WO2018061564A1 - Imaging device - Google Patents

Imaging device Download PDF

Info

Publication number
WO2018061564A1
WO2018061564A1 PCT/JP2017/030624 JP2017030624W WO2018061564A1 WO 2018061564 A1 WO2018061564 A1 WO 2018061564A1 JP 2017030624 W JP2017030624 W JP 2017030624W WO 2018061564 A1 WO2018061564 A1 WO 2018061564A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin
substrate
lens
case
imaging device
Prior art date
Application number
PCT/JP2017/030624
Other languages
French (fr)
Japanese (ja)
Inventor
朋之 藤原
学 遠崎
貴昭 中道
一生 木下
健人 空中
千明 的場
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Publication of WO2018061564A1 publication Critical patent/WO2018061564A1/en

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B17/00Details of cameras or camera bodies; Accessories therefor
    • G03B17/02Bodies
    • G03B17/08Waterproof bodies or housings
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B17/00Details of cameras or camera bodies; Accessories therefor
    • G03B17/56Accessories
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B17/00Details of cameras or camera bodies; Accessories therefor
    • G03B17/02Bodies

Definitions

  • the present invention relates to an imaging apparatus.
  • an imaging optical system having an optical element such as an imaging lens, an imaging element for acquiring a subject image formed by the imaging optical system, and a subject image based on an electric signal output from the imaging element
  • An imaging device including an electronic circuit unit that generates corresponding digital image data
  • such an imaging apparatus includes an imaging apparatus in which each unit is housed in a casing, and the casing is provided with a connection cord for transmitting acquired image data from the electronic circuit unit. Is also known.
  • a camera module used as an in-vehicle camera or a surveillance camera is used with the lens exposed, and thus at least waterproof is required. Further, such a camera module is subject to vibration and / or shock during use. For this reason, it is required to have weather resistance and impact resistance from the viewpoint of preventing damage to components such as lenses.
  • an endoscopic camera using an imaging device in the medical field may be exposed to high humidity in the human body, and particularly in the case of a stomach camera, it may be exposed to strong acid in the stomach. Therefore, it is important for the endoscope camera to have airtightness and chemical resistance. Similarly, it is important that an endoscope camera for industrial use has airtightness and chemical resistance when used in an environment exposed to high humidity and various chemicals.
  • Patent Literature 1 the inside of the housing of the imaging device is airtight, or the housing is filled with a sealing material that is cured by ultraviolet rays such as an inert gas or a photocurable resin.
  • a sealing material that is cured by ultraviolet rays such as an inert gas or a photocurable resin.
  • Patent Document 2 discloses a solid-state imaging device and a method for manufacturing the solid-state imaging device that can facilitate efficient heat dissipation and optical axis adjustment.
  • Japanese Patent Publication Japanese Patent Laid-Open No. 63-313970 (published on December 22, 1988)” Japanese Patent Publication “JP 2012-49450 A (published Mar. 08, 2012)”
  • the internal gas pressure may increase due to the heat generation of the internal components and the temperature increase in the surrounding environment, causing the housing to crack, and / or the internal components being damaged due to excessive pressure. There is.
  • tip main body is formed with the filler, the endoscope front-end
  • Patent Document 2 discloses using a ceramic substrate as a wiring substrate of a solid-state imaging device.
  • the ceramic substrate is a fired product (so-called “Seto”), and further, since holes such as through holes are formed in various parts of the substrate, it is weak against impact and is not suitable for applications requiring impact resistance.
  • the present invention has been made in view of the above-described problems, and an object thereof is to realize an imaging apparatus having impact resistance and weather resistance.
  • an imaging apparatus includes a lens, a first substrate on which an imaging element that generates an imaging signal from light incident through the lens is mounted, and the imaging A second substrate on which an external input / output terminal for inputting / outputting signals to / from the outside is mounted; a first case storing the lens; a second case combined with the first case; the first substrate; A space formed between the first case and the second case so as to store two substrates is provided with a resin sealing portion sealed with resin.
  • an imaging device according to an embodiment of the present invention has an effect of having impact resistance and weather resistance.
  • (A) is a top view which shows schematic structure of the imaging device which concerns on 1st Embodiment of this invention
  • (b) is a side view which shows schematic structure of the said imaging device
  • (c) is (a). It is AA arrow sectional drawing.
  • FIG. 1 It is a perspective view which shows the external appearance structure before mold resin sealing of the said imaging device.
  • FIG. 1 A) And (b) is sectional drawing which shows the filling process of the mold resin of the said imaging device. It is a perspective view of a schematic configuration after molding resin sealing of the imaging device. It is a perspective view which shows the assembly of the imaging device containing a metal sheath based on 2nd Embodiment of this invention.
  • (A) is a perspective view which shows the external appearance structure of the said metal sheath provided with a board
  • (b) is a perspective view which shows the external appearance structure of the said metal sheath in the state which opened the door.
  • (A)-(c) is a perspective view which shows the external appearance structure of the said metal sheath which has a different resin escape hole.
  • (A) And (b) is a perspective view which permeate
  • (A) And (b) is a perspective view which shows the shape of the fin from which the said metal sheath differs. It is an external view which shows schematic structure of a metal sheath provided with the fin formed from the said metal sheath. It is a perspective view which shows the assembly of the imaging device containing the said metal sheath provided with a fin outside. It is an external view which shows schematic structure of the metal sheath which equips the exterior with the fin formed from the said metal sheath.
  • FIG. 17 It is a flow process figure showing a manufacturing process of an imaging device concerning a 3rd embodiment of the present invention.
  • A is a figure which shows the active alignment method used at the process of the alignment in the flowchart of FIG. 17,
  • (b) is a figure which shows the position adjustment of the lens by an active alignment method.
  • (A) And (b) is an external view which shows schematic structure of the lens unit of the imaging device which concerns on 3rd Embodiment of this invention.
  • the lens 2a side is assumed to be the front, and the external input / output terminal 16 side is assumed to be the rear.
  • FIG. 1A is a top view illustrating a schematic configuration of the imaging apparatus 1 according to the first embodiment of the present invention
  • FIG. 1B is a side view illustrating the schematic configuration of the imaging apparatus 1
  • FIG. 3A is a sectional view taken along line AA in FIG.
  • the imaging device 1 includes a front case 5 (first case), a rear case 6 (second case), and a mold portion 7 (resin sealing portion). And. From the front, the front case 5, the mold part 7, and the rear case 6 are arranged in this order, and the mold part 7 is sandwiched between the front case 5 and the rear case 6.
  • the lens unit 2 including the lens 2a is stored.
  • the rear case 6 has an external connection cable 10 for transferring image data output from an external input / output terminal mounting board 17 (second board), which will be described later, to the outside and supplying power to the internal electronic components. It is attached.
  • the external connection cable 10 has an outer peripheral surface protected by a cable protection member 8 on one end side attached to the rear case 6 and includes a connector 9 on the other end side.
  • a sensor mounting board 12 (first board) on which the lens unit 2, the lid glass 3, and the imaging element 11 are mounted is provided.
  • the sensor mounting board 12 is disposed at the end of the front case 5 on the mold part 7 side (rear side).
  • the image sensor 11 is mounted on the mounting surface (front surface) of the sensor mounting substrate 12, and the light receiving surface faces the front side.
  • the imaging element 11 is not particularly limited, and may be a CMOS sensor, a CCD sensor, and an element that receives infrared rays other than visible light, ultraviolet rays, and X-rays.
  • the lid glass 3 is disposed on the light receiving surface of the image sensor 11.
  • the lid glass 3 has both a function of protecting the CMOS sensor and a function of an IR (infrared light) cut filter.
  • the lid glass 3 may have a function of an AR (antireflection) coat filter and / or a band pass filter in addition to the IR cut filter.
  • the lens unit 2 is disposed on the front surface of the lid glass 3.
  • the lens unit 2 includes a single lens 2a and a resin lens holder 2b that holds the lens 2a around the lens 2a.
  • the lens unit 2 may include a plurality of lenses 2a instead of a single lens 2a.
  • 1 and FIG. 7 to be described later show a configuration in which the imaging apparatus 1 is a fixed focus method, in other words, a configuration in which the lens unit 2 is fixed.
  • the imaging apparatus 1 is not limited to the fixed focus method, and may be an auto focus method.
  • the lens unit 2 may include an AF (Autofocus) mechanism, a zoom mechanism, a camera shake correction mechanism, and the like in the front case 5.
  • AF Autofocus
  • the external input / output terminal mounting substrate 17 is arranged at the end of the rear case 6 on the mold part 7 side (front side).
  • An image processing IC 13, a capacitor and a passive element 15 such as a resistor are mounted on one mounting surface of the external input / output terminal mounting substrate 17 (on the mold portion 7 side).
  • a communication IC 14 On the other mounting surface of the external input / output terminal mounting substrate 17, a communication IC 14, an external input / output terminal 16, a power source and other ICs (not shown) are mounted.
  • the external input / output terminal mounting substrate 17 is mounted with at least an external input / output terminal 16 for performing input / output with respect to the outside, and other ICs and / or elements may be mounted on the sensor mounting substrate 12.
  • the external input / output terminal mounting board 17 is formed separately from the sensor mounting board 12.
  • the external input / output terminal mounting substrate 17 may be formed integrally with the sensor mounting substrate 12.
  • the sensor mounting board 12 and the external input / output terminal mounting board 17 may be integrated with a hard material (for example, epoxy resin) so as to be housed in a case.
  • the sensor mounting board 12 and the external input / output terminal mounting board 17 may be formed as a board generally referred to as a rigid-flex board, and may be folded and incorporated. .
  • the rigid flexible substrate is a substrate having a structure in which a flexible substrate is sandwiched between hard material substrates (in other words, sandwiched), and has flexibility at an exposed portion of the flexible substrate.
  • the space for storing the sensor mounting board 12 and the external input / output terminal mounting board 17 becomes smaller. For this reason, the size of the imaging device 1 can be reduced. In addition, the number of parts can be reduced, thereby providing a low-cost camera.
  • the mold part 7 stores a relay wiring 19 that relays an electrical signal and a power supply between the sensor mounting board 12 and the external input / output terminal mounting board 17.
  • the relay wiring 19 is composed of a flexible substrate, but may be a ribbon cable or a plurality of single wires.
  • Imaging device 1 In the imaging device 1, when light incident on the lens 2 a passes through the lid glass 3 and reaches the light receiving surface of the imaging device 11, the imaging device 11 outputs an electrical signal (imaging signal) corresponding to the amount of light received by each cell. Generate and output. This electrical signal is transmitted from the sensor mounting board 12 to the external input / output terminal mounting board 17 via the relay wiring 19.
  • the electrical signal is subjected to predetermined processing by the mounted image processing IC 13, and then is externally connected as image data from the external input / output terminal 16 via the external connection cable 10. Is transmitted to.
  • the image processing IC 13 can convert the electrical signal from the image sensor 11 into a format corresponding to the processing in the external device. As a result, the amount of data to be communicated can be reduced.
  • the image format conversion by the image processing IC 13 will be described in detail.
  • the image format of the electrical signal output from the image sensor 11 is the image format of the RAW image when, for example, a CMOS sensor is used.
  • the RAW image is an image format in which the output of pixels such as RGB such as CMOS is output as it is after A / D conversion.
  • the RAW image cannot be used as it is in an external device such as an in-vehicle monitor (liquid crystal display). Therefore, after converting (developing) a RAW image into a predetermined format, the external device needs to display an image on the external device based on the converted image data.
  • the RAW image is an uncompressed image
  • the transfer amount of image data becomes enormous as the number of pixels of the image sensor 11 increases, and therefore, a high transfer speed is required.
  • the RAW image is a still image.
  • continuous image data is transferred to an external device at a frequency (frame rate) of about 30 frames per second, and continuous images are displayed at the frame rate based on the image data transferred in the external device.
  • frame rate a frequency of about 30 frames per second
  • continuous images are displayed at the frame rate based on the image data transferred in the external device.
  • a still image as a moving image like an animation. Therefore, a higher transfer speed is required when the external device reproduces a moving image based on the image data obtained by the image sensor 11.
  • the image processing IC 13 converts the image format of the RAW image output from the image sensor 11 into an image format that can be processed by an arbitrary external device, and converts the image data having the converted image format. Output.
  • the external device can use the output image data without converting the image format, and has an advantage that a high transfer rate is unnecessary.
  • the image format converted by the image processing IC 13 is not particularly limited, and examples thereof include M-Jpeg (Motion-Jpeg).
  • M-Jpeg is a format for continuous output after converting the format to Jpeg, which is a still image compression format.
  • M-Jpeg is a format with a relatively low data compression rate but high image quality and a small amount of compression processing.
  • an external device uses an application that reproduces the transferred image data by storing it in a memory or the like, an image format compressed at a higher compression rate is required.
  • a compression method standardized by ITU-T H.261, H.262, H.263
  • a compression method standardized by MPEG MPEG -1, MPEG-2, MPEG-4
  • other compression methods such as DivX.
  • the image data processed in the image processing IC 13 is transferred according to a data transfer procedure (protocol) between the imaging device 1 and the external device defined in the communication IC 14 when transferred to the external device.
  • the transfer protocol used is not particularly limited, but for example, those similar to PCT / IP (Transmission Control Protocol / Internet Protocol) used in the Internet, those similar to USB (Universal Serial Bus), and other standardized A standard protocol or other custom protocol may be used.
  • the management of the imaging device 1 includes (i) allocation, setting and change of addresses and ID codes necessary for the protocol to the imaging device 1, (ii) transfer start and transfer stop of image data, (iii) image For example, format change and transfer rate change, (iii) camera gain change, (iv) transmission / reception of various parameters, power ON / OFF and reset.
  • FIG. 2 is a perspective view showing an external configuration of a part including the front case 5 of the imaging apparatus 1 as viewed from one direction.
  • FIG. 3 is a perspective view showing an external configuration of a part including the front case 5 of the imaging apparatus 1 as seen from another direction.
  • the front case 5 includes a lens unit storage portion 20, a pedestal portion 22, and a front joint frame portion 23.
  • the pedestal portion 22 is a hexahedron portion having a predetermined thickness, and has two faces that form a square.
  • the lens unit housing portion 20 is disposed on one surface, and the front joining frame portion 23 is disposed on the other surface. Further, the interior of the pedestal portion 22 has a hollow portion that penetrates so as to be connected to a lens unit insertion hole 21 of the lens unit housing portion 20 described later.
  • the lens unit storage portion 20 is formed in a cylindrical shape, and has a lens unit insertion hole 21 for storing the lens unit 2 therein. The end of the lens unit insertion hole 21 is opened so that the light incident part of the lens unit 2 is exposed.
  • the shape of the lens unit storage portion 20 is not limited to a cylindrical shape as long as the lens unit 2 can be stored, and the outer shape may be a cylindrical shape having a prism shape, a conical shape, a truncated pyramid, or the like.
  • the size of the lens unit insertion hole 21 is not particularly limited as long as the lens unit 2 can be stored.
  • the thickness from the outer wall of the lens unit housing portion 20 to the lens unit insertion hole 21 is not particularly limited as long as it has the effects of impact resistance and weather resistance.
  • the lens unit 2 is inserted and stored in the lens unit insertion hole 21.
  • the connection structure between the lens unit insertion hole 21 and the lens unit 2 is not particularly limited, and may be simply fitted, may be engaged by screwing, or may be engaged by a combination of these methods. Further, it is preferable that the lens unit insertion hole 21 and the lens unit 2 have a sufficient margin for optical alignment.
  • the inner peripheral surface of the lens unit housing portion 20 that forms the lens unit insertion hole 21 may be a curved surface without unevenness, or the lens unit. You may provide the groove
  • the inner peripheral surface of the lens unit housing portion 20 is engaged with the male screw formed on the outer peripheral surface of the lens unit 2 so as to be engaged.
  • An internal thread is provided.
  • the height and number of threads of the male screw are not particularly limited.
  • the shape of the pedestal portion 22 is not particularly limited, and may be a hexahedron as shown in FIG. 3, a rectangular parallelepiped, a cylinder, a prism, a pyramid, or the like. Further, the thickness of the pedestal portion 22 is not particularly limited.
  • the front joint frame part 23 is a part joined to the rear case 6 and is formed to extend rearward from the square surface of the pedestal part 22. Further, as shown in FIG. 3, the front joint frame portion 23 includes a sensor mounting board contact portion 25 for placing the sensor mounting board 12 in contact with the inside thereof. Further, the front joining frame portion 23 forms a resin filling port 33 (see FIG. 6) together with a rear notch 31 (see FIGS. 4 and 5) provided in the rear case 6 described later. Are formed at two positions at opposite positions.
  • the sensor mounting substrate 12 In order to arrange the sensor mounting substrate 12 inside the front bonding frame portion 23, the sensor mounting substrate 12 needs to be inserted, but as shown in FIG. 3, the bottom surface of the front bonding frame portion 23 is opened. In such a case, the sensor mounting board 12 can be inserted from the opening.
  • the shape of the front joint frame portion 23 is not particularly limited as long as it can be joined to the rear joint frame portion 30 by fitting and the sensor mounting substrate 12 can be stored.
  • the front case 5 may be molded from resin or may be molded from metal.
  • thermoplastic resin a thermosetting resin, a high heat resistant resin, a highly durable resin, or the like can be used as the resin (first resin) forming the front case 5.
  • thermoplastic resin examples include polyvinyl chloride (PVC), polyvinylidene chloride (PVDC), polyethylene (PE), polypropylene (PP), polystyrene (PS), ABS resin, methacrylic resin (PMMA), nylon 66, polyacetal ( POM), polycarbonate (PC), polyvinylidene fluoride (PVDF), and the like.
  • thermosetting resin examples include phenol resin, urea resin, melamine resin, unsaturated polyester, epoxy resin, silicone resin, polyurethane resin and the like.
  • Examples of the high heat resistance resin and high durability resin include polysulfone (PSU), polyethersulfone (PES), polyphenylene sulfide (PPS), polyarylate (PAR), polyamideimide (PAI), polyetherimide (PEI), and polyether.
  • PSU polysulfone
  • PES polyethersulfone
  • PPS polyphenylene sulfide
  • PAR polyarylate
  • PAI polyamideimide
  • PEI polyetherimide
  • PEI polyetherimide
  • polyether polyether ketone
  • PEEK ether ketone
  • PI polyimide
  • LC liquid crystal polymer
  • PTFE polytetrafluoroethylene
  • the lens unit housing part 20, the pedestal part 22, and the front joining frame part 23 may be molded from the same first resin, or may be molded from different first resins.
  • the lens unit storage part 20, the base part 22, and the front part joining frame part 23 may each be shape
  • FIG. 4 is a perspective view showing an external configuration of a portion including the rear case 6 of the imaging device 1 as viewed from one direction.
  • FIG. 5 is a perspective view showing an external configuration of a portion including the rear case 6 of the imaging device 1 as seen from another direction.
  • the rear case 6 includes a case main portion 26 and a rear joint frame portion 30.
  • the case main part 26 is a hexahedron part, and the inside is formed in a cavity.
  • a cable insertion hole 28 for inserting the cable protective material 8 of the external connection cable 10 is formed in the rear end surface of the rear case 6 so as to penetrate therethrough.
  • the rear case 6 includes a cable protection material anchoring protrusion 29 inside.
  • An O-ring mounting groove 27 is formed on the inner peripheral surface near the opening of the cable insertion hole 28.
  • An O-ring for preventing water and / or other chemicals from entering the rear case 6 from the gap between the cable protection member 8 and the cable insertion hole 28 is attached to the O-ring attachment groove 27.
  • the cable-protecting-material anchoring protrusions 29 are extended portions extending rearward from the inner peripheral surface of the rear case 6 forming the cable insertion holes 28, and protruding portions bent vertically from the end portions of the extended portions toward the center of the cable insertion holes 28. have.
  • the cable protection material 8 is restricted from being inserted deeper than the end of the cable protection material 8 in contact with the cable protection material mooring protrusion 29.
  • the width of the cable protection material anchoring protrusion 29 along the inner peripheral direction of the cable insertion hole 28 is not particularly limited as long as it has a strength capable of anchoring the cable protection material 8.
  • the cable protection material anchoring protrusion 29 may be formed from the entire inner periphery of the cable insertion hole 28, or the cable protection material anchoring protrusion may be formed from a part of the inner periphery of the cable insertion hole 28 as shown in FIG. 29 may be formed.
  • the cable protection material anchoring protrusion 29 may be one as shown in FIG. Two or more cables may be provided on the inner periphery of the cable insertion hole 28.
  • the rear joint frame portion 30 is a portion joined to the front case 5 and is formed to extend rearward from the rear end surface of the case main portion 26. Further, the rear joining frame part 30 forms a space for arranging the external input / output terminal mounting substrate 17 on the inner side. In addition, the rear joining frame part 30 forms a resin filling port 33 (see FIG. 6) together with the front notch 24 (see FIGS. 2 and 3) provided in the front case 5 described above. Are formed at two positions at opposite positions.
  • the shape of the rear joint frame portion 30 is not particularly limited as long as it can be joined to the front joint frame portion 23 by fitting and the external input / output terminal mounting substrate 17 can be stored.
  • the external input / output terminal mounting board contact portion for placing the external input / output terminal mounting board 17 in contact with the inner side of the rear joint frame portion 30 on the rear end surface of the case main portion 26. 32 is formed.
  • the shape of the case main portion 26 is not particularly limited, and may be a hexahedron as shown in FIG. 4, a cube, a rectangular parallelepiped, a truncated pyramid, a cylinder, a prism, or the like.
  • the rear case 6 may be molded from the first resin similarly to the front case 5, or may be molded from metal.
  • the front case 5 and the rear case 6 may be formed from the same material or may be formed from different materials.
  • case main part 26 and the rear joining frame part 30 may be molded from the same resin or metal, respectively, or may be molded from different resins or metals.
  • FIG. 6 is a perspective view showing an external configuration of the imaging device 1 before sealing with a mold resin.
  • the front joint frame portion 23 and the rear joint frame portion 30 are temporarily joined by fitting or the like.
  • the internal substrate 18 such as the sensor mounting substrate 12 and the external input / output terminal mounting substrate 17 is disposed inside the front bonding frame portion 23 and the rear bonding frame portion 30.
  • a part of the relay wiring 19 connecting the sensor mounting board 12 and the external input / output terminal mounting board 17 is arranged outside the front joint frame portion 23 and the rear joint frame portion 30.
  • the external connection cable 10 is connected to the external input / output terminal 16 of the external input / output terminal mounting substrate 17 and extends from the cable insertion hole 28 of the rear case 6 while being covered with the cable protective material 8. .
  • the mold part 7 of the imaging device 1 according to the first embodiment is formed by the following method.
  • FIG. 7A is a cross-sectional view of the imaging device 1 before filling the mold resin
  • FIG. 7B is a cross-sectional view of the imaging device 1 in which the mold resin is filled. It is a figure after filling of a figure.
  • the distance between the sensor mounting board 12 and the external input / output terminal mounting board 17 is expanded by the resin.
  • the sensor mounting board 12 pressed to the lens unit 2 side by the resin is pressed against the sensor mounting board contact portion 25.
  • the external input / output terminal mounting substrate 17 pushed by the resin toward the external connection cable 10 is pressed against the external input / output terminal mounting substrate contact portion 32.
  • the resin overflowing from the inside of the front joint frame portion 23 and the rear joint frame portion 30 is used for molding the outer walls of the front joint frame portion 23 and the rear joint frame portion 30.
  • the resin (second resin) forming the mold part 7 examples include resins such as epoxy for sealing electronic parts, polyamide, polyolefin, and reactive urethane. Further, the second resin is preferably a soft resin as compared with the first resin used for the front case 5 and the rear case 6.
  • the imaging device 1 after mold sealing is shown in FIG.
  • the front case 5 that houses the optical member such as the sensor mounting substrate 12 on which the lens unit 2, the lid glass 3, and the imaging element 11 are mounted is made of the first resin or metal.
  • the first resin is a thermoplastic resin, a thermosetting resin, a high heat resistance resin, or a high durability resin.
  • the front case 5 and the rear case 6 have an effect of ensuring assembly accuracy (including attachment to a car or the like).
  • the periphery of the internal substrate 18 such as the sensor mounting substrate 12 and the external input / output terminal mounting substrate 17 is made of a second resin that is softer than the first resin constituting the front case 5 and the rear case 6. It is preferable.
  • the impact resistance, vibration resistance, and waterproofing can be improved, and the lens unit 2 can be mounted with high accuracy (active alignment). There is an effect that can be adjusted to obtain.
  • the imaging apparatus 1 is inexpensive and small, and at the same time has high impact resistance, vibration resistance, waterproofness, and chemical resistance, and can obtain a higher-definition image. Can provide.
  • the present embodiment is different from the first embodiment in that the internal substrate 18 such as the sensor mounting substrate 12 and the external input / output terminal mounting substrate 17 is made of a metal sheath 36 (substrate housing body). It is stored in the inside of the front case 5 and the rear case 6 in a state of being covered with.
  • the internal substrate 18 such as the sensor mounting substrate 12 and the external input / output terminal mounting substrate 17 is made of a metal sheath 36 (substrate housing body). It is stored in the inside of the front case 5 and the rear case 6 in a state of being covered with.
  • FIG. 9 is a perspective view showing the assembly of the imaging device 1 including the metal sheath 36 according to the second embodiment of the present invention.
  • FIG. 10A is a perspective view showing an external configuration of the metal sheath 36 having a board insertion opening
  • FIG. 10B is a perspective view showing an external configuration of the metal sheath 36 with the door 42 opened. is there.
  • a metal sheath 36 is used as shown in FIG. 10 in order to resin seal the lower surface of the sensor mounting substrate 12 on which the image sensor 11 is mounted (the surface on which the image sensor 11 is not mounted). Specifically, the metal sheath 36 is attached to the upper surface (the surface on which the image sensor 11 is mounted) of the sensor mounting substrate 12 inside the imaging apparatus 1 and the lower surface (the external input / output terminal 16 is attached) of the external input / output terminal mounting substrate 17. Cover the surface).
  • the filling resin (second resin) used to mold the mold part 7 is an epoxy for electronic component sealing, polyamide, or the like.
  • the thermal conductivity of these resins is larger than 0.0257 to 0.0316 (W / m ⁇ K) of air as shown in Table 1, it is not sufficient from the viewpoint of heat dissipation. .
  • the material of the metal sheath 36 is not particularly limited, and examples thereof include iron, copper, silver, aluminum, and stainless steel. Among these, aluminum is preferable from the viewpoint of weight reduction and ease of processing, and stainless steel is preferable from the viewpoint of impact resistance and corrosion resistance, and may be appropriately selected depending on the application of the imaging device 1.
  • the metal sheath 36 has a resin filling hole 37 and a resin escape hole 38.
  • the metal sheath 36 may be provided with a first opening 36a at an end portion on the front case 5 side and a second opening 36b at an end portion on the rear case 6 side. It may be covered with. Regarding the insertion of the internal substrate 18, as shown in FIG. 9, both ends of the metal sheath 36 can insert the internal substrate 18 from the first opening 36 a and the second opening 36 b.
  • the end of the metal sheath 36 on the front case 5 side is covered with the top surface 39, and the end of the metal sheath 36 on the rear case 6 side is covered. Is covered with the bottom surface 41, and a cable insertion hole 43 through which the external connection cable 10 is passed is provided on the bottom surface 41.
  • an openable / closable door 42 for inserting the internal substrate 18 may be provided on the opposite side of the resin filling hole 37.
  • the door 42 is released as shown in FIG. 10B, and after the internal substrate 18 is inserted, the door 42 is closed as shown in FIG. Thereafter, the metal sheath 36 is stored inside the front case 5 and the rear case 6.
  • the filling resin for forming the mold portion 7 is supplied from a resin filling nozzle 35 (see FIG. 7B) inserted into a resin filling hole 37 provided in the metal sheath 36, and the sensor mounting board inside the metal sheath 36. 12 and the external input / output terminal mounting substrate 17.
  • the resin escape hole 38 is a hole for letting excess filled resin escape to the outside at the time of filling, and one or a plurality of resin escape holes may be provided. Next, the resin escape hole 38 will be described in detail.
  • FIGS. 11A to 11C are perspective views showing the external configuration of the metal sheath 36 having different resin escape holes 38.
  • the shapes of the resin filling hole 37 and the resin escape hole 38 are not particularly limited, and may be circular as shown in FIG. 11A, rectangular as shown in FIG. 11B, or a combination thereof. May be.
  • the arrangement of the resin filling holes 37 and the resin escape holes 38 is not particularly limited, and is arranged like a mesh (lattice) as shown in FIG. May be.
  • the shape of the resin filling hole 37 and the resin escape hole 38 is circular, the arrangement of the resin filling hole 37 and the resin escape hole 38 is relatively easy as shown in FIG.
  • FIG. 11B when the resin filling hole 37 and the resin escape hole 38 are rectangular, when the filling resin passes through the resin filling hole 37 and the resin escape hole 38, stress is applied to the vertex of the rectangle. It may take such a case.
  • FIG. 11C by arranging the resin filling holes 37 and the resin escape holes 38 like a mesh (lattice), there is a possibility that the maximum number of resin escape holes 38 can be arranged.
  • the metal sheath 36 may include metal pieces (fins 44) for heat dissipation.
  • FIGS. 12 (a) and 12 (b) are perspective views showing the inside of the metal sheath 36 including the fins 44.
  • FIGS. 13A and 13B are perspective views showing the shapes of fins 44 having different metal sheaths 36.
  • FIG. 14 is an external view showing a schematic configuration of the metal sheath 36 including the fins 44 formed from the metal sheath 36.
  • FIG. 15 is a perspective view showing the assembly of the imaging device 1 including the metal sheath 36 including the fins 44 on the outside.
  • FIG. 16 is an external view showing a schematic configuration of the metal sheath 36 provided with fins 44 formed from the metal sheath 36 on the outside.
  • the temperature of the image sensor 11 rises to about 80 ° C. during the operation (at the time of moving image acquisition) of the image sensor 11 such as a CMOS image sensor built in the image pickup apparatus 1. If no special measures are taken to cool the image sensor 11 due to heat radiation or the like, the image sensor 11 may reach 100 ° C. or more, which causes image abnormality and failure of the image pickup apparatus 1.
  • fins 44 are attached to the inner side (inner substrate 18 side) of the metal sheath 36, and the imaging device 11, the power supply IC, the image processing IC 13, and the communication IC 14 mounted on the inner substrate 18. Extend the fins 44 to the vicinity. As a result, the heat generated by each IC can be conducted to the vicinity of the outside of the imaging device 1, and as a result, a heat dissipation effect is achieved.
  • FIG. 12 is a perspective view showing a schematic view of the metal sheath 36 having the rectangular fins 44.
  • FIG. 13B is a perspective view showing a schematic view of the metal sheath 36 in which the sensor mounting substrate 12 and the external input / output terminal mounting substrate 17 are housed in the metal sheath 36 having the rectangular fins 44.
  • the fins 44 can be arranged on the side surface 40 other than the side surface 40 provided with the relay wiring 19 (not shown) for connecting the sensor mounting substrate 12 and the external input / output terminal mounting substrate 17.
  • the cross-sectional shape of the fin 44 is not particularly limited, and may be rectangular as shown in FIG. 12 or circular as shown in FIG.
  • the cross-sectional shape of the fins 44 is preferably circular as shown in FIG. If the cross-sectional shape of the fins 44 is circular, when filling the filling resin, the filling resin can efficiently wrap around the portion behind the fins 44 when viewed from the resin filling nozzle 35. In other words, if the cross-sectional shape of the fin 44 is circular, the filling resin can be efficiently filled.
  • the taper (tapered) shape as shown in FIG. 13B is more preferable than the cylindrical shape as shown in FIG. This is preferable because it is advantageous in terms of strength.
  • the number of fins 44 is not particularly limited, and as shown in FIGS. 12 and 13, two fins 44 may be provided on each of the two side surfaces 40, for a total of four. In addition, four per side 40 may be provided on two side 40 in total, or more than eight may be provided.
  • the fin 44 may be made by attaching the metal sheath 36 and a separate fin 44 to the metal sheath 36 as shown in FIGS. 12 and 13, or from a part of the metal sheath 36 as shown in FIG. 14. It may be formed. As shown in FIG. 14, when the resin escape hole 38 is formed, the fin 44 can be produced by bending a portion of the metal piece that has been cut out without leaving a portion of the metal sheath 36. is there. In FIG. 14, the plate-like fins 44 are formed by bending inward the metal pieces when forming the rectangular resin escape holes 38, but the bent fins 44 are further rounded to obtain a cylindrical shape. The three-dimensional fin 44 may be formed. As shown in FIG.
  • the formation of the fin 44 by bending a part of the metal sheath 36 is compared to the case where the fin 44 is attached as a separate member inside the metal sheath 36 as shown in FIGS. There is an advantage that the cost and labor can be greatly reduced.
  • the fins 44 may also be formed outside the metal sheath 36. Forming the fins 44 outside the metal sheath 36 has an advantage that heat can be more actively conducted to the housing surface of the imaging device 1.
  • grooves are formed in the front case 5 and the rear case 6 that are molded with resin so that the fins 44 can be fitted or projected. May be.
  • the fins 44 can be formed from a part of the metal sheath 36 as in FIG. As shown in FIG. 16, when the resin escape hole 38 is formed, the fin 44 can be formed outside by bending a metal piece cut out from the metal sheath 36 to the outside of the metal sheath 36. is there. As shown in FIG. 16, the formation of the fins 44 from a part of the metal sheath 36 to the outside of the metal sheath 36 is less costly than the case where the fins 44 are attached to the outside of the metal sheath 36 as shown in FIG. There is an advantage that the labor can be greatly reduced.
  • the above-described configuration uses a filling resin such as epoxy for sealing electronic parts, polyamide, polyolefin, and reactive urethane to mold the mold part 7.
  • a filling resin such as epoxy for sealing electronic parts, polyamide, polyolefin, and reactive urethane to mold the mold part 7.
  • Table 1 although the thermal conductivity of these filled resins is higher than that of air, it cannot be said that it is sufficient from the viewpoint of heat dissipation. Therefore, there is a method as shown in Table 2 as a method for improving the thermal conductivity of the above-described filling resin in order to dissipate heat from the image sensor 11.
  • a powder of a metal compound (or ceramic material) that does not exhibit thermal conductivity and has thermal conductivity is added as filler (particles) to the filling resin.
  • the cooling of the image sensor 11 according to the first modification described above is by actively dissipating the heat generated in the image sensor 11 to the outside of the image pickup apparatus 1.
  • imaging is performed without dissipating heat generated in the imaging device 11 to the outside of the imaging device 1 by a method such as disposing the Peltier device on the imaging device 11 and / or a chip such as each IC.
  • the element 11 can be cooled.
  • the first modification or the second modification may be used alone, or the first modification and the second modification may be used in combination.
  • the imaging apparatus 1 has the following configurations individually or in combination.
  • a metal sheath 36 that covers the internal substrate 18 such as the sensor mounting substrate 12 and the external input / output terminal mounting substrate 17 inside the imaging device 1.
  • B As a resin for molding the mold part 7, as shown in Table 2, a material that does not exhibit conductivity and has thermal conductivity, a compound of the material and a fired product, and a material and other molecules A filling resin in which a powder of the compound and the mixture is added as a filler.
  • C Peltier device arranged on the imaging device 11 and / or a chip such as each IC.
  • the heat generated in the imaging device 1 can be efficiently radiated and / or cooled.
  • the metal sheath 36 is grounded by connecting the metal sheath 36 to the GND. As a result, there is an effect that it is possible to realize the imaging apparatus 1 that does not emit electromagnetic noise generated inside and is not affected by external electromagnetic noise.
  • FIG. 17 is a flowchart showing the manufacturing process of the imaging device 1 according to the third embodiment of the present invention.
  • FIG. 18 is a diagram schematically illustrating an active alignment method of the lens unit 2 of the imaging device 1 according to the third embodiment of the present invention.
  • FIG. 19 is an external view schematically showing a schematic configuration of the lens unit 2 of the imaging apparatus 1 according to the third embodiment of the present invention.
  • the process flow according to the present embodiment includes the following processes.
  • the image sensor 11 mounted on the sensor mounting substrate 12 may be a CMOS image sensor, or may receive a CCD and other infrared light, ultraviolet light, and X-rays.
  • the mounting method may be a method of connecting the sensor and the substrate with a wire (wire bonding) or TSV (Through Silicon Via).
  • a wire wire bonding
  • TSV Three Silicon Via
  • S2 A step of performing wiring between the internal substrate 18 (the sensor mounting substrate 12 and the external input / output terminal mounting substrate 17), connecting the relay wiring 19, and connecting the external connection cable 10.
  • S3 A step of setting the internal substrate 18 produced in S2 in the metal sheath 36.
  • the GND terminal and the metal sheath 36 may be separately connected by a wire.
  • the sensor mounting board 12 and the external input / output terminal mounting board 17 and the metal sheath 36 may be in contact with each other by the GND wiring pattern on the board and soldered.
  • a GND terminal may be provided on the sensor mounting board 12 and the external input / output terminal mounting board 17. When the imaging device 1 does not include the metal sheath 36, this step is omitted.
  • S4 A step of storing the internal substrate 18 or the metal sheath 36 in the front case 5 and the rear case 6 (storage step).
  • S6 A step of positioning the optical axis (positioning step) after the lens unit 2 is inserted and the lens unit 2 is temporarily fixed with UV or the like (fixing step, temporary fixing step).
  • the lens unit 2 is a product in which one or a plurality of lenses are previously incorporated in the lens holder 2b (lens barrel).
  • the lens 2a may be made of glass or plastic.
  • the alignment of the optical axis of the lens unit 2 may be performed by a human hand. From the viewpoint of obtaining an optically more accurate image, an active alignment method described later is automatically performed using a robot arm. Are preferably aligned.
  • the lens unit 2 is inserted into the lens unit insertion hole 21 and temporarily fixed before being aligned.
  • An adhesive is used for temporary fixing, and the adhesive is generally cured with ultraviolet rays (UV) in a short time of about several seconds.
  • an adhesive agent used for temporary fixing the combined use type
  • an ultraviolet curable type is used for temporary fixing, an adhesive that is cured by heat may be used for the main fixing.
  • the temporary fixing adhesive may be partially applied to the bonding location, and the main fixing adhesive may be applied to the entire bonding location.
  • the temporary fixing and the main fixing may be performed by different fixing methods using different adhesives.
  • the standard condition for curing the adhesive with ultraviolet rays is to irradiate at least 200 mW (200 mW / cm 2 x second) at 1 cm 2 and 1 second, but is not limited thereto.
  • S7 A step of permanently fixing (completely fixing) the lens unit 2 in a constant temperature bath or the like (main fixing step).
  • a heat-curing adhesive may be used for the permanent fixing of the lens unit 2.
  • the conditions for curing the adhesive by heat are typically 80 ° C. and 60 minutes, but are not limited thereto.
  • As a method for curing the adhesive by heat it can be left in a thermostat at 80 ° C. for 60 minutes, but is not limited thereto.
  • S8 Process for performing a shipping inspection.
  • it is inspected whether or not the imaging function of the imaging apparatus 1 is realized.
  • imaging functions such as current consumption during use and current consumption during standby, such as circuit conduction in the internal electrical substrate, and camera performance such as resolution, focal length, and contrast are inspected.
  • the imaging device 1 that has been confirmed to have achieved a desired imaging function is shipped, and the imaging device 1 in which a defect is found is subjected to analysis and repair of the corresponding part.
  • FIG. 17 assuming that a camera performance defect is found in the imaging apparatus 1, the process returns to the step S ⁇ b> 6 again.
  • the optical axis alignment of the lens unit 2 of the present embodiment is preferably performed by an active alignment method. This step may be performed automatically using a robot arm.
  • the alignment of the optical axis of the lens unit 2 refers to the alignment between the optical center of the image sensor 11 and the center of the lens. Between the lens unit insertion hole 21 of the front case 5 and the lens unit 2, there is a spatial margin enough to adjust the position.
  • the active alignment method is a method as described below.
  • the image sensor 11 such as a CMOS sensor in the image pickup apparatus 1 is activated.
  • the robot arm is operated by the robot arm controller 47 while viewing the test chart (captured image) 48 displayed on the image determination device 46, and the optical axis is adjusted. Realize the final image without blurring.
  • One-sided blur refers to a state where part of the image is out of focus as a result of the lens unit 2 being tilted with respect to the optical axis.
  • the active alignment method is intended to improve the uniformity of the screen and to obtain higher quality camera performance.
  • the resolution of each part of the image and the contrast of the chart image are obtained from the test pattern of the test chart 48 while displaying the contents of the test chart 48.
  • the lens 2a is operated by the robot arm so that the resolution of each part is uniformly maximized and the contrast is maximized, and the lens unit 2 is moved, so that the optimum lens 2a is moved. Hold in the position.
  • the lens unit 2 is moved in the direction of the arrow as shown in FIGS. 18 (a) and 18 (b). After the position of the lens unit 2 is determined, temporary fixing is performed with an adhesive applied in advance.
  • an adhesive that cures by ultraviolet light is used for temporary fixing, and an adhesive that cures by heat is used for subsequent permanent fixing.
  • the same adhesive may be used for temporary fixing and permanent fixing.
  • an adhesive that is once cured by ultraviolet light and further exerts a strong adhesive force by raising the temperature may be used for temporary fixing and permanent fixing.
  • different adhesives may be used for temporary fixing and permanent fixing.
  • the following adhesive may be used in addition to the adhesive that is cured by ultraviolet light and / or heat as described above.
  • Such adhesives include adhesives that cure by volatilization of the organic solvent contained in the adhesive, or by absorbing ambient moisture, ie, adhesives that cure naturally without the need for special operations. Agents.
  • the active alignment method may be performed using ultraviolet rays, infrared rays, or X-rays other than visible light, and may be performed using a light source having a uniform phase and wavelength, such as a laser beam, and a point light source.
  • a plurality of cuts 49 are provided on the top surface of the lens unit 2A shown in FIG.
  • a plurality of notches 50 are provided on the top surface of the lens unit 2B shown in FIG.
  • the robot arm sandwiches the notches 49 or the notches 50 to align the lens unit 2.
  • FIG. 19 (a) there are three notches 49, but there may be two or more places where the robot arm can be sandwiched, and the notches 50 in FIG. Similar to the notch 49, the number may be two or more. Further, the cut 49 and the notch 50 may be used in combination.
  • the imaging apparatus 1 includes a lens 2a, a first substrate (sensor mounting substrate 12) on which an imaging element 11 that generates an imaging signal from light incident through the lens 2a is mounted, and the above A second substrate (external input / output terminal mounting substrate 17) on which an external input / output terminal 16 for inputting / outputting an imaging signal to / from the outside is mounted; a first case (front case 5) storing the lens 2a; A space formed between the first case and the second case so that the second case (rear case 6) combined with the first case and the first substrate and the second substrate are stored is a resin.
  • the resin sealing part (mold part 7) sealed by is provided.
  • the space of 1st case and 2nd case is made airtight, or the said space is filled with gas.
  • the gas pressure in space rises.
  • it has excellent impact resistance, vibration resistance, waterproofness, and chemical resistance, and it is possible to attach the lens unit 2 with high precision (active alignment). The resulting adjustment is possible.
  • the first substrate and the second substrate may be provided integrally.
  • the size of the imaging device 1 can be reduced.
  • the number of parts can be reduced, thereby providing a low-cost camera.
  • the first case and the second case are formed of a first resin, and the resin sealing portion is a second softer than the first resin. It may be formed of resin.
  • the internal substrate 18 (the sensor mounting substrate 12 and the external input / output terminal mounting substrate 17), and the elements and ICs arranged on the internal substrate 18 are used. It is possible to alleviate the impact of the impact on the
  • the imaging device 1 according to the aspect 4 of the present invention is the imaging apparatus 1 according to the aspect 1, 2, or 3, wherein the metal substrate storage body (metal sheath) is stored in the space in a state where the first substrate and the second substrate are stored. 36) may further be provided.
  • the metal substrate storage body metal sheath
  • the heat generated by the first substrate and the second substrate can be efficiently radiated through the substrate housing.
  • the substrate housing body may be grounded.
  • the electromagnetic noise generated inside the substrate housing is not released to the outside, and can be prevented from being affected by the electromagnetic noise from the outside.
  • the second resin is a resin having higher thermal conductivity than air, and particles having thermal conductivity may be added thereto.
  • the heat generated in the imaging device 1 can be efficiently radiated.
  • the manufacturing method of the imaging device 1 according to the aspect 7 of the present invention includes a lens 2a and a first substrate (sensor mounting substrate 12) on which an imaging element 11 that generates an imaging signal from light incident through the lens 2a is mounted. And a second substrate (external input / output terminal mounting substrate 17) on which an external input / output terminal 16 for inputting / outputting the imaging signal to / from the outside is mounted.
  • the first substrate and the A storage step of storing the second substrate and a resin filling step of filling the space with resin are included.
  • the first substrate and the second substrate stored in the space are sealed with resin. Therefore, there is no possibility that the gas pressure in the space will increase as compared with the conventional imaging device in which the space between the first case and the second case is made airtight or the space is filled with gas. As a result, it has excellent impact resistance, vibration resistance, waterproofness, and chemical resistance, and it is possible to attach the lens unit 2 with high precision (active alignment). The resulting adjustment is possible.
  • a mechanism such as screw fastening and / or snap fastening is not required for joining the first case and the second case.
  • the camera can be prevented from being damaged due to the loosening of the lens and the snap engagement.
  • the resin may be filled between the first substrate and the second substrate in the resin filling step in the aspect 7.
  • the resin filled between the first substrate and the second substrate pushes the first substrate and the second substrate, so that the first substrate and the second substrate are respectively brought to predetermined positions. Can be moved.
  • FIG. 7B shows that as a result of the above method, the first substrate and the second substrate move in the direction in which the distance between the first substrate and the second substrate increases.
  • the manufacturing method of the imaging device 1 according to aspect 9 of the present invention is the above-described aspect 7 or 8, in which the alignment step of aligning the position of the lens 2a and the imaging element 11 and the position of the lens 2a are fixed. And a fixing step.
  • the imaging device 1 that can obtain an optically high-accuracy image can be realized.
  • the alignment between the lens 2a and the imaging element 11 may be performed by an active alignment method.
  • the lens and the image sensor 11 can be aligned with high accuracy.
  • the fixing step includes temporarily fixing the lens 2a, and completely fixing the lens 2a after the temporary fixing step. And a main fixing step of fixing to the main body.
  • the temporary fixing step and the fixing method in the main fixing step may be different from each other in the above aspect 11.
  • the adhesive to be used can be made different between the temporary fixing step and the main fixing step.
  • the method for manufacturing the imaging device 1 according to aspect 13 of the present invention is an adhesive that hardens in a shorter time than the adhesive used for fixing the lens 2a in the temporary fixing step in the temporary fixing step.
  • the lens 2a may be fixed using an agent.
  • the lens 2a is fixed in a short time using an ultraviolet curable adhesive, and in the main fixing step, the thermosetting adhesive that takes a relatively long time to cure is obtained. Can be used to fix the lens.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Electromagnetism (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Studio Devices (AREA)

