WO2018061080A1 - Method for manufacturing nitride semiconductor ultraviolet light emitting element, and nitride semiconductor ultraviolet light emitting element - Google Patents

Method for manufacturing nitride semiconductor ultraviolet light emitting element, and nitride semiconductor ultraviolet light emitting element Download PDF

Info

Publication number
WO2018061080A1
WO2018061080A1 PCT/JP2016/078410 JP2016078410W WO2018061080A1 WO 2018061080 A1 WO2018061080 A1 WO 2018061080A1 JP 2016078410 W JP2016078410 W JP 2016078410W WO 2018061080 A1 WO2018061080 A1 WO 2018061080A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
nitride semiconductor
light emitting
ultraviolet light
semiconductor ultraviolet
Prior art date
Application number
PCT/JP2016/078410
Other languages
French (fr)
Japanese (ja)
Inventor
平野 光
長澤 陽祐
一本松 正道
Original Assignee
創光科学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 創光科学株式会社 filed Critical 創光科学株式会社
Priority to JP2018541750A priority Critical patent/JP6686155B2/en
Priority to PCT/JP2016/078410 priority patent/WO2018061080A1/en
Priority to TW106105112A priority patent/TWI719141B/en
Publication of WO2018061080A1 publication Critical patent/WO2018061080A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/20Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a particular shape, e.g. curved or truncated substrate

Definitions

  • the present invention relates to a nitride semiconductor ultraviolet light emitting element that is configured by forming an AlGaN-based semiconductor layer on a main surface of a sapphire substrate and emits light (ultraviolet light) having an emission center wavelength of 365 nm or less, and a method for manufacturing the same.
  • Shaped lenses may be provided.
  • LEDs Light Emitting Diodes
  • LDs Laser Diodes
  • Shaped lenses may be provided.
  • a lens having a convex curved surface may be provided on the back side.
  • Patent Document 1 a photoresist formed on a central portion on the back surface side of a substrate is baked and aggregated to deform into a lens shape, and ion beam etching is performed using the photoresist as a mask to perform back surface of the substrate.
  • a nitride semiconductor ultraviolet light emitting device in which a lens is formed in the central portion on the side.
  • the light that would otherwise be scattered and lost is converged, that is, the light that passes through the vicinity of the end portion away from the central portion of the substrate is converged. It is necessary.
  • a lens that is extremely small compared to the size of the substrate is provided only at the central portion of the back surface of the substrate. With such a lens whose lens surface (convex curved surface) does not reach the end of the substrate, it is impossible to converge the light passing near the end of the substrate.
  • Patent Document 1 when a lens is formed by digging the surface of a substrate by ion beam etching, the processing speed is extremely slow, so the processing in units of ⁇ m is practically the limit. Therefore, as described above, only a small lens can be formed in the central portion of the substrate. Therefore, the nitride semiconductor ultraviolet light emitting device proposed in Patent Document 1 cannot effectively improve the light extraction efficiency.
  • Non-Patent Document 1 proposes a nitride semiconductor ultraviolet light emitting element in which a hemispherical lens having a larger bottom area than the back surface is bonded to the back surface of the sapphire substrate. If the lens has such a lens surface that reaches the end of the substrate, light passing through the vicinity of the end of the substrate can be converged. Therefore, the nitride semiconductor ultraviolet light-emitting device proposed in Non-Patent Document 1 can effectively improve the light extraction efficiency.
  • Non-Patent Document 1 In the nitride semiconductor ultraviolet light-emitting device proposed in Non-Patent Document 1, it is necessary to join the substrate and the lens, but the layer that affects the progress of the light emitted from the element structure or the element structure emits. It is not allowed to provide a layer that deteriorates due to light (particularly, ultraviolet rays) between the substrate and the lens. Therefore, in the nitride semiconductor ultraviolet light-emitting device proposed in Non-Patent Document 1, it is necessary to bond the substrate and the lens by a special bonding method called ADB (Atomic Diffusion Bonding) or SAB (Surface Activated Bonding).
  • ADB Atomic Diffusion Bonding
  • SAB Surface Activated Bonding
  • ADB is an ultra-high vacuum or higher vacuum state in which metal atoms are attached very thinly to the respective surfaces to be bonded of the substrate and the lens, and then the surfaces to be bonded are brought into contact with each other.
  • This is a bonding method for bonding the substrate and the lens using the above.
  • SAB exposes a clean and active surface composed of atoms that are not associated with impurities by irradiating the surfaces to be bonded to the substrate and lens with an Ar ion beam or the like in an ultra-high vacuum or higher vacuum state. After that, the bonding scheduled surface is brought into contact with each other, and the substrate and the lens are bonded using the bonding force of the atomic force of the atoms.
  • Non-Patent Document 1 As described above, ADB and SAB not only realize a special environment of a degree of vacuum higher than ultra-high vacuum, but also form a special surface state in which bonding is performed only by contact in the environment. Special equipment and advanced technology are essential. Therefore, the nitride semiconductor ultraviolet light emitting element proposed in Non-Patent Document 1 cannot be easily manufactured even by those skilled in the art.
  • the present invention provides a nitride semiconductor ultraviolet light-emitting device that can effectively improve the light extraction efficiency and can be easily manufactured, and a method for manufacturing the same.
  • the present invention includes a sapphire substrate and a plurality of AlGaN-based semiconductor layers stacked on the main surface of the substrate and emits light having an emission center wavelength of 365 nm or less when energized. And a substrate processing step of grinding the substrate so that at least four corners of the back surface, which is the surface opposite to the main surface, are convex curved surfaces.
  • a method for manufacturing a nitride semiconductor ultraviolet light emitting device is provided.
  • a nitride semiconductor ultraviolet light-emitting device unlike the nitride semiconductor ultraviolet light-emitting device in which the lens surface (convex curved surface) exists only at the central portion of the substrate as proposed in Patent Document 1. Since the lens surface reaches the end portion of the substrate, a nitride semiconductor ultraviolet light emitting element capable of converging light passing near the end portion of the substrate can be manufactured. Furthermore, according to this method for manufacturing a nitride semiconductor ultraviolet light-emitting element, a simple technique of grinding a substrate is used without using an advanced technique (see Non-Patent Document 1) of bonding a substrate and a lens. Thus, the nitride semiconductor ultraviolet light emitting element can be manufactured.
  • the substrate processing step may be performed such that the substrate in a plan view viewed from a direction perpendicular to the main surface has a circular shape, an oval shape, or a corner. Is preferably a step of grinding the substrate so as to form a rounded square shape.
  • a nitride semiconductor ultraviolet light emitting device capable of effectively converging light passing through the edge of the substrate can be obtained.
  • the substrate processing step includes a step of grinding the substrate so that a top surface parallel to the main surface does not remain on the opposite side of the main surface. Is preferable.
  • a nitride semiconductor ultraviolet light emitting device capable of effectively converging light passing through the central portion of the substrate can be obtained.
  • the substrate processing step is a step of grinding the substrate into a hemispherical shape or a shell shape.
  • nitride semiconductor ultraviolet light emission that not only effectively converges light but also can suppress variation in light collecting properties in a plane parallel to the main surface. An element can be obtained.
  • the substrate processing step produces a processing target in a state where the two chips are bonded so that the main surfaces of the substrate face each other. It is preferable to include a first step, a second step of grinding the workpiece, and a third step of separating the workpiece into two chips after the second step.
  • the processing target object bonded with the element structure provided on the main surface of the substrate facing inward is ground, the element structure The substrate can be ground while protecting.
  • one or more workpieces are rolled in a container having a concave curved surface to which abrasive grains are attached, It is preferable that the object to be processed collide with a concave curved surface.
  • a nitride semiconductor ultraviolet light emitting element only the corner of the object to be processed collides with the concave curved surface and is ground, so that the convex curved surface can be efficiently formed on the substrate. Further, at this time, the object to be processed can be isotropically ground by rolling the object to be processed. Further, according to this method for manufacturing a nitride semiconductor ultraviolet light emitting element, a plurality of objects to be processed can be put in a container and ground simultaneously, so that the nitride semiconductor ultraviolet light emitting element can be mass-produced.
  • the processing object in which two chips are bonded together by an adhesive is produced, and in the third step, the bonding is performed. It is preferable to dissolve the agent in a solvent.
  • the adhesive protrudes from between the two bonded chips and is formed on the outer peripheral surface of each of the chips. Adhesion is preferred.
  • the processing object in which two chips are bonded together by solder is manufactured, and in the third step, the solder is used. It is preferable to melt by heating.
  • this method for manufacturing a nitride semiconductor ultraviolet light-emitting device it is possible to easily produce a workpiece in a state in which two chips are bonded together at a position where they face each other by using a solder having a self-alignment effect. it can.
  • the device structure portion is one of the AlGaN-based semiconductor layers, and has a light emitting region having an active layer that generates the light when energized, and the light emission
  • An n-electrode that surrounds the light-emitting region and reflects the light in at least a part of the peripheral region. Is preferably formed.
  • the n electrode surrounding the light emitting region reflects light that attempts to leak outside from the peripheral region to the substrate side without passing through the substrate.
  • a nitride semiconductor ultraviolet light emitting element capable of effectively increasing the amount of light passing therethrough can be obtained.
  • the device structure portion is one of the AlGaN-based semiconductor layers, and has a light emitting region having an active layer that generates the light when energized, and the light emission It is preferably divided into a peripheral region formed so as to surround the region and not having the active layer, and it is preferable that a p-plated electrode is formed at least in the entire light emitting region.
  • a nitride semiconductor ultraviolet light-emitting device capable of effectively radiating heat is obtained because the p-plating electrode is provided in the entire light-emitting region where current is concentrated. it can.
  • an n electrode that surrounds the light emitting region and reflects the light is formed in at least a part of the peripheral region. It is preferable that a part is formed above the n electrode in the peripheral region, and an insulating film is formed between the n electrode and the p plating electrode above the n electrode.
  • the heat dissipation can be further improved by extending the p-plated electrode to the n-electrode.
  • the two chips can be favorably bonded by expanding the p-plated electrode.
  • the device structure portion is one of the AlGaN-based semiconductor layers, and has a light emitting region having an active layer that generates the light when energized, and the light emission And a peripheral region that is formed so as to surround the region and does not have the active layer, and each of the main surface of the substrate and the light emitting region is in relation to the main surface of the substrate.
  • the shape is a rotationally symmetric shape that is at least two-fold symmetric with the center coincident in a plan view viewed from a vertical direction
  • the light-emitting region has a shape that projects radially from a center of rotation symmetry in a plurality of directions in a plan view. If there is, it is preferable.
  • the rotational symmetry centers of the main surface of the substrate and the light emitting region coincide with each other, thereby preventing light from being biased in a specific direction within the substrate.
  • the light emitting region protrudes, a nitride semiconductor ultraviolet light emitting element capable of efficiently supplying power to the active layer can be obtained.
  • the substrate processing step further comprising a covering step of covering at least a part of the curved surface of the substrate with an amorphous fluororesin, preferable.
  • the short wavelength emitted by the device structure portion By covering the lens surface of the substrate with a fluororesin that is resistant to the light (particularly ultraviolet rays) and filling the irregularities, it is possible to prevent the light extraction efficiency from being lowered.
  • the first step may be a step of manufacturing the object to be processed by bonding two chips.
  • the chip is obtained by dividing a wafer in which a plurality of the element structure portions are formed on one substrate.
  • the first step is a step of fabricating the object to be processed by bonding the two wafers so that the principal surfaces of the substrate face each other and then dividing each of the wafers into chips. May be.
  • the present invention also includes a sapphire substrate and an element structure that has a plurality of AlGaN-based semiconductor layers stacked on the main surface of the substrate and emits light having an emission center wavelength of 365 nm or less when energized.
  • the cross-sectional area of the cross section of the substrate parallel to the main surface is continuously reduced as the distance from the main surface increases, or is constant until a predetermined distance from the main surface.
  • Nitride semiconductor ultraviolet light emission characterized in that it continuously decreases after that, and the cross section having a cross-sectional area smaller than the main surface is circular, oval, or square with rounded corners An element is provided.
  • this nitride semiconductor ultraviolet light emitting element unlike the nitride semiconductor ultraviolet light emitting element in which the lens surface (convex curved surface) exists only at the center portion of the substrate as proposed in Patent Document 1, the lens surface Reaches the end of the substrate, so that light passing near the end of the substrate can be converged. Furthermore, this nitride semiconductor ultraviolet light-emitting device can be manufactured using a simple technique of processing a substrate without using an advanced technique (see Non-Patent Document 1) of bonding the substrate and a lens.
  • the substrate has a circular shape, an oval shape, or a square shape with rounded corners in a plan view as viewed from a direction perpendicular to the main surface. ,preferable.
  • the light emitted from the nitride semiconductor ultraviolet light can be effectively improved because the light passing near the end of the substrate can be converged.
  • the device can be easily manufactured using a simple technique of grinding the substrate.
  • the nitride semiconductor ultraviolet light emitting element having the above characteristics, the light passing through the vicinity of the edge of the substrate can be converged, so that the light extraction efficiency can be effectively improved. Furthermore, the nitride semiconductor ultraviolet light emitting element can be easily manufactured using a simple technique of processing a substrate.
  • Sectional drawing which showed the AA cross section of FIG. The top view which exposed and showed the p electrode and n electrode of FIG. Sectional drawing which showed an example of the structure of an AlGaN-type semiconductor layer.
  • FIG. 8 is a perspective view showing a process in which the workpiece of FIG. 6 is ground by the grinding device of FIG. 7.
  • a nitride semiconductor ultraviolet light emitting element that is a light emitting diode that emits (ultraviolet rays) and a method for manufacturing the nitride semiconductor ultraviolet light emitting element are illustrated.
  • an AlGaN-based semiconductor which is a material constituting each layer of the AlGaN-based semiconductor layer, is represented by a general formula Al x Ga 1-x N (x is a molar fraction of AlN, 0 ⁇ x ⁇ 1) 3
  • a trace amount of In or the like may be included.
  • the structure of the device structure portion may be any, It is not limited to the structure of the element structure part in the nitride semiconductor ultraviolet light emitting element illustrated in FIG.
  • FIG. 1 is a plan view showing an example of the structure of a nitride semiconductor ultraviolet light emitting device according to an embodiment of the present invention.
  • FIG. 2 is a cross-sectional view showing the AA cross section of FIG.
  • FIG. 3 is a plan view showing the p electrode and the n electrode of FIG.
  • the thickness of the substrate, the semiconductor layer, and the electrodes is schematically shown. It does not match.
  • the nitride semiconductor ultraviolet light emitting device 1 includes a substrate 10 and an element structure 20 formed on the main surface 101 of the substrate 10.
  • the nitride semiconductor ultraviolet light-emitting element 1 is mounted (flip-chip mounted) with the element structure 20 side (upper side in FIG. 2) facing the mounting base.
  • the take-out direction is the substrate 10 side (the lower side in the drawing in FIG. 2).
  • the substrate 10 is made of sapphire, and the main surface 101 has a hemispherical shape corresponding to a spherical cross section. Although details will be described later, the nitride semiconductor ultraviolet light-emitting element 1 improves the light extraction efficiency by making the substrate 10 into such a special shape.
  • the element structure 20 includes an AlGaN-based semiconductor layer 21, a p-electrode 22, an n-electrode 23, a p-plated electrode 24, an n-plated electrode 25, and an insulating film 26.
  • an example of the structure of the AlGaN-based semiconductor layer 21 will be described with reference to the drawings.
  • FIG. 4 is a cross-sectional view showing an example of the structure of the AlGaN-based semiconductor layer.
  • the AlGaN-based semiconductor layer 21 includes, in order from the substrate 10 side, a base layer 211, an n-type cladding layer 212 made of n-type AlGaN, an active layer 213, and p-type AlGaN.
  • the electron blocking layer 214, the p-type cladding layer 215 made of p-type AlGaN, and the p-type contact layer 216 made of p-type GaN are stacked.
  • the underlayer 211 is made of AlN and is formed on the main surface 101 of the substrate 10.
  • the underlayer 211 may have a structure in which AlGaN is stacked on the top surface of AlN.
  • the active layer 213 has a single or multiple quantum well structure in which a well layer made of AlGaN or GaN is sandwiched between barrier layers made of n-type AlGaN.
  • the above-described layers 211 to 216 are formed in the light emitting region 31 and the uppermost surface is the p-type contact layer 216, but the peripheral region 32 surrounding the light emitting region 31 is active in the peripheral region 32.
  • the layers 213 to 216 above the layer 213 are not formed, and the n-type cladding layer 212 is exposed.
  • a p-electrode 22 is formed on the upper surface of the p-type contact layer 216 in the light emitting region 31, and an n-electrode 23 is formed on the upper surface of the n-type cladding layer 212 in the peripheral region 32.
  • each of the supplied holes and electrons reaches the active layer 213 in the light emitting region 31, and the active layer At 213, holes and electrons recombine to emit light.
  • Each of the layers 211 to 216 constituting the AlGaN-based semiconductor layer 21 is formed by a known epitaxial growth method such as an organic metal compound vapor phase growth (MOVPE) method or a molecular beam epitaxy (MBE) method, and an n-type layer includes For example, Si is added as a donor impurity, and Mg is added as an acceptor impurity to the p-type layer. Further, after the layers 211 to 216 are laminated on the main surface 101 of the substrate 10, a part of the region (region corresponding to the peripheral region 32) is selectively etched by a known etching means such as reactive ion etching. Each of the light emitting region 31 and the peripheral region 32 is formed by exposing the n-type cladding layer 212 in the region.
  • MOVPE organic metal compound vapor phase growth
  • MBE molecular beam epitaxy
  • the p-electrode 22 is made of, for example, Ni / Au, and is formed on the upper surface of the p-type contact layer 216 in the light emitting region 31 as described above.
  • the n electrode 23 is made of, for example, Ti / Al / Ti / Au, and is formed on the upper surface of the n-type cladding layer 212 in the peripheral region 32 as described above. The n electrode 23 is formed so as to surround the light emitting region 31.
  • the p electrode 22 and the n electrode 23 not only supply power to the AlGaN-based semiconductor layer 21 but also reflect light generated in the active layer 213 in the light emitting region 31 to the substrate 10 side.
  • the n-electrode 23 formed so as to surround the light emitting region 31 reflects light that attempts to leak outside from the peripheral region 32 without passing through the substrate 10 to the substrate 10 side. The amount of light passing through can be effectively increased.
  • Each of the p-plating electrode 24 and the n-plating electrode 25 is constituted by, for example, covering a Cu main body formed by electrolytic plating with one or more metal layers whose outermost surface formed by electroless plating is Au. Is done.
  • the p-plated electrode 24 and the n-plated electrode 25 are spaced apart from each other and the top surface thereof is flattened to have the same height. Further, a part of the p plating electrode 24 is in contact with the p electrode 22, and a part of the n plating electrode 25 is in contact with the n electrode 23.
  • the p-plating electrode 24 and the n-plating electrode 25 are not only connected to the mounting base and supply power to the AlGaN-based semiconductor layer 21, but also the heat generated by the nitride semiconductor light emitting element 1 is used as the mounting base. It is provided to transmit and dissipate heat. In particular, since the p-plated electrode 24 is provided in the entire light emitting region 31 where current is concentrated, effective heat dissipation can be performed.
  • the insulating film 26 is made of, for example, SiO 2 or Al 2 O 3 , and the n electrode 23 excluding the connection portion between the upper surface and the side surface of the p electrode 22 excluding the connection portion with the p plating electrode 24 and the n plating electrode 25. Are formed so as to cover the upper surface in the light emitting region 31 and the peripheral region 32 and the side surface in the light emitting region 31 of the AlGaN-based semiconductor layer 21 exposed without the p-electrode 22 and the n-electrode 23 being formed. Is done.
  • the insulating film 26 prevents contact between the n-electrode 23 and the p-plated electrode 24 formed over a wide range above the main surface 101 of the substrate 10, and protects the side surface of the light-emitting region 31 of the AlGaN-based semiconductor layer 21. It is provided for.
  • the substrate 10 is hemispherical as described above, and the lens surface (convex curved surface) 102 reaches the end of the substrate 10. Therefore, this nitride semiconductor ultraviolet light-emitting element 1 differs from the nitride semiconductor ultraviolet light-emitting element in which the lens surface exists only at the central portion of the substrate as proposed in Patent Document 1, near the end of the substrate 10. The passing light can be converged. Therefore, this nitride semiconductor ultraviolet light emitting element 1 can effectively improve the light extraction efficiency.
  • the substrate 10 itself is hemispherical in the nitride semiconductor ultraviolet light-emitting device 1 according to the embodiment of the present invention, without using a high technology of joining the substrate and the lens as in Non-Patent Document 1,
  • the substrate 10 can be manufactured by using a simple technique.
  • the processing method of the substrate 10 will be described in ⁇ Example of manufacturing method of nitride semiconductor ultraviolet light emitting element> described later.
  • the outer contour line of the n electrode 23 is square, and the diameter of the inscribed circle with respect to the outer contour line of the n electrode 23 is twice the diameter of the circumscribed circle of the light emitting region 31.
  • the shape and size of the n-electrode 23 may be anything.
  • the n-electrode 23 may be circular, or provided on the entire surface of the peripheral region 32 (may reach the end of the substrate 10 or may slightly recede from the end). May be.
  • the amount of light passing through the substrate 10 can be sufficiently increased when the area of the n-electrode 23 is equal to or larger than the area of the light emitting region 31. ,preferable.
  • FIG. 1 illustrates a case where the p-plated electrode 24 has a circular shape and the diameter of the p-plated electrode 24 is larger than the diameter of the inscribed circle with respect to the outer contour line (square contour line) of the n-electrode 23.
  • the p-plating electrode 24 may have any shape and size.
  • the area of the p-plated electrode 24 be at least twice the area of the light emitting region 31 because sufficient heat dissipation is possible.
  • a nitride semiconductor ultraviolet light-emitting device as shown in FIGS. 1 and 2 has a wafer formed so that a plurality of device structure portions are aligned on the main surface of a flat substrate, together with the device structure portions. It is produced as a chip obtained by dividing into pieces.
  • the substrate 10 included in the nitride semiconductor ultraviolet light-emitting element 1 which is the chip shown in FIG. It is.
  • FIG. 5 is a plan view showing an example of the structure of the chip before the substrate is processed, and shows the same plane as FIG.
  • FIG. 6 is a cross-sectional view showing an example of the structure of the workpiece, and is a cross-sectional view similar to FIG.
  • a cube-shaped workpiece in which two chips C are bonded so that the main surfaces 101 of the substrate 10 face each other. 40 is produced.
  • the workpiece 40 is ground into a spherical shape and then separated into two chips C, whereby a nitride semiconductor ultraviolet light emitting element 1 having a hemispherical substrate 10 as shown in FIG. Get.
  • the workpiece 40 may be manufactured by, for example, bonding two chips together with the adhesive 50, or may be manufactured by separating two chips after bonding the two wafers with the adhesive 50. In the former case, it is necessary to manufacture the workpiece 40 by bonding chips one by one, but since the wafers are divided one by one, the chips can be easily obtained. On the other hand, in the latter case, a thick wafer in which two sheets are bonded together must be divided, but a plurality of chips can be bonded together. The process up to the production of the wafer is the same as that of a general method for manufacturing a nitride semiconductor ultraviolet light emitting element.
  • examples of the adhesive 50 used for manufacturing the workpiece 40 include glue and rubber adhesive.
  • glue is preferable because it has strong and strong adhesive strength and can be dissolved in an aqueous solvent (pure water, hot water, etc.).
  • the rubber-based adhesive can be dissolved in an organic solvent such as trichlene or acetone.
  • the adhesive 50 protrudes from between the two bonded chips C and adheres to the outer peripheral surface of each of the chips C. Forming the adhesive 50 in this manner is preferable because separation of the workpiece 40 can be effectively suppressed.
  • the adhesive 50 adheres to each outer peripheral surface of the chip C as described above even if it is a part of the entire circumference of the workpiece 40. By doing so, the separation of the workpiece 40 can be effectively suppressed during the grinding process in which an impact can be applied to the workpiece 40.
  • FIG. 7 is a perspective view showing an example of a grinding apparatus for grinding the workpiece of FIG.
  • the grinding device 60 rotates a cylindrical side wall portion 61 in which abrasive grains made of diamond or the like are attached inside, a circular bottom portion 62 inscribed in the side wall portion 61, and the bottom portion 62. And a rotating shaft 63 to be moved.
  • a grinding device as proposed in Japanese Patent Application Laid-Open Nos. 2008-168358 and 2006-35334 may be used.
  • a lid (not shown) for putting the above-described workpiece 40 into the space surrounded by the side wall 61 and the bottom 62 of the grinding device 60 and blocking the space to prevent the workpiece 40 from popping out.
  • FIG. 8 is a perspective view showing a process in which the workpiece of FIG. 6 is ground by the grinding apparatus of FIG. 7, and (a), (b), (c), (d), (e) It shows how the grinding process proceeds in this order.
  • the workpiece 40 is isotropically ground at the corners by the grinding by the grinding device 60. Specifically, the corners are ground in order from the four corners of the back surface 103 (see FIG. 6) which is the surface opposite to the main surface 101 in the substrate 10, and finally shown in FIG. 8 (e). So that all corners are ground into a spherical shape.
  • the nitride 50 as shown in FIG. 2 is obtained by dissolving the adhesive 50 of the workpiece 40 after grinding in a solvent and separating the workpiece 40 into two chips C.
  • the semiconductor ultraviolet light emitting element 1 can be obtained.
  • the substrate 10 is ground while protecting the element structure portion 20. be able to.
  • the processing object 40 is produced by bonding the two chips C using the adhesive 50, and the processing object 40 is dissolved in the solvent after the processing of the processing object 40 by grinding the processing object 40.
  • the two chips C can be bonded and separated without applying a great deal of stress to the element structure 20. Therefore, damage to the element structure 20 can be prevented. 7 can mass-produce the nitride semiconductor ultraviolet light-emitting element 1 because a plurality of workpieces 40 can be put and ground at a time.
  • the grinding device 60 shown in FIG. 7 is merely an example, and the workpiece 40 may be ground using another grinding device.
  • the grinding apparatus 60 shown in FIG. 7 rolls the workpiece 40 by rotating the bottom 62, which is a part of the container, about the vertical direction.
  • a grinding device that rolls the workpiece 40 by rotating around a direction having a horizontal component may be used.
  • a grinding apparatus capable of rolling the workpiece 40 in a container having a concave curved surface with abrasive grains attached thereto and causing the workpiece 40 to collide with the curved surface is used, the above-described grinding process is performed. Since the same effect as the case of using the device 60 can be obtained, it is preferable.
  • the workpiece 40 may be ground into a spherical shape using a router provided with a concave grindstone at the tip, or the workpiece 40 may be ground into a spherical shape using an NC (Numerical Control) lathe. Good.
  • NC Numerical Control
  • the substrate 10 may be ground into a hemispherical shape in the state of the chip C without producing the workpiece 40.
  • the element structure 20 since the element structure 20 is exposed, it is difficult to use a grinding apparatus in which a grinding object such as the grinding apparatus 60 shown in FIG. 7 rolls.
  • FIG. 9 is a cross-sectional view showing another example of the structure of the nitride semiconductor ultraviolet light-emitting device according to the embodiment of the present invention, and a cross-sectional view corresponding to FIG.
  • a coating film 70 is formed on the surface of the lens surface 102 of the substrate 10 included in the nitride semiconductor ultraviolet light emitting element 1X. It is preferable that the coating film 70 is made of a material that transmits light emitted from the element structure unit 20 and is hardly deteriorated (resistant) by the light. In particular, when the element structure 20 emits ultraviolet rays, it is preferable to form the coating film 70 with an amorphous fluororesin having ultraviolet transparency and ultraviolet resistance.
  • the lens surface 102 of the substrate 10 may be covered with the coating film 70.
  • the coating film 70 At least one surface of the p-plated electrode 24 and the n-plated electrode 25 (the surface of the portion that does not contact the electrode on the mounting base and the side surface excluding the upper surface in FIG. 9) is covered with the coating film 70. By doing so, a short circuit may be prevented.
  • the non-bonding amorphous fluororesin has a difficulty in that it has a weak bonding force to metal or sapphire constituting the substrate 10.
  • the coating film 70 is inserted into the gap between the nitride semiconductor ultraviolet light emitting element 1X and the base so that at least the p plating electrode 24 and the n plating electrode 25 are present. If one surface is covered with the coating film 70, the coating film 70 becomes difficult to peel off. Further, as described above, if a large number of irregularities are formed on the surface of the lens surface 102 of the substrate 10, the bonding force between the surface of the lens surface 102 and the coating film 70 increases due to the anchor effect. 70 becomes difficult to peel.
  • amorphous fluororesin examples include, for example, those obtained by copolymerizing a crystalline polymer fluororesin and making it amorphous as a polymer alloy, or a copolymer of perfluorodioxole (trade name Teflon manufactured by DuPont). AF (registered trademark)) and perfluorobutenyl vinyl ether cyclized polymer (trade name Cytop (registered trademark) manufactured by Asahi Glass Co., Ltd.).
  • the structural unit constituting the polymer or copolymer has a fluorine-containing aliphatic ring structure
  • the terminal functional group is a perfluoroalkyl group such as CF 3.
  • An amorphous fluororesin is mentioned.
  • the perfluoroalkyl group does not have a reactive terminal functional group that exhibits binding properties to a metal or the like.
  • the bonding amorphous fluororesin binds to a metal or the like as a terminal functional group even if the structural unit constituting the polymer or copolymer has the same fluorine-containing aliphatic ring structure. It differs from non-bonding amorphous fluororesin in that it has possible reactive functional groups.
  • the reactive functional group is, for example, a carboxyl group (COOH) or an ester group (COOR). However, R represents an alkyl group.
  • the structural unit having a fluorinated alicyclic structure is a unit based on a cyclic fluorinated monomer (hereinafter referred to as “unit A”) or formed by cyclopolymerization of a diene fluorinated monomer.
  • a unit (hereinafter “unit B”) is preferred.
  • the composition and structure of the amorphous fluororesin are not the subject matter of the present invention, a detailed description of the unit A and the unit B is omitted, but the unit A and the unit B are related to WO2014 / Please refer to paragraphs [0031] to [0062] of No. 178288 for details.
  • Cytop (manufactured by Asahi Glass Co., Ltd.) and the like can be cited as an example of a commercially available non-binding amorphous fluororesin. Cytop having a terminal functional group of CF 3 is a polymer of the unit B shown in Chemical Formula 1 below.
  • the coating film 70 covering each surface is made of another material. It may be configured.
  • the coating film 70 covering at least one surface of the p-plating electrode 24 and the n-plating electrode 25 is made of non-bonding amorphous fluororesin from the viewpoint of suppressing migration of metal atoms, and the lens of the substrate 10
  • the coating film 70 covering the surface of the surface 102 may be made of an amorphous fluororesin that is not non-bonding.
  • the substrate 10 and the light emitting region 31 are viewed in a plan view (hereinafter referred to as a direction perpendicular to the main surface 101 of the substrate 10) It is preferably a rotationally symmetric shape having a center that is equal to or greater than the two-fold symmetry in the plan view).
  • the light emitting region 31 has a shape protruding radially from a rotationally symmetric center in a plurality of directions in plan view.
  • FIG. 10 is a plan view showing still another example of the structure of the nitride semiconductor ultraviolet light emitting device according to the embodiment of the present invention, and is a view showing a plane corresponding to FIG.
  • the light emitting region (region where the p electrode 22Y is formed) in the nitride semiconductor ultraviolet light emitting element shown in FIG. 10 has a chrysanthemum shape that protrudes radially from the center of rotational symmetry in eight directions in plan view, and is 8 times. It is a symmetrical shape. Although not limited to the eight-fold symmetrical shape as shown in FIG. 10, the light passing through the substrate 10 can be made uniform by making the light emitting region a shape of higher-order rotational symmetry (for example, four-fold symmetry or more). It becomes possible to.
  • FIG. 6 the case where the processing object 40 is manufactured by bonding the two chips C using the adhesive 50 is illustrated, but the two chips C are bonded using a medium other than the adhesive 50. May be.
  • the processing object may be manufactured by bonding two chips C using solder.
  • a workpiece is manufactured by soldering at least one of the p-plated electrode 24 and the n-plated electrode 24 in each of two chips, and the solder is heated after the workpiece is ground. It is separated into two chips C by melting. Note that it is preferable to suck the solder used for the bonding from the chip C after separation because problems such as a short circuit can be prevented.
  • solder Since solder has a large surface tension, it has an effect of pulling the element to be soldered directly above the solder (self-alignment effect). Therefore, by fabricating the workpiece by bonding the two chips C using solder, it is possible to easily fabricate the workpiece in a state in which the two chips C are bonded to each other at a directly facing position. .
  • solder is provided on at least one of the p-plating electrode 24 and the n-plating electrode 24 in the state of a wafer, and the two chips obtained by dividing the wafer are heated to melt the solder. You may stick together.
  • the above-described adhesive 50 may be poured between the chips C to reinforce.
  • the adhesive 50 may be poured between the chips C by immersing the two chips C bonded together by solder in the adhesive 50 stored in an arbitrary container.
  • the substrate 10 is hemispherical is described as an example.
  • the substrate 10 may have a shape other than the hemisphere.
  • the substrate 10 may have a shape before reaching a hemispherical shape obtained by finishing the grinding of the workpiece 40 in each of the states shown in FIGS. 8B to 8D.
  • the object to be processed before grinding may not be cubic, and the main surface of the chip before grinding may not be square.
  • the cross-sectional area of the cross section parallel to the main surface of the substrate continuously decreases as the distance from the main surface decreases, or is constant until a predetermined distance from the main surface, but thereafter
  • the cross-section that is continuously decreasing and has a smaller cross-sectional area than the main surface has a circular shape, an oval shape (a shape that is deformed so as to extend the circle in one direction and includes an elliptical shape), or a corner It is necessary to have a round rectangular shape.
  • the substrate is rectangular in plan view as shown in FIGS. 8 (b) and 8 (c).
  • the substrate has a circular shape (or an oval shape) or a rectangular shape with rounded corners because light passing through the end of the substrate can be effectively converged.
  • the shape of FIG. 8E is more than the shape in which the top surface parallel to the main surface remains on the back surface side (opposite side of the main surface) of the substrate. As shown in (2), the shape in which the top surface does not remain is preferable because the light passing through the central portion of the substrate can be effectively converged.
  • the shape satisfying the first and second conditions includes a bullet shape (a shape in which a flat surface of a hemisphere is connected to one flat surface of a cylinder). And the other flat surface of the cylinder corresponds to the main surface).
  • the substrate is hemispherical or bullet-shaped with a circular shape in plan view, not only can the light be effectively converged, but also variation in light condensing properties in a plane parallel to the main surface can be suppressed. ,preferable.
  • the substrate is bullet-shaped, if the axial length (the thickness of the substrate) is excessively increased, the light is difficult to converge.
  • the substrate is bullet-shaped, considering that the refractive index ratio between sapphire and air forming the substrate is about twice, the axial length should be less than twice the main surface diameter. ,preferable.
  • the lengths of the two perpendicular sides on the main surface of the substrate are W 1 and W 2 , and the thickness of the substrate.
  • Is set to H if 1/2 ⁇ H / W 1 ⁇ 2 and 1/2 ⁇ H / W 2 ⁇ 2 are satisfied, the substrate is ground into a shape satisfying the above first and second conditions. Since it is easy to process, it is preferable. In particular, by setting 1/2 ⁇ H / W 1 and 1/2 ⁇ H / W 2 , the tip on the back surface side of the substrate is easily ground, and thus the second condition is easily satisfied.
  • the cutting edge is a truncated pyramid-shaped chip (in other words, a chip whose periphery around the back surface of the substrate is chamfered) obtained by dividing the wafer using a V-shaped dicing blade, to some extent
  • the light extraction efficiency is expected to improve.
  • the light extraction efficiency can be dramatically improved by grinding the substrate 10 to expose the lens surface 102 as described above.
  • Nitride semiconductor ultraviolet light emitting element 10 Substrate 101: Main surface 102: Lens surface (convex curved surface) DESCRIPTION OF SYMBOLS 103: Back surface 20: Element structure part 21,21Y: AlGaN-type semiconductor layer 211: Underlayer 212: N-type clad layer (n-type AlGaN) 213: Active layer 214: Electron block layer (p-type AlGaN) 215: p-type cladding layer (p-type AlGaN) 216: p-type contact layer (p-type GaN) 22, 22Y: p-electrode 23, 23Y: n-electrode 24: p-plated electrode 25: n-plated electrode 26: insulating film 31: light-emitting area 32: peripheral area 40: processing object 50: adhesive 60: grinding apparatus 61: Side wall part 62: Bottom part 63: Rotating shaft 70: Coating film C: Chip

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Led Devices (AREA)

Abstract

The chip according to the present invention is provided with a substrate 10, and an element structure 20, which has a plurality of semiconductor layers 21 that are laminated on a main surface 101 of the substrate 10, and which outputs light when energized, and in the chip, the substrate 10 is ground such that at least four corners of the rear surface of the substrate 10, said rear surface being on the reverse side of the main surface 101, have convex curved surfaces. Consequently, the substrate 10 having a lens surface (convex curved surface) 102 is obtained.

Description

窒化物半導体紫外線発光素子の製造方法及び窒化物半導体紫外線発光素子Nitride semiconductor ultraviolet light emitting device manufacturing method and nitride semiconductor ultraviolet light emitting device
 本発明は、サファイア基板の主面上にAlGaN系半導体層を形成して構成されて発光中心波長が365nm以下の光(紫外線)を出射する窒化物半導体紫外線発光素子及びその製造方法に関する。 The present invention relates to a nitride semiconductor ultraviolet light emitting element that is configured by forming an AlGaN-based semiconductor layer on a main surface of a sapphire substrate and emits light (ultraviolet light) having an emission center wavelength of 365 nm or less, and a method for manufacturing the same.
 サファイア基板の主面上にAlGaN系半導体層を形成して構成されているLED(Light Emitting Diode)やLD(Laser Diode)などの窒化物半導体紫外線発光素子において、光の取出効率を高めるために半球状のレンズを設けることがある。特に、基板の主面(複数の半導体層を備えて通電により光を出射する素子構造部が形成される面)とは反対の裏面側から光を出射する窒化物半導体紫外線発光素子において、基板の裏面側に凸状の曲面を有するレンズを設けることがある。 In order to improve the light extraction efficiency in nitride semiconductor ultraviolet light emitting devices such as LEDs (Light Emitting Diodes) and LDs (Laser Diodes), which are formed by forming an AlGaN-based semiconductor layer on the main surface of the sapphire substrate Shaped lenses may be provided. In particular, in a nitride semiconductor ultraviolet light emitting device that emits light from the back side opposite to the main surface of the substrate (the surface on which an element structure portion that includes a plurality of semiconductor layers and emits light when energized) is formed, A lens having a convex curved surface may be provided on the back side.
 例えば、特許文献1では、基板の裏面側の中央部分に形成したフォトレジストをベーク処理して凝集させることでレンズ形状に変形させ、当該フォトレジストをマスクとしてイオンビームエッチングを行うことで基板の裏面側の中央部分にレンズを形成した窒化物半導体紫外線発光素子が提案されている。 For example, in Patent Document 1, a photoresist formed on a central portion on the back surface side of a substrate is baked and aggregated to deform into a lens shape, and ion beam etching is performed using the photoresist as a mask to perform back surface of the substrate. There has been proposed a nitride semiconductor ultraviolet light emitting device in which a lens is formed in the central portion on the side.
 光の取出効率を効果的に改善させるためには、本来であれば散乱して失われてしまう光を収束させること、即ち、基板の中央部分から外れた端部付近を通過する光を収束させることが必要である。しかし、特許文献1で提案されている窒化物半導体紫外線発光素子では、基板の大きさと比較して極めて小さいレンズが、基板の裏面の中央部分にのみ設けられるだけである。このような、レンズ面(凸状の曲面)が基板の端部に届かないレンズでは、基板の端部付近を通過する光を収束させることは不可能である。特に、特許文献1で提案されているように、イオンビームエッチングにより基板の表面を掘り込んでレンズを形成する場合、加工速度が極めて遅いことから現実的にはμm単位での加工が限界であるため、上記のように基板の中央部分に小型のレンズを形成するくらいしかできない。したがって、特許文献1で提案されている窒化物半導体紫外線発光素子では、光の取出効率を効果的に改善させることはできない。 In order to effectively improve the light extraction efficiency, the light that would otherwise be scattered and lost is converged, that is, the light that passes through the vicinity of the end portion away from the central portion of the substrate is converged. It is necessary. However, in the nitride semiconductor ultraviolet light-emitting device proposed in Patent Document 1, a lens that is extremely small compared to the size of the substrate is provided only at the central portion of the back surface of the substrate. With such a lens whose lens surface (convex curved surface) does not reach the end of the substrate, it is impossible to converge the light passing near the end of the substrate. In particular, as proposed in Patent Document 1, when a lens is formed by digging the surface of a substrate by ion beam etching, the processing speed is extremely slow, so the processing in units of μm is practically the limit. Therefore, as described above, only a small lens can be formed in the central portion of the substrate. Therefore, the nitride semiconductor ultraviolet light emitting device proposed in Patent Document 1 cannot effectively improve the light extraction efficiency.
 そこで、非特許文献1では、サファイア基板の裏面に対して、当該裏面よりも底面積が大きい半球状のレンズを接合した窒化物半導体紫外線発光素子が提案されている。このような、レンズ面が基板の端部に届いているレンズであれば、基板の端部付近を通過する光を収束させることが可能である。したがって、非特許文献1で提案されている窒化物半導体紫外線発光素子では、光の取出効率を効果的に改善することができる。 Therefore, Non-Patent Document 1 proposes a nitride semiconductor ultraviolet light emitting element in which a hemispherical lens having a larger bottom area than the back surface is bonded to the back surface of the sapphire substrate. If the lens has such a lens surface that reaches the end of the substrate, light passing through the vicinity of the end of the substrate can be converged. Therefore, the nitride semiconductor ultraviolet light-emitting device proposed in Non-Patent Document 1 can effectively improve the light extraction efficiency.
特開2015-41763号公報JP2015-41763A
 非特許文献1で提案されている窒化物半導体紫外線発光素子では、基板とレンズを接合する必要があるが、素子構造部が出射する光の進行に影響を与える層や、素子構造部が出射する光(特に、紫外線)によって劣化する層を、基板とレンズの間に設けることは許されない。そのため、非特許文献1で提案されている窒化物半導体紫外線発光素子では、ADB(Atomic Diffusion Bonding)またはSAB(Surface Activated Bonding)という特殊な接合方法によって基板とレンズを接合する必要がある。 In the nitride semiconductor ultraviolet light-emitting device proposed in Non-Patent Document 1, it is necessary to join the substrate and the lens, but the layer that affects the progress of the light emitted from the element structure or the element structure emits. It is not allowed to provide a layer that deteriorates due to light (particularly, ultraviolet rays) between the substrate and the lens. Therefore, in the nitride semiconductor ultraviolet light-emitting device proposed in Non-Patent Document 1, it is necessary to bond the substrate and the lens by a special bonding method called ADB (Atomic Diffusion Bonding) or SAB (Surface Activated Bonding).
 ADBは、超高真空以上の真空状態において、基板及びレンズのそれぞれの接合予定面に対して金属原子を極薄く付着させた後、当該接合予定面を接触させ、当該金属原子の拡散による接合力を利用して基板とレンズを接合する接合方法である。SABは、超高真空以上の真空状態において、基板及びレンズのそれぞれの接合予定面に対してArイオンビームなどを照射することで不純物と結びついていない原子から成る清浄かつ活性な表面を表出させた後、当該接合予定面を接触させ、当該原子の原子間力による結合力を利用して基板とレンズを接合する接合方法である。 ADB is an ultra-high vacuum or higher vacuum state in which metal atoms are attached very thinly to the respective surfaces to be bonded of the substrate and the lens, and then the surfaces to be bonded are brought into contact with each other. This is a bonding method for bonding the substrate and the lens using the above. SAB exposes a clean and active surface composed of atoms that are not associated with impurities by irradiating the surfaces to be bonded to the substrate and lens with an Ar ion beam or the like in an ultra-high vacuum or higher vacuum state. After that, the bonding scheduled surface is brought into contact with each other, and the substrate and the lens are bonded using the bonding force of the atomic force of the atoms.
 上記のように、ADB及びSABは、超高真空以上の真空度という特殊な環境を実現するだけでなく、当該環境下において接触しただけで接合するという特殊な表面状態を形成するものであり、特殊な装置及び高度な技術が必要不可欠である。そのため、非特許文献1で提案されている窒化物半導体紫外線発光素子は、当業者であっても容易には製造することができない。 As described above, ADB and SAB not only realize a special environment of a degree of vacuum higher than ultra-high vacuum, but also form a special surface state in which bonding is performed only by contact in the environment. Special equipment and advanced technology are essential. Therefore, the nitride semiconductor ultraviolet light emitting element proposed in Non-Patent Document 1 cannot be easily manufactured even by those skilled in the art.
 そこで、本発明は、光の取出効率を効果的に改善することが可能であるとともに容易に製造可能である窒化物半導体紫外線発光素子及びその製造方法を提供する。 Therefore, the present invention provides a nitride semiconductor ultraviolet light-emitting device that can effectively improve the light extraction efficiency and can be easily manufactured, and a method for manufacturing the same.
 上記目的を達成するため、本発明は、サファイア基板と、当該基板の主面上に積層される複数のAlGaN系半導体層を有するとともに通電することで発光中心波長が365nm以下の光を出射する素子構造部と、を備えるチップに対して、少なくとも、前記主面とは反対側の面である裏面の四つの角が凸状の曲面になるように、前記基板を研削加工する基板加工工程を備えることを特徴とする窒化物半導体紫外線発光素子の製造方法を提供する。 In order to achieve the above object, the present invention includes a sapphire substrate and a plurality of AlGaN-based semiconductor layers stacked on the main surface of the substrate and emits light having an emission center wavelength of 365 nm or less when energized. And a substrate processing step of grinding the substrate so that at least four corners of the back surface, which is the surface opposite to the main surface, are convex curved surfaces. A method for manufacturing a nitride semiconductor ultraviolet light emitting device is provided.
 この窒化物半導体紫外線発光素子の製造方法によれば、特許文献1で提案されているような基板の中央部分にのみレンズ面(凸状の曲面)が存在する窒化物半導体紫外線発光素子とは異なり、レンズ面が基板の端部に届いているために基板の端部付近を通過する光を収束可能な窒化物半導体紫外線発光素子を製造することができる。さらに、この窒化物半導体紫外線発光素子の製造方法によれば、基板とレンズを接合するという高度な技術(非特許文献1参照)を用いることなく、基板を研削加工するという簡単な技術を用いることによって、上記の窒化物半導体紫外線発光素子を製造することができる。 According to this method for manufacturing a nitride semiconductor ultraviolet light-emitting device, unlike the nitride semiconductor ultraviolet light-emitting device in which the lens surface (convex curved surface) exists only at the central portion of the substrate as proposed in Patent Document 1. Since the lens surface reaches the end portion of the substrate, a nitride semiconductor ultraviolet light emitting element capable of converging light passing near the end portion of the substrate can be manufactured. Furthermore, according to this method for manufacturing a nitride semiconductor ultraviolet light-emitting element, a simple technique of grinding a substrate is used without using an advanced technique (see Non-Patent Document 1) of bonding a substrate and a lens. Thus, the nitride semiconductor ultraviolet light emitting element can be manufactured.
 また、上記特徴の窒化物半導体紫外線発光素子の製造方法において、前記基板加工工程が、前記主面に対して垂直な方向から見た平面視における前記基板が円形状、長円形状、または、角が丸い四角形状になるように、前記基板を研削加工する工程であると、好ましい。 In the method for manufacturing a nitride semiconductor ultraviolet light-emitting device having the above characteristics, the substrate processing step may be performed such that the substrate in a plan view viewed from a direction perpendicular to the main surface has a circular shape, an oval shape, or a corner. Is preferably a step of grinding the substrate so as to form a rounded square shape.
 この窒化物半導体紫外線発光素子の製造方法によれば、基板の端部を通過する光を効果的に収束することが可能な窒化物半導体紫外線発光素子を得ることができる。 According to this method for manufacturing a nitride semiconductor ultraviolet light emitting device, a nitride semiconductor ultraviolet light emitting device capable of effectively converging light passing through the edge of the substrate can be obtained.
 また、上記特徴の窒化物半導体紫外線発光素子の製造方法において、前記基板加工工程が、前記主面の反対側において前記主面と平行な頂面が残らないように、前記基板を研削加工する工程であると、好ましい。 Further, in the method for manufacturing a nitride semiconductor ultraviolet light emitting element having the above characteristics, the substrate processing step includes a step of grinding the substrate so that a top surface parallel to the main surface does not remain on the opposite side of the main surface. Is preferable.
 この窒化物半導体紫外線発光素子の製造方法によれば、基板の中央部分を通過する光を効果的に収束することが可能な窒化物半導体紫外線発光素子を得ることができる。 According to this method for manufacturing a nitride semiconductor ultraviolet light emitting device, a nitride semiconductor ultraviolet light emitting device capable of effectively converging light passing through the central portion of the substrate can be obtained.
 また、上記特徴の窒化物半導体紫外線発光素子の製造方法において、前記基板加工工程が、前記基板を半球状または砲弾状に研削加工する工程であると、好ましい。 In the method for manufacturing a nitride semiconductor ultraviolet light emitting element having the above characteristics, it is preferable that the substrate processing step is a step of grinding the substrate into a hemispherical shape or a shell shape.
 この窒化物半導体紫外線発光素子の製造方法によれば、光を効果的に収束させるだけでなく、主面と平行な面内における集光性のばらつきを抑制することが可能な窒化物半導体紫外線発光素子を得ることができる。 According to this method for manufacturing a nitride semiconductor ultraviolet light emitting device, nitride semiconductor ultraviolet light emission that not only effectively converges light but also can suppress variation in light collecting properties in a plane parallel to the main surface. An element can be obtained.
 また、上記特徴の窒化物半導体紫外線発光素子の製造方法において、前記基板加工工程が、前記基板の前記主面同士が向かい合うように2つの前記チップが貼り合わせられた状態の加工対象物を作製する第1工程と、前記加工対象物を研削加工する第2工程と、前記第2工程の後に前記加工対象物を2つの前記チップに分離する第3工程と、を備えると、好ましい。 In the method for manufacturing a nitride semiconductor ultraviolet light emitting element having the above characteristics, the substrate processing step produces a processing target in a state where the two chips are bonded so that the main surfaces of the substrate face each other. It is preferable to include a first step, a second step of grinding the workpiece, and a third step of separating the workpiece into two chips after the second step.
 この窒化物半導体紫外線発光素子の製造方法によれば、基板の主面上に設けられた素子構造部を内側に向けて貼り合わせた加工対象物を研削加工することになるため、素子構造部を保護しながら基板を研削加工することができる。 According to this method for manufacturing a nitride semiconductor ultraviolet light-emitting device, since the processing target object bonded with the element structure provided on the main surface of the substrate facing inward is ground, the element structure The substrate can be ground while protecting.
 また、上記特徴の窒化物半導体紫外線発光素子の製造方法において、前記第2工程において、砥粒が付着された凹状の曲面を有する容器内で1以上の前記加工対象物を転動させて、前記凹状の曲面に対して前記加工対象物を衝突させると、好ましい。 In the method for manufacturing a nitride semiconductor ultraviolet light emitting element having the above characteristics, in the second step, one or more workpieces are rolled in a container having a concave curved surface to which abrasive grains are attached, It is preferable that the object to be processed collide with a concave curved surface.
 この窒化物半導体紫外線発光素子の製造方法によれば、凹状の曲面に対して加工対象物の角のみが衝突して研削されるため、効率良く基板に凸状の曲面を形成することができる。さらにこのとき、加工対象物を転動させることによって、加工対象物を等方的に研削加工することができる。また、この窒化物半導体紫外線発光素子の製造方法によれば、容器内に複数の加工対象物を入れて同時に研削加工することができるため、窒化物半導体紫外線発光素子を量産することができる。 According to this method for manufacturing a nitride semiconductor ultraviolet light emitting element, only the corner of the object to be processed collides with the concave curved surface and is ground, so that the convex curved surface can be efficiently formed on the substrate. Further, at this time, the object to be processed can be isotropically ground by rolling the object to be processed. Further, according to this method for manufacturing a nitride semiconductor ultraviolet light emitting element, a plurality of objects to be processed can be put in a container and ground simultaneously, so that the nitride semiconductor ultraviolet light emitting element can be mass-produced.
 また、上記特徴の窒化物半導体紫外線発光素子の製造方法において、前記第1工程において、接着剤によって2つの前記チップが貼り合わせられた前記加工対象物を作製し、前記第3工程において、前記接着剤を溶媒に溶解させると、好ましい。 Further, in the method for manufacturing a nitride semiconductor ultraviolet light emitting element having the above characteristics, in the first step, the processing object in which two chips are bonded together by an adhesive is produced, and in the third step, the bonding is performed. It is preferable to dissolve the agent in a solvent.
 この窒化物半導体紫外線発光素子の製造方法によれば、素子構造部に対して多大な応力を加えることなく、2つのチップの貼り合わせ及び分離を行うことができる。したがって、素子構造部の破損を防止することができる。 According to this method for manufacturing a nitride semiconductor ultraviolet light emitting device, two chips can be bonded and separated without applying a great deal of stress to the device structure. Therefore, damage to the element structure can be prevented.
 また、上記特徴の窒化物半導体紫外線発光素子の製造方法において、前記第2工程の前後において、前記接着剤が、貼り合わせられた2つの前記チップの間からはみ出して当該チップのそれぞれにおける外周面に付着していると、好ましい。 In the method for manufacturing a nitride semiconductor ultraviolet light-emitting element having the above characteristics, before and after the second step, the adhesive protrudes from between the two bonded chips and is formed on the outer peripheral surface of each of the chips. Adhesion is preferred.
 この窒化物半導体紫外線発光素子の製造方法によれば、加工対象物を研削加工することで当該加工対象物に対して衝撃が加えられ得る第2工程において、加工対象物の分離を効果的に抑制することができる。 According to this method for manufacturing a nitride semiconductor ultraviolet light-emitting device, separation of a workpiece is effectively suppressed in the second step in which an impact can be applied to the workpiece by grinding the workpiece. can do.
 また、上記特徴の窒化物半導体紫外線発光素子の製造方法において、前記第1工程において、はんだによって2つの前記チップが貼り合わせられた前記加工対象物を作製し、前記第3工程において、前記はんだを加熱して融解させると、好ましい。 In the method for manufacturing a nitride semiconductor ultraviolet light emitting element having the above characteristics, in the first step, the processing object in which two chips are bonded together by solder is manufactured, and in the third step, the solder is used. It is preferable to melt by heating.
 この窒化物半導体紫外線発光素子の製造方法によれば、セルフアライメント効果を有するはんだを用いることによって、2つのチップが正対した位置で貼り合わせられた状態の加工対象物を容易に作製することができる。 According to this method for manufacturing a nitride semiconductor ultraviolet light-emitting device, it is possible to easily produce a workpiece in a state in which two chips are bonded together at a position where they face each other by using a solder having a self-alignment effect. it can.
 また、上記特徴の窒化物半導体紫外線発光素子の製造方法において、前記素子構造部が、前記AlGaN系半導体層の1つであって通電時に前記光が発生する活性層を有する発光領域と、前記発光領域を包囲するように形成されており前記活性層を有しない周辺領域と、に分けられるものであり、前記周辺領域の少なくとも一部に、前記発光領域を包囲するとともに前記光を反射するn電極が形成されていると、好ましい。 In the method for manufacturing a nitride semiconductor ultraviolet light emitting device having the above characteristics, the device structure portion is one of the AlGaN-based semiconductor layers, and has a light emitting region having an active layer that generates the light when energized, and the light emission An n-electrode that surrounds the light-emitting region and reflects the light in at least a part of the peripheral region. Is preferably formed.
 この窒化物半導体紫外線発光素子の製造方法によれば、発光領域を包囲するn電極によって基板を通過せずに周辺領域から外部に漏れ出そうとする光を基板側に反射することで、基板を通過する光の量を効果的に増大させることが可能な窒化物半導体紫外線発光素子を得ることができる。 According to this method for manufacturing a nitride semiconductor ultraviolet light emitting device, the n electrode surrounding the light emitting region reflects light that attempts to leak outside from the peripheral region to the substrate side without passing through the substrate. A nitride semiconductor ultraviolet light emitting element capable of effectively increasing the amount of light passing therethrough can be obtained.
 また、上記特徴の窒化物半導体紫外線発光素子の製造方法において、前記素子構造部が、前記AlGaN系半導体層の1つであって通電時に前記光が発生する活性層を有する発光領域と、前記発光領域を包囲するように形成されており前記活性層を有しない周辺領域と、に分けられるものであり、少なくとも前記発光領域の全部にpメッキ電極が形成されていると、好ましい。 In the method for manufacturing a nitride semiconductor ultraviolet light emitting device having the above characteristics, the device structure portion is one of the AlGaN-based semiconductor layers, and has a light emitting region having an active layer that generates the light when energized, and the light emission It is preferably divided into a peripheral region formed so as to surround the region and not having the active layer, and it is preferable that a p-plated electrode is formed at least in the entire light emitting region.
 この窒化物半導体紫外線発光素子の製造方法によれば、電流が集中する発光領域の全部にpメッキ電極が設けられているために効果的な放熱が可能な窒化物半導体紫外線発光素子を得ることができる。 According to this method for manufacturing a nitride semiconductor ultraviolet light-emitting device, a nitride semiconductor ultraviolet light-emitting device capable of effectively radiating heat is obtained because the p-plating electrode is provided in the entire light-emitting region where current is concentrated. it can.
 また、上記特徴の窒化物半導体紫外線発光素子の製造方法において、前記周辺領域の少なくとも一部に、前記発光領域を包囲するとともに前記光を反射するn電極が形成されており、前記pメッキ電極の一部が前記周辺領域における前記n電極の上方に形成されており、前記n電極と、その上方における前記pメッキ電極との間に、これらを絶縁する絶縁膜が形成されていると、好ましい。 In the method of manufacturing a nitride semiconductor ultraviolet light emitting element having the above characteristics, an n electrode that surrounds the light emitting region and reflects the light is formed in at least a part of the peripheral region. It is preferable that a part is formed above the n electrode in the peripheral region, and an insulating film is formed between the n electrode and the p plating electrode above the n electrode.
