiplying the Fourier transform, the convolution operation can be replaced by multiplication in the frequency domain.
The multiplication section performs this multiplication.

【0108】Ub,ijは、逆高速フーリエ変換をFFT-1
と表して、 Ub,ij=(ηb /πσb 2 ) ・FFT-1[FFT(Sij)・exp{-(Vx 2 +Vy 2 )/
σvb2 }] により、求める。この逆フーリエ変換をFFT部で行
う。
U b, ij is the inverse fast Fourier transform of FFT −1
U b, ij = (η b / πσ b 2 ) · FFT −1 [FFT (S ij ) · exp {− (V x 2 + V y 2 ) /
σ vb2 }]. This inverse Fourier transform is performed by the FFT unit.

【0109】(第3の実施形態) 本発明の第3の実施形態を以下に説明する。第3の実施
形態の構成を図12に示す。
Third Embodiment A third embodiment of the present invention will be described below. FIG. 12 shows the configuration of the third embodiment.

【0110】本実施形態は、請求項の発明の実施形態
で、第1の実施形態の近接効果補正装置を3段接続し、
補正照射強度の適切な照射強度との差を後段で摂動展開
により計算するものである。
This embodiment is a sixth embodiment of the present invention, in which the proximity effect correction device of the first embodiment is connected in three stages,
The difference between the corrected irradiation intensity and an appropriate irradiation intensity is calculated by a perturbation expansion at a later stage.

【0111】本実施形態では図12に示すように、前記
照射量計算手段10に対して照射量計算回路310−
1,2,3が設けられ、前記散乱影響評価手段20に対
して散乱影響評価回路320−1,2,3が設けられ、
前記補正照射強度導出手段30に対して補正照射強度導
出回路330−1,2,3が設けられている。
In this embodiment, as shown in FIG. 12, an irradiation amount calculation circuit 310-
1, 2, 3 are provided, and a scattering influence evaluation circuit 320-1, 2, 3 is provided for the scattering influence evaluating means 20,
The corrected irradiation intensity deriving means 30 is provided with corrected irradiation intensity deriving circuits 330-1, 2, and 3.

【0112】第1の実施形態と異なる点を以下に説明す
る。第1の実施形態では、縦1000μm,横1000
μmの領域の出力を得るため、縦1050μm,横10
50μmの領域を計算対象とした。本実施形態では、3
段の接続の2段目以降の段で前段の出力結果の照射強度
を用いるために、3倍のマージン幅をとり、縦1150
μm,横1150μmの領域を計算対象とし、縦100
0μm,横1000μmの領域の出力を得る。
The differences from the first embodiment will be described below. In the first embodiment, the height is 1000 μm and the width is 1000
In order to obtain an output in the area of μm,
The region of 50 μm was set as a calculation target. In the present embodiment, 3
In order to use the irradiation intensity of the output result of the previous stage in the second and subsequent stages of the stage connection, a three-fold margin width is taken, and
μm, 1150 μm in width, and 100
An output in an area of 0 μm and a width of 1000 μm is obtained.

【0113】本実施形態の第1段目の部分は、照射量計
算回路310−1で格子領域毎の照射面積を算出してお
くこと以外は第1の実施形態と同様である。
The first stage of this embodiment is the same as the first embodiment except that the irradiation area is calculated for each lattice region by the irradiation amount calculation circuit 310-1.

【0114】本実施形態の2段目の部分は、照射量計算
回路310−2で、各荷電粒子ビーム照射図形を入力す
るのでなく、第1段で求めた格子領域毎の照射面積に、
第1段の補正照射強度を乗じた照射量を求める。補正照
射強度導出回路330−2は、前記の(式15)の中段を
n=2とした場合の計算を行う。
In the second stage of the present embodiment, instead of inputting each charged particle beam irradiation figure in the irradiation amount calculation circuit 310-2, the irradiation area for each lattice region obtained in the first stage is calculated.
The irradiation amount obtained by multiplying the corrected irradiation intensity of the first stage is obtained. The corrected irradiation intensity deriving circuit 330-2 performs the calculation when n = 2 in the middle stage of (Equation 15).