Abstract

An imaging device (1) comprising: a sensor mounting substrate (12) to which an imaging element (11) that generates an imaging signal is mounted; an external input/output terminal mounting substrate (17) to which an external input/output terminal (16) is mounted; and a mold part (7) in which a space that is formed between a front case (5) and a rear case (6) to house the sensor mounting substrate (12) and the external input/output terminal mounting substrate (17) is sealed with a resin.

Description

撮像装置Imaging device
 本発明は、撮像装置に関する。 The present invention relates to an imaging apparatus.
 従来、撮像用のレンズ等の光学素子を有する撮影光学系と、撮影光学系により結像された被写体像の取得のための撮像素子と、その撮像素子から出力された電気信号に基づく被写体像に対応したデジタル画像データの生成等を行う電子回路部とを備えた撮像装置が知られている。また、このような撮像装置には、各部が筐体に収容され、その筐体に、取得した画像データを電子回路部から伝送するための接続コードが設けられて構成された撮像装置があることも知られている。 Conventionally, an imaging optical system having an optical element such as an imaging lens, an imaging element for acquiring a subject image formed by the imaging optical system, and a subject image based on an electric signal output from the imaging element An imaging device including an electronic circuit unit that generates corresponding digital image data is known. In addition, such an imaging apparatus includes an imaging apparatus in which each unit is housed in a casing, and the casing is provided with a connection cord for transmitting acquired image data from the electronic circuit unit. Is also known.
 このような撮像装置の中でも、特に車載カメラ、または監視カメラとして用いられるカメラモジュールは、レンズを露出して使用されることから、少なくとも防水性が要求される。さらに、このようなカメラモジュールは、使用時に振動および/または衝撃がカメラモジュールに加わる。このために、レンズ等をはじめとする構成部材の破損を防止する観点から、耐候性、および耐衝撃性を有していることが要求されている。 Among such imaging devices, in particular, a camera module used as an in-vehicle camera or a surveillance camera is used with the lens exposed, and thus at least waterproof is required. Further, such a camera module is subject to vibration and / or shock during use. For this reason, it is required to have weather resistance and impact resistance from the viewpoint of preventing damage to components such as lenses.
 また昨今の、乗用車本体に対するデザイン性の要求から、車載カメラの小型化のニーズがある。 In addition, due to the recent demand for design for passenger car bodies, there is a need for miniaturization of in-vehicle cameras.
 一方、撮像装置を医療分野で用いる内視鏡カメラは、人体内では高湿に晒される可能性があり、特に胃カメラの場合、胃内部では強酸に晒される可能性がある。そのため、内視鏡カメラは、気密性、および耐薬品性を有することが重要となる。また、工業用途の内視鏡カメラについても、同様に高湿や各種の薬品に晒される環境で使用される場合には、気密性、および耐薬品性を有することが重要となる。 On the other hand, an endoscopic camera using an imaging device in the medical field may be exposed to high humidity in the human body, and particularly in the case of a stomach camera, it may be exposed to strong acid in the stomach. Therefore, it is important for the endoscope camera to have airtightness and chemical resistance. Similarly, it is important that an endoscope camera for industrial use has airtightness and chemical resistance when used in an environment exposed to high humidity and various chemicals.
 特許文献1には、撮像装置のハウジング内部が、気密であるか、または、ハウジング内に、不活性ガスもしくは光硬化性樹脂等のような紫外線によって硬化する封止材が充填されることによって、信頼性の向上と小型化とを可能とした撮像装置が開示されている。 In Patent Literature 1, the inside of the housing of the imaging device is airtight, or the housing is filled with a sealing material that is cured by ultraviolet rays such as an inert gas or a photocurable resin. An imaging apparatus capable of improving reliability and downsizing is disclosed.
 密閉構造である撮像装置を小型化した場合には、放熱効率が悪くなり、結果として熱による半導体素子の性能劣化および半田接合部の信頼性の低下が発生することがある。特許文献2は、効率的な放熱と光軸調整を容易にすることを可能とした固体撮像装置及び固体撮像装置の製造方法を開示している。 When the imaging device having a sealed structure is downsized, the heat dissipation efficiency is deteriorated, and as a result, the performance of the semiconductor element is deteriorated due to heat and the reliability of the solder joint portion is sometimes lowered. Patent Document 2 discloses a solid-state imaging device and a method for manufacturing the solid-state imaging device that can facilitate efficient heat dissipation and optical axis adjustment.
日本国公開特許公報「特開昭63-313970号公報(1988年12月22日公開)」Japanese Patent Publication “Japanese Patent Laid-Open No. 63-313970 (published on December 22, 1988)” 日本国公開特許公報「特開2012-49450号公報(2012年03月08日公開)」Japanese Patent Publication “JP 2012-49450 A (published Mar. 08, 2012)”
 しかしながら、上述した先行技術には、耐衝撃性および耐候性などの観点でさらなる改善の余地がある。 However, the above-described prior art has room for further improvement in terms of impact resistance and weather resistance.
 例えば、特許文献1に開示された撮像装置のように、内部が気密であるか、または、内部に不活性ガスが充填されている場合を考える。この場合、内部の部品の発熱、および周辺環境の温度上昇によって、内部の気体の圧力が上昇し、ハウジングに亀裂が生じる虞、および/または、内部の部品が過大な圧力を受けて破損する虞がある。 For example, let us consider a case where the inside is airtight or an inside is filled with an inert gas as in the imaging device disclosed in Patent Document 1. In this case, the internal gas pressure may increase due to the heat generation of the internal components and the temperature increase in the surrounding environment, causing the housing to crack, and / or the internal components being damaged due to excessive pressure. There is.
 また、特許文献1に開示された内視鏡先端部は、充填材によって先端本体が形成されているため、対物レンズ系の光軸中心に関して、充填前の位置合わせは可能であるが、充填工程で充填剤が高圧で充填されるため、初期の位置合わせがずれている虞がある。 Moreover, since the front-end | tip main body is formed with the filler, the endoscope front-end | tip part disclosed by patent document 1 can be aligned before filling with respect to the optical axis center of the objective lens system. Since the filler is filled at a high pressure, the initial alignment may be shifted.
 また、特許文献2には、固体撮像装置の配線基板としてセラミック基板を用いることが開示されている。しかしながら、セラミック基板は、焼成物(いわば瀬戸物)であり、更には基板各所にスルーホールなどの穴が開いているため衝撃に弱く耐衝撃性の必要な用途には向かない。 Patent Document 2 discloses using a ceramic substrate as a wiring substrate of a solid-state imaging device. However, the ceramic substrate is a fired product (so-called “Seto”), and further, since holes such as through holes are formed in various parts of the substrate, it is weak against impact and is not suitable for applications requiring impact resistance.
 また、特許文献2に開示された固体撮像装置では、ケースの開口端に放熱の機構配線基板やモールド部があるため、撮像装置の温度が上昇した場合に、ケース、配線基板、モールド部の各部の熱膨張の差でストレスを生じる。特に開口部分は、撮像装置の底面部と片側であるためカメラが変形する可能性がある。例えば紙コップの開口部分を指で押さえると容易に変形するのと同様である。 Further, in the solid-state imaging device disclosed in Patent Document 2, since there is a heat dissipation mechanism wiring board and a mold part at the opening end of the case, when the temperature of the imaging apparatus rises, each part of the case, the wiring board, and the molding part Stress is caused by the difference in thermal expansion. In particular, since the opening is on one side with the bottom surface of the imaging apparatus, the camera may be deformed. For example, it is the same as the case where the opening portion of the paper cup is easily deformed when pressed with a finger.
 本発明は、上記の問題点に鑑みてなされたものであり、その目的は、耐衝撃性および耐候性を備えた撮像装置を実現することにある。 The present invention has been made in view of the above-described problems, and an object thereof is to realize an imaging apparatus having impact resistance and weather resistance.
 上記の課題を解決するために、本発明の一態様に係る撮像装置は、レンズと、上記レンズを介して入射した光から撮像信号を生成する撮像素子が実装された第1基板と、上記撮像信号を外部に対し入出力する外部入出力端子が実装された第2基板と、上記レンズを格納した第1ケースと、上記第1ケースと組み合わされる第2ケースと、上記第1基板および上記第2基板が格納されるように上記第1ケースと上記第2ケースとの間に形成された空間が樹脂によって封止された樹脂封止部とを備えていることを特徴としている。 In order to solve the above problems, an imaging apparatus according to one embodiment of the present invention includes a lens, a first substrate on which an imaging element that generates an imaging signal from light incident through the lens is mounted, and the imaging A second substrate on which an external input / output terminal for inputting / outputting signals to / from the outside is mounted; a first case storing the lens; a second case combined with the first case; the first substrate; A space formed between the first case and the second case so as to store two substrates is provided with a resin sealing portion sealed with resin.
 本発明の一態様によれば、本発明の一実施形態に係る撮像装置は、耐衝撃性および耐候性を備えるという効果を奏する。 According to one aspect of the present invention, an imaging device according to an embodiment of the present invention has an effect of having impact resistance and weather resistance.
(a)は本発明の第1実施形態に係る撮像装置の概略構成を示す上面図であり、(b)は上記撮像装置の概略構成を示す側面図であり、(c)は(a)のA-A線矢視断面図である。(A) is a top view which shows schematic structure of the imaging device which concerns on 1st Embodiment of this invention, (b) is a side view which shows schematic structure of the said imaging device, (c) is (a). It is AA arrow sectional drawing. 上記撮像装置の前部ケースを含む部分を一方向から見た外観構成示す斜視図である。It is a perspective view which shows the external appearance structure which looked at the part containing the front case of the said imaging device from one direction. 上記撮像装置の前部ケースを含む部分を他の方向から見た外観構成を示す斜視図である。It is a perspective view which shows the external appearance structure which looked at the part containing the front case of the said imaging device from the other direction. 上記撮像装置の後部ケースを含む部分を一方向から見た外観構成を示す斜視図である。It is a perspective view which shows the external appearance structure which looked at the part containing the rear case of the said imaging device from one direction. 上記撮像装置の後部ケースを含む部分を他の方向から見た外観構成を示す斜視図である。It is a perspective view which shows the external appearance structure which looked at the part containing the rear case of the said imaging device from the other direction. 上記撮像装置のモールド樹脂封止前の外観構成を示す斜視図である。It is a perspective view which shows the external appearance structure before mold resin sealing of the said imaging device. (a)および(b)は上記撮像装置のモールド樹脂の充填工程を示す断面図である。(A) And (b) is sectional drawing which shows the filling process of the mold resin of the said imaging device. 上記撮像装置のモールド樹脂封止後の概略構成を斜視図である。It is a perspective view of a schematic configuration after molding resin sealing of the imaging device. 本発明の第2実施形態に係る、金属シースを含む撮像装置の組み立てを示す斜視図である。It is a perspective view which shows the assembly of the imaging device containing a metal sheath based on 2nd Embodiment of this invention. (a)は基板挿入口を備える上記金属シースの外観構成を示す斜視図であり、(b)は扉を開いた状態の上記金属シースの外観構成を示す斜視図である。(A) is a perspective view which shows the external appearance structure of the said metal sheath provided with a board | substrate insertion port, (b) is a perspective view which shows the external appearance structure of the said metal sheath in the state which opened the door. (a)~(c)は異なる樹脂逃げ孔を有する上記金属シースの外観構成を示す斜視図である。(A)-(c) is a perspective view which shows the external appearance structure of the said metal sheath which has a different resin escape hole. (a)および(b)はフィンを備える上記金属シースの内部を透過して示す斜視図である。(A) And (b) is a perspective view which permeate | transmits and shows the inside of the said metal sheath provided with a fin. (a)および(b)は上記金属シースの異なるフィンの形状を示す斜視図である。(A) And (b) is a perspective view which shows the shape of the fin from which the said metal sheath differs. 上記金属シースから形成されたフィンを備える金属シースの概略構成を示す外観図である。It is an external view which shows schematic structure of a metal sheath provided with the fin formed from the said metal sheath. 外部にフィンを備える上記金属シースを含む撮像装置の組み立てを示す斜視図である。It is a perspective view which shows the assembly of the imaging device containing the said metal sheath provided with a fin outside. 上記金属シースから形成されたフィンを外部に備える金属シースの概略構成を示す外観図である。It is an external view which shows schematic structure of the metal sheath which equips the exterior with the fin formed from the said metal sheath. 本発明の第3実施形態に係る撮像装置の製造工程を示すフロー工程図である。It is a flow process figure showing a manufacturing process of an imaging device concerning a 3rd embodiment of the present invention. (a)は図17のフロー工程図における位置合わせの工程で使用されるアクティブ・アライメント法を示す図であり、(b)はアクティブ・アライメント法によるレンズの位置調整を示す図である。(A) is a figure which shows the active alignment method used at the process of the alignment in the flowchart of FIG. 17, (b) is a figure which shows the position adjustment of the lens by an active alignment method. (a)および(b)は本発明の第3実施形態に係る撮像装置のレンズユニットの概略構成を示す外観図である。(A) And (b) is an external view which shows schematic structure of the lens unit of the imaging device which concerns on 3rd Embodiment of this invention.
 以下、本発明の実施の形態について、詳細に説明する。 Hereinafter, embodiments of the present invention will be described in detail.
 なお、以下では、便宜上、レンズ2a側を前方とし、外部入出力端子16側を後方として説明する。 In the following, for convenience, the lens 2a side is assumed to be the front, and the external input / output terminal 16 side is assumed to be the rear.
 〔第1実施形態〕
 以下、本発明の第1実施形態について、図1~図9を用いて説明する。
[First Embodiment]
Hereinafter, a first embodiment of the present invention will be described with reference to FIGS.
 (1:撮像装置1の概要)
 (1-1:外観構造)
 図1の(a)は本発明の第1実施形態に係る撮像装置1の概略構成を示す上面図であり、(b)は上記撮像装置1の概略構成を示す側面図であり、(c)は(a)のA-A線矢視断面図である。
(1: Overview of imaging device 1)
(1-1: Appearance structure)
1A is a top view illustrating a schematic configuration of the imaging apparatus 1 according to the first embodiment of the present invention, FIG. 1B is a side view illustrating the schematic configuration of the imaging apparatus 1, and FIG. FIG. 3A is a sectional view taken along line AA in FIG.
 図1の(a)および(b)に示すように、撮像装置1は、前部ケース5(第1ケース)と、後部ケース6(第2ケース)と、モールド部7(樹脂封止部)、とを備える。前方より、前部ケース5、モールド部7、後部ケース6の順に配置されており、モールド部7は、前部ケース5と後部ケース6とに挟持されている。 As shown in FIGS. 1A and 1B, the imaging device 1 includes a front case 5 (first case), a rear case 6 (second case), and a mold portion 7 (resin sealing portion). And. From the front, the front case 5, the mold part 7, and the rear case 6 are arranged in this order, and the mold part 7 is sandwiched between the front case 5 and the rear case 6.
 前部ケース5の内部には、レンズ2aを備えたレンズユニット2が格納される。さらに、後部ケース6には、後述する外部入出力端子実装基板17(第2基板)から出力される画像データを外部へ転送するとともに、内部電子部品へ電源を供給するための外部接続ケーブル10が取り付けられている。外部接続ケーブル10は、後部ケース6に取り付けられる一端側でケーブル保護材8によって外周面が保護されており、他端側にコネクタ9を備えている。 In the front case 5, the lens unit 2 including the lens 2a is stored. Further, the rear case 6 has an external connection cable 10 for transferring image data output from an external input / output terminal mounting board 17 (second board), which will be described later, to the outside and supplying power to the internal electronic components. It is attached. The external connection cable 10 has an outer peripheral surface protected by a cable protection member 8 on one end side attached to the rear case 6 and includes a connector 9 on the other end side.
 (1-2:内部構造)
 図1の(b)および(c)に示すように、前部ケース5内部には、レンズユニット2、リッドガラス3、および撮像素子11を実装しているセンサ実装基板12(第1基板)が、格納されている。センサ実装基板12は、前部ケース5のモールド部7側(後方側)の端部に配置されている。撮像素子11は、センサ実装基板12の実装面(前方側の面)に実装されており、受光面を前方側に向けている。撮像素子11としては、特に限定されず、CMOSセンサ、CCDセンサ、ならびに、可視光以外の赤外線、紫外線、およびX線受光するものなど、であってもよい。
(1-2: Internal structure)
As shown in FIGS. 1B and 1C, in the front case 5, a sensor mounting board 12 (first board) on which the lens unit 2, the lid glass 3, and the imaging element 11 are mounted is provided. Stored. The sensor mounting board 12 is disposed at the end of the front case 5 on the mold part 7 side (rear side). The image sensor 11 is mounted on the mounting surface (front surface) of the sensor mounting substrate 12, and the light receiving surface faces the front side. The imaging element 11 is not particularly limited, and may be a CMOS sensor, a CCD sensor, and an element that receives infrared rays other than visible light, ultraviolet rays, and X-rays.
 リッドガラス3は、撮像素子11の受光面上配置されている。リッドガラス3は、CMOSセンサを保護する機能とIR(赤外光)カットフィルターの機能とを兼ね備えている。リッドガラス3は、IRカットフィルター以外に、AR(反射防止)コートフィルターおよび/またはバンドパスフィルターの機能を備えてもよい。 The lid glass 3 is disposed on the light receiving surface of the image sensor 11. The lid glass 3 has both a function of protecting the CMOS sensor and a function of an IR (infrared light) cut filter. The lid glass 3 may have a function of an AR (antireflection) coat filter and / or a band pass filter in addition to the IR cut filter.
 レンズユニット2は、リッドガラス3の前方側の面上に配置されている。レンズユニット2は、単一のレンズ2aと、レンズ2aの周囲でレンズ2aを保持する樹脂製のレンズホルダー2bとを含んでいる。なお、レンズユニット2に含まれるレンズ2aは、単一ではなく複数であってもよい。また、図1および後述する図7では、撮像装置1が固定焦点方式である構成、言い換えるとレンズユニット2が固定された構成、を示している。しかし、撮像装置1は、固定焦点方式に限らず自動焦点方式であってもよい。自動焦点方式の撮像装置1において、レンズユニット2は、前部ケース5内で、AF(Autofocus)機構、ズーム機構、および手振れ補正機構などを含んでいてもよい。 The lens unit 2 is disposed on the front surface of the lid glass 3. The lens unit 2 includes a single lens 2a and a resin lens holder 2b that holds the lens 2a around the lens 2a. The lens unit 2 may include a plurality of lenses 2a instead of a single lens 2a. 1 and FIG. 7 to be described later show a configuration in which the imaging apparatus 1 is a fixed focus method, in other words, a configuration in which the lens unit 2 is fixed. However, the imaging apparatus 1 is not limited to the fixed focus method, and may be an auto focus method. In the autofocus imaging device 1, the lens unit 2 may include an AF (Autofocus) mechanism, a zoom mechanism, a camera shake correction mechanism, and the like in the front case 5.
 後部ケース6内部には、外部入出力端子実装基板17が、格納されている。 In the rear case 6, an external input / output terminal mounting board 17 is stored.
 外部入出力端子実装基板17は、後部ケース6のモールド部7側(前方側)の端部に配置されている。外部入出力端子実装基板17の一方(モールド部7側)の実装面には、画像処理用IC13、コンデンサおよび抵抗等の受動素子15が実装される。また、外部入出力端子実装基板17の他方の実装面には、通信用IC14、外部入出力端子16、電源用およびその他IC(不図示)などが実装される。外部入出力端子実装基板17には、少なくとも外部に対して入出力を行なう外部入出力端子16が実装されており、それ以外のICおよび/または素子はセンサ実装基板12に実装されてもよい。 The external input / output terminal mounting substrate 17 is arranged at the end of the rear case 6 on the mold part 7 side (front side). An image processing IC 13, a capacitor and a passive element 15 such as a resistor are mounted on one mounting surface of the external input / output terminal mounting substrate 17 (on the mold portion 7 side). On the other mounting surface of the external input / output terminal mounting substrate 17, a communication IC 14, an external input / output terminal 16, a power source and other ICs (not shown) are mounted. The external input / output terminal mounting substrate 17 is mounted with at least an external input / output terminal 16 for performing input / output with respect to the outside, and other ICs and / or elements may be mounted on the sensor mounting substrate 12.
 なお、外部入出力端子実装基板17は、センサ実装基板12と別体に形成されている。これに限らず、外部入出力端子実装基板17は、センサ実装基板12と一体に形成されていてもよい。一体に形成される場合としては、センサ実装基板12と外部入出力端子実装基板17とは、硬質材料(例えば、エポキシ樹脂)によってケース内部に収納されるサイズで一体化される場合がある。また、一体に形成される場合としては、センサ実装基板12と外部入出力端子実装基板17とは、一般的にリジットフレキ基板と称される基板として形成され、折り曲げて内蔵される場合などがある。ここで、リジットフレキ基板とは、フレキシブル基板を硬質材料基板で挟んだ(言い換えると、サンドイッチした)構造の基板でフレキシブル基板の露出した部分で可撓性を有する。上述のように、センサ実装基板12と外部入出力端子実装基板17とが一体化されることによって、センサ実装基板12と外部入出力端子実装基板17とが格納される空間は、より小さくなる。このため、撮像装置1のサイズを小さくすることができる。また、部品点数を削減することができ、それによって低価格のカメラを提供できる。 The external input / output terminal mounting board 17 is formed separately from the sensor mounting board 12. However, the external input / output terminal mounting substrate 17 may be formed integrally with the sensor mounting substrate 12. As a case where they are integrally formed, the sensor mounting board 12 and the external input / output terminal mounting board 17 may be integrated with a hard material (for example, epoxy resin) so as to be housed in a case. Further, as a case where they are integrally formed, the sensor mounting board 12 and the external input / output terminal mounting board 17 may be formed as a board generally referred to as a rigid-flex board, and may be folded and incorporated. . Here, the rigid flexible substrate is a substrate having a structure in which a flexible substrate is sandwiched between hard material substrates (in other words, sandwiched), and has flexibility at an exposed portion of the flexible substrate. As described above, by integrating the sensor mounting board 12 and the external input / output terminal mounting board 17, the space for storing the sensor mounting board 12 and the external input / output terminal mounting board 17 becomes smaller. For this reason, the size of the imaging device 1 can be reduced. In addition, the number of parts can be reduced, thereby providing a low-cost camera.
 モールド部7には、センサ実装基板12と外部入出力端子実装基板17との間の電気信号および電源を中継する中継配線19が格納される。上記中継配線19は、フレキシブル基板で構成されるが、リボンケーブルであってもよく、または複数本の単線であってもよい。 The mold part 7 stores a relay wiring 19 that relays an electrical signal and a power supply between the sensor mounting board 12 and the external input / output terminal mounting board 17. The relay wiring 19 is composed of a flexible substrate, but may be a ribbon cable or a plurality of single wires.
 (1-3:情報伝達)
 撮像装置1において、レンズ2aに入射した光が、リッドガラス3を透過して撮像素子11の受光面に達すると、撮像素子11は、各セルの受光量に応じた電気信号(撮像信号)を生成して出力する。この電気信号は、センサ実装基板12から中継配線19を介して外部入出力端子実装基板17に伝送される。
(1-3: Information transmission)
In the imaging device 1, when light incident on the lens 2 a passes through the lid glass 3 and reaches the light receiving surface of the imaging device 11, the imaging device 11 outputs an electrical signal (imaging signal) corresponding to the amount of light received by each cell. Generate and output. This electrical signal is transmitted from the sensor mounting board 12 to the external input / output terminal mounting board 17 via the relay wiring 19.
 外部入出力端子実装基板17において、上記電気信号は、実装された画像処理用IC13によって所定の処理が施された後、画像データとして外部入出力端子16から外部接続ケーブル10を介して外部の機器へ伝達される。上記画像処理用IC13は、撮像素子11からの電気信号を、外部機器における処理に応じたフォーマットに変換することができる。この結果として通信するデータ量を軽減することができる。 In the external input / output terminal mounting substrate 17, the electrical signal is subjected to predetermined processing by the mounted image processing IC 13, and then is externally connected as image data from the external input / output terminal 16 via the external connection cable 10. Is transmitted to. The image processing IC 13 can convert the electrical signal from the image sensor 11 into a format corresponding to the processing in the external device. As a result, the amount of data to be communicated can be reduced.
 画像処理用IC13による画像フォーマットの変換について詳しく説明する。撮像素子11から出力される電気信号の画像フォーマットとしては、例えばCMOSセンサなどを使用している場合では、RAW画像の画像フォーマットである。RAW画像は、CMOSなどのRGBなどの画素の出力をA/D変換後にそのまま出力した画像フォーマットである。しかしながら、RAW画像は、車内モニタ(液晶ディスプレイ)などの外部機器において、そのまま使用することはできない。そのため、上記外部機器では、RAW画像を所定のフォーマットに変換(現像)した後に、変換後の画像データに基づいて外部機器上で画像を表示する必要がある。 The image format conversion by the image processing IC 13 will be described in detail. The image format of the electrical signal output from the image sensor 11 is the image format of the RAW image when, for example, a CMOS sensor is used. The RAW image is an image format in which the output of pixels such as RGB such as CMOS is output as it is after A / D conversion. However, the RAW image cannot be used as it is in an external device such as an in-vehicle monitor (liquid crystal display). Therefore, after converting (developing) a RAW image into a predetermined format, the external device needs to display an image on the external device based on the converted image data.
 また、RAW画像は、非圧縮画像であるため、撮像素子11の画素数が増えるにしたがって画像データの転送量が膨大になり、そのため、高い転送速度が必要となる。また、RAW画像は、静止画像である。これに対し、一秒間に30枚程度の頻度(フレームレート)で連続した画像データを外部機器へ転送し、外部機器において転送された画像データに基づいて連続した画像を上記フレームレートで表示する。これにより、アニメーションのように、静止画像を動画像として表示することが可能となる。故に、撮像素子11において得られた画像データを基に外部機器において動画像のように再生する場合には、より高い転送速度が必要となる。これらの問題点は、画像処理用IC13が画像フォーマット変換ハードウェアを備えることにより、解決される。具体的には、画像処理用IC13において、撮像素子11から出力されたRAW画像の画像フォーマットを、任意の外部機器が処理可能な画像フォーマットに変換して、変換後の画像フォーマットを有する画像データを出力する。これにより、外部機器は、出力された画像データを、画像フォーマットを変換することなく使用でき、また、高い転送速度が不必要となる利点を有する。 Also, since the RAW image is an uncompressed image, the transfer amount of image data becomes enormous as the number of pixels of the image sensor 11 increases, and therefore, a high transfer speed is required. The RAW image is a still image. On the other hand, continuous image data is transferred to an external device at a frequency (frame rate) of about 30 frames per second, and continuous images are displayed at the frame rate based on the image data transferred in the external device. Thereby, it is possible to display a still image as a moving image like an animation. Therefore, a higher transfer speed is required when the external device reproduces a moving image based on the image data obtained by the image sensor 11. These problems are solved when the image processing IC 13 includes image format conversion hardware. Specifically, the image processing IC 13 converts the image format of the RAW image output from the image sensor 11 into an image format that can be processed by an arbitrary external device, and converts the image data having the converted image format. Output. Thus, the external device can use the output image data without converting the image format, and has an advantage that a high transfer rate is unnecessary.
 画像処理用IC13において変換される画像フォーマットとしては、特に制限はなく、例えば、M-Jpeg(Motion-Jpeg)があげられる。M-Jpegは、静止画像の圧縮フォーマットであるJpegにフォーマットを変換した後、連続出力するフォーマットである。M-Jpegは比較的データの圧縮率が低いが高画質であり、かつ、圧縮処理量が少ないフォーマットである。外部機器が、転送された画像データをメモリ等へ蓄積することにより再生する方式のアプリケーションを使用している場合には、より高い圧縮率で圧縮された画像フォーマットが必要とされる。画像データをより高い圧縮率で圧縮する方法としては、例えば、ITU-Tにより国際規格化された圧縮方法(H.261、H.262、H.263)、MPEGにより標準化された圧縮方法(MPEG-1、MPEG-2、MPEG-4)、または、DivXなどその他の圧縮方法があげられる。 The image format converted by the image processing IC 13 is not particularly limited, and examples thereof include M-Jpeg (Motion-Jpeg). M-Jpeg is a format for continuous output after converting the format to Jpeg, which is a still image compression format. M-Jpeg is a format with a relatively low data compression rate but high image quality and a small amount of compression processing. When an external device uses an application that reproduces the transferred image data by storing it in a memory or the like, an image format compressed at a higher compression rate is required. As a method of compressing image data at a higher compression rate, for example, a compression method standardized by ITU-T (H.261, H.262, H.263), a compression method standardized by MPEG (MPEG -1, MPEG-2, MPEG-4), or other compression methods such as DivX.
 画像処理用IC13において処理された画像データは、外部機器に転送される際に、通信用IC14において規定された、撮像装置1と外部機器とのデータ受け渡し手順(プロトコル)にのっとって転送される。使用される転送プロトコルとしては特に制限されないが、例えば、インターネットに使用されているPCT/IP(TransmissionControl Protocol/Internet Protocol)に類するもの、USB(Universal Serial Bus)に類するもの、その他規格化されている標準プロトコルやその他専用のカスタムプロトコルでもよい。 The image data processed in the image processing IC 13 is transferred according to a data transfer procedure (protocol) between the imaging device 1 and the external device defined in the communication IC 14 when transferred to the external device. The transfer protocol used is not particularly limited, but for example, those similar to PCT / IP (Transmission Control Protocol / Internet Protocol) used in the Internet, those similar to USB (Universal Serial Bus), and other standardized A standard protocol or other custom protocol may be used.
 また、撮像装置1の管理が上述のプロトコルを介して外部から行われることが可能であってもよい。上記撮像装置1の管理とは、(i)撮像装置1への上記プロトコルに必要なアドレスおよびIDコードの割り振り、設定ならびに変更、(ii)画像データの転送開始、および転送停止、(iii)画像フォーマットの変更および転送レートの変更、(iii)カメラゲインの変更、(iv)各種パラメータの送受信、電源ON、OFFおよびリセット、などである。 Further, it may be possible to manage the imaging apparatus 1 from the outside via the above-described protocol. The management of the imaging device 1 includes (i) allocation, setting and change of addresses and ID codes necessary for the protocol to the imaging device 1, (ii) transfer start and transfer stop of image data, (iii) image For example, format change and transfer rate change, (iii) camera gain change, (iv) transmission / reception of various parameters, power ON / OFF and reset.
 (2:ケース)
 (2-1:前部ケース5)
 図2は、上記撮像装置1の前部ケース5を含む部分を一方向から見た外観構成示す斜視図である。図3は、上記撮像装置1の前部ケース5を含む部分を他の方向から見た外観構成を示す斜視図である。
(2: Case)
(2-1: Front case 5)
FIG. 2 is a perspective view showing an external configuration of a part including the front case 5 of the imaging apparatus 1 as viewed from one direction. FIG. 3 is a perspective view showing an external configuration of a part including the front case 5 of the imaging apparatus 1 as seen from another direction.
 図2に示すように、前部ケース5は、レンズユニット収納部20、台座部22、および前部接合フレーム部23、を備えている。 As shown in FIG. 2, the front case 5 includes a lens unit storage portion 20, a pedestal portion 22, and a front joint frame portion 23.
 台座部22は、所定の厚みを有する六面体を成す部分であり、正方形を成す2つの面を有している。その一方の面には、レンズユニット収納部20が配置され、他方の面には、前部接合フレーム部23が配置されている。また、台座部22の内部は、後述するレンズユニット収納部20のレンズユニット嵌入孔21とつながるように貫通した空同部を有している。 The pedestal portion 22 is a hexahedron portion having a predetermined thickness, and has two faces that form a square. The lens unit housing portion 20 is disposed on one surface, and the front joining frame portion 23 is disposed on the other surface. Further, the interior of the pedestal portion 22 has a hollow portion that penetrates so as to be connected to a lens unit insertion hole 21 of the lens unit housing portion 20 described later.
 レンズユニット収納部20は、円筒状に形成されており、その内部に、レンズユニット2を収納するためのレンズユニット嵌入孔21を有している。レンズユニット嵌入孔21の端部は、レンズユニット2の光入射部が露出するように、開口している。 The lens unit storage portion 20 is formed in a cylindrical shape, and has a lens unit insertion hole 21 for storing the lens unit 2 therein. The end of the lens unit insertion hole 21 is opened so that the light incident part of the lens unit 2 is exposed.
 レンズユニット収納部20の形状としては、レンズユニット2が収納できる形状であれば、円筒状に限定されず、外形が角柱形、円錐形、および角錐台などを成す筒状であってもよい。 The shape of the lens unit storage portion 20 is not limited to a cylindrical shape as long as the lens unit 2 can be stored, and the outer shape may be a cylindrical shape having a prism shape, a conical shape, a truncated pyramid, or the like.
 また、レンズユニット嵌入孔21の大きさは、レンズユニット2が格納できる大きさであれば、特に限定されない。 Further, the size of the lens unit insertion hole 21 is not particularly limited as long as the lens unit 2 can be stored.
 レンズユニット収納部20の外壁からレンズユニット嵌入孔21までの厚みは、耐衝撃性および耐候性の効果を奏する厚みであれば、特に限定されない。 The thickness from the outer wall of the lens unit housing portion 20 to the lens unit insertion hole 21 is not particularly limited as long as it has the effects of impact resistance and weather resistance.
 レンズユニット嵌入孔21には、レンズユニット2が嵌入されて格納される。レンズユニット嵌入孔21とレンズユニット2との接続構造は、特に限定されず、単にはめ込まれてもよく、螺合してかみ合ってもよく、または、これらの方法が組み合わされてかみ合ってもよい。また、レンズユニット嵌入孔21とレンズユニット2の係合は、光学位置合わせできる程度に余裕があることが好ましい。 The lens unit 2 is inserted and stored in the lens unit insertion hole 21. The connection structure between the lens unit insertion hole 21 and the lens unit 2 is not particularly limited, and may be simply fitted, may be engaged by screwing, or may be engaged by a combination of these methods. Further, it is preferable that the lens unit insertion hole 21 and the lens unit 2 have a sufficient margin for optical alignment.
 レンズユニット2がレンズユニット嵌入孔21に単にはめ込まれる場合には、レンズユニット嵌入孔21を形成するレンズユニット収納部20の内周面は、凹凸のない曲面であってもよく、または、レンズユニット2とかみ合うように溝を備えていてもよい。 When the lens unit 2 is simply fitted into the lens unit insertion hole 21, the inner peripheral surface of the lens unit housing portion 20 that forms the lens unit insertion hole 21 may be a curved surface without unevenness, or the lens unit. You may provide the groove | channel so that 2 may be meshed.
 レンズユニット嵌入孔21とレンズユニット2が螺合してかみ合う場合には、レンズユニット収納部20の内周面は、レンズユニット2の外周面に形成された雄ねじと螺合してかみ合うように、雌ねじが設けられている。雄ねじのねじ山の高さや数は、特に限定されない。 When the lens unit insertion hole 21 and the lens unit 2 are engaged with each other, the inner peripheral surface of the lens unit housing portion 20 is engaged with the male screw formed on the outer peripheral surface of the lens unit 2 so as to be engaged. An internal thread is provided. The height and number of threads of the male screw are not particularly limited.
 台座部22の形状としては、特に限定されず、図3に示すように六面体でもよく、直方体、円柱形、角柱形および角錐台などでもよい。また、台座部22の厚さとしては、特に限定されない。 The shape of the pedestal portion 22 is not particularly limited, and may be a hexahedron as shown in FIG. 3, a rectangular parallelepiped, a cylinder, a prism, a pyramid, or the like. Further, the thickness of the pedestal portion 22 is not particularly limited.
 前部接合フレーム部23は、後部ケース6と接合される部分であり、台座部22の正方形の面から後方に伸びるように形成されている。また、前部接合フレーム部23は、図3に示すように、その内側に、センサ実装基板12を当接させて配置するためのセンサ実装基板当接部25を備えている。また、前部接合フレーム部23は、後述する後部ケース6に備えられた後部切り欠き31(図4および図5参照)とともに樹脂充填口33(図6参照)を形成する、前部切り欠き24が対向する位置の2箇所に形成されている。 The front joint frame part 23 is a part joined to the rear case 6 and is formed to extend rearward from the square surface of the pedestal part 22. Further, as shown in FIG. 3, the front joint frame portion 23 includes a sensor mounting board contact portion 25 for placing the sensor mounting board 12 in contact with the inside thereof. Further, the front joining frame portion 23 forms a resin filling port 33 (see FIG. 6) together with a rear notch 31 (see FIGS. 4 and 5) provided in the rear case 6 described later. Are formed at two positions at opposite positions.
 前部接合フレーム部23は、内部にセンサ実装基板12を配置するために、センサ実装基板12が挿入される必要があるが、図3のように、前部接合フレーム部23の底面が開口している場合には、センサ実装基板12は当該開口から挿入されることができる。 In order to arrange the sensor mounting substrate 12 inside the front bonding frame portion 23, the sensor mounting substrate 12 needs to be inserted, but as shown in FIG. 3, the bottom surface of the front bonding frame portion 23 is opened. In such a case, the sensor mounting board 12 can be inserted from the opening.
 前部接合フレーム部23の形状は、後部接合フレーム部30と嵌め合いなどで接合でき、かつ、センサ実装基板12を格納できる限り特に限定されない。 The shape of the front joint frame portion 23 is not particularly limited as long as it can be joined to the rear joint frame portion 30 by fitting and the sensor mounting substrate 12 can be stored.
 前部ケース5は、樹脂から成形されてもよく、または金属から成形されてもよい。 The front case 5 may be molded from resin or may be molded from metal.
 前部ケース5を形成する樹脂(第1樹脂)としては、熱可塑性樹脂、熱硬化性樹脂、高耐熱樹脂、もしくは高耐久樹脂などが上げられる。 As the resin (first resin) forming the front case 5, a thermoplastic resin, a thermosetting resin, a high heat resistant resin, a highly durable resin, or the like can be used.
 上記熱可塑性樹脂としては、ポリ塩化ビニル(PVC)、ポリ塩化ビニリデン(PVDC)、ポリエチレン(PE)、ポリプロピレン(PP)、ポリスチレン(PS)、ABS樹脂、メタクリル樹脂(PMMA)、ナイロン66、ポリアセタール(POM)、ポリカーボネート(PC)、ポリフッ化ビニリデン(PVDF)などが上げられる。 Examples of the thermoplastic resin include polyvinyl chloride (PVC), polyvinylidene chloride (PVDC), polyethylene (PE), polypropylene (PP), polystyrene (PS), ABS resin, methacrylic resin (PMMA), nylon 66, polyacetal ( POM), polycarbonate (PC), polyvinylidene fluoride (PVDF), and the like.
 上記熱硬化性樹脂としては、フェノール樹脂、ユリア樹脂、メラミン樹脂、不飽和ポリエステル、エポキシ樹脂、シリコーン樹脂、ポリウレタン樹脂などが上げられる。 Examples of the thermosetting resin include phenol resin, urea resin, melamine resin, unsaturated polyester, epoxy resin, silicone resin, polyurethane resin and the like.
 上記高耐熱樹脂および高耐久樹脂としては、ポリスルホン(PSU)、ポリエーテルスルホン(PES)、ポリフェニレンサルファイド(PPS)、ポリアリレート(PAR)、ポリアミドイミド(PAI)、ポリエーテルイミド(PEI)、ポリエーテルエーテルケトン(PEEK)、ポリイミド(PI)、液晶ポリマー(LC)、ポリテトラフロロエチレン(PTFE)などが上げられる。 Examples of the high heat resistance resin and high durability resin include polysulfone (PSU), polyethersulfone (PES), polyphenylene sulfide (PPS), polyarylate (PAR), polyamideimide (PAI), polyetherimide (PEI), and polyether. Examples include ether ketone (PEEK), polyimide (PI), liquid crystal polymer (LC), polytetrafluoroethylene (PTFE), and the like.
 なお、特許文献1に開示された撮像装置のように、内部に、光硬化性樹脂のような紫外線によって硬化する封止材が充填される場合を考える。この場合、実際には紫外線は波長が短いために、内部に充填された封止材の、紫外線照射部から遠い部分、および/または部品の陰になる部分では、充填された封止材が充分に硬化しない虞がある。従って、前部ケース5を形成する樹脂としては、光硬化性樹脂を用いないことが好ましい。 Note that, as in the imaging device disclosed in Patent Document 1, consider a case where the inside is filled with a sealing material that is cured by ultraviolet rays, such as a photocurable resin. In this case, since the wavelength of ultraviolet rays is actually short, the filled sealing material is sufficient in the part of the sealing material filled in the inside of the part far from the ultraviolet irradiation part and / or in the part behind the part. There is a risk that it will not cure. Therefore, it is preferable not to use a photocurable resin as the resin forming the front case 5.
 また、レンズユニット収納部20、台座部22、および前部接合フレーム部23は、それぞれ同じ第1樹脂から成形されてもよく、または、それぞれ異なった第1樹脂から成形されてもよい。また、レンズユニット収納部20、台座部22、および前部接合フレーム部23は、それぞれ同じ金属から成形されてもよく、または、それぞれ異なった金属から成形されてもよい。 Also, the lens unit housing part 20, the pedestal part 22, and the front joining frame part 23 may be molded from the same first resin, or may be molded from different first resins. Moreover, the lens unit storage part 20, the base part 22, and the front part joining frame part 23 may each be shape | molded from the same metal, or may each be shape | molded from a different metal.
 (2-2:後部ケース6)
 図4は、上記撮像装置1の後部ケース6を含む部分を一方向から見た外観構成を示す斜視図である。図5は、上記撮像装置1の後部ケース6を含む部分を他の方向から見た外観構成を示す斜視図である。
(2-2: Rear case 6)
FIG. 4 is a perspective view showing an external configuration of a portion including the rear case 6 of the imaging device 1 as viewed from one direction. FIG. 5 is a perspective view showing an external configuration of a portion including the rear case 6 of the imaging device 1 as seen from another direction.
 図4に示すように、後部ケース6は、ケース主部26および後部接合フレーム部30を備えている。 As shown in FIG. 4, the rear case 6 includes a case main portion 26 and a rear joint frame portion 30.
 図4に示すように、ケース主部26は、六面体を成す部分であり、内部が空洞に形成されている。後部ケース6の後端面には、外部接続ケーブル10のケーブル保護材8を嵌入させるためのケーブル嵌入孔28が貫通するように形成されている。また、後部ケース6は、内部に、ケーブル保護材係留用突起29を備える。 As shown in FIG. 4, the case main part 26 is a hexahedron part, and the inside is formed in a cavity. A cable insertion hole 28 for inserting the cable protective material 8 of the external connection cable 10 is formed in the rear end surface of the rear case 6 so as to penetrate therethrough. Further, the rear case 6 includes a cable protection material anchoring protrusion 29 inside.
 ケーブル嵌入孔28の開口部付近の内周面には、Oリング取り付け溝27が形成されている。Oリング取り付け溝27には、ケーブル保護材8とケーブル嵌入孔28との隙間から水および/またはその他薬剤が後部ケース6内部に侵入することを防ぐためのOリングが取り付けられる。 An O-ring mounting groove 27 is formed on the inner peripheral surface near the opening of the cable insertion hole 28. An O-ring for preventing water and / or other chemicals from entering the rear case 6 from the gap between the cable protection member 8 and the cable insertion hole 28 is attached to the O-ring attachment groove 27.
 ケーブル保護材係留用突起29は、ケーブル嵌入孔28を形成する後部ケース6の内周面から後方に伸びる伸長部と、伸長部の端部からケーブル嵌入孔28の中心方向に垂直に折れ曲がる突出部を有している。 The cable-protecting-material anchoring protrusions 29 are extended portions extending rearward from the inner peripheral surface of the rear case 6 forming the cable insertion holes 28, and protruding portions bent vertically from the end portions of the extended portions toward the center of the cable insertion holes 28. have.
 ケーブル保護材8は、ケーブル保護材8の端部がケーブル保護材係留用突起29と当接することで、それよりも奥への挿入が制限される。 The cable protection material 8 is restricted from being inserted deeper than the end of the cable protection material 8 in contact with the cable protection material mooring protrusion 29.
 ケーブル嵌入孔28の内周方向に沿ったケーブル保護材係留用突起29の幅は、ケーブル保護材8を係留できる強度を有する限り、特に限定されない。例えば、ケーブル嵌入孔28の内周全てからケーブル保護材係留用突起29が形成されてもよく、または、図4に示すように、ケーブル嵌入孔28の内周の一部分からケーブル保護材係留用突起29が形成されてもよい。ケーブル嵌入孔28の内周の一部分からケーブル保護材係留用突起29が形成される場合には、ケーブル保護材係留用突起29は、図4に示すように1つであってもよく、または、ケーブル嵌入孔28の内周上に2つ以上備えてもよい。 The width of the cable protection material anchoring protrusion 29 along the inner peripheral direction of the cable insertion hole 28 is not particularly limited as long as it has a strength capable of anchoring the cable protection material 8. For example, the cable protection material anchoring protrusion 29 may be formed from the entire inner periphery of the cable insertion hole 28, or the cable protection material anchoring protrusion may be formed from a part of the inner periphery of the cable insertion hole 28 as shown in FIG. 29 may be formed. When the cable protection material anchoring protrusion 29 is formed from a part of the inner periphery of the cable insertion hole 28, the cable protection material anchoring protrusion 29 may be one as shown in FIG. Two or more cables may be provided on the inner periphery of the cable insertion hole 28.
 図5に示すように、後部接合フレーム部30は、前部ケース5と接合される部分であり、ケース主部26の後端面から後方に伸びるように形成されている。また、後部接合フレーム部30は、外部入出力端子実装基板17を配置するための空間を内側に形成している。また、後部接合フレーム部30は、上述した前部ケース5に備えられた前部切り欠き24(図2および図3参照)とともに樹脂充填口33(図6参照)を形成する、後部切り欠き31が対向する位置の2箇所に形成されている。 As shown in FIG. 5, the rear joint frame portion 30 is a portion joined to the front case 5 and is formed to extend rearward from the rear end surface of the case main portion 26. Further, the rear joining frame part 30 forms a space for arranging the external input / output terminal mounting substrate 17 on the inner side. In addition, the rear joining frame part 30 forms a resin filling port 33 (see FIG. 6) together with the front notch 24 (see FIGS. 2 and 3) provided in the front case 5 described above. Are formed at two positions at opposite positions.
 後部接合フレーム部30の形状は、前部接合フレーム部23と嵌め合いなどで接合でき、かつ、外部入出力端子実装基板17を格納できる限り特に限定されない。 The shape of the rear joint frame portion 30 is not particularly limited as long as it can be joined to the front joint frame portion 23 by fitting and the external input / output terminal mounting substrate 17 can be stored.
 図5に示すように、ケース主部26の後端面における後部接合フレーム部30の内側には、外部入出力端子実装基板17を当接させて配置するための外部入出力端子実装基板当接部32が形成されている。 As shown in FIG. 5, the external input / output terminal mounting board contact portion for placing the external input / output terminal mounting board 17 in contact with the inner side of the rear joint frame portion 30 on the rear end surface of the case main portion 26. 32 is formed.
 ケース主部26の形状としては、特に限定されず、図4に示すように六面体でもよく、立方体、直方体、角錐台、円柱形、角柱形などでもよい。 The shape of the case main portion 26 is not particularly limited, and may be a hexahedron as shown in FIG. 4, a cube, a rectangular parallelepiped, a truncated pyramid, a cylinder, a prism, or the like.
 後部ケース6は、前部ケース5と同様に第1樹脂から成形されてもよく、または金属から成形されてもよい。 The rear case 6 may be molded from the first resin similarly to the front case 5, or may be molded from metal.
 前部ケース5および後部ケース6は、同じ素材から成形されてもよく、または異なる素材から成形されてもよい。 The front case 5 and the rear case 6 may be formed from the same material or may be formed from different materials.
 また、ケース主部26および後部接合フレーム部30は、それぞれ同じ樹脂もしくは金属から成形されてもよく、または、それぞれ異なった樹脂もしくは金属から成形されてもよい。 Further, the case main part 26 and the rear joining frame part 30 may be molded from the same resin or metal, respectively, or may be molded from different resins or metals.
 (2-3:前部ケース5および後部ケース6の仮接合)
 図6は、上記撮像装置1のモールド樹脂封止前の外観構成を示す斜視図である。
(2-3: Temporary joining of front case 5 and rear case 6)
FIG. 6 is a perspective view showing an external configuration of the imaging device 1 before sealing with a mold resin.
 図6に示すように、前部ケース5および後部ケース6は、樹脂を充填する前に、それぞれの前部接合フレーム部23と後部接合フレーム部30とを嵌め合いなどで仮に接合しておく。その接合の前に、前部接合フレーム部23および後部接合フレーム部30が囲む内部に、センサ実装基板12、外部入出力端子実装基板17などの内部基板18が配置される。またセンサ実装基板12と外部入出力端子実装基板17とを接続した中継配線19は、その一部が、前部接合フレーム部23および後部接合フレーム部30の外部に配置される。 As shown in FIG. 6, before the front case 5 and the rear case 6 are filled with resin, the front joint frame portion 23 and the rear joint frame portion 30 are temporarily joined by fitting or the like. Prior to the bonding, the internal substrate 18 such as the sensor mounting substrate 12 and the external input / output terminal mounting substrate 17 is disposed inside the front bonding frame portion 23 and the rear bonding frame portion 30. Further, a part of the relay wiring 19 connecting the sensor mounting board 12 and the external input / output terminal mounting board 17 is arranged outside the front joint frame portion 23 and the rear joint frame portion 30.
 また、前部接合フレーム部23の前部切り欠き24と、後部接合フレーム部30の後部切り欠き31とが重なる部分が、樹脂充填口33として形成されている。また、外部接続ケーブル10は、外部入出力端子実装基板17の外部入出力端子16と接続され、かつ、ケーブル保護材8に覆われた状態で、後部ケース6のケーブル嵌入孔28から伸びている。 Further, a portion where the front notch 24 of the front joint frame portion 23 and the rear notch 31 of the rear joint frame portion 30 overlap is formed as a resin filling port 33. The external connection cable 10 is connected to the external input / output terminal 16 of the external input / output terminal mounting substrate 17 and extends from the cable insertion hole 28 of the rear case 6 while being covered with the cable protective material 8. .
 (1-2:モールド部7の成形方法)
 第1実施形態に係る撮像装置1のモールド部7は、以下の方法によって成形される。
(1-2: Molding method of mold part 7)
The mold part 7 of the imaging device 1 according to the first embodiment is formed by the following method.
 図7の(a)は、上記撮像装置1のモールド樹脂の充填工程を示す断面図の充填前の図であり、図7の(b)は上記撮像装置1のモールド樹脂の充填工程を示す断面図の充填後の図である。 7A is a cross-sectional view of the imaging device 1 before filling the mold resin, and FIG. 7B is a cross-sectional view of the imaging device 1 in which the mold resin is filled. It is a figure after filling of a figure.
 (i)図7の(a)に示すように、図6で示した仮の接合状態にある前部ケース5および後部ケース6を、金型34に設置する。この時、樹脂充填ノズル35の先端は、樹脂充填口33に向けられている。 (I) As shown in FIG. 7 (a), the front case 5 and the rear case 6 in the temporary joined state shown in FIG. At this time, the tip of the resin filling nozzle 35 is directed to the resin filling port 33.
 (ii)樹脂充填ノズル35から前部接合フレーム部23および後部接合フレーム部30の接合部分の内部に樹脂を充填する。この時、樹脂は、センサ実装基板12と外部入出力端子実装基板17との間に充填される。 (Ii) The resin is filled into the insides of the joining portions of the front joining frame portion 23 and the rear joining frame portion 30 from the resin filling nozzle 35. At this time, the resin is filled between the sensor mounting board 12 and the external input / output terminal mounting board 17.
 上記(ii)の結果として、図7の(b)に示すように、センサ実装基板12と外部入出力端子実装基板17との間隔は、樹脂によって押し広げられる。樹脂によってレンズユニット2側へ押されたセンサ実装基板12は、センサ実装基板当接部25に当接して押し付けられる。また、樹脂によって外部接続ケーブル10側へ押された外部入出力端子実装基板17は、外部入出力端子実装基板当接部32に当接して押し付けられる。 As a result of the above (ii), as shown in FIG. 7B, the distance between the sensor mounting board 12 and the external input / output terminal mounting board 17 is expanded by the resin. The sensor mounting board 12 pressed to the lens unit 2 side by the resin is pressed against the sensor mounting board contact portion 25. Further, the external input / output terminal mounting substrate 17 pushed by the resin toward the external connection cable 10 is pressed against the external input / output terminal mounting substrate contact portion 32.
 前部接合フレーム部23および後部接合フレーム部30の内部からあふれた樹脂は前部接合フレーム部23および後部接合フレーム部30の外壁の成形に用いられる。 The resin overflowing from the inside of the front joint frame portion 23 and the rear joint frame portion 30 is used for molding the outer walls of the front joint frame portion 23 and the rear joint frame portion 30.
 (iii)樹脂が硬化することによって、センサ実装基板12および外部入出力端子実装基板17を格納する空間が封止され、モールド部7が成形される。 (Iii) When the resin is cured, the space for storing the sensor mounting substrate 12 and the external input / output terminal mounting substrate 17 is sealed, and the mold portion 7 is formed.
 モールド部7を形成する樹脂(第2樹脂)としては、電子部品封止用エポキシ、ポリアミド、ポリオレフィン、および反応型ウレタンなどの樹脂が挙げられる。また、第2樹脂は、前部ケース5および後部ケース6に使用する第1樹脂と比較すると柔らかい樹脂であることが好ましい。 Examples of the resin (second resin) forming the mold part 7 include resins such as epoxy for sealing electronic parts, polyamide, polyolefin, and reactive urethane. Further, the second resin is preferably a soft resin as compared with the first resin used for the front case 5 and the rear case 6.
 モールド封止後の撮像装置1を図8に示す。 The imaging device 1 after mold sealing is shown in FIG.
 (第1実施形態の効果)
 以上のように、レンズユニット2、リッドガラス3および撮像素子11が実装されたセンサ実装基板12などの光学部材を格納する前部ケース5は、第1樹脂または金属から構成される。外部入出力端子実装基板17、外部入出力端子16、および外部接続ケーブル10などを格納する後部ケース6もまた、第1樹脂または金属から構成される。第1樹脂は、熱可塑性樹脂、熱硬化性樹脂、高耐熱樹脂、もしくは高耐久樹脂である。上記構成の結果、前部ケース5および後部ケース6は、組み立て精度(車などへの取り付けを含む)を確保できるという効果を奏する。さらに、センサ実装基板12および外部入出力端子実装基板17などの内部基板18の周辺は、前部ケース5および後部ケース6を構成する第1樹脂に比べて、柔らかい、第2樹脂から構成されることが好ましい。
(Effect of 1st Embodiment)
As described above, the front case 5 that houses the optical member such as the sensor mounting substrate 12 on which the lens unit 2, the lid glass 3, and the imaging element 11 are mounted is made of the first resin or metal. The rear case 6 for storing the external input / output terminal mounting substrate 17, the external input / output terminal 16, and the external connection cable 10 is also made of the first resin or metal. The first resin is a thermoplastic resin, a thermosetting resin, a high heat resistance resin, or a high durability resin. As a result of the above configuration, the front case 5 and the rear case 6 have an effect of ensuring assembly accuracy (including attachment to a car or the like). Further, the periphery of the internal substrate 18 such as the sensor mounting substrate 12 and the external input / output terminal mounting substrate 17 is made of a second resin that is softer than the first resin constituting the front case 5 and the rear case 6. It is preferable.
 以上の構成により、耐衝撃、耐振動性、および防水性を向上させる効果を奏するとともに、レンズユニット2の取り付けを高精度に行う事(アクティブ・アライメント)が可能となることから、高精度な画像が得られる調整が可能となる効果を奏する。 With the above configuration, the impact resistance, vibration resistance, and waterproofing can be improved, and the lens unit 2 can be mounted with high accuracy (active alignment). There is an effect that can be adjusted to obtain.
 さらに、上記構成であれば、ねじ締結、および/または、スナップ止めなどの機構が不必要となる。これにより、撮像装置1の筐体の組み立ての際に、部品点数および工数の削減、ならびに、ねじのゆるみおよびスナップ係合外れによるカメラの破損の防止ができるなどの効果を奏する。 Furthermore, with the above configuration, a mechanism such as screw fastening and / or snapping is unnecessary. Thereby, when the housing of the image pickup apparatus 1 is assembled, the number of parts and man-hours can be reduced, and the camera can be prevented from being damaged due to the loosening of the screw and the disengagement of the snap.
 従って、本実施形態の撮像装置1によれば、安価かつ小型であると同時に、耐衝撃性、耐振動性、防水性、および耐薬品性が高く、さらに高精細な画像が得られる撮像装置1を提供できる。 Therefore, according to the imaging apparatus 1 of the present embodiment, the imaging apparatus 1 is inexpensive and small, and at the same time has high impact resistance, vibration resistance, waterproofness, and chemical resistance, and can obtain a higher-definition image. Can provide.
 〔第2実施形態〕
 以下、本発明の第2実施形態について、図10~17を用いて説明する。
[Second Embodiment]
Hereinafter, a second embodiment of the present invention will be described with reference to FIGS.
 なお、本実施形態において、前述の第1実施形態における構成要素と同等の機能を有する構成要素については、同一の符号を付記して、その説明を省略する。 In addition, in this embodiment, about the component which has a function equivalent to the component in the above-mentioned 1st Embodiment, the same code | symbol is attached and the description is abbreviate | omitted.
 図9に示すように、本実施形態が第1実施形態と異なるのは、センサ実装基板12および外部入出力端子実装基板17などの内部基板18が、金属製の金属シース36(基板収納体)に覆われた状態で、前部ケース5および後部ケース6の内部に格納されることである。 As shown in FIG. 9, the present embodiment is different from the first embodiment in that the internal substrate 18 such as the sensor mounting substrate 12 and the external input / output terminal mounting substrate 17 is made of a metal sheath 36 (substrate housing body). It is stored in the inside of the front case 5 and the rear case 6 in a state of being covered with.
 (1:金属シース36)
 図9は、本発明の第2実施形態に係る、金属シース36を含む撮像装置1の組み立てを示す斜視図である。図10の(a)は、基板挿入口を備える上記金属シース36の外観構成を示す斜視図であり、(b)は扉42を開いた状態の上記金属シース36の外観構成を示す斜視図である。
(1: Metal sheath 36)
FIG. 9 is a perspective view showing the assembly of the imaging device 1 including the metal sheath 36 according to the second embodiment of the present invention. FIG. 10A is a perspective view showing an external configuration of the metal sheath 36 having a board insertion opening, and FIG. 10B is a perspective view showing an external configuration of the metal sheath 36 with the door 42 opened. is there.
 本実施形態では、撮像素子11を実装しているセンサ実装基板12の下面(撮像素子11を実装していない面)を樹脂封止するため、図10に示すように、金属シース36を用いる。具体的には、金属シース36は、撮像装置1内部のセンサ実装基板12の上面(撮像素子11を実装している面)および外部入出力端子実装基板17の下面(外部入出力端子16が取り付けられる面)を覆う。 In the present embodiment, a metal sheath 36 is used as shown in FIG. 10 in order to resin seal the lower surface of the sensor mounting substrate 12 on which the image sensor 11 is mounted (the surface on which the image sensor 11 is not mounted). Specifically, the metal sheath 36 is attached to the upper surface (the surface on which the image sensor 11 is mounted) of the sensor mounting substrate 12 inside the imaging apparatus 1 and the lower surface (the external input / output terminal 16 is attached) of the external input / output terminal mounting substrate 17. Cover the surface).
 モールド部7を成形するために使用される充填樹脂(第2樹脂)は、上述したように、電子部品封止用エポキシ、およびポリアミドなどである。しかし、これらの樹脂の熱伝導率は、表1に示すように、空気の0.0257~0.0316(W/m・K)よりは大きいものの、放熱の観点からは、充分とは言えない。 As described above, the filling resin (second resin) used to mold the mold part 7 is an epoxy for electronic component sealing, polyamide, or the like. However, although the thermal conductivity of these resins is larger than 0.0257 to 0.0316 (W / m · K) of air as shown in Table 1, it is not sufficient from the viewpoint of heat dissipation. .
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 この場合ではむしろ金属シース36をGNDに接続する事によって、EMI(Electro-Magnetic Interference:電磁妨害又は不要輻射)、および撮像装置1のモールド部7の不要な変形、を防ぐ効果がある。 In this case, by connecting the metal sheath 36 to the GND, there is an effect of preventing EMI (Electro-Magnetic Interference) and unnecessary deformation of the mold part 7 of the imaging apparatus 1.
 金属シース36の材質は、特に限定されず、鉄、銅、銀、アルミ、ステンレスなどがあげられる。これらのうち、軽量化および加工の容易さの観点からはアルミが、耐衝撃性および耐腐食性の観点からはステンレスが好ましく、撮像装置1の用途によって、適宜選択され得る。 The material of the metal sheath 36 is not particularly limited, and examples thereof include iron, copper, silver, aluminum, and stainless steel. Among these, aluminum is preferable from the viewpoint of weight reduction and ease of processing, and stainless steel is preferable from the viewpoint of impact resistance and corrosion resistance, and may be appropriately selected depending on the application of the imaging device 1.
 金属シース36は、樹脂充填孔37および樹脂逃げ孔38を有する。 The metal sheath 36 has a resin filling hole 37 and a resin escape hole 38.
 金属シース36は、前部ケース5側の端部に第1開口36aが設けられ、かつ、後部ケース6側の端部に第2開口36bが設けられていてもよく、両側の端部が金属で覆われていてもよい。内部基板18の挿入に関して、図9に示すように、金属シース36の両端が第1開口36aおよび第2開口36bから内部基板18を挿入できる。一方、図10の(a)および(b)に示すように、金属シース36の前部ケース5側の端部が天面39で覆われ、かつ、金属シース36の後部ケース6側の端部が底面41で覆われ、底面41に外部接続ケーブル10を通すケーブル挿入孔43が設けられている場合を考える。この場合、樹脂充填孔37の対面に内部基板18を挿入するための、開閉可能な扉42を設けてもよい。内部基板18を挿入する際には、図10の(b)に示すように、扉42は解放され、内部基板18の挿入後に、図10の(a)のように、扉42は閉じられる。その後、金属シース36は、前部ケース5および後部ケース6の内部に格納される。 The metal sheath 36 may be provided with a first opening 36a at an end portion on the front case 5 side and a second opening 36b at an end portion on the rear case 6 side. It may be covered with. Regarding the insertion of the internal substrate 18, as shown in FIG. 9, both ends of the metal sheath 36 can insert the internal substrate 18 from the first opening 36 a and the second opening 36 b. On the other hand, as shown in FIGS. 10A and 10B, the end of the metal sheath 36 on the front case 5 side is covered with the top surface 39, and the end of the metal sheath 36 on the rear case 6 side is covered. Is covered with the bottom surface 41, and a cable insertion hole 43 through which the external connection cable 10 is passed is provided on the bottom surface 41. In this case, an openable / closable door 42 for inserting the internal substrate 18 may be provided on the opposite side of the resin filling hole 37. When the internal substrate 18 is inserted, the door 42 is released as shown in FIG. 10B, and after the internal substrate 18 is inserted, the door 42 is closed as shown in FIG. Thereafter, the metal sheath 36 is stored inside the front case 5 and the rear case 6.
 モールド部7を成形するための充填樹脂は、金属シース36に設けられた樹脂充填孔37に挿入された樹脂充填ノズル35(図7の(b)参照)から、金属シース36内部のセンサ実装基板12および外部入出力端子実装基板17の間に充填される。 The filling resin for forming the mold portion 7 is supplied from a resin filling nozzle 35 (see FIG. 7B) inserted into a resin filling hole 37 provided in the metal sheath 36, and the sensor mounting board inside the metal sheath 36. 12 and the external input / output terminal mounting substrate 17.
 樹脂逃げ孔38は、上記充填の際に、余剰の充填樹脂を外部へ逃がすための孔であり、1つでもよく、複数個設けられてもよい。次に、その樹脂逃げ孔38について詳しく説明する。 The resin escape hole 38 is a hole for letting excess filled resin escape to the outside at the time of filling, and one or a plurality of resin escape holes may be provided. Next, the resin escape hole 38 will be described in detail.
 (1-1:樹脂逃げ孔38)
 図11の(a)~(c)は、異なる樹脂逃げ孔38を有する上記金属シース36の外観構成を示す斜視図である。
(1-1: Resin escape hole 38)
FIGS. 11A to 11C are perspective views showing the external configuration of the metal sheath 36 having different resin escape holes 38. FIG.
 樹脂充填孔37および樹脂逃げ孔38の形状は、特に限定されず、図11の(a)に示すように円形でもよく、図11の(b)に示すように矩形でもよく、またはそれらが併用されてもよい。 The shapes of the resin filling hole 37 and the resin escape hole 38 are not particularly limited, and may be circular as shown in FIG. 11A, rectangular as shown in FIG. 11B, or a combination thereof. May be.
 また、樹脂逃げ孔38を複数個設ける場合には、樹脂充填孔37および樹脂逃げ孔38の配置は特に限定されず、図11の(c)に示すように、網目(格子)の様に配置されてもよい。樹脂充填孔37および樹脂逃げ孔38の形状が円形の場合には、図11の(a)に示すように、樹脂充填孔37および樹脂逃げ孔38の配置が比較的容易である。図11の(b)に示すように、樹脂充填孔37および樹脂逃げ孔38が矩形の場合には、充填樹脂が樹脂充填孔37および樹脂逃げ孔38を通る際に、矩形の頂点にストレスがかかる場合がある。しかし、図11の(c)に示すように、樹脂充填孔37および樹脂逃げ孔38を網目(格子)の様に配置することによって、最大個数の樹脂逃げ孔38を配置できる可能性を有する。 When a plurality of resin escape holes 38 are provided, the arrangement of the resin filling holes 37 and the resin escape holes 38 is not particularly limited, and is arranged like a mesh (lattice) as shown in FIG. May be. When the shape of the resin filling hole 37 and the resin escape hole 38 is circular, the arrangement of the resin filling hole 37 and the resin escape hole 38 is relatively easy as shown in FIG. As shown in FIG. 11B, when the resin filling hole 37 and the resin escape hole 38 are rectangular, when the filling resin passes through the resin filling hole 37 and the resin escape hole 38, stress is applied to the vertex of the rectangle. It may take such a case. However, as shown in FIG. 11C, by arranging the resin filling holes 37 and the resin escape holes 38 like a mesh (lattice), there is a possibility that the maximum number of resin escape holes 38 can be arranged.
 (1-2:金属片(フィン44))
 図12~16に示すように、金属シース36は、放熱のための金属片(フィン44)を備えてもよい。
(1-2: Metal piece (fin 44))
As shown in FIGS. 12 to 16, the metal sheath 36 may include metal pieces (fins 44) for heat dissipation.
 図12の(a)および(b)はフィン44を備える上記金属シース36の内部を透過して示す斜視図である。図13の(a)および(b)は金属シース36の異なるフィン44の形状を示す斜視図である。図14は、金属シース36から形成されたフィン44を備える金属シース36の概略構成を示す外観図である。図15は、外部にフィン44を備える上記金属シース36を含む撮像装置1の組み立てを示す斜視図である。図16は、金属シース36から形成されたフィン44を外部に備える金属シース36の概略構成を示す外観図である。 12 (a) and 12 (b) are perspective views showing the inside of the metal sheath 36 including the fins 44. FIGS. 13A and 13B are perspective views showing the shapes of fins 44 having different metal sheaths 36. FIG. 14 is an external view showing a schematic configuration of the metal sheath 36 including the fins 44 formed from the metal sheath 36. FIG. 15 is a perspective view showing the assembly of the imaging device 1 including the metal sheath 36 including the fins 44 on the outside. FIG. 16 is an external view showing a schematic configuration of the metal sheath 36 provided with fins 44 formed from the metal sheath 36 on the outside.
 撮像装置1に内蔵されるCMOSイメージセンサなどの撮像素子11は、動作中(動画取得時)に、通常約80℃位まで撮像素子11(センサチップ)の温度が上昇する。放熱などにより、撮像素子11を冷却するための対策を特段講じない場合には、撮像素子11は100℃以上に達する場合があり、画像異常および撮像装置1の故障の原因となる。 The temperature of the image sensor 11 (sensor chip) rises to about 80 ° C. during the operation (at the time of moving image acquisition) of the image sensor 11 such as a CMOS image sensor built in the image pickup apparatus 1. If no special measures are taken to cool the image sensor 11 due to heat radiation or the like, the image sensor 11 may reach 100 ° C. or more, which causes image abnormality and failure of the image pickup apparatus 1.
 そこで、図12に示すように、金属シース36の内側(内部基板18側)にフィン44を取り付け、内部基板18に搭載されている撮像素子11や電源用IC、画像処理用IC13、通信用IC14近傍へフィン44を伸ばす。これにより、各ICが発生する熱を撮像装置1の外部近傍へと伝導でき、結果として、放熱効果を奏する。 Therefore, as shown in FIG. 12, fins 44 are attached to the inner side (inner substrate 18 side) of the metal sheath 36, and the imaging device 11, the power supply IC, the image processing IC 13, and the communication IC 14 mounted on the inner substrate 18. Extend the fins 44 to the vicinity. As a result, the heat generated by each IC can be conducted to the vicinity of the outside of the imaging device 1, and as a result, a heat dissipation effect is achieved.
 図12は、矩形のフィン44を備えた金属シース36の概略図を示した斜視図である。図13の(b)は、矩形のフィン44を備えた金属シース36の内部にセンサ実装基板12と外部入出力端子実装基板17を格納した金属シース36の概略図を示した斜視図である。 FIG. 12 is a perspective view showing a schematic view of the metal sheath 36 having the rectangular fins 44. FIG. 13B is a perspective view showing a schematic view of the metal sheath 36 in which the sensor mounting substrate 12 and the external input / output terminal mounting substrate 17 are housed in the metal sheath 36 having the rectangular fins 44.
 フィン44の配置はセンサ実装基板12と外部入出力端子実装基板17を接続する中継配線19(不図示)を備える側面40以外の側面40で設置可能である。 The fins 44 can be arranged on the side surface 40 other than the side surface 40 provided with the relay wiring 19 (not shown) for connecting the sensor mounting substrate 12 and the external input / output terminal mounting substrate 17.
 フィン44の断面形状としては、特に限定されず、図12に示すように矩形でもよく、図13の(a)に示すように円形でもよい。金属シース36内に、充填樹脂を充填する事を鑑みると、フィン44の断面形状は、図13の(a)に示すような円形であることが好ましい。フィン44の断面形状が円形であれば、充填樹脂を充填する際に、樹脂充填ノズル35から見た際のフィン44の陰になる部分へ、充填樹脂が効率よく回り込むことができる。言い換えると、フィン44の断面形状が円形であれば、効率よく充填樹脂を充填することができる。さらに、充填樹脂を充填する際の圧力を考慮すると、円形の中でも図13の(a)に示すように円柱形よりも、図13の(b)に示すようにテーパー(先細り)形状の方が、強度の点で有利になるため、好ましい。 The cross-sectional shape of the fin 44 is not particularly limited, and may be rectangular as shown in FIG. 12 or circular as shown in FIG. In view of filling the metal sheath 36 with the filling resin, the cross-sectional shape of the fins 44 is preferably circular as shown in FIG. If the cross-sectional shape of the fins 44 is circular, when filling the filling resin, the filling resin can efficiently wrap around the portion behind the fins 44 when viewed from the resin filling nozzle 35. In other words, if the cross-sectional shape of the fin 44 is circular, the filling resin can be efficiently filled. Furthermore, considering the pressure when filling the filling resin, the taper (tapered) shape as shown in FIG. 13B is more preferable than the cylindrical shape as shown in FIG. This is preferable because it is advantageous in terms of strength.
 フィン44の数としては、特に限定されず、図12および図13に示すように、一つの側面40あたり2つずつ、2つの側面40に、合計4つ設けられてもよい。また、一つの側面40あたり4つずつ、2つの側面40に、合計8つ設けられてもよく、または、それ以上設けられてもよい。 The number of fins 44 is not particularly limited, and as shown in FIGS. 12 and 13, two fins 44 may be provided on each of the two side surfaces 40, for a total of four. In addition, four per side 40 may be provided on two side 40 in total, or more than eight may be provided.
 フィン44は、図12および13に示すように、金属シース36と別部材のフィン44を金属シース36に取り付けることによって作製されてもよいし、図14に示すように、金属シース36の一部分から形成されてもよい。図14に示すように、樹脂逃げ孔38を形成する場合に、金属シース36の一部分を切らずに残して切り抜いた金属片の部分を内側に折り曲げることにより、フィン44を作製することが可能である。図14では、矩形の樹脂逃げ孔38を形成する際の金属片を内側に折り曲げることによって、板状のフィン44を形成しているが、折り曲げられたフィン44をさらに丸く曲げることによって、円柱形の立体のフィン44を形成してもよい。図14に示すように、金属シース36の一部を折り曲げることによってフィン44を形成することは、図12および図13のように金属シース36内部に別部材としてフィン44を取り付ける場合と比べて、コストと手間を大幅に削減できるという利点がある。 The fin 44 may be made by attaching the metal sheath 36 and a separate fin 44 to the metal sheath 36 as shown in FIGS. 12 and 13, or from a part of the metal sheath 36 as shown in FIG. 14. It may be formed. As shown in FIG. 14, when the resin escape hole 38 is formed, the fin 44 can be produced by bending a portion of the metal piece that has been cut out without leaving a portion of the metal sheath 36. is there. In FIG. 14, the plate-like fins 44 are formed by bending inward the metal pieces when forming the rectangular resin escape holes 38, but the bent fins 44 are further rounded to obtain a cylindrical shape. The three-dimensional fin 44 may be formed. As shown in FIG. 14, the formation of the fin 44 by bending a part of the metal sheath 36 is compared to the case where the fin 44 is attached as a separate member inside the metal sheath 36 as shown in FIGS. There is an advantage that the cost and labor can be greatly reduced.
 図15に示すように、フィン44はまた、金属シース36の外部に形成されてもよい。金属シース36の外部にフィン44を形成することは、より積極的に撮像装置1の筐体表面へ熱を伝導させることができるという利点がある。フィン44が金属シース36の外部に形成される場合には、樹脂成型された前部ケース5および後部ケース6に、当該フィン44と嵌合または突出させるための溝(フィン用切り込み45)を形成してもよい。 As shown in FIG. 15, the fins 44 may also be formed outside the metal sheath 36. Forming the fins 44 outside the metal sheath 36 has an advantage that heat can be more actively conducted to the housing surface of the imaging device 1. When the fins 44 are formed outside the metal sheath 36, grooves (fin notches 45) are formed in the front case 5 and the rear case 6 that are molded with resin so that the fins 44 can be fitted or projected. May be.
 金属シース36の外部にフィン44を形成する場合にも、図14と同様に、フィン44を、金属シース36の一部分から形成することが可能である。図16に示すように、樹脂逃げ孔38を形成する場合に、金属シース36から一部を切り抜いた金属片を金属シース36の外側に折り曲げることによって、外部にフィン44を形成することが可能である。図16に示すように、金属シース36の一部分から金属シース36の外部にフィン44を形成することは、図15のように金属シース36外部に別部材としてフィン44を取り付ける場合と比べて、コストと手間を大幅に削減できるという利点がある。 Also in the case where the fins 44 are formed outside the metal sheath 36, the fins 44 can be formed from a part of the metal sheath 36 as in FIG. As shown in FIG. 16, when the resin escape hole 38 is formed, the fin 44 can be formed outside by bending a metal piece cut out from the metal sheath 36 to the outside of the metal sheath 36. is there. As shown in FIG. 16, the formation of the fins 44 from a part of the metal sheath 36 to the outside of the metal sheath 36 is less costly than the case where the fins 44 are attached to the outside of the metal sheath 36 as shown in FIG. There is an advantage that the labor can be greatly reduced.
 (2:変形例1)
 本実施形態の変形例1について説明する。
(2: Modification 1)
Modification 1 of this embodiment will be described.
 前述の構成は、モールド部7を成形するために、電子部品封止用エポキシ、ポリアミド、ポリオレフィン、および反応型ウレタンなどの充填樹脂を使用するものである。しかしながら、表1に示したように、これらの充填樹脂の熱伝導率は空気よりは高いものの、放熱の観点からは、十分であるとは言えない。そこで、撮像素子11の放熱のために、前述した充填樹脂の熱伝導率の改善方法として、表2で示すような方法がある。この方法では、熱伝導性を示さない金属化合物(またはセラミック材料)であり、かつ、熱伝導性を有する材料の粉体を、充填樹脂にフィラー(粒子)として添加する。 The above-described configuration uses a filling resin such as epoxy for sealing electronic parts, polyamide, polyolefin, and reactive urethane to mold the mold part 7. However, as shown in Table 1, although the thermal conductivity of these filled resins is higher than that of air, it cannot be said that it is sufficient from the viewpoint of heat dissipation. Therefore, there is a method as shown in Table 2 as a method for improving the thermal conductivity of the above-described filling resin in order to dissipate heat from the image sensor 11. In this method, a powder of a metal compound (or ceramic material) that does not exhibit thermal conductivity and has thermal conductivity is added as filler (particles) to the filling resin.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表2に示した材料の他に、これら材料の化合物および焼成物、ならびにこれら材料とその他の分子との化合物および混合物、をフィラーとしてもよい。 In addition to the materials shown in Table 2, compounds and burned products of these materials, and compounds and mixtures of these materials with other molecules may be used as fillers.
 (3:変形例2)
 本実施形態の変形例2について説明する。
(3: Modification 2)
A second modification of the present embodiment will be described.
 前述した変形例1による、撮像素子11の冷却は、撮像素子11で生じた熱を積極的に撮像装置1の外部に放熱することによる。しかしながら、撮像装置1の使用環境によっては、外部に放熱することが好ましくない場合もある。例えば、撮像装置1を医療分野で使用する場合では、外部へ熱を逃すことは、すなわち患者の体内へ熱を放熱することになるため、望まれない。そのため、この場合の撮像素子11および撮像装置1の積極的な冷却方法としては、内部を積極的に冷却する方法があげられる。具体的には、ペルチェ素子を、撮像素子11および/または各々のIC等のチップへ配置するなどの方法によって、撮像素子11で生じた熱を、撮像装置1の外部へ放熱することなく、撮像素子11を冷却することが可能となる。 The cooling of the image sensor 11 according to the first modification described above is by actively dissipating the heat generated in the image sensor 11 to the outside of the image pickup apparatus 1. However, depending on the use environment of the imaging apparatus 1, it may not be preferable to dissipate heat to the outside. For example, when the imaging apparatus 1 is used in the medical field, it is not desirable to release heat to the outside, that is, to dissipate heat to the patient's body. Therefore, as a method for actively cooling the image pickup device 11 and the image pickup apparatus 1 in this case, a method for actively cooling the inside can be mentioned. Specifically, imaging is performed without dissipating heat generated in the imaging device 11 to the outside of the imaging device 1 by a method such as disposing the Peltier device on the imaging device 11 and / or a chip such as each IC. The element 11 can be cooled.
 撮像素子11および撮像装置1の冷却方法としては、変形例1または変形例2をそれぞれ単独で用いてもよく、または、変形例1および変形例2を組み合わせて用いてもよい。 As the cooling method of the image sensor 11 and the imaging device 1, the first modification or the second modification may be used alone, or the first modification and the second modification may be used in combination.
 (4:第2実施形態の効果)
 以上のように、本実施形態の撮像装置1は、以下の構成をそれぞれ単独で、または、組み合わせて有する。
(a)撮像装置1内部に、センサ実装基板12および外部入出力端子実装基板17などの内部基板18を覆う、金属シース36。
(b)モールド部7を成形するための樹脂として、表2に示すような、導電性を示さず、かつ、熱伝導性を有する材料、材料の化合物および焼成物、ならびに材料とその他の分子との化合物および混合物、の粉末を、フィラーとして添加された充填樹脂。
(c)撮像素子11および/または各々のIC等のチップへ配置された、ペルチェ素子。
(4: Effects of the second embodiment)
As described above, the imaging apparatus 1 according to the present embodiment has the following configurations individually or in combination.
(A) A metal sheath 36 that covers the internal substrate 18 such as the sensor mounting substrate 12 and the external input / output terminal mounting substrate 17 inside the imaging device 1.
(B) As a resin for molding the mold part 7, as shown in Table 2, a material that does not exhibit conductivity and has thermal conductivity, a compound of the material and a fired product, and a material and other molecules A filling resin in which a powder of the compound and the mixture is added as a filler.
(C) Peltier device arranged on the imaging device 11 and / or a chip such as each IC.
 上記(a)~(c)の構成を、それぞれ単独で、または、組み合わせて有することによって、撮像装置1内部で発熱した熱を効率的に放熱および/または冷却することができる効果を奏する。 By having the configurations (a) to (c) singly or in combination, the heat generated in the imaging device 1 can be efficiently radiated and / or cooled.
 また、上記(a)の構成を有する場合には、金属シース36をGNDに接続することで金属シース36を接地する。これにより、内部で生じた電磁ノイズを外部へ放出しないとともに、外部からの電磁ノイズの影響をうけないことが可能な、撮像装置1が実現できるという効果を奏する。 Further, when the configuration (a) is provided, the metal sheath 36 is grounded by connecting the metal sheath 36 to the GND. As a result, there is an effect that it is possible to realize the imaging apparatus 1 that does not emit electromagnetic noise generated inside and is not affected by external electromagnetic noise.
 〔第3実施形態〕
 本発明の第3実施形態について、図17~図19を用いて説明する。図17は、本発明の第3実施形態に係る撮像装置1の製造工程を示すフロー工程図である。図18は、本発明の第3実施形態に係る撮像装置1のレンズユニット2のアクティブ・アライメント法を模式的に示す図である。図19は、本発明の第3実施形態に係る撮像装置1のレンズユニット2の概略構成を模式的に示す外観図である。
[Third Embodiment]
A third embodiment of the present invention will be described with reference to FIGS. FIG. 17 is a flowchart showing the manufacturing process of the imaging device 1 according to the third embodiment of the present invention. FIG. 18 is a diagram schematically illustrating an active alignment method of the lens unit 2 of the imaging device 1 according to the third embodiment of the present invention. FIG. 19 is an external view schematically showing a schematic configuration of the lens unit 2 of the imaging apparatus 1 according to the third embodiment of the present invention.
 なお、本実施形態において、前述の第1実施形態における構成要素と同等の機能を有する構成要素については、同一の符号を付記して、その説明を省略する。 In addition, in this embodiment, about the component which has a function equivalent to the component in the above-mentioned 1st Embodiment, the same code | symbol is attached and the description is abbreviate | omitted.
 本実施形態では、前述の第1実施形態および第2実施形態に係る撮像装置1の製造方法の一例を説明する。 In this embodiment, an example of a method for manufacturing the imaging device 1 according to the first embodiment and the second embodiment described above will be described.
 (1.工程フロー)
 図17を参照して、本実施形態に係る、撮像装置1を製造する製造方法における概略の工程フローを説明する。
(1. Process flow)
With reference to FIG. 17, a schematic process flow in the manufacturing method for manufacturing the imaging device 1 according to the present embodiment will be described.
 本実施形態に係る工程フローは、以下の工程を含む。 The process flow according to the present embodiment includes the following processes.
 S1:内部基板18に部品を搭載する工程。S1では、センサ実装基板12に搭載される撮像素子11としては、CMOSイメージセンサであってもよく、CCDおよびそのほか、赤外光、紫外光、X線を受光するものであってもよい。また実装方法は、センサと基板とをワイヤで接続する方法(ワイヤボンディング)でもよく、TSV(Through Silicon Via:貫通電極)でもよい。また、センサ実装基板12の撮像素子11の受光面に対応する箇所に、予め、開口(ザグリ)をあけた後、裏面からフリップチップ実装を行ってもよい。外部入出力端子実装基板17でも各ICやその他部品が、同様に実装される。 S1: A process of mounting components on the internal substrate 18. In S <b> 1, the image sensor 11 mounted on the sensor mounting substrate 12 may be a CMOS image sensor, or may receive a CCD and other infrared light, ultraviolet light, and X-rays. The mounting method may be a method of connecting the sensor and the substrate with a wire (wire bonding) or TSV (Through Silicon Via). Moreover, after opening an opening (counterbore) beforehand in the location corresponding to the light-receiving surface of the image pick-up element 11 of the sensor mounting board | substrate 12, you may perform flip chip mounting from the back surface. Each IC and other components are similarly mounted on the external input / output terminal mounting substrate 17.
 S2:内部基板18(センサ実装基板12および外部入出力端子実装基板17)間の配線を行い、中継配線19を接続し、外部接続ケーブル10を接続する工程。 S2: A step of performing wiring between the internal substrate 18 (the sensor mounting substrate 12 and the external input / output terminal mounting substrate 17), connecting the relay wiring 19, and connecting the external connection cable 10.
 S3:金属シース36内に、S2において作製した内部基板18をセットする工程。金属シース36をGNDに接続する場合には、ここで別途、GND端子と金属シース36とをワイヤで接続してもよい。また、上記の場合には、センサ実装基板12および外部入出力端子実装基板17と金属シース36とが、基板上のGND配線パタンで触れ合うようにしておき、ハンダ付けしてもよい。また、センサ実装基板12および外部入出力端子実装基板17の上に、GND端子を設けてもよい。撮像装置1が金属シース36を含まない場合には、本工程は省略される。 S3: A step of setting the internal substrate 18 produced in S2 in the metal sheath 36. When the metal sheath 36 is connected to the GND, the GND terminal and the metal sheath 36 may be separately connected by a wire. In the above case, the sensor mounting board 12 and the external input / output terminal mounting board 17 and the metal sheath 36 may be in contact with each other by the GND wiring pattern on the board and soldered. A GND terminal may be provided on the sensor mounting board 12 and the external input / output terminal mounting board 17. When the imaging device 1 does not include the metal sheath 36, this step is omitted.
 S4:前部ケース5および後部ケース6内に内部基板18または金属シース36を格納する工程(格納工程)。 S4: A step of storing the internal substrate 18 or the metal sheath 36 in the front case 5 and the rear case 6 (storage step).
 S5:S4において作製した、内部基板18または金属シース36を格納した前部ケース5および後部ケース6を金型34にセットし、その後、センサ実装基板12と外部入出力端子実装基板17との間の距離が広がるように、樹脂を充填する工程(樹脂充填工程(図7参照))。 S5: The front case 5 and the rear case 6 in which the internal substrate 18 or the metal sheath 36 stored in S4 is set are set in the mold 34, and then between the sensor mounting substrate 12 and the external input / output terminal mounting substrate 17 The step of filling the resin so that the distance is increased (resin filling step (see FIG. 7)).
 S6:レンズユニット2を嵌入して、レンズユニット2をUVなどで仮固定した後(固定工程,仮固定工程)、光軸の位置合わせを行う工程(位置合わせ工程)。 S6: A step of positioning the optical axis (positioning step) after the lens unit 2 is inserted and the lens unit 2 is temporarily fixed with UV or the like (fixing step, temporary fixing step).
 ここで、レンズユニット2とは、予め単数または複数のレンズをレンズホルダー2b(鏡筒)に組み入れた物である。また、レンズ2aはガラス製でもよく、プラスチック製でもよい。また、レンズユニット2の光軸の位置合わせは、人の手によって位置合わせされてもよく、光学的により高精度な画像を得る観点から、ロボットアームを用いて自動で、後述するアクティブ・アライメント法によって位置合わせされることが好ましい。 Here, the lens unit 2 is a product in which one or a plurality of lenses are previously incorporated in the lens holder 2b (lens barrel). The lens 2a may be made of glass or plastic. Further, the alignment of the optical axis of the lens unit 2 may be performed by a human hand. From the viewpoint of obtaining an optically more accurate image, an active alignment method described later is automatically performed using a robot arm. Are preferably aligned.
 レンズユニット2は、位置合わせされる前に、レンズユニット嵌入孔21に嵌入され、仮固定される。仮固定には接着剤が用いられ、接着剤は紫外線(UV)で数秒程度の短時間で硬化されるのが一般的である。また、仮固定に使用される接着剤としては、紫外線と熱とで硬化する併用型が用いられてもよく、紫外線硬化型が用いられてもよい。仮固定で紫外線硬化型が用いられる場合には、本固定では熱で硬化する接着剤が使用されてもよい。この場合、仮固定用の接着剤は接着箇所に部分的に塗布しておき、本固定用接着剤は接着箇所全体に塗布する方法でもよい。このように、仮固定および本固定は、異なる接着剤を用いた異なる固定方法で行なわれてもよい。 The lens unit 2 is inserted into the lens unit insertion hole 21 and temporarily fixed before being aligned. An adhesive is used for temporary fixing, and the adhesive is generally cured with ultraviolet rays (UV) in a short time of about several seconds. Moreover, as an adhesive agent used for temporary fixing, the combined use type | mold hardened | cured with an ultraviolet-ray and a heat | fever may be used, and an ultraviolet curing type may be used. When an ultraviolet curable type is used for temporary fixing, an adhesive that is cured by heat may be used for the main fixing. In this case, the temporary fixing adhesive may be partially applied to the bonding location, and the main fixing adhesive may be applied to the entire bonding location. As described above, the temporary fixing and the main fixing may be performed by different fixing methods using different adhesives.
 紫外線による接着剤の硬化条件としては、1cmかつ1秒あたり200mW(200mW/cmx秒)を2回以上照射することが標準的であるが、これに限定されない。 The standard condition for curing the adhesive with ultraviolet rays is to irradiate at least 200 mW (200 mW / cm 2 x second) at 1 cm 2 and 1 second, but is not limited thereto.
 S7:恒温槽などで、レンズユニット2を本固定する(完全に固定する)工程(本固定工程)。S6で記載した様に、レンズユニット2の本固定には、熱で硬化する接着剤が使用されてもよい。熱による接着剤の硬化条件としては、80℃、60分間が標準的ではあるが、これに限定されない。熱による接着剤の硬化方法としては、80℃の恒温槽内にて60分間放置することがあげられるが、これに限定されない。 S7: A step of permanently fixing (completely fixing) the lens unit 2 in a constant temperature bath or the like (main fixing step). As described in S <b> 6, a heat-curing adhesive may be used for the permanent fixing of the lens unit 2. The conditions for curing the adhesive by heat are typically 80 ° C. and 60 minutes, but are not limited thereto. As a method for curing the adhesive by heat, it can be left in a thermostat at 80 ° C. for 60 minutes, but is not limited thereto.
 S8:出荷検査を行う工程。ここでは、撮像装置1の撮像機能が実現されているか否かを検査する。具体的には、内部電気基板内の回路の導通など、使用時の消費電流および待機時の消費電流など、ならびに、解像度、焦点距離、およびコントラストなどのカメラ性能などの撮像機能について、検査する。これら検査に結果、所望の撮像機能が実現されていることが確認された撮像装置1は出荷され、不具合の見つかった撮像装置1は該当箇所の解析およびリペアなどが行われる。17では、撮像装置1にカメラ性能の不具合が見つかった場合を想定し、S6の工程に再び戻ることが図示されている。 S8: Process for performing a shipping inspection. Here, it is inspected whether or not the imaging function of the imaging apparatus 1 is realized. Specifically, imaging functions such as current consumption during use and current consumption during standby, such as circuit conduction in the internal electrical substrate, and camera performance such as resolution, focal length, and contrast are inspected. As a result of these inspections, the imaging device 1 that has been confirmed to have achieved a desired imaging function is shipped, and the imaging device 1 in which a defect is found is subjected to analysis and repair of the corresponding part. In FIG. 17, assuming that a camera performance defect is found in the imaging apparatus 1, the process returns to the step S <b> 6 again.
 (2.アクティブ・アライメント法)
 本実施形態のレンズユニット2の光軸合わせは、アクティブ・アライメント法によって位置合わせされることが好ましい。この工程は、ロボットアームを用いて自動で行われてもよい。レンズユニット2の光軸合わせとは、撮像素子11の光学中心とレンズの中心との位置合わせのことを指す。前部ケース5のレンズユニット嵌入孔21とレンズユニット2との間には位置調整できる程度の空間的余裕が存在する。
(2. Active alignment method)
The optical axis alignment of the lens unit 2 of the present embodiment is preferably performed by an active alignment method. This step may be performed automatically using a robot arm. The alignment of the optical axis of the lens unit 2 refers to the alignment between the optical center of the image sensor 11 and the center of the lens. Between the lens unit insertion hole 21 of the front case 5 and the lens unit 2, there is a spatial margin enough to adjust the position.
 図18の(a)に示すように、アクティブ・アライメント法とは、以下に説明するような方法である。この方法では、レンズユニット2をアセンブリする際に、撮像装置1内の撮像素子11、例えばCMOSセンサを活性化状態にする。次に、CMOSセンサを活性化状態にした後、画像判定装置46に表示させたテストチャート(撮像映像)48などを見ながら、ロボットアーム制御装置47によってロボットアームを操作し、光軸を合わせ、片ボケのない最終映像を実現する。片ボケとは、レンズユニット2が光軸に対して傾いた結果、画像の一部のピントが合っていない状態のことを指す。 As shown in FIG. 18A, the active alignment method is a method as described below. In this method, when the lens unit 2 is assembled, the image sensor 11 such as a CMOS sensor in the image pickup apparatus 1 is activated. Next, after the CMOS sensor is activated, the robot arm is operated by the robot arm controller 47 while viewing the test chart (captured image) 48 displayed on the image determination device 46, and the optical axis is adjusted. Realize the final image without blurring. One-sided blur refers to a state where part of the image is out of focus as a result of the lens unit 2 being tilted with respect to the optical axis.
 従って、アクティブ・アライメント法とは、画面の均一性を高め、より高品位なカメラ性能を得ようとするものである。 Therefore, the active alignment method is intended to improve the uniformity of the screen and to obtain higher quality camera performance.
 より具体的には、通常は、テストチャート48の内容を映し出しながらテストチャート48のテストパタンから画像各部の解像度、およびチャート画像のコントラストを求める。次に、各部の解像度が均一に最大になるように、また、コントラストが最大になるように、レンズ2aの位置をロボットアームで操作し、レンズユニット2の位置を移動させながら、最適なレンズ2aの位置で保持する。レンズユニット2の移動は、図18の(a)および(b)に示したように、矢印の方向へ行われる。レンズユニット2の位置が決定した後、あらかじめ塗布していた接着剤で仮固定を行う。 More specifically, normally, the resolution of each part of the image and the contrast of the chart image are obtained from the test pattern of the test chart 48 while displaying the contents of the test chart 48. Next, the lens 2a is operated by the robot arm so that the resolution of each part is uniformly maximized and the contrast is maximized, and the lens unit 2 is moved, so that the optimum lens 2a is moved. Hold in the position. The lens unit 2 is moved in the direction of the arrow as shown in FIGS. 18 (a) and 18 (b). After the position of the lens unit 2 is determined, temporary fixing is performed with an adhesive applied in advance.
 通常、仮固定では、紫外光によって硬化する接着剤を使用し、その後の本固定では、熱によって硬化する接着剤を使用する。仮固定および本固定において、同一の接着剤を使用してもよい。その場合には、紫外光によって一旦硬化し、さらに温度を上げることによって強力な接着力を発揮する接着剤を使用することも可能である。また、仮固定および本固定において、異なる接着剤を使用してもよい。その場合には、紫外光によって硬化する接着剤を使用して仮固定をした後、熱によって硬化する接着剤をさらに塗布(上塗りなど)する方法を使用することも可能である。仮固定および本固定において使用可能な接着剤としては、上述したような紫外光および/または熱によって硬化する接着剤の他に、次のような接着剤を使用してもよい。そのような接着剤としては、接着剤に含まれる有機溶媒が揮発することによって、または、周辺の湿気を吸収することによって、硬化する接着剤、すなわち特別の操作を必要とせず自然に硬化する接着剤が挙げられる。 Normally, an adhesive that cures by ultraviolet light is used for temporary fixing, and an adhesive that cures by heat is used for subsequent permanent fixing. The same adhesive may be used for temporary fixing and permanent fixing. In that case, it is also possible to use an adhesive that is once cured by ultraviolet light and further exerts a strong adhesive force by raising the temperature. Further, different adhesives may be used for temporary fixing and permanent fixing. In that case, it is also possible to use a method in which an adhesive curable by heat is further applied (such as top coating) after temporary fixing using an adhesive curable by ultraviolet light. As an adhesive that can be used for temporary fixing and permanent fixing, the following adhesive may be used in addition to the adhesive that is cured by ultraviolet light and / or heat as described above. Such adhesives include adhesives that cure by volatilization of the organic solvent contained in the adhesive, or by absorbing ambient moisture, ie, adhesives that cure naturally without the need for special operations. Agents.
 アクティブ・アライメント法は可視光以外の、紫外線、赤外線、またはX線によって行われてもよく、レーザー光線の様な位相および波長の揃った光源ならびに点光源を用いて行われてもよい。 The active alignment method may be performed using ultraviolet rays, infrared rays, or X-rays other than visible light, and may be performed using a light source having a uniform phase and wavelength, such as a laser beam, and a point light source.
 アクティブ・アライメント法の際、ロボットアームがレンズユニット2を操作するために、図19の(a)に示すレンズユニット2Aの天面には、複数の切り込み49が設けられている。また、図19の(b)示すレンズユニット2Bの天面には、複数の切り欠き50が設けられている。ロボットアームはこれらの切り込み49、または切り欠き50を挟み込み、レンズユニット2の位置合わせを行う。 In the active alignment method, in order for the robot arm to operate the lens unit 2, a plurality of cuts 49 are provided on the top surface of the lens unit 2A shown in FIG. A plurality of notches 50 are provided on the top surface of the lens unit 2B shown in FIG. The robot arm sandwiches the notches 49 or the notches 50 to align the lens unit 2.
 図19の(a)では、切り込み49は3か所であるがロボットアームが挟み込める配置で2か所以上何ヵ所であってもよいし、図19の(b)の切り欠き50についても、切り込み49と同様に2か所以上何ヵ所であってもよい。また切り込み49と切り欠き50の併用であってもよい。 In FIG. 19 (a), there are three notches 49, but there may be two or more places where the robot arm can be sandwiched, and the notches 50 in FIG. Similar to the notch 49, the number may be two or more. Further, the cut 49 and the notch 50 may be used in combination.
 (3.第3実施形態の効果)
 以上のように、撮像装置1の本体の組み立て後に、レンズユニット2(光学部材)が組み込まれ、ここで同時に、レンズユニット2(光学部材)の光軸合わせが行われる。この結果、光学的に高精度な画像を得られる撮像装置1が実現できるという効果を奏する。
(3. Effects of the third embodiment)
As described above, after assembling the main body of the imaging apparatus 1, the lens unit 2 (optical member) is assembled, and at the same time, the optical axis alignment of the lens unit 2 (optical member) is performed. As a result, there is an effect that the imaging apparatus 1 that can obtain an optically high-accuracy image can be realized.
 〔まとめ〕
 本発明の態様1に係る撮像装置1は、レンズ2aと、上記レンズ2aを介して入射した光から撮像信号を生成する撮像素子11が実装された第1基板(センサ実装基板12)と、上記撮像信号を外部に対し入出力する外部入出力端子16が実装された第2基板(外部入出力端子実装基板17)と、上記レンズ2aを格納した第1ケース(前部ケース5)と、上記第1ケースと組み合わされる第2ケース(後部ケース6)と、上記第1基板および上記第2基板が格納されるように上記第1ケースと上記第2ケースとの間に形成された空間が樹脂によって封止された樹脂封止部(モールド部7)とを備えている。
[Summary]
The imaging apparatus 1 according to the first aspect of the present invention includes a lens 2a, a first substrate (sensor mounting substrate 12) on which an imaging element 11 that generates an imaging signal from light incident through the lens 2a is mounted, and the above A second substrate (external input / output terminal mounting substrate 17) on which an external input / output terminal 16 for inputting / outputting an imaging signal to / from the outside is mounted; a first case (front case 5) storing the lens 2a; A space formed between the first case and the second case so that the second case (rear case 6) combined with the first case and the first substrate and the second substrate are stored is a resin. The resin sealing part (mold part 7) sealed by is provided.
 上記の構成によれば、第1基板および第2基板を樹脂封止部によって封止しているので、第1ケースと第2ケースとの空間を気密にしたり、当該空間にガスを充填したりする従来の撮像装置と比べて、空間内の気体圧力が上昇する虞がない。これにより、耐衝撃性、耐振動性、防水性、および耐薬品性に優れるとともに、レンズユニット2の取り付けを高精度に行う事(アクティブ・アライメント)が可能となることから、高精度な画像が得られる調整が可能になる。 According to said structure, since the 1st board | substrate and the 2nd board | substrate are sealed with the resin sealing part, the space of 1st case and 2nd case is made airtight, or the said space is filled with gas. Compared with the conventional imaging apparatus which does, there is no possibility that the gas pressure in space rises. As a result, it has excellent impact resistance, vibration resistance, waterproofness, and chemical resistance, and it is possible to attach the lens unit 2 with high precision (active alignment). The resulting adjustment is possible.
 また、上記の構成によれば、第1ケースおよび第2ケースの接合に、ねじ締結、および/または、スナップ止めなどの機構が不必要となることから、部品点数および工数の削減、ならびに、ねじのゆるみおよびスナップ係合外れによるカメラの破損の防止ができる。 In addition, according to the above configuration, since a mechanism such as screw fastening and / or snap fastening is not required for joining the first case and the second case, the number of parts and man-hours can be reduced, and the screw can be used. The camera can be prevented from being damaged due to the loosening of the lens and the snap engagement.
 本発明の態様2に係る撮像装置1は、上記態様1において、上記第1基板と上記第2基板とは一体に設けられていてもよい。 In the imaging device 1 according to aspect 2 of the present invention, in the aspect 1, the first substrate and the second substrate may be provided integrally.
 上記構成によれば、第1基板および第2基板が格納される空間が小さくなるので、撮像装置1のサイズを小さくすることができる。また、部品点数を削減することができ、それによって低価格のカメラを提供できる。 According to the above configuration, since the space in which the first substrate and the second substrate are stored is reduced, the size of the imaging device 1 can be reduced. In addition, the number of parts can be reduced, thereby providing a low-cost camera.
 本発明の態様3に係る撮像装置1は、上記態様1または2において、上記第1ケースおよび上記第2ケースは第1樹脂によって形成され、上記樹脂封止部は上記第1樹脂より柔らかい第2樹脂によって形成されていてもよい。 In the imaging device 1 according to aspect 3 of the present invention, in the aspect 1 or 2, the first case and the second case are formed of a first resin, and the resin sealing portion is a second softer than the first resin. It may be formed of resin.
 上記構成によれば、撮像装置1が振動および衝撃を受けた際に、内部基板18(センサ実装基板12および外部入出力端子実装基板17)、ならびに、内部基板18上に配置された素子およびICなどに対する、上記衝撃の影響を緩和することが可能になる。 According to the above configuration, when the imaging device 1 receives vibration and impact, the internal substrate 18 (the sensor mounting substrate 12 and the external input / output terminal mounting substrate 17), and the elements and ICs arranged on the internal substrate 18 are used. It is possible to alleviate the impact of the impact on the
 本発明の態様4に係る撮像装置1は、上記態様1、2または3において、上記第1基板および上記第2基板を収納した状態で上記空間に格納される金属製の基板収納体(金属シース36)をさらに備えていてもよい。 The imaging device 1 according to the aspect 4 of the present invention is the imaging apparatus 1 according to the aspect 1, 2, or 3, wherein the metal substrate storage body (metal sheath) is stored in the space in a state where the first substrate and the second substrate are stored. 36) may further be provided.
 上記の構成によれば、第1基板および第2基板で発熱した熱を基板収納体を介して効率的に放熱することができる。 According to the above configuration, the heat generated by the first substrate and the second substrate can be efficiently radiated through the substrate housing.
 本発明の態様5に係る撮像装置1は、上記態様4において、上記基板収納体は接地されていてもよい。 In the imaging device 1 according to aspect 5 of the present invention, in the aspect 4, the substrate housing body may be grounded.
 上記の構成によれば、基板収納体の内部で生じた電磁ノイズを外部へ放出しないとともに、外部からの電磁ノイズの影響を受けることを防止できる。 According to the above configuration, the electromagnetic noise generated inside the substrate housing is not released to the outside, and can be prevented from being affected by the electromagnetic noise from the outside.
 本発明の態様6に係る撮像装置1は、上記態様3において、上記第2樹脂は、空気より熱伝導性の高い樹脂であり、熱伝導性を有する粒子が添加されていてもよい。 In the imaging device 1 according to Aspect 6 of the present invention, in the Aspect 3, the second resin is a resin having higher thermal conductivity than air, and particles having thermal conductivity may be added thereto.
 上記の構成によれば、撮像装置1内部で発熱した熱を効率的に放熱することができる効果を奏する。 According to the above configuration, the heat generated in the imaging device 1 can be efficiently radiated.
 本発明の態様7に係る撮像装置1の製造方法は、レンズ2aと、当該レンズ2aを介して入射した光から撮像信号を生成する撮像素子11が実装された第1基板(センサ実装基板12)と、上記撮像信号を外部に対し入出力する外部入出力端子16が実装された第2基板(外部入出力端子実装基板17)とを備える撮像装置1を製造する撮像装置1の製造方法であって、上記レンズ2aを格納した第1ケース(前部ケース5)と、当該第1ケースと組み合わされる第2ケース(後部ケース6)との間に形成された空間に、上記第1基板および上記第2基板を格納する格納工程と、上記空間に樹脂を充填する樹脂充填工程とを含んでいる。 The manufacturing method of the imaging device 1 according to the aspect 7 of the present invention includes a lens 2a and a first substrate (sensor mounting substrate 12) on which an imaging element 11 that generates an imaging signal from light incident through the lens 2a is mounted. And a second substrate (external input / output terminal mounting substrate 17) on which an external input / output terminal 16 for inputting / outputting the imaging signal to / from the outside is mounted. In the space formed between the first case (front case 5) storing the lens 2a and the second case (rear case 6) combined with the first case, the first substrate and the A storage step of storing the second substrate and a resin filling step of filling the space with resin are included.
 上記の方法によれば、第1ケースと第2ケースとの間に形成された空間を樹脂で充填することにより、当該空間に格納された第1基板および第2基板が樹脂によって封止されるので、第1ケースと第2ケースとの空間を気密にしたり、当該空間にガスを充填したりする従来の撮像装置と比べて、空間内の気体圧力が上昇する虞がない。これにより、耐衝撃性、耐振動性、防水性、および耐薬品性に優れるとともに、レンズユニット2の取り付けを高精度に行う事(アクティブ・アライメント)が可能となることから、高精度な画像が得られる調整が可能になる。 According to the above method, by filling the space formed between the first case and the second case with resin, the first substrate and the second substrate stored in the space are sealed with resin. Therefore, there is no possibility that the gas pressure in the space will increase as compared with the conventional imaging device in which the space between the first case and the second case is made airtight or the space is filled with gas. As a result, it has excellent impact resistance, vibration resistance, waterproofness, and chemical resistance, and it is possible to attach the lens unit 2 with high precision (active alignment). The resulting adjustment is possible.
 また、上記の方法によれば、第1ケースおよび第2ケースの接合に、ねじ締結、および/または、スナップ止めなどの機構が不必要となることから、部品点数および工数の削減、ならびに、ねじのゆるみおよびスナップ係合外れによるカメラの破損の防止ができる。 Further, according to the above method, a mechanism such as screw fastening and / or snap fastening is not required for joining the first case and the second case. The camera can be prevented from being damaged due to the loosening of the lens and the snap engagement.
 本発明の態様8に係る撮像装置1の製造方法は、上記態様7において、上記樹脂充填工程において、上記第1基板と上記第2基板との間に樹脂を充填してもよい。 In the manufacturing method of the imaging device 1 according to the aspect 8 of the present invention, the resin may be filled between the first substrate and the second substrate in the resin filling step in the aspect 7.
 上記の方法によれば、第1基板と第2基板との間に充填された樹脂が第1基板と第2基板とを押し込んでいくので、第1基板および第2基板をそれぞれ所定の位置まで移動させることができる。 According to the above method, the resin filled between the first substrate and the second substrate pushes the first substrate and the second substrate, so that the first substrate and the second substrate are respectively brought to predetermined positions. Can be moved.
 図7の(b)では、上記の方法の結果として、第1基板および第2基板が、第1基板および第2基板の距離が広がる方向に、移動することを示している。 FIG. 7B shows that as a result of the above method, the first substrate and the second substrate move in the direction in which the distance between the first substrate and the second substrate increases.
 本発明の態様9に係る撮像装置1の製造方法は、上記態様7または8において、上記レンズ2aと上記撮像素子11との位置を合わせる位置合わせ工程と、上記レンズ2aを合わせた位置に固定する固定工程とをさらに含んでいてもよい。 The manufacturing method of the imaging device 1 according to aspect 9 of the present invention is the above-described aspect 7 or 8, in which the alignment step of aligning the position of the lens 2a and the imaging element 11 and the position of the lens 2a are fixed. And a fixing step.
 上記の方法によれば、光学的に高精度な画像を得られる撮像装置1が実現できる。 According to the above method, the imaging device 1 that can obtain an optically high-accuracy image can be realized.
 本発明の態様10に係る撮像装置1の製造方法は、上記態様9において、上記位置合わせ工程では、上記レンズ2aと上記撮像素子11との位置合わせをアクティブ・アライメント法により行なってもよい。 In the manufacturing method of the imaging device 1 according to aspect 10 of the present invention, in the above aspect 9, in the alignment step, the alignment between the lens 2a and the imaging element 11 may be performed by an active alignment method.
 上記の方法によれば、レンズと撮像素子11との位置合わせを高精度に行なうことができる。 According to the above method, the lens and the image sensor 11 can be aligned with high accuracy.
 本発明の態様11に係る撮像装置1の製造方法は、上記態様9または10において、上記固定工程は、上記レンズ2aを仮に固定する仮固定工程と、当該仮固定工程の後に上記レンズ2aを完全に固定する本固定工程とを含んでいてもよい。 In the manufacturing method of the imaging device 1 according to aspect 11 of the present invention, in the aspect 9 or 10, the fixing step includes temporarily fixing the lens 2a, and completely fixing the lens 2a after the temporary fixing step. And a main fixing step of fixing to the main body.
 例えば、接着剤を用いたレンズ2aの固定では、接着剤によっては硬化時間に大きな差がある。このため、硬化に長時間を要する接着剤を用いて一度でレンズ2aを固定すると、効率的ではない。これに対し、上記の方法によれば、仮固定工程において短時間で硬化する接着剤を用いてレンズ2aを仮に固定しておけば、本固定工程において硬化に長時間を要する接着剤を用いてレンズ2aを固定しても、その固定時間を短縮することができる。 For example, in fixing the lens 2a using an adhesive, there is a large difference in curing time depending on the adhesive. For this reason, it is not efficient to fix the lens 2a at once using an adhesive that requires a long time for curing. On the other hand, according to the above method, if the lens 2a is temporarily fixed using an adhesive that cures in a short time in the temporary fixing step, an adhesive that requires a long time for curing is used in the main fixing step. Even if the lens 2a is fixed, the fixing time can be shortened.
 本発明の態様12に係る撮像装置1の製造方法は、上記態様11において、上記仮固定工程および上記本固定工程の固定方法はそれぞれ異なっていてもよい。 In the manufacturing method of the imaging device 1 according to the aspect 12 of the present invention, the temporary fixing step and the fixing method in the main fixing step may be different from each other in the above aspect 11.
 上記の方法によれば、例えば、仮固定工程と本固定工程とで、上記のように使用する接着剤を異ならせることができる。 According to the above method, for example, the adhesive to be used can be made different between the temporary fixing step and the main fixing step.
 本発明の態様13に係る撮像装置1の製造方法は、上記態様11または12において、上記仮固定工程において、上記本固定工程において上記レンズ2aの固定に用いる接着剤よりも短時間で硬化する接着剤を用いて上記レンズ2aを固定してもよい。 In the aspect 11 or 12, the method for manufacturing the imaging device 1 according to aspect 13 of the present invention is an adhesive that hardens in a shorter time than the adhesive used for fixing the lens 2a in the temporary fixing step in the temporary fixing step. The lens 2a may be fixed using an agent.
 上記の方法によれば、例えば、仮固定工程で、紫外線硬化型の接着剤を用いて短時間にレンズ2aを固定し、本固定工程で、比較的硬化に時間がかかる熱硬化型接着材を用いてレンズを固定することができる。 According to the above method, for example, in the temporary fixing step, the lens 2a is fixed in a short time using an ultraviolet curable adhesive, and in the main fixing step, the thermosetting adhesive that takes a relatively long time to cure is obtained. Can be used to fix the lens.
 〔付記事項〕
 上記第1実施形態、第2実施形態などの、数字「1」または数字「2」などは、実施形態を列挙するうえで、便宜上付した番号であり、実施形態の好ましさ、または実施形態から得られる効果の優劣を表すものではない。
[Additional Notes]
In the first embodiment, the second embodiment, etc., the numbers “1” or “2” are numbers given for convenience in listing the embodiments, and the preference of the embodiments or the embodiments. It does not represent the superiority or inferiority of the effect obtained from
 本発明は上述した各実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。さらに、各実施形態にそれぞれ開示された技術的手段を組み合わせることにより、新しい技術的特徴を形成することができる。 The present invention is not limited to the above-described embodiments, and various modifications are possible within the scope shown in the claims, and embodiments obtained by appropriately combining technical means disclosed in different embodiments. Is also included in the technical scope of the present invention. Furthermore, a new technical feature can be formed by combining the technical means disclosed in each embodiment.
 1 撮像装置
 2a レンズ
 5 前部ケース(第1ケース)
 6 後部ケース(第2ケース)
 7 モールド部(樹脂封止部)
11 撮像素子
12 センサ実装基板(第1基板)
16 外部入出力端子
17 外部入出力端子実装基板(第2基板)
36 金属シース(基板収納体)
44 フィン
DESCRIPTION OF SYMBOLS 1 Imaging device 2a Lens 5 Front case (1st case)
6 Rear case (second case)
7 Mold part (resin sealing part)
11 Image sensor 12 Sensor mounting substrate (first substrate)
16 External input / output terminal 17 External input / output terminal mounting board (second board)
36 Metal sheath (substrate housing)
44 Fin

Claims (13)

  1.  レンズと、
     上記レンズを介して入射した光から撮像信号を生成する撮像素子が実装された第1基板と、
     上記撮像信号を外部に対し入出力する外部入出力端子が実装された第2基板と、
     上記レンズを格納した第1ケースと、
     上記第1ケースと組み合わされる第2ケースと、
     上記第1基板および上記第2基板が格納されるように上記第1ケースと上記第2ケースとの間に形成された空間が樹脂によって封止された樹脂封止部とを備えていることを特徴とする撮像装置。
    A lens,
    A first substrate on which an imaging device that generates an imaging signal from light incident through the lens is mounted;
    A second board on which an external input / output terminal for inputting / outputting the imaging signal to / from the outside is mounted;
    A first case storing the lens;
    A second case combined with the first case;
    A space formed between the first case and the second case so as to store the first substrate and the second substrate is provided with a resin sealing portion sealed with resin. An imaging device that is characterized.
  2.  上記第1基板と上記第2基板とは一体に設けられていることを特徴とする請求項1に記載の撮像装置。 2. The imaging apparatus according to claim 1, wherein the first substrate and the second substrate are integrally provided.
  3.  上記第1ケースおよび上記第2ケースは第1樹脂によって形成され、
     上記樹脂封止部は上記第1樹脂より柔らかい第2樹脂によって形成されていることを特徴とする請求項1または2に記載の撮像装置。
    The first case and the second case are formed of a first resin,
    The imaging apparatus according to claim 1, wherein the resin sealing portion is formed of a second resin that is softer than the first resin.
  4.  上記第1基板および上記第2基板を収納した状態で上記空間に格納される金属製の基板収納体をさらに備えていることを特徴とする請求項1、2または3に記載の撮像装置。 The imaging apparatus according to claim 1, 2 or 3, further comprising a metal substrate storage body stored in the space in a state where the first substrate and the second substrate are stored.
  5.  上記基板収納体は接地されていることを特徴とする請求項4に記載の撮像装置。 The imaging apparatus according to claim 4, wherein the substrate housing is grounded.
  6.  上記第2樹脂は、空気より熱伝導性の高い樹脂であり、熱伝導性を有する粒子が添加されていることを特徴とする請求項3に記載の撮像装置。 4. The image pickup apparatus according to claim 3, wherein the second resin is a resin having higher thermal conductivity than air, and particles having thermal conductivity are added.
  7.  レンズと、当該レンズを介して入射した光から撮像信号を生成する撮像素子が実装された第1基板と、上記撮像信号を外部に対し入出力する外部入出力端子が実装された第2基板とを備える撮像装置を製造する撮像装置の製造方法であって、
     上記レンズを格納した第1ケースと、当該第1ケースと組み合わされる第2ケースとの間に形成された空間に、上記第1基板および上記第2基板を格納する格納工程と、
     上記空間に樹脂を充填する樹脂充填工程とを含んでいることを特徴とする撮像装置の製造方法。
    A first substrate on which an imaging element that generates an imaging signal from light incident through the lens is mounted, and a second substrate on which an external input / output terminal that inputs and outputs the imaging signal to the outside is mounted An imaging device manufacturing method for manufacturing an imaging device comprising:
    A storing step of storing the first substrate and the second substrate in a space formed between a first case storing the lens and a second case combined with the first case;
    And a resin filling step of filling the space with a resin.
  8.  上記樹脂充填工程において、上記第1基板と上記第2基板との間に樹脂を充填することを特徴とする請求項7に記載の撮像装置の製造方法。 8. The method of manufacturing an imaging apparatus according to claim 7, wherein, in the resin filling step, a resin is filled between the first substrate and the second substrate.
  9.  上記レンズと上記撮像素子との位置を合わせる位置合わせ工程と、
     上記レンズを合わせた位置に固定する固定工程とをさらに含んでいることを特徴とする請求項7または8に記載の撮像装置の製造方法。
    An alignment step of aligning the position of the lens and the imaging device;
    The method according to claim 7, further comprising a fixing step of fixing the lens at a combined position.
  10.  上記位置合わせ工程において、上記レンズと上記撮像素子との位置合わせをアクティブ・アライメント法により行なうことを特徴とする請求項9に記載の撮像装置の製造方法。 10. The method of manufacturing an imaging apparatus according to claim 9, wherein in the positioning step, the lens and the imaging device are aligned by an active alignment method.
  11.  上記固定工程は、上記レンズを仮に固定する仮固定工程と、当該仮固定工程の後に上記レンズを完全に固定する本固定工程とを含んでいることを特徴とする、請求項9または10に記載の撮像装置の製造方法。 11. The fixing step includes a temporary fixing step of temporarily fixing the lens and a main fixing step of completely fixing the lens after the temporary fixing step. Manufacturing method of the imaging apparatus.
  12.  上記仮固定工程および上記本固定工程の固定方法はそれぞれ異なることを特徴とする、請求項11に記載の撮像装置の製造方法。 The method for manufacturing an imaging device according to claim 11, wherein the fixing method of the temporary fixing step and the main fixing step are different from each other.
  13.  上記仮固定工程において、上記本固定工程において上記レンズの固定に用いる接着剤よりも短時間で硬化する接着剤を用いて上記レンズを固定することを特徴とする、請求項11または12に記載の撮像装置の製造方法。 13. The lens according to claim 11, wherein, in the temporary fixing step, the lens is fixed using an adhesive that cures in a shorter time than an adhesive used for fixing the lens in the main fixing step. Manufacturing method of imaging apparatus.
PCT/JP2017/030624 2016-09-30 2017-08-25 Imaging device WO2018061564A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-194554 2016-09-30
JP2016194554 2016-09-30

Publications (1)

Publication Number Publication Date
WO2018061564A1 true WO2018061564A1 (en) 2018-04-05

Family

ID=61762784

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/030624 WO2018061564A1 (en) 2016-09-30 2017-08-25 Imaging device

Country Status (1)

Country Link
WO (1) WO2018061564A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022264337A1 (en) * 2021-06-16 2022-12-22 オリンパス株式会社 Imaging unit and endoscope

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007184310A (en) * 2005-12-29 2007-07-19 Citizen Electronics Co Ltd Light emitting device
WO2012137267A1 (en) * 2011-04-05 2012-10-11 パナソニック株式会社 Solid-state image pickup device, and method for manufacturing solid-state image pickup device
JP2013070487A (en) * 2011-09-21 2013-04-18 Toyota Motor Corp Housing of ecu
JP2013153361A (en) * 2012-01-26 2013-08-08 Konica Minolta Inc Camera module
JP2014175908A (en) * 2013-03-11 2014-09-22 Fujitsu General Ltd On-vehicle camera device and manufacturing method of the same
JP2015165847A (en) * 2014-03-03 2015-09-24 オリンパス株式会社 Imaging device and endoscopic device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007184310A (en) * 2005-12-29 2007-07-19 Citizen Electronics Co Ltd Light emitting device
WO2012137267A1 (en) * 2011-04-05 2012-10-11 パナソニック株式会社 Solid-state image pickup device, and method for manufacturing solid-state image pickup device
JP2013070487A (en) * 2011-09-21 2013-04-18 Toyota Motor Corp Housing of ecu
JP2013153361A (en) * 2012-01-26 2013-08-08 Konica Minolta Inc Camera module
JP2014175908A (en) * 2013-03-11 2014-09-22 Fujitsu General Ltd On-vehicle camera device and manufacturing method of the same
JP2015165847A (en) * 2014-03-03 2015-09-24 オリンパス株式会社 Imaging device and endoscopic device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022264337A1 (en) * 2021-06-16 2022-12-22 オリンパス株式会社 Imaging unit and endoscope

Similar Documents

Publication Publication Date Title
US10298821B2 (en) Lens mounting mechanism, lens mounting method, and image pickup device
JP5601000B2 (en) Imaging device
JP5771901B2 (en) Imaging device
CN106664358B (en) Imaging device, optical apparatus, electronic apparatus, vehicle, and method for manufacturing imaging device
EP2719164B1 (en) Infrared camera system architectures
WO2015025742A1 (en) Imaging device, manufacturing device, manufacturing method, and electronic device
US7515817B2 (en) Camera module
US20190373142A1 (en) Imaging apparatus
WO2016175198A1 (en) Method for assembling camera device and method for assembling lens unit
WO2017061296A1 (en) Solid-state imaging element package, manufacturing method therefor, and electronic device
JP2019530898A (en) Camera and shooting assembly
JP5845569B2 (en) Imaging unit
US7787198B1 (en) Lens barrel assembly
JP2010074665A (en) Electronic equipment and electronic equipment having imaging functions
JP5897328B2 (en) Stereo camera and manufacturing method thereof
JP5821394B2 (en) Imaging device
JP2008033010A (en) Imaging apparatus
WO2018061564A1 (en) Imaging device
JP2014225777A (en) Camera module, method for manufacturing the same, and electronic information apparatus
JP2009290527A (en) Camera module
JP5602107B2 (en) Imaging device
JP2011211366A (en) Imaging device
JP5598135B2 (en) Imaging device
JP2007194272A (en) Imaging module
JP2008233271A (en) Lens unit, lens module, camera module, and method for manufacturing lens unit

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17855522

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17855522

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP