WO2018061143A1 - 孤発性大腸癌発症可能性の判定方法 - Google Patents

孤発性大腸癌発症可能性の判定方法 Download PDF

Info

Publication number
WO2018061143A1
WO2018061143A1 PCT/JP2016/078810 JP2016078810W WO2018061143A1 WO 2018061143 A1 WO2018061143 A1 WO 2018061143A1 JP 2016078810 W JP2016078810 W JP 2016078810W WO 2018061143 A1 WO2018061143 A1 WO 2018061143A1
Authority
WO
WIPO (PCT)
Prior art keywords
cpg sites
colorectal cancer
seq
methylation rate
nos
Prior art date
Application number
PCT/JP2016/078810
Other languages
English (en)
French (fr)
Inventor
楠 正人
裕二 問山
彰 三井
竹鼻 健司
努 梅澤
Original Assignee
有限会社ハヌマット
Eaファーマ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 有限会社ハヌマット, Eaファーマ株式会社 filed Critical 有限会社ハヌマット
Priority to PCT/JP2016/078810 priority Critical patent/WO2018061143A1/ja
Priority to KR1020197008922A priority patent/KR20190054086A/ko
Priority to PCT/JP2017/035137 priority patent/WO2018062361A1/ja
Priority to EP17856310.2A priority patent/EP3521448A4/en
Priority to CN201780059361.5A priority patent/CN109844139A/zh
Priority to EP21152408.7A priority patent/EP3842543A1/en
Priority to JP2018542835A priority patent/JP7139248B2/ja
Priority to US16/333,130 priority patent/US20190352721A1/en
Publication of WO2018061143A1 publication Critical patent/WO2018061143A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/117Nucleic acids having immunomodulatory properties, e.g. containing CpG-motifs
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids

Definitions

  • the present invention relates to a method for determining the possibility of development of sporadic colorectal cancer in a human subject having no subjective symptoms of colorectal disease.
  • This application claims the priority based on Japanese Patent Application No. 2015-192140 for which it applied to Japan on September 29, 2015, and uses the content here.
  • Colorectal cancer is a cancer that has a high cure rate by appropriate treatment in the early stage. However, there are many cases in which there is no subjective symptom at an early stage. For this reason, it is preferable that it can be detected at an early stage by conducting a regular inspection in a medical examination or the like.
  • a fecal occult blood test is widely performed as a colorectal cancer screening. The fecal occult blood test is excellent as a screening test in that it is non-invasive because stool is used as a sample.
  • Endoscopy is an examination that more accurately examines colorectal cancer by distinguishing it from other diseases that are positive in fecal occult blood tests.
  • it is generally difficult to visually detect early colorectal cancer because it depends largely on the skill of the operator.
  • endoscopy is highly invasive and has a problem that the burden on the subject is large.
  • Patent Document 1 discloses methylation of five miRNA genes miR-1, miR-9, miR-124, miR-137, and miR-34b / c in neoplastic tissues in patients with ulcerative colitis.
  • the rate is significantly higher than that of non-tumor ulcerative colitis tissue, and the methylation rate of the five miRNA genes in the biological sample collected from the rectal mucosa, which is a non-cancerous part, is It has been reported that it can be used as a marker for the development of colorectal cancer in patients with inflammation.
  • the present invention determines the possibility of the occurrence of sporadic colorectal cancer in a human subject having no subjective symptoms of colorectal disease by a method that is less invasive than endoscopy and less burdensome on the subject. It aims to provide a method.
  • the present inventors have covered the methylation rate of CpG sites (cytosine-phosphodiester bond-guanine) in the genomic DNA of human subjects who have no subjective symptoms of colorectal disease.
  • CpG sites cytosine-phosphodiester bond-guanine
  • 93 types of CpG sites having a remarkable difference in methylation rate were found in patients who developed colorectal cancer and human subjects who did not develop sporadic colorectal cancer, and the present invention was completed. It was.
  • the present invention provides the following methods [1] to [18] for determining the likelihood of developing sporadic colorectal cancer, and a marker for DNA methylation rate analysis.
  • a method for determining the likelihood of developing sporadic colorectal cancer Methylation of one or more CpG sites selected from the group consisting of CpG sites in the base sequences represented by SEQ ID NOs: 1 to 93 in DNA collected from biological samples collected from human subjects A measuring process for measuring the rate; Determination to determine the possibility of sporadic colorectal cancer development in the human subject based on the methylation rate measured in the measurement step and a preset reference value or a preset multivariate discriminant Having a process,
  • the reference value is a value for identifying a sporadic colorectal cancer patient and a non-spontaneous colorectal cancer patient, each set for the methylation rate of each CpG site,
  • the multivariate discriminant includes, as a variable, the methyl
  • SEQ ID NOs: 1, 4, 6, 10, 11, 13, 14, 17 to 20, 23 to 27, 29, 30, 32, 33, 35, 36, 39, 41 to 48 Criteria in which methylation rates are set in advance in at least one of the CpG sites in the base sequences represented by 50 to 54, 59, 65 to 68, 70 to 77, 79 to 86, 90, and 91 Less than or equal to SEQ ID NO: 2, 3, 5, 7-9, 12, 15, 16, 21, 22, 28, 31, 34, 37, 38, 40, 49, 55-58, 60-64 69, 78, 87 to 89, 92, and 93 when at least one of the CpG sites in the base sequence is a methylation rate equal to or higher than a preset reference value.
  • Subject is considered likely to have sporadic colorectal cancer
  • the method for determining the likelihood of developing sporadic colorectal cancer according to [1] or [2].
  • the methylation rate of the CpG site in the base sequence represented by SEQ ID NOs: 1 to 54 is measured
  • SEQ ID NOs: 1, 4, 6, 10, 11, 13, 14, 17 to 20, 23 to 27, 29, 30, 32, 33, 35, 36, 39, 41 to 48, and 50 to At least one of the CpG sites in the base sequence represented by 54 has a methylation rate equal to or lower than a preset reference value, or SEQ ID NOs: 2, 3, 5, 7 to 9, 12, Criteria in which at least one of CpG sites in the base sequences represented by 15, 16, 21, 22, 28, 31, 34, 37, 38, 40, and 49 has a methylation rate set in advance If it is greater than or equal to the value, it is determined that the human subject is highly likely to have sporadic colorectal cancer, and any of the above [
  • the methylation rate of the CpG site in the base sequences represented by SEQ ID NOs: 1 to 8 is measured
  • the determination step at least one of the CpG sites in the base sequences represented by SEQ ID NOs: 1, 4, and 6 has a methylation rate equal to or lower than a preset reference value, or SEQ ID NO:
  • the human subject when at least one of the CpG sites in the base sequences represented by 2, 3, 5, 7, and 8 has a methylation rate equal to or higher than a preset reference value;
  • the method for determining the likelihood of developing sporadic colorectal cancer according to any one of the above [1] to [3], wherein it is determined that there is a high possibility of developing sporadic colorectal cancer.
  • the methylation rate of the CpG site in the base sequence represented by SEQ ID NOs: 55 to 87 is measured
  • the determination step at least one of the CpG sites in the base sequences represented by SEQ ID NOs: 59, 65 to 68, 70 to 77, and 79 to 86 has a reference value in which the methylation rate is set in advance.
  • a method for determining the likelihood of any sporadic colorectal cancer is determining the likelihood of any sporadic colorectal cancer.
  • the methylation rate of the CpG site in the base sequence represented by SEQ ID NOs: 88 to 93 is measured
  • the determination step at least one of the CpG sites in the base sequences represented by SEQ ID NOs: 90 and 91 has a methylation rate equal to or lower than a preset reference value, or SEQ ID NOs: 88 and 89 , 92, and 93, when at least one of the CpG sites in the base sequence has a methylation rate equal to or higher than a preset reference value, the human subject is a sporadic colon.
  • the method for determining the likelihood of developing sporadic colorectal cancer according to any one of the above [1] to [3], wherein it is determined that the possibility of developing cancer is high.
  • the determination step among the CpG sites in the base sequences represented by SEQ ID NOs: 90 and 91, the number of CpG sites having a methylation rate equal to or lower than a preset reference value, and SEQ ID NOs: 88 and 89 , 92, and 93, the sum of the number of CpG sites having a methylation rate equal to or higher than a preset reference value among the CpG sites in the base sequences represented by the above human subjects is 2 or more.
  • the method for determining the likelihood of developing sporadic colorectal cancer according to any one of [1] to [3] and [10] above, wherein it is determined that there is a high possibility that a solitary colorectal cancer has developed. [12] When the sum is 5 or more, the human subject is determined to have a high possibility of developing sporadic colorectal cancer, [5], [7], [9], Or the determination method of the possibility of sporadic colorectal cancer onset of [11].
  • the multivariate discriminant includes, as a variable, a methylation rate of one or more CpG sites selected from the group consisting of CpG sites in the base sequences represented by SEQ ID NOs: 55 to 87,
  • the multivariate discriminant measures the methylation rate of the CpG site including the methylation rate as a variable
  • a discriminant value that is a value of the multivariate discriminant is calculated based on the methylation rate measured in the measurement step and the multivariate discriminant, and the discriminant value is set in advance as a reference discriminant value. If it is above, it is determined that the human subject is highly likely to develop sporadic colorectal cancer. [1] or [2] .
  • the multivariate discriminant includes, as a variable, the methylation rate of one or more CpG sites selected from the group consisting of CpG sites in the base sequences represented by SEQ ID NOs: 88 to 93,
  • the multivariate discriminant measures the methylation rate of the CpG site including the methylation rate as a variable
  • a discriminant value that is a value of the multivariate discriminant is calculated based on the methylation rate measured in the measurement step and the multivariate discriminant, and the discriminant value is set in advance as a reference discriminant value. If it is above, it is determined that the human subject is highly likely to develop sporadic colorectal cancer. [1] or [2] .
  • any of the above [1] to [14], wherein the multivariate discriminant is a logistic regression equation, a linear discriminant, a formula created by a naive Bayes classifier, or a formula created by a support vector machine A method for determining the likelihood of developing sporadic colorectal cancer.
  • the biological sample is rectal mucosal tissue.
  • a DNA fragment comprising a DNA fragment having a partial base sequence containing one or more CpG sites selected from the group consisting of CpG sites in the base sequences represented by SEQ ID NOs: 1 to 93, and isolated from human subjects
  • a marker for analyzing the DNA methylation rate which is used for determining the likelihood of developing colorectal cancer.
  • the possibility of sporadic colorectal cancer development can be determined by examining the methylation rate.
  • FIG. 1 is a cluster analysis based on the methylation level of the CpG site of the 54 CpG set selected as a result of the comprehensive DNA methylation analysis in Example 1.
  • FIG. 2 is a cluster analysis based on the methylation level of CpG sites in the 8CpG set selected as a result of the comprehensive DNA methylation analysis in Example 1.
  • FIG. 3 is a principal component analysis based on the methylation level of the CpG site of the 54 CpG set selected as a result of the comprehensive DNA methylation analysis in Example 1.
  • FIG. 4 is a principal component analysis based on the methylation level of the CpG site of the 8CpG set selected as a result of the comprehensive DNA methylation analysis in Example 1.
  • FIG. 1 is a cluster analysis based on the methylation level of the CpG site of the 54 CpG set selected as a result of the comprehensive DNA methylation analysis in Example 1.
  • FIG. 2 is a cluster analysis based on the methylation level of C
  • FIG. 5 is a cluster analysis based on the methylation level of the CpG site of the 33 CpG set selected as a result of the comprehensive DNA methylation analysis in Example 2.
  • FIG. 6 is a principal component analysis based on the methylation level of the CpG site of the 33 CpG set selected as a result of the comprehensive DNA methylation analysis in Example 2.
  • FIG. 7 shows the CpG site (cg01105403) in the base sequence represented by SEQ ID NO: 57, the CpG site (cg06829686) in the base sequence represented by SEQ ID NO: 63, and SEQ ID NO: 77 in Example 2.
  • FIG. 3 is an ROC curve of a test for the presence or absence of sporadic colorectal cancer when the methylation rate of 3 CpG sites of the CpG site (cg14629397) in the base sequence is used as a marker.
  • FIG. 8 is a cluster analysis based on the methylation level of the CpG site of the 6CpG set selected as a result of the comprehensive DNA methylation analysis in Example 3.
  • FIG. 9 is a principal component analysis based on the methylation level of the CpG site of the 6CpG set selected as a result of the comprehensive DNA methylation analysis in Example 3.
  • the carbon at the 5-position can be subjected to methylation modification.
  • the methylation rate of CpG sites refers to the amount of methylated cytosine base (methylated cytosine) and methylation among CpG sites in a biological sample collected from one organism individual.
  • the amount of untreated cytosine base (unmethylated cytosine) is measured, and means the ratio (%) of the amount of methylated cytosine to the sum of both.
  • sporadic colorectal cancer refers to an individual who has no obvious causative disease in the background and does not have a clear hereditary colorectal cancer based on family history or genetic testing. It is colorectal cancer that develops due to the accumulation of accidental genetic mutations due to environmental factors such as age, diet, and lifestyle, and it is sometimes called sporadic colorectal cancer. That is, sporadic colorectal cancer includes all colorectal cancers except colorectal cancer that develops from obvious causative diseases and hereditary colorectal cancer.
  • colorectal cancer that develops due to progression of other inflammatory diseases of the large intestine such as ulcerative colitis is not included in sporadic colorectal cancer (Cellular and Molecular Life Sciences, 2014, vol.71 (18) , P.3523-3535; Cancer Letters, 2014, vol.345, p.235-241).
  • hereditary colorectal cancer such as familial adenomatous polyposis (FAP) and Lynch syndrome is not included in sporadic colorectal cancer (-cancer, 2015, 9: 520).
  • the method for determining the likelihood of occurrence of sporadic colorectal cancer according to the present invention determines the likelihood of the occurrence of sporadic colorectal cancer in a human subject.
  • a method of developing a sporadic colorectal cancer with a group of healthy individuals who do not develop colorectal cancer and have no subjective symptoms of other colorectal diseases among CpG sites in genomic DNA A marker having a significant difference from the group of colorectal cancer patients who have been diagnosed.
  • methylation rate of the CpG site serving as these markers as an index, it is determined whether or not a human subject has developed colorectal cancer.
  • the methylation rate of the CpG site as a marker used to determine the likelihood of developing sporadic colorectal cancer in human subjects, early sporadic colorectal cancer, which is extremely difficult to visually distinguish, is more It can be detected objectively and with high sensitivity, and early detection can be expected.
  • the CpG site used as a marker in the determination method according to the present invention can distinguish between healthy individuals and those with sporadic colorectal cancer. Therefore, the determination method according to the present invention is suitable for determining the possibility of the onset of sporadic colorectal cancer in humans who have no subjective symptoms of colorectal disease.
  • the determination method according to the present invention is more invasive than endoscopy and can more accurately determine the onset of sporadic colorectal cancer than fecal occult blood test, it is particularly useful for colorectal screening. It is useful for screening tests for such colon cancer.
  • the determination method according to the present invention can be performed on a subject who is positive in a fecal occult blood test.
  • the determination of the likelihood of developing sporadic colorectal cancer based on the methylation rate of the CpG site as a marker may be performed based on the measured methylation rate of the CpG site itself, or the methylation rate of the CpG site as a marker May be performed based on a discriminant value obtained from this multivariate discriminant.
  • the method for determining based on the measured methylation rate of the CpG site itself is a method for determining the possibility of the occurrence of sporadic colorectal cancer in a human subject, A measurement step of measuring methylation rates of a plurality of specific CpG sites as markers in the present invention in DNA collected from a biological sample collected from a subject, and the methylation rate measured in the measurement step And a determination step of determining the possibility of the occurrence of sporadic colorectal cancer in the human subject based on a reference value set in advance for each CpG site.
  • the CpG site used as a marker in the present invention has a methylation rate that is greatly different between a group of non-colon cancer patients and a group of patients with sporadic colorectal cancer (hereinafter simply referred to as “colon cancer”). Is preferred.
  • colon cancer a group of non-colon cancer patients and a group of patients with sporadic colorectal cancer
  • the CpG site used as a marker in the present invention may have a methylation rate of colon cancer patients that is significantly higher than that of non-colon cancer patients, that is, a methylation rate that increases due to the onset of colon cancer,
  • the methylation rate of colorectal cancer patients may be significantly lower than that of non-colorectal cancer patients, that is, the methylation rate may be lowered by the onset of sporadic colorectal cancer.
  • the CpG site used as a marker in the present invention is more preferably one having a small difference in methylation rate between a non-cancerous site and a cancerous site of the large intestine in the same colon cancer patient.
  • a CpG site methylation rate as an index, even when a biological sample collected from a non-cancerous part of a colorectal cancer patient was used, a biological sample collected from a cancerous part was used.
  • the presence or absence of sporadic colorectal cancer can be determined with high sensitivity.
  • the deep mucosa of the large intestine needs to be collected using an endoscope or the like, and the burden on the human subject is large, but the rectal mucosa near the anus can be collected relatively easily.
  • the sporadic large intestine can be obtained using the rectal mucosa near the anus as a biological sample, regardless of the location where the cancerous site is formed A human subject who has developed cancer can be detected without omission.
  • the CpG site used as a marker in the present invention is specifically one or more CpG sites selected from the group consisting of CpG sites in the base sequences represented by SEQ ID NOs: 1 to 93. Each base sequence is shown in Tables 1-9. In the base sequences in the table, CG in parentheses is a CpG site detected by the comprehensive DNA methylation analysis shown in Examples 1 to 3. A DNA fragment having a base sequence containing these CpG sites can be used as a DNA methylation rate analysis marker for determining the possibility of the occurrence of sporadic colorectal cancer in a human subject.
  • the 54 CpG sites in parentheses in the base sequences represented by SEQ ID NOs: 1 to 54 were used in the comprehensive DNA methylation analysis in Example 1 described later.
  • the methylation rate is greatly different between the non-colon cancer onset group and the colon cancer patient group.
  • those with a methylation rate of colon cancer patients considerably lower than those with non-colon cancer are SEQ ID NOs: 1, 4, 6, 10, 11, 13, 14, 17-20, 23-27, 29, 30.
  • the CpG sites used as markers are not limited to these 54 CpG sites, and other CpG sites in the base sequences represented by SEQ ID NOs: 1 to 54 are also included.
  • CpG site used as a marker in the present invention only the CpG site in the base sequence represented by SEQ ID NOs: 1 to 8 may be used. These eight CpG sites (hereinafter, sometimes collectively referred to as “8CpG set”) have a small difference in methylation rate between the non-cancerous part and the cancerous part of the large intestine of the large intestine cancer in the 54CpG set. Is.
  • the 33 CpG sites in parentheses in the base sequences represented by SEQ ID NOs: 55 to 87 were used in the comprehensive DNA methylation analysis in Example 2 described later.
  • the methylation rate is greatly different between the non-colon cancer onset group and the colon cancer patient group.