 この窒化物半導体紫外線発光素子の製造方法によれば、pメッキ電極をn電極上まで拡げることで、放熱性をさらに向上させることができる。また、2つのチップを貼り合わせて上述した加工対象物を作製する場合、pメッキ電極を拡げることで2つのチップを良好に接着することができる。 According to this method for manufacturing a nitride semiconductor ultraviolet light-emitting device, the heat dissipation can be further improved by extending the p-plated electrode to the n-electrode. In addition, when the above-described object to be processed is manufactured by bonding two chips, the two chips can be favorably bonded by expanding the p-plated electrode.
 また、上記特徴の窒化物半導体紫外線発光素子の製造方法において、前記素子構造部が、前記AlGaN系半導体層の1つであって通電時に前記光が発生する活性層を有する発光領域と、前記発光領域を包囲するように形成されており前記活性層を有しない周辺領域と、に分けられるものであり、前記基板の前記主面及び前記発光領域のそれぞれが、前記基板の前記主面に対して垂直な方向から見た平面視において中心が一致する2回対称以上の回転対称の形状であり、前記発光領域が、平面視において回転対称の中心から複数の方向に対して放射状に突出した形状であると、好ましい。 In the method for manufacturing a nitride semiconductor ultraviolet light emitting device having the above characteristics, the device structure portion is one of the AlGaN-based semiconductor layers, and has a light emitting region having an active layer that generates the light when energized, and the light emission And a peripheral region that is formed so as to surround the region and does not have the active layer, and each of the main surface of the substrate and the light emitting region is in relation to the main surface of the substrate. The shape is a rotationally symmetric shape that is at least two-fold symmetric with the center coincident in a plan view viewed from a vertical direction, and the light-emitting region has a shape that projects radially from a center of rotation symmetry in a plurality of directions in a plan view. If there is, it is preferable.
 この窒化物半導体紫外線発光素子の製造方法によれば、基板の主面及び発光領域のそれぞれにおける回転対称の中心が一致していることで基板内の特定の一方向に光が偏ることが防止されるとともに、発光領域が突出していることで活性層に対して効率よく電力を供給することが可能な窒化物半導体紫外線発光素子を得ることができる。 According to this method for manufacturing a nitride semiconductor ultraviolet light-emitting device, the rotational symmetry centers of the main surface of the substrate and the light emitting region coincide with each other, thereby preventing light from being biased in a specific direction within the substrate. In addition, since the light emitting region protrudes, a nitride semiconductor ultraviolet light emitting element capable of efficiently supplying power to the active layer can be obtained.
 また、上記特徴の窒化物半導体発光素子の製造方法において、前記基板加工工程の後に、前記基板における前記曲面の少なくとも一部の表面を非晶質フッ素樹脂で被覆する被覆工程を、さらに備えると、好ましい。 Further, in the method for manufacturing a nitride semiconductor light emitting device having the above characteristics, after the substrate processing step, further comprising a covering step of covering at least a part of the curved surface of the substrate with an amorphous fluororesin, preferable.
 この窒化物半導体紫外線発光素子の製造方法によれば、散乱などの光の取出効率を低下させる原因となる微細な凹凸が基板のレンズ面に残っていたとしても、素子構造部が出射する短波長の光(特に紫外線)に対して耐性があるフッ素樹脂で基板のレンズ面を被覆して当該凹凸を埋めることによって、光の取出効率の低下を防止することができる。 According to this nitride semiconductor ultraviolet light emitting device manufacturing method, even if fine irregularities that cause a reduction in light extraction efficiency such as scattering remain on the lens surface of the substrate, the short wavelength emitted by the device structure portion By covering the lens surface of the substrate with a fluororesin that is resistant to the light (particularly ultraviolet rays) and filling the irregularities, it is possible to prevent the light extraction efficiency from being lowered.
 また、上記特徴の窒化物半導体紫外線発光素子の製造方法において、前記第1工程が、2つの前記チップを貼り合わせることで前記加工対象物を作製する工程であってもよい。 Further, in the method for manufacturing a nitride semiconductor ultraviolet light emitting element having the above characteristics, the first step may be a step of manufacturing the object to be processed by bonding two chips.
 あるいは、上記特徴の窒化物半導体紫外線発光素子の製造方法において、前記チップが、1枚の前記基板上に複数の前記素子構造部が形成されたウエハを分断することで得られるものであり、前記第1工程が、2枚の前記ウエハを前記基板の前記主面同士が向かい合うように貼り合わせた後に、当該ウエハのそれぞれを前記チップごとに分断することで前記加工対象物を作製する工程であってもよい。 Alternatively, in the method for manufacturing a nitride semiconductor ultraviolet light emitting element having the above characteristics, the chip is obtained by dividing a wafer in which a plurality of the element structure portions are formed on one substrate. The first step is a step of fabricating the object to be processed by bonding the two wafers so that the principal surfaces of the substrate face each other and then dividing each of the wafers into chips. May be.
 前者の場合、チップを1組ずつ貼り合わせて加工対象物を作製しなければならないが、ウエハを1枚ずつ分断するため容易にチップを得ることができる。これに対して、後者の場合、2枚張り合わせた分厚いウエハを分断しなければならないが、複数のチップの張り合わせを一度に行うことができる。 In the former case, it is necessary to manufacture chips by bonding chips one by one, but the chips can be easily obtained because the wafers are divided one by one. On the other hand, in the latter case, a thick wafer in which two sheets are bonded together must be divided, but a plurality of chips can be bonded together.
 また、本発明は、サファイア基板と、前記基板の主面上に積層される複数のAlGaN系半導体層を有するとともに通電することで発光中心波長が365nm以下の光を出射する素子構造部と、を備え、前記基板における前記主面と平行な断面の断面積が、前記主面から離間するほど連続的に減少している、または、前記主面から所定の距離だけ離間するまでは一定であるがそれ以降は連続的に減少しており、前記主面よりも断面積が小さい前記断面が、円形状、長円形状、または、角が丸い四角形状であることを特徴とする窒化物半導体紫外線発光素子を提供する。 The present invention also includes a sapphire substrate and an element structure that has a plurality of AlGaN-based semiconductor layers stacked on the main surface of the substrate and emits light having an emission center wavelength of 365 nm or less when energized. The cross-sectional area of the cross section of the substrate parallel to the main surface is continuously reduced as the distance from the main surface increases, or is constant until a predetermined distance from the main surface. Nitride semiconductor ultraviolet light emission characterized in that it continuously decreases after that, and the cross section having a cross-sectional area smaller than the main surface is circular, oval, or square with rounded corners An element is provided.
 この窒化物半導体紫外線発光素子によれば、特許文献1で提案されているような基板の中央部分にのみレンズ面(凸状の曲面)が存在する窒化物半導体紫外線発光素子とは異なり、レンズ面が基板の端部に届いているため、基板の端部付近を通過する光を収束させることができる。さらに、この窒化物半導体紫外線発光素子は、基板とレンズを接合するという高度な技術(非特許文献1参照)を用いることなく、基板を加工するという簡単な技術を用いて製造することができる。 According to this nitride semiconductor ultraviolet light emitting element, unlike the nitride semiconductor ultraviolet light emitting element in which the lens surface (convex curved surface) exists only at the center portion of the substrate as proposed in Patent Document 1, the lens surface Reaches the end of the substrate, so that light passing near the end of the substrate can be converged. Furthermore, this nitride semiconductor ultraviolet light-emitting device can be manufactured using a simple technique of processing a substrate without using an advanced technique (see Non-Patent Document 1) of bonding the substrate and a lens.
 また、上記特徴の窒化物半導体紫外線発光素子において、前記主面に対して垂直な方向から見た平面視において、前記基板が、円形状、長円形状、または、角が丸い四角形状であると、好ましい。 Further, in the nitride semiconductor ultraviolet light-emitting device having the above characteristics, the substrate has a circular shape, an oval shape, or a square shape with rounded corners in a plan view as viewed from a direction perpendicular to the main surface. ,preferable.
 この窒化物半導体紫外線発光素子によれば、基板の端部を通過する光を効果的に収束することができる。 According to this nitride semiconductor ultraviolet light emitting element, light passing through the edge of the substrate can be effectively converged.
 上記特徴の窒化物半導体紫外線発光素子の製造方法によれば、基板の端部付近を通過する光を収束可能であるために光の取出効率を効果的に改善することができる窒化物半導体紫外線発光素子を、基板を研削加工するという簡単な技術を用いて容易に製造することができる。 According to the method for manufacturing a nitride semiconductor ultraviolet light emitting device having the above characteristics, the light emitted from the nitride semiconductor ultraviolet light can be effectively improved because the light passing near the end of the substrate can be converged. The device can be easily manufactured using a simple technique of grinding the substrate.
 また、上記特徴の窒化物半導体紫外線発光素子によれば、基板の端部付近を通過する光を収束可能であることから、光の取出効率を効果的に改善することができる。さらに、この窒化物半導体紫外線発光素子は、基板を加工するという簡単な技術を用いて容易に製造することができる。 Also, according to the nitride semiconductor ultraviolet light emitting element having the above characteristics, the light passing through the vicinity of the edge of the substrate can be converged, so that the light extraction efficiency can be effectively improved. Furthermore, the nitride semiconductor ultraviolet light emitting element can be easily manufactured using a simple technique of processing a substrate.
本発明の実施形態に係る窒化物半導体紫外線発光素子の構造の一例を示した平面図。The top view which showed an example of the structure of the nitride semiconductor ultraviolet light emitting element concerning embodiment of this invention. 図1のA-A断面を示した断面図。Sectional drawing which showed the AA cross section of FIG. 図1のp電極及びn電極を露出させて示した平面図。The top view which exposed and showed the p electrode and n electrode of FIG. AlGaN系半導体層の構造の一例を示した断面図。Sectional drawing which showed an example of the structure of an AlGaN-type semiconductor layer. 基板を加工する前のチップの構造の一例を示した平面図。The top view which showed an example of the structure of the chip | tip before processing a board | substrate. 加工対象物の構造の一例を示した断面図。Sectional drawing which showed an example of the structure of a workpiece. 図6の加工対象物を研削加工する研削加工装置の一例を示した斜視図。The perspective view which showed an example of the grinding processing apparatus which grinds the workpiece of FIG. 図6の加工対象物が図7の研削加工装置によって研削加工される経過を示した斜視図。FIG. 8 is a perspective view showing a process in which the workpiece of FIG. 6 is ground by the grinding device of FIG. 7. 本発明の実施形態に係る窒化物半導体紫外線発光素子の構造の別例を示した断面図。Sectional drawing which showed the other example of the structure of the nitride semiconductor ultraviolet light emitting element concerning embodiment of this invention. 本発明の実施形態に係る窒化物半導体紫外線発光素子の構造のさらなる別例を示した平面図。The top view which showed the further another example of the structure of the nitride semiconductor ultraviolet light emitting element concerning embodiment of this invention.
 以下、本発明の実施形態を説明するにあたり、サファイア基板と当該基板の主面上に積層された複数のAlGaN系半導体層を有する素子構造部とを備えて通電により発光中心波長が365nm以下の光(紫外線)を出射する発光ダイオードである窒化物半導体紫外線発光素子と、その製造方法とを例示する。ここで、AlGaN系半導体層の各層を構成する材料であるAlGaN系半導体は、一般式AlGa1-xN(xはAlNのモル分率であり、0≦x≦1)で表わされる3元系または2元系の化合物半導体を基本とし、そのバンドギャップエネルギがGaN(x=0)のバンドギャップエネルギ(約3.4eV)以上である3族窒化物半導体であり、当該バンドギャップエネルギに関する条件を満たす限りにおいて微量のIn等を含み得る。 Hereinafter, in describing embodiments of the present invention, a light having a sapphire substrate and an element structure portion having a plurality of AlGaN-based semiconductor layers stacked on the main surface of the substrate and having an emission center wavelength of 365 nm or less by energization A nitride semiconductor ultraviolet light emitting element that is a light emitting diode that emits (ultraviolet rays) and a method for manufacturing the nitride semiconductor ultraviolet light emitting element are illustrated. Here, an AlGaN-based semiconductor, which is a material constituting each layer of the AlGaN-based semiconductor layer, is represented by a general formula Al x Ga 1-x N (x is a molar fraction of AlN, 0 ≦ x ≦ 1) 3 This is a group III nitride semiconductor based on a compound semiconductor of binary or binary system, whose band gap energy is not less than the band gap energy (about 3.4 eV) of GaN (x = 0), and relates to the band gap energy. As long as the condition is satisfied, a trace amount of In or the like may be included.
 ただし、本発明に係る窒化物半導体紫外線発光素子及びその製造方法は、主として基板の形状または基板の加工方法に関するものであるため、素子構造部の構造はどのようなものであってもよく、以下に例示する窒化物半導体紫外線発光素子における素子構造部の構造に限定されるものではない。 However, since the nitride semiconductor ultraviolet light emitting device and the manufacturing method thereof according to the present invention are mainly related to the shape of the substrate or the processing method of the substrate, the structure of the device structure portion may be any, It is not limited to the structure of the element structure part in the nitride semiconductor ultraviolet light emitting element illustrated in FIG.
<窒化物半導体紫外線発光素子の構造例>
 最初に、本発明の実施形態に係る窒化物半導体紫外線発光素子の構造の一例について、図面を参照して説明する。図1は、本発明の実施形態に係る窒化物半導体紫外線発光素子の構造の一例を示した平面図である。図2は、図1のA-A断面を示した断面図である。図3は、図1のp電極及びn電極を示した平面図である。なお、図2に示す断面図では、図示の都合上、基板、半導体層及び電極の厚さ(図中の上下方向の長さ)を模式的に示しているため、必ずしも実際の寸法比とは一致しない。
<Example of structure of nitride semiconductor ultraviolet light emitting device>
First, an example of the structure of a nitride semiconductor ultraviolet light emitting device according to an embodiment of the present invention will be described with reference to the drawings. FIG. 1 is a plan view showing an example of the structure of a nitride semiconductor ultraviolet light emitting device according to an embodiment of the present invention. FIG. 2 is a cross-sectional view showing the AA cross section of FIG. FIG. 3 is a plan view showing the p electrode and the n electrode of FIG. In the cross-sectional view shown in FIG. 2, for convenience of illustration, the thickness of the substrate, the semiconductor layer, and the electrodes (length in the vertical direction in the drawing) is schematically shown. It does not match.
 図1~図3に示すように、本発明の実施形態に係る窒化物半導体紫外線発光素子1は、基板10と、基板10の主面101上に形成される素子構造部20と、を備える。この窒化物半導体紫外線発光素子1は、実装用の基台に対して素子構造部20側(図2における図中上側)を向けて実装される(フリップチップ実装される)ものであり、光の取出方向は基板10側(図2における図中下側)である。 As shown in FIGS. 1 to 3, the nitride semiconductor ultraviolet light emitting device 1 according to the embodiment of the present invention includes a substrate 10 and an element structure 20 formed on the main surface 101 of the substrate 10. The nitride semiconductor ultraviolet light-emitting element 1 is mounted (flip-chip mounted) with the element structure 20 side (upper side in FIG. 2) facing the mounting base. The take-out direction is the substrate 10 side (the lower side in the drawing in FIG. 2).
 基板10は、サファイアで構成されており、主面101が球の断面に相当する半球状である。詳細については後述するが、窒化物半導体紫外線発光素子1は、基板10をこのような特殊な形状にすることによって、光の取出効率を改善する。 The substrate 10 is made of sapphire, and the main surface 101 has a hemispherical shape corresponding to a spherical cross section. Although details will be described later, the nitride semiconductor ultraviolet light-emitting element 1 improves the light extraction efficiency by making the substrate 10 into such a special shape.
 素子構造部20は、AlGaN系半導体層21と、p電極22と、n電極23と、pメッキ電極24と、nメッキ電極25と、絶縁膜26とを備える。ここで、AlGaN系半導体層21の構造の一例について図面を参照して説明する。図4は、AlGaN系半導体層の構造の一例を示した断面図である。 The element structure 20 includes an AlGaN-based semiconductor layer 21, a p-electrode 22, an n-electrode 23, a p-plated electrode 24, an n-plated electrode 25, and an insulating film 26. Here, an example of the structure of the AlGaN-based semiconductor layer 21 will be described with reference to the drawings. FIG. 4 is a cross-sectional view showing an example of the structure of the AlGaN-based semiconductor layer.
 図4に示すように、AlGaN系半導体層21は、基板10側から順番に、下地層211と、n型AlGaNで構成されるn型クラッド層212と、活性層213と、p型AlGaNで構成される電子ブロック層214と、p型AlGaNで構成されるp型クラッド層215と、p型GaNで構成されるp型コンタクト層216とを積層した構造である。 As shown in FIG. 4, the AlGaN-based semiconductor layer 21 includes, in order from the substrate 10 side, a base layer 211, an n-type cladding layer 212 made of n-type AlGaN, an active layer 213, and p-type AlGaN. The electron blocking layer 214, the p-type cladding layer 215 made of p-type AlGaN, and the p-type contact layer 216 made of p-type GaN are stacked.
 下地層211は、AlNで構成されており、基板10の主面101に対して形成される。なお、下地層211は、AlNの上面にAlGaNを積層した構造であってもよい。また、活性層213は、AlGaNまたはGaNで構成される井戸層をn型AlGaNで構成されるバリア層で挟んだ単一または多重量子井戸構造を備えている。 The underlayer 211 is made of AlN and is formed on the main surface 101 of the substrate 10. The underlayer 211 may have a structure in which AlGaN is stacked on the top surface of AlN. The active layer 213 has a single or multiple quantum well structure in which a well layer made of AlGaN or GaN is sandwiched between barrier layers made of n-type AlGaN.
 AlGaN系半導体層21において、発光領域31には上述した各層211~216が形成されており、最上面がp型コンタクト層216になっているが、発光領域31を包囲する周辺領域32には活性層213以上の各層213~216が形成されておらず、n型クラッド層212が露出している。そして、発光領域31におけるp型コンタクト層216の上面にp電極22が形成されており、周辺領域32におけるn型クラッド層212の上面にn電極23が形成されている。このp電極22から正孔が供給されるとともにn電極23から電子が供給されるように通電すると、供給された正孔及び電子のそれぞれが発光領域31の活性層213に到達し、当該活性層213において正孔及び電子が再結合して発光する。 In the AlGaN-based semiconductor layer 21, the above-described layers 211 to 216 are formed in the light emitting region 31 and the uppermost surface is the p-type contact layer 216, but the peripheral region 32 surrounding the light emitting region 31 is active in the peripheral region 32. The layers 213 to 216 above the layer 213 are not formed, and the n-type cladding layer 212 is exposed. A p-electrode 22 is formed on the upper surface of the p-type contact layer 216 in the light emitting region 31, and an n-electrode 23 is formed on the upper surface of the n-type cladding layer 212 in the peripheral region 32. When energization is performed so that holes are supplied from the p electrode 22 and electrons are supplied from the n electrode 23, each of the supplied holes and electrons reaches the active layer 213 in the light emitting region 31, and the active layer At 213, holes and electrons recombine to emit light.
 AlGaN系半導体層21を構成する各層211~216は、有機金属化合物気相成長(MOVPE)法や分子線エピタキシ(MBE)法等の周知のエピタキシャル成長法により形成されるとともに、n型の層にはドナー不純物として例えばSiが添加され、p型の層にはアクセプタ不純物として例えばMgが添加される。さらに、基板10の主面101上に各層211~216を積層した後、反応性イオンエッチング等の周知のエッチング手段により一部の領域(周辺領域32に相当する領域)を選択的にエッチングして当該領域のn型クラッド層212を露出させることで、発光領域31及び周辺領域32のそれぞれが形成される。 Each of the layers 211 to 216 constituting the AlGaN-based semiconductor layer 21 is formed by a known epitaxial growth method such as an organic metal compound vapor phase growth (MOVPE) method or a molecular beam epitaxy (MBE) method, and an n-type layer includes For example, Si is added as a donor impurity, and Mg is added as an acceptor impurity to the p-type layer. Further, after the layers 211 to 216 are laminated on the main surface 101 of the substrate 10, a part of the region (region corresponding to the peripheral region 32) is selectively etched by a known etching means such as reactive ion etching. Each of the light emitting region 31 and the peripheral region 32 is formed by exposing the n-type cladding layer 212 in the region.
 p電極22は、例えばNi/Auで構成され、上述のように発光領域31のp型コンタクト層216の上面に形成される。n電極23は、例えばTi/Al/Ti/Auで構成され、上述のように周辺領域32のn型クラッド層212の上面に形成される。また、n電極23は、発光領域31を包囲するように形成される。 The p-electrode 22 is made of, for example, Ni / Au, and is formed on the upper surface of the p-type contact layer 216 in the light emitting region 31 as described above. The n electrode 23 is made of, for example, Ti / Al / Ti / Au, and is formed on the upper surface of the n-type cladding layer 212 in the peripheral region 32 as described above. The n electrode 23 is formed so as to surround the light emitting region 31.
 p電極22及びn電極23は、AlGaN系半導体層21に電力を供給するだけでなく、発光領域31の活性層213で生じた光を基板10側に反射させる。特に、発光領域31を包囲するように形成されるn電極23が、基板10を通過せずに周辺領域32から外部に漏れ出そうとする光を基板10側に反射することで、基板10を通過する光の量を効果的に増大させることができる。 The p electrode 22 and the n electrode 23 not only supply power to the AlGaN-based semiconductor layer 21 but also reflect light generated in the active layer 213 in the light emitting region 31 to the substrate 10 side. In particular, the n-electrode 23 formed so as to surround the light emitting region 31 reflects light that attempts to leak outside from the peripheral region 32 without passing through the substrate 10 to the substrate 10 side. The amount of light passing through can be effectively increased.
 pメッキ電極24及びnメッキ電極25のそれぞれは、例えば、電解メッキで形成されるCuの本体部を、無電解メッキで形成される最表面がAuである一層以上の金属層で被覆して構成される。また、pメッキ電極24及びnメッキ電極25のそれぞれは、相互に離間するとともに上面が平坦化されて同じ高さに揃えられている。さらに、pメッキ電極24の一部はp電極22に接触しており、nメッキ電極25の一部はn電極23に接触している。 Each of the p-plating electrode 24 and the n-plating electrode 25 is constituted by, for example, covering a Cu main body formed by electrolytic plating with one or more metal layers whose outermost surface formed by electroless plating is Au. Is done. In addition, the p-plated electrode 24 and the n-plated electrode 25 are spaced apart from each other and the top surface thereof is flattened to have the same height. Further, a part of the p plating electrode 24 is in contact with the p electrode 22, and a part of the n plating electrode 25 is in contact with the n electrode 23.
 pメッキ電極24及びnメッキ電極25は、実装用の基台と接続してAlGaN系半導体層21に電力を供給するだけでなく、窒化物半導体発光素子1が生じる熱を実装用の基台に伝達させて放熱するために設けられている。特に、pメッキ電極24は、電流が集中する発光領域31の全部に設けられているため、効果的な放熱を行うことができる。 The p-plating electrode 24 and the n-plating electrode 25 are not only connected to the mounting base and supply power to the AlGaN-based semiconductor layer 21, but also the heat generated by the nitride semiconductor light emitting element 1 is used as the mounting base. It is provided to transmit and dissipate heat. In particular, since the p-plated electrode 24 is provided in the entire light emitting region 31 where current is concentrated, effective heat dissipation can be performed.
 絶縁膜26は、例えばSiOやAlなどで構成され、pメッキ電極24との接続部分を除くp電極22の上面及び側面と、nメッキ電極25との接続部分を除くn電極23の上面及び側面と、p電極22及びn電極23が形成されておらず露出しているAlGaN系半導体層21の発光領域31及び周辺領域32における上面並びに発光領域31における側面とを覆うように形成される。絶縁膜26は、基板10における主面101の上方において広範囲に形成されるn電極23及びpメッキ電極24の接触を防止したり、AlGaN系半導体層21の発光領域31における側面を保護したりするために設けられている。 The insulating film 26 is made of, for example, SiO 2 or Al 2 O 3 , and the n electrode 23 excluding the connection portion between the upper surface and the side surface of the p electrode 22 excluding the connection portion with the p plating electrode 24 and the n plating electrode 25. Are formed so as to cover the upper surface in the light emitting region 31 and the peripheral region 32 and the side surface in the light emitting region 31 of the AlGaN-based semiconductor layer 21 exposed without the p-electrode 22 and the n-electrode 23 being formed. Is done. The insulating film 26 prevents contact between the n-electrode 23 and the p-plated electrode 24 formed over a wide range above the main surface 101 of the substrate 10, and protects the side surface of the light-emitting region 31 of the AlGaN-based semiconductor layer 21. It is provided for.
 本発明の実施形態に係る窒化物半導体紫外線発光素子1は、上述のように基板10が半球状であり、レンズ面(凸状の曲面)102が基板10の端部に届いている。そのため、この窒化物半導体紫外線発光素子1は、特許文献1で提案されているような基板の中央部分にのみレンズ面が存在する窒化物半導体紫外線発光素子とは異なり、基板10の端部付近を通過する光を収束させることができる。したがって、この窒化物半導体紫外線発光素子1は、光の取出効率を効果的に改善することができる。 In the nitride semiconductor ultraviolet light emitting device 1 according to the embodiment of the present invention, the substrate 10 is hemispherical as described above, and the lens surface (convex curved surface) 102 reaches the end of the substrate 10. Therefore, this nitride semiconductor ultraviolet light-emitting element 1 differs from the nitride semiconductor ultraviolet light-emitting element in which the lens surface exists only at the central portion of the substrate as proposed in Patent Document 1, near the end of the substrate 10. The passing light can be converged. Therefore, this nitride semiconductor ultraviolet light emitting element 1 can effectively improve the light extraction efficiency.
 さらに、本発明の実施形態に係る窒化物半導体紫外線発光素子1は、基板10自体が半球状になるため、非特許文献1のように基板とレンズを接合するという高度な技術を用いることなく、基板10を加工するという簡単な技術を用いて製造することができる。なお、基板10の加工方法については、後述の<窒化物半導体紫外線発光素子の製造方法例>において説明する。 Furthermore, since the substrate 10 itself is hemispherical in the nitride semiconductor ultraviolet light-emitting device 1 according to the embodiment of the present invention, without using a high technology of joining the substrate and the lens as in Non-Patent Document 1, The substrate 10 can be manufactured by using a simple technique. The processing method of the substrate 10 will be described in <Example of manufacturing method of nitride semiconductor ultraviolet light emitting element> described later.
 なお、図1及び図3では、n電極23の外側の輪郭線が正方形状であり、n電極23の外側の輪郭線に対する内接円の直径が発光領域31の外接円の直径の2倍である場合について例示しているが、n電極23の形状及び大きさはどのようなものであってもよい。例えば、n電極23が円形状であってもよいし、周辺領域32の全面(基板10の端部に到達していてもよいし端部から僅かに後退していてもよい)に設けられていてもよい。ただし、図1及び図3に例示するように、n電極23の面積が発光領域31の面積以上になるようにすると、基板10を通過する光の量を十分に増大させることが可能になるため、好ましい。 In FIGS. 1 and 3, the outer contour line of the n electrode 23 is square, and the diameter of the inscribed circle with respect to the outer contour line of the n electrode 23 is twice the diameter of the circumscribed circle of the light emitting region 31. Although a case has been illustrated, the shape and size of the n-electrode 23 may be anything. For example, the n-electrode 23 may be circular, or provided on the entire surface of the peripheral region 32 (may reach the end of the substrate 10 or may slightly recede from the end). May be. However, as illustrated in FIGS. 1 and 3, the amount of light passing through the substrate 10 can be sufficiently increased when the area of the n-electrode 23 is equal to or larger than the area of the light emitting region 31. ,preferable.
 また、図1では、pメッキ電極24が円形状であり、pメッキ電極24の直径がn電極23の外側の輪郭線(正方形状の輪郭線)に対する内接円の直径よりも大きい場合について例示しているが、pメッキ電極24の形状及び大きさはどのようなものであってもよい。ただし、図1に例示するように、pメッキ電極24の面積が発光領域31の面積の2倍以上になるようにすると、十分な放熱が可能になるため、好ましい。 Further, FIG. 1 illustrates a case where the p-plated electrode 24 has a circular shape and the diameter of the p-plated electrode 24 is larger than the diameter of the inscribed circle with respect to the outer contour line (square contour line) of the n-electrode 23. However, the p-plating electrode 24 may have any shape and size. However, as illustrated in FIG. 1, it is preferable that the area of the p-plated electrode 24 be at least twice the area of the light emitting region 31 because sufficient heat dissipation is possible.
<窒化物半導体紫外線発光素子の製造方法例>
 一般的に、図1及び図2に示したような窒化物半導体紫外線発光素子は、平板状の基板の主面上に複数の素子構造部が整列するように形成したウエハを、素子構造部ごとに分断することで得られるチップとして作製される。ただし、図2に示したチップである窒化物半導体紫外線発光素子1が備える基板10は、主面101が球の断面に相当する半球状であるため、基板10を半球状に加工する工程が必要である。そこで、以下では、基板10を半球状に加工する工程を中心に、本発明の実施形態に係る窒化物半導体紫外線発光素子の製造方法について図面を参照して説明する。
<Example of manufacturing method of nitride semiconductor ultraviolet light emitting device>
In general, a nitride semiconductor ultraviolet light-emitting device as shown in FIGS. 1 and 2 has a wafer formed so that a plurality of device structure portions are aligned on the main surface of a flat substrate, together with the device structure portions. It is produced as a chip obtained by dividing into pieces. However, the substrate 10 included in the nitride semiconductor ultraviolet light-emitting element 1 which is the chip shown in FIG. It is. Therefore, in the following, a method for manufacturing a nitride semiconductor ultraviolet light-emitting element according to an embodiment of the present invention will be described with reference to the drawings, focusing on the process of processing the substrate 10 into a hemispherical shape.
 図5は、基板を加工する前のチップの構造の一例を示した平面図であり、図1と同様の平面を示した図である。図6は、加工対象物の構造の一例を示した断面図であり、図2と同様の断面を示した図である。本発明の実施形態に係る窒化物半導体紫外線発光素子の製造方法では、図6に示すように基板10の主面101同士が向かい合うように2つのチップCが貼り合わせられた立方体状の加工対象物40を作製する。そして、以下説明するように、この加工対象物40を球状に研削加工した後に2つのチップCに分離することによって、図2に示すような半球状の基板10を有する窒化物半導体紫外線発光素子1を得る。 FIG. 5 is a plan view showing an example of the structure of the chip before the substrate is processed, and shows the same plane as FIG. FIG. 6 is a cross-sectional view showing an example of the structure of the workpiece, and is a cross-sectional view similar to FIG. In the method for manufacturing a nitride semiconductor ultraviolet light emitting device according to the embodiment of the present invention, as shown in FIG. 6, a cube-shaped workpiece in which two chips C are bonded so that the main surfaces 101 of the substrate 10 face each other. 40 is produced. Then, as will be described below, the workpiece 40 is ground into a spherical shape and then separated into two chips C, whereby a nitride semiconductor ultraviolet light emitting element 1 having a hemispherical substrate 10 as shown in FIG. Get.
 加工対象物40は、例えば、2つのチップを接着剤50で貼り合わせて作製してもよいし、2枚のウエハを接着剤50で張り合わせた後にチップごとに分断して作製してもよい。前者の場合、チップを1組ずつ貼り合わせて加工対象物40を作製しなければならないが、ウエハを1枚ずつ分断するため容易にチップを得ることができる。これに対して、後者の場合、2枚張り合わせた分厚いウエハを分断しなければならないが、複数のチップの張り合わせを一度に行うことができる。なお、ウエハを作製するまでの工程は、一般的な窒化物半導体紫外線発光素子の製造方法と同様である。 The workpiece 40 may be manufactured by, for example, bonding two chips together with the adhesive 50, or may be manufactured by separating two chips after bonding the two wafers with the adhesive 50. In the former case, it is necessary to manufacture the workpiece 40 by bonding chips one by one, but since the wafers are divided one by one, the chips can be easily obtained. On the other hand, in the latter case, a thick wafer in which two sheets are bonded together must be divided, but a plurality of chips can be bonded together. The process up to the production of the wafer is the same as that of a general method for manufacturing a nitride semiconductor ultraviolet light emitting element.
 また、加工対象物40を作製するために使用する接着剤50として、例えば、にかわやゴム系接着剤が挙げられる。特に、にかわは、接着力が強くて強靭であるとともに、水系の溶媒(純水、湯など)に溶解させることができるため、好ましい。なお、ゴム系接着剤は、トリクレンやアセトンなどの有機溶媒に溶解させることができる。 Also, examples of the adhesive 50 used for manufacturing the workpiece 40 include glue and rubber adhesive. In particular, glue is preferable because it has strong and strong adhesive strength and can be dissolved in an aqueous solvent (pure water, hot water, etc.). The rubber-based adhesive can be dissolved in an organic solvent such as trichlene or acetone.
 また、図6に示す加工対象物40では、接着剤50が、貼り合わせられた2つのチップCの間からはみ出しており、当該チップCのそれぞれにおける外周面に付着している。このように接着剤50を形成すると、加工対象物40の分離を効果的に抑制することができるため、好ましい。特に、加工対象物40を研削加工する工程の前後において、加工対象物40の全周における一部であっても、上記のように接着剤50がチップCのそれぞれの外周面に付着しているようにすることで、加工対象物40に対して衝撃が加えられ得る研削加工の工程中において、加工対象物40の分離を効果的に抑制することができる。 Further, in the processing object 40 shown in FIG. 6, the adhesive 50 protrudes from between the two bonded chips C and adheres to the outer peripheral surface of each of the chips C. Forming the adhesive 50 in this manner is preferable because separation of the workpiece 40 can be effectively suppressed. In particular, before and after the step of grinding the workpiece 40, the adhesive 50 adheres to each outer peripheral surface of the chip C as described above even if it is a part of the entire circumference of the workpiece 40. By doing so, the separation of the workpiece 40 can be effectively suppressed during the grinding process in which an impact can be applied to the workpiece 40.
 図7は、図6の加工対象物を研削加工する研削加工装置の一例を示した斜視図である。図7に示すように、研削加工装置60は、ダイヤモンドなどから成る砥粒が内側に付着された円筒状の側壁部61と、側壁部61に内接する円形状の底部62と、底部62を回転させる回転軸63とを備えている。なお、この研削加工装置60として、例えば、特開2008-168358号公報や特開2006-35334号公報で提案されているような研削加工装置を用いてもよい。 FIG. 7 is a perspective view showing an example of a grinding apparatus for grinding the workpiece of FIG. As shown in FIG. 7, the grinding device 60 rotates a cylindrical side wall portion 61 in which abrasive grains made of diamond or the like are attached inside, a circular bottom portion 62 inscribed in the side wall portion 61, and the bottom portion 62. And a rotating shaft 63 to be moved. As the grinding device 60, for example, a grinding device as proposed in Japanese Patent Application Laid-Open Nos. 2008-168358 and 2006-35334 may be used.
 研削加工装置60の側壁部61及び底部62で囲われた空間内に上述の加工対象物40を入れ、当該空間を遮蔽して加工対象物40の飛び出しを防止するための蓋部(不図示)を、側壁部61の開口している端部(図中上側)に設置してから底部62を回転させると、加工対象物40は転動しながら側壁部61に衝突して研削される。このとき、側壁部61の内側は凹状の曲面になっているため、加工対象物40の角が衝突して研削される。さらに、加工対象物40が転動するため、加工対象物40は等方的に研削される。 A lid (not shown) for putting the above-described workpiece 40 into the space surrounded by the side wall 61 and the bottom 62 of the grinding device 60 and blocking the space to prevent the workpiece 40 from popping out. When the bottom part 62 is rotated after being installed at the open end (upper side in the figure) of the side wall part 61, the workpiece 40 collides with the side wall part 61 while being rolled and is ground. At this time, since the inside of the side wall 61 is a concave curved surface, the corner of the workpiece 40 collides and is ground. Furthermore, since the workpiece 40 rolls, the workpiece 40 is isotropically ground.
 図8は、図6の加工対象物が図7の研削加工装置によって研削加工される経過を示した斜視図であり、(a)、(b)、(c)、(d)、(e)の順番で研削加工が進行する様子を示している。図8に示すように、加工対象物40は、研削加工装置60による研削加工によって、角が等方的に研削されていく。具体的には、基板10における主面101の反対側の面である裏面103(図6参照)の四つの角から順番に角が研削されていき、最終的には図8(e)に示すように全ての角が研削されて球状になる。 FIG. 8 is a perspective view showing a process in which the workpiece of FIG. 6 is ground by the grinding apparatus of FIG. 7, and (a), (b), (c), (d), (e) It shows how the grinding process proceeds in this order. As shown in FIG. 8, the workpiece 40 is isotropically ground at the corners by the grinding by the grinding device 60. Specifically, the corners are ground in order from the four corners of the back surface 103 (see FIG. 6) which is the surface opposite to the main surface 101 in the substrate 10, and finally shown in FIG. 8 (e). So that all corners are ground into a spherical shape.
 そして、上述のように、研削加工後の加工対象物40が有する接着剤50を溶媒に溶解させ、加工対象物40を2つのチップCに分離することで、図2に示したような窒化物半導体紫外線発光素子1を得ることができる。 Then, as described above, the nitride 50 as shown in FIG. 2 is obtained by dissolving the adhesive 50 of the workpiece 40 after grinding in a solvent and separating the workpiece 40 into two chips C. The semiconductor ultraviolet light emitting element 1 can be obtained.
 このように、基板10の主面101上に設けられた素子構造部20を内側に向けて貼り合わせた加工対象物40を研削加工すると、素子構造部20を保護しながら基板10を研削加工することができる。さらに、接着剤50を用いて2つのチップCを貼り合わせて加工対象物40を作製し、加工対象物40の研削加工後に接着剤50を溶媒に溶解させることで加工対象物40を2つのチップCに分離すると、素子構造部20に対して多大な応力を加えることなく、2つのチップCの貼り合わせ及び分離を行うことができる。したがって、素子構造部20の破損を防止することができる。また、図7に示す研削加工装置60は、一度に複数の加工対象物40を入れて研削加工することができるため、窒化物半導体紫外線発光素子1を量産することができる。 As described above, when the workpiece 40 obtained by bonding the element structure portion 20 provided on the main surface 101 of the substrate 10 facing inward is ground, the substrate 10 is ground while protecting the element structure portion 20. be able to. Furthermore, the processing object 40 is produced by bonding the two chips C using the adhesive 50, and the processing object 40 is dissolved in the solvent after the processing of the processing object 40 by grinding the processing object 40. When separated into C, the two chips C can be bonded and separated without applying a great deal of stress to the element structure 20. Therefore, damage to the element structure 20 can be prevented. 7 can mass-produce the nitride semiconductor ultraviolet light-emitting element 1 because a plurality of workpieces 40 can be put and ground at a time.
 なお、図7に示した研削加工装置60は一例に過ぎず、他の研削加工装置を用いて加工対象物40の研削加工をしてもよい。例えば、図7に示した研削加工装置60は、容器の一部である底部62が鉛直方向を軸として回転することで加工対象物40を転動させるものであるが、容器の少なくとも一部が水平方向の成分を有する方向を軸として回転して加工対象物40を転動させる研削加工装置を用いてもよい。ただし、砥粒が付着された凹状の曲面を有する容器内で加工対象物40を転動させて、当該曲面に加工対象物40を衝突させることができる研削加工装置を用いると、上述の研削加工装置60を用いる場合と同様の効果を得ることができるため、好ましい。 Note that the grinding device 60 shown in FIG. 7 is merely an example, and the workpiece 40 may be ground using another grinding device. For example, the grinding apparatus 60 shown in FIG. 7 rolls the workpiece 40 by rotating the bottom 62, which is a part of the container, about the vertical direction. A grinding device that rolls the workpiece 40 by rotating around a direction having a horizontal component may be used. However, if a grinding apparatus capable of rolling the workpiece 40 in a container having a concave curved surface with abrasive grains attached thereto and causing the workpiece 40 to collide with the curved surface is used, the above-described grinding process is performed. Since the same effect as the case of using the device 60 can be obtained, it is preferable.
 また、先端に凹状の砥石を設けたリュータを用いて加工対象物40を球状に研削加工してもよいし、NC(Numerical Control)旋盤を用いて加工対象物40を球状に研削加工してもよい。ただし、これらの研削加工方法では、図7に示した研削加工装置60を用いる場合とは異なり、一度に複数の加工対象物40の研削加工を行うことは難しい。 Further, the workpiece 40 may be ground into a spherical shape using a router provided with a concave grindstone at the tip, or the workpiece 40 may be ground into a spherical shape using an NC (Numerical Control) lathe. Good. However, in these grinding methods, unlike the case of using the grinding device 60 shown in FIG. 7, it is difficult to grind a plurality of workpieces 40 at a time.
 また、加工対象物40を作製することなく、チップCの状態で基板10を半球状に研削加工してもよい。ただし、この場合、素子構造部20が露出することになるため、図7に示した研削加工装置60のような研削加工の対象物が転動する研削加工装置を使用することは困難である。 Alternatively, the substrate 10 may be ground into a hemispherical shape in the state of the chip C without producing the workpiece 40. However, in this case, since the element structure 20 is exposed, it is difficult to use a grinding apparatus in which a grinding object such as the grinding apparatus 60 shown in FIG. 7 rolls.
<変形等>
[1] 図7に示したような研削加工装置60を用いて基板10を半球状に加工した場合、研削加工によって基板10におけるレンズ面(凸状の曲面)102の表面に微細な凹凸が形成されることで、素子構造部20が出射する光が散乱して光の取出効率が低下することがあり得る。そこで、これを防止するために、研削加工後の加工対象物40に対して、さらに研磨加工をしてもよい。例えば、バレル研磨機などの周知の球体研磨装置を用いて、研削加工後の加工対象物40の表面を研磨してもよい。
<Deformation etc.>
[1] When the substrate 10 is processed into a hemispherical shape using the grinding apparatus 60 as shown in FIG. 7, fine irregularities are formed on the surface of the lens surface (convex curved surface) 102 of the substrate 10 by the grinding process. As a result, the light emitted from the element structure 20 may be scattered and the light extraction efficiency may be reduced. Therefore, in order to prevent this, the workpiece 40 after grinding may be further polished. For example, the surface of the workpiece 40 after grinding may be polished using a well-known sphere polishing apparatus such as a barrel polishing machine.
 また、加工対象物40を研磨加工する代わりに、レンズ面102の表面における凹凸を何らかの膜で覆って埋めることによって、素子構造部20が出射する光の散乱を抑制して光の取出効率の低下を防止してもよい。この場合の窒化物半導体紫外線発光素子の構造について、図面を参照して説明する。図9は、本発明の実施形態に係る窒化物半導体紫外線発光素子の構造の別例を示した断面図であり、図2に相当する断面を示した図である。 Further, instead of polishing the object to be processed 40, the unevenness on the surface of the lens surface 102 is covered and filled with some film, so that scattering of light emitted from the element structure portion 20 is suppressed and light extraction efficiency is reduced. May be prevented. The structure of the nitride semiconductor ultraviolet light emitting device in this case will be described with reference to the drawings. FIG. 9 is a cross-sectional view showing another example of the structure of the nitride semiconductor ultraviolet light-emitting device according to the embodiment of the present invention, and a cross-sectional view corresponding to FIG.
 図9に示すように、窒化物半導体紫外線発光素子1Xが備える基板10のレンズ面102の表面には、被覆膜70が形成されている。被覆膜70は、素子構造部20が出射する光を透過するとともに当該光によって劣化し難い(耐性がある)材料で構成されていると、好ましい。特に、素子構造部20が紫外線を出射する場合、紫外線透過性及び紫外線耐性のある非晶質フッ素樹脂で被覆膜70を構成すると好ましい。 As shown in FIG. 9, a coating film 70 is formed on the surface of the lens surface 102 of the substrate 10 included in the nitride semiconductor ultraviolet light emitting element 1X. It is preferable that the coating film 70 is made of a material that transmits light emitted from the element structure unit 20 and is hardly deteriorated (resistant) by the light. In particular, when the element structure 20 emits ultraviolet rays, it is preferable to form the coating film 70 with an amorphous fluororesin having ultraviolet transparency and ultraviolet resistance.
 また、基板10のレンズ面102に限らず、他の部分を被覆膜70で覆ってもよい。例えば、pメッキ電極24及びnメッキ電極25の少なくとも一方の表面(実装用の基台における電極と接触しない部分の表面であって、図9における上面を除いた側面)を被覆膜70で覆うことによって、短絡を防止してもよい。ただし、この場合、非結合性の非晶質フッ素樹脂を用いると、金属原子のマイグレーションを好適に防止することができるため、好ましい。 Further, not only the lens surface 102 of the substrate 10 but also other portions may be covered with the coating film 70. For example, at least one surface of the p-plated electrode 24 and the n-plated electrode 25 (the surface of the portion that does not contact the electrode on the mounting base and the side surface excluding the upper surface in FIG. 9) is covered with the coating film 70. By doing so, a short circuit may be prevented. However, in this case, it is preferable to use a non-bonding amorphous fluororesin because migration of metal atoms can be suitably prevented.
 非結合性の非晶質フッ素樹脂は、金属や基板10を構成するサファイア等に対する結合力が弱いところが難点である。しかし、窒化物半導体紫外線発光素子1Xを基台に実装した後に、窒化物半導体紫外線発光素子1Xと基台との間隙に被覆膜70を入り込ませてpメッキ電極24及びnメッキ電極25の少なくとも一方の表面を被覆膜70で覆うようにすれば、被覆膜70は剥離し難くなる。また、上述のように、基板10のレンズ面102の表面に多数の凹凸が形成されていれば、アンカー効果によってレンズ面102の表面と被覆膜70の結合力が大きくなるため、被覆膜70は剥離し難くなる。 The non-bonding amorphous fluororesin has a difficulty in that it has a weak bonding force to metal or sapphire constituting the substrate 10. However, after the nitride semiconductor ultraviolet light emitting element 1X is mounted on the base, the coating film 70 is inserted into the gap between the nitride semiconductor ultraviolet light emitting element 1X and the base so that at least the p plating electrode 24 and the n plating electrode 25 are present. If one surface is covered with the coating film 70, the coating film 70 becomes difficult to peel off. Further, as described above, if a large number of irregularities are formed on the surface of the lens surface 102 of the substrate 10, the bonding force between the surface of the lens surface 102 and the coating film 70 increases due to the anchor effect. 70 becomes difficult to peel.
 非晶質のフッ素樹脂として、例えば、結晶性ポリマーのフッ素樹脂を共重合化してポリマーアロイとして非晶質化させたものや、パーフルオロジオキソールの共重合体(デュポン社製の商品名テフロンAF(登録商標))やパーフルオロブテニルビニルエーテルの環化重合体(旭硝子社製の商品名サイトップ(登録商標))などが挙げられる。さらに、非結合性の非晶質フッ素樹脂としては、重合体または共重合体を構成する構造単位が含フッ素脂肪族環構造を有し、末端官能基がCF等のパーフルオロアルキル基である非晶質フッ素樹脂が挙げられる。パーフルオロアルキル基は、金属等に対して結合性を呈する反応性の末端官能基を有していない。なお、結合性の非晶質フッ素樹脂は、重合体または共重合体を構成する構造単位が、同じ含フッ素脂肪族環構造を有していても、末端官能基として、金属等に対して結合可能な反応性官能基を有する点で、非結合性の非晶質フッ素樹脂と相違する。当該反応性の官能基は、一例として、カルボキシル基(COOH)またはエステル基(COOR)である。但し、Rはアルキル基を表す。 Examples of the amorphous fluororesin include, for example, those obtained by copolymerizing a crystalline polymer fluororesin and making it amorphous as a polymer alloy, or a copolymer of perfluorodioxole (trade name Teflon manufactured by DuPont). AF (registered trademark)) and perfluorobutenyl vinyl ether cyclized polymer (trade name Cytop (registered trademark) manufactured by Asahi Glass Co., Ltd.). Further, as the non-bonding amorphous fluororesin, the structural unit constituting the polymer or copolymer has a fluorine-containing aliphatic ring structure, and the terminal functional group is a perfluoroalkyl group such as CF 3. An amorphous fluororesin is mentioned. The perfluoroalkyl group does not have a reactive terminal functional group that exhibits binding properties to a metal or the like. Note that the bonding amorphous fluororesin binds to a metal or the like as a terminal functional group even if the structural unit constituting the polymer or copolymer has the same fluorine-containing aliphatic ring structure. It differs from non-bonding amorphous fluororesin in that it has possible reactive functional groups. The reactive functional group is, for example, a carboxyl group (COOH) or an ester group (COOR). However, R represents an alkyl group.
 また、含フッ素脂肪族環構造を有する構造単位としては、環状含フッ素単量体に基づく単位(以下、「単位A」)、または、ジエン系含フッ素単量体の環化重合により形成される単位(以下、「単位B」)が好ましい。なお、非晶質フッ素樹脂の組成及び構造は、本願発明の本旨ではないため、当該単位A及び単位Bに関する詳細な説明は割愛するが、当該単位A及び単位Bに関しては、国際公開第2014/178288号の段落[0031]~[0062]に詳細に説明されているので、参照されたい。 The structural unit having a fluorinated alicyclic structure is a unit based on a cyclic fluorinated monomer (hereinafter referred to as “unit A”) or formed by cyclopolymerization of a diene fluorinated monomer. A unit (hereinafter “unit B”) is preferred. In addition, since the composition and structure of the amorphous fluororesin are not the subject matter of the present invention, a detailed description of the unit A and the unit B is omitted, but the unit A and the unit B are related to WO2014 / Please refer to paragraphs [0031] to [0062] of No. 178288 for details.
 非結合性の非晶質フッ素樹脂の市販品の一例として、サイトップ(旭硝子社製)等が挙げられる。なお、末端官能基がCFであるサイトップは、下記の化1に示す上記単位Bの重合体である。 Cytop (manufactured by Asahi Glass Co., Ltd.) and the like can be cited as an example of a commercially available non-binding amorphous fluororesin. Cytop having a terminal functional group of CF 3 is a polymer of the unit B shown in Chemical Formula 1 below.
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
 なお、基板10のレンズ面102とpメッキ電極24及びnメッキ電極25の少なくとも一方との両者の表面を被覆膜70で覆う場合において、それぞれの表面を覆う被覆膜70を別の材料で構成してもよい。例えば、pメッキ電極24及びnメッキ電極25の少なくとも一方の表面を覆う被覆膜70は、金属原子のマイグレーションを抑制する観点から非結合性の非晶質フッ素樹脂で構成し、基板10のレンズ面102の表面を覆う被覆膜70は、非結合性ではない非晶質フッ素樹脂で構成してもよい。 When the surfaces of both the lens surface 102 of the substrate 10 and at least one of the p-plating electrode 24 and the n-plating electrode 25 are covered with the coating film 70, the coating film 70 covering each surface is made of another material. It may be configured. For example, the coating film 70 covering at least one surface of the p-plating electrode 24 and the n-plating electrode 25 is made of non-bonding amorphous fluororesin from the viewpoint of suppressing migration of metal atoms, and the lens of the substrate 10 The coating film 70 covering the surface of the surface 102 may be made of an amorphous fluororesin that is not non-bonding.
[2] 基板10内の特定の一方向に光が偏ることを防止する観点から、基板10及び発光領域31が、基板10の主面101に対して垂直な方向から見た平面視(以下、単に平面視という)において中心が一致する2回対称以上の回転対称の形状であると、好ましい。また、活性層213に対して効率よく電力を供給する観点から、発光領域31が、平面視において回転対称の中心から複数の方向に放射状に突出した形状であると、好ましい。 [2] From the viewpoint of preventing the light from being biased in one specific direction within the substrate 10, the substrate 10 and the light emitting region 31 are viewed in a plan view (hereinafter referred to as a direction perpendicular to the main surface 101 of the substrate 10) It is preferably a rotationally symmetric shape having a center that is equal to or greater than the two-fold symmetry in the plan view). In addition, from the viewpoint of efficiently supplying power to the active layer 213, it is preferable that the light emitting region 31 has a shape protruding radially from a rotationally symmetric center in a plurality of directions in plan view.
 図1~図4に示した窒化物半導体紫外線発光素子1における基板10の主面101及び発光領域31(p電極22が形成されている領域)は上記の条件を満たす形状であり、発光領域31は2回対称であるが、これよりも高次の回転対称性を有する発光領域を設けてもよい。この場合の窒化物半導体紫外線発光素子の構造について、図面を参照して説明する。図10は、本発明の実施形態に係る窒化物半導体紫外線発光素子の構造のさらなる別例を示した平面図であり、図3に相当する平面を示した図である。 The main surface 101 of the substrate 10 and the light emitting region 31 (region where the p-electrode 22 is formed) in the nitride semiconductor ultraviolet light emitting element 1 shown in FIGS. Is symmetrical twice, but a light emitting region having higher-order rotational symmetry may be provided. The structure of the nitride semiconductor ultraviolet light emitting device in this case will be described with reference to the drawings. FIG. 10 is a plan view showing still another example of the structure of the nitride semiconductor ultraviolet light emitting device according to the embodiment of the present invention, and is a view showing a plane corresponding to FIG.
 図10に示す窒化物半導体紫外線発光素子における発光領域(p電極22Yが形成されている領域)は、平面視において回転対称の中心から8方向に対して放射状に突出した菊花形状であり、8回対称の形状である。図10に示したような8回対称の形状には限られないが、発光領域を高次の回転対称(例えば、4回対称以上)の形状にすることで、基板10を通過する光を均一にすることが可能になる。 The light emitting region (region where the p electrode 22Y is formed) in the nitride semiconductor ultraviolet light emitting element shown in FIG. 10 has a chrysanthemum shape that protrudes radially from the center of rotational symmetry in eight directions in plan view, and is 8 times. It is a symmetrical shape. Although not limited to the eight-fold symmetrical shape as shown in FIG. 10, the light passing through the substrate 10 can be made uniform by making the light emitting region a shape of higher-order rotational symmetry (for example, four-fold symmetry or more). It becomes possible to.
[3] 図6では、接着剤50を用いて2つのチップCを貼り合わせて加工対象物40を作製する場合について例示したが、接着剤50以外の媒体を用いて2つのチップCを貼り合わせてもよい。 [3] In FIG. 6, the case where the processing object 40 is manufactured by bonding the two chips C using the adhesive 50 is illustrated, but the two chips C are bonded using a medium other than the adhesive 50. May be.
 例えば、はんだを用いて2つのチップCを貼り合わせて加工対象物を作製してもよい。具体的に例えば、2つのチップのそれぞれにおけるpメッキ電極24及びnメッキ電極24の少なくとも一方同士をはんだ付けすることで加工対象物を作製し、加工対象物を研削加工した後にはんだを加熱して融解させることで2つのチップCに分離する。なお、分離後のチップCから、貼り合わせに使用したはんだを吸い取っておくと、短絡などの不具合を防止することができるため、好ましい。 For example, the processing object may be manufactured by bonding two chips C using solder. Specifically, for example, a workpiece is manufactured by soldering at least one of the p-plated electrode 24 and the n-plated electrode 24 in each of two chips, and the solder is heated after the workpiece is ground. It is separated into two chips C by melting. Note that it is preferable to suck the solder used for the bonding from the chip C after separation because problems such as a short circuit can be prevented.
 はんだは、表面張力が大きいため、はんだ付けを行う対象の素子をはんだの真上に引っ張る効果(セルフアライメント効果)を有している。したがって、はんだを用いて2つのチップCを貼り合わせて加工対象物を作製することによって、2つのチップCが正対した位置で貼り合わせられた状態の加工対象物を容易に作製することができる。 Since solder has a large surface tension, it has an effect of pulling the element to be soldered directly above the solder (self-alignment effect). Therefore, by fabricating the workpiece by bonding the two chips C using solder, it is possible to easily fabricate the workpiece in a state in which the two chips C are bonded to each other at a directly facing position. .
 なお、はんだを用いる場合、例えば、ウエハの状態でpメッキ電極24及びnメッキ電極24の少なくとも一方にはんだを設けておき、当該ウエハを分断して得られる2つのチップを加熱してはんだを溶融させて貼り合わせてもよい。 When solder is used, for example, solder is provided on at least one of the p-plating electrode 24 and the n-plating electrode 24 in the state of a wafer, and the two chips obtained by dividing the wafer are heated to melt the solder. You may stick together.
 また、はんだを用いて2つのチップCを貼り合わせた後、当該チップCの間に上述した接着剤50を流し入れて補強してもよい。例えば、はんだによって貼り合わせられた2つのチップCを、任意の容器に貯めた接着剤50に漬けることで、チップCの間に接着剤50を流し入れてもよい。 Alternatively, after bonding the two chips C using solder, the above-described adhesive 50 may be poured between the chips C to reinforce. For example, the adhesive 50 may be poured between the chips C by immersing the two chips C bonded together by solder in the adhesive 50 stored in an arbitrary container.
[4] 上述の<窒化物半導体紫外線発光素子の構造例>及び<窒化物半導体紫外線発光素子の製造方法例>では、基板10が半球状である場合のみを例に挙げて説明しているが、基板10を半球状以外の形状にしてもよい。例えば、基板10が、図8(b)~(d)のそれぞれの状態で加工対象物40の研削加工を終了して得られるような、半球状に至る前の形状であってもよい。また、研削加工前の加工対象物が立方体状でなくてもよいし、研削加工前のチップの主面が正方形状でなくてもよい。 [4] In the above <Example of structure of nitride semiconductor ultraviolet light-emitting device> and <Example of manufacturing method of nitride semiconductor ultraviolet light-emitting device>, only the case where the substrate 10 is hemispherical is described as an example. The substrate 10 may have a shape other than the hemisphere. For example, the substrate 10 may have a shape before reaching a hemispherical shape obtained by finishing the grinding of the workpiece 40 in each of the states shown in FIGS. 8B to 8D. In addition, the object to be processed before grinding may not be cubic, and the main surface of the chip before grinding may not be square.
 ただし、基板を通過する光を収束して光の取出効率を効果的に改善するためには、図8(b)~(e)に示すように、少なくとも基板の裏面の四つの角が研削されてレンズ面(凸状の曲面)になっていることが必要である。換言すると、基板における主面と平行な断面の断面積が、主面から離間するほど連続的に減少している、または、主面から所定の距離だけ離間するまでは一定であるがそれ以降は連続的に減少しており、主面よりも断面積が小さい断面が、円形状、長円形状(円を一方向に引き延ばすように変形した形状であって楕円形状を含む)、または、角が丸い四角形状であることが必要である。 However, in order to converge the light passing through the substrate and effectively improve the light extraction efficiency, at least four corners on the back surface of the substrate are ground as shown in FIGS. 8B to 8E. It is necessary to have a lens surface (convex curved surface). In other words, the cross-sectional area of the cross section parallel to the main surface of the substrate continuously decreases as the distance from the main surface decreases, or is constant until a predetermined distance from the main surface, but thereafter The cross-section that is continuously decreasing and has a smaller cross-sectional area than the main surface has a circular shape, an oval shape (a shape that is deformed so as to extend the circle in one direction and includes an elliptical shape), or a corner It is necessary to have a round rectangular shape.
 この場合において、第1に、図8(b)及び(c)に示すように平面視において基板が四角形状になっているよりも、図8(d)及び(e)に示すように平面視において基板が円形状(あるいは長円形状)または角が丸い四角形状である方が、基板の端部を通過する光を効果的に収束することができるため、好ましい。さらに、第2に、図8(b)~(d)に示すように基板の裏面側(主面の反対側)に主面と平行な頂面が残っている形状よりも、図8(e)に示すように当該頂面が残っていない形状の方が、基板の中央部分を通過する光を効果的に収束することができるため、好ましい。 In this case, first, as shown in FIGS. 8 (d) and 8 (e), the substrate is rectangular in plan view as shown in FIGS. 8 (b) and 8 (c). In this case, it is preferable that the substrate has a circular shape (or an oval shape) or a rectangular shape with rounded corners because light passing through the end of the substrate can be effectively converged. Further, secondly, as shown in FIGS. 8B to 8D, the shape of FIG. 8E is more than the shape in which the top surface parallel to the main surface remains on the back surface side (opposite side of the main surface) of the substrate. As shown in (2), the shape in which the top surface does not remain is preferable because the light passing through the central portion of the substrate can be effectively converged.
 この第1及び第2の条件を満たす形状には、図8(e)に示したような半球状の他に、砲弾状(円柱における一方の平坦面に半球の平坦面を接続した形状であって、円柱における他方の平坦面が主面に相当する形状)もある。基板が、平面視が円形状である半球状や砲弾状であれば、光を効果的に収束させるだけでなく、主面と平行な面内における集光性のばらつきを抑制することもできるため、好ましい。ただし、基板が砲弾状である場合、軸方向の長さ(基板の厚さ)を過度に大きくすると、光が収束し難くなる。基板が砲弾状である場合は、基板を成すサファイアと空気の屈折率比が2倍程度であることを考慮して、軸方向の長さが主面の直径の2倍以下になるようにすると、好ましい。 In addition to the hemisphere as shown in FIG. 8 (e), the shape satisfying the first and second conditions includes a bullet shape (a shape in which a flat surface of a hemisphere is connected to one flat surface of a cylinder). And the other flat surface of the cylinder corresponds to the main surface). If the substrate is hemispherical or bullet-shaped with a circular shape in plan view, not only can the light be effectively converged, but also variation in light condensing properties in a plane parallel to the main surface can be suppressed. ,preferable. However, when the substrate is bullet-shaped, if the axial length (the thickness of the substrate) is excessively increased, the light is difficult to converge. If the substrate is bullet-shaped, considering that the refractive index ratio between sapphire and air forming the substrate is about twice, the axial length should be less than twice the main surface diameter. ,preferable.
 図7に示したような研削加工装置60を用いて加工対象物40を研削加工する場合において、基板の主面における垂直な二辺のそれぞれの長さをW,W、基板の厚さをHとするとき、1/2<H/W≦2かつ1/2<H/W≦2が成り立つようにすると、基板を上記の第1及び第2の条件を満たした形状に研削加工し易いため、好ましい。特に、1/2<H/Wかつ1/2<H/Wとすることで、基板の裏面側の先端が研削され易くなるため、上記の第2の条件が満たされ易くなる。また、H/W≦2かつH/W≦2とすることで、加工対象物40のアスペクト比が過度に大きくなることが抑制されるため、上記の第1の条件が満たされ易くなるとともに、基板の軸方向の長さ(基板の厚さ)が過度に大きくなることによって光が収束し難くなることも抑制することができる。さらに、基板を半球状または砲弾状に研削加工する場合は、W=Wにすると、好ましい。 In the case where the workpiece 40 is ground using the grinding apparatus 60 as shown in FIG. 7, the lengths of the two perpendicular sides on the main surface of the substrate are W 1 and W 2 , and the thickness of the substrate. Is set to H, if 1/2 <H / W 1 ≦ 2 and 1/2 <H / W 2 ≦ 2 are satisfied, the substrate is ground into a shape satisfying the above first and second conditions. Since it is easy to process, it is preferable. In particular, by setting 1/2 <H / W 1 and 1/2 <H / W 2 , the tip on the back surface side of the substrate is easily ground, and thus the second condition is easily satisfied. Further, by setting H / W 1 ≦ 2 and H / W 2 ≦ 2, since the aspect ratio of the workpiece 40 is suppressed from becoming excessively large, the first condition is easily satisfied. At the same time, it is also possible to suppress the light from being difficult to converge due to an excessive increase in the axial length of the substrate (the thickness of the substrate). Furthermore, when the substrate is ground into a hemispherical shape or a shell shape, it is preferable that W 1 = W 2 .
 なお、例えば刃先がV字型のダイシングブレードを用いてウエハを分断することで得られる四角錐台状のチップ(換言すると、基板の裏面の周囲が面取りされたチップ)であっても、ある程度は光の取出効率の改善が見込まれる。しかし、上述のように基板10を研削加工してレンズ面102を表出させることによって、光の取出効率を劇的に改善することができる。 For example, even if the cutting edge is a truncated pyramid-shaped chip (in other words, a chip whose periphery around the back surface of the substrate is chamfered) obtained by dividing the wafer using a V-shaped dicing blade, to some extent The light extraction efficiency is expected to improve. However, the light extraction efficiency can be dramatically improved by grinding the substrate 10 to expose the lens surface 102 as described above.
[5] 上述の実施形態では、pメッキ電極24が膜状である場合について例示したが(図1及び図2等参照)、このpメッキ電極24を、例えばAuで構成される多数のバンプ(突起)で構成してもよい。この場合、素子構造部20の最表面の表面積が大きくなるため、図6に示したような加工対象物40を作製する場合において接着力を向上することができる。 [5] In the above-described embodiment, the case where the p-plating electrode 24 is in the form of a film is illustrated (see FIG. 1 and FIG. 2 and the like). (Protrusions). In this case, since the surface area of the outermost surface of the element structure portion 20 is increased, the adhesive force can be improved when the workpiece 40 as shown in FIG. 6 is produced.
 1,1X :窒化物半導体紫外線発光素子
 10  :基板
 101 :主面
 102 :レンズ面(凸状の曲面)
 103 :裏面
 20  :素子構造部
 21,21Y :AlGaN系半導体層
 211 :下地層
 212 :n型クラッド層(n型AlGaN)
 213 :活性層
 214 :電子ブロック層(p型AlGaN)
 215 :p型クラッド層(p型AlGaN)
 216 :p型コンタクト層(p型GaN)
 22,22Y :p電極
 23,23Y :n電極
 24  :pメッキ電極
 25  :nメッキ電極
 26  :絶縁膜
 31  :発光領域
 32  :周辺領域
 40  :加工対象物
 50  :接着剤
 60  :研削加工装置
 61  :側壁部
 62  :底部
 63  :回転軸
 70  :被覆膜
 C   :チップ
1, 1X: Nitride semiconductor ultraviolet light emitting element 10: Substrate 101: Main surface 102: Lens surface (convex curved surface)
DESCRIPTION OF SYMBOLS 103: Back surface 20: Element structure part 21,21Y: AlGaN-type semiconductor layer 211: Underlayer 212: N-type clad layer (n-type AlGaN)
213: Active layer 214: Electron block layer (p-type AlGaN)
215: p-type cladding layer (p-type AlGaN)
216: p-type contact layer (p-type GaN)
22, 22Y: p-electrode 23, 23Y: n-electrode 24: p-plated electrode 25: n-plated electrode 26: insulating film 31: light-emitting area 32: peripheral area 40: processing object 50: adhesive 60: grinding apparatus 61: Side wall part 62: Bottom part 63: Rotating shaft 70: Coating film C: Chip

Claims (18)

  1.  サファイア基板と、当該基板の主面上に積層される複数のAlGaN系半導体層を有するとともに通電することで発光中心波長が365nm以下の光を出射する素子構造部と、を備えるチップに対して、少なくとも、前記主面とは反対側の面である裏面の四つの角が凸状の曲面になるように、前記基板を研削加工する基板加工工程を備えることを特徴とする窒化物半導体紫外線発光素子の製造方法。 For a chip comprising a sapphire substrate and an element structure having a plurality of AlGaN-based semiconductor layers stacked on the main surface of the substrate and emitting light having an emission center wavelength of 365 nm or less by energization, A nitride semiconductor ultraviolet light-emitting device comprising a substrate processing step of grinding the substrate so that at least four corners of the back surface, which is a surface opposite to the main surface, are convex curved surfaces Manufacturing method.
  2.  前記基板加工工程が、前記主面に対して垂直な方向から見た平面視における前記基板が円形状、長円形状、または、角が丸い四角形状になるように、前記基板を研削加工する工程であることを特徴とする請求項1に記載の窒化物半導体紫外線発光素子の製造方法。 The substrate processing step is a step of grinding the substrate so that the substrate in a plan view as viewed from a direction perpendicular to the main surface has a circular shape, an oval shape, or a square shape with rounded corners. The method for producing a nitride semiconductor ultraviolet light-emitting device according to claim 1, wherein:
  3.  前記基板加工工程が、前記主面の反対側において前記主面と平行な頂面が残らないように、前記基板を研削加工する工程であることを特徴とする請求項1または2に記載の窒化物半導体紫外線発光素子の製造方法。 The nitriding according to claim 1, wherein the substrate processing step is a step of grinding the substrate so that a top surface parallel to the main surface does not remain on the opposite side of the main surface. Method for manufacturing a semiconductor light emitting device.
  4.  前記基板加工工程が、前記基板を半球状または砲弾状に研削加工する工程であることを特徴とする請求項1~3のいずれか1項に記載の窒化物半導体紫外線発光素子の製造方法。 4. The method for manufacturing a nitride semiconductor ultraviolet light-emitting element according to claim 1, wherein the substrate processing step is a step of grinding the substrate into a hemispherical shape or a shell shape.
  5.  前記基板加工工程が、
     前記基板の前記主面同士が向かい合うように2つの前記チップが貼り合わせられた状態の加工対象物を作製する第1工程と、
     前記加工対象物を研削加工する第2工程と、
     前記第2工程の後に前記加工対象物を2つの前記チップに分離する第3工程と、
     を備えることを特徴とする請求項1~4のいずれか1項に記載の窒化物半導体紫外線発光素子の製造方法。
    The substrate processing step
    A first step of producing a workpiece in a state where the two chips are bonded so that the principal surfaces of the substrate face each other;
    A second step of grinding the workpiece;
    A third step of separating the workpiece into two chips after the second step;
    The method for producing a nitride semiconductor ultraviolet light-emitting device according to any one of claims 1 to 4, further comprising:
  6.  前記第2工程において、砥粒が付着された凹状の曲面を有する容器内で1以上の前記加工対象物を転動させて、前記凹状の曲面に対して前記加工対象物を衝突させることを特徴とする請求項5に記載の窒化物半導体紫外線発光素子の製造方法。 In the second step, one or more workpieces are rolled in a container having a concave curved surface to which abrasive grains are attached, and the workpiece is collided with the concave curved surface. The method for producing a nitride semiconductor ultraviolet light-emitting device according to claim 5.
  7.  前記第1工程において、接着剤によって2つの前記チップが貼り合わせられた前記加工対象物を作製し、
     前記第3工程において、前記接着剤を溶媒に溶解させることを特徴とする請求項5または6に記載の窒化物半導体紫外線発光素子の製造方法。
    In the first step, the processing object in which the two chips are bonded together with an adhesive is produced,
    The method for producing a nitride semiconductor ultraviolet light emitting element according to claim 5 or 6, wherein, in the third step, the adhesive is dissolved in a solvent.
  8.  前記第2工程の前後において、前記接着剤が、貼り合わせられた2つの前記チップの間からはみ出して当該チップのそれぞれにおける外周面に付着していることを特徴とする請求項7に記載の窒化物半導体紫外線発光素子の製造方法。 8. The nitriding according to claim 7, wherein the adhesive protrudes from between the two bonded chips before and after the second step and adheres to the outer peripheral surface of each of the chips. Method for manufacturing a semiconductor light emitting device.
  9.  前記第1工程において、はんだによって2つの前記チップが貼り合わせられた前記加工対象物を作製し、
     前記第3工程において、前記はんだを加熱して融解させることを特徴とする請求項5~8のいずれか1項に記載の窒化物半導体紫外線発光素子の製造方法。
    In the first step, the processing object in which the two chips are bonded together by solder is produced,
    9. The method for manufacturing a nitride semiconductor ultraviolet light emitting element according to claim 5, wherein, in the third step, the solder is heated and melted.
  10.  前記素子構造部が、前記AlGaN系半導体層の1つであって通電時に前記光が発生する活性層を有する発光領域と、前記発光領域を包囲するように形成されており前記活性層を有しない周辺領域と、に分けられるものであり、
     前記周辺領域の少なくとも一部に、前記発光領域を包囲するとともに前記光を反射するn電極が形成されていることを特徴とする請求項1~9のいずれか1項に記載の窒化物半導体紫外線発光素子の製造方法。
    The element structure part is one of the AlGaN-based semiconductor layers, and is formed so as to surround the light emitting region having an active layer that generates the light when energized, and does not have the active layer And the surrounding area,
    The nitride semiconductor ultraviolet ray according to any one of claims 1 to 9, wherein an n-electrode surrounding the light emitting region and reflecting the light is formed in at least a part of the peripheral region. Manufacturing method of light emitting element.
  11.  前記素子構造部が、前記AlGaN系半導体層の1つであって通電時に前記光が発生する活性層を有する発光領域と、前記発光領域を包囲するように形成されており前記活性層を有しない周辺領域と、に分けられるものであり、
     少なくとも前記発光領域の全部にpメッキ電極が形成されていることを特徴とする請求項1~10のいずれか1項に記載の窒化物半導体紫外線発光素子の製造方法。
    The element structure part is one of the AlGaN-based semiconductor layers, and is formed so as to surround the light emitting region having an active layer that generates the light when energized, and does not have the active layer And the surrounding area,
    The method for producing a nitride semiconductor ultraviolet light-emitting element according to any one of claims 1 to 10, wherein a p-plated electrode is formed on at least the entire light emitting region.
  12.  前記周辺領域の少なくとも一部に、前記発光領域を包囲するとともに前記光を反射するn電極が形成されており、前記pメッキ電極の一部が前記周辺領域における前記n電極の上方に形成されており、
     前記n電極と、その上方における前記pメッキ電極との間に、これらを絶縁する絶縁膜が形成されていることを特徴とする請求項11に記載の窒化物半導体紫外線発光素子の製造方法。
    An n electrode surrounding the light emitting region and reflecting the light is formed in at least a part of the peripheral region, and a part of the p plating electrode is formed above the n electrode in the peripheral region. And
    The method for manufacturing a nitride semiconductor ultraviolet light emitting element according to claim 11, wherein an insulating film is formed between the n electrode and the p-plated electrode above the n electrode.
  13.  前記素子構造部が、前記AlGaN系半導体層の1つであって通電時に前記光が発生する活性層を有する発光領域と、前記発光領域を包囲するように形成されており前記活性層を有しない周辺領域と、に分けられるものであり、
     前記基板の前記主面及び前記発光領域のそれぞれが、前記基板の前記主面に対して垂直な方向から見た平面視において中心が一致する2回対称以上の回転対称の形状であり、前記発光領域が、平面視において回転対称の中心から複数の方向に対して放射状に突出した形状であることを特徴とする請求項1~12のいずれか1項に記載の窒化物半導体紫外線発光素子の製造方法。
    The element structure part is one of the AlGaN-based semiconductor layers, and is formed so as to surround the light emitting region having an active layer that generates the light when energized, and does not have the active layer And the surrounding area,
    Each of the main surface and the light emitting region of the substrate has a rotationally symmetric shape of two or more symmetry in which a center coincides in a plan view viewed from a direction perpendicular to the main surface of the substrate, and the light emission The manufacture of a nitride semiconductor ultraviolet light emitting device according to any one of claims 1 to 12, wherein the region has a shape protruding radially from a rotationally symmetric center in a plurality of directions in a plan view. Method.
  14.  前記基板加工工程の後に、前記基板における前記曲面の少なくとも一部の表面を非晶質フッ素樹脂で被覆する被覆工程を、さらに備えることを特徴とする請求項1~13のいずれか1項に記載の窒化物半導体紫外線発光素子の製造方法。 The coating process according to any one of claims 1 to 13, further comprising a coating step of coating at least a part of the curved surface of the substrate with an amorphous fluororesin after the substrate processing step. Manufacturing method of nitride semiconductor ultraviolet light emitting element.
  15.  前記第1工程が、2つの前記チップを貼り合わせることで前記加工対象物を作製する工程であることを特徴とする請求項1~14のいずれか1項に記載の窒化物半導体紫外線発光素子の製造方法。 The nitride semiconductor ultraviolet light-emitting device according to any one of claims 1 to 14, wherein the first step is a step of manufacturing the object to be processed by bonding two chips together. Production method.
  16.  前記チップが、1枚の前記基板上に複数の前記素子構造部が形成されたウエハを分断することで得られるものであり、
     前記第1工程が、2枚の前記ウエハを前記基板の前記主面同士が向かい合うように貼り合わせた後に、当該ウエハのそれぞれを前記チップごとに分断することで前記加工対象物を作製する工程であることを特徴とする請求項1~14のいずれか1項に記載の窒化物半導体紫外線発光素子の製造方法。
    The chip is obtained by dividing a wafer in which a plurality of the element structure portions are formed on one substrate.
    The first step is a step of manufacturing the object to be processed by dividing each of the wafers into the chips after bonding the two wafers so that the main surfaces of the substrates face each other. The method for producing a nitride semiconductor ultraviolet light-emitting device according to any one of claims 1 to 14, wherein:
  17.  サファイア基板と、
     前記基板の主面上に積層される複数のAlGaN系半導体層を有するとともに通電することで発光中心波長が365nm以下の光を出射する素子構造部と、を備え、
     前記基板における前記主面と平行な断面の断面積が、前記主面から離間するほど連続的に減少している、または、前記主面から所定の距離だけ離間するまでは一定であるがそれ以降は連続的に減少しており、
     前記主面よりも断面積が小さい前記断面が、円形状、長円形状、または、角が丸い四角形状であることを特徴とする窒化物半導体紫外線発光素子。
    A sapphire substrate,
    Comprising a plurality of AlGaN-based semiconductor layers stacked on the main surface of the substrate and emitting light having an emission center wavelength of 365 nm or less when energized, and
    The cross-sectional area of the cross section of the substrate parallel to the main surface is continuously reduced as the distance from the main surface increases, or is constant until a predetermined distance from the main surface, but thereafter Is continuously decreasing,
    The nitride semiconductor ultraviolet light-emitting element characterized in that the cross section having a smaller cross-sectional area than the main surface has a circular shape, an oval shape, or a square shape with rounded corners.
  18.  前記主面に対して垂直な方向から見た平面視において、前記基板が、円形状、長円形状、または、角が丸い四角形状であることを特徴とする請求項17に記載の窒化物半導体紫外線発光素子。 18. The nitride semiconductor according to claim 17, wherein the substrate has a circular shape, an oval shape, or a quadrangular shape with rounded corners in a plan view as viewed from a direction perpendicular to the main surface. Ultraviolet light emitting element.
PCT/JP2016/078410 2016-09-27 2016-09-27 Method for manufacturing nitride semiconductor ultraviolet light emitting element, and nitride semiconductor ultraviolet light emitting element WO2018061080A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2018541750A JP6686155B2 (en) 2016-09-27 2016-09-27 Nitride semiconductor ultraviolet light emitting device manufacturing method and nitride semiconductor ultraviolet light emitting device
PCT/JP2016/078410 WO2018061080A1 (en) 2016-09-27 2016-09-27 Method for manufacturing nitride semiconductor ultraviolet light emitting element, and nitride semiconductor ultraviolet light emitting element
TW106105112A TWI719141B (en) 2016-09-27 2017-02-16 Manufacturing method of nitride semiconductor ultraviolet light emitting element and nitride semiconductor ultraviolet light emitting element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/078410 WO2018061080A1 (en) 2016-09-27 2016-09-27 Method for manufacturing nitride semiconductor ultraviolet light emitting element, and nitride semiconductor ultraviolet light emitting element

Publications (1)

Publication Number Publication Date
WO2018061080A1 true WO2018061080A1 (en) 2018-04-05

Family

ID=61760193

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/078410 WO2018061080A1 (en) 2016-09-27 2016-09-27 Method for manufacturing nitride semiconductor ultraviolet light emitting element, and nitride semiconductor ultraviolet light emitting element

Country Status (3)

Country Link
JP (1) JP6686155B2 (en)
TW (1) TWI719141B (en)
WO (1) WO2018061080A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6329709B1 (en) * 2017-08-24 2018-05-23 創光科学株式会社 Nitride semiconductor ultraviolet light emitting device manufacturing method and nitride semiconductor ultraviolet light emitting device
CN110391320A (en) * 2018-04-23 2019-10-29 旭化成株式会社 Nitride semiconductor luminescent element, nitride semiconductor light-emitting device
JP2020113584A (en) * 2019-01-08 2020-07-27 豊田合成株式会社 Manufacturing method for light-emitting device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0645646A (en) * 1992-07-23 1994-02-18 Nisshin Steel Co Ltd Infrared light-emitting diode provided with p-n heterojunction and its manufacture
JP2004289047A (en) * 2003-03-25 2004-10-14 Toyoda Gosei Co Ltd Semiconductor light emitting element and its manufacturing method
JP2004333540A (en) * 2003-04-30 2004-11-25 Namiki Precision Jewel Co Ltd Manufacturing method of hemispherical lens
JP2006035334A (en) * 2004-07-23 2006-02-09 Amatsuji Steel Ball Mfg Co Ltd Sphere processing device for brittle material and processing method
JP5985782B1 (en) * 2015-04-03 2016-09-06 創光科学株式会社 Nitride semiconductor ultraviolet light emitting device and nitride semiconductor ultraviolet light emitting device

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI291769B (en) * 2002-05-28 2007-12-21 Matsushita Electric Works Ltd Lighting apparatus and surface lighting apparatus
US8736039B2 (en) * 2006-10-06 2014-05-27 Taiwan Semiconductor Manufacturing Co., Ltd. Stacked structures and methods of forming stacked structures
US8415879B2 (en) * 2007-05-31 2013-04-09 Nthdegree Technologies Worldwide Inc Diode for a printable composition
TWI426625B (en) * 2008-10-30 2014-02-11 Gio Optoelectronics Corp Light emitting unit
KR101641365B1 (en) * 2010-03-09 2016-07-20 엘지디스플레이 주식회사 nitride semiconductor light emitting device and method for manufacturing the same
JP5017399B2 (en) * 2010-03-09 2012-09-05 株式会社東芝 Semiconductor light emitting device and method for manufacturing semiconductor light emitting device
EP2605295A3 (en) * 2011-12-13 2015-11-11 LG Innotek Co., Ltd. Ultraviolet light emitting device
JP6251883B2 (en) * 2014-01-07 2017-12-27 パナソニックIpマネジメント株式会社 UV light emitting element
TWM512219U (en) * 2015-02-26 2015-11-11 Te-En Tsao Light-emitting diode

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0645646A (en) * 1992-07-23 1994-02-18 Nisshin Steel Co Ltd Infrared light-emitting diode provided with p-n heterojunction and its manufacture
JP2004289047A (en) * 2003-03-25 2004-10-14 Toyoda Gosei Co Ltd Semiconductor light emitting element and its manufacturing method
JP2004333540A (en) * 2003-04-30 2004-11-25 Namiki Precision Jewel Co Ltd Manufacturing method of hemispherical lens
JP2006035334A (en) * 2004-07-23 2006-02-09 Amatsuji Steel Ball Mfg Co Ltd Sphere processing device for brittle material and processing method
JP5985782B1 (en) * 2015-04-03 2016-09-06 創光科学株式会社 Nitride semiconductor ultraviolet light emitting device and nitride semiconductor ultraviolet light emitting device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6329709B1 (en) * 2017-08-24 2018-05-23 創光科学株式会社 Nitride semiconductor ultraviolet light emitting device manufacturing method and nitride semiconductor ultraviolet light emitting device
CN110391320A (en) * 2018-04-23 2019-10-29 旭化成株式会社 Nitride semiconductor luminescent element, nitride semiconductor light-emitting device
CN110391320B (en) * 2018-04-23 2022-05-27 旭化成株式会社 Nitride semiconductor light-emitting element and nitride semiconductor light-emitting device
JP2020113584A (en) * 2019-01-08 2020-07-27 豊田合成株式会社 Manufacturing method for light-emitting device

Also Published As

Publication number Publication date
JP6686155B2 (en) 2020-04-22
TW201826561A (en) 2018-07-16
JPWO2018061080A1 (en) 2019-06-24
TWI719141B (en) 2021-02-21

Similar Documents

Publication Publication Date Title
TWI760282B (en) Light emitting diodes with integrated reflector for a direct view display and method of making thereof
JP5142523B2 (en) Vertical structure composite semiconductor device
US7789531B2 (en) LED system and method
JP2011253925A (en) Method of manufacturing light-emitting device
US7663150B2 (en) Optoelectronic chip
TW200404375A (en) Semiconductor element and method for producing the same
JP2008532281A (en) Substrate removal method for high light extraction LED
CN108140703B (en) Nitride semiconductor ultraviolet light emitting device and method for manufacturing same
TWI492422B (en) Fabrication method of light emitting diode chip having phosphor coating layer
JP6686155B2 (en) Nitride semiconductor ultraviolet light emitting device manufacturing method and nitride semiconductor ultraviolet light emitting device
JP6329709B1 (en) Nitride semiconductor ultraviolet light emitting device manufacturing method and nitride semiconductor ultraviolet light emitting device
JP2007335877A (en) Light-emitting diode and its manufacturing method
US9412899B2 (en) Method of stress induced cleaving of semiconductor devices
US20150179894A1 (en) Methods of locating differently shaped or differently sized led die in a submount
US20080303053A1 (en) GaN Based LED Having Reduced Thickness and Method for Making the Same
KR100752348B1 (en) Method of producing light emitting diode having vertical structure
US9082892B2 (en) GaN Based LED having reduced thickness and method for making the same
JP7343749B2 (en) Light emitting device and its manufacturing method
US20220190222A1 (en) Optoelectronic semiconductor device comprising a dielectric layer and a transparent conductive layer and method for manufacturing the optoelectronic semiconductor device
KR20060074389A (en) Luminescence device and method of manufacturing the same
TW201009921A (en) Optical device polishing
TW201631793A (en) Flip-chip LED and manufacturing method thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16917633

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018541750

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16917633

Country of ref document: EP

Kind code of ref document: A1