【0115】本実施形態の3段目の部分は、照射量計算
回路310−3で、各荷電粒子ビーム照射図形を入力す
るのでなく、第1段で求めた格子領域毎の照射面積に、
第2段の補正照射強度を乗じて照射量を求める。補正照
射強度導出回路330−3は、前記の(式15)の中段を
n=3とした場合の計算を行った後、(式15)の下段の
総和によって、補正照射強度を算出し、近接効果補正装
置の出力とする。
In the third stage of the present embodiment, instead of inputting each charged particle beam irradiation figure in the irradiation amount calculation circuit 310-3, the irradiation area for each lattice region obtained in the first stage is calculated.
The irradiation amount is determined by multiplying the corrected irradiation intensity in the second stage. The corrected irradiation intensity deriving circuit 330-3 calculates the corrected irradiation intensity by the sum of the lower stage of (Equation 15) after performing the calculation when the middle stage of (Equation 15) is set to n = 3, The output of the effect correction device.

【0116】[0116]

【発明の効果】請求項1記載の近接効果補正装置は、荷
電粒子ビーム散乱の影響の分布がダブルガウシャンの近
似できない場合に、複数個のガウス分布の和によって荷
電粒子ビームの後方散乱の影響を評価することができ、
精度の高い近接効果補正を高速で実施できる。また、複
数個のガウス分布の和によって荷電粒子ビームの後方散
乱の影響を評価するため、後方散乱量の計算を同一処理
機構を並列化して実現することを容易とし、実質上の処
理実時間の増加を回避する手段を与える。
According to the proximity effect correction device of the present invention, when the distribution of the influence of the charged particle beam cannot be approximated by the double Gaussian, the influence of the back scattering of the charged particle beam by the sum of a plurality of Gaussian distributions. Can be evaluated,
Accurate proximity effect correction can be performed at high speed. Also, in order to evaluate the effect of backscattering of the charged particle beam by the sum of a plurality of Gaussian distributions, it is easy to realize the calculation of the amount of backscattering by parallelizing the same processing mechanism, and it is possible to reduce the actual processing time. Provides a means to avoid increase.

【0117】参考例の近接効果補正装置は、2次元の畳
み込み計算を実施する代わりに、1次元ガウス分布の積
で2次元ガウス分布を表せることを利用して、縦,横方
向に各1回、計2回の畳み込み計算を行うことで、積和
演算回数を減少させ、高速な近接効果補正処理の実現を
可能とするものである。第1の実施形態にあるように、
例えば周囲51の格子領域についての積和演算が必要な
ときには、1格子領域につき、2601回の積和演算の
代わりに102回の積和演算で計算が可能である。従っ
て、特に高加速電圧の荷電粒子ビームによる描画のよう
に、後方散乱の幅が広く、広い領域の畳み込み計算が必
要とされる場合に、その効果が大きい。
The proximity effect correction apparatus of the reference example utilizes the fact that a two-dimensional Gaussian distribution can be expressed by a product of a one-dimensional Gaussian distribution, instead of performing a two-dimensional convolution calculation, and is performed once each in the vertical and horizontal directions. By performing convolution calculations twice in total, the number of product-sum operations can be reduced, and high-speed proximity effect correction processing can be realized. As in the first embodiment,
For example, when the product-sum operation is required for the surrounding 51 grid area, the calculation can be performed by 102 product-sum operations per grid area instead of 2601 product-sum operations. Therefore, the effect is large particularly when the backscattering is wide and convolution calculation of a wide area is required as in the case of drawing with a charged particle beam having a high accelerating voltage.

【0118】請求項記載の近接効果補正装置は、請求
項1及び上記の参考例を組み合わせたものであり、両者
の効果を有する。後方散乱がガウス分布では近似できな
い場合、参考例の近接効果補正装置が有効ではなくなる
のを回避でき、なおかつ、計算量の増加による処理速度
の低下を抑える。即ち、ガウス分布の和により後方散乱
の影響を評価することで、2次元の畳み込みを1次元の
畳み込み計算2回で可能とし、高い精度で高速な近接効
果補正を提供する。
[0118] Proximity effect correction apparatus according to claim 2 is a combination of reference example of claims 1 and above, has the effect of both. When the backscattering cannot be approximated by the Gaussian distribution, the proximity effect correction device of the reference example can be prevented from being ineffective, and the processing speed can be prevented from decreasing due to an increase in the amount of calculation. That is, by evaluating the influence of backscattering by the sum of Gaussian distributions, two-dimensional convolution can be performed by one-dimensional convolution calculation twice, and high-speed proximity effect correction with high accuracy is provided.

【0119】請求項記載の近接効果補正装置は、請求
1及び2の近接効果補正装置に、格子領域の照射量を
高速に計算する手段を与えたものであり、荷電粒子ビー
ム照射の速度と同じ速度での格子領域の照射量計算を実
現することが可能となる。
The proximity effect correction device according to a third aspect of the present invention is a device in which the proximity effect correction device according to the first and second aspects is provided with means for calculating the dose of the grid region at a high speed. It is possible to realize the calculation of the dose of the grid region at the same speed as that of the above.

【0120】請求項記載の近接効果補正装置は、請求
1から3の近接効果補正装置が荷電粒子ビーム照射を
仮定された照射強度で一律に行った場合の近接効果を補
正できることに対し、補正された照射強度で再計算を繰
り返すことで、近接効果補正精度を向上させる。
The proximity effect correction device according to claim 4 can correct the proximity effect when the proximity effect correction device according to claims 1 to 3 uniformly performs charged particle beam irradiation at an assumed irradiation intensity. By repeating recalculation with the corrected irradiation intensity, the proximity effect correction accuracy is improved.

【0121】請求項記載の近接効果補正装置は、請求
記載の近接効果補正装置が再計算時に各照射に対し
て補正された照射強度を適用するにの対し、格子領域毎
に補正された照射強度を適用することで、処理を高速化
し、また照射量計算手段の構成を可能にするものであ
る。
The proximity effect correction device according to the fifth aspect is different from the proximity effect correction device according to the fourth aspect in that the corrected irradiation intensity is applied to each irradiation at the time of recalculation. By applying the irradiation intensity, the processing can be speeded up and the configuration of the irradiation amount calculation means can be realized.

【0122】請求項記載の近接効果補正装置は、請求
4及び5記載の近接効果補正装置が、補正された照射
強度を適用して再計算により近接効果補正精度を向上さ
せるのに対し、補正された照射強度を適用して最適な照
射強度との差を摂動展開により求めるものであり、請求
4及び5記載の近接効果補正装置よりも少ない繰り返
し回数で近接効果補正精度を向上させる効果を持つ。
In the proximity effect correction device according to the sixth aspect, the proximity effect correction device according to the fourth and fifth aspects improves the proximity effect correction accuracy by recalculating by applying the corrected irradiation intensity. The effect of improving the proximity effect correction accuracy with a smaller number of repetitions than the proximity effect correction device according to claims 4 and 5 , wherein the difference from the optimum irradiation intensity is obtained by applying the corrected irradiation intensity by perturbation expansion. have.

【図面の簡単な説明】[Brief description of the drawings]

【図1】請求項1の発明の構成及び作用を説明するため
の図。
FIG. 1 is a view for explaining the configuration and operation of the invention of claim 1;

【図2】参考例の構成及び作用を説明するための図。FIG. 2 is a diagram illustrating the configuration and operation of a reference example .

【図3】請求項の発明の構成及び作用を説明するため
の図。
FIG. 3 is a diagram for explaining the configuration and operation of the invention according to claim 2 ;

【図4】請求項の発明の構成及び作用を説明するため
の図。
FIG. 4 is a diagram for explaining the configuration and operation of the invention according to claim 3 ;

【図5】請求項の発明の構成及び作用を説明するため
の図。
FIG. 5 is a diagram for explaining the configuration and operation of the invention according to claim 4 ;

【図6】請求項の発明の構成及び作用を説明するため
の図。
FIG. 6 is a diagram for explaining the configuration and operation of the invention according to claim 5 ;

【図7】請求項の発明の構成及び作用を説明するため
の図。
FIG. 7 is a diagram for explaining the configuration and operation of the invention according to claim 6 ;

【図8】第1の実施形態を説明するための図。FIG. 8 is a view for explaining the first embodiment.

【図9】第1の実施形態における照射量計算回路の作用
を説明するための図。
FIG. 9 is a diagram for explaining the operation of the dose calculation circuit according to the first embodiment.

【図10】第1の実施形態における散乱影響評価回路の
3つの散乱幅のうちの1つに対応する横方向畳み込み部
及び縦方向畳み込み部の作用を説明するための図。
FIG. 10 is a diagram for explaining the operation of a horizontal convolution unit and a vertical convolution unit corresponding to one of three scattering widths of the scattering influence evaluation circuit according to the first embodiment.

【図11】第2の実施形態を説明するための図。FIG. 11 is a diagram illustrating a second embodiment.

【図12】第3の実施形態を説明するための図。FIG. 12 is a diagram illustrating a third embodiment.

【符号の説明】[Explanation of symbols]

10,11,12…照射量計算手段 20,21,22,23…散乱影響評価手段 30,31…補正照射強度導出手段 112,212,310…照射量計算回路 123,223,320…散乱影響評価回路 131,231,330…補正照射強度導出回路 10, 11, 12 ... dose calculation means 20, 21, 22, 23 ... scattering effect evaluation means 30, 31 ... correction irradiation intensity derivation means 112, 212, 310 ... dose calculation circuit 123, 223, 320 ... scattering effect evaluation Circuits 131, 231, 330 ... Correction irradiation intensity derivation circuit

───────────────────────────────────────────────────── フロントページの続き (72)発明者 鶴巻 秀幸 神奈川県川崎市幸区小向東芝町1番地 株式会社東芝研究開発センター内 (72)発明者 阿部 隆幸 神奈川県川崎市幸区小向東芝町1番地 株式会社東芝研究開発センター内 (72)発明者 大木 進 神奈川県川崎市幸区小向東芝町1番地 株式会社東芝研究開発センター内 (72)発明者 清水 みつ子 神奈川県川崎市幸区小向東芝町1番地 株式会社東芝研究開発センター内 (72)発明者 上久保 貴司 神奈川県川崎市幸区小向東芝町1番地 株式会社東芝研究開発センター内 (72)発明者 東條 徹 東京都中央区銀座四丁目2番11号 東芝 機械株式会社内 (72)発明者 吉川 良一 東京都中央区銀座四丁目2番11号 東芝 機械株式会社内 (72)発明者 片山 光庸 東京都中央区銀座四丁目2番11号 東芝 機械株式会社内 (56)参考文献 特開 昭55−83234(JP,A) 特開 平1−270317(JP,A) 特開 平7−78737(JP,A) (58)調査した分野(Int.Cl.7,DB名) H01L 21/027 G03F 7/20 504 ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Hideyuki Tsurumaki 1 Toshiba-cho, Komukai-shi, Kawasaki-shi, Kanagawa Prefecture Inside the Toshiba R & D Center (72) Inventor Takayuki Abe Toshiba-cho, Koyuki-ku, Kawasaki-shi, Kanagawa No. 1 Toshiba R & D Center Co., Ltd. (72) Inventor Susumu Oki 1 Toshiba R & D Center Co., Ltd. (72) Inventor Mitsuko Shimizu Komukai Koyuki, Kawasaki City, Kanagawa Prefecture 1 Toshiba Town R & D Center Toshiba Corporation (72) Inventor Takashi Uekubo 1 Tokoba Toshiba Town Koyuki Mukai-ku, Kawasaki City, Kanagawa Prefecture 72 R & D Center Toshiba Corporation (72) Tohru Tojo Ginza 4 Chuo-ku, Tokyo Ryoichi Yoshikawa 4-2-1 Ginza, Chuo-ku, Tokyo Higashi 2-11, Toshiba Machine Co., Ltd. Inside Machinery Co., Ltd. (72) Inventor Mitsunori Katayama 4-2-1, Ginza, Chuo-ku, Tokyo Toshiba Machinery Co., Ltd. (56) References JP-A-55-83234 (JP, A) JP, A) JP-A-7-78737 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) H01L 21/027 G03F 7/20 504

Claims (7)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】荷電粒子ビームを描画対象表面に照射して
描画を行う際に、照射ビームの散乱による近接効果を評
価して照射量を補正する荷電粒子ビーム描画用の近接効
果補正装置において、 照射対象面へ照射する荷電粒子ビームの照射面積及び照
射強度から、対象表面上の縦横方向に区切られた微小な
格子領域の照射量を求める照射量計算手段と、各々の格
子領域に対して、その周囲の長方形で囲まれる複数の周
辺格子領域に対する前記照射量計算手段で求められた照
射量の散乱による照射影響を評価する散乱影響評価手段
と、前記散乱影響評価手段の結果から、目的の描画図形
パターンを描画するための適切な荷電粒子ビームの補正
照射強度を各格子領域毎に計算する補正照射強度導出手
段とを具備してなり、 前記散乱影響評価手段は、全格子領域に対し格子に沿っ
た一方向について、一次元ガウス分布関数を用いて畳み
込み計算を行い、この畳み込み計算結果を基に全格子領
域に対し他の直交する方向について、前記のガウス分布
関数と同じ一次元ガウス分布関数を用いて畳み込み計算
を行うことを特徴とする荷電粒子ビーム描画用の近接効
果補正装置。
1. A proximity effect correction device for drawing a charged particle beam for correcting a dose by evaluating a proximity effect due to scattering of an irradiation beam when performing drawing by irradiating a charged particle beam on a surface to be drawn. From the irradiation area and the irradiation intensity of the charged particle beam irradiating the irradiation target surface, the irradiation amount calculation means for obtaining the irradiation amount of a small grid region divided in the vertical and horizontal directions on the target surface, and for each grid region, A scattering effect evaluation means for evaluating an irradiation effect due to the scattering of the irradiation amount obtained by the irradiation amount calculation means on a plurality of peripheral grid regions surrounded by a rectangle, and a target drawing based on a result of the scattering effect evaluation means. it comprises a correction irradiation intensity deriving means for calculating a corrective irradiation intensity of suitable charged particle beam for drawing a graphic pattern for each grid area, the scattering effect evaluation means, In one direction along the grating relative to the grating area, performs convolution calculation using a one-dimensional Gaussian distribution function, all grid territory on the basis of the convolution calculation result
A proximity effect correction device for drawing a charged particle beam , wherein a convolution calculation is performed using a one-dimensional Gaussian distribution function that is the same as the Gaussian distribution function in another direction orthogonal to a region .
【請求項2】荷電粒子ビームを描画対象表面に照射して
描画を行う際に、照射ビームの散乱による近接効果を評
価して照射量を補正する荷電粒子ビーム描画用の近接効
果補正装置において、 照射対象面へ照射する荷電粒子ビームの照射面積及び照
射強度から、対象表面上の縦横方向に区切られた微小な
格子領域の照射量を求める照射量計算手段と、各々の格
子領域に対して、その周囲の長方形で囲まれる複数の周
辺格子領域に対する前記照射量計算手段で求められた照
射量の散乱による照射影響を評価する散乱影響評価手段
と、前記散乱影響評価手段の結果から、目的の描画図形
パターンを描画するための適切な荷電粒子ビームの補正
照射強度を各格子領域毎に計算する補正照射強度導出手
段とを具備してなり、 前記散乱影響評価手段は、前記照射量計算手段で求めた
各周辺格子領域での照射量とガウス分布関数との積によ
る畳み込み計算を、分布関数の広がりのパラメータ値が
異なる2つ以上のガウス分布について散乱率で重み付け
して計算した結果の和として求めるものであり、かつ各
々の畳み込み計算において、全格子領域に対し格子に沿
った一方向について一次元ガウス分布関数を用いて畳み
込み計算を行い、この畳み込み計算結果を基に全格子領
域に対し他の直交する方向について、前記のガウス分布
関数と同じ一次元ガウス分布関数を用いて畳み込み計算
を行うことを特徴とする荷電粒子ビーム描画用の近接効
果補正装置。
2. A proximity effect correction device for drawing a charged particle beam for correcting a dose by evaluating a proximity effect due to scattering of an irradiation beam when performing drawing by irradiating a charged particle beam on a surface to be drawn. From the irradiation area and the irradiation intensity of the charged particle beam irradiating the irradiation target surface, the irradiation amount calculation means for obtaining the irradiation amount of a small grid region divided in the vertical and horizontal directions on the target surface, and for each grid region, A scattering effect evaluation means for evaluating an irradiation effect due to the scattering of the irradiation amount obtained by the irradiation amount calculation means on a plurality of peripheral grid regions surrounded by a rectangle, and a target drawing based on a result of the scattering effect evaluation means. Correction irradiation intensity deriving means for calculating a correction irradiation intensity of a charged particle beam appropriate for drawing a graphic pattern for each grid region, and the scattering influence evaluation means, The convolution calculation based on the product of the dose and the Gaussian distribution function in each peripheral grid area obtained by the dose calculation means is weighted by the scattering rate for two or more Gaussian distributions having different parameter values for the spread of the distribution function. It is obtained as the sum of the calculated results, and in each convolution calculation, the convolution calculation is performed using a one-dimensional Gaussian distribution function in one direction along the grid for the entire grid area , and based on this convolution calculation result Whole grid area
A proximity effect correction device for drawing a charged particle beam , wherein a convolution calculation is performed using a one-dimensional Gaussian distribution function that is the same as the Gaussian distribution function in another direction orthogonal to a region .
【請求項3】前記格子に沿ったX方向について一次元ガ
ウス分布関数を用いて畳み込み計算 を行い、X方向と直交するY方向についてX方向の畳み
込み計算結果と前記のガウス分布関数と同じ一次元ガウ
ス分布関数との積で畳み込み計算 を行うことを特徴とする請求項1又は2に記載の荷電ビ
ーム描画用の近接効果補正装置。但し、Sは照射量計算
手段が求めた格子領域中の照射量、Pは座標軸X,Y両
方向に共通の積分計算、ηは後方散乱率、iはX方向の
格子座標、jはY方向の格子座標を示している。
3. A convolution calculation using a one-dimensional Gaussian distribution function in the X direction along the lattice. And the convolution calculation in the X direction in the Y direction orthogonal to the X direction is performed by multiplying the result of the convolution calculation in the X direction by the same one-dimensional Gaussian distribution function as the Gaussian distribution function. The proximity effect correction apparatus for drawing a charged beam according to claim 1 or 2, wherein the correction is performed. Here, S is the dose in the grid area obtained by the dose calculation means, P is an integral calculation common to both coordinate axes X and Y, η is the backscattering ratio, i is the grid coordinate in the X direction, and j is the grid coordinate in the Y direction. The grid coordinates are shown.
【請求項4】投射形状の可変な荷電粒子ビーム描画装置
を用い、前記照射量計算手段において、1回の荷電粒子
ビームの照射を、照射図形の位置と投射形状から、照射
される単数又は複数の格子領域の各内部における照射図
形に分割し、各々の格子領域内部での照射図形面積を求
め、該図形面積にそれぞれ荷電粒子ビーム照射の強度を
乗じて求めた照射量を、各々の格子領域内部において既
に求められている照射量に累積することで、各格子領域
の照射量を求めることを特徴とする請求項1又は2に記
載の荷電粒子ビーム描画用の近接効果補正装置。
4. A charged particle beam writing apparatus having a variable projection shape, wherein the irradiation amount calculation means performs one irradiation of the charged particle beam based on the position of the irradiation figure and the projection shape. Is divided into irradiation patterns in each of the lattice regions, the irradiation pattern area in each of the lattice regions is obtained, and the irradiation amount obtained by multiplying the pattern area by the intensity of the charged particle beam irradiation is calculated for each of the lattice regions. The proximity effect correction apparatus for drawing a charged particle beam according to claim 1 or 2, wherein the irradiation amount of each lattice region is obtained by accumulating the irradiation amount already obtained inside.
【請求項5】前記各手段によって求められた補正照射強
度を基に再度、前記各手段によって補正照射強度を求め
ることを特徴とする請求項1〜4のいずれかに記載の荷
電粒子ビーム描画用の近接効果補正装置。
5. The charged particle beam drawing apparatus according to claim 1, wherein the corrected irradiation intensity is obtained again by each of the means based on the corrected irradiation intensity obtained by each of the means. Proximity effect correction device.
【請求項6】2段目以降の照射量計算手段において、既
に算出されている各格子領域毎の照射面積と補正照射強
度の積を、各格子領域照射量として算出することを特徴
とする請求項5記載の荷電粒子ビーム描画用の近接効果
補正装置。
6. The irradiation amount calculation means of the second and subsequent stages calculates a product of the already calculated irradiation area for each grid region and the corrected irradiation intensity as each grid region irradiation amount. Item 6. A proximity effect correction device for drawing a charged particle beam according to Item 5.
【請求項7】2段目以降の補正照射強度導出手段が、新
たな補正照射強度でなく、前段までに求めた補正照射強
度と目的の描画図形パターンを描画するための適切な照
射量との差の近似値を求めるよう構成されたことを特徴
とする請求項5又は6記載の荷電粒子ビーム描画用の近
接効果補正装置。
7. The correction irradiation intensity deriving means of the second and subsequent stages is not a new correction irradiation intensity but a correction irradiation intensity obtained up to the previous stage and an appropriate irradiation amount for drawing a target drawing graphic pattern. 7. The proximity effect correction apparatus for drawing a charged particle beam according to claim 5, wherein the apparatus is configured to obtain an approximate value of the difference.
JP09064530A 1997-03-18 1997-03-18 Proximity effect corrector for charged particle beam writing Expired - Lifetime JP3120051B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP09064530A JP3120051B2 (en) 1997-03-18 1997-03-18 Proximity effect corrector for charged particle beam writing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP09064530A JP3120051B2 (en) 1997-03-18 1997-03-18 Proximity effect corrector for charged particle beam writing

Publications (2)

Publication Number Publication Date
JPH10261562A JPH10261562A (en) 1998-09-29
JP3120051B2 true JP3120051B2 (en) 2000-12-25

Family

ID=13260878

Family Applications (1)

Application Number Title Priority Date Filing Date
JP09064530A Expired - Lifetime JP3120051B2 (en) 1997-03-18 1997-03-18 Proximity effect corrector for charged particle beam writing

Country Status (1)

Country Link
JP (1) JP3120051B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2367228A (en) * 2000-09-21 2002-03-27 Leica Microsys Lithography Ltd Method for ascertaining the radiation dose for a layout
JP5386109B2 (en) 2008-05-16 2014-01-15 株式会社ニューフレアテクノロジー Data verification method and charged particle beam drawing apparatus
FR2959026B1 (en) * 2010-04-15 2012-06-01 Commissariat Energie Atomique LITHOGRAPHY METHOD WITH COMBINED OPTIMIZATION OF RAYONED ENERGY AND DIGITAL GEOMETRY
JP5871558B2 (en) * 2011-10-20 2016-03-01 株式会社ニューフレアテクノロジー Charged particle beam drawing apparatus and charged particle beam drawing method
JP6305806B2 (en) * 2014-03-28 2018-04-04 日本コントロールシステム株式会社 Information processing apparatus, information processing method, and program

Also Published As

Publication number Publication date
JPH10261562A (en) 1998-09-29

Similar Documents

Publication Publication Date Title
US9947509B2 (en) Multiple charged particle beam lithography apparatus and multiple charged particle beam lithography method
KR102027208B1 (en) Electron beam apparatus and positional displacement correcting method of electron beam
US8592108B2 (en) Method for design and manufacture of patterns with variable shaped beam lithography
US9837247B2 (en) Charged particle beam writing apparatus and method utilizing a sum of the weighted area density of each figure pattern
JP3348586B2 (en) Proximity effect correction method in electron beam lithography
JP2018133552A (en) Charged particle beam apparatus and misalignment correcting method of charged particle beam
US10444629B2 (en) Bias correction for lithography
KR102033862B1 (en) How to Perform Dose Modulation for Electron Beam Lithography
JP3120051B2 (en) Proximity effect corrector for charged particle beam writing
JP4621076B2 (en) Electron beam exposure system
EP0443249A2 (en) Manufacturing adjustment during article fabrication
JP2010250286A (en) Photomask, semiconductor device, and charged beam drawing apparatus
US8710468B2 (en) Method of and apparatus for evaluating an optimal irradiation amount of an electron beam for drawing a pattern onto a sample
JPS6112068A (en) Method of correcting proximity effect in electronic beam lithographic device
JP2002313693A (en) Forming method for mask pattern
JP6881168B2 (en) Method and device for obtaining exposure intensity distribution in multi-beam electron beam lithography system
DE112019005606T5 (en) Charged particle beam writing device, charged particle beam writing method, and a program
WO2018061960A1 (en) Method and device for obtaining exposure intensity distribution in multibeam electron beam lithography device
TWI734415B (en) Charged particle beam drawing method and charged particle beam drawing device
JP3244766B2 (en) Charged particle beam writing method and writing apparatus
JP2506144B2 (en) Pattern data correction method
JP2014029888A (en) Drawing method, drawing device and program
JP2012009589A (en) Drawing method of electron beam drawing device, and electron beam drawing device
JPH0661127A (en) Electron beam lithographing method
JP2004111798A (en) Charged particle beam exposure method

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081013

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081013

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091013

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091013

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101013

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111013

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111013

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121013

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131013

Year of fee payment: 13

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term