  • the CpG sites in the base sequences represented by SEQ ID NOs: 59, 65 to 68, 70 to 77, and 79 to 86 are those in which the methylation rate of colon cancer patients is considerably lower than that of non-colon cancer patients.
  • those whose methylation rate in colon cancer patients is significantly higher than those in non-colon cancer patients are the bases represented by SEQ ID NOs: 55-58, 60-64, 69, 78, and 87 CpG site in the sequence (“+” in the table).
  • the CpG site used as a marker is not limited to these 33 CpG sites, and includes other CpG sites in the base sequences represented by SEQ ID NOs: 55 to 87.
  • CpG sites in parentheses in the base sequences represented by SEQ ID NOs: 88 to 93 were used in the comprehensive DNA methylation analysis in Example 3 described later.
  • the methylation rate is greatly different between the non-colon cancer onset group and the colon cancer patient group.
  • the CpG site in the nucleotide sequence represented by SEQ ID NOs: 90 and 91 (“ ⁇ ” in the table) has a significantly lower methylation rate in patients with colorectal cancer than those with non-colorectal cancer.
  • a cancer patient whose methylation rate is significantly higher than those who develop non-colon cancer is a CpG site in the nucleotide sequence represented by SEQ ID NOs: 88, 89, 92, and 93 (“+” in the table).
  • the CpG site used as a marker is not limited to these 6 CpG sites, and includes other CpG sites in the base sequences represented by SEQ ID NOs: 88 to 93.
  • a reference value for discriminating between colon cancer patients and non-colon cancer patients is set in advance.
  • the CpG sites marked “+” in Tables 1-5, among the 33 CpG sets, the CpG sites marked “+” in Tables 6-8, and among the 6 CpG sets, “+” in Table 9 In the case of a CpG site marked with “”, there is a possibility that the human subject has developed sporadic colorectal cancer when the measured methylation rate is equal to or higher than a preset reference value. Judged as high.
  • the CpG sites marked with “-” in Tables 1 to 5 among the 33 CpG sets, the CpG sites marked with “-” in Tables 6 to 8, and among the 6 CpG sets, listed in Table 9
  • a CpG site marked with “” there is a possibility that the human subject has developed sporadic colorectal cancer when the measured methylation rate is not more than a preset reference value. Judged as high.
  • the reference value of each CpG site can be determined experimentally as a threshold value that can be used to measure the methylation rate of the CpG site in the colon cancer patient group and the non-colon cancer onset group, and to distinguish between the two groups.
  • the standard value for methylation of an arbitrary CpG site is obtained by a general statistical method. Examples thereof are shown below, but the method of determining the reference value in the present invention is not limited to these.
  • DNA methylation of rectal mucosa was measured for multiple non-colorectal cancer patients and multiple colorectal cancer patients, respectively. After calculating the numerical value representative of the conversion and the variation, a threshold value that distinguishes both the numerical values in consideration of the variation can be obtained and used as a reference value.
  • SEQ ID NOs: 1, 4, 6, 10, 11, 13, 14, 17 to 20, 23 to 27, 29, 30, 32, 33, 35, 36, 39, 41 to 48, 50 to At least one of the CpG sites in the base sequence represented by 54, 59, 65-68, 70-77, 79-86, 90, and 91 has a methylation rate below a preset reference value
  • SEQ ID NOs: 2, 3, 5, 7-9, 12, 15, 16, 21, 22, 28, 31, 34, 37, 38, 40, 49, 55-58, 60-64, 69 , 78, 87 to 89, 92, and 93 when at least one of the CpG sites in the nucleotide sequence has a methylation rate equal to or higher than a preset reference value,
  • the person is likely to have sporadic colorectal cancer That.
  • the 54CpG set is used as a marker in the present invention, that is, when the methylation rate of the 54CpG set is measured in the measurement step, in the determination step, SEQ ID NOs: 1, 4, 6, 10, 11, 13, 14, 17-20, 23-27, 29, 30, 32, 33, 35, 36, 39, 41-48, and at least one of the CpG sites in the base sequence represented by 50-54
  • the methylation rate is below a preset reference value, or SEQ ID NOs: 2, 3, 5, 7-9, 12, 15, 16, 21, 22, 28, 31, 34, 37, 38 , 40, and 49, when at least one of the CpG sites in the base sequence has a methylation rate equal to or higher than a preset reference value, the human subject is a sporadic colon.
  • the determination step is represented by SEQ ID NOs: 1, 4, and 6. At least one of the CpG sites in the base sequence has a methylation rate not higher than a preset reference value, or in the base sequence represented by SEQ ID NOs: 2, 3, 5, 7, and 8. When at least one or more of the CpG sites has a methylation rate equal to or higher than a preset reference value, it is determined that the human subject is likely to have sporadic colorectal cancer To do.
  • the number of CpG sites having a methylation rate equal to or lower than a preset reference value among the CpG sites in the base sequences represented by SEQ ID NOs: 1, 4, and 6, the number of CpG sites having a methylation rate equal to or lower than a preset reference value, and the sequence Among the CpG sites in the base sequences represented by the numbers 2, 3, 5, 7, and 8, the sum of the number of CpG sites with a methylation rate equal to or higher than a preset reference value is 2 or more, preferably 3 As described above, when it is more preferably 5 or more, it can be determined with higher accuracy by determining that the human subject has a high possibility of developing sporadic colorectal cancer.
  • the 33CpG set is used as a marker in the present invention, that is, when the methylation rate of the 33CpG set is measured in the measurement step, in the determination step, SEQ ID NOs: 59, 65 to 68, 70 to 77, And at least one of the CpG sites in the base sequence represented by 79 to 86 has a methylation rate equal to or lower than a preset reference value, or SEQ ID NOs: 55 to 58, 60 to 64, 69. , 78, and 87, when at least one of the CpG sites in the base sequence has a methylation rate equal to or higher than a preset reference value, the human subject is a sporadic colon. It is determined that there is a high possibility of developing cancer.
  • the methylation rate is below a preset reference value.
  • Number of CpG sites and CpG sites having a methylation rate of a CpG site in the nucleotide sequence represented by SEQ ID NOs: 55 to 58, 60 to 64, 69, 78, and 87 being equal to or higher than a preset reference value By determining that the human subject is likely to develop sporadic colorectal cancer when the sum of the number and the number is 2 or more, preferably 3 or more, more preferably 5 or more, The determination can be performed with higher accuracy.
  • the 6CpG set is used as a marker in the present invention, that is, when the methylation rate of the 6CpG set is measured in the measurement step, in the determination step, in the nucleotide sequences represented by SEQ ID NOs: 90 and 91 Among the CpG sites, at least one or more of the CpG sites have a methylation rate that is not more than a preset reference value, or among the CpG sites in the base sequences represented by SEQ ID NOs: 88, 89, 92, and 93 When the methylation rate is at least a reference value set in advance at least at one place, it is determined that the human subject is likely to have sporadic colorectal cancer.
  • the number of CpG sites having a methylation rate equal to or lower than a preset reference value SEQ ID NO: 88
  • the sum of the methylation rate and the number of CpG sites having a predetermined reference value or more is preferably 2 or more, preferably 3 or more, more preferably When it is 5 or more, it can be determined more accurately by determining that the human subject has a high possibility of developing sporadic colorectal cancer.
  • one or more CpG sites selected from the group consisting of CpG sites in the base sequences represented by SEQ ID NOs: 1 to 93 are used as markers.
  • the CpG sites used as markers in the present invention are all 93 CpG sites in parentheses in the base sequences represented by SEQ ID NOs: 1 to 93 (hereinafter, collectively referred to as “93CpG set”). It may be the 54CpG set, the 8CpG set, the 33CpG set, or the 6CpG set.
  • Both the CpG site of the 54CpG set and the CpG site of the 8CpG set have a small distribution of methylation rate between the colon cancer patient group and the non-colon cancer onset group, and the colon cancer patient group and the non-colon cancer onset group It is excellent in terms of high discrimination ability.
  • the 33CpG set and the 6CpG set are slightly less specific than the CpG site of the 54CpG set and the CpG site of the 8CpG set, the sensitivity is very high, for example, for sporadic colorectal cancer. Very suitable for primary screening tests.
  • the determination step determines the possibility of sporadic colorectal cancer onset based on the methylation rate measured in the measurement step and a preset multivariate discriminant.
  • the multivariate discriminant includes, as a variable, the methylation rate of one or more CpG sites among the CpG sites in the base sequences represented by SEQ ID NOs: 1 to 93.
  • the multivariate discriminant used in the present invention can be obtained by a general method used to discriminate between the two groups.
  • Examples of the multivariate discriminant include, but are not limited to, a logistic regression equation, a linear discriminant, a formula created with a naive Bayes classifier, or a formula created with a support vector machine. .
  • These multivariate discriminants include, for example, one or two or more of the CpG sites in the base sequence represented by SEQ ID NOs: 1 to 93 for the colorectal cancer patient group and the non-colon cancer onset group. The methylation rate at the CpG site can be measured, and the resulting methylation rate can be used as a variable to prepare a standard method.
  • a standard discriminant value for discriminating between colon cancer patients and non-colon cancer patients is set in advance.
  • the reference discriminant value is a discriminant value that is the value of the multivariate discriminant used for the colorectal cancer patient group and the non-colon cancer onset group, and the discriminant value of the colorectal cancer patient group and the discriminant value of the non-colon cancer onset group And can be experimentally determined as a threshold that can distinguish both groups.
  • the multivariate discriminant to be used measures the methylation rate of a CpG site containing the methylation rate as a variable, and the determination step And calculating a discriminant value which is a value of the multivariate discriminant based on the methylation rate measured in the measurement step and the multivariate discriminant, and based on the discriminant value and a preset reference discriminant value.
  • the human subject whose CpG site methylation rate was measured is judged to be highly or less likely to develop sporadic colorectal cancer.
  • the discriminant value is greater than or equal to a preset reference discriminant value, it is determined that the human subject is likely to have sporadic colorectal cancer.
  • the multivariate discriminant used in the present invention is preferably a formula containing as a variable the methylation rate of one or more CpG sites selected from the group consisting of the 33CpG sites, and selected from the group consisting of the 33CpG sites. More preferably, the formula includes only the methylation rate of one or more CpG sites as a variable, and only the methylation rate of 2 to 10 CpG sites arbitrarily selected from the group consisting of the 33CpG sites is used as a variable. More preferably, the formula includes only the methylation rate of 2 to 5 CpG sites arbitrarily selected from the group consisting of the 33 CpG sites as a variable.
  • the multivariate discriminant used in the present invention is preferably a formula containing as a variable the methylation rate of one or more CpG sites selected from the group consisting of the 6CpG sites, and selected from the group consisting of the 6CpG sites. More preferably, the formula includes only the methylation rate of one or more CpG sites as a variable, and only the methylation rate of 2 to 6 CpG sites arbitrarily selected from the group consisting of the 6CpG sites is used as a variable. More preferably, the formula includes only the methylation rates of 2 to 5 CpG sites arbitrarily selected from the group consisting of the 6CpG sites as variables.
  • the CpG sites constituting the 33CpG set and the 6CpG set are arbitrarily selected from 2 to 10 CpG sites (2 to 6 in the case of 6CpG set), preferably 2 to 5 CpG sites. Even when only the selected CpG site is used, it is possible to determine the possibility of development of sporadic colorectal cancer with sufficient sensitivity and specificity.
  • the CpG site in the base sequence represented by SEQ ID NO: 57 the CpG site in the base sequence represented by SEQ ID NO: 63, and the sequence represented by SEQ ID NO: 77
  • the possibility of developing sporadic colorectal cancer can be determined with a sensitivity of about 95% and a specificity of about 96%. In clinical examinations and the like, if the number of CpG sites for measuring the methylation rate is large, labor and cost may be excessive.
  • CpG sites to be used as markers from the 33CpG set and the CpG sites constituting the 6CpG set By selecting CpG sites to be used as markers from the 33CpG set and the CpG sites constituting the 6CpG set, one or two to ten CpG sites that can be measured in clinical examinations can be detected with high accuracy. It is possible to determine the likelihood of developing colorectal cancer.
  • the biological sample used in the determination method according to the present invention is a biological sample collected from a human subject and is not particularly limited as long as it contains genomic DNA of the subject.
  • blood, plasma, serum, tears, saliva, or the like may be used, or tissue pieces collected from other tissues such as the digestive tract mucosa or the liver may be used.
  • the biological sample used in the determination method according to the present invention is preferably the large intestine mucosa because it more strongly reflects the state of the large intestine, and can be collected in the rectal mucosa because it can be collected with relatively low invasiveness. More preferably.
  • a biological sample is collected from a body fluid such as blood, the tissue piece, the large intestine mucosa, or the rectal mucosa, it may be collected using a collecting tool corresponding to each biological sample.
  • the biological sample may be in a state where DNA can be extracted, and may be subjected to various pretreatments.
  • it may be a formalin fixed paraffin embedded (FFPE) tissue.
  • FFPE formalin fixed paraffin embedded
  • Extraction of DNA from a biological sample can be performed by a conventional method, and various commercially available DNA extraction / purification kits can also be used.
  • the method for measuring the methylation rate of a CpG site is not particularly limited as long as it is a method capable of distinguishing and quantifying a methylated cytosine base and an unmethylated cytosine base for a specific CpG site.
  • the methylation rate of the CpG site can be measured by appropriately modifying methods known in the art as they are or as necessary. Examples of methods for measuring the methylation rate of CpG sites include bisulfite sequencing, COBRA (Combined Bisulfite Restoration Analysis), and qAMP (quantitative analysis of DNA methylation using real-time PCR). Alternatively, MIAM (I Microarray-based Integrated Analysis of Methylation by Isoschizomers) method may be used.
  • Example 1 Pathological diagnosis by biopsy tissue in 8 healthy subjects (5 men, 3 women) and endoscopic examination has not caused other inflammatory diseases of the large intestine such as ulcerative colitis.
  • the methylation rate of the CpG site was comprehensively analyzed for DNA in the colonic mucosa collected from 6 colon cancer patients (3 males and 3 females) diagnosed with primary colorectal cancer.
  • Hybridization Hybridization buffer was added to the precipitated DNA, and the mixture was reacted with Hybridization Oven (manufactured by Illumina) at 48 ° C. for 1 hour to dissolve the DNA.
  • the dissolved DNA was incubated with a 95 ° C.
  • Microsample Incubator manufactured by SciGene
  • the reaction was carried out for 16 hours or more in Hybridization Oven at 48 ° C., and the probe on the BeadChip and the single-stranded DNA were hybridized.
  • [ ⁇ value] [Methylated fluorescence intensity] ⁇ ([Methylated fluorescence intensity] + [Unmethylated fluorescence intensity] +100)
  • DiffScore approaches 0, showing a positive value when the level in colorectal cancer patients is high, and a negative value when low.
  • GenomeStudio and software Methylation Module (Version: 1.9.0) were used for DNA methylation quantification and DNA methylation level comparison analysis.
  • the setting conditions of GenomeStudio are as follows.
  • 54 CpG sites having a DiffScore absolute value exceeding 30 and a ⁇ value exceeding 0.3 were extracted from 485,577 CpG sites.
  • the 54 CpG sites are collectively referred to as a “54 CpG set”.
  • the cancer patient samples were narrowed down to those with little fluctuation in DNA methylation level. That is, the unbiased variance var of the ⁇ value of 23 cancer patient samples (4 sites ⁇ each site 6 or 7 samples) was obtained, and 8 CpG sites having an unbiased variance var value smaller than 0.02 were narrowed down.
  • these eight CpG sites are collectively referred to as “8CpG set”.
  • Tables 10 and 11 show the results of each CpG site in the 54 CpG set.
  • CpG sites with # in the “8CpG” column indicate those included in the 8CpG set.
  • Example 2 Although no other inflammatory diseases of the large intestine such as ulcerative colitis have developed due to pathological diagnosis with 28 healthy subjects and biopsy tissue in endoscopy, the large intestine diagnosed as sporadic colorectal cancer The methylation rate of CpG sites was comprehensively analyzed for DNA in rectal mucosa collected from 20 cancer patients.
  • the DNA used for the analysis of the methylation rate of the CpG site was extracted from the rectal mucosal tissue of each subject in the same manner as in Example 1, whole genome amplified, and quantification and comparison of the DNA methylation level of the CpG site. Analysis was performed, and DiffScore calculation, cluster analysis, and principal component analysis were performed using the results.
  • BeadChip Infinium® Methylation® EPIC® BeadChip (manufactured by Illumina) was used.
  • the setting conditions of GenomeStudio were the same as those in Example 1 except that “Content Descriptor” was set to “MethylationEPIC_v-1-0_B2.bpm”.
  • CpG biomarker candidates were extracted from comprehensive DNA methylation analysis data. Specifically, first, 142 CpG sites having an absolute value of ⁇ value exceeding 0.15 were extracted from 866,895 CpG sites.
  • a discriminant based on a logistic regression model was used to discriminate between colorectal cancer patients and healthy subjects.
  • the sensitivity rate evaluated as positive among colorectal cancer patients
  • the specificity rate evaluated as negative among healthy subjects
  • the rate (percentage of colorectal cancer patients evaluated as positive) was 95.0%
  • the negative predictive rate percentage of healthy individuals evaluated as negative) was 96.4%. It was as high as 90% or more.
  • Example 3 CpG biomarker candidates were extracted from the DNA methylation level ( ⁇ value) of the rectal mucosa samples obtained in Example 1 and Example 2.
  • CpG sites that appear in the discriminant were selected.
  • 6 CpG sites (6CpG set) shown in Table 9 were selected. The results for each CpG site are shown in Table 13.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Organic Chemistry (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biophysics (AREA)
  • Physics & Mathematics (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • Plant Pathology (AREA)
  • Immunology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Analytical Chemistry (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

本発明は、孤発性大腸癌発症可能性を判定する方法であって、ヒト被検者から採取された生体試料から回収されたDNA中の、配列番号1~93で表される塩基配列中のCpGサイトからなる群より選択される1か所以上のCpGサイトのメチル化率を測定する測定工程と、前記測定工程において測定されたメチル化率と、予め設定された基準値又は予め設定された多変量判別式に基づいて、前記ヒト被検者の孤発性大腸癌発症の可能性を判定する判定工程を有し、前記基準値が、各CpGサイトのメチル化率に対してそれぞれ設定された、孤発性大腸癌患者と非孤発性大腸癌患者を識別するための値であり、前記多変量判別式が、前記配列番号1~93で表される塩基配列中のCpGサイトのうち1か所以上のCpGサイトのメチル化率を変数として含む、孤発性大腸癌発症可能性の判定方法である。

Description

孤発性大腸癌発症可能性の判定方法
 本発明は、大腸疾患の自覚症状のないヒト被検者の孤発性大腸癌発症の可能性を判定する方法に関する。
 本願は、2015年9月29日に日本国に出願された特願2015-192140号に基づく優先権を主張し、その内容をここに援用する。
 大腸癌は、初期に適切な治療を行うことにより治癒率が高い癌である。しかし、初期には自覚症状がない場合が多く、このため、健康診断等で定期的に検査し、早期に発見できることが好ましい。大腸癌検診としては、便潜血検査が広く行われている。便潜血検査は、便をサンプルとするため、非侵襲的である点で、スクリーニング検査としては優れている。しかし、細菌性やウイルス性腸炎、憩室出血、肛門疾患(痔核、痔瘻、裂肛)のように、便中に血液が混じる他の疾患と区別することができないという問題がある。
 大腸癌を便潜血検査で陽性となる他の疾患と区別してより精度よく調べる検査としては、内視鏡検査がある。しかしながら、早期の大腸癌を視認により検出することは、手技者の技量によるところが大きく、一般的に困難である。また、内視鏡検査は侵襲性が高く、被検者の負担も大きいという問題もある。
 内視鏡検査よりも非侵襲的に潰瘍性大腸炎を背景とした大腸粘膜に発生した大腸癌を早期に発見する方法として、DNAのメチル化をバイオマーカーとする方法がある。例えば、特許文献1には、潰瘍性大腸炎患者において、腫瘍性組織におけるmiR-1、miR-9、miR-124、miR-137、及びmiR-34b/cの5種のmiRNA遺伝子のメチル化率は、非腫瘍性潰瘍性大腸炎組織に比べて有意に高いこと、また非癌部である直腸粘膜から採取された生体試料中の前記5種のmiRNA遺伝子のメチル化率は、潰瘍性大腸炎患者の大腸癌発症のマーカーとし得ることが報告されている。
国際公開第2014/151551号
 本発明は、大腸疾患の自覚症状のないヒト被検者の孤発性大腸癌発症の可能性を、内視鏡検査よりも侵襲性が低く、より被検者の負担が小さい方法で判定する方法を提供することを目的とする。
 本発明者らは、上記課題を解決すべく鋭意検討した結果、大腸疾患の自覚症状のないヒト被検者のゲノムDNA中のCpGサイト(シトシン-ホスホジエステル結合-グアニン)のメチル化率を網羅的に調べたところ、大腸癌を発症した患者と孤発性大腸癌を発症していないヒト被検者においてメチル化率に顕著な差がある93種のCpGサイトを見出し、本発明を完成させた。
 すなわち、本発明は、以下の[1]~[18]の孤発性大腸癌発症可能性の判定方法、及びDNAメチル化率分析用マーカーを提供する。
[1] 孤発性大腸癌発症可能性を判定する方法であって、
 ヒト被検者から採取された生体試料から回収されたDNA中の、配列番号1~93で表される塩基配列中のCpGサイトからなる群より選択される1か所以上のCpGサイトのメチル化率を測定する測定工程と、
 前記測定工程において測定されたメチル化率と、予め設定された基準値又は予め設定された多変量判別式に基づいて、前記ヒト被検者の孤発性大腸癌発症の可能性を判定する判定工程
を有し、
 前記基準値が、各CpGサイトのメチル化率に対してそれぞれ設定された、孤発性大腸癌患者と非孤発性大腸癌患者を識別するための値であり、
 前記多変量判別式が、前記配列番号1~93で表される塩基配列中のCpGサイトのうち1か所以上のCpGサイトのメチル化率を変数として含む、孤発性大腸癌発症可能性の判定方法。
[2] 前記測定工程において、2~10個のCpGサイトのメチル化率を測定する、前記[1]の孤発性大腸癌発症可能性の判定方法。
[3] 前記判定工程において、配列番号1、4、6、10、11、13、14、17~20、23~27、29、30、32、33、35、36、39、41~48、50~54、59、65~68、70~77、79~86、90、及び91で表される塩基配列中のCpGサイトのうち少なくとも1か所以上が、メチル化率が予め設定された基準値以下である、又は、配列番号2、3、5、7~9、12、15、16、21、22、28、31、34、37、38、40、49、55~58、60~64、69、78、87~89、92、及び93で表される塩基配列中のCpGサイトのうち少なくとも1か所以上が、メチル化率が予め設定された基準値以上である場合に、前記ヒト被検者が孤発性大腸癌を発症している可能性が高いと判定する、前記[1]又は[2]の孤発性大腸癌発症可能性の判定方法。
[4] 前記測定工程において、配列番号1~54で表される塩基配列中のCpGサイトのメチル化率を測定し、
 前記判定工程において、配列番号1、4、6、10、11、13、14、17~20、23~27、29、30、32、33、35、36、39、41~48、及び50~54で表される塩基配列中のCpGサイトのうち少なくとも1か所以上が、メチル化率が予め設定された基準値以下である、又は、配列番号2、3、5、7~9、12、15、16、21、22、28、31、34、37、38、40、及び49で表される塩基配列中のCpGサイトのうち少なくとも1か所以上が、メチル化率が予め設定された基準値以上である場合に、前記ヒト被検者が孤発性大腸癌を発症している可能性が高いと判定する、前記[1]~[3]のいずれかの孤発性大腸癌発症可能性の判定方法。
[5] 前記判定工程において、配列番号1、4、6、10、11、13、14、17~20、23~27、29、30、32、33、35、36、39、41~48、及び50~54で表される塩基配列中のCpGサイトのうち、メチル化率が予め設定された基準値以下であるCpGサイトの数と、配列番号2、3、5、7~9、12、15、16、21、22、28、31、34、37、38、40、及び49で表される塩基配列中のCpGサイトのうちメチル化率が予め設定された基準値以上であるCpGサイトの数との和が3以上である場合に、前記ヒト被検者が孤発性大腸癌を発症している可能性が高いと判定する、前記[1]~[4]のいずれかの孤発性大腸癌発症可能性の判定方法。
[6] 前記測定工程において、配列番号1~8で表される塩基配列中のCpGサイトのメチル化率を測定し、
 前記判定工程において、配列番号1、4、及び6で表される塩基配列中のCpGサイトのうち少なくとも1か所以上が、メチル化率が予め設定された基準値以下である、又は、配列番号2、3、5、7、及び8で表される塩基配列中のCpGサイトのうち少なくとも1か所以上が、メチル化率が予め設定された基準値以上である場合に、前記ヒト被検者が孤発性大腸癌を発症している可能性が高いと判定する、前記[1]~[3]のいずれかの孤発性大腸癌発症可能性の判定方法。
[7] 前記判定工程において、配列番号1、4、及び6で表される塩基配列中のCpGサイトのうち、メチル化率が予め設定された基準値以下であるCpGサイトの数と、配列番号2、3、5、7、及び8で表される塩基配列中のCpGサイトのうちメチル化率が予め設定された基準値以上であるCpGサイトの数との和が3以上である場合に、前記ヒト被検者が孤発性大腸癌を発症している可能性が高いと判定する、前記[1]~[3]、及び[6]のいずれかの孤発性大腸癌発症可能性の判定方法。
[8] 前記測定工程において、配列番号55~87で表される塩基配列中のCpGサイトのメチル化率を測定し、
 前記判定工程において、配列番号59、65~68、70~77、及び79~86で表される塩基配列中のCpGサイトのうち少なくとも1か所以上が、メチル化率が予め設定された基準値以下である、又は、配列番号55~58、60~64、69、78、及び87で表される塩基配列中のCpGサイトのうち少なくとも1か所以上が、メチル化率が予め設定された基準値以上である場合に、前記ヒト被検者が孤発性大腸癌を発症している可能性が高いと判定する、前記[1]~[3]のいずれかの孤発性大腸癌発症可能性の判定方法。
[9] 前記判定工程において、配列番号59、65~68、70~77、及び79~86で表される塩基配列中のCpGサイトのうち、メチル化率が予め設定された基準値以下であるCpGサイトの数と、配列番号55~58、60~64、69、78、及び87で表される塩基配列中のCpGサイトのうちメチル化率が予め設定された基準値以上であるCpGサイトの数との和が2以上である場合に、前記ヒト被検者が孤発性大腸癌を発症している可能性が高いと判定する、前記[1]~[3]、及び[8]のいずれかの孤発性大腸癌発症可能性の判定方法。
[10] 前記測定工程において、配列番号88~93で表される塩基配列中のCpGサイトのメチル化率を測定し、
 前記判定工程において、配列番号90及び91で表される塩基配列中のCpGサイトのうち少なくとも1か所以上が、メチル化率が予め設定された基準値以下である、又は、配列番号88、89、92、及び93で表される塩基配列中のCpGサイトのうち少なくとも1か所以上が、メチル化率が予め設定された基準値以上である場合に、前記ヒト被検者が孤発性大腸癌を発症している可能性が高いと判定する、前記[1]~[3]のいずれかの孤発性大腸癌発症可能性の判定方法。
[11] 前記判定工程において、配列番号90及び91で表される塩基配列中のCpGサイトのうち、メチル化率が予め設定された基準値以下であるCpGサイトの数と、配列番号88、89、92、及び93で表される塩基配列中のCpGサイトのうちメチル化率が予め設定された基準値以上であるCpGサイトの数との和が2以上である場合に、前記ヒト被検者が孤発性大腸癌を発症している可能性が高いと判定する、前記[1]~[3]、及び[10]のいずれかの孤発性大腸癌発症可能性の判定方法。
[12] 前記和が5以上である場合に、前記ヒト被検者が孤発性大腸癌を発症している可能性が高いと判定する、前記[5]、[7]、[9]、又は[11]の孤発性大腸癌発症可能性の判定方法。
[13] 前記多変量判別式が、配列番号55~87で表される塩基配列中のCpGサイトからなる群より選択される1か所以上のCpGサイトのメチル化率を変数として含み、
 前記測定工程において、前記多変量判別式がそのメチル化率を変数として含むCpGサイトのメチル化率を測定し、
 前記判定工程において、前記測定工程において測定されたメチル化率と前記多変量判別式に基づいて当該多変量判別式の値である判別値を算出し、当該判別値が予め設定された基準判別値以上である場合に、前記ヒト被検者が孤発性大腸癌を発症している可能性が高いと判定する、前記[1]又は[2]の孤発性大腸癌発症可能性の判定方法。
[14] 前記多変量判別式が、配列番号88~93で表される塩基配列中のCpGサイトからなる群より選択される1か所以上のCpGサイトのメチル化率を変数として含み、
 前記測定工程において、前記多変量判別式がそのメチル化率を変数として含むCpGサイトのメチル化率を測定し、
 前記判定工程において、前記測定工程において測定されたメチル化率と前記多変量判別式に基づいて当該多変量判別式の値である判別値を算出し、当該判別値が予め設定された基準判別値以上である場合に、前記ヒト被検者が孤発性大腸癌を発症している可能性が高いと判定する、前記[1]又は[2]の孤発性大腸癌発症可能性の判定方法。
[15] 前記多変量判別式が、ロジスティック回帰式、線形判別式、ナイーブベイズ分類器で作成された式、又はサポートベクターマシンで作成された式である、前記[1]~[14]のいずれかの孤発性大腸癌発症可能性の判定方法。
[16] 前記生体試料が、腸管組織である、前記[1]~[15]のいずれかの孤発性大腸癌発症可能性の判定方法。
[17] 前記生体試料が、直腸粘膜組織である、前記[1]~[16]のいずれかの孤発性大腸癌発症可能性の判定方法。
[18] 配列番号1~93で表される塩基配列中のCpGサイトからなる群より選択される1か所以上のCpGサイトを含む部分塩基配列を有するDNA断片からなり、ヒト被検者の孤発性大腸癌発症可能性を判定するために用いられる、DNAメチル化率分析用マーカー。
 本発明に係る孤発性大腸癌発症可能性の判定方法により、ヒト被検者、特に大腸疾患の自覚症状のないヒト被検者から採取された生体試料について、ゲノムDNA中の特定のCpGサイトのメチル化率を調べることによって、孤発性大腸癌発症の可能性を判定することができる。
図1は、実施例1において、網羅的DNAメチル化解析の結果選抜された54CpGセットのCpGサイトのメチル化レベルに基づくクラスター解析である。 図2は、実施例1において、網羅的DNAメチル化解析の結果選抜された8CpGセットのCpGサイトのメチル化レベルに基づくクラスター解析である。 図3は、実施例1において、網羅的DNAメチル化解析の結果選抜された54CpGセットのCpGサイトのメチル化レベルに基づく主成分分析である。 図4は、実施例1において、網羅的DNAメチル化解析の結果選抜された8CpGセットのCpGサイトのメチル化レベルに基づく主成分分析である。 図5は、実施例2において、網羅的DNAメチル化解析の結果選抜された33CpGセットのCpGサイトのメチル化レベルに基づくクラスター解析である。 図6は、実施例2において、網羅的DNAメチル化解析の結果選抜された33CpGセットのCpGサイトのメチル化レベルに基づく主成分分析である。 図7は、実施例2において、配列番号57で表される塩基配列中のCpGサイト(cg01105403)、配列番号63で表される塩基配列中のCpGサイト(cg06829686)、及び配列番号77で表される塩基配列中のCpGサイト(cg14629397)の3個のCpGサイトのメチル化率をマーカーとした場合の、孤発性大腸癌発症の有無の検査のROC曲線である。 図8は、実施例3において、網羅的DNAメチル化解析の結果選抜された6CpGセットのCpGサイトのメチル化レベルに基づくクラスター解析である。 図9は、実施例3において、網羅的DNAメチル化解析の結果選抜された6CpGセットのCpGサイトのメチル化レベルに基づく主成分分析である。
 ゲノムDNA中のCpGサイトのシトシン塩基は、5位の炭素がメチル化修飾を受け得る。本発明及び本願明細書において、CpGサイトのメチル化率とは、一つの生物個体から採取された生体試料中のCpGサイトのうち、メチル化されているシトシン塩基(メチル化シトシン)量とメチル化されていないシトシン塩基(非メチル化シトシン)量とを測定し、両者の和に対するメチル化シトシン量の割合(%)を意味する。
 本発明及び本願明細書において、「孤発性大腸癌」とは、その背景に明らかな原因疾患を認めず、家族歴や遺伝子検査から明確な遺伝性大腸癌も認めない個人に対して、加齢や食事、生活様式等の環境因子により偶発的な遺伝子変異が蓄積することによって発症する大腸癌であり、散発性と呼ばれることもある大腸癌である。すなわち、孤発性大腸癌には、明らかな原因疾患から発症する大腸癌及び遺伝性大腸癌を除く全ての大腸癌が含まれる。例えば、潰瘍性大腸炎等の他の大腸の炎症性疾患が進行して発症する大腸癌は、孤発性大腸癌には含まれない(Cellular and Molecular Life Sciences,2014,vol.71(18),p.3523-3535;Cancer Letters,2014,vol.345,p.235-241)。また、家族性大腸腺腫症(familial adenomatous polyposis: FAP)やリンチ症候群(Lynch syndrome)等の遺伝性大腸癌も孤発性大腸癌には含まれない(-cancer,2015, 9:520)。
<孤発性大腸癌発症可能性の判定方法>
 本発明に係る孤発性大腸癌発症可能性の判定方法(以下、「本発明に係る判定方法」ということがある。)は、ヒト被検者の孤発性大腸癌発症可能性を判定する方法であって、ゲノムDNA中のCpGサイトのうち、メチル化率が、大腸癌を発症しておらず、かつ他の大腸疾患の自覚症状もない健常者群と、孤発性大腸癌を発症した大腸癌患者群とで有意差があるものをマーカーとすることを特徴とする。これらのマーカーとなるCpGサイトのメチル化率を指標として、ヒト被検者が大腸癌を発症している可能性の高低を判定する。CpGサイトのメチル化率を、ヒト被検者の孤発性大腸癌発症可能性を判定するために用いられるマーカーとすることにより、視認判別が非常に困難である早期孤発性大腸癌をより客観的かつ感度よく検出することができ、早期発見が期待できる。
 本発明に係る判定方法においてマーカーとして用いられるCpGサイトは、健常者と孤発性大腸癌の発症者とを区別し得る。このため、本発明に係る判定方法は、大腸疾患の自覚症状のないヒトの孤発性大腸癌の発症の可能性の判定に好適である。また、本発明に係る判定方法は、内視鏡検査よりも非侵襲的であり、かつ便潜血検査よりも精度よく孤発性大腸癌の発症の可能性を判定し得るため、特に大腸検診のような大腸癌のスクリーニング検査に有用である。例えば、便潜血検査において陽性であった被検者に対し、本発明に係る判定方法を行うことができる。
 マーカーとするCpGサイトのメチル化率に基づく孤発性大腸癌発症可能性の判定は、測定されたCpGサイトのメチル化率自体に基づいて行ってもよく、マーカーとするCpGサイトのメチル化率を変数として含む多変量判別式を用い、この多変量判別式から求められる判別値に基づいて行ってもよい。
 本発明に係る判定方法のうち、測定されたCpGサイトのメチル化率自体に基づいて判定を行う方法は、ヒト被検者の孤発性大腸癌発症可能性を判定する方法であって、ヒト被検者から採取された生体試料から回収されたDNA中の、本発明においてマーカーとする特定の複数のCpGサイトのメチル化率を測定する測定工程と、前記測定工程において測定されたメチル化率と、各CpGサイトに対して予めそれぞれ設定された基準値に基づいて、前記ヒト被検者の孤発性大腸癌発症の可能性を判定する判定工程を有する。
 本発明においてマーカーとされるCpGサイトとしては、メチル化率が非大腸癌発症者群と孤発性大腸癌(以下、単に「大腸癌」ということがある。)患者群とで大きく相違するものが好ましい。両群の差が大きいほど、孤発性大腸癌の発症の有無をより確実に検出することができる。本発明においてマーカーとされるCpGサイトは、大腸癌患者のメチル化率が非大腸癌発症者よりも有意に高い、すなわち、大腸癌の発症によりメチル化率が高くなるものであってもよく、大腸癌患者のメチル化率が非大腸癌発症者よりも有意に低い、すなわち、孤発性大腸癌の発症によりメチル化率が低くなるものであってもよい。
 本発明においてマーカーとされるCpGサイトとしては、同一の大腸癌患者において、大腸の非癌部位と癌部位とのメチル化率の差が小さいものがより好ましい。このようなCpGサイトのメチル化率を指標とすることにより、大腸癌患者の非癌部位から採取された生体試料が用いられた場合であっても、癌部位から採取された生体試料を用いた場合と同様に、高感度に孤発性大腸癌の発症の有無を判定することができる。例えば、大腸深部の粘膜は内視鏡等を用いて採取する必要があり、ヒト被検者の負担が大きいが、肛門付近の直腸粘膜は比較的容易に採取できる。大腸の非癌部位と癌部位とのメチル化率の差が小さいCpGサイトをマーカーとすることにより、癌部位が形成される位置にかかわらず、肛門付近の直腸粘膜を生体試料として孤発性大腸癌を発症したヒト被検者を漏れなく検出することができる。
 本発明においてマーカーとされるCpGサイトは、具体的には、配列番号1~93で表される塩基配列中のCpGサイトからなる群より選択される1か所以上のCpGサイトである。各塩基配列を表1~9に示す。表の塩基配列中、括弧内のCGは、実施例1~3で示す網羅的DNAメチル化解析で検出されるCpGサイトである。これらのCpGサイトを含む塩基配列を有するDNA断片は、ヒト被検者の孤発性大腸癌発症可能性を判定するためのDNAメチル化率分析用マーカーとして用いることができる。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
 配列番号1~54で表される塩基配列中の括弧内の54個のCpGサイト(以下、まとめて「54CpGセット」ということがある。)は、後記実施例1における網羅的DNAメチル化解析において、メチル化率が非大腸癌発症者群と大腸癌患者群とで大きく相違するものである。このうち、大腸癌患者のメチル化率が非大腸癌発症者よりもかなり低いものが、配列番号1、4、6、10、11、13、14、17~20、23~27、29、30、32、33、35、36、39、41~48、及び50~54で表される塩基配列中のCpGサイトであり(表中、「-」)、大腸癌患者のメチル化率が非大腸癌発症者よりもかなり高いものが、配列番号2、3、5、7~9、12、15、16、21、22、28、31、34、37、38、40、及び49で表される塩基配列中のCpGサイトである(表中、「+」)。マーカーとされるCpGサイトは、これら54個のCpGサイトに限定されるものではなく、配列番号1~54で表される塩基配列中の他のCpGサイトも含まれる。
 本発明においてマーカーとされるCpGサイトとしては、配列番号1~8で表される塩基配列中のCpGサイトのみを用いてもよい。これらの8個のCpGサイト(以下、まとめて「8CpGセット」ということがある。)は、54CpGセットのうち、大腸癌患者の大腸の非癌部位と癌部位とのメチル化率の差が小さいものである。
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
 配列番号55~87で表される塩基配列中の括弧内の33個のCpGサイト(以下、まとめて「33CpGセット」ということがある。)は、後記実施例2における網羅的DNAメチル化解析において、メチル化率が非大腸癌発症者群と大腸癌患者群とで大きく相違するものである。このうち、大腸癌患者のメチル化率が非大腸癌発症者よりもかなり低いものが、配列番号59、65~68、70~77、79~86で表される塩基配列中のCpGサイトであり(表中、「-」)、大腸癌患者のメチル化率が非大腸癌発症者よりもかなり高いものが、配列番号55~58、60~64、69、78、及び87で表される塩基配列中のCpGサイトである(表中、「+」)。マーカーとされるCpGサイトは、これら33個のCpGサイトに限定されるものではなく、配列番号55~87で表される塩基配列中の他のCpGサイトも含まれる。
Figure JPOXMLDOC01-appb-T000009
 配列番号88~93で表される塩基配列中の括弧内の6個のCpGサイト(以下、まとめて「6CpGセット」ということがある。)は、後記実施例3における網羅的DNAメチル化解析において、メチル化率が非大腸癌発症者群と大腸癌患者群とで大きく相違するものである。このうち、大腸癌患者のメチル化率が非大腸癌発症者よりもかなり低いものが、配列番号90及び91で表される塩基配列中のCpGサイトであり(表中、「-」)、大腸癌患者のメチル化率が非大腸癌発症者よりもかなり高いものが、配列番号88、89、92、及び93で表される塩基配列中のCpGサイトである(表中、「+」)。マーカーとされるCpGサイトは、これら6個のCpGサイトに限定されるものではなく、配列番号88~93で表される塩基配列中の他のCpGサイトも含まれる。
 各CpGサイトについては、予め、大腸癌患者と非大腸癌発症者を識別するための基準値を設定しておく。54CpGセットのうち表1~5で「+」と記されているCpGサイト、33CpGセットのうち表6~8で「+」と記されているCpGサイト、及び6CpGセットのうち表9で「+」と記されているCpGサイトの場合には、測定されたメチル化率が予め設定された基準値以上である場合に、ヒト被検者が孤発性大腸癌を発症している可能性が高い、と判定する。54CpGセットのうち表1~5で「-」と記されているCpGサイト、33CpGセットのうち表6~8で「-」と記されているCpGサイト、及び6CpGセットのうち表9で「-」と記されているCpGサイトの場合には、測定されたメチル化率が予め設定された基準値以下である場合に、ヒト被検者が孤発性大腸癌を発症している可能性が高い、と判定する。
 各CpGサイトの基準値は、大腸癌患者群と非大腸癌発症者群の当該CpGサイトのメチル化率を測定し、両群を区別することができる閾値として実験的に求めることができる。具体的には、任意のCpGサイトのメチル化の基準値は、一般的な統計学的手法によって求められる。下記にその例を示すが、本発明における基準値の決め方はこれらに限定されるものではない。
 基準値の求め方の一例としては、例えば、まず、任意のCpGサイトについて、ヒト被検者のうち内視鏡検査での生検組織による病理検査により大腸癌と診断されなかった患者(非大腸癌発症者)の直腸粘膜のDNAメチル化を測定する。複数のヒト被検者について測定した後に、その平均値又は中央値などによりこれらのヒト被検者群のメチル化を代表する数値を算出し、これを基準値とすることができる。
 その他、複数の非大腸癌発症者と複数の大腸癌患者に対して、それぞれ直腸粘膜のDNAメチル化を測定し、平均値又は中央値などにより大腸癌患者群と非大腸癌発症者群のメチル化を代表する数値とばらつきをそれぞれ算出した後、ばらつきも考慮して両数値が区別されるような閾値を求め、これを基準値とすることができる。
 前記判定工程においては、配列番号1、4、6、10、11、13、14、17~20、23~27、29、30、32、33、35、36、39、41~48、50~54、59、65~68、70~77、79~86、90、及び91で表される塩基配列中のCpGサイトのうち少なくとも1か所以上が、メチル化率が予め設定された基準値以下である、又は、配列番号2、3、5、7~9、12、15、16、21、22、28、31、34、37、38、40、49、55~58、60~64、69、78、87~89、92、及び93で表される塩基配列中のCpGサイトのうち少なくとも1か所以上が、メチル化率が予め設定された基準値以上である場合に、前記ヒト被検者が孤発性大腸癌を発症している可能性が高いと判定する。本発明に係る判定方法においては、配列番号1、4、6、10、11、13、14、17~20、23~27、29、30、32、33、35、36、39、41~48、50~54、59、65~68、70~77、79~86、90、及び91で表される塩基配列中のCpGサイトのうち、メチル化率が予め設定された基準値以下であるCpGサイトの数と、配列番号2、3、5、7~9、12、15、16、21、22、28、31、34、37、38、40、49、55~58、60~64、69、78、87~89、92、及び93で表される塩基配列中のCpGサイトのうちメチル化率が予め設定された基準値以上であるCpGサイトの数との和が2以上、好ましくは3以上、より好ましくは5以上である場合に、前記ヒト被検者が孤発性大腸癌を発症している可能性が高いと判定することにより、より精度よく判定を行うことができる。
 前記54CpGセットを本発明においてマーカーとする場合、すなわち、前記測定工程において前記54CpGセットのメチル化率を測定する場合には、前記判定工程においては、配列番号1、4、6、10、11、13、14、17~20、23~27、29、30、32、33、35、36、39、41~48、及び50~54で表される塩基配列中のCpGサイトのうち少なくとも1か所以上が、メチル化率が予め設定された基準値以下である、又は、配列番号2、3、5、7~9、12、15、16、21、22、28、31、34、37、38、40、及び49で表される塩基配列中のCpGサイトのうち少なくとも1か所以上が、メチル化率が予め設定された基準値以上である場合に、前記ヒト被検者が孤発性大腸癌を発症している可能性が高いと判定する。本発明に係る判定方法においては、配列番号1、4、6、10、11、13、14、17~20、23~27、29、30、32、33、35、36、39、41~48、及び50~54で表される塩基配列中のCpGサイトのうち、メチル化率が予め設定された基準値以下であるCpGサイトの数と、配列番号2、3、5、7~9、12、15、16、21、22、28、31、34、37、38、40、及び49で表される塩基配列中のCpGサイトのうちメチル化率が予め設定された基準値以上であるCpGサイトの数との和が2以上、好ましくは3以上、より好ましくは5以上である場合に、前記ヒト被検者が孤発性大腸癌を発症している可能性が高いと判定することにより、より精度よく判定を行うことができる。
 前記8CpGセットを本発明においてマーカーとする場合、すなわち、前記測定工程において前記8CpGセットのメチル化率を測定する場合には、前記判定工程においては、配列番号1、4、及び6で表される塩基配列中のCpGサイトのうち少なくとも1か所以上が、メチル化率が予め設定された基準値以下である、又は、配列番号2、3、5、7、及び8で表される塩基配列中のCpGサイトのうち少なくとも1か所以上が、メチル化率が予め設定された基準値以上である場合に、前記ヒト被検者が孤発性大腸癌を発症している可能性が高いと判定する。本発明に係る判定方法においては、配列番号1、4、及び6で表される塩基配列中のCpGサイトのうち、メチル化率が予め設定された基準値以下であるCpGサイトの数と、配列番号2、3、5、7、及び8で表される塩基配列中のCpGサイトのうちメチル化率が予め設定された基準値以上であるCpGサイトの数との和が2以上、好ましくは3以上、より好ましくは5以上である場合に、前記ヒト被検者が孤発性大腸癌を発症している可能性が高いと判定することにより、より精度よく判定を行うことができる。
 前記33CpGセットを本発明においてマーカーとする場合、すなわち、前記測定工程において前記33CpGセットのメチル化率を測定する場合には、前記判定工程においては、配列番号59、65~68、70~77、及び79~86で表される塩基配列中のCpGサイトのうち少なくとも1か所以上が、メチル化率が予め設定された基準値以下である、又は、配列番号55~58、60~64、69、78、及び87で表される塩基配列中のCpGサイトのうち少なくとも1か所以上が、メチル化率が予め設定された基準値以上である場合に、前記ヒト被検者が孤発性大腸癌を発症している可能性が高いと判定する。本発明に係る判定方法においては、配列番号59、65~68、70~77、及び79~86で表される塩基配列中のCpGサイトのうち、メチル化率が予め設定された基準値以下であるCpGサイトの数と、配列番号55~58、60~64、69、78、及び87で表される塩基配列中のCpGサイトのうちメチル化率が予め設定された基準値以上であるCpGサイトの数との和が2以上、好ましくは3以上、より好ましくは5以上である場合に、前記ヒト被検者が孤発性大腸癌を発症している可能性が高いと判定することにより、より精度よく判定を行うことができる。
 前記6CpGセットを本発明においてマーカーとする場合、すなわち、前記測定工程において前記6CpGセットのメチル化率を測定する場合には、前記判定工程においては、配列番号90及び91で表される塩基配列中のCpGサイトのうち少なくとも1か所以上が、メチル化率が予め設定された基準値以下である、又は、配列番号88、89、92、及び93で表される塩基配列中のCpGサイトのうち少なくとも1か所以上が、メチル化率が予め設定された基準値以上である場合に、前記ヒト被検者が孤発性大腸癌を発症している可能性が高いと判定する。本発明に係る判定方法においては、配列番号90及び91で表される塩基配列中のCpGサイトのうち、メチル化率が予め設定された基準値以下であるCpGサイトの数と、配列番号88、89、92、及び93で表される塩基配列中のCpGサイトのうちメチル化率が予め設定された基準値以上であるCpGサイトの数との和が2以上、好ましくは3以上、より好ましくは5以上である場合に、前記ヒト被検者が孤発性大腸癌を発症している可能性が高いと判定することにより、より精度よく判定を行うことができる。
 本発明においては、配列番号1~93で表される塩基配列中のCpGサイトからなる群より選択される1か所以上のCpGサイトをマーカーとして用いる。本発明においてマーカーとするCpGサイトとしては、配列番号1~93で表される塩基配列中の括弧内の93個のCpGサイトの全て(以下、まとめて「93CpGセット」ということがある。)であってもよく、前記54CpGセットであってもよく、前記8CpGセットであってもよく、前記33CpGセットであってもよく、前記6CpGセットであってもよい。前記54CpGセットのCpGサイト、前記8CpGセットのCpGサイトは、いずれも、大腸癌患者群と非大腸癌発症者群のメチル化率の分散が小さく、大腸癌患者群と非大腸癌発症者群の識別能が高い点で優れている。一方で、前記33CpGセット及び前記6CpGセットは、前記54CpGセットのCpGサイトや前記8CpGセットのCpGサイトに比べて特異度はやや低くなるものの、感度が非常に高く、例えば、孤発性大腸癌の一次スクリーニング検査には非常に好適である。
 本発明に係る判定方法は、前記判定工程を、前記測定工程において測定されたメチル化率と、予め設定された多変量判別式に基づいて、孤発性大腸癌発症の可能性を判定することができる。当該多変量判別式は、前記配列番号1~93で表される塩基配列中のCpGサイトのうち1か所以上のCpGサイトのメチル化率を変数として含む。
 本発明において用いられる多変量判別式は、2群を判別するために用いられる一般的な手法により求めることができる。当該多変量判別式としては、例えば、ロジスティック回帰式、線形判別式、ナイーブベイズ分類器で作成された式、又はサポートベクターマシンで作成された式が挙げられるが、これらに限定されるものではない。これらの多変量判別式は、例えば、大腸癌患者群と非大腸癌発症者群について、前記配列番号1~93で表される塩基配列中のCpGサイトのうち1か所又は2か所以上のCpGサイトのメチル化率を測定し、得られたメチル化率を変数として、常法により作成することができる。
 本発明において用いられる多変量判別式には、予め、大腸癌患者と非大腸癌発症者を識別するための基準判別値を設定しておく。基準判別値は、大腸癌患者群と非大腸癌発症者群について、使用する多変量判別式の値である判別値を求め、大腸癌患者群の判別値と非大腸癌発症者群の判別値とを比較し、両群を区別することができる閾値として実験的に求めることができる。
 多変量判別式を用いて判定を行う場合、具体的には、前記測定工程において、使用する多変量判別式がそのメチル化率を変数として含むCpGサイトのメチル化率を測定し、前記判定工程において、前記測定工程において測定されたメチル化率と前記多変量判別式に基づいて当該多変量判別式の値である判別値を算出し、この判別値と予め設定した基準判別値とに基づいて、CpGサイトのメチル化率が測定されたヒト被検者が孤発性大腸癌を発症している可能性の高低を判定する。当該判別値が予め設定された基準判別値以上である場合に、当該ヒト被検者が、孤発性大腸癌を発症している可能性が高いと判定する。
 本発明において用いられる多変量判別式としては、前記33CpGサイトからなる群より選択される1か所以上のCpGサイトのメチル化率を変数として含む式が好ましく、前記33CpGサイトからなる群より選択される1か所以上のCpGサイトのメチル化率のみを変数として含む式がより好ましく、前記33CpGサイトからなる群より任意に選択される2~10か所のCpGサイトのメチル化率のみを変数として含む式がさらに好ましく、前記33CpGサイトからなる群より任意に選択される2~5か所のCpGサイトのメチル化率のみを変数として含む式がよりさらに好ましい。
 本発明において用いられる多変量判別式としては、前記6CpGサイトからなる群より選択される1か所以上のCpGサイトのメチル化率を変数として含む式が好ましく、前記6CpGサイトからなる群より選択される1か所以上のCpGサイトのメチル化率のみを変数として含む式がより好ましく、前記6CpGサイトからなる群より任意に選択される2~6か所のCpGサイトのメチル化率のみを変数として含む式がさらに好ましく、前記6CpGサイトからなる群より任意に選択される2~5か所のCpGサイトのメチル化率のみを変数として含む式がよりさらに好ましい。
 前記33CpGセット及び前記6CpGセットを構成するCpGサイトは、これらのセットから任意で2~10個(6CpGセットの場合、2~6個)、好ましくは2~5個のCpGサイトを選択し、この選択されたCpGサイトのみを用いた場合でも、充分な感度及び特異度で、孤発性大腸癌の発症可能性を判定することができる。例えば、後記実施例2に示す通り、前記33CpGセットのうち、配列番号57で表される塩基配列中のCpGサイト、配列番号63で表される塩基配列中のCpGサイト、及び配列番号77で表される塩基配列中のCpGサイトの3個のCpGサイトをマーカーとして用い、これらの3個のCpGサイトのメチル化率を変数としてロジスティック回帰により作成された多変量判別式を用いた場合には、感度約95%、特異度約96%で孤発性大腸癌の発症可能性を判定することができる。臨床検査等において、メチル化率を測定するCpGサイトの数が多いと、労力とコストが過大となるおそれがある。マーカーとするCpGサイトを前記33CpGセット及び前記6CpGセットを構成するCpGサイトから選抜することにより、1又は2~10個という、臨床検査において測定可能な妥当な数のCpGサイトで、精度よく孤発性大腸癌の発症可能性を判定することができる。
 本発明に係る判定方法に供される生体試料は、ヒト被検者から採取された生体試料であって、当該被検者のゲノムDNAが含まれているものであれば特に限定されるものではなく、血液、血漿、血清、涙液、唾液等であってもよく、消化管粘膜や、肝臓等のその他の組織から採取された組織片であってもよい。本発明に係る判定方法に供される生体試料としては、大腸の状態をより強く反映していることから、大腸粘膜であることが好ましく、比較的低侵襲に採取可能であることから直腸粘膜であることがより好ましい。前記血液などの体液、前記組織片、大腸粘膜又は直腸粘膜から生体試料を採取する場合、それぞれの生体試料に応じた採取具を用いて採取すればよい。
 また、当該生体試料は、DNAが抽出可能な状態であればよく、各種前処理が施されているものであってもよい。例えば、ホルマリン固定パラフィン包埋(FFPE)組織であってもよい。生体試料からのDNAの抽出は常法により行うことができ、各種市販のDNA抽出・精製キットを使用することもできる。
 CpGサイトのメチル化率を測定する方法としては、特定のCpGサイトについてメチル化シトシン塩基とメチル化されていないシトシン塩基を区別して定量可能な方法であれば、特に限定されるものではない。当該技術分野において公知の方法をそのまま又は必要に応じて適宜改変することによりCpGサイトのメチル化率を測定できる。CpGサイトのメチル化率の測定方法としては、例えば、バイサルファイトシーケンス法、COBRA(Combined Bisulfite Restriction Analysis)法、qAMP(quantitative analysis of DNA methylation using real-time PCR)法等が挙げられる。その他、MIAM(I Microarray-based Integrated Analysis of Methylation by Isoschizomers)法を用いて行ってもよい。
 次に実施例等を示して本発明をさらに詳細に説明するが、本発明はこれらに限定されるものではない。
[実施例1]
 健常者8名(男性5名、女性3名)と、内視鏡検査での生検組織による病理診断により、潰瘍性大腸炎等の他の大腸の炎症性疾患は発症していないが、孤発性大腸癌と診断された大腸癌患者6名(男性3名、女性3名)とから採取された大腸粘膜中のDNAに対して、CpGサイトのメチル化率を網羅的に解析した。
<CpGサイトのメチル化レベルの網羅的解析>
(1)生検及びDNA抽出
 同一被検者の大腸3か所から粘膜組織を採取し、-80℃で冷凍保存した。採取部位は、大腸癌患者は盲腸、横行結腸、直腸、及び癌部とし、健常者は盲腸、横行結腸、及び直腸とした。採取した組織を細断し、QIAmp DNA kit(Qiagen社製)を使用してDNAを抽出した。
(2)DNAサンプルの品質評価
 得られたDNAの濃度は次のようにして求めた。すなわち、Quant-iT PicoGreen dsDNA Assay Kit(Life Technologies社製)を用いて各サンプルの蛍光強度を測定し、キット付属のλ-DNAの検量線を用いて濃度を算出した。
 次に、各サンプルをTE(pH8.0)にて1ng/μLに希釈し、Illumina FFPE QC Kit(Illumina社製)及びFast SYBR Green Master Mix(Life Technologies社製)を用いてリアルタイムPCRを行い、Ct値を求めた。サンプルとポジティブコントロールとのCt値の差(以下、ΔCt値)をサンプルごとに算出し、品質を評価した。ΔCt値が5未満のサンプルは品質良好と判断し、以降のステップに進めた。
(3)バイサルファイト処理
 EZ DNA Methylation Kit(ZYMO RESEARCH社製)を使用して、DNAサンプルに対してバイサルファイト処理を実施した。その後、Infinium HD FFPE Restore Kit(Illumina社製)を使用して、分解DNAを修復した。
(4)全ゲノム増幅
 DNAをアルカリ変性した後、中和させ、HumanMethylation450 DNA Analysis Kit(Illumina社製)の全ゲノム増幅用の酵素とプライマーを添加し、37℃のIncubation Oven(Illumina社製)で20時間以上、等温で反応させることによって、全ゲノムを増幅させた。
(5)全ゲノム増幅したDNAの断片化と精製
 全ゲノム増幅したDNAに、HumanMethylation450 DNA Analysis Kit(Illumina社製)の断片化用の酵素を添加し、Microsample Incubator(SciGene)で37℃、1時間反応させた。断片化したDNAに、共沈剤と2-プロパノールを加えて遠心分離処理し、DNAを沈澱させた。
(6)ハイブリダイゼーション
 沈澱させたDNAに、Hybridization bufferを加え、48℃のHybridization Oven(Illumina社製)で1時間反応させ、DNAを溶解させた。溶解させたDNAを95℃のMicrosample Incubator(SciGene社製)で20分間インキュベートして1本鎖に変性させた後、HumanMethylation450 DNA Analysis Kit(Illumina社製)のBeadChip上に分注した。48℃のHybridization Ovenで16時間以上反応させ、BeadChip上のプローブと1本鎖DNAをハイブリダイズした。
(7)標識反応及びスキャニング
 ハイブリダイゼーション後のBeadChip上のプローブを伸長反応させ、蛍光色素を結合させた。次いで、当該BeadChipをiSCANシステム(Illumina社製)でスキャンし、メチル化蛍光強度及び非メチル化蛍光強度を測定した。実験終了時に、スキャンデータが全て揃っていること、及びスキャンが正常に行われたことを確認した。
(8)DNAメチル化レベルの定量及び比較解析
 DNAメチル化解析ソフトウェアGenomeStudio(Version:V2011.1)を用いてスキャンデータを解析した。DNAメチル化レベル(β値)は、次の式により算出した。
[β値]=
[メチル化蛍光強度]÷ ([メチル化蛍光強度]+[非メチル化蛍光強度]+100)
 メチル化レベルが高い場合、β値は1に近づき、メチル化レベルが低い場合、β値は0に近づく。健常者直腸サンプル群(n=8)に対する大腸癌患者直腸サンプル群(n=6)のDNAメチル化レベルの比較解析には、GenomeStudioにより算出されるDiffScoreを用いた。両者のDNAメチル化レベルが近い場合、DiffScoreは0に近づき、大腸癌患者でのレベルが高い場合は正の値を示し、低い場合は負の値を示す。両群のメチル化レベルの差異が大きいほど、DiffScoreの絶対値は大きくなる。また、大腸癌患者直腸サンプル群(n=6)の平均β値から健常者直腸サンプル群(n=8)の平均β値を差し引いた値(Δβ値)も比較解析に用いた。
 なお、DNAメチル化定量とDNAメチル化レベル比較解析には、GenomeStudioとソフトウェアMethylation Module(Version:1.9.0)を用いた。GenomeStudioの設定条件は、下記の通りである。
DNAメチル化定量;
 Normalization: 有り(Controls)
 Subtract Background: 有り
 Content Descriptor:      HumanMethylation450_15017482_v.1.2.bpm
DNAメチル化レベル比較解析;
 Normalization: 有り(Controls)
 Subtract Background: 有り
 Content Descriptor: HumanMethylation450_15017482_v.1.2.bpm
 Ref Group: 比較解析4. Group-3
 Error Model: Illumina custom
 Compute False Discovery Rate: 無し
(9)多変量解析
 DNAメチル化レベルの定量及び比較解析の結果を用いて、統計解析ソフトウェアR(Version: 3.0.1、64bit、Windows(登録商標))を用いて、DiffScoreの算出、クラスター解析及び主成分分析を実施した。
クラスター解析のRスクリプト:
> data.dist<-as.dist(1-cor(data.frame,use="pairwise.complete.obs",method="p"))
> hclust(data.dist,method="complete")
       # data.frame: CpG(行)x サンプル(列)から成るデータフレーム
       # 1-ピアソン相関係数を距離として定義し、complete linkage法により実施
主成分分析のRスクリプト:
> prcomp(t(data.frame),scale=T)
# data.frame: CpG(行)x サンプル(列)から成るデータフレーム
<CpGバイオマーカーの選択>
(1)CpGバイオマーカー候補の抽出
 網羅的DNAメチル化解析データからCpGバイオマーカー候補を選定する手段として、DiffScore及びΔβ値に基づいた絞り込みが報告されている(BMC Med genomics vol.4, p.50, 2011; Sex Dev vol.5, p.70, 2011)。前者の報告ではDiffScoreの絶対値が30超、及びΔβ値の絶対値が0.2超に設定し、後者の報告ではDiffScoreの絶対値が30超、及びΔβ値の絶対値が0.3超に設定して、バイオマーカー候補を抽出している。これらの方法に準じて、BeadChipに搭載されている485,577個のCpGサイトからバイオマーカー候補を抽出した。
 具体的には、まず、485,577個のCpGサイトから、DiffScoreの絶対値が30超かつΔβ値の絶対値が0.3超である54個のCpGサイトを抽出した。以下、この54個のCpGサイトをまとめて「54CpGセット」という。さらに、孤発性大腸癌を発症した癌患者を取りこぼしなく判別することを目的に、癌患者サンプル内でDNAメチル化レベルの変動が少ないものを絞り込んだ。すなわち、癌患者23サンプル(4部位×各部位6又は7サンプル)のβ値の不偏分散varを求め、不偏分散varの値が0.02より小さい8個のCpGサイトを絞り込んだ。以下、この8個のCpGサイトをまとめて「8CpGセット」という。
 54CpGセットの各CpGサイトの結果を表10及び11に示す。表中、「8CpG」欄に#があるCpGサイトは8CpGセットに含まれるものを示す。
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000011
(2)CpGバイオマーカー候補を用いた臨床サンプルの多変量解析
 前記54CpGセット又は8CpGセットを用いて、全23サンプルのクラスター解析及び主成分分析を行ったところ、図1及び2に示すように、いずれのCpGセットでも、クラスター解析では、全ての大腸癌患者サンプルが同一クラスター(図中、枠内)に集積した。また、図3及び4に示すように、主成分分析(縦軸は第2主成分)では、大腸癌患者サンプル(黒丸は非癌部から採取したサンプル、黒四角は癌部から採取したサンプル)と健常者(非癌)サンプル(黒三角)が第1主成分(横軸)方向にそれぞれ独立のクラスターを形成した。すなわち、いずれのCpGセットでも、大腸癌患者サンプルと健常者サンプルを明確に区別することができた。これらの結果から、表10及び11に記載の54CpGは、ヒト被検者における孤発性大腸癌の発症のバイオマーカーとして極めて有用であり、これらを用いることにより、ヒト被検者の孤発性大腸癌の発症の有無、特に大腸疾患の自覚症状のないヒト被検者の孤発性大腸癌の発症の有無を高い感度と特異度によって判定できることが明らかである。
[実施例2]
 健常者28名と、内視鏡検査での生検組織による病理診断により、潰瘍性大腸炎等の他の大腸の炎症性疾患は発症していないが、孤発性大腸癌と診断された大腸癌患者20名とから採取された直腸粘膜中のDNAに対して、CpGサイトのメチル化率を網羅的に解析した。
 CpGサイトのメチル化率の解析に供したDNAは、各被験者の直腸の粘膜組織から実施例1と同様にしてDNAを抽出し、全ゲノム増幅し、CpGサイトのDNAメチル化レベルの定量及び比較解析を行い、その結果を用いてDiffScoreの算出、クラスター解析及び主成分分析を実施した。なお、BeadChipはInfinium Methylation EPIC BeadChip(Illumina社製)を使用した。また、GenomeStudioの設定条件は、「Content Descriptor」を「MethylationEPIC_v-1-0_B2.bpm」とした以外は、実施例1と同一の条件とした。
(1)CpGバイオマーカー候補の抽出
 次いで、網羅的DNAメチル化解析データからCpGバイオマーカー候補を抽出した。
 具体的には、まず、866,895個のCpGサイトから、Δβ値の絶対値が0.15超である142個のCpGサイトを抽出した。
 次に、下記の2種類のロジスティック回帰モデルを作成した。
[モデル1]142個のCpGサイトから選んだ2個のCpGの全ての組み合わせに基づく、10,011個のロジスティック回帰モデル。
[モデル2]142個のCpGサイトから選んだ3個のCpGの全ての組み合わせに基づく、467,180個のロジスティック回帰モデル。
 両ロジスティック回帰モデルの判別式について、下記の2つの基準について、それぞれ充足するCpGサイトを選定した。また、[モデル2]については、出現するCpGサイトの頻度も算出し、頻度が3以上のものを選定した。
[基準1]感度が90%超、特異度が90%超、判別式の係数p値が0.05未満、かつAIC(赤池の情報量基準)が30未満。
[基準2]感度が95%超、特異度が85%超、判別式の係数p値が0.05未満、かつAIC(赤池の情報量基準)が30未満。
 2つの基準のそれぞれについて、判別式に出現するCpGサイトを選択したところ、表6~8に記載の33個のCpGサイト(33CpGセット)が選抜された。各CpGサイトの結果を表12に示す。
Figure JPOXMLDOC01-appb-T000012
(2)CpGバイオマーカー候補を用いた臨床サンプルの多変量解析
 前記33CpGセットのメチル化レベルに基づき、全48サンプルのクラスター解析及び主成分分析を行った。この結果、クラスター解析(図5)では、大腸癌患者サンプルの殆どが同一クラスター(図中、枠内)に集積した。また、主成分分析(図6、縦軸は第2主成分)では、大腸癌患者サンプル(●)と健常者サンプル(▲)が第1主成分(横軸)方向にそれぞれ独立のクラスターを形成した。すなわち、33CpGセットを用いて大腸癌患者20サンプルと健常者28サンプルを明確に区別することができた。
(3)CpGバイオマーカー候補を用いた臨床サンプルの孤発性大腸癌の発症可能性の評価
 前記33CpGセットのうち、配列番号57で表される塩基配列中のCpGサイト(cg01105403)、配列番号63で表される塩基配列中のCpGサイト(cg06829686)、及び配列番号77で表される塩基配列中のCpGサイト(cg14629397)の3個のCpGサイトのメチル化率をマーカーとした場合の、孤発性大腸癌発症の有無の判定の精度を調べた。
 具体的には、20名の孤発性大腸癌と診断された大腸癌患者及び28名の健常者の直腸から採取された検体の前記3つのCpGサイトのメチル化レベルの数値(β値)を用いてロジスティック回帰モデルに基づく判別式を作成して大腸癌患者と健常者の判別を行った。この結果、感度(大腸癌患者の中で、陽性と評価された割合)が95.0%、特異度(健常者の中で、陰性と評価された割合)が96.4%、陽性的中率(陽性と評価された中で、大腸癌患者の割合)が95.0%、陰性的中率(陰性と評価された中で、健常者の割合)が96.4%であり、いずれも90%以上と高かった。また、図7にROC(Receiver Operating Characteristic)曲線を示す。AUC(ROC曲線下面積)は0.989であった。これらの結果から、前記33CpGセットから選択された2~5個のCpGサイトのメチル化率に基づいて、高感度かつ高特異度で、孤発性大腸癌発症の可能性を評価できることが確認された。
[実施例3]
 実施例1及び実施例2において求めた直腸粘膜サンプルのDNAメチル化レベル(β値)から、CpGバイオマーカー候補を抽出した。
(1)CpGバイオマーカー候補の抽出
 具体的には、まず、866,895個のCpGサイトから、孤発性大腸癌と診断された大腸癌患者26サンプル及び健常者36サンプルのΔβの絶対値が0.15超である42個のCpGサイトを抽出した。
 次に、下記の2種類のロジスティック回帰モデルを作成した。
[モデル1]42個のCpGサイトから選んだ2個のCpGの全ての組み合わせに基づく、861個のロジスティック回帰モデル。
[モデル2]42個のCpGサイトから選んだ3個のCpGの全ての組み合わせに基づく、11,480個のロジスティック回帰モデル。
 両ロジスティック回帰モデルの判別式について、下記の2つの基準について、それぞれ充足するCpGサイトを選定した。
[基準1]感度が90%超、特異度が90%超、判別式の係数p値が0.05未満、かつAIC(赤池の情報量基準)が30未満。
[基準2]感度が95%超、特異度が85%超、判別式の係数p値が0.05未満、かつAIC(赤池の情報量基準)が30未満。
 2つの基準のそれぞれについて、判別式に出現するCpGサイトを選択した。選択されたCpGサイトから実施例2で選抜されたCpGを除くと、表9に記載の6個のCpGサイト(6CpGセット)が選抜された。各CpGサイトの結果を表13に示す。
Figure JPOXMLDOC01-appb-T000013
(2)CpGバイオマーカー候補を用いた臨床サンプルの多変量解析
 前記6CpGセットのメチル化レベルに基づき、全62サンプルのクラスター解析及び主成分分析を行った。この結果、クラスター解析(図8)では、大腸癌患者サンプルの多くは数個のクラスター(図中、枠内)に集積した。また、主成分分析(図9、縦軸は第2主成分)では、大腸癌患者サンプル(●)と健常者サンプル(▲)は、第1主成分(横軸)方向にそれぞれ独立のクラスターを形成した。すなわち、主成分分析では6CpGセットを用いて大腸癌患者20サンプルと健常者28サンプルを明確に区別することができた。

Claims (18)

  1.  孤発性大腸癌発症可能性を判定する方法であって、
     ヒト被検者から採取された生体試料から回収されたDNA中の、配列番号1~93で表される塩基配列中のCpGサイトからなる群より選択される1か所以上のCpGサイトのメチル化率を測定する測定工程と、
     前記測定工程において測定されたメチル化率と、予め設定された基準値又は予め設定された多変量判別式に基づいて、前記ヒト被検者の孤発性大腸癌発症の可能性を判定する判定工程
    を有し、
     前記基準値が、各CpGサイトのメチル化率に対してそれぞれ設定された、孤発性大腸癌患者と非孤発性大腸癌患者を識別するための値であり、
     前記多変量判別式が、前記配列番号1~93で表される塩基配列中のCpGサイトのうち1か所以上のCpGサイトのメチル化率を変数として含む、
    孤発性大腸癌発症可能性の判定方法。
  2.  前記測定工程において、2~10個のCpGサイトのメチル化率を測定する、請求項1に記載の孤発性大腸癌発症可能性の判定方法。
  3.  前記判定工程において、配列番号1、4、6、10、11、13、14、17~20、23~27、29、30、32、33、35、36、39、41~48、50~54、59、65~68、70~77、79~86、90、及び91で表される塩基配列中のCpGサイトのうち少なくとも1か所以上が、メチル化率が予め設定された基準値以下である、又は、配列番号2、3、5、7~9、12、15、16、21、22、28、31、34、37、38、40、49、55~58、60~64、69、78、87~89、92、及び93で表される塩基配列中のCpGサイトのうち少なくとも1か所以上が、メチル化率が予め設定された基準値以上である場合に、前記ヒト被検者が孤発性大腸癌を発症している可能性が高いと判定する、請求項1又は2に記載の孤発性大腸癌発症可能性の判定方法。
  4.  前記測定工程において、配列番号1~54で表される塩基配列中のCpGサイトのメチル化率を測定し、
     前記判定工程において、配列番号1、4、6、10、11、13、14、17~20、23~27、29、30、32、33、35、36、39、41~48、及び50~54で表される塩基配列中のCpGサイトのうち少なくとも1か所以上が、メチル化率が予め設定された基準値以下である、又は、配列番号2、3、5、7~9、12、15、16、21、22、28、31、34、37、38、40、及び49で表される塩基配列中のCpGサイトのうち少なくとも1か所以上が、メチル化率が予め設定された基準値以上である場合に、前記ヒト被検者が孤発性大腸癌を発症している可能性が高いと判定する、請求項1~3のいずれか一項に記載の孤発性大腸癌発症可能性の判定方法。
  5.  前記判定工程において、配列番号1、4、6、10、11、13、14、17~20、23~27、29、30、32、33、35、36、39、41~48、及び50~54で表される塩基配列中のCpGサイトのうち、メチル化率が予め設定された基準値以下であるCpGサイトの数と、配列番号2、3、5、7~9、12、15、16、21、22、28、31、34、37、38、40、及び49で表される塩基配列中のCpGサイトのうちメチル化率が予め設定された基準値以上であるCpGサイトの数との和が3以上である場合に、前記ヒト被検者が孤発性大腸癌を発症している可能性が高いと判定する、請求項1~4のいずれか一項に記載の孤発性大腸癌発症可能性の判定方法。
  6.  前記測定工程において、配列番号1~8で表される塩基配列中のCpGサイトのメチル化率を測定し、
     前記判定工程において、配列番号1、4、及び6で表される塩基配列中のCpGサイトのうち少なくとも1か所以上が、メチル化率が予め設定された基準値以下である、又は、配列番号2、3、5、7、及び8で表される塩基配列中のCpGサイトのうち少なくとも1か所以上が、メチル化率が予め設定された基準値以上である場合に、前記ヒト被検者が孤発性大腸癌を発症している可能性が高いと判定する、請求項1~3のいずれか一項に記載の孤発性大腸癌発症可能性の判定方法。
  7.  前記判定工程において、配列番号1、4、及び6で表される塩基配列中のCpGサイトのうち、メチル化率が予め設定された基準値以下であるCpGサイトの数と、配列番号2、3、5、7、及び8で表される塩基配列中のCpGサイトのうちメチル化率が予め設定された基準値以上であるCpGサイトの数との和が3以上である場合に、前記ヒト被検者が孤発性大腸癌を発症している可能性が高いと判定する、請求項1~3、及び6のいずれか一項に記載の孤発性大腸癌発症可能性の判定方法。
  8.  前記測定工程において、配列番号55~87で表される塩基配列中のCpGサイトのメチル化率を測定し、
     前記判定工程において、配列番号59、65~68、70~77、及び79~86で表される塩基配列中のCpGサイトのうち少なくとも1か所以上が、メチル化率が予め設定された基準値以下である、又は、配列番号55~58、60~64、69、78、及び87で表される塩基配列中のCpGサイトのうち少なくとも1か所以上が、メチル化率が予め設定された基準値以上である場合に、前記ヒト被検者が孤発性大腸癌を発症している可能性が高いと判定する、請求項1~3のいずれか一項に記載の孤発性大腸癌発症可能性の判定方法。
  9.  前記判定工程において、配列番号59、65~68、70~77、及び79~86で表される塩基配列中のCpGサイトのうち、メチル化率が予め設定された基準値以下であるCpGサイトの数と、配列番号55~58、60~64、69、78、及び87で表される塩基配列中のCpGサイトのうちメチル化率が予め設定された基準値以上であるCpGサイトの数との和が2以上である場合に、前記ヒト被検者が孤発性大腸癌を発症している可能性が高いと判定する、請求項1~3、及び8のいずれか一項に記載の孤発性大腸癌発症可能性の判定方法。
  10.  前記測定工程において、配列番号88~93で表される塩基配列中のCpGサイトのメチル化率を測定し、
     前記判定工程において、配列番号90及び91で表される塩基配列中のCpGサイトのうち少なくとも1か所以上が、メチル化率が予め設定された基準値以下である、又は、配列番号88、89、92、及び93で表される塩基配列中のCpGサイトのうち少なくとも1か所以上が、メチル化率が予め設定された基準値以上である場合に、前記ヒト被検者が孤発性大腸癌を発症している可能性が高いと判定する、請求項1~3のいずれか一項に記載の孤発性大腸癌発症可能性の判定方法。
  11.  前記判定工程において、配列番号90及び91で表される塩基配列中のCpGサイトのうち、メチル化率が予め設定された基準値以下であるCpGサイトの数と、配列番号88、89、92、及び93で表される塩基配列中のCpGサイトのうちメチル化率が予め設定された基準値以上であるCpGサイトの数との和が2以上である場合に、前記ヒト被検者が孤発性大腸癌を発症している可能性が高いと判定する、請求項1~3、及び10のいずれか一項に記載の孤発性大腸癌発症可能性の判定方法。
  12.  前記和が5以上である場合に、前記ヒト被検者が孤発性大腸癌を発症している可能性が高いと判定する、請求項5、7、9、又は11に記載の孤発性大腸癌発症可能性の判定方法。
  13.  前記多変量判別式が、配列番号55~87で表される塩基配列中のCpGサイトからなる群より選択される1か所以上のCpGサイトのメチル化率を変数として含み、
     前記測定工程において、前記多変量判別式がそのメチル化率を変数として含むCpGサイトのメチル化率を測定し、
     前記判定工程において、前記測定工程において測定されたメチル化率と前記多変量判別式に基づいて当該多変量判別式の値である判別値を算出し、当該判別値が予め設定された基準判別値以上である場合に、前記ヒト被検者が孤発性大腸癌を発症している可能性が高いと判定する、請求項1又は2に記載の大腸癌発症可能性の判定方法。
  14.  前記多変量判別式が、配列番号88~93で表される塩基配列中のCpGサイトからなる群より選択される1か所以上のCpGサイトのメチル化率を変数として含み、
     前記測定工程において、前記多変量判別式がそのメチル化率を変数として含むCpGサイトのメチル化率を測定し、
     前記判定工程において、前記測定工程において測定されたメチル化率と前記多変量判別式に基づいて当該多変量判別式の値である判別値を算出し、当該判別値が予め設定された基準判別値以上である場合に、前記ヒト被検者が孤発性大腸癌を発症している可能性が高いと判定する、請求項1又は2に記載の大腸癌発症可能性の判定方法。
  15.  前記多変量判別式が、ロジスティック回帰式、線形判別式、ナイーブベイズ分類器で作成された式、又はサポートベクターマシンで作成された式である、請求項1~14のいずれか一項に記載の大腸癌発症可能性の判定方法。
  16.  前記生体試料が、腸管組織である、請求項1~15のいずれか一項に記載の孤発性大腸癌発症可能性の判定方法。
  17.  前記生体試料が、直腸粘膜組織である、請求項1~16のいずれか一項に記載の孤発性大腸癌発症可能性の判定方法。
  18.  配列番号1~93で表される塩基配列中のCpGサイトからなる群より選択される1か所以上のCpGサイトを含む部分塩基配列を有するDNA断片からなり、ヒト被検者の孤発性大腸癌発症可能性を判定するために用いられる、DNAメチル化率分析用マーカー。
PCT/JP2016/078810 2016-09-29 2016-09-29 孤発性大腸癌発症可能性の判定方法 WO2018061143A1 (ja)

Priority Applications (8)

Application Number Priority Date Filing Date Title
PCT/JP2016/078810 WO2018061143A1 (ja) 2016-09-29 2016-09-29 孤発性大腸癌発症可能性の判定方法
KR1020197008922A KR20190054086A (ko) 2016-09-29 2017-09-28 고발성 대장암 발증 가능성의 판정 방법
PCT/JP2017/035137 WO2018062361A1 (ja) 2016-09-29 2017-09-28 孤発性大腸癌発症可能性の判定方法
EP17856310.2A EP3521448A4 (en) 2016-09-29 2017-09-28 METHOD FOR DETERMINING THE RISK OF SPORADIC COLON CANCER
CN201780059361.5A CN109844139A (zh) 2016-09-29 2017-09-28 散发性大肠癌发病可能性的判定方法
EP21152408.7A EP3842543A1 (en) 2016-09-29 2017-09-28 Method for determining onset risk of sporadic colon cancer
JP2018542835A JP7139248B2 (ja) 2016-09-29 2017-09-28 孤発性大腸癌発症可能性の判定方法
US16/333,130 US20190352721A1 (en) 2016-09-29 2017-09-28 Method for determining likelihood of sporadic colorectal cancer development

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/078810 WO2018061143A1 (ja) 2016-09-29 2016-09-29 孤発性大腸癌発症可能性の判定方法

Publications (1)

Publication Number Publication Date
WO2018061143A1 true WO2018061143A1 (ja) 2018-04-05

Family

ID=61760189

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/078810 WO2018061143A1 (ja) 2016-09-29 2016-09-29 孤発性大腸癌発症可能性の判定方法

Country Status (1)

Country Link
WO (1) WO2018061143A1 (ja)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005021743A1 (ja) * 2003-08-29 2005-03-10 Tanaka, Noriaki 核酸増幅用プライマー及びこれを用いた大腸癌の検査方法
JP2015006164A (ja) * 2013-05-29 2015-01-15 シスメックス株式会社 大腸癌に関する情報の取得方法、ならびに大腸癌に関する情報を取得するためのマーカーおよびキット

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005021743A1 (ja) * 2003-08-29 2005-03-10 Tanaka, Noriaki 核酸増幅用プライマー及びこれを用いた大腸癌の検査方法
JP2015006164A (ja) * 2013-05-29 2015-01-15 シスメックス株式会社 大腸癌に関する情報の取得方法、ならびに大腸癌に関する情報を取得するためのマーカーおよびキット

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
GOEL A ET AL.: "The CpG island methylator phenotype and chromosomal instability are inversely correlated in sporadic colorectal cancer", GASTROENTEROLOGY, vol. 132, 2007, pages 127 - 138, XP005920669 *
GONZALO V ET AL.: "Multiple sporadic colorectal cancers displaya unique methylation phenotype", PLOS ONE, vol. 9, no. 3, 2014, pages 1 - 12, XP055500745 *
SHOZO BABA: "Idenshi Shindan kara Mita Daichogan no Surveillance", ENDOSCOPIA DIGESTIVA, vol. 14, no. 4, 2002, pages 467 - 473 *

Similar Documents

Publication Publication Date Title
JP7094881B2 (ja) 大腸癌発症可能性の判定方法
JP6606554B2 (ja) Y染色体のメチル化部位を前立腺ガンの診断用マーカとする使用
JP7139248B2 (ja) 孤発性大腸癌発症可能性の判定方法
TWI456197B (zh) 作為早發性大腸直腸癌之生物標記的(line-1低甲基化作用)
US11111546B2 (en) 3.4 KB mitochondrial DNA deletion for use in the detection of cancer
US20230084248A1 (en) Composition using cpg methylation changes in specific genes to diagnose bladder cancer, and use thereof
CN115896281B (zh) 甲基化生物标记物、试剂盒及用途
CN113724862A (zh) 一种结直肠癌生物标志物及其筛选方法和应用
CN116144782A (zh) 一种用于肺癌检测的组合标志物及其应用
WO2022222146A1 (zh) 用于结直肠癌检测的组合物、试剂盒及应用
JP5518715B2 (ja) 癌の検出に使用するための3.4kbのミトコンドリアDNA欠失
WO2018061143A1 (ja) 孤発性大腸癌発症可能性の判定方法
WO2018008153A1 (ja) 大腸癌発症可能性の判定方法
CN108064273A (zh) 结直肠癌相关疾病的生物标志物
JP2023176770A (ja) 診断支援方法、診断支援装置、診断支援システムおよび診断評価方法
CN118147311B (zh) 尿路上皮癌甲基化标志物试剂盒
TWI753455B (zh) 用以評估個體罹患胃癌或癌前病變之風險的方法、其套組、其分析器及其生物標誌
CN111363817B (zh) 基于hoxd12基因的肺癌诊断剂及试剂盒
CN117106918A (zh) 基因甲基化鉴别诊断肺良性结节和恶性肿瘤方法及其试剂盒
CN116445614A (zh) 用于检测宫颈鳞癌的核酸分子、试剂盒及其应用
CN116396960A (zh) 用于检测宫颈上皮内瘤样病变和宫颈鳞状细胞癌的核酸分子与试剂盒
CN117431315A (zh) 大肠癌淋巴结转移检测甲基化生物标记物及检测试剂盒
CN111088358A (zh) 结直肠癌分子标志物组合、其用途及引物组和检测试剂盒

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16917695

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16917695

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP