WO2018059313A1 - 数据传输方法及相关设备 - Google Patents

数据传输方法及相关设备 Download PDF

Info

Publication number
WO2018059313A1
WO2018059313A1 PCT/CN2017/102874 CN2017102874W WO2018059313A1 WO 2018059313 A1 WO2018059313 A1 WO 2018059313A1 CN 2017102874 W CN2017102874 W CN 2017102874W WO 2018059313 A1 WO2018059313 A1 WO 2018059313A1
Authority
WO
WIPO (PCT)
Prior art keywords
pdu session
network slice
data packet
indicator
indication information
Prior art date
Application number
PCT/CN2017/102874
Other languages
English (en)
French (fr)
Inventor
韩锋
李宏
谭巍
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2018059313A1 publication Critical patent/WO2018059313A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling

Definitions

  • the present application relates to the field of communications technologies, and in particular, to a data transmission method and related devices.
  • a user data device (English: User Equipment, UE for short) and a data network can establish multiple packet data networks (English: Packet Data Network, referred to as: PDN) connection.
  • a packet data gateway (English: PDN Gateway, PGW for short) can establish an exclusive data radio bearer for each PDN connection (English: Data Radio Bearer, DRB for short).
  • DRB Data Radio Bearer
  • the UE establishes two PDN connections, PDN connection 1 and PDN connection 2, respectively.
  • the data network corresponding to the PDN connection 1 is the PDN network 1
  • the data network corresponding to the PDN connection 2 is the PDN network 2.
  • the PDN connection 1 includes two service data flows, which are service data flow 1 and service data flow 2.
  • the PDN connection 2 also includes two service data streams, namely a service data stream 3 and a service data stream 4.
  • the traffic QoS 1 and the service data flow 3 have the same QoS
  • the service data flow 2 and the service data flow 4 have the same QoS.
  • PGW1 maps service data stream 1 and service data stream 2 to DRB1 and DRB2, respectively
  • PGW2 maps service data stream 3 and service data stream 4 to DRB3 and DRB4, respectively.
  • the data packet is transmitted by using DRB1.
  • the eNB determines that the data packet corresponds to the PDN connection 1 according to the DRB1, and further transmits the data packet to the PGW1.
  • the PGW 1 determines that the data packet corresponds to the PDN connection 1 according to the DRB1, and further transmits the data packet to the PDN network 1.
  • the UE and the core network identify the data packet by using the DRB used for transmitting the data packet.
  • the concept of protocol data unit (English: Protocol Data Unit, PDU for short) is introduced.
  • the PDU session refers to the establishment between the terminal device and the data network. Connection.
  • the embodiment of the invention provides a data transmission method and related device, and the receiving end device can accurately identify which PDU session the data packet corresponds to.
  • an embodiment of the present invention provides a data transmission method.
  • the method includes: the sending end device generates a data packet, where the data packet includes first indication information, where the first indication information is used to indicate a PDU session corresponding to the data packet.
  • the sender device sends the data packet to the receiving device.
  • the receiving end device can accurately identify the PDU session corresponding to the data packet according to the first indication information. Therefore, data packets of different PDU sessions may not need to be distinguished based on independent DRBs, which may save the number of DRBs, thereby reducing the overhead of control signaling.
  • the data packet further includes second indication information, and second The indication information is used to indicate a network slice corresponding to the data packet.
  • second indication information is used to indicate a network slice corresponding to the data packet.
  • the first indication information is further used to indicate a network slice corresponding to the data packet.
  • the first indication information can simultaneously indicate which PDU session in the network slice the data packet corresponds to, so that the number of bytes carried in the data packet during the transmission process can be reduced, and the transmission overhead is reduced.
  • the data packet further includes third indication information, and a third The indication information is used to indicate the quality of service (English: Quality of Service, QoS for short) parameter of the service data flow to which the data packet belongs.
  • the receiving end device can accurately identify the QoS parameter of the service data flow to which the data packet belongs according to the third indication information, so as to perform corresponding scheduling decision on the data packet.
  • the data packet with the same QoS parameter can be transmitted based on the same DRB, regardless of which PDU session corresponding to the data packet, or even which network slice, can save the number of DRBs, thereby reducing the overhead of control signaling.
  • the first indication information is further used to indicate that the data packet belongs to The QoS parameters of the traffic data flow.
  • the first indication information can simultaneously indicate the PDU session corresponding to the data packet and the QoS parameter of the service data flow to which the data packet belongs, which can reduce the number of bytes carried in the data packet during the transmission process, and reduce the transmission overhead.
  • the first indication information includes an identifier of the PDU session, and the identifier of the PDU session is The core network control plane device is allocated for the PDU session and is used to identify the PDU session. Additional mapping can be saved by inheriting the identity of the PDU session in the control plane at the user plane.
  • the first indication information includes an indicator of the PDU session, and an indicator of the PDU session It is allocated by the radio access network device or the core network control plane device for the PDU session and is used to identify the PDU session on the user plane.
  • a process of obtaining an indicator of a PDU session by a source device before generating a data packet is described.
  • the sender device acquires an indicator of the PDU session corresponding to the identifier of the PDU session from the first mapping table.
  • the first mapping table includes a correspondence between the identifier set of the PDU session and the indicator set of the PDU session.
  • the identifier of the PDU session is allocated by the core network control plane device for the PDU session and is used to identify the PDU session, PDU on the control plane.
  • the byte length of the indicator of the session is less than the byte length of the identity of the PDU session.
  • the sending end device is a terminal device and the receiving end device is a radio access network device
  • the terminal device is configured from the first mapping table.
  • the first mapping table sent by the radio access network device is received.
  • a process for the terminal device to receive the first mapping table sent by the radio access network device is described.
  • the terminal device receives a radio resource control (Radio Resource Control, RRC for short) connection reconfiguration message sent by the radio access network device, and the RRC connection reconfiguration message includes a first mapping table.
  • RRC Radio Resource Control
  • the second indication information includes an identifier of the network slice, where the identifier of the network slice is allocated by the core network control plane device for the network slice Used to identify network slices. Additional mapping can be saved by inheriting the identification of the network slice in the control plane on the user side.
  • the second indication information includes an indicator of the network slice
  • the indicator of the network slice is controlled by the radio access network device or the core network
  • the face device is assigned to the network slice and is used to identify the network slice on the user plane.
  • the process of obtaining an indicator of a network slice before the sender device generates a data packet is described.
  • the sending end device acquires, from the second mapping table, an indicator of the network slice corresponding to the identifier of the network slice, where the second mapping table includes a correspondence between the identifier set of the network slice and the indicator set of the network slice, and the identifier of the network slice is determined by the core.
  • the network control plane device allocates for the network slice and is used to identify the network slice on the control plane.
  • the byte length of the indicator of the network slice is less than the byte length of the identifier of the network slice.
  • the terminal device is configured from the second mapping table. Before acquiring the indicator of the network slice corresponding to the identifier of the network slice, receiving the second mapping table sent by the radio access network device.
  • a process for the terminal device to receive the second mapping table sent by the radio access network device is described.
  • the terminal device receives the RRC connection reconfiguration message sent by the radio access network device, where the RRC connection reconfiguration message includes a second mapping table.
  • the first indication information includes an identifier of a QoS parameter of the service data flow to which the data packet belongs, and a QoS parameter of the service data flow to which the data packet belongs
  • the identifier is assigned by the core network control plane device for the QoS parameters of the service data flow to which the data packet belongs.
  • the first indication information includes a first indicator, where the first indicator is a radio access network device or a core network control plane device Assigned for network slices and PDU sessions and used to identify network slices and PDU sessions on the user side.
  • An indicator can indicate which PDU session in the network slice the data packet corresponds to, which can reduce the number of bytes carried in the data packet during transmission and reduce the transmission overhead.
  • the first indicator allocated by the radio access network device is the same as the first indicator allocated by the core network control plane device or different.
  • an embodiment of the present invention provides a data transmission method.
  • the method includes: receiving, by the receiving device, a data packet sent by the sending end device, where the data packet includes first indication information, where the first indication information is used to indicate a PDU session corresponding to the data packet.
  • the receiving end device determines, according to the first indication information, a PDU session corresponding to the data packet.
  • the receiving end device can accurately identify the PDU session corresponding to the data packet according to the first indication information. Therefore, data packets of different PDU sessions may not need to be distinguished based on independent DRBs, which may save the number of DRBs, thereby reducing the overhead of control signaling.
  • the data packet further includes second indication information, where the second indication information is used to indicate a network slice corresponding to the data packet.
  • the receiving end device can accurately identify which PDU session in the network slice corresponding to the data packet by using the first indication information and the second indication information. Therefore, data packets of different PDU sessions in different network slices may not need to be distinguished based on independent DRBs, which may save the number of DRBs, thereby reducing the overhead of control signaling.
  • the first indication information is further used to indicate a network slice corresponding to the data packet.
  • the first indication information can simultaneously indicate which PDU session in the network slice the data packet corresponds to, so that the number of bytes carried in the data packet during the transmission process can be reduced, and the transmission overhead is reduced.
  • the data packet further includes third indication information, and a third The indication information is used to indicate the QoS parameters of the service data flow to which the data packet belongs.
  • the receiving end device can accurately identify the QoS parameter of the service data flow to which the data packet belongs according to the third indication information, so as to perform corresponding scheduling decision on the data packet.
  • the data packet with the same QoS parameter can be transmitted based on the same DRB, regardless of which PDU session corresponding to the data packet, or even which network slice, can save the number of DRBs, thereby reducing the overhead of control signaling.
  • the first indication information is further used to indicate that the data packet belongs to The QoS parameters of the traffic data flow.
  • the first indication information can simultaneously indicate the PDU session corresponding to the data packet and the QoS parameter of the service data flow to which the data packet belongs, which can reduce the number of bytes carried in the data packet during the transmission process, and reduce the transmission overhead.
  • the first indication information includes an identifier of the PDU session, and the identifier of the PDU session is The core network control plane device is allocated for the PDU session and is used to identify the PDU session. Additional mapping can be saved by inheriting the identity of the PDU session in the control plane at the user plane.
  • the first indication information includes an indicator of the PDU session corresponding to the identifier of the PDU session.
  • the indicator of the PDU session is assigned by the radio access network device or the core network control plane device for the PDU session and is used to identify the PDU session on the user plane.
  • the identity of the PDU session is assigned by the core network control plane device for the PDU session and is used to identify the PDU session on the control plane.
  • the byte length of the indicator of the PDU session is less than the byte length of the identity of the PDU session.
  • the sending end device is a terminal device
  • the receiving end device is a radio access network device
  • the radio access network device receiving the terminal device
  • the first mapping table is sent to the terminal device before the transmitted data packet.
  • an eighth implementation manner of the second aspect a process for the radio access network device to send the first mapping table to the terminal device is described.
  • the radio access network device sends an RRC connection reconfiguration message to the terminal device, where the RRC connection reconfiguration message includes a first mapping table.
  • the second indication information includes an identifier of the network slice, where the identifier of the network slice is allocated by the core network control plane device for the network slice Used to identify network slices. Additional mapping can be saved by inheriting the identification of the network slice in the control plane on the user side.
  • the second indication information includes an identifier of the network slice corresponding to the identifier of the network slice, and the indicator of the network slice is determined by the wireless access
  • the network device or core network control plane device is allocated for the network slice and is used to identify the network slice on the user side.
  • the identifier of the network slice is allocated by the core network control plane device for the network slice and is used to identify the network slice on the control plane, the indication of the network slice
  • the byte length of the character is less than the byte length of the identifier of the network slice.
  • the radio access network device if the receiving end device is a terminal device, and the receiving end device is a radio access network device, the radio access network device receiving terminal Before the data packet sent by the device, the radio access network device sends a second mapping table to the terminal device.
  • a process for the radio access network device to send the second mapping table to the terminal device is described.
  • the radio access network device sends an RRC connection reconfiguration message to the terminal device, where the RRC connection reconfiguration message includes a second mapping table.
  • the first indication information includes an identifier of a QoS parameter of the service data flow to which the data packet belongs, and a QoS parameter of the service data flow to which the data packet belongs
  • the identifier is assigned by the core network control plane device for the QoS parameters of the service data flow to which the data packet belongs.
  • the first indication information includes a first indicator, where the first indicator is a radio access network device or a core network control plane device Assigned for network slices and PDU sessions and used to identify network slices and PDU sessions on the user side.
  • An indicator can indicate which PDU session in the network slice the data packet corresponds to, which can reduce the number of bytes carried in the data packet during transmission and reduce the transmission overhead.
  • the first indicator allocated by the radio access network device is the same as the first indicator allocated by the core network control plane device or different.
  • an embodiment of the present invention provides a transmitting end device, including a processor, a memory, and a transceiver.
  • the memory is used to store an instruction
  • the processor is configured to invoke an instruction stored in the memory to perform the following operations: generating a data packet, where the data packet includes first indication information, where the first indication information is used to indicate a PDU session corresponding to the data packet.
  • the data packet is sent to the receiving device through the transceiver.
  • the receiving end device can accurately identify the PDU session corresponding to the data packet according to the first indication information. Therefore, data packets of different PDU sessions may not need to be distinguished based on independent DRBs, which may save the number of DRBs, thereby reducing the overhead of control signaling.
  • the data packet further includes second indication information, where the second indication information is used to indicate a network slice corresponding to the data packet.
  • the receiving end device can accurately identify which PDU session in the network slice corresponding to the data packet by using the first indication information and the second indication information. Therefore, data packets of different PDU sessions in different network slices may not need to be distinguished based on independent DRBs, which may save the number of DRBs, thereby reducing the overhead of control signaling.
  • the first indication information is further used to indicate a network slice corresponding to the data packet.
  • the first indication information can simultaneously indicate which PDU session in the network slice the data packet corresponds to, so that the number of bytes carried in the data packet during the transmission process can be reduced, and the transmission overhead is reduced.
  • the data packet further includes a third indication information, and a third The indication information is used to indicate the QoS parameters of the service data flow to which the data packet belongs.
  • the receiving end device can accurately identify the QoS parameter of the service data flow to which the data packet belongs according to the third indication information, so as to perform corresponding scheduling decision on the data packet.
  • the first indication information is further used to indicate that the data packet belongs to The QoS parameters of the traffic data flow.
  • the first indication information can simultaneously indicate the PDU session corresponding to the data packet and the QoS parameter of the service data flow to which the data packet belongs, which can reduce the number of bytes carried in the data packet during the transmission process, and reduce the transmission overhead.
  • the first indication information includes an identifier of the PDU session, and the identifier of the PDU session is The core network control plane device is allocated for the PDU session and is used to identify the PDU session. Additional mapping can be saved by inheriting the identity of the PDU session in the control plane at the user plane.
  • the first indication information includes an indicator of the PDU session, and an indicator of the PDU session It is allocated by the radio access network device or the core network control plane device for the PDU session and is used to identify the PDU session on the user plane.
  • a description is given of the process by which the processor obtains an indicator of a PDU session before generating a data packet.
  • the processor obtains an indicator of the PDU session corresponding to the identifier of the PDU session from the first mapping table.
  • the first mapping table includes a correspondence between the identifier set of the PDU session and the indicator set of the PDU session.
  • the identifier of the PDU session is allocated by the core network control plane device for the PDU session and is used to identify the PDU session, PDU on the control plane.
  • the byte length of the indicator of the session is less than the byte length of the identity of the PDU session.
  • the processor is configured from the first mapping table. Before obtaining the indicator of the PDU session corresponding to the identifier of the PDU session, the first mapping table sent by the radio access network device is received by the transceiver.
  • an eighth implementation manner of the third aspect a process for the processor to receive the first mapping table sent by the radio access network device by using the transceiver is described.
  • the processor receives the RRC connection reconfiguration message sent by the radio access network device by using the transceiver, where the RRC connection reconfiguration message includes a first mapping table.
  • the second indication information includes an identifier of the network slice, where the identifier of the network slice is allocated by the core network control plane device for the network slice Used to identify network slices. Additional mapping can be saved by inheriting the identification of the network slice in the control plane on the user side.
  • the second indication information includes an indicator of the network slice
  • the indicator of the network slice is controlled by the radio access network device or the core network
  • the face device is assigned to the network slice and is used to identify the network slice on the user plane. The process of obtaining an indicator of a network slice before the processor generates a data packet is described.
  • the processor obtains, from the second mapping table, an indicator of the network slice corresponding to the identifier of the network slice, where the second mapping table includes a correspondence between the identifier set of the network slice and the indicator set of the network slice, where the identifier of the network slice is determined by the core network
  • the control plane device allocates for the network slice and is used to identify the network slice at the control plane.
  • the byte length of the indicator of the network slice is less than the byte length of the identifier of the network slice.
  • the processor is configured from the second mapping table. Before obtaining the indicator of the network slice corresponding to the identifier of the network slice, the second mapping table sent by the radio access network device is received by the transceiver.
  • a process for the processor to receive the second mapping table sent by the radio access network device by using the transceiver is described.
  • the processor receives the RRC connection reconfiguration message sent by the radio access network device by using the transceiver, where the RRC connection reconfiguration message includes a second mapping table.
  • the first indication information includes an identifier of a QoS parameter of the service data flow to which the data packet belongs, and a QoS parameter of the service data flow to which the data packet belongs
  • the identifier is assigned by the core network control plane device for the QoS parameters of the service data flow to which the data packet belongs.
  • the first indication information includes a first indicator, where the first indicator is a radio access network device or a core network control plane device Assigned for network slices and PDU sessions and used to identify network slices and PDU sessions on the user side.
  • An indicator can indicate which PDU session in the network slice the data packet corresponds to, which can reduce the number of bytes carried in the data packet during transmission and reduce the transmission overhead.
  • the first indicator allocated by the radio access network device is the same as the first indicator allocated by the core network control plane device or different.
  • an embodiment of the present invention provides a receiving end device.
  • the receiving end device is a receiving end device, and includes a processor, a memory, and a transceiver, wherein the memory is configured to store an instruction, and the processor is configured to invoke an instruction stored in the memory to perform an operation of: receiving, by the transceiver, data sent by the transmitting device.
  • the packet includes a first indication information, where the first indication information is used to indicate a PDU session corresponding to the data packet. Determining a PDU session corresponding to the data packet according to the first indication information.
  • the receiving end device can accurately identify the PDU session corresponding to the data packet according to the first indication information. Therefore, data packets of different PDU sessions may not need to be distinguished based on independent DRBs, which may save the number of DRBs, thereby reducing the overhead of control signaling.
  • the data packet further includes second indication information, where the second indication information is used to indicate a network slice corresponding to the data packet.
  • the receiving end device can accurately identify which PDU session in the network slice corresponding to the data packet by using the first indication information and the second indication information. Therefore, data packets of different PDU sessions in different network slices may not need to be distinguished based on independent DRBs, which may save the number of DRBs, thereby reducing the overhead of control signaling.
  • the first indication information is further used to indicate a network slice corresponding to the data packet.
  • the first indication information can simultaneously indicate which PDU session in the network slice the data packet corresponds to, so that the number of bytes carried in the data packet during the transmission process can be reduced, and the transmission overhead is reduced.
  • the data packet further includes third indication information, and a third The indication information is used to indicate the QoS parameters of the service data flow to which the data packet belongs.
  • the receiving end device can accurately identify the QoS parameter of the service data flow to which the data packet belongs according to the third indication information, so as to perform corresponding scheduling decision on the data packet.
  • the data packet with the same QoS parameter can be transmitted based on the same DRB, regardless of which PDU session corresponding to the data packet, or even which network slice, can save the number of DRBs, thereby reducing the overhead of control signaling.
  • the first indication information is further used to indicate that the data packet belongs to The QoS parameters of the traffic data flow.
  • the first indication information can simultaneously indicate the PDU session corresponding to the data packet and the QoS of the service data flow to which the data packet belongs.
  • the parameter can reduce the number of bytes carried in the data packet during transmission and reduce the transmission overhead.
  • the first indication information includes an identifier of the PDU session, and the identifier of the PDU session is The core network control plane device is allocated for the PDU session and is used to identify the PDU session. Additional mapping can be saved by inheriting the identity of the PDU session in the control plane at the user plane.
  • the first indication information includes an indicator of the PDU session corresponding to the identifier of the PDU session.
  • the indicator of the PDU session is assigned by the radio access network device or the core network control plane device for the PDU session and is used to identify the PDU session on the user plane.
  • the identity of the PDU session is assigned by the core network control plane device for the PDU session and is used to identify the PDU session on the control plane.
  • the byte length of the indicator of the PDU session is less than the byte length of the identity of the PDU session.
  • the processor receives the sending end by using the transceiver. Before the data packet sent by the device, the processor sends a first mapping table to the terminal device through the transceiver.
  • an eighth implementation manner of the fourth aspect a process for the processor to send the first mapping table to the terminal device by using the transceiver is described.
  • the processor sends an RRC connection reconfiguration message to the terminal device by using the transceiver, where the RRC connection reconfiguration message includes a first mapping table.
  • the second indication information includes an identifier of the network slice, where the identifier of the network slice is allocated by the core network control plane device for the network slice Used to identify network slices. Additional mapping can be saved by inheriting the identification of the network slice in the control plane on the user side.
  • the second indication information includes an indicator of a network slice corresponding to the identifier of the network slice, and the indicator of the network slice is determined by the wireless access
  • the network device or core network control plane device is allocated for the network slice and is used to identify the network slice on the user side.
  • the identifier of the network slice is allocated by the core network control plane device for the network slice and is used to identify the network slice on the control plane, and the byte length of the indicator of the network slice is smaller than the byte length of the identifier of the network slice.
  • the processor receives and sends the packet through the transceiver. Before the data packet sent by the end device, the processor sends a second mapping table to the terminal device through the transceiver.
  • a process of the second mapping table sent by the processor to the terminal device by using the transceiver is described.
  • the processor sends an RRC connection reconfiguration message to the terminal device by using the transceiver, where the RRC connection reconfiguration message includes a second mapping table.
  • the first indication information includes an identifier of a QoS parameter of the service data flow to which the data packet belongs, and a QoS parameter of the service data flow to which the data packet belongs
  • the identifier is assigned by the core network control plane device for the QoS parameters of the service data flow to which the data packet belongs.
  • the first indication information includes a first indicator, where the first indicator is a radio access network device or a core network control plane device For network slicing and PDU sessions The words are assigned and used to identify network slices and PDU sessions on the user side.
  • An indicator can indicate which PDU session in the network slice the data packet corresponds to, which can reduce the number of bytes carried in the data packet during transmission and reduce the transmission overhead.
  • the first indicator allocated by the radio access network device is the same as the first indicator allocated by the core network control plane device or different.
  • an embodiment of the present invention provides a transmitting end device, where the transmitting end device includes a module or a unit for performing the data transmission method described in the foregoing first aspect or any one of the foregoing aspects.
  • an embodiment of the present invention provides a receiving end device, where the receiving end device includes a module or a unit for performing the data transmission method described in any one of the foregoing second aspect or the second aspect.
  • the embodiment of the present invention provides a communication system, including a transmitting end device and a receiving end device, where the transmitting end device is the transmitting end device described in the third aspect or the fifth aspect, and the receiving end device is the fourth device. Aspect or the receiver device described in the sixth aspect.
  • 1 is a schematic diagram of mapping between a data packet and a DRB in the prior art
  • FIG. 2 is a schematic structural diagram of a network system according to an embodiment of the present invention.
  • FIG. 3 is a schematic diagram of an application scenario according to an embodiment of the present invention.
  • FIG. 4 is a schematic diagram of mapping between a data packet and a DRB according to an embodiment of the present invention.
  • FIG. 5 is a signaling interaction diagram of a data transmission method according to an embodiment of the present invention.
  • FIG. 6 is a schematic diagram of a peer-to-peer protocol layer between a terminal device and a radio access network device according to an embodiment of the present invention
  • FIG. 7 is a schematic diagram of packet marking in a PDCP layer according to an embodiment of the present invention.
  • FIG. 8 is a schematic diagram of packet marking performed in a newly added protocol layer above the PDCP layer below the IP layer according to an embodiment of the present invention.
  • FIG. 9 is a schematic flowchart of a terminal device acquiring a first mapping table according to an embodiment of the present disclosure.
  • FIG. 10 is a schematic flowchart of a terminal device acquiring a second mapping table according to an embodiment of the present disclosure
  • 11 is a packet format of an NG3 interface according to an embodiment of the present invention.
  • FIG. 12 is a schematic structural diagram of a device at a transmitting end according to an embodiment of the present disclosure.
  • FIG. 13 is a schematic structural diagram of a receiving end device according to an embodiment of the present disclosure.
  • FIG. 14 is a schematic structural diagram of another device according to an embodiment of the present invention.
  • FIG. 15 is a schematic structural diagram of another receiving end device according to an embodiment of the present invention.
  • FIG. 2 is a schematic structural diagram of a network system according to an embodiment of the present invention.
  • the terminal device 21 can simultaneously access one or more network slices.
  • the terminal device 21 simultaneously accesses three network slices of the network slice 23, the network slice 24, and the network slice 25 as an example. Description.
  • the network slices are split across the core network, and all network slices share the radio access network equipment, such as network slice 23, network slice 24, and network slice 25 share the wireless access network device 22.
  • all the network slices share the common core network control plane device 26, and the functions that the public core network control plane device 26 can provide include: mobility management, user authentication, and the like.
  • Each network slice has its own core network
  • the user equipment and the core network control plane device, and the functions provided by the core network control plane device of each network slice may include: session management and the like.
  • the core network control plane device unique to each network slice itself may be a session management device for establishing a session for the terminal device 21.
  • the core network control plane device in the network slice is connected to the public core network control plane device 26 through an interface, which may be a Next Generation (English: Next Generation, NG) 2 interface.
  • One or more core network user plane devices may be included in each network slice and may include one or more core network control plane devices.
  • the core network control plane device in the network slice is connected to the core network user plane device through an interface, and the interface may be an NG 4 interface.
  • the data communication between the wireless access network device and the wireless access network device can be regarded as the terminal device 21.
  • the UE will be introduced in a general sense.
  • the terminal device 21 may also be referred to as a mobile station, an access terminal, a subscriber unit, a subscriber station, a mobile station, a remote station, a remote terminal, a mobile device, a user terminal, a terminal, a wireless communication device, a user agent, or a user device.
  • the terminal device 21 may be a cellular phone, a personal digital processing (English: Personal Digital Assistant, PDA for short), a handheld device with wireless communication function, an in-vehicle device, a wearable device, and a mobile station in a future 5G network or a public in the future.
  • Terminal equipment in the network of the Land Mobile Network (English: Public Land Mobile Network, PLMN for short).
  • the radio access network device 22 may be a radio access network device in a new wireless technology (English: New Radio, NR for short), and its functions include, but are not limited to, mobility management, call processing, and chaining of the terminal device 21. Road management, security encryption, header compression, scheduling, coding, modulation, demodulation, retransmission, segmentation, aggregation, radio and other functions.
  • the radio access network device 22 further has an uplink signal measurement function, which can measure the uplink signal sent by the terminal device 21, and determine whether to trigger the terminal device 21 to start the downlink based on the uplink signal measurement value. measuring.
  • the radio access network device 22 may adopt other names in the new wireless (English: New Radio, NR for short) system, including but not limited to: base station (English: Base Station, BS for short) or evolved base station. .
  • the terminal device 21 communicates with the radio access network device 22 through an air interface.
  • the radio access network device 22 communicates with the core network user plane device in the network slice through an interface, which may be an NG3 interface.
  • the radio access network device 22 communicates with the public core network control plane device through an interface, which may be an NG2 interface.
  • FIG. 3 is a schematic diagram of an application scenario according to an embodiment of the present invention.
  • the radio access network device 32 is connected to the core network user plane device 33, the core network user plane device 34, and the core network user plane device 35, respectively.
  • the core network user plane device 33 and the core network user plane device 34 are respectively connected to the data network 36.
  • the core network user plane device 35 is connected to the data network 37.
  • Types of data networks include, but are not limited to, the Internet (English: Internet), IP Multimedia Subsystem (English: IP Multimedia Subsystem, referred to as: IMS).
  • Data network 36 and data network 37 are different data networks.
  • the type of data network 36 is the Internet and the type of data network 37 is IMS.
  • the PDU session described in the embodiment of the present invention refers to a PDU connection established between the terminal device and the data network.
  • Types of PDU sessions include, but are not limited to, IP type, Ethernet type, and non-IP type.
  • the session established between the terminal device 31 and the data network 36 via the core network user plane device 33 is the PDU session 1.
  • the session established between the terminal device 31 and the data network 36 via the core network user plane device 34 is the PDU session 2.
  • the session established between the terminal device 31 and the data network 37 via the core network user plane device 35 is the PDU session 3.
  • the session types of the three PDU sessions may be the same or different.
  • the session type of PDU session 1 is IP class.
  • Type the session type of PDU session 2 is Ethernet type
  • the session type of PDU session 3 is non-IP type.
  • the data transmission method provided by the embodiment of the present invention can be applied to the following scenarios.
  • Scenario 1. The core network user plane device establishes multiple PDU sessions for the terminal device 31.
  • Scenario 2 The terminal device 31 accesses a network slice, and the network slice establishes a plurality of PDU sessions for the terminal device 31.
  • Scenario 3 The terminal device 31 simultaneously accesses multiple network slices, and each network slice establishes a PDU session for the terminal device 31.
  • Scenario 4 The terminal device 31 simultaneously accesses multiple network slices, and some network slices establish a PDU session for the terminal device 31, and some network slices establish multiple PDU sessions for the terminal device 31.
  • Scenario 5 The terminal device 31 simultaneously accesses multiple network slices, and each network slice establishes multiple PDU sessions for the terminal device 31.
  • the terminal device 31 when the terminal device 31 supports multiple PDU sessions at the same time, the user plane data of the plurality of PDU sessions needs to be simultaneously transmitted between the terminal device 31 and the radio access network device 32.
  • the radio access network device 32 For the uplink (English: Uplink, UL for short) data, the radio access network device 32 needs to distinguish which PDU session the received UL data packet belongs to, so as to encapsulate the data packet according to the NG3 interface encapsulation format, and then the data packet. Send to the core network user plane device that supports the PDU session.
  • the terminal device 31 also needs to verify the received DL data packet to confirm which PDU session the DL data packet corresponds to.
  • the terminal device 31 is a relay (English: Relay) UE, and after confirming which PDU session the DL data packet corresponds to, the terminal device 31 transmits the data packet to the corresponding node.
  • the terminal device 31 accesses multiple network slices at the same time, the user plane data belonging to the PDU session in the plurality of network slices needs to be simultaneously transmitted between the terminal device 31 and the radio access network device 32.
  • the radio access network device 22 needs to distinguish which PDU session in which network slice the received UL data packet belongs, so as to encapsulate the data packet according to the NG3 interface encapsulation format, and then send the data packet to the PDU interface encapsulation format.
  • the terminal device 31 also often needs to verify the received DL data packet, confirming which PDU session in which network slice the DL data packet corresponds.
  • the terminal device 31 is a relay UE, and after confirming which PDU session of the network slice the DL data packet corresponds to, the terminal device 31 transmits the data packet to the corresponding node.
  • the radio access network device 32 also needs to know the QoS parameters of the service data flow to which the UL data packet belongs, thereby scheduling the UL data packet according to the QoS parameter, thereby ensuring the QoS of the air interface.
  • the terminal device 31 also needs to know the QoS parameters of the service data stream to which the DL data packet belongs, so as to determine the QoS parameters of the corresponding UL data packet according to the QoS parameters of the DL data packet, thereby performing the corresponding UL data packet transmission.
  • data packets of different network slices are distinguished based on different DRBs, and data packets in different PDU sessions in the same network slice are also distinguished based on different DRBs, and multiple in the same PDU session.
  • QoS parameters of the data packets are different, it is also necessary to distinguish based on the independent DRB.
  • This implementation brings some drawbacks. For example, the more network slices accessed by the terminal device 31 and the more PDU sessions supported, the more the number of DRBs. The large number of DRBs will bring many problems, such as control signaling overhead. The reason is that a set of packet data convergence protocol needs to be maintained for each DRB.
  • the terminal device 31 performs the radio resource control (English: Radio Resource Control, RRC for short) connection reconfiguration, handover, or even RRC connection reestablishment, the RRC connection reconfiguration message needs to carry the PDCP, RLC, and MAC parameters of all DRBs. Control signaling overhead is large.
  • the DRB mapping mode is optimized, that is, regardless of which PDU session the data packet comes from, as long as the QoS parameters are the same, the mapping to the same DRB can be performed, thereby reducing the number of DRBs. Reduce the overhead of control signaling.
  • the mapping to the same DRB can be performed, so that the number of DRBs can be reduced, and the overhead of control signaling can be reduced.
  • FIG. 4 is a schematic diagram of mapping between a data packet and a DRB according to an embodiment of the present invention.
  • data transmission is performed by using a DRB sharing manner, that is, multiple service data flows may be subjected to UL and DL data transmission via one DRB regardless of which PDU session corresponds to which network slice, as long as they have the same QoS parameters.
  • a complete service data flow may correspond to multiple data packets. If the QoS parameters of the two service data flows are the same, that is, the QoS parameters of the data packets in the two service data flows are the same. Regardless of which PDU session in which network slice corresponds to a plurality of data packets, as long as they have the same QoS parameters, UL, DL data transmission can be performed via one DRB.
  • the terminal device simultaneously accesses the network slice 41 and the network slice 42, and the network slice 41 and the network slice 42 respectively support two PDU sessions.
  • Network slice 41 supports PDU session 1.1 and PDU session 1.2.
  • Network slice 42 supports PDU session 2.1 and PDU session 2.2.
  • the PDU session 1.1 includes two service data streams, namely, a service data stream 1 and a service data stream 2.
  • the PDU session 1.2 includes two service data streams, namely a service data stream 3 and a service data stream 4.
  • the PDU session 2.1 includes two service data streams, namely a service data stream 5 and a service data stream 6.
  • the PDU session 2.2 includes two service data streams, which are a service data stream 7 and a service data stream 8, respectively.
  • the service data stream 1 and the service data stream 5 have the same QoS parameters
  • the service data stream 2 and the service data stream 6 have the same QoS parameters
  • the service data stream 3 and the service data stream 7 have the same QoS parameters
  • the service data stream 4 and the service data stream 8 have the same QoS parameters.
  • the two service data streams are The packets are mapped to the same DRB1 for transmission.
  • the service data stream 2 and the service data stream 6 have the same QoS parameters, and the data packets in the two service data streams are mapped to the same DRB2 for transmission.
  • the service data stream 3 and the service data stream 7 have the same QoS parameters, and the data packets in the two service data streams are mapped to the same DRB3 for transmission.
  • the service data stream 4 and the service data stream 8 have the same QoS parameters, and the data packets in the two service data streams are mapped to the same DRB4 for transmission. It can be seen that by implementing the DRB mapping method in the embodiment of the present invention, the number of DRBs can be reduced. Therefore, in the DRB mapping mode in the embodiment of the present invention, data packets transmitted on the same DRB may be from different network slices and different PDU sessions, so how to distinguish the transmission Which network slice the data packet comes from and which PDU session is a technical problem to be solved by the embodiment of the present invention.
  • the radio access network device in order for the radio access network device to correctly encapsulate and route the NG3 interface, it is necessary to identify which PDU session the UL data packet corresponds to, thereby adding a encapsulation header for different PDU sessions on the NG3 interface. And routing the UL data to the core network user plane device corresponding to different PDU sessions.
  • the radio access network device in order for the radio access network device to correctly encapsulate and route the NG3 interface, it is necessary to identify which PDU session in the network slice corresponding to the UL data packet, thereby adding a encapsulation header for different network slices and different PDU sessions on the NG3 interface, And routing the UL data to the core network user plane device corresponding to the PDU session in the different network slice on the NG3 interface.
  • the terminal device acts as a relay, it is necessary to distinguish which PDU session the data packet corresponds to, and even which PDU session in which network slice corresponds, thereby performing corresponding processing.
  • FIG. 5 is a signaling interaction diagram of a data transmission method according to an embodiment of the present invention.
  • the transmitting device is a terminal device
  • the receiving device is a wireless access network device
  • the transmitting device is a wireless access network device
  • the receiving device is a terminal device.
  • the data transmission method includes the following steps:
  • the source device generates a data packet, where the data packet includes first indication information, where the first indication information is used to indicate a PDU session corresponding to the data packet.
  • the first indication information includes an ID of a PDU session.
  • the ID of the PDU session is assigned by the core network control plane device for the PDU session to which the data packet belongs.
  • the ID of the PDU session is to identify the PDU session during the signaling interaction of the control plane. For example, in the signaling process of the session management, the session ID is explicitly indicated, session parameters are modified, released, and the like. Therefore, in this embodiment, when the user plane performs data transmission, the ID of the PDU session may also be used to identify the PDU session. This approach saves additional signaling indications and mapping relationships.
  • the first indication information includes an indicator of a PDU session.
  • the indicator of the PDU session is allocated by the radio access network device for the PDU session to which the data packet belongs, for identifying the PDU session on the user side.
  • both the terminal device and the radio access network device maintain a first mapping table, and the first mapping table is configured by the radio access network device.
  • a mapping relationship between the ID set of the PDU session and the indicator set of the PDU session is stored in the first mapping table.
  • the ID set of the PDU session includes an ID of one or more PDU sessions, and the indicator set of the PDU session includes an indicator of one or more PDU sessions.
  • the format of the first mapping table can be, for example, as shown in Table 1.
  • the ID of the PDU session in Table 1 is obtained by the radio access network device from the core network control plane device.
  • the core network control plane device allocates an ID of a PDU session to each PDU session that has been established by the terminal device, and the ID of the PDU session is used to identify each PDU session on the control plane.
  • the radio access network device assigns a corresponding indicator to the acquired ID of each PDU session for identifying the PDU session on the user plane.
  • the terminal device has established two PDUs.
  • the session is assumed to be PDU session 1 and PDU session 2, respectively, the ID of PDU session 1 is 10001000, and the ID of PDU session 2 is 10002000.
  • the radio access network device assigns a short byte indicator to the PDU Session 1: 00 for identifying the PDU Session 1 on the user side.
  • the radio access network device assigns a short byte indicator to the PDU Session 2: 01 for identifying the PDU Session 2 on the user side.
  • the ID of the PDU session is composed of 8 bits
  • the indicator of the PDU session is composed of 2 bits
  • the byte length of the indicator of the PDU session is smaller than the byte length of the ID of the PDU session, so
  • the indicator carrying the PDU session when transmitting the data packet in the air interface can reduce the byte length of the transmission compared with the ID of the PDU session, thereby reducing the air interface transmission overhead.
  • the byte length of the ID of the PDU session is not limited to 8 bits.
  • the byte length of the indicator of the PDU session is not limited to 2 bits.
  • the radio access network device allocates an indicator of the PDU session to the terminal device
  • the indicator of the PDU session of the different interval segment may also be allocated to different terminal devices, and therefore, the indication of the PDU session is carried in the DL data packet.
  • the receiving device can accurately identify which terminal device the data packet corresponds to according to the indicator of the PDU session, thereby transmitting the data packet to the corresponding terminal device.
  • the indicator of the PDU session in the first mapping table may also be carried in the encapsulation header of the NG3 interface, that is, Whether the air interface or the NG3 interface, the indicator of the PDU session in the first mapping table may be used to encapsulate the data packet, thereby indicating the PDU session to which the data packet belongs.
  • the first indication information includes an indicator of a PDU session.
  • the indicator of the PDU session is allocated by the core network control plane device for the PDU session to which the data packet belongs, and is used to identify the PDU session on the user plane.
  • the terminal device, the radio access network device, and the core network control plane device each maintain a third mapping table, and the third mapping table is configured by the core network control plane device.
  • a mapping relationship between the ID set of the PDU session and the indicator set of the PDU session is stored in the third mapping table.
  • the ID set of the PDU session includes an ID of one or more PDU sessions
  • the indicator set of the PDU session includes an indicator of one or more PDU sessions.
  • the format of the third mapping table can be, for example, as shown in Table 2.
  • the ID of the PDU session in Table 2 is allocated by the core network control plane device for the PDU session.
  • the core network control plane device allocates the ID of one PDU session to each PDU session established by the terminal device, and the ID of the PDU session is used for The control plane identifies each PDU session.
  • the core network control plane device also assigns an indicator of the corresponding PDU session to the ID of each PDU session for identifying each PDU session on the user plane. As shown in Table 2, the terminal device establishes two PDU sessions, assuming that PDU session 1 and PDU session 2 are respectively, the ID of PDU session 1 is 10001000, and the ID of PDU session 2 is 10002000.
  • the core network control plane device assigns a short byte indicator to the PDU session 1: 00 for identifying the PDU session 1 on the user plane.
  • the core network control plane device assigns a short byte indicator to the PDU Session 2: 01 for identifying the PDU Session 2 on the user side.
  • the ID of the PDU session consists of 8 bits.
  • the indicator of the PDU session is composed of 2 bits, and the byte length of the indicator of the PDU session is smaller than the byte length of the ID of the PDU session. Therefore, when the data packet is transmitted in the air interface, the length of the transmitted byte can be reduced. Thereby reducing the air interface transmission overhead.
  • the byte length of the ID of the PDU session is not limited to 8 bits.
  • the byte length of the indicator of the PDU session is not limited to 2 bits.
  • the indicator of the PDU session in the third mapping table may also be carried in the encapsulation header of the NG3 interface, that is, Whether the air interface or the NG3 interface, the indicator of the PDU session in the third mapping table may be used to encapsulate the data packet, thereby indicating the PDU session to which the data packet belongs.
  • the encapsulation header of the NG3 interface will be introduced later.
  • the indicator corresponding to the PDU session 1 in the third mapping table shown in Table 2 is set to be the same as the indicator corresponding to the PDU session 1 in the first mapping table shown in Table 1, the specific implementation is implemented.
  • the indicator of the PDU session allocated by the radio access network device for a certain PDU session and the indicator of the PDU session allocated by the core network control plane device for a certain PDU session may be set to be different. For example, for UL data, the radio access network device sets the indicator for PDU Session 1 to 00, while for DU data, the core network control plane device sets the indicator for PDU Session 1 to 11.
  • the data packet further includes third indication information, where the third indication information is used to indicate a QoS parameter of the data packet, and the QoS parameter of the data packet actually refers to a QoS parameter of the service data flow to which the data packet belongs.
  • the QoS parameter is used by the radio access network device to perform corresponding scheduling decisions on the received UL data packet based on the QoS parameter.
  • the QoS parameters include but are not limited to: 1. The maximum stream bit rate. 2. Guarantee the stream bit rate. 3. Priority level. 4, the package delay budget. 5, the wrong rate. 6. Accept control parameters.
  • the QoS parameter corresponding to the ID of the QoS parameter is 100: the scheduling priority is 1, the bandwidth is 2 Mbps, and the transmission delay is 5 seconds.
  • the QoS parameter corresponding to the ID of the QoS parameter is 101: the scheduling priority is 2, the bandwidth is 2.5 Mbps, and the transmission delay is 2 seconds.
  • the PDU session to which the data packet belongs and the QoS parameter of the service data flow to which the data packet belongs are separately indicated by two indication information. After receiving the data packet, the receiving device needs to determine which PDU session and the QoS parameter of the data packet corresponding to the data packet by combining the first indication information and the third indication information.
  • the third indication information includes an ID of a QoS parameter of the service data flow to which the data packet belongs.
  • the ID of the QoS parameter of the service data flow is allocated by the core network control plane device for the QoS parameters of the service data flow.
  • the core network control plane device allocates a QoS parameter ID to all service data flows included in each PDU session that the terminal device has established, and is used to identify the QoS parameters related to the service data flow.
  • the ID of the QoS parameter of the service data flow is to identify the QoS parameter of the service data flow in the signaling interaction process of the control plane. Therefore, in the embodiment, when the user plane performs data transmission, the ID of the QoS parameter of the service data stream is also used to identify the QoS parameter of the service data stream to which the data packet belongs.
  • the first indication information may be used to indicate both the PDU session to which the data packet belongs and the QoS parameter indicating the service data flow to which the data packet belongs. That is to say, an indication information can indicate the PDU session to which the data packet belongs and the QoS parameter of the service data flow to which the data packet belongs, and indicate the PDU session to which the data packet belongs and the data packet to which the data packet belongs, respectively, with two indication information.
  • the QoS parameters of the service data stream when the data packet is transmitted in the air interface, the transmitted bytes can be reduced, and the transmission overhead is reduced. After receiving the data packet, the receiving device only needs to determine, according to the first indication information, which PDU session corresponding to the data packet and the QoS parameter of the data packet.
  • the first indication information may also be an ID of a QoS parameter of the service data stream. Therefore, according to the ID of the QoS parameter of the service data flow, the PDU session to which the data packet belongs and the QoS parameter of the service data flow to which the data packet belongs can be determined. See, for example, Table 3.
  • the ID of the QoS parameter of the service data stream is composed of 8 bits
  • the ID of the PDU session is composed of 8 bits.
  • the ID of the corresponding PDU session whose QoS parameter ID is 000-011 is 10001000.
  • the ID of the corresponding PDU session with the QoS parameter ID of 100-111 is 10002000, and so on. It can be seen that the ID of the PDU session can be implicitly indicated by the interval in which the QoS parameter ID is located.
  • the data packet when the data packet is transmitted in the air interface, the data packet may include only the ID of the QoS parameter of the service data stream, and does not need to include the ID of the PDU session or the indicator of the PDU session, thereby reducing the byte length of the transmission and reducing the air interface. Overhead.
  • the terminal device can simultaneously access one of the plurality of network slices, and each network slice can support one or more PDU sessions.
  • the indication information indicating the PDU session to which the data packet belongs in the data packet and the indication information indicating the QoS parameter of the service data flow to which the service data packet to which the data packet belongs is required, Carry a network slice that indicates the packet to which it belongs. Therefore, after receiving the UL data packet, the radio access network device can identify the network slice to which the data packet belongs, thereby routing the data packet to the core network user plane device in the network slice.
  • the data packet further includes second indication information, where the second indication information is used to indicate a network slice to which the data packet belongs.
  • the PDU session to which the data packet belongs and the network slice to which the data packet belongs are separately indicated by two indication information. After receiving the data packet, the receiving device needs to determine which PDU session in the network slice corresponding to the data packet by combining the first indication information and the second indication information.
  • the second indication information includes an ID of the network slice.
  • the ID of the network slice is allocated by the core network control plane device for the network slice to which the data packet belongs.
  • the ID of the network slice identifies the network slice during the signaling interaction of the control plane. Therefore, in the embodiment, when the user plane performs data transmission, the ID of the network slice may also be used to identify the network slice. This approach saves additional signaling indications and mapping relationships.
  • the second indication information includes an indicator of a network slice.
  • the indicator of the network slice is allocated by the radio access network device for the network slice to which the data packet belongs, and is used to identify the network slice on the user plane.
  • both the terminal device and the radio access network device maintain a second mapping table, and the second mapping table is configured by the radio access network device.
  • a mapping relationship between the ID set of the network slice and the indicator set of the network slice is stored in the second mapping table.
  • the ID set of the network slice includes an ID of one or more network slices
  • the indicator set of the network slice includes an indicator of one or more network slices.
  • the format of the second mapping table can be, for example, as shown in Table 4.
  • the ID of the network slice in Table 4 is obtained by the radio access network device from the core network control plane device.
  • the core network control plane device allocates a network slice ID to each network slice that the terminal device has accessed, and the network slice ID is used to identify each network slice on the control plane.
  • the radio access network device allocates an indicator of a corresponding network slice to the ID of each obtained network slice for identifying the network slice on the user plane.
  • the terminal device accesses two network slices, which are assumed to be network slice 1 and network slice 2, respectively, the ID of network slice 1 is 30001000, and the ID of network slice 2 is 30002000.
  • the radio access network device assigns a short byte indicator to the network slice 1 : 00 for identifying the network slice 1 on the user plane.
  • the radio access network device assigns a short byte indicator to the network slice 2: 01 for identifying the network slice 2 on the user plane.
  • the ID of the network slice is composed of 8 bits
  • the indicator of the network slice is composed of 2 bits
  • the byte length of the indicator of the network slice is smaller than the byte length of the ID of the network slice, so If the data packet is transmitted in the air interface, the byte length of the transmission can be reduced, thereby reducing the air interface transmission overhead.
  • the byte length of the ID of the network slice is not limited to 8 bits.
  • the byte length of the indicator of the network slice is not limited to 2 bits.
  • the encapsulation header of the NG3 interface may also carry the indicator of the network slice in the second mapping table, that is, Whether the air interface or the NG3 interface, the identifier of the network slice in the second mapping table may be used to encapsulate the data packet, thereby indicating the network slice to which the data packet belongs.
  • the second indication information includes an indicator of a network slice.
  • the indicator of the network slice is allocated by the core network control plane device for the network slice to which the data packet belongs, and is used to identify the network slice on the user plane.
  • the terminal device, the radio access network device, and the core network control plane device each maintain a fourth mapping table, and the fourth mapping table is configured by the core network control plane device.
  • a mapping relationship between the ID set of the network slice and the indicator set of the network slice is stored in the fourth mapping table.
  • the ID set of the network slice includes an ID of one or more network slices
  • the indicator set of the network slice includes an indicator of one or more network slices.
  • the format of the fourth mapping table can be, for example, as shown in Table 5.
  • the ID of the network slice in Table 5 is allocated by the core network control plane device for the network slice, and the core network control plane device allocates a network slice ID to each network slice that the terminal device has accessed, and the ID of the network slice is used for Identify each network slice on the control plane.
  • the core network control plane device also assigns an indicator of the corresponding network slice to the ID of each network slice for identifying each network slice on the user side.
  • the terminal device accesses two network slices, which are assumed to be network slice 1 and network slice 2, respectively, the ID of network slice 1 is 30001000, and the ID of network slice 2 is 30002000.
  • the core network control plane device assigns a short byte indicator to network slice 1: 00 for identifying network slice 1 on the user plane.
  • the core network control plane device assigns a short byte indicator to the network slice 2: 01 for identifying the network slice 2 on the user plane.
  • the ID of the network slice is composed of 8 bits
  • the indicator of the network slice is composed of 2 bits
  • the byte length of the indicator of the network slice is smaller than the byte length of the ID of the network slice, therefore, When transmitting packets on the air interface, the length of the transmitted bytes can be reduced, thereby reducing the air interface transmission overhead.
  • the byte length of the ID of the network slice is not limited to 8 bits.
  • the byte length of the indicator of the network slice is not limited to 2 bits.
  • the indicator of the network slice in the fourth mapping table may also be carried in the encapsulation header of the NG3 interface, that is, Whether the air interface or the NG3 interface, the identifier of the network slice in the fourth mapping table may be used to encapsulate the data packet, thereby indicating the network slice to which the data packet belongs.
  • the indicator corresponding to the network slice 1 in the fourth mapping table shown in Table 5 is the same as the indicator corresponding to the network slice 1 in the second mapping table shown in Table 4, the specific implementation is implemented.
  • the indicator that the radio access network device allocates for a certain network slice and the indicator that the core network control plane device allocates for a certain network slice may be set to be different. For example, for UL data, the radio access network device sets the indicator for network slice 1 to 00, and for DU data, the core network control plane device sets the indicator for network slice 1 to 11.
  • the ID of the PDU session can be used to indicate the PDU session to which the data packet belongs, and is used to indicate the data.
  • the network slice to which the package belongs Therefore, according to the ID of the PDU session, the PDU session to which the data packet belongs and the network slice to which the data packet belongs can be determined.
  • the receiving device After receiving the data packet, the receiving device can determine which PDU session in the network slice corresponding to the data packet according to the first indication information. See, for example, Table 6.
  • the ID of the PDU session is composed of 8 bits
  • the ID of the network slice is composed of 8 bits.
  • the ID of the corresponding network slice whose ID of the PDU session is 10001000-10001010 is 30001000.
  • the ID of the corresponding network slice whose ID of the PDU session is 10002000-10002010 is 30002000, and so on. It can be seen that the interval in which the ID of the PDU session is located can implicitly indicate the ID of the network slice. Therefore, when transmitting a data packet in an air interface, the data packet may include only the ID of the PDU session, and does not need to include an ID of the network slice or an indicator of the network slice, thereby reducing the byte length of the transmission and reducing the air interface overhead.
  • the first indication information is an indicator of a PDU session
  • the radio access network device or the core network control plane device allocates an indicator for the PDU session
  • indicators of different interval segments may be allocated for different network slices, thus Different network slices can be distinguished by the indicator of the PDU session, and the indicator of the PDU session can be used to indicate both the PDU session to which the data packet belongs and the network slice to which the data packet belongs. See, for example, Table 7.
  • the ID of the corresponding network slice whose indicator of the PDU session is 000-011 is 30001000.
  • the indicator of the PDU session is that the ID of the corresponding network slice of the 100-111 interval segment is 30002000, and so on. It can be seen that the interval in which the ID of the PDU session is located can implicitly indicate the ID of the network slice. Therefore, when transmitting a data packet in an air interface, the data packet may include only the ID of the PDU session, and does not need to include an ID of the network slice or an indicator of the network slice, thereby reducing the byte length of the transmission and reducing the air interface overhead.
  • the PDU session to which the data packet belongs and the network slice to which the data packet belongs can be determined. Therefore, when the data packet is transmitted in the air interface, the data packet may include only the indicator of the PDU session without including the ID of the network slice or the indicator of the network slice, thereby reducing the byte length of the transmission and reducing the air interface overhead.
  • the first indication information may also be the ID of the QoS parameter of the service data flow. Therefore, according to the ID of the QoS parameter of the service data flow, the network slice to which the data packet belongs, the PDU session to which the data packet belongs, and the QoS parameter of the service data flow to which the data packet belongs can be determined. After receiving the data packet, the receiving device only needs to determine, according to the first indication information, which PDU session in the network slice corresponding to the data packet and The QoS parameters of the packet. See, for example, Table 8.
  • the ID of the QoS parameter of the service data stream is composed of 8 bits
  • the ID of the PDU session is composed of 8 bits
  • the ID of the network slice is composed of 8 bits.
  • the ID of the corresponding PDU session whose QoS parameter ID is 000-011 is 10001000
  • the ID of the corresponding network slice is 30001000.
  • the ID of the corresponding PDU session with the QoS parameter ID of 100-111 is 10002000
  • the ID of the corresponding network slice is 30002000, and so on. It can be seen that the ID of the PDU session and the ID of the network slice can be implicitly indicated by the interval in which the QoS parameter ID is located.
  • the data packet when transmitting a data packet, may include only the ID of the QoS parameter of the service data flow, and does not need to include the ID of the PDU session or the indicator of the PDU session or the ID of the network slice or the indicator of the network slice, thereby The byte length of the transmission is reduced, and the air interface overhead is reduced.
  • the first indication information is specifically a string indicator, which can simultaneously indicate the network slice to which the data packet belongs and the PDU session. Therefore, the radio access network device can determine the data according to the indicator.
  • the network slice to which the packet belongs and the PDU session to which the packet belongs See, for example, Table 9.
  • the indicator consists of 4 bits, the byte length of the indicator being less than the byte length of the ID of the PDU session, and less than the byte length of the ID of the network slice.
  • the ID of the corresponding PDU session whose indicator is 0000 is 10001000, and the ID of the corresponding network slice is 30001000.
  • the ID of the corresponding PDU session with the indicator 0001 is 10002000, and the ID of the corresponding network slice is 30002000, and so on. It can be seen that the ID of the PDU session and the ID of the network slice can be indicated by 4 bits.
  • the data packet when transmitting a data packet in an air interface, may include only the indicator without including the ID of the PDU session or the indicator of the PDU session or the ID of the network slice or the indicator of the network slice, thereby reducing the transmitted bytes.
  • the length reduces the air interface overhead.
  • the byte length of the indicator is not limited to 4 bits.
  • the indicator shown in Table 9 may be allocated by the core network control plane device for the network slice and the PDU session, or may be allocated by the radio access network device for the network slice and the PDU session.
  • an indicator allocated by the radio access network device is used for both the UL data and the DL data to indicate the network slice and the PDU session.
  • an indicator assigned by the core network control plane device is used for both UL data and DL data to indicate network slices and PDU sessions.
  • the indicator may be assigned by the radio access network device, and for DL data, may be assigned by the core network control plane.
  • the indicator assigned by the radio access network device and the indicator assigned by the core network control plane device may be the same or different.
  • the radio access network device or the core network control plane device allocates an indicator
  • the indicator of different interval segments may also be allocated to different terminal devices, where the indicator is used to distinguish different terminal devices, network slices, and PDUs. Conversation. Therefore, when the indicator is carried in the DL data packet, the receiving end device can accurately identify which terminal device the data packet corresponds to according to the indicator, thereby transmitting the data packet to the corresponding terminal device.
  • the ID/indicator of the PDU session and the ID/indicator of the network slice in the embodiment of the present invention may be set as optional according to requirements.
  • the terminal device accesses only one network slice and only one PDU session is established, only the ID of the QoS parameter is added to the data packet; when the terminal device accesses a network slice and multiple PDU sessions are established, only The ID/indicator of the PDU session needs to be increased, that is, the packet tag can be flexibly configured according to actual needs.
  • the packet identifier can be configured by the radio access network device and notified to the terminal device.
  • the radio access network device and the terminal device comply with each other by the method specified by the protocol. .
  • FIG. 6 is a schematic diagram of a peer-to-peer protocol layer between a terminal device and a radio access network device according to an embodiment of the present invention.
  • the peer layer of the terminal device and the radio access network device includes: a PDCP layer, an RLC layer, a MAC layer, and a physical layer (English: Physical layer, PHY for short).
  • the PDCP layer of the transmitting device performs the header compression of the PDCP when receiving the data packet sent by the upper layer.
  • the following PDCP header is additionally added: The ID of the PDU session and the ID of the QoS parameter.
  • the ID of the PDU session is used to indicate the data of which PDU session the data packet is.
  • the ID of the QoS parameter is used to indicate the QoS parameter of the service data flow to which the data packet belongs.
  • the indicator of the PDU session is used to indicate the data of the PDU session for the data packet
  • the ID of the QoS parameter is used to indicate the service data flow to which the data packet belongs.
  • QoS parameters add the following PDCP header: ID of the QoS parameter.
  • ID of the QoS parameter is used to indicate which PDU session data the packet is and the QoS parameters of the service data stream to which the packet belongs.
  • the ID of the PDU session and the ID of the QoS parameter is used to indicate which PDU session in the network slice the packet is for.
  • the data the ID of the QoS parameter is used to indicate the QoS parameters of the service data flow to which the data packet belongs. Or additionally adding the following PDCP header: an indicator of the PDU session and an ID of the QoS parameter, the indicator of the PDU session is used to indicate which PDU session in the network slice the data packet is, and the ID of the QoS parameter is used to indicate the data.
  • the ID of the network slice is used to indicate which network slice data the packet is, and the ID of the PDU session is used to indicate that the data packet is Which PDU session data
  • the ID of the QoS parameter is used to indicate the QoS parameters of the service data flow to which the data packet belongs.
  • the indicator of the network slice is used to indicate which network slice data the packet is, and the ID of the PDU session is used to indicate the data.
  • the PDU parameter ID is used to indicate the QoS parameter of the service data flow to which the data packet belongs. Or additionally adding the following PDCP header: the ID of the network slice, the indicator of the PDU session, and the ID of the QoS parameter, the ID of the network slice is used to indicate which network slice data the packet is, and the indicator of the PDU session is used to indicate the data.
  • the PDU parameter ID is used to indicate the QoS parameter of the service data flow to which the data packet belongs.
  • the indicator of the network slice is used to indicate which network slice data the packet is
  • the indicator of the PDU session is used to indicate
  • the data packet is the data of which PDU session
  • the ID of the QoS parameter is used to indicate the QoS parameter of the service data flow to which the data packet belongs.
  • FIG. 7 is a schematic diagram of packet marking in a PDCP layer according to an embodiment of the present invention.
  • the data/control indication and the PDCP sequence number in the packet format of the PDCP layer can refer to the existing communication protocol, and details are not described herein again.
  • An example of additionally adding an indicator of a network slice, an indicator of a PDU session, and an ID of a QoS parameter in the PDCP layer will be described as an example.
  • the indicator of the network slice, the indicator of the PDU session, and the length of the ID of the QoS parameter may be fixed in the communication protocol, or may be set by the radio access network device and notified to the terminal device by the RRC connection reconfiguration message.
  • the first indication information, the second indication information, and the third indication information may be encapsulated in a newly added protocol layer above the PDCP layer below the IP layer.
  • a layer is added in the IP layer and the PDCP layer, which is specifically used for packet marking.
  • the following header identifier is added to the newly added layer: the ID of the PDU session and the ID of the QoS parameter, and the ID of the PDU session is used to indicate which PDU session data the data packet is, and the ID of the QoS parameter is used. Indicates the QoS parameters of the service data flow to which the data packet belongs.
  • an indicator of the PDU session and an ID of the QoS parameter the indicator of the PDU session is used to indicate the data of the PDU session for the data packet, and the ID of the QoS parameter is used to indicate the service data flow to which the data packet belongs.
  • QoS parameters Or add the following header identifier: the ID of the QoS parameter. The ID of the QoS parameter is used to indicate which PDU session data the packet is and the QoS parameters of the service data stream to which the packet belongs.
  • the ID of the PDU session and the ID of the QoS parameter is used to indicate which PDU session in the network slice the data packet is, and the ID of the QoS parameter is used to indicate the service to which the data packet belongs.
  • the QoS parameters of the data stream is added.
  • ID of the network slice is used to indicate which network slice data the packet is
  • ID of the PDU session is used to indicate which packet is the packet.
  • the data of the PDU session, the ID of the QoS parameter is used to indicate the QoS parameter of the service data flow to which the data packet belongs.
  • an indicator of the network slice, an ID of the PDU session, and an ID of the QoS parameter is used to indicate which packet is the packet
  • the data of the network slice, the ID of the PDU session is used to indicate which PDU session data the data packet is
  • the ID of the QoS parameter is used to indicate the QoS parameter of the service data flow to which the data packet belongs.
  • adding a header identifier: an ID of the network slice, an indicator of the PDU session, and an ID of the QoS parameter the ID of the network slice is used to indicate which network slice data the data packet is, and the indicator of the PDU session is used to indicate the data packet.
  • the ID of the QoS parameter is used to indicate the QoS parameters of the service data flow to which the data packet belongs.
  • adding a header identifier: an indicator of the network slice, an indicator of the PDU session, and an ID of the QoS parameter the indicator of the network slice is used to indicate which network slice data the packet is, and the indicator of the PDU session is used to indicate the The data of which PDU session the data packet is, the ID of the QoS parameter is used to indicate the QoS parameter of the service data flow to which the data packet belongs.
  • FIG. 8 is a schematic diagram of packet marking performed in a newly added protocol layer above the PDCP layer below the IP layer according to an embodiment of the present invention.
  • the newly added protocol layer can be named as the packet layer.
  • FIG. 8 an example of adding an indicator of a network slice, an indicator of a PDU session, and an ID of a QoS parameter to a new layer will be described as an example.
  • the indicator of the network slice, the indicator of the PDU session, and the length of the ID of the QoS parameter may be fixed in the communication protocol, or may be set by the radio access network device and notified to the terminal device by the RRC connection reconfiguration message.
  • the indicator of the network slice, the indicator of the PDU session, and the ID of the QoS parameter are used as data (data) portions in the PDCP layer for data transfer.
  • the indicator of the network slice, the indicator of the PDU session, and the QoS parameters may be processed as follows: an indicator of the network slice, an indicator of the PDU session, and a QoS parameter; in PDCP
  • the layer header compresses the indicator of the added network slice, the indicator of the PDU session, and the QoS parameters.
  • a new compression profile can be introduced.
  • the radio access network device can explicitly inform the terminal device of the encryption algorithm used, and the algorithm is always enabled; in another embodiment, the encryption can be used at the time of configuration, otherwise it is turned off.
  • the first indication information, the second indication information, and the third indication information may be encapsulated in an RLC layer.
  • the location of the indication information is not limited.
  • the radio access network device may define multiple sets of header structures, and wireless access The network device informs the terminal device of the header structure that needs to be adopted by means of RRC configuration.
  • S502 The sending end device sends a data packet to the receiving end device, and the receiving end device receives the data packet sent by the sending end device.
  • the terminal device obtains the DRB template from the radio access network device in advance, and before transmitting the data packet, the terminal device determines, according to the DRB template configured by the radio access network device.
  • the DRB needs to be mapped to which DRB, and then the data packet is sent to the radio access network device by using the DRB corresponding to the data packet.
  • the DRB template configured by the radio access network device is configured according to the QoS parameter of the data packet, and the data packet with the same QoS parameter is mapped to the same DRB for transmission.
  • the radio access network device determines, according to the pre-configured DRB template, which DRB the data packet needs to be mapped to, and then uses the DRB corresponding to the data packet.
  • the data packet is sent to the terminal device.
  • the receiving end device determines, according to the first indication information, a PDU session corresponding to the data packet.
  • the receiving end device may determine the data according to the first indication information included in the data packet.
  • the PDU session to which the packet belongs Further, the receiving end device may further determine, according to the third indication information included in the data packet, a QoS parameter of the service data flow to which the data packet belongs.
  • the receiving device may further determine, according to the first indication information, a PDU session to which the data packet belongs and a QoS parameter of the service data flow to which the data packet belongs.
  • the receiving device can determine the network slice and the PDU session to which the data packet belongs according to the first indication information included in the data packet. Further, the receiving end device may further determine, according to the third indication information included in the data packet, a QoS parameter of the service data flow to which the data packet belongs. Optionally, the receiving end device may further determine, according to the first indication information, a network slice to which the data packet belongs, a PDU session, and a QoS parameter of the service data flow to which the data packet belongs.
  • the receiving end device determines, according to the first indication information, the PDU session to which the data packet belongs, determines a network slice to which the data packet belongs according to the second indication information, and determines, according to the third indication information, the service data to which the data packet belongs.
  • the QoS parameters of the flow are configured to determine, according to the first indication information, the PDU session to which the data packet belongs, determines a network slice to which the data packet belongs according to the second indication information, and determines, according to the third indication information, the service data to which the data packet belongs.
  • the transmitting device is a terminal device and the receiving device is a wireless access network device
  • the terminal device when the terminal device sends a UL data packet to the wireless access network device, in order to distinguish which PDU session is different for each data packet in the air interface, even Corresponding to which PDU session in which network slice, the terminal device encapsulates the UL data packet, so that the radio access network device can identify which PDU session the data packet corresponds to based on the packet tag, and even which PDU session in which network slice corresponds.
  • the data packet is encapsulated according to the NG3 interface encapsulation format, and then the data packet is sent to the core network user plane device corresponding to the PDU session, or the data packet is sent to the core network user plane device corresponding to the PDU session in the network slice.
  • the first indication information carried in the data packet is the ID of the PDU session 1: 10001000.
  • the radio access network device After receiving the UL data packet, the radio access network device identifies that the PDU session corresponding to the data packet is the PDU session 1 according to the ID of the PDU session, and the radio access network device encapsulates the data packet to the NG3 interface and sends the data packet to the PDU.
  • the QoS parameter of the service data flow to which the different UL data packet belongs may also be identified, so that the wireless access network device performs the UL data packet based on the QoS parameter of the service data flow to which the UL data packet belongs. Scheduling decisions.
  • the transmitting end device is a radio access network device and the receiving end device is a terminal device
  • the radio access network device when the radio access network device sends a DL data packet to the terminal device, in order to distinguish which PDU session corresponding to different data packets in the air interface, which one is corresponding to which Which PDU session in the network slice, the radio access network device encapsulates the DL data packet, so that the terminal device can identify which PDU session the data packet corresponds to, and even which PDU session in which network slice, based on the packet tag. Then do the corresponding processing.
  • the terminal device is a relay UE, and the relay UE transmits the data packet to the terminal device that established the PDU session, or sends the data packet to the terminal device that accesses the PDU session in the network slice.
  • the relay UE is connected to three terminal devices, wherein the terminal device 1 accesses the network slice 1, the PDU session 1 is established, the terminal device 2 accesses the network slice 2, the PDU session 2 is established, and the terminal device 3 accesses the network. Slice 3, PDU Session 3 is established.
  • the relay UE determines The data packet corresponds to the terminal device 1, thereby transmitting the data packet to the terminal device 1.
  • the QoS parameter of the service data flow to which the different data packet belongs may be identified, so that the terminal device may determine the QoS parameter of the corresponding UL data packet according to the QoS parameter of the DL data packet, thereby performing the QoS parameter of the corresponding UL data packet.
  • the relay UE according to the QoS parameter of the DL data packet Scheduling decisions for DL packets.
  • the receiving end device can accurately identify which PDU session the data packet corresponds to, and even which PDU session in which network slice corresponds.
  • Different data packets need not be distinguished based on different DRBs, so that data packets with the same QoS characteristics can be mapped to the same DRB for data transmission in the air interface. It not only realizes the differentiated treatment of different QoS data packets, but also realizes the low complexity of the air interface side management of data packets with the same QoS characteristics.
  • the solution is based on the DRB sharing method, and the maximum number of DRBs is controlled, and the overhead of control signaling is reduced.
  • FIG. 9 is a schematic flowchart of acquiring a first mapping table by a terminal device according to an embodiment of the present invention. The process includes the following steps.
  • the terminal device sends a session establishment request message to the radio access network device, where the radio access network device receives the session establishment request message sent by the terminal device.
  • the session establishment request message is used to request the session management device to establish a bearer for transmitting data for the terminal device.
  • the radio access network device sends a session establishment request message to the session management device, where the session management device receives the session establishment request message sent by the radio access network device.
  • the session management device establishes a user plane bearer for the terminal device according to the session establishment request message, and allocates a session ID, a QoS parameter, and an ID of the QoS parameter to the terminal device.
  • the session management device sends a session establishment response message to the radio access network device, where the radio access network receives the session establishment response message sent by the session management device.
  • the session establishment response includes an ID of the PDU session, a QoS parameter, and an ID of the QoS parameter.
  • the radio access network device allocates and stores an indicator of the PDU session according to the ID of the PDU session, and generates and stores the first mapping table.
  • mapping relationship between the ID of the PDU session and the indicator of the PDU session is stored in the first mapping table.
  • the radio access network device sends an RRC connection reconfiguration message or a session establishment response message to the terminal device, where the terminal device receives the RRC connection reconfiguration message or the session establishment response message sent by the radio access network device.
  • the RRC connection reconfiguration message or the session establishment response message includes a first mapping table and an ID of the QoS parameter.
  • the above session establishment process is merely an example.
  • the terminal device performs handover, RRC re-establishment, and the like
  • the radio access network device may send the first mapping table to the terminal device by using an RRC connection reconfiguration message.
  • the radio access network device sends a session establishment request message to the public core network control plane device
  • the public core network control plane device sends a session establishment request message to the session management device.
  • the session management device receives the session establishment request message sent by the public core network control plane device, and the session management device here is an exclusive core network control plane device in each network slice.
  • the session management function unique to the network slice that the terminal device has accessed allocates the PDU session ID, or the public core network control plane device allocates the PDU session ID.
  • the process of acquiring the third mapping table by the terminal device is similar to the embodiment shown in FIG. 9 , the difference is that the third mapping table is configured by the session management device.
  • the session management device After receiving the session establishment request message sent by the radio access network device, the session management device establishes a user plane bearer for the terminal device, and allocates a PDU session ID and an indication of the PDU session. Symbol, generates and stores a third mapping table.
  • the session management device then sends a session establishment response message to the radio access network device, where the session establishment response message includes a third mapping table.
  • the radio access network device obtains a third mapping table from the session establishment response message.
  • the radio access network device sends an RRC connection reconfiguration message or a session establishment response message to the terminal device, and the terminal device acquires a third mapping table from the RRC connection reconfiguration message or the session establishment response message.
  • FIG. 10 is a schematic flowchart of a terminal device acquiring a second mapping table according to an embodiment of the present invention. The process includes the following steps.
  • the terminal device sends an attach request message to the radio access network device, where the radio access network device receives the attach request message sent by the terminal device.
  • the radio access network device sends an attach request message to a public core network control plane device, and the public core network control plane device receives an attach request message sent by the radio access network device.
  • S1003 The public core network control plane device accepts the attachment request of the terminal device according to the subscription information of the terminal device.
  • S1004 The public core network control plane device sends an attach response message to the radio access network device, and the radio access network device receives the attach response message sent by the public core network control plane device.
  • the attach response message carries the ID of the network slice allocated by the public core network control plane device to the terminal device.
  • the radio access network device allocates an indicator of the network slice according to the ID of the network slice, and generates and stores a second mapping table.
  • mapping relationship between the ID of the network slice and the indicator of the network slice is stored in the second mapping table.
  • the radio access network device sends an RRC connection reconfiguration message or an attach response message to the terminal device, where the terminal device receives an RRC connection reconfiguration message or an attach response message sent by the radio access network device.
  • the RRC connection reconfiguration message or the attach response message includes a second mapping table.
  • the above session establishment process is merely an example.
  • the terminal device performs handover, RRC re-establishment, and the like, the radio access network device may send the second mapping table to the terminal device by using an RRC connection reconfiguration message.
  • the process of the terminal device acquiring the fourth mapping table is similar to the embodiment shown in FIG. 10, and the difference is that the fourth mapping table is configured by the public core network control plane device.
  • the public core network control plane device After receiving the attach request message sent by the radio access network device, the public core network control plane device accepts the attach request of the terminal device, allocates the ID of the network slice and the indicator of the network slice, and generates and stores a fourth mapping table. Then, the public core network control plane device sends an attach response message to the radio access network device, and the attach response message includes a fourth mapping table.
  • the radio access network device obtains a fourth mapping table from the attach response message. Then, the radio access network device sends an RRC connection reconfiguration message or an attach response message to the terminal device, and the terminal device acquires a fourth mapping table from the RRC connection reconfiguration message or the attach response message.
  • the embodiment shown in FIG. 5 is also applicable to the data transmission process between the radio access network device and the core network user plane device.
  • the radio access network sends a UL data packet to the core network user plane device, in order to distinguish which PDU session different data packets correspond to, or even to distinguish which PDU session in which network slice corresponds to different data packets, the radio access network device pair
  • the UL data packet carries the NG3 interface packet marking, so that the core network user plane device can identify which PDU session the data packet corresponds to based on the packet marking, and even which PDU session in which network slice corresponds, and further
  • the data packet is sent to the core network user plane device corresponding to the PDU session, or the data packet is sent to the core network user plane device corresponding to the PDU session in the network slice.
  • the NG3 interface is a communication interface between the radio access network device and the core network user plane device. With the development of the communication technology, the NG3 interface can also adopt other names, which are not specifically limited in the embodiment of the present invention.
  • the core network user plane device When the core network user plane device sends a DL data packet to the radio access network device, in order to distinguish which PDU session different data packets correspond to, or even to distinguish which PDU session in which network slice corresponds to different data packets, the core network user plane device Decapsulating the DL data packet, so that the radio access network device can identify which PDU session the data packet corresponds to, based on the packet tag, and even which PDU session in the network slice corresponds to, and then send the data packet to the established The terminal device of the PDU session, or the data packet is sent to the terminal device that accesses the network slice and establishes the PDU session.
  • the QoS parameter of the service data flow to which the different data packet belongs may be identified, so that the radio access network device performs scheduling decision on the DL data packet based on the QoS parameter of the service data flow to which the data packet belongs.
  • the packet format of the NG3 interface can be seen in Figure 11.
  • the NG3 interface encapsulation format includes the following fields: layer 1/layer 2 header, IP header, encapsulation header, PDU header, and PDU payload.
  • the first indication information and the third indication information may be included in the encapsulation header, where the first indication information is used to indicate a PDU session to which the data packet belongs, and the third indication information is used to indicate a QoS parameter of the data packet.
  • the encapsulation header may include first indication information, where the first indication information is used to indicate a PDU session to which the data packet belongs and a QoS parameter of the data packet.
  • the first indication information and the third indication information may be included in the encapsulation header, where the first indication information is used to indicate a network slice to which the data packet belongs and a PDU session to which the data packet belongs, and the third indication information is used to indicate the The QoS parameters of the packet.
  • the encapsulation header may include first indication information, where the first indication information is used to indicate a network slice to which the data packet belongs, a PDU session to which the data packet belongs, and a QoS parameter of the data packet.
  • the first indication information, the second indication information, and the third indication information where the first indication information is used to indicate a PDU session to which the data packet belongs, and the second indication information is used to indicate a network to which the data packet belongs.
  • the slice, the third indication information is used to indicate the QoS parameter of the data packet.
  • the ID/indicator of the PDU session and the ID/indicator of the network slice in the embodiment of the present invention may be set as optional according to requirements.
  • the encapsulation header includes an indicator of the network slice ID/network slice, the ID/indicator of the PDU session, and the data.
  • the QoS parameter ID of the packet is not limited to the IP header and the QoS parameter of the data packet.
  • the encapsulation header may only include the ID/indicator of the PDU session and the ID of the QoS parameter.
  • the encapsulation header may only include the ID of the QoS parameter of the data packet.
  • the embodiments of the present invention are also applicable to the data transmission process related to the PDN connection in the current LTE system. That is, packets of different PDN connections can be carried out by the same DRB as long as the QoS parameters are the same.
  • the data packet carries first indication information indicating the PDN connection to which the data packet belongs, so that different data packets distinguish which PDN connection is from based on the first indication information. Therefore, different DPNs in the existing LTE system can be distinguished based on different DRBs, and the number of DRBs can be reduced, thereby reducing the overhead of control signaling.
  • the embodiment of the present invention further provides a related device for implementing the foregoing data transmission method.
  • FIG. 12 is a schematic structural diagram of a device at a transmitting end according to an embodiment of the present invention.
  • the sender device may be a terminal device, a radio access network device, or a core network user plane device.
  • the source device 120 includes a processor 1201, a memory 1202, and a transceiver 1203.
  • the processor 1201, the memory 1202, and the transceiver 1203 may be connected by a bus or other means.
  • the sender device 120 may further include a network interface 1204 and a power module 1205.
  • the processor 1201 may be a digital signal processing (English: Digital Signal Processing, referred to as DSP) chip.
  • DSP Digital Signal Processing
  • the memory 1202 is used to store instructions.
  • the memory 1202 may be a read-only memory (English: Read-Only Memory, ROM) or a random access memory (English: Random Access Memory, RAM).
  • the transceiver 1203 is for transmitting and receiving signals.
  • the network interface 1204 is used by the source device 120 for data communication with other devices.
  • the network interface 1204 can be a wired interface or a wireless interface.
  • the power module 1205 is configured to supply power to each module of the transmitting device 120.
  • the processor 1201 is configured to perform the following operations:
  • the data packet includes first indication information, and the first indication information is used to indicate a protocol data unit PDU session to which the data packet belongs.
  • the data packet is transmitted to the receiving end device through the transceiver 1203.
  • the data packet further includes second indication information, where the second indication information is used to indicate a network slice corresponding to the data packet.
  • the first indication information is further used to indicate a network slice corresponding to the data packet.
  • the data packet further includes third indication information, where the third indication information is used to indicate a QoS parameter of the service data flow to which the data packet belongs.
  • the first indication information is further used to indicate a QoS parameter of the service data flow to which the data packet belongs.
  • the first indication information includes an identifier of the PDU session, and the identifier of the PDU session is allocated by the core network control plane device for the PDU session and is used to identify the PDU session.
  • the first indication information includes an indicator of a PDU session
  • the indicator of the PDU session is allocated by the radio access network device or the core network control plane device for the PDU session and used to identify the PDU session on the user plane.
  • the processor 1201 obtains an indicator of the PDU session corresponding to the identifier of the PDU session from the first mapping table before generating the data packet.
  • the first mapping table includes a correspondence between the identifier set of the PDU session and the indicator set of the PDU session.
  • the identifier of the PDU session is allocated by the core network control plane device for the PDU session and is used to identify the PDU session, PDU on the control plane.
  • the byte length of the indicator of the session is less than the byte length of the identity of the PDU session.
  • the processor 1201 obtains the indicator of the PDU session corresponding to the identifier of the PDU session from the first mapping table, and passes the transceiver 1203. Receiving a first mapping table sent by the radio access network device.
  • the processor 1201 receives the RRC connection reconfiguration message sent by the radio access network device by using the transceiver 1203, where the RRC connection reconfiguration message includes a first mapping table.
  • the second indication information includes an identifier of the network slice, where the identifier of the network slice is allocated by the core network control plane device for the network slice and is used to identify the network slice.
  • the second indication information includes an indicator of the network slice
  • the indicator of the network slice is allocated by the radio access network device or the core network control plane device for the network slice and is used to identify the network slice on the user plane.
  • the indicator of the network slice corresponding to the identifier of the network slice is obtained from the second mapping table, where the second mapping table includes the correspondence between the identifier set of the network slice and the indicator set of the network slice, and the network slice
  • the identifier of the network slice is allocated by the core network control plane device and used to identify the network slice on the control plane.
  • the byte length of the indicator of the network slice is smaller than the byte length of the identifier of the network slice.
  • the processor 1201 obtains the indicator of the network slice corresponding to the identifier of the network slice from the second mapping table, and passes the transceiver 1203. Receiving a second mapping table sent by the radio access network device.
  • the processor 1201 receives the RRC connection reconfiguration message sent by the radio access network device by using the transceiver 1203, where the RRC connection reconfiguration message includes a second mapping table.
  • the first indication information includes an identifier of a QoS parameter of the service data flow to which the data packet belongs, and the identifier of the QoS parameter of the service data flow to which the data packet belongs is allocated by the core network control plane device for the QoS parameter of the service data flow to which the data packet belongs. of.
  • the first indication information includes a first indicator, where the first indicator is allocated by the radio access network device or the core network control plane device for the network slice and the PDU session, and is used to identify the network slice and the PDU session on the user plane. .
  • the first indicator allocated by the radio access network device is the same as or different from the first indicator allocated by the core network control plane device.
  • FIG. 13 is a schematic structural diagram of a receiving end device according to an embodiment of the present invention.
  • the receiving end device may be a terminal device, a radio access network device or a core network user plane device.
  • the sink device 130 includes a processor 1301, a memory 1302, and a transceiver 1303.
  • the processor 1301, the memory 1302, and the transceiver 1303 may be connected by a bus or other means.
  • the receiving end device 130 may further include a network interface 1304 and a power module 1305.
  • the processor 1301 may be a DSP chip.
  • the memory 1302 is used to store instructions.
  • the memory 1302 may be a ROM or a RAM.
  • the transceiver 1303 is configured to transmit and receive signals.
  • the network interface 1304 is used by the receiving end device 130 for data communication with other devices.
  • the network interface 1304 can For wired or wireless interfaces.
  • the power module 1305 is configured to supply power to each module of the receiving device 130.
  • the processor 1301 is configured to call an instruction stored in the memory 1302 to perform the following operations:
  • the data packet sent by the sending end device is received by the transceiver 1303.
  • the data packet includes first indication information, where the first indication information is used to indicate a PDU session corresponding to the data packet.
  • the data packet further includes second indication information, where the second indication information is used to indicate a network slice corresponding to the data packet.
  • the first indication information is further used to indicate a network slice corresponding to the data packet.
  • the data packet further includes third indication information, where the third indication information is used to indicate a QoS parameter of the service data flow to which the data packet belongs.
  • the first indication information is further used to indicate a QoS parameter of the service data flow to which the data packet belongs.
  • the first indication information includes an identifier of the PDU session, and the identifier of the PDU session is allocated by the core network control plane device for the PDU session and is used to identify the PDU session.
  • the first indication information includes an indicator of a PDU session corresponding to the identifier of the PDU session, and the indicator of the PDU session is allocated by the radio access network device or the core network control plane device for the PDU session and is used for the user plane. Identifies the PDU session.
  • the identity of the PDU session is assigned by the core network control plane device for the PDU session and is used to identify the PDU session on the control plane.
  • the byte length of the indicator of the PDU session is less than the byte length of the identity of the PDU session.
  • the processor 1201 sends the first packet to the terminal device through the transceiver 1203 before receiving the data packet sent by the sending device through the transceiver 1203. Mapping table.
  • the processor 1201 sends an RRC connection reconfiguration message to the terminal device by using the transceiver 1203, where the RRC connection reconfiguration message includes a first mapping table.
  • the second indication information includes an identifier of the network slice, where the identifier of the network slice is allocated by the core network control plane device for the network slice and is used to identify the network slice.
  • the second indication information includes an indicator of a network slice corresponding to the identifier of the network slice, where the indicator of the network slice is allocated by the radio access network device or the core network control plane device for the network slice and is used in the user plane. Identify the network slice.
  • the identifier of the network slice is allocated by the core network control plane device for the network slice and is used to identify the network slice on the control plane, and the byte length of the indicator of the network slice is smaller than the byte length of the identifier of the network slice.
  • the processor 1201 sends the second packet to the terminal device through the transceiver 1203 before receiving the data packet sent by the sending device through the transceiver 1203. Mapping table.
  • the processor 1201 sends an RRC connection reconfiguration message to the terminal device by using the transceiver 1203, where the RRC connection reconfiguration message includes a second mapping table.
  • the first indication information includes an identifier of a QoS parameter of the service data flow to which the data packet belongs, and the identifier of the QoS parameter of the service data flow to which the data packet belongs is allocated by the core network control plane device for the QoS parameter of the service data flow to which the data packet belongs. of.
  • the first indication information includes a first indicator, where the first indicator is allocated by the radio access network device or the core network control plane device for the network slice and the PDU session, and is used to identify the network slice and the PDU session on the user plane. .
  • the first indicator allocated by the radio access network device is the same as or different from the first indicator allocated by the core network control plane device.
  • FIG. 14 is a schematic structural diagram of another transmitting device according to an embodiment of the present invention.
  • the transmitting device 140 includes: a generating module 1401 and a sending module 1402, where
  • the generating module 1401 is configured to generate a data packet, where the data packet includes first indication information, where the first indication information is used to indicate a protocol data unit PDU session to which the data packet belongs.
  • the sending module 1402 is configured to send the data packet to the receiving end device.
  • the data packet further includes second indication information, where the second indication information is used to indicate a network slice corresponding to the data packet.
  • the first indication information is further used to indicate a network slice corresponding to the data packet.
  • the data packet further includes third indication information, where the third indication information is used to indicate a QoS parameter of the service data flow to which the data packet belongs.
  • the first indication information is further used to indicate a QoS parameter of the service data flow to which the data packet belongs.
  • the first indication information includes an identifier of the PDU session, and the identifier of the PDU session is allocated by the core network control plane device for the PDU session and is used to identify the PDU session.
  • the first indication information includes an indicator of a PDU session
  • the indicator of the PDU session is allocated by the radio access network device or the core network control plane device for the PDU session and used to identify the PDU session on the user plane.
  • the sender device 140 further includes:
  • the first obtaining module is configured to obtain, from the first mapping table, an indicator of the PDU session corresponding to the identifier of the PDU session before the generating module 1401 generates the data packet.
  • the first mapping table includes a correspondence between the identifier set of the PDU session and the indicator set of the PDU session.
  • the identifier of the PDU session is allocated by the core network control plane device for the PDU session and is used to identify the PDU session, PDU on the control plane.
  • the byte length of the indicator of the session is less than the byte length of the identity of the PDU session.
  • the sending end device 140 further includes:
  • the first receiving module is configured to receive the first mapping table sent by the radio access network device before the first acquiring module acquires the indicator of the PDU session corresponding to the identifier of the PDU session from the first mapping table.
  • the first receiving module is specifically configured to: receive an RRC connection reconfiguration message sent by the radio access network device, where the RRC connection reconfiguration message includes a first mapping table.
  • the second indication information includes an identifier of the network slice, where the identifier of the network slice is allocated by the core network control plane device for the network slice and is used to identify the network slice.
  • the second indication information includes an indicator of the network slice
  • the indicator of the network slice is allocated by the radio access network device or the core network control plane device for the network slice and is used to identify the network slice on the user plane.
  • the sender device 140 further includes:
  • a second obtaining module configured to: before the generating module 1401 generates the data packet, obtain, from the second mapping table, an indicator of the network slice corresponding to the identifier of the network slice, where the second mapping table includes the identifier set of the network slice and the indication of the network slice Correspondence of the set of symbols, the identifier of the network slice is allocated by the core network control plane device for the network slice and is used to identify the network slice on the control plane, and the byte length of the indicator of the network slice is smaller than the identifier of the identifier of the network slice length.
  • the sending end device 140 further includes:
  • the second receiving module is configured to receive the second mapping table sent by the radio access network device before the second obtaining module acquires the indicator of the network slice corresponding to the identifier of the network slice from the second mapping table.
  • the second receiving module is specifically configured to: receive an RRC connection reconfiguration message sent by the radio access network device, where the RRC connection reconfiguration message includes a second mapping table.
  • the first indication information includes an identifier of a QoS parameter of the service data flow to which the data packet belongs, and the identifier of the QoS parameter of the service data flow to which the data packet belongs is allocated by the core network control plane device for the QoS parameter of the service data flow to which the data packet belongs. of.
  • the first indication information includes a first indicator, where the first indicator is allocated by the radio access network device or the core network control plane device for the network slice and the PDU session, and is used to identify the network slice and the PDU session on the user plane. .
  • the first indicator allocated by the radio access network device is the same as or different from the first indicator allocated by the core network control plane device.
  • FIG. 15 is a schematic structural diagram of another receiving end device according to an embodiment of the present invention. As shown in FIG. 15, the receiving end device 150 includes: a receiving module 1501 and a processing module 1502, where
  • the receiving module 1501 is configured to receive a data packet sent by the sending end device, where the data packet includes first indication information, where the first indication information is used to indicate a PDU session corresponding to the data packet.
  • the processing module 1502 is configured to determine, according to the first indication information, a PDU session corresponding to the data packet.
  • the data packet further includes second indication information, where the second indication information is used to indicate a network slice corresponding to the data packet.
  • the first indication information is further used to indicate a network slice corresponding to the data packet.
  • the data packet further includes third indication information, where the third indication information is used to indicate a QoS parameter of the service data flow to which the data packet belongs.
  • the first indication information is further used to indicate a QoS parameter of the service data flow to which the data packet belongs.
  • the first indication information includes an identifier of the PDU session, and the identifier of the PDU session is allocated by the core network control plane device for the PDU session and is used to identify the PDU session.
  • the first indication information includes an indicator of a PDU session corresponding to the identifier of the PDU session, and the indicator of the PDU session is allocated by the radio access network device or the core network control plane device for the PDU session and is used for the user plane. Identifies the PDU session.
  • the identity of the PDU session is assigned by the core network control plane device for the PDU session and is used to identify the PDU session on the control plane.
  • the byte length of the indicator of the PDU session is less than the byte length of the identity of the PDU session.
  • the sending device is a terminal device and the receiving device is a wireless access network device
  • the receiving device 150 further includes:
  • the first sending module is configured to send the first mapping table to the terminal device before the receiving module 1501 receives the data packet sent by the sending end device.
  • the first sending module is specifically configured to: send an RRC connection reconfiguration message to the terminal device, where the RRC connection is The first mapping table is included in the reconfiguration message.
  • the second indication information includes an identifier of the network slice, where the identifier of the network slice is allocated by the core network control plane device for the network slice and is used to identify the network slice.
  • the second indication information includes an indicator of a network slice corresponding to the identifier of the network slice, where the indicator of the network slice is allocated by the radio access network device or the core network control plane device for the network slice and is used in the user plane. Identify the network slice.
  • the identifier of the network slice is allocated by the core network control plane device for the network slice and is used to identify the network slice on the control plane, and the byte length of the indicator of the network slice is smaller than the byte length of the identifier of the network slice.
  • the receiving device 150 further includes:
  • the second sending module is configured to send a second mapping table to the terminal device before the receiving module 1501 receives the data packet sent by the sending end device.
  • the second sending module is specifically configured to: send an RRC connection reconfiguration message to the terminal device, where the RRC connection reconfiguration message includes a second mapping table.
  • the first indication information includes an identifier of a QoS parameter of the service data flow to which the data packet belongs, and the identifier of the QoS parameter of the service data flow to which the data packet belongs is allocated by the core network control plane device for the QoS parameter of the service data flow to which the data packet belongs. of.
  • the first indication information includes a first indicator, where the first indicator is allocated by the radio access network device or the core network control plane device for the network slice and the PDU session, and is used to identify the network slice and the PDU session on the user plane. .
  • the first indicator allocated by the radio access network device is the same as or different from the first indicator allocated by the core network control plane device.
  • the aforementioned program can be stored in a computer readable storage medium.
  • the program when executed, performs the steps including the foregoing method embodiments; and the foregoing storage medium includes various media that can store program codes, such as a ROM, a RAM, a magnetic disk, or an optical disk.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

一种数据传输方法及相关设备,其中,该方法包括:发送端设备生成数据包,所述数据包包括第一指示信息,所述第一指示信息用于指示所述数据包对应的PDU会话。所述发送端设备将所述数据包发送给接收端设备,接收端设备根据第一指示信息确定所述数据包对应的PDU会话。采用本申请,接收端设备可以准确地识别数据包对应于哪个PDU会话。

Description

数据传输方法及相关设备 技术领域
本申请涉及通信技术领域,尤其涉及一种数据传输方法及相关设备。
背景技术
在长期演进(英文:Long Term Evolution,简称:LTE)系统中,用户设备(英文:User Equipment,简称:UE)与数据网络之间可以建立多个分组数据网络(英文:Packet Data Network,简称:PDN)连接。分组数据网关(英文:PDN Gateway,简称:PGW)可以为每个PDN连接建立独享的数据无线承载(英文:Data Radio Bearer,简称:DRB)。不同的PDN连接基于不同的DRB区分。并且,如果同一PDN连接内包括多个业务数据流,那么不同服务质量(英文:Quality of Service,简称:QoS)的业务数据流也需要基于不同的DRB区分。例如,请参见图1,是现有技术中数据包与DRB的映射示意图。在图1中,UE建立了两个PDN连接,分别是PDN连接1和PDN连接2。PDN连接1对应的数据网络为PDN网络1,PDN连接2对应的数据网络为PDN网络2。其中,PDN连接1包括2个业务数据流,分别为业务数据流1和业务数据流2。PDN连接2也包括2个业务数据流,分别为业务数据流3和业务数据流4。业务数据流1和业务数据流3的QoS相同,业务数据流2和业务数据流4的QoS相同。PGW1将业务数据流1和业务数据流2分别映射到DRB1和DRB2上,PGW2将业务数据流3和业务数据流4分别映射到DRB3和DRB4上。
当UE向演进型基站(英文:evolved Node B,简称:eNB)发送PDN连接1中业务数据流1中的数据包时,采用DRB1来传输该数据包。eNB根据DRB1确定该数据包对应PDN连接1,进而将该数据包发送给PGW1。PGW1根据DRB1确定该数据包对应PDN连接1,进而将该数据包发送至PDN网络1。
由上可知,在LTE系统中,UE与核心网之间是通过传输数据包所采用的DRB来识别数据包的。在第五代(英文:5th Generation,简称:5G)无线通信网络中,引入了协议数据单元(英文:Protocol Data Unit,简称:PDU)会话的概念,PDU会话指终端设备与数据网络之间建立的连接。当UE同时建立了多个PDU会话时,在数据传输过程中如何准确地识别数据包对应于哪个PDU会话是目前正在讨论的技术问题。
发明内容
本发明实施例提供了一种数据传输方法及相关设备,接收端设备可以准确地识别数据包对应于哪个PDU会话。
第一方面,本发明实施例提供了一种数据传输方法。该方法包括:发送端设备生成数据包,数据包包括第一指示信息,第一指示信息用于指示数据包对应的PDU会话。发送端设备将数据包发送给接收端设备。通过在数据包中携带第一指示信息,可以使得接收端设备根据第一指示信息准确地识别数据包对应的PDU会话。因此不同PDU会话的数据包可以不需要基于独立的DRB进行区分,可以节省DRB的数量,进而减少控制信令的开销。
结合第一方面,在第一方面的第一种实现方式中,数据包还包括第二指示信息,第二 指示信息用于指示数据包对应的网络切片。通过在数据包中携带第二指示信息,可以使得接收端设备结合第一指示信息以及第二指示信息准确地识别数据包对应哪个网络切片中的哪个PDU会话。因此不同网络切片中的不同PDU会话的数据包可以不需要基于独立的DRB进行区分,可以节省DRB的数量,进而减少控制信令的开销。
结合第一方面,在第一方面的第二种实现方式中,第一指示信息还用于指示数据包对应的网络切片。通过第一指示信息可以同时指示数据包对应到哪个网络切片中的哪个PDU会话,因此可以减少传输过程中数据包中携带的字节个数,减少传输开销。
结合第一方面,或第一方面的第一种实现方式,或第一方面的第二种实现方式,在第一方面的第三种实现方式中,数据包还包括第三指示信息,第三指示信息用于指示数据包所属业务数据流的服务质量(英文:Quality of Service,简称:QoS)参数。通过在数据包中携带第三指示信息,可以使得接收端设备根据第三指示信息准确地识别数据包所属业务数据流的QoS参数,从而对数据包进行相应的调度决策。并且可以实现具有相同QoS参数的数据包基于同一DRB进行数据传输,无需考虑该数据包对应哪个PDU会话,甚至哪个网络切片,可以节省DRB的数量,进而减少控制信令的开销。
结合第一方面,或第一方面的第一种实现方式,或第一方面的第二种实现方式,在第一方面的第四种实现方式中,第一指示信息还用于指示数据包所属业务数据流的QoS参数。通过第一指示信息可以同时指示数据包对应的PDU会话以及数据包所属业务数据流的QoS参数,可以减少传输过程中数据包中携带的字节个数,减少传输开销。
结合第一方面,或第一方面的第一种至第三种任一实现方式,在第一方面的第五种实现方式中,第一指示信息包括PDU会话的标识,PDU会话的标识是由核心网控制面设备为PDU会话分配的并且用于标识PDU会话。通过在用户面沿用控制面中PDU会话的标识可以节省额外的映射关系。
结合第一方面,或第一方面的第一种至第三种任一实现方式,在第一方面的第六种实现方式中,第一指示信息包括PDU会话的指示符,PDU会话的指示符是由无线接入网设备或核心网控制面设备为PDU会话分配的并且用于在用户面标识PDU会话。对发送端设备在生成数据包之前获取PDU会话的指示符的过程进行描述。发送端设备从第一映射表中获取PDU会话的标识对应的PDU会话的指示符。其中,第一映射表包括PDU会话的标识集合和PDU会话的指示符集合的对应关系,PDU会话的标识是由核心网控制面设备为PDU会话分配的并且用于在控制面标识PDU会话,PDU会话的指示符的字节长度小于PDU会话的标识的字节长度。通过在数据包中携带PDU会话的指示符而非PDU会话的标识可以减少传输的字节长度,从而节省传输开销。
结合第一方面的第六种实现方式,在第一方面的第七种实现方式中,若发送端设备为终端设备,接收端设备为无线接入网设备,则终端设备从第一映射表中获取PDU会话的标识对应的PDU会话的指示符之前,接收无线接入网设备发送的第一映射表。
结合第一方面的第七种实现方式,在第一方面的第八种实现方式中,对终端设备接收无线接入网设备发送的第一映射表的过程进行描述。终端设备接收无线接入网设备发送的无线资源控制(英文:Radio Resource Control,简称:RRC)连接重配置消息,RRC连接重配置消息中包括第一映射表。
结合第一方面的第一种实现方式,在第一方面的第九种实现方式中,第二指示信息包括网络切片的标识,网络切片的标识是由核心网控制面设备为网络切片分配的并且用于标识网络切片。通过在用户面沿用控制面中网络切片的标识可以节省额外的映射关系。
结合第一方面的第一种实现方式,在第一方面的第十种实现方式中,第二指示信息包括网络切片的指示符,网络切片的指示符是由无线接入网设备或核心网控制面设备为网络切片分配的并且用于在用户面标识网络切片。对发送端设备生成数据包之前获取网络切片的指示符的过程进行描述。发送端设备从第二映射表中获取网络切片的标识对应的网络切片的指示符,第二映射表包括网络切片的标识集合和网络切片的指示符集合的对应关系,网络切片的标识是由核心网控制面设备为网络切片分配的并且用于在控制面标识网络切片的,网络切片的指示符的字节长度小于网络切片的标识的字节长度。通过在数据包中携带网络切片的指示符而非网络切片的标识可以减少传输的字节长度,从而节省传输开销。
结合第一方面的第十种实现方式,在第一方面的第十一种实现方式中,若发送端设备为终端设备,接收端设备为无线接入网设备,则终端设备从第二映射表中获取网络切片的标识对应的网络切片的指示符之前,接收无线接入网设备发送的第二映射表。
结合第一方面的第十一种实现方式,在第一方面的第十二种实现方式中,对终端设备接收无线接入网设备发送的第二映射表的过程进行描述。终端设备接收无线接入网设备发送的RRC连接重配置消息,RRC连接重配置消息中包括第二映射表。
结合第一方面的第四种实现方式,在第一方面的第十三种实现方式中,第一指示信息包括数据包所属业务数据流的QoS参数的标识,数据包所属业务数据流的QoS参数的标识是由核心网控制面设备为数据包所属业务数据流的QoS参数分配的。
结合第一方面的第二种实现方式,在第一方面的第十四种实现方式中,第一指示信息包括第一指示符,第一指示符为无线接入网设备或核心网控制面设备为网络切片和PDU会话分配的并且用于在用户面标识网络切片和PDU会话。通过一个指示符可以同时指示出数据包对应到哪个网络切片中的哪个PDU会话,可以减少传输过程中数据包中携带的字节个数,减少传输开销。
结合第一方面的第十四种实现方式,在第一方面的第十五种实现方式中,无线接入网设备分配的第一指示符与核心网控制面设备分配的第一指示符相同或不同。
第二方面,本发明实施例提供了一种数据传输方法。该方法包括:接收端设备接收发送端设备发送的数据包,数据包包括第一指示信息,第一指示信息用于指示数据包对应的PDU会话。接收端设备根据第一指示信息确定数据包对应的PDU会话。通过在数据包中携带第一指示信息,可以使得接收端设备根据第一指示信息准确地识别数据包对应的PDU会话。因此不同PDU会话的数据包可以不需要基于独立的DRB进行区分,可以节省DRB的数量,进而减少控制信令的开销。
结合第二方面,在第二方面的第一种实现方式中,数据包还包括第二指示信息,第二指示信息用于指示数据包对应的网络切片。通过在数据包中携带第二指示信息,可以使得接收端设备结合第一指示信息以及第二指示信息准确地识别数据包对应哪个网络切片中的哪个PDU会话。因此不同网络切片中的不同PDU会话的数据包可以不需要基于独立的DRB进行区分,可以节省DRB的数量,进而减少控制信令的开销。
结合第二方面,在第二方面的第二种实现方式中,第一指示信息还用于指示数据包对应的网络切片。通过第一指示信息可以同时指示数据包对应到哪个网络切片中的哪个PDU会话,因此可以减少传输过程中数据包中携带的字节个数,减少传输开销。
结合第二方面,或第二方面的第一种实现方式,或第二方面的第二种实现方式,在第二方面的第三种实现方式中,数据包还包括第三指示信息,第三指示信息用于指示数据包所属业务数据流的QoS参数。通过在数据包中携带第三指示信息,可以使得接收端设备根据第三指示信息准确地识别数据包所属业务数据流的QoS参数,从而对数据包进行相应的调度决策。并且可以实现具有相同QoS参数的数据包基于同一DRB进行数据传输,无需考虑该数据包对应哪个PDU会话,甚至哪个网络切片,可以节省DRB的数量,进而减少控制信令的开销。
结合第二方面,或第二方面的第一种实现方式,或第二方面的第二种实现方式,在第二方面的第四种实现方式中,第一指示信息还用于指示数据包所属业务数据流的QoS参数。通过第一指示信息可以同时指示数据包对应的PDU会话以及数据包所属业务数据流的QoS参数,可以减少传输过程中数据包中携带的字节个数,减少传输开销。
结合第二方面,或第二方面的第一种至第三种任一实现方式,在第二方面的第五种实现方式中,第一指示信息包括PDU会话的标识,PDU会话的标识是由核心网控制面设备为PDU会话分配的并且用于标识PDU会话。通过在用户面沿用控制面中PDU会话的标识可以节省额外的映射关系。
结合第二方面,或第二方面的第一种至第三种任一实现方式,在第二方面的第六种实现方式中,第一指示信息包括PDU会话的标识对应的PDU会话的指示符,PDU会话的指示符是由无线接入网设备或核心网控制面设备为PDU会话分配的并且用于在用户面标识PDU会话。PDU会话的标识是由核心网控制面设备为PDU会话分配的并且用于在控制面标识PDU会话,PDU会话的指示符的字节长度小于PDU会话的标识的字节长度。通过在数据包中携带PDU会话的指示符而非PDU会话的标识可以减少传输的字节长度,从而节省传输开销。
结合第二方面的第六种实现方式,在第二方面的第七种实现方式中,若发送端设备为终端设备,接收端设备为无线接入网设备,则无线接入网设备接收终端设备发送的数据包之前,向终端设备发送第一映射表。
结合第二方面的第七种实现方式,在第二方面的第八种实现方式中,对无线接入网设备向终端设备发送第一映射表的过程进行描述。无线接入网设备向终端设备发送RRC连接重配置消息,RRC连接重配置消息中包括第一映射表。
结合第二方面的第一种实现方式,在第二方面的第九种实现方式中,第二指示信息包括网络切片的标识,网络切片的标识是由核心网控制面设备为网络切片分配的并且用于标识网络切片。通过在用户面沿用控制面中网络切片的标识可以节省额外的映射关系。
结合第二方面的第一种实现方式,在第二方面的第十种实现方式中,第二指示信息包括网络切片的标识对应的网络切片的指示符,网络切片的指示符是由无线接入网设备或核心网控制面设备为网络切片分配的并且用于在用户面标识网络切片。网络切片的标识是由核心网控制面设备为网络切片分配的并且用于在控制面标识网络切片的,网络切片的指示 符的字节长度小于网络切片的标识的字节长度。通过在数据包中携带网络切片的指示符而非网络切片的标识可以减少传输的字节长度,从而节省传输开销。
结合第二方面的第十种实现方式,在第二方面的第十一种实现方式中,若接收端设备为终端设备,接收端设备为无线接入网设备,则无线接入网设备接收终端设备发送的数据包之前,无线接入网设备向终端设备发送第二映射表。
结合第二方面的第十一种实现方式,在第二方面的第十二种实现方式中,对无线接入网设备向终端设备发送第二映射表的过程进行描述。无线接入网设备向终端设备发送RRC连接重配置消息,RRC连接重配置消息中包括第二映射表。
结合第二方面的第四种实现方式,在第二方面的第十三种实现方式中,第一指示信息包括数据包所属业务数据流的QoS参数的标识,数据包所属业务数据流的QoS参数的标识是由核心网控制面设备为数据包所属业务数据流的QoS参数分配的。
结合第二方面的第二种实现方式,在第二方面的第十四种实现方式中,第一指示信息包括第一指示符,第一指示符为无线接入网设备或核心网控制面设备为网络切片和PDU会话分配的并且用于在用户面标识网络切片和PDU会话。通过一个指示符可以同时指示出数据包对应到哪个网络切片中的哪个PDU会话,可以减少传输过程中数据包中携带的字节个数,减少传输开销。
结合第二方面的第十四种实现方式,在第二方面的第十五种实现方式中,无线接入网设备分配的第一指示符与核心网控制面设备分配的第一指示符相同或不同。
第三方面,本发明实施例提供了一种发送端设备,包括处理器、存储器和收发器。其中,存储器用于存储指令,处理器用于调用存储器中存储的指令来执行如下操作:生成数据包,数据包包括第一指示信息,第一指示信息用于指示数据包对应的PDU会话。通过收发器将数据包发送给接收端设备。通过在数据包中携带第一指示信息,可以使得接收端设备根据第一指示信息准确地识别数据包对应的PDU会话。因此不同PDU会话的数据包可以不需要基于独立的DRB进行区分,可以节省DRB的数量,进而减少控制信令的开销。
结合第三方面,在第三方面的第一种实现方式中,数据包还包括第二指示信息,第二指示信息用于指示数据包对应的网络切片。通过在数据包中携带第二指示信息,可以使得接收端设备结合第一指示信息以及第二指示信息准确地识别数据包对应哪个网络切片中的哪个PDU会话。因此不同网络切片中的不同PDU会话的数据包可以不需要基于独立的DRB进行区分,可以节省DRB的数量,进而减少控制信令的开销。
结合第三方面,在第三方面的第二种实现方式中,第一指示信息还用于指示数据包对应的网络切片。通过第一指示信息可以同时指示数据包对应到哪个网络切片中的哪个PDU会话,因此可以减少传输过程中数据包中携带的字节个数,减少传输开销。
结合第三方面,或第三方面的第一种实现方式,或第三方面的第二种实现方式,在第三方面的第三种实现方式中,数据包还包括第三指示信息,第三指示信息用于指示数据包所属业务数据流的QoS参数。通过在数据包中携带第三指示信息,可以使得接收端设备根据第三指示信息准确地识别数据包所属业务数据流的QoS参数,从而对数据包进行相应的调度决策。并且可以实现具有相同QoS参数的数据包基于同一DRB进行数据传输,无需考虑该数据包对应哪个PDU会话,甚至哪个网络切片,可以节省DRB的数量,进而减少 控制信令的开销。
结合第三方面,或第三方面的第一种实现方式,或第三方面的第二种实现方式,在第三方面的第四种实现方式中,第一指示信息还用于指示数据包所属业务数据流的QoS参数。通过第一指示信息可以同时指示数据包对应的PDU会话以及数据包所属业务数据流的QoS参数,可以减少传输过程中数据包中携带的字节个数,减少传输开销。
结合第三方面,或第三方面的第一种至第三种任一实现方式,在第三方面的第五种实现方式中,第一指示信息包括PDU会话的标识,PDU会话的标识是由核心网控制面设备为PDU会话分配的并且用于标识PDU会话。通过在用户面沿用控制面中PDU会话的标识可以节省额外的映射关系。
结合第三方面,或第三方面的第一种至第三种任一实现方式,在第三方面的第六种实现方式中,第一指示信息包括PDU会话的指示符,PDU会话的指示符是由无线接入网设备或核心网控制面设备为PDU会话分配的并且用于在用户面标识PDU会话。对处理器在生成数据包之前获取PDU会话的指示符的过程进行描述。处理器从第一映射表中获取PDU会话的标识对应的PDU会话的指示符。其中,第一映射表包括PDU会话的标识集合和PDU会话的指示符集合的对应关系,PDU会话的标识是由核心网控制面设备为PDU会话分配的并且用于在控制面标识PDU会话,PDU会话的指示符的字节长度小于PDU会话的标识的字节长度。通过在数据包中携带PDU会话的指示符而非PDU会话的标识可以减少传输的字节长度,从而节省传输开销。
结合第三方面的第六种实现方式,在第三方面的第七种实现方式中,若发送端设备为终端设备,接收端设备为无线接入网设备,则处理器从第一映射表中获取PDU会话的标识对应的PDU会话的指示符之前,通过收发器接收无线接入网设备发送的第一映射表。
结合第三方面的第七种实现方式,在第三方面的第八种实现方式中,对处理器通过收发器接收无线接入网设备发送的第一映射表的过程进行描述。处理器通过收发器接收无线接入网设备发送的RRC连接重配置消息,RRC连接重配置消息中包括第一映射表。
结合第三方面的第一种实现方式,在第三方面的第九种实现方式中,第二指示信息包括网络切片的标识,网络切片的标识是由核心网控制面设备为网络切片分配的并且用于标识网络切片。通过在用户面沿用控制面中网络切片的标识可以节省额外的映射关系。
结合第三方面的第一种实现方式,在第三方面的第十种实现方式中,第二指示信息包括网络切片的指示符,网络切片的指示符是由无线接入网设备或核心网控制面设备为网络切片分配的并且用于在用户面标识网络切片。对处理器生成数据包之前获取网络切片的指示符的过程进行描述。处理器从第二映射表中获取网络切片的标识对应的网络切片的指示符,第二映射表包括网络切片的标识集合和网络切片的指示符集合的对应关系,网络切片的标识是由核心网控制面设备为网络切片分配的并且用于在控制面标识网络切片的,网络切片的指示符的字节长度小于网络切片的标识的字节长度。通过在数据包中携带网络切片的指示符而非网络切片的标识可以减少传输的字节长度,从而节省传输开销。
结合第三方面的第十种实现方式,在第三方面的第十一种实现方式中,若发送端设备为终端设备,接收端设备为无线接入网设备,则处理器从第二映射表中获取网络切片的标识对应的网络切片的指示符之前,通过收发器接收无线接入网设备发送的第二映射表。
结合第三方面的第十一种实现方式,在第三方面的第十二种实现方式中,对处理器通过收发器接收无线接入网设备发送的第二映射表的过程进行描述。处理器通过收发器接收无线接入网设备发送的RRC连接重配置消息,RRC连接重配置消息中包括第二映射表。
结合第三方面的第四种实现方式,在第三方面的第十三种实现方式中,第一指示信息包括数据包所属业务数据流的QoS参数的标识,数据包所属业务数据流的QoS参数的标识是由核心网控制面设备为数据包所属业务数据流的QoS参数分配的。
结合第三方面的第二种实现方式,在第三方面的第十四种实现方式中,第一指示信息包括第一指示符,第一指示符为无线接入网设备或核心网控制面设备为网络切片和PDU会话分配的并且用于在用户面标识网络切片和PDU会话。通过一个指示符可以同时指示出数据包对应到哪个网络切片中的哪个PDU会话,可以减少传输过程中数据包中携带的字节个数,减少传输开销。
结合第三方面的第十四种实现方式,在第三方面的第十五种实现方式中,无线接入网设备分配的第一指示符与核心网控制面设备分配的第一指示符相同或不同。
第四方面,本发明实施例提供了一种接收端设备。该接收端设备为接收端设备,包括处理器、存储器和收发器,其中,存储器用于存储指令,处理器用于调用存储器中存储的指令来执行如下操作:通过收发器接收发送端设备发送的数据包,数据包包括第一指示信息,第一指示信息用于指示数据包对应的PDU会话。根据第一指示信息确定数据包对应的PDU会话。通过在数据包中携带第一指示信息,可以使得接收端设备根据第一指示信息准确地识别数据包对应的PDU会话。因此不同PDU会话的数据包可以不需要基于独立的DRB进行区分,可以节省DRB的数量,进而减少控制信令的开销。
结合第四方面,在第四方面的第一种实现方式中,数据包还包括第二指示信息,第二指示信息用于指示数据包对应的网络切片。通过在数据包中携带第二指示信息,可以使得接收端设备结合第一指示信息以及第二指示信息准确地识别数据包对应哪个网络切片中的哪个PDU会话。因此不同网络切片中的不同PDU会话的数据包可以不需要基于独立的DRB进行区分,可以节省DRB的数量,进而减少控制信令的开销。
结合第四方面,在第四方面的第二种实现方式中,第一指示信息还用于指示数据包对应的网络切片。通过第一指示信息可以同时指示数据包对应到哪个网络切片中的哪个PDU会话,因此可以减少传输过程中数据包中携带的字节个数,减少传输开销。
结合第四方面,或第四方面的第一种实现方式,或第四方面的第二种实现方式,在第四方面的第三种实现方式中,数据包还包括第三指示信息,第三指示信息用于指示数据包所属业务数据流的QoS参数。通过在数据包中携带第三指示信息,可以使得接收端设备根据第三指示信息准确地识别数据包所属业务数据流的QoS参数,从而对数据包进行相应的调度决策。并且可以实现具有相同QoS参数的数据包基于同一DRB进行数据传输,无需考虑该数据包对应哪个PDU会话,甚至哪个网络切片,可以节省DRB的数量,进而减少控制信令的开销。
结合第四方面,或第四方面的第一种实现方式,或第四方面的第二种实现方式,在第四方面的第四种实现方式中,第一指示信息还用于指示数据包所属业务数据流的QoS参数。通过第一指示信息可以同时指示数据包对应的PDU会话以及数据包所属业务数据流的QoS 参数,可以减少传输过程中数据包中携带的字节个数,减少传输开销。
结合第四方面,或第四方面的第一种至第三种任一实现方式,在第四方面的第五种实现方式中,第一指示信息包括PDU会话的标识,PDU会话的标识是由核心网控制面设备为PDU会话分配的并且用于标识PDU会话。通过在用户面沿用控制面中PDU会话的标识可以节省额外的映射关系。
结合第四方面,或第四方面的第一种至第三种任一实现方式,在第四方面的第六种实现方式中,第一指示信息包括PDU会话的标识对应的PDU会话的指示符,PDU会话的指示符是由无线接入网设备或核心网控制面设备为PDU会话分配的并且用于在用户面标识PDU会话。PDU会话的标识是由核心网控制面设备为PDU会话分配的并且用于在控制面标识PDU会话,PDU会话的指示符的字节长度小于PDU会话的标识的字节长度。通过在数据包中携带PDU会话的指示符而非PDU会话的标识可以减少传输的字节长度,从而节省传输开销。
结合第四方面的第六种实现方式,在第四方面的第七种实现方式中,若发送端设备为终端设备,接收端设备为无线接入网设备,则处理器通过收发器接收发送端设备发送的数据包之前,处理器通过收发器向终端设备发送第一映射表。
结合第四方面的第七种实现方式,在第四方面的第八种实现方式中,对处理器通过收发器向终端设备发送第一映射表的过程进行描述。处理器通过收发器向终端设备发送RRC连接重配置消息,RRC连接重配置消息中包括第一映射表。
结合第四方面的第一种实现方式,在第四方面的第九种实现方式中,第二指示信息包括网络切片的标识,网络切片的标识是由核心网控制面设备为网络切片分配的并且用于标识网络切片。通过在用户面沿用控制面中网络切片的标识可以节省额外的映射关系。
结合第四方面的第一种实现方式,在第四方面的第十种实现方式中,第二指示信息包括网络切片的标识对应的网络切片的指示符,网络切片的指示符是由无线接入网设备或核心网控制面设备为网络切片分配的并且用于在用户面标识网络切片。网络切片的标识是由核心网控制面设备为网络切片分配的并且用于在控制面标识网络切片的,网络切片的指示符的字节长度小于网络切片的标识的字节长度。通过在数据包中携带网络切片的指示符而非网络切片的标识可以减少传输的字节长度,从而节省传输开销。
结合第四方面的第十种实现方式,在第四方面的第十一种实现方式中,若接收端设备为终端设备,接收端设备为无线接入网设备,则处理器通过收发器接收发送端设备发送的数据包之前,处理器通过收发器向终端设备发送第二映射表。
结合第四方面的第十一种实现方式,在第四方面的第十二种实现方式中,对处理器通过收发器向终端设备发送第二映射表的过程进行描述。处理器通过收发器向终端设备发送RRC连接重配置消息,RRC连接重配置消息中包括第二映射表。
结合第四方面的第四种实现方式,在第四方面的第十三种实现方式中,第一指示信息包括数据包所属业务数据流的QoS参数的标识,数据包所属业务数据流的QoS参数的标识是由核心网控制面设备为数据包所属业务数据流的QoS参数分配的。
结合第四方面的第二种实现方式,在第四方面的第十四种实现方式中,第一指示信息包括第一指示符,第一指示符为无线接入网设备或核心网控制面设备为网络切片和PDU会 话分配的并且用于在用户面标识网络切片和PDU会话。通过一个指示符可以同时指示出数据包对应到哪个网络切片中的哪个PDU会话,可以减少传输过程中数据包中携带的字节个数,减少传输开销。
结合第四方面的第十四种实现方式,在第四方面的第十五种实现方式中,无线接入网设备分配的第一指示符与核心网控制面设备分配的第一指示符相同或不同。
第五方面,本发明实施例提供了一种发送端设备,该发送端设备包括用于执行上述第一方面或第一方面任意一种实现方式所描述的数据传输方法的模块或单元。
第六方面,本发明实施例提供了一种接收端设备,该接收端设备包括用于执行上述第二方面或第二方面任意一种实现方式所描述的数据传输方法的模块或单元。
第七方面,本发明实施例提供了一种通信系统,包括发送端设备和接收端设备,其中,发送端设备为第三方面或第五方面所描述的发送端设备,接收端设备为第四方面或第六方面所描述的接收端设备。
附图说明
图1是现有技术中数据包与DRB的映射示意图;
图2是本发明实施例提供的一种网络系统的架构示意图;
图3是本发明实施例涉及的应用场景示意图;
图4是本发明实施例提供的数据包与DRB的映射示意图;
图5是本发明实施例提供的一种数据传输方法的信令交互图;
图6是本发明实施例提供的终端设备与无线接入网设备之间的对等协议层示意图;
图7是本发明实施例提供的一种在PDCP层进行封包标记的示意图;
图8是本发明实施例提供的一种在IP层以下PDCP层以上新增加的协议层中进行封包标记的示意图;
图9是本发明实施例提供的终端设备获取第一映射表的流程示意图;
图10是本发明实施例提供的终端设备获取第二映射表的流程示意图;
图11是本发明实施例提供的NG3接口的封包格式;
图12是本发明实施例提供的一种发送端设备的结构示意图;
图13是本发明实施例提供的一种接收端设备的结构示意图;
图14是本发明实施例提供的另一种发送端设备的结构示意图;
图15是本发明实施例提供的另一种接收端设备的结构示意图。
具体实施方式
图2是本发明实施例提供的一种网络系统的架构示意图。如图2所示,终端设备21可以同时接入到一个或多个网络切片中,本实施例以终端设备21同时接入网络切片23、网络切片24和网络切片25三个网络切片为例进行说明。网络切片在核心网进行切分,所有的网络切片共享无线接入网设备,例如网络切片23、网络切片24和网络切片25共享无线接入网设备22。并且所有的网络切片共享公共核心网控制面设备26,公共核心网控制面设备26可以提供的功能包括:移动性管理、用户认证等。每个网络切片拥有各自的核心网用 户面设备和核心网控制面设备,每个网络切片的核心网控制面设备提供的功能可以包括:会话管理等。这里,每个网络切片自己独有的核心网控制面设备可以为会话管理设备,用于为终端设备21建立会话。网络切片内的核心网控制面设备与公共的核心网控制面设备26通过接口连接,该接口可以是下一代(英文:Next Generation,简称:NG)2接口。
每个网络切片中可以包括一个或多个核心网用户面设备,并且可以包括一个或多个核心网控制面设备。其中,网络切片内的核心网控制面设备与核心网用户面设备通过接口连接,该接口可以是NG 4接口。
和无线接入网设备可以进行数据通信的都可以看为终端设备21,本发明实施例中将以一般意义上的UE来介绍。此外,终端设备21也可以称为移动台、接入终端、用户单元、用户站、移动站、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置等。终端设备21可以是蜂窝电话、个人数字处理(英文:Personal Digital Assistant,简称:PDA)、具有无线通信功能的手持设备、车载设备、可穿戴设备以及未来5G网络中的移动台或者未来演进的公共陆地移动网(英文:Public Land Mobile Network,简称:PLMN)网络中的终端设备等。
无线接入网设备22可以为新的无线技术(英文:New Radio,简称:NR)中的无线接入网设备,其功能包括但不限于:对终端设备21的移动性管理、呼叫处理、链路管理、安全加密、头压缩、调度、编码、调制、解调、重传、分段、汇聚、射频等功能。此外,在本发明实施例中,无线接入网设备22还具备上行信号测量功能,可以实现对终端设备21发送的上行信号进行测量,并基于上行信号测量值来判决是否触发终端设备21启动下行测量。此外,无线接入网设备22在新的无线(英文:New Radio,简称:NR)系统中可以采用其他名称,包括但不限于:基站(英文:Base Station,简称:BS)或演进的基站等。终端设备21与无线接入网设备22之间通过空口进行通信。
无线接入网设备22与网络切片中的核心网用户面设备通过接口进行通信,该接口可以是NG3接口。无线接入网设备22通过接口与公共核心网控制面设备进行通信,该接口可以是NG2接口。
图3是本发明实施例涉及的应用场景示意图。如图3所示,无线接入网设备32分别与核心网用户面设备33、核心网用户面设备34以及核心网用户面设备35相连。其中,核心网用户面设备33和核心网用户面设备34分别与数据网络36连接。核心网用户面设备35与数据网络37连接。数据网络的类型包括但不限于:因特网(英文:Internet)、IP多媒体子系统(英文:IP Multimedia Subsystem,简称:IMS)。数据网络36与数据网络37为不同的数据网络。例如,数据网络36的类型为Internet,数据网络37的类型为IMS。
本发明实施例中所描述的PDU会话是指:终端设备和数据网络之间建立的PDU连接。PDU会话的类型包括但不限于:IP类型,以太网型和非IP类型。
经由核心网用户面设备33在终端设备31和数据网络36之间建立的会话为PDU会话1。经由核心网用户面设备34在终端设备31和数据网络36之间建立的会话为PDU会话2。经由核心网用户面设备35为终端设备31和数据网络37之间建立的会话为PDU会话3。三个PDU会话的会话类型可以相同,也可以不同。例如,PDU会话1的会话类型为IP类 型,PDU会话2的会话类型为以太网类型,PDU会话3的会话类型为非IP类型。
本发明实施例提供的数据传输方法可以应用于以下场景。场景一、核心网用户面设备为终端设备31建立了多个PDU会话。场景二、终端设备31接入一个网络切片,该网络切片为终端设备31建立了多个PDU会话。场景三、终端设备31同时接入了多个网络切片,每个网络切片各自为终端设备31建立了一个PDU会话。场景四、终端设备31同时接入了多个网络切片,有的网络切片为终端设备31建立了一个PDU会话,有的网络切片为终端设备31建立了多个PDU会话。场景五、终端设备31同时接入了多个网络切片,每个网络切片为终端设备31建立了多个PDU会话。
不考虑网络切片的情况下,当终端设备31同时支持多个PDU会话时,终端设备31与无线接入网设备32之间需要同时传输多个PDU会话的用户面数据。对于上行(英文:Uplink,简称:UL)数据而言,无线接入网设备32需要区分出接收到的UL数据包属于哪个PDU会话,从而按照NG3接口封装格式进行数据包封装,进而将数据包发送给支持该PDU会话的核心网用户面设备。对于下行(英文:Downlink,简称:DL)数据而言,终端设备31往往也需要对接收的DL数据包进行验证,确认DL数据包对应于哪个PDU会话。例如,终端设备31为中继(英文:Relay)UE,终端设备31确认出DL数据包对应于哪个PDU会话后,将该数据包发送给相应的节点。
引入网络切片概念之后,当终端设备31同时接入了多个网络切片时,终端设备31与无线接入网设备32之间需要同时传输属于多个网络切片中的PDU会话的用户面数据。对于UL数据而言,无线接入网设备22需要区分出接收到的UL数据包属于哪个网络切片中的哪个PDU会话,从而按照NG3接口封装格式进行数据包封装,进而将该数据包发送给该网络切片对应的核心网用户面设备。对于DL数据而言,终端设备31往往也需要对接收的DL数据包进行验证,确认DL数据包对应于哪个网络切片中的哪个PDU会话。例如,终端设备31为中继UE,终端设备31确认出DL数据包对应于哪个网络切片中的哪个PDU会话后,将该数据包发送给相应的节点。
进一步地,无线接入网设备32还需要获知UL数据包所属业务数据流的QoS参数,从而根据QoS参数对该UL数据包进行调度决策,从而保障空口的QoS。终端设备31还需要获知DL数据包所属业务数据流的QoS参数,从而根据DL数据包的QoS参数,决定相应的UL数据包的QoS参数,从而进行相应的UL数据包的传输。
因此,当终端设备31同时建立了多个PDU会话时,如何有效区分数据包对应于哪个PDU会话,以及当终端设备31同时接入多个网络切片时,如何有效区分数据包对应于哪个网络切片中的哪个PDU会话是需要解决的技术问题。一种实现方式是,不同的PDU会话中的数据包基于不同的DRB相互区分,并且同一PDU会话中的多个数据包的QoS参数不同时,也需要基于独立的DRB进行区分。引入网络切片的概念后,不同的网络切片的数据包基于不同的DRB进行区分,并且同一网络切片中的不同PDU会话中的数据包也基于不同的DRB进行区分,并且同一PDU会话中的多个数据包的QoS参数不同时,也需要基于独立的DRB进行区分。这种实现方式会带来一些缺陷,例如当终端设备31接入的网络切片越多、支持的PDU会话越多时,DRB数量也会越多。DRB数量多将带来很多问题,例如控制信令开销会很大。原因在于:对于每个DRB需要维持一套分组数据汇聚协议(英 文:Packet Data Convergence Protocol,简称:PDCP)、无线链路层控制协议(英文:Radio Link Control,简称:RLC)和介质访问控制(英文:Media Access Control,简称:MAC)的参数。当终端设备31进行无线资源控制(英文:Radio Resource Control,简称:RRC)连接重配置、切换甚至RRC连接重建时,RRC连接重配置消息中需要携带所有的DRB的PDCP、RLC和MAC参数,因此控制信令开销很大。本发明实施例提供的数据传输方法中,对DRB映射方式进行了优化,即不管数据包来自于哪个PDU会话,只要QoS参数相同,就可以映射到同一个DRB上,因此可以减少DRB的数量,减少控制信令的开销。或者,不管数据包来自哪个网络切片中的哪个PDU会话,只要QoS参数相同,就可以映射到同一个DRB上,因此可以减少DRB的数量,减少控制信令的开销。
具体的,请参见图4,图4是本发明实施例提供的数据包与DRB的映射示意图。本发明实施例采用DRB共享的方式进行数据传输,即多条业务数据流不管对应于哪个网络切片中的哪个PDU会话,只要具有相同的QoS参数,即可经由一个DRB进行UL、DL的数据传输。其中,一条完整的业务数据流可以对应于多个数据包,如果两条业务数据流的QoS参数相同,也即是说这两条业务数据流中的数据包的QoS参数相同。多个数据包不管对应于哪个网络切片中的哪个PDU会话,只要具有相同的QoS参数,即可经由一个DRB进行UL、DL的数据传输。
在图4中,终端设备同时接入了网络切片41和网络切片42,且网络切片41和网络切片42分别支持两个PDU会话。网络切片41支持PDU会话1.1和PDU会话1.2。网络切片42支持PDU会话2.1和PDU会话2.2。PDU会话1.1中包括2个业务数据流,分别为业务数据流1和业务数据流2。PDU会话1.2中包括2个业务数据流,分别为业务数据流3和业务数据流4。PDU会话2.1中包括2个业务数据流,分别为业务数据流5和业务数据流6。PDU会话2.2中包括2个业务数据流,分别为业务数据流7和业务数据流8。其中,业务数据流1和业务数据流5具有相同的QoS参数,业务数据流2和业务数据流6具有相同的QoS参数,业务数据流3和业务数据流7具有相同的QoS参数,业务数据流4和业务数据流8具有相同的QoS参数。如果将不同的网络切片中的业务数据流需要映射到不同的DRB上,并且同一网络切片中不同PDU会话中的业务数据流需要映射到不同的DRB上,并且同一PDU会话中不同QoS参数的业务数据流也需要映射到不同的DRB上,这样的话,上述8个业务数据流需要分别映射到8个DRB上。需要说明的是,虽然这里表述为业务数据流,实质上是指属于该业务数据流的数据包。
在本发明实施例中,由于业务数据流1和业务数据流5具有相同的QoS参数,则不管这两个业务数据流来自于哪个网络切片中的哪个PDU会话,将这两个业务数据流中的数据包映射到同一个DRB1上进行传输。同样的,业务数据流2和业务数据流6具有相同的QoS参数,将这两个业务数据流中的数据包映射到同一个DRB2上进行传输。业务数据流3和业务数据流7具有相同的QoS参数,将这两个业务数据流中的数据包映射到同一个DRB3上进行传输。业务数据流4和业务数据流8具有相同的QoS参数,将这两个业务数据流中的数据包映射到同一个DRB4上进行传输。由此可以看出,通过实施本发明实施例中的DRB映射方法,可以减少DRB的数量。因此,采用本发明实施例中的DRB映射方式,同一个DRB上传输的数据包可能来自不同的网络切片、不同的PDU会话,那么如何区分传输的 数据包来自于哪一个网络切片以及哪一个PDU会话是本发明实施例需要解决的技术问题。本发明实施例中,对于UL数据包,为了无线接入网设备进行NG3接口正确的封装和路由,需要识别UL数据包对应于哪个PDU会话,从而在NG3接口增加针对不同PDU会话的封装头,并且将UL数据路由到不同的PDU会话对应的核心网用户面设备。或者,为了无线接入网设备进行NG3接口正确的封装和路由,需要识别UL数据包对应于哪个网络切片中的哪个PDU会话,从而在NG3接口增加针对不同网络切片以及不同PDU会话的封装头,并且在NG3接口将UL数据路由到不同的网络切片中的PDU会话对应的核心网用户面设备。对于DL数据包,当终端设备作为中继的身份,需要区分该数据包对应于哪个PDU会话,甚至对应于哪个网络切片中的哪个PDU会话,从而进行相应的处理。
请参见图5,是本发明实施例提供的一种数据传输方法的信令交互图。在本发明实施例中,针对空口的数据传输过程进行描述。发送端设备为终端设备,接收端设备为无线接入网设备,或者,发送端设备为无线接入网设备,接收端设备为终端设备。如图5所示,该数据传输方法包括如下步骤:
S501:发送端设备生成数据包,数据包包括第一指示信息,第一指示信息用于指示数据包对应的PDU会话。
作为一种实现方式,第一指示信息包括PDU会话的ID。PDU会话的ID是由核心网控制面设备为该数据包所属的PDU会话分配的。PDU会话的ID是在控制面的信令交互过程中标识PDU会话的。例如在会话管理的信令流程中,明确指示该会话ID,对该会话进行会话参数修改,释放等。因此,在本实施例中,在用户面进行数据传输时,也可以采用PDU会话的ID来标识PDU会话。该方式节省了额外的信令指示和映射关系。
作为另一种实现方式,第一指示信息包括PDU会话的指示符。PDU会话的指示符是由无线接入网设备为数据包所属的PDU会话分配的,用于在用户面标识PDU会话的。这种情况下,终端设备与无线接入网设备均维护一第一映射表,并且第一映射表是由无线接入网设备配置的。在第一映射表中存储有PDU会话的ID集合与PDU会话的指示符集合的映射关系。其中,PDU会话的ID集合包括一个或者多个PDU会话的ID,PDU会话的指示符集合包括一个或者多个PDU会话的指示符。第一映射表的格式可例如表1所示。
表1
PDU会话的ID PDU会话的指示符
10001000 00
10002000 01
表1中的PDU会话的ID是无线接入网设备从核心网控制面设备获取到的。核心网控制面设备对终端设备已建立的每个PDU会话均分配一个PDU会话的ID,PDU会话的ID用于在控制面标识各个PDU会话。无线接入网设备对获取到的每个PDU会话的ID分配一个相应的指示符,用于在用户面标识PDU会话。由表1可知,终端设备建立了两个PDU 会话,假设分别为PDU会话1和PDU会话2,PDU会话1的ID为10001000,PDU会话2的ID为10002000。无线接入网设备为PDU会话1分配一个短字节的指示符:00,用于在用户面标识PDU会话1。无线接入网设备为PDU会话2分配一个短字节的指示符:01,用于在用户面标识PDU会话2。由此可以看出,PDU会话的ID由8个比特位组成,而PDU会话的指示符由2个比特位组成,PDU会话的指示符的字节长度小于PDU会话的ID的字节长度,因此,在空口传输数据包时携带PDU会话的指示符相较于携带PDU会话的ID,可以减少传输的字节长度,从而减少空口传输开销。需要说明的是,PDU会话的ID的字节长度不限于8位。PDU会话的指示符的字节长度不限于2位。
可选的,无线接入网设备在为终端设备分配PDU会话的指示符时,还可以针对不同终端设备分配不同区间段的PDU会话的指示符,因此,在DL数据包中携带PDU会话的指示符时,接收端设备可以根据PDU会话的指示符准确地识别出该数据包对应哪个终端设备,从而将该数据包发送给相应的终端设备。
需要说明的是,在无线接入网设备与核心网用户面设备之间传输数据包时,在NG3接口的封装头中也可以携带第一映射表中的PDU会话的指示符,也即是说,无论是空口还是NG3接口,均可以采用第一映射表中的PDU会话的指示符来进行数据包的封包,从而指示出该数据包所属的PDU会话。
作为另一种实现方式,第一指示信息包括PDU会话的指示符。PDU会话的指示符是由核心网控制面设备为数据包所属的PDU会话分配的,用于在用户面标识PDU会话的。这种情况下,终端设备、无线接入网设备以及核心网控制面设备均维护一第三映射表,并且第三映射表是由核心网控制面设备配置的。在第三映射表中存储有PDU会话的ID集合与PDU会话的指示符集合的映射关系。其中,PDU会话的ID集合包括一个或者多个PDU会话的ID,PDU会话的指示符集合包括一个或者多个PDU会话的指示符。第三映射表的格式可例如表2所示。
表2
PDU会话的ID PDU会话的指示符
10001000 00
10002000 01
表2中的PDU会话的ID是核心网控制面设备为PDU会话分配的,核心网控制面设备对终端设备已建立的每个PDU会话均分配一个PDU会话的ID,PDU会话的ID用于在控制面标识各个PDU会话。核心网控制面设备还对每个PDU会话的ID分配一个相应的PDU会话的指示符,用于在用户面标识各个PDU会话。由表2可知,终端设备建立了两个PDU会话,假设分别为PDU会话1和PDU会话2,PDU会话1的ID为10001000,PDU会话2的ID为10002000。核心网控制面设备为PDU会话1分配一个短字节的指示符:00,用于在用户面标识PDU会话1。核心网控制面设备为PDU会话2分配一个短字节的指示符:01,用于在用户面标识PDU会话2。由此可以看出,PDU会话的ID由8个比特位组 成,PDU会话的指示符由2个比特位组成,PDU会话的指示符的字节长度小于PDU会话的ID的字节长度,因此,在空口传输数据包时,可以减少传输的字节长度,从而减少空口传输开销。需要说明的是,PDU会话的ID的字节长度不限于8位。PDU会话的指示符的字节长度不限于2位。
需要说明的是,在无线接入网设备与核心网用户面设备之间传输数据包时,在NG3接口的封装头中也可以携带第三映射表中的PDU会话的指示符,也即是说,无论是空口还是NG3接口,均可以采用第三映射表中的PDU会话的指示符来进行数据包的封包,从而指示出该数据包所属的PDU会话。其中,NG3接口的封装头将在后续进行介绍。
需要说明的是,尽管表2所示第三映射表中PDU会话1对应的指示符与表1所示第一映射表中的PDU会话1对应的指示符设置的是相同的,但在具体实现中,无线接入网设备为某个PDU会话分配的PDU会话的指示符与核心网控制面设备为某个PDU会话分配的PDU会话的指示符可以设置为不同的。例如,对于UL数据,无线接入网设备将PDU会话1的指示符设置为00,而对于DU数据,核心网控制面设备将PDU会话1的指示符设置为11。
可选的,数据包中还包括第三指示信息,第三指示信息用于指示数据包的QoS参数,数据包的QoS参数实际指的是数据包所属的业务数据流的QoS参数。QoS参数用于无线接入网设备基于该QoS参数对接收到的UL数据包进行相应的调度决策。其中,QoS参数包括但不限于:1、最大流比特速率。2、保障流比特速率。3、优先级等级。4、包延时预算。5、错包率。6、接纳控制参数。例如,QoS参数的ID为100对应的QoS参数为:调度优先级为1,带宽为2Mbps,传输时延为5秒。QoS参数的ID为101对应的QoS参数为:调度优先级为2,带宽为2.5Mbps,传输时延为2秒。在这种实现方式中,数据包所属的PDU会话以及数据包所属的业务数据流的QoS参数是分别采用两个指示信息进行单独指示的。接收端设备在接收到数据包后,需要结合第一指示信息和第三指示信息确定出该数据包对应哪个PDU会话以及数据包的QoS参数。
作为一种实现方式,第三指示信息包括数据包所属业务数据流的QoS参数的ID。业务数据流的QoS参数的ID是由核心网控制面设备为业务数据流的QoS参数分配的。核心网控制面设备为终端设备已建立的每个PDU会话中所包含的所有业务数据流均分配一个QoS参数ID,用于标识该业务数据流相关的QoS参数。业务数据流的QoS参数的ID是在控制面的信令交互过程中标识业务数据流的QoS参数的。因此,在本实施例中,在用户面进行数据传输时,也采用业务数据流的QoS参数的ID来标识数据包所属业务数据流的QoS参数。
可选的,第一指示信息可以既用于指示数据包所属的PDU会话,又用于指示数据包所属的业务数据流的QoS参数。也即是说,通过一个指示信息可以指示出数据包所属的PDU会话以及数据包所属的业务数据流的QoS参数,相对于采用两个指示信息分别指示数据包所属的PDU会话以及数据包所属的业务数据流的QoS参数的方式来说,在空口传输数据包时,可以减少传输的字节,减少传输开销。接收端设备在接收到数据包后,只需要根据第一指示信息即可确定出该数据包对应哪个PDU会话以及数据包的QoS参数。
作为一种实现方式,当业务数据流的QoS参数的ID可以区分出数据包所属的PDU会 话时,第一指示信息还可以是业务数据流的QoS参数的ID。因此,根据业务数据流的QoS参数的ID就可以确定出数据包所属的PDU会话以及数据包所属的业务数据流的QoS参数。例如,请参见表3。
表3
业务数据流的QoS参数的ID PDU会话的ID
000 10001000
001 10001000
010 10001000
011 10001000
100 10002000
…… 10002000
111 10002000
由表3可知,业务数据流的QoS参数的ID由8个比特位组成,PDU会话的ID由8个比特位组成。其中QoS参数ID为000-011的对应的PDU会话的ID均为10001000。QoS参数ID为100-111的对应的PDU会话的ID均为10002000,以此类推。由此可见,通过QoS参数ID所处的区间可以隐示的指示出PDU会话的ID。因此,在空口传输数据包时,数据包中可以只包括业务数据流的QoS参数的ID,而无需包括PDU会话的ID或者PDU会话的指示符,从而减少了传输的字节长度,降低了空口开销。
可选的,引入5G网络中的网络切片的概念后,终端设备可以同时接入一个获知多个网络切片中,并且每个网络切片可以支持一个或多个PDU会话。在这种场景中,除了在数据包中携带用于指示数据包所属的PDU会话的指示信息,以及用于指示数据包所属的业务数据包所属业务数据流的QoS参数的指示信息以外,还需要携带用于指示数据包所属的网络切片。从而使得无线接入网设备接收到UL数据包后,可以识别出该数据包所属的网络切片,从而将该数据包路由到该网络切片中的核心网用户面设备。
可选的,数据包中还包括第二指示信息,第二指示信息用于指示数据包所属的网络切片。在这种实现方式中,数据包所属的PDU会话以及数据包所属的网络切片是分别采用两个指示信息进行单独指示的。接收端设备在接收到数据包后,需要结合第一指示信息和第二指示信息确定出该数据包对应哪个网络切片中的哪个PDU会话。
作为一种实现方式,第二指示信息包括网络切片的ID。网络切片的ID是由核心网控制面设备为该数据包所属的网络切片分配的。网络切片的ID是在控制面的信令交互过程中标识网络切片的。因此,在本实施例中,在用户面进行数据传输时,也可以采用网络切片的ID来标识网络切片。该方式节省了额外的信令指示和映射关系。
作为另一种实现方式,第二指示信息包括网络切片的指示符。网络切片的指示符是由无线接入网设备为数据包所属的网络切片分配的,用于在用户面标识网络切片的。这种情 况下,终端设备与无线接入网设备均维护一第二映射表,并且第二映射表是由无线接入网设备配置的。在第二映射表中存储有网络切片的ID集合与网络切片的指示符集合的映射关系。其中,网络切片的ID集合包括一个或者多个网络切片的ID,网络切片的指示符集合包括一个或者多个网络切片的指示符。第二映射表的格式可例如表4所示。
表4
网络切片的ID 网络切片的指示符
30001000 00
30002000 01
表4中的网络切片的ID是无线接入网设备从核心网控制面设备获取到的。核心网控制面设备对终端设备已接入的每个网络切片均分配一个网络切片的ID,网络切片的ID用于在控制面标识各个网络切片。无线接入网设备对获取到的每个网络切片的ID分配一个相应的网络切片的指示符,用于在用户面标识网络切片。由表4可知,终端设备接入了两个网络切片,假设分别为网络切片1和网络切片2,网络切片1的ID为30001000,网络切片2的ID为30002000。无线接入网设备为网络切片1分配一个短字节的指示符:00,用于在用户面标识网络切片1。无线接入网设备为网络切片2分配一个短字节的指示符:01,用于在用户面标识网络切片2。由此可以看出,网络切片的ID由8个比特位组成,而网络切片的指示符由2个比特位组成,网络切片的指示符的字节长度小于网络切片的ID的字节长度,因此,如果在空口传输数据包时,可以减少传输的字节长度,从而减少空口传输开销。需要说明的是,网络切片的ID的字节长度不限于8位。网络切片的指示符的字节长度不限于2位。
需要说明的是,在无线接入网设备与核心网用户面设备之间传输数据包时,在NG3接口的封装头中也可以携带第二映射表中的网络切片的指示符,也即是说,无论是空口还是NG3接口,均可以采用第二映射表中的网络切片的指示符来进行数据包的封包,从而指示出该数据包所属的网络切片。
作为另一种实现方式,第二指示信息包括网络切片的指示符。网络切片的指示符是由核心网控制面设备为数据包所属的网络切片分配的,用于在用户面标识网络切片的。这种情况下,终端设备、无线接入网设备以及核心网控制面设备均维护一第四映射表,并且第四映射表是由核心网控制面设备配置的。在第四映射表中存储有网络切片的ID集合与网络切片的指示符集合的映射关系。其中,网络切片的ID集合包括一个或者多个网络切片的ID,网络切片的指示符集合包括一个或者多个网络切片的指示符。第四映射表的格式可例如表5所示。
表5
网络切片的ID 网络切片的指示符
30001000 00
30002000 01
表5中的网络切片的ID是核心网控制面设备为网络切片分配的,核心网控制面设备对终端设备已接入的每个网络切片均分配一个网络切片的ID,网络切片的ID用于在控制面标识各个网络切片。核心网控制面设备还对每个网络切片的ID分配一个相应的网络切片的指示符,用于在用户面标识各个网络切片。由表5可知,终端设备接入了两个网络切片,假设分别为网络切片1和网络切片2,网络切片1的ID为30001000,网络切片2的ID为30002000。核心网控制面设备为网络切片1分配一个短字节的指示符:00,用于在用户面标识网络切片1。核心网控制面设备为网络切片2分配一个短字节的指示符:01,用于在用户面标识网络切片2。由此可以看出,网络切片的ID由8个比特位组成,网络切片的指示符由2个比特位组成,网络切片的指示符的字节长度小于网络切片的ID的字节长度,因此,在空口传输数据包时,可以减少传输的字节长度,从而减少空口传输开销。需要说明的是,网络切片的ID的字节长度不限于8位。网络切片的指示符的字节长度不限于2位。
需要说明的是,在无线接入网设备与核心网用户面设备之间传输数据包时,在NG3接口的封装头中也可以携带第四映射表中的网络切片的指示符,也即是说,无论是空口还是NG3接口,均可以采用第四映射表中的网络切片的指示符来进行数据包的封包,从而指示出该数据包所属的网络切片。
需要说明的是,尽管表5所示第四映射表中网络切片1对应的指示符与表4所示第二映射表中的网络切片1对应的指示符设置的是相同的,但在具体实现中,无线接入网设备为某个网络切片分配的指示符与核心网控制面设备为某个网络切片分配的指示符可以设置为不同的。例如,对于UL数据,无线接入网设备将网络切片1的指示符设置为00,而对于DU数据,核心网控制面设备将网络切片1的指示符设置为11。
作为一种实现方式,当第一指示信息为PDU会话的ID,且PDU会话的ID可以区分出网络切片时,PDU会话的ID既可以用于指示数据包所属的PDU会话,又用于指示数据包所属的网络切片。因此,根据PDU会话的ID可以确定出数据包所属的PDU会话以及数据包所属的网络切片。接收端设备在接收到数据包后,根据第一指示信息即可确定出该数据包对应哪个网络切片中的哪个PDU会话。例如,请参见表6。
表6
PDU会话的ID 网络切片的ID
10001000 30001000
10001001 30001000
…… 30001000
10001010 30001000
10002000 30002000
…… 30002000
10002010 30002000
由表6可知,PDU会话的ID由8个比特位组成,网络切片的ID由8个比特位组成。其中PDU会话的ID为10001000-10001010的对应的网络切片的ID均为30001000。PDU会话的ID为10002000-10002010的对应的网络切片的ID均为30002000,以此类推。由此可见,通过PDU会话的ID所处的区间可以隐示的指示出网络切片的ID。因此,在空口传输数据包时,数据包中可以只包括PDU会话的ID,而无需包括网络切片的ID或者网络切片的指示符,从而减少了传输的字节长度,降低了空口开销。
同样的,当第一指示信息为PDU会话的指示符,在无线接入网设备或者核心网控制面设备为PDU会话分配指示符时,可以针对不同的网络切片分配不同区间段的指示符,因此可以通过PDU会话的指示符区分出不同的网络切片,此时PDU会话的指示符既可以用于指示数据包所属的PDU会话,又用于指示数据包所属的网络切片。例如,请参见表7。
表7
PDU会话的指示符 网络切片的ID
000 30001000
001 30001000
010 30001000
011 30001000
100 30002000
101 30002000
110 30002000
111 30002000
由表7可知,PDU会话的指示符为000-011区间段的对应的网络切片的ID均为30001000。PDU会话的指示符为100-111区间段的对应的网络切片的ID均为30002000,以此类推。由此可见,通过PDU会话的ID所处的区间可以隐示的指示出网络切片的ID。因此,在空口传输数据包时,数据包中可以只包括PDU会话的ID,而无需包括网络切片的ID或者网络切片的指示符,从而减少了传输的字节长度,降低了空口开销。因此,根据PDU会话的指示符可以确定出数据包所属的PDU会话以及数据包所属的网络切片。因此,在空口传输数据包时,数据包中可以只包括PDU会话的指示符,而无需包括网络切片的ID或者网络切片的指示符,从而减少了传输的字节长度,降低了空口开销。
作为一种实现方式,当业务数据流的QoS参数的ID可以区分出数据包所属的PDU会话以及数据包所属的网络切片时,第一指示信息还可以是业务数据流的QoS参数的ID。因此,根据业务数据流的QoS参数的ID就可以确定出数据包所属的网络切片、数据包所属的PDU会话以及数据包所属的业务数据流的QoS参数。接收端设备在接收到数据包后,只需要根据第一指示信息即可确定出该数据包对应哪个网络切片中的哪个PDU会话以及 数据包的QoS参数。例如,请参见表8。
表8
Figure PCTCN2017102874-appb-000001
由表8可知,业务数据流的QoS参数的ID由8个比特位组成,PDU会话的ID由8个比特位组成,网络切片的ID由8个比特位组成。其中QoS参数ID为000-011的对应的PDU会话的ID均为10001000,并且对应的网络切片的ID均为30001000。QoS参数ID为100-111的对应的PDU会话的ID均为10002000,并且对应的网络切片的ID均为30002000,以此类推。由此可见,通过QoS参数ID所处的区间可以隐示的指示出PDU会话的ID以及网络切片的ID。因此,在空口传输数据包时,数据包中可以只包括业务数据流的QoS参数的ID,而无需包括PDU会话的ID或者PDU会话的指示符或者网络切片的ID或者网络切片的指示符,从而减少了传输的字节长度,降低了空口开销。
作为一种实现方式,第一指示信息具体为一串指示符,该指示符可以同时指示出数据包所属的网络切片以及PDU会话,因此,无线接入网设备根据该指示符就可以确定出数据包所属的网络切片以及数据包所属的PDU会话。例如,请参见表9。
表9
指示符 PDU会话的ID 网络切片的ID
0000 10001000 30001000
0001 10002000 30002000
0010 10003000 30001000
0011 10004000 30002000
0100 10005000 30003000
0101 10006000 30003000
0110 10007000 30004000
由表9可知,指示符由4个比特位组成,指示符的字节长度小于PDU会话的ID的字节长度,并且小于网络切片的ID的字节长度。其中指示符为0000的对应的PDU会话的ID为10001000,并且对应的网络切片的ID为30001000。指示符为0001的对应的PDU会话的ID为10002000,并且对应的网络切片的ID为30002000,以此类推。由此可见,通过4位比特就可以指示出PDU会话的ID以及网络切片的ID。因此,在空口传输数据包时,数据包中可以只包括指示符,而无需包括PDU会话的ID或者PDU会话的指示符或者网络切片的ID或者网络切片的指示符,从而减少了传输的字节长度,降低了空口开销。其中,指示符的字节长度不限于4位。
具体的,表9所示指示符可以由核心网控制面设备为网络切片以及PDU会话分配,也可以由无线接入网设备为网络切片以及PDU会话分配。可选的,对于UL数据以及DL数据均采用无线接入网设备分配的指示符来指示网络切片以及PDU会话。或者,对于UL数据以及DL数据均采用核心网控制面设备分配的指示符来指示网络切片以及PDU会话。或者,对于UL数据,该指示符可以由无线接入网设备来分配,对于DL数据,可以由核心网控制面来分配。并且,针对同一个网络切片中的同一个PDU会话,无线接入网设备为其分配的指示符与核心网控制面设备为其分配的指示符可以是相同或不同的。
可选的,无线接入网设备或核心网控制面设备在分配指示符时,还可以针对不同终端设备分配不同区间段的指示符,该指示符用于区分不同的终端设备、网络切片以及PDU会话。因此,在DL数据包中携带该指示符时,接收端设备可以根据该指示符准确地识别出该数据包对应哪个终端设备,从而将该数据包发送给相应的终端设备。
可选的,本发明实施例中的PDU会话的ID/指示符、网络切片的ID/指示符可根据需要设置为可选项。比如,当终端设备仅接入一个网络切片且只建立了一个PDU会话时,只需在数据包中增加QoS参数的ID;当终端设备接入一个网络切片且建立了多个PDU会话时,只需增加PDU会话的ID/指示符,也即是说,封包标记可根据实际需要灵活配置。在一种实施例中,可由无线接入网设备配置采用何种封包标记,并通知给终端设备;在另一种实施例中,通过协议规定的方法,无线接入网设备和终端设备同时遵守。
作为一种实现方式,第一指示信息、第二指示信息以及第三指示信息可以在PDCP层进行封装。请参见图6,是本发明实施例提供的终端设备与无线接入网设备之间的对等协议层示意图。由图6可知,终端设备与无线接入网设备的对等层包括:PDCP层、RLC层、MAC层和物理层(英文:Physical layer,简称:PHY)。
在本发明实施例中,发送端设备的PDCP层在收到上层传来的数据包时,进行PDCP的头压缩,加密后,除了增加原有的PDCP层头之外,额外增加如下PDCP头:PDU会话的ID和QoS参数的ID,PDU会话的ID用于指示该数据包为哪个PDU会话的数据,QoS参数的ID用于指示该数据包所属业务数据流的QoS参数。或者额外增加如下PDCP头:PDU会话的指示符和QoS参数的ID,PDU会话的指示符用于指示该数据包为哪个PDU会话的数据,QoS参数的ID用于指示该数据包所属业务数据流的QoS参数。或者额外增加如下PDCP头:QoS参数的ID。QoS参数的ID用于指示该数据包为哪个PDU会话的数据以及该数据包所属业务数据流的QoS参数。或者额外增加如下PDCP头:PDU会话的ID和QoS参数的ID,PDU会话的ID用于指示该数据包为哪个网络切片中的哪个PDU会话 的数据,QoS参数的ID用于指示该数据包所属业务数据流的QoS参数。或者额外增加如下PDCP头:PDU会话的指示符和QoS参数的ID,PDU会话的指示符用于指示该数据包为哪个网络切片中的哪个PDU会话的数据,QoS参数的ID用于指示该数据包所属业务数据流的QoS参数。或者额外增加如下PDCP头:网络切片的ID、PDU会话的ID和QoS参数的ID,网络切片的ID用于指示该数据包为哪个网络切片的数据,PDU会话的ID用于指示该数据包为哪个PDU会话的数据,QoS参数的ID用于指示该数据包所属业务数据流的QoS参数。或者额外增加如下PDCP头:网络切片的指示符、PDU会话的ID和QoS参数的ID,网络切片的指示符用于指示该数据包为哪个网络切片的数据,PDU会话的ID用于指示该数据包为哪个PDU会话的数据,QoS参数的ID用于指示该数据包所属业务数据流的QoS参数。或者额外增加如下PDCP头:网络切片的ID、PDU会话的指示符和QoS参数的ID,网络切片的ID用于指示该数据包为哪个网络切片的数据,PDU会话的指示符用于指示该数据包为哪个PDU会话的数据,QoS参数的ID用于指示该数据包所属业务数据流的QoS参数。或者额外增加如下PDCP头:网络切片的指示符、PDU会话的指示符和QoS参数的ID,网络切片的指示符用于指示该数据包为哪个网络切片的数据,PDU会话的指示符用于指示该数据包为哪个PDU会话的数据,QoS参数的ID用于指示该数据包所属业务数据流的QoS参数。
请参见图7,是本发明实施例提供的一种在PDCP层进行封包标记的示意图。在图7中,PDCP层的封包格式中的数据/控制指示、PDCP序列号可参考现有的通信协议,此处不再赘述。以PDCP层额外增加网络切片的指示符、PDU会话的指示符和QoS参数的ID为例进行说明。网络切片的指示符、PDU会话的指示符和QoS参数的ID的长度,可以在通信协议中固定,也可以由无线接入网设备设置并通过RRC连接重配置消息告知终端设备。
作为另一种实现方式,第一指示信息、第二指示信息以及第三指示信息可以在IP层之下PDCP层之上新增加的协议层中进行封装。在本发明实施例中,在IP层和PDCP层新增一层,专门用于封包标记。对于终端设备而言,在新增的一层中增加如下头标识:PDU会话的ID和QoS参数的ID,PDU会话的ID用于指示该数据包为哪个PDU会话的数据,QoS参数的ID用于指示该数据包所属业务数据流的QoS参数。或者增加如下头标识:PDU会话的指示符和QoS参数的ID,PDU会话的指示符用于指示该数据包为哪个PDU会话的数据,QoS参数的ID用于指示该数据包所属业务数据流的QoS参数。或者增加如下头标识:QoS参数的ID。QoS参数的ID用于指示该数据包为哪个PDU会话的数据以及该数据包所属业务数据流的QoS参数。或者增加如下头标识:PDU会话的ID和QoS参数的ID,PDU会话的ID用于指示该数据包为哪个网络切片中的哪个PDU会话的数据,QoS参数的ID用于指示该数据包所属业务数据流的QoS参数。或者增加如下头标识:PDU会话的指示符和QoS参数的ID,PDU会话的指示符用于指示该数据包为哪个网络切片中的哪个PDU会话的数据,QoS参数的ID用于指示该数据包所属业务数据流的QoS参数。或者增加如下头标识:网络切片的ID、PDU会话的ID和QoS参数的ID,网络切片的ID用于指示该数据包为哪个网络切片的数据,PDU会话的ID用于指示该数据包为哪个PDU会话的数据,QoS参数的ID用于指示该数据包所属业务数据流的QoS参数。或者增加如下头标识:网络切片的指示符、PDU会话的ID和QoS参数的ID,网络切片的指示符用于指示该数据包为哪 个网络切片的数据,PDU会话的ID用于指示该数据包为哪个PDU会话的数据,QoS参数的ID用于指示该数据包所属业务数据流的QoS参数。或者增加如下头标识:网络切片的ID、PDU会话的指示符和QoS参数的ID,网络切片的ID用于指示该数据包为哪个网络切片的数据,PDU会话的指示符用于指示该数据包为哪个PDU会话的数据,QoS参数的ID用于指示该数据包所属业务数据流的QoS参数。或者增加如下头标识:网络切片的指示符、PDU会话的指示符和QoS参数的ID,网络切片的指示符用于指示该数据包为哪个网络切片的数据,PDU会话的指示符用于指示该数据包为哪个PDU会话的数据,QoS参数的ID用于指示该数据包所属业务数据流的QoS参数。
增加完后,再传递给PDCP层进行处理。请参见图8,是本发明实施例提供的一种在IP层以下PDCP层以上新增加的协议层中进行封包标记的示意图。新增加的协议层可以命名为封包层。在图8中,以在新增的一层中增加网络切片的指示符、PDU会话的指示符和QoS参数的ID为例进行说明。网络切片的指示符、PDU会话的指示符和QoS参数的ID的长度,可以在通信协议中固定,也可以由无线接入网设备设置并通过RRC连接重配置消息告知终端设备。
与图7所示实施例相比,图8所示实施例中,网络切片的指示符、PDU会话的指示符和QoS参数的ID作为PDCP层中的数据(data)部分,进行数据传递。在进行封包标记后,在PDCP层,可对网络切片的指示符、PDU会话的指示符和QoS参数进行如下处理:对网络切片的指示符、PDU会话的指示符和QoS参数进行加密;在PDCP层将增加的网络切片的指示符、PDU会话的指示符和QoS参数进行头压缩。为了支持这一点,可以引入新的压缩算法(profile)。在一种实施方式中,无线接入网设备可以明确告知终端设备所用的加密算法,且该算法一直使能;在另一种实施方式中,该加密可在配置的时候使用,否则关闭。
作为另一种实现方式,第一指示信息、第二指示信息以及第三指示信息可以在RLC层中进行封装。其中,指示信息的位置不作限定。
对于将第一指示信息、第二指示信息和第三指示信息在PDCP层进行封装,以及在IP层之下PDCP之上进行封装的方案,无线接入网设备可定义多套头结构,无线接入网设备通过RRC配置的方式告知终端设备需要采用的头结构。
S502:发送端设备向接收端设备发送数据包,接收端设备接收发送端设备发送的数据包。
需要说明的是,如果发送端设备为终端设备,则终端设备预先从无线接入网设备获取到DRB模板,在发送该数据包之前,终端设备根据无线接入网设备配置的DRB模板,确定出该数据包需要映射到哪个DRB上,进而采用该数据包对应的DRB将该数据包发送给无线接入网设备。其中,无线接入网设备配置的DRB模板是根据数据包的QoS参数配置的,将QoS参数相同的数据包映射到同一DRB上进行传输。
如果发送端设备为无线接入网设备,在发送数据包之前,无线接入网设备根据预先配置的DRB模板,确定出该数据包需要映射到哪个DRB上,进而采用该数据包对应的DRB将该数据包发送给终端设备。
S503:接收端设备根据第一指示信息确定数据包对应的PDU会话。
作为一种实现方式,接收端设备可以根据数据包中包括的第一指示信息确定出该数据 包所属的PDU会话。进一步地,接收端设备还可以根据数据包中包括的第三指示信息确定出该数据包所属业务数据流的QoS参数。可选的,接收端设备还可以根据第一指示信息确定出该数据包所属的PDU会话以及该数据包所属业务数据流的QoS参数。
引入网络切片的概念后,接收端设备可以根据数据包中包括的第一指示信息确定出该数据包所属的网络切片以及PDU会话。进一步地,接收端设备还可以根据数据包中包括的第三指示信息确定出该数据包所属业务数据流的QoS参数。可选的,接收端设备还可以根据第一指示信息确定出该数据包所属的网络切片、PDU会话以及该数据包所属业务数据流的QoS参数。
可选的,接收端设备根据第一指示信息确定出该数据包所属的PDU会话,根据第二指示信息确定出该数据包所属的网络切片,根据第三指示信息确定出该数据包所属业务数据流的QoS参数。
因此,若发送端设备为终端设备,接收端设备为无线接入网设备,则终端设备向无线接入网设备发送UL数据包时,为了在空口区分不同的数据包分别对应哪个PDU会话,甚至对应哪个网络切片中的哪个PDU会话,终端设备对UL数据包进行封包标记,从而无线接入网设备基于封包标记可以识别数据包对应于哪个PDU会话,甚至对应于哪个网络切片中的哪个PDU会话,从而按照NG3接口封装格式进行数据包封装,进而将数据包发送给该PDU会话对应的核心网用户面设备,或者将数据包发送给该网络切片中的该PDU会话对应的核心网用户面设备。例如,数据包中携带的第一指示信息为PDU会话1的ID:10001000。无线接入网设备接收到UL数据包后,根据PDU会话的ID识别出该数据包对应的PDU会话是PDU会话1,则无线接入网设备将该数据包进行NG3接口的封装,发送给PDU会话1对应的核心网用户面设备。
进一步的,通过对数据包进行封包标记还可以识别出不同的UL数据包所属业务数据流的QoS参数,从而无线接入网设备基于UL数据包所属业务数据流的QoS参数,对UL数据包进行调度决策。
若发送端设备为无线接入网设备,接收端设备为终端设备,则无线接入网设备向终端设备发送DL数据包时,为了在空口区分不同的数据包分别对应哪个PDU会话,甚至对应哪个网络切片中的哪个PDU会话,无线接入网设备对DL数据包进行封包标记,从而终端设备基于封包标记可以识别出数据包对应于哪个PDU会话,甚至对应于哪个网络切片中的哪个PDU会话,进而做相应处理。例如,终端设备为中继UE,中继UE将数据包发送给建立了该PDU会话的终端设备,或者将数据包发送给接入该网络切片中的该PDU会话的终端设备。例如,中继UE与3个终端设备连接,其中,终端设备1接入网络切片1,建立了PDU会话1,终端设备2接入网络切片2,建立了PDU会话2,终端设备3接入网络切片3,建立了PDU会话3。如果中继UE接收到的DL数据包中携带的第一指示信息为PDU会话1的ID:10001000,DL数据包中携带的第二指示信息为网络切片1的ID:30001000,则中继UE确定出该数据包对应到终端设备1,从而将该数据包发送给终端设备1。
进一步的,通过对数据包进行封包标记还可以识别出不同的数据包所属业务数据流的QoS参数,从而终端设备可以根据DL数据包的QoS参数,决定相应的UL数据包的QoS参数,从而进行相应的UL数据包的传输。或者,中继UE根据DL数据包的QoS参数, 对DL数据包进行调度决策。
实施本发明实施例,通过对数据包进行封包标记,使得接收端设备可以准确地识别数据包对应于哪个PDU会话,甚至对应于哪个网络切片中的哪个PDU会话。不同的数据包无需基于不同的DRB进行区分,使得在空口可以将具有相同QoS特征的数据包,映射到同一DRB上进行数据传输。既实现了对不同QoS数据包的区分对待,又实现了对具有相同QoS特征的数据包空口侧管理的低复杂度。相比LTE方案,该方案基于DRB共享的方法,最大可能地控制了DRB的数量,降低了控制信令的开销。
请参见图9,是本发明实施例提供的终端设备获取第一映射表的流程示意图。该过程包括以下步骤。
S901:终端设备向无线接入网设备发送会话建立请求消息,无线接入网设备接收终端设备发送的会话建立请求消息。
其中,会话建立请求消息用于请求会话管理设备为终端设备建立传输数据的承载。
S902:无线接入网设备向会话管理设备发送会话建立请求消息,会话管理设备接收无线接入网设备发送的会话建立请求消息。
S903:会话管理设备根据会话建立请求消息为终端设备建立用户面承载,并为终端设备分配会话ID、QoS参数以及QoS参数的ID。
S904:会话管理设备向无线接入网设备发送会话建立响应消息,无线接入网接收会话管理设备发送的会话建立响应消息。
其中,会话建立响应中包括PDU会话的ID、QoS参数以及QoS参数的ID。
S905:无线接入网设备根据PDU会话的ID分配PDU会话的指示符,生成并存储第一映射表。
第一映射表中存储有PDU会话的ID与PDU会话的指示符的映射关系。
S906:无线接入网设备向终端设备发送RRC连接重配置消息或者会话建立响应消息,终端设备接收无线接入网设备发送的RRC连接重配置消息或者会话建立响应消息。
其中,RRC连接重配置消息或者会话建立响应消息中包括第一映射表以及QoS参数的ID。
需要说明的是,上述会话建立流程仅仅为示例。在其他方式下,比如终端设备进行切换、RRC重建等过程中,无线接入网设备可以通过RRC连接重配置消息将第一映射表发送给终端设备。
需要说明的是,引入网络切片概念后,无线接入网设备向公共的核心网控制面设备发送会话建立请求消息,公共的核心网控制面设备再向会话管理设备发送会话建立请求消息。会话管理设备接收公共的核心网控制面设备发送的会话建立请求消息,并且,这里的会话管理设备为各个网络切片中独享的核心网控制面设备。终端设备已接入的网络切片特有的会话管理功能分配PDU会话ID,或者公共的核心网控制面设备分配PDU会话ID。
需要说明的是,终端设备获取第三映射表的过程与图9所示实施例相似,区别点在于:第三映射表是由会话管理设备配置的。会话管理设备接收到无线接入网设备发送的会话建立请求消息之后,为终端设备建立用户面承载,并分配PDU会话ID以及PDU会话的指示 符,生成并存储第三映射表。然后会话管理设备向无线接入网设备发送会话建立响应消息,会话建立响应消息中包括第三映射表。无线接入网设备从会话建立响应消息中获取到第三映射表。之后无线接入网设备向终端设备发送RRC连接重配置消息或者会话建立响应消息,终端设备从RRC连接重配置消息或者会话建立响应消息中获取第三映射表。
请参见图10,是本发明实施例提供的终端设备获取第二映射表的流程示意图。该过程包括以下步骤。
S1001:终端设备向无线接入网设备发送附着请求消息,无线接入网设备接收终端设备发送的附着请求消息。
S1002:无线接入网设备将附着请求消息发送给公共的核心网控制面设备,公共的核心网控制面设备接收无线接入网设备发送的附着请求消息。
S1003:公共的核心网控制面设备根据终端设备的订阅信息,接受终端设备的附着请求。
S1004:公共的核心网控制面设备发送附着响应消息给无线接入网设备,无线接入网设备接收公共的核心网控制面设备发送的附着响应消息。
其中,附着响应消息中携带公共的核心网控制面设备为终端设备分配的网络切片的ID。
S1005:无线接入网设备根据网络切片的ID分配网络切片的指示符,生成并存储第二映射表。
第二映射表中存储有网络切片的ID与网络切片的指示符的映射关系。
S1006:无线接入网设备向终端设备发送RRC连接重配置消息或者附着响应消息,终端设备接收无线接入网设备发送的RRC连接重配置消息或者附着响应消息。其中,RRC连接重配置消息或者附着响应消息中包括第二映射表。
需要说明的是,上述会话建立流程仅仅为示例。在其他方式下,比如终端设备进行切换、RRC重建等过程中,无线接入网设备可以通过RRC连接重配置消息将第二映射表发送给终端设备。
需要说明的是,终端设备获取第四映射表的过程与图10所示实施例相似,区别点在于:第四映射表是由公共的核心网控制面设备配置的。公共的核心网控制面设备接收到无线接入网设备发送的附着请求消息之后,接受终端设备的附着请求,并分配网络切片的ID以及网络切片的指示符,生成并存储第四映射表。然后公共的核心网控制面设备向无线接入网设备发送附着响应消息,附着响应消息中包括第四映射表。无线接入网设备从附着响应消息中获取到第四映射表。之后无线接入网设备向终端设备发送RRC连接重配置消息或者附着响应消息,终端设备从RRC连接重配置消息或者附着响应消息中获取第四映射表。
此外,图5所示实施例同样适用于无线接入网设备与核心网用户面设备之间的数据传输过程。无线接入网向核心网用户面设备发送UL数据包时,为了区分不同的数据包对应哪个PDU会话,甚至为了区分不同的数据包对应哪个网络切片中的哪个PDU会话,无线接入网设备对UL数据包进行NG3接口封包标记,从而核心网用户面设备基于封包标记可以识别数据包对应于哪个PDU会话,甚至对应于哪个网络切片中的哪个PDU会话,进而 将该数据包发送至该PDU会话对应的核心网用户面设备,或者将该数据包发送至该网络切片中的该PDU会话对应的核心网用户面设备。进一步的,通过对数据包进行封包标记还可以识别出不同的数据包所属业务数据流的QoS参数,从而核心网用户面设备基于数据包所属业务数据流的QoS参数,对UL数据包进行调度决策。其中,NG3接口是无线接入网设备与核心网用户面设备之间的通信接口。随着通信技术的发展,NG3接口还可以采用其他名称,本发明实施例不作具体限定。
核心网用户面设备向无线接入网设备发送DL数据包时,为了区分不同的数据包对应哪个PDU会话,甚至为了区分不同的数据包对应哪个网络切片中的哪个PDU会话,核心网用户面设备对DL数据包进行封包标记,从而无线接入网设备基于封包标记可以识别出数据包对应于哪个PDU会话,甚至对应于哪个网络切片中的哪个PDU会话,进而将该数据包发送至建立了该PDU会话的终端设备,或者将该数据包发送至接入该网络切片且建立了该PDU会话的终端设备。进一步的,通过对数据包进行封包标记还可以识别出不同的数据包所属业务数据流的QoS参数,从而无线接入网设备基于数据包所属业务数据流的QoS参数,对DL数据包进行调度决策。
具体的,NG3接口的封包格式可参见图11所示。在图11中,NG3接口封装格式中包括以下字段:层1/层2的头、IP头、封装头、PDU头和PDU有效负荷。其中的封装头中可以包括第一指示信息和第三指示信息,其中,第一指示信息用于指示该数据包所属的PDU会话,第三指示信息用于指示该数据包的QoS参数。或者,封装头中可以包括第一指示信息,第一指示信息用于指示该数据包所属的PDU会话以及该数据包的QoS参数。或者,封装头中可以包括第一指示信息和第三指示信息,其中,第一指示信息用于指示该数据包所属的网络切片以及该数据包所属的PDU会话,第三指示信息用于指示该数据包的QoS参数。或者,封装头中可以包括第一指示信息,第一指示信息用于指示该数据包所属的网络切片、该数据包所属的PDU会话以及该数据包的QoS参数。或者,封装头中可以包括第一指示信息、第二指示信息和第三指示信息,第一指示信息用于指示该数据包所属的PDU会话,第二指示信息用于指示该数据包所属的网络切片,第三指示信息用于指示该数据包的QoS参数。第一指示信息、第二指示信息以及第三指示信息可以参考步骤S501的相关内容,此处不再赘述。
可选的,本发明实施例中的PDU会话的ID/指示符、网络切片的ID/指示符可根据需要设置为可选项。当IP头和数据包的QoS参数的ID不能区分该数据包属于哪个网络切片的哪个PDU会话时,封装头中包括网络切片ID/网络切片的指示符,PDU会话的ID/指示符,以及数据包的QoS参数ID。当IP头和数据包的QoS参数的ID,不能区分该数据包属于哪个网络切片的哪个PDU会话,并且PDU会话的ID/指示符能否区分该PDU会话属于何种网络切片时,即不同网络切片具有不同的PDU会话ID/PDU会话的指示符分配区间时,该封装头可仅仅包括PDU会话的ID/指示符和QoS参数的ID。当IP头和数据包的QoS参数的ID,能够区分该数据包属于哪个网络切片的哪个PDU会话时,该封装头可仅仅包括数据包的QoS参数的ID。
需要说明的是,本发明实施例同样适用于现在LTE系统中与PDN连接相关的数据传输过程。即不同PDN连接的数据包,只要QoS参数相同,就可以采用同一个DRB进行承 载,数据包中携带用于指示该数据包所属的PDN连接的第一指示信息,从而不同的数据包基于第一指示信息来区别来自哪一个PDN连接。因此,可以不沿用现有LTE系统中的不同的PDN连接基于不同的DRB进行区分,可以减少DRB的数量,进而减少控制信令的开销。
为了便于更好地实施本发明实施例的上述数据传输方法,本发明实施例还提供了用于实施上述数据传输方法的相关设备。
参见图12,是本发明实施例提供的一种发送端设备的结构示意图。该发送端设备可以为终端设备、无线接入网设备或核心网用户面设备。如图12所示,发送端设备120包括处理器1201、存储器1202和收发器1203。其中处理器1201、存储器1202和收发器1203可以通过总线或其他方式连接。
可选的,发送端设备120还可以包括网络接口1204和电源模块1205。
其中,处理器1201可以是数字信号处理(英文:Digital Signal Processing,简称:DSP)芯片。
存储器1202用于存储指令,具体实现中,存储器1202可以采用只读存储器(英文:Read-Only Memory,简称:ROM)或随机存取存贮器(英文:Random Access Memory,简称:RAM)。
收发器1203用于收发信号。
网络接口1204用于发送端设备120与其他设备进行数据通信。该网络接口1204可以为有线接口或无线接口。
电源模块1205用于为发送端设备120的各个模块供电。
处理器1201用于执行如下操作:
生成数据包,数据包包括第一指示信息,第一指示信息用于指示数据包所属的协议数据单元PDU会话。
通过收发器1203将数据包发送给接收端设备。
可选的,数据包还包括第二指示信息,第二指示信息用于指示数据包对应的网络切片。
可选的,第一指示信息还用于指示数据包对应的网络切片。
可选的,数据包还包括第三指示信息,第三指示信息用于指示数据包所属业务数据流的QoS参数。
可选的,第一指示信息还用于指示数据包所属业务数据流的QoS参数。
可选的,第一指示信息包括PDU会话的标识,PDU会话的标识是由核心网控制面设备为PDU会话分配的并且用于标识PDU会话。
可选的,第一指示信息包括PDU会话的指示符,PDU会话的指示符是由无线接入网设备或核心网控制面设备为PDU会话分配的并且用于在用户面标识PDU会话。处理器1201在生成数据包之前,从第一映射表中获取PDU会话的标识对应的PDU会话的指示符。其中,第一映射表包括PDU会话的标识集合和PDU会话的指示符集合的对应关系,PDU会话的标识是由核心网控制面设备为PDU会话分配的并且用于在控制面标识PDU会话,PDU会话的指示符的字节长度小于PDU会话的标识的字节长度。
可选的,若发送端设备为终端设备,接收端设备为无线接入网设备,则处理器1201从第一映射表中获取PDU会话的标识对应的PDU会话的指示符之前,通过收发器1203接收无线接入网设备发送的第一映射表。
可选的,处理器1201通过收发器1203接收无线接入网设备发送的RRC连接重配置消息,RRC连接重配置消息中包括第一映射表。
可选的,第二指示信息包括网络切片的标识,网络切片的标识是由核心网控制面设备为网络切片分配的并且用于标识网络切片。
可选的,第二指示信息包括网络切片的指示符,网络切片的指示符是由无线接入网设备或核心网控制面设备为网络切片分配的并且用于在用户面标识网络切片。处理器1201生成数据包之前,从第二映射表中获取网络切片的标识对应的网络切片的指示符,第二映射表包括网络切片的标识集合和网络切片的指示符集合的对应关系,网络切片的标识是由核心网控制面设备为网络切片分配的并且用于在控制面标识网络切片的,网络切片的指示符的字节长度小于网络切片的标识的字节长度。
可选的,若发送端设备为终端设备,接收端设备为无线接入网设备,则处理器1201从第二映射表中获取网络切片的标识对应的网络切片的指示符之前,通过收发器1203接收无线接入网设备发送的第二映射表。
可选的,对处理器1201通过收发器1203接收无线接入网设备发送的第二映射表的过程进行描述。处理器1201通过收发器1203接收无线接入网设备发送的RRC连接重配置消息,RRC连接重配置消息中包括第二映射表。
可选的,第一指示信息包括数据包所属业务数据流的QoS参数的标识,数据包所属业务数据流的QoS参数的标识是由核心网控制面设备为数据包所属业务数据流的QoS参数分配的。
可选的,第一指示信息包括第一指示符,第一指示符为无线接入网设备或核心网控制面设备为网络切片和PDU会话分配的并且用于在用户面标识网络切片和PDU会话。
可选的,无线接入网设备分配的第一指示符与核心网控制面设备分配的第一指示符相同或不同。
需要说明的是,本发明实施例所描述的发送端设备120中各功能模块的功能可参见上述图5所示实施例中对应发送端设备的相关描述,此处不再赘述。
参见图13,是本发明实施例提供的一种接收端设备的结构示意图。该接收端设备可以为终端设备、无线接入网设备或核心网用户面设备。如图13所示,接收端设备130包括处理器1301、存储器1302和收发器1303。其中处理器1301、存储器1302和收发器1303可以通过总线或其他方式连接。
可选的,接收端设备130还可以包括网络接口1304和电源模块1305。
其中,处理器1301可以是DSP芯片。
存储器1302用于存储指令,具体实现中,存储器1302可以采用ROM或RAM。
收发器1303用于收发信号。
网络接口1304用于接收端设备130与其他设备进行数据通信。该网络接口1304可以 为有线接口或无线接口。
电源模块1305用于为接收端设备130的各个模块供电。
处理器1301用于调用存储器1302中存储的指令来执行如下操作:
通过收发器1303接收发送端设备发送的数据包,数据包包括第一指示信息,第一指示信息用于指示数据包对应的PDU会话。
根据第一指示信息确定数据包对应的PDU会话。
可选的,数据包还包括第二指示信息,第二指示信息用于指示数据包对应的网络切片。
可选的,第一指示信息还用于指示数据包对应的网络切片。
可选的,数据包还包括第三指示信息,第三指示信息用于指示数据包所属业务数据流的QoS参数。
可选的,第一指示信息还用于指示数据包所属业务数据流的QoS参数。
可选的,第一指示信息包括PDU会话的标识,PDU会话的标识是由核心网控制面设备为PDU会话分配的并且用于标识PDU会话。
可选的,第一指示信息包括PDU会话的标识对应的PDU会话的指示符,PDU会话的指示符是由无线接入网设备或核心网控制面设备为PDU会话分配的并且用于在用户面标识PDU会话。PDU会话的标识是由核心网控制面设备为PDU会话分配的并且用于在控制面标识PDU会话,PDU会话的指示符的字节长度小于PDU会话的标识的字节长度。
可选的,若发送端设备为终端设备,接收端设备为无线接入网设备,则处理器1201通过收发器1203接收发送端设备发送的数据包之前,通过收发器1203向终端设备发送第一映射表。
可选的,处理器1201通过收发器1203向终端设备发送RRC连接重配置消息,RRC连接重配置消息中包括第一映射表。
可选的,第二指示信息包括网络切片的标识,网络切片的标识是由核心网控制面设备为网络切片分配的并且用于标识网络切片。
可选的,第二指示信息包括网络切片的标识对应的网络切片的指示符,网络切片的指示符是由无线接入网设备或核心网控制面设备为网络切片分配的并且用于在用户面标识网络切片。网络切片的标识是由核心网控制面设备为网络切片分配的并且用于在控制面标识网络切片的,网络切片的指示符的字节长度小于网络切片的标识的字节长度。
可选的,若接收端设备为终端设备,接收端设备为无线接入网设备,则处理器1201通过收发器1203接收发送端设备发送的数据包之前,通过收发器1203向终端设备发送第二映射表。
可选的,处理器1201通过收发器1203向终端设备发送RRC连接重配置消息,RRC连接重配置消息中包括第二映射表。
可选的,第一指示信息包括数据包所属业务数据流的QoS参数的标识,数据包所属业务数据流的QoS参数的标识是由核心网控制面设备为数据包所属业务数据流的QoS参数分配的。
可选的,第一指示信息包括第一指示符,第一指示符为无线接入网设备或核心网控制面设备为网络切片和PDU会话分配的并且用于在用户面标识网络切片和PDU会话。
可选的,无线接入网设备分配的第一指示符与核心网控制面设备分配的第一指示符相同或不同。
需要说明的是,本发明实施例所描述的接收端设备130中各功能模块的功能可参见上述图5所示实施例中对应接收端设备的相关描述,此处不再赘述。
请参见图14,是本发明实施例提供的另一种发送端设备的结构示意图。如图14所示,发送端设备140包括:生成模块1401和发送模块1402,其中,
生成模块1401,用于生成数据包,数据包包括第一指示信息,第一指示信息用于指示数据包所属的协议数据单元PDU会话。
发送模块1402,用于将数据包发送给接收端设备。
可选的,数据包还包括第二指示信息,第二指示信息用于指示数据包对应的网络切片。
可选的,第一指示信息还用于指示数据包对应的网络切片。
可选的,数据包还包括第三指示信息,第三指示信息用于指示数据包所属业务数据流的QoS参数。
可选的,第一指示信息还用于指示数据包所属业务数据流的QoS参数。
可选的,第一指示信息包括PDU会话的标识,PDU会话的标识是由核心网控制面设备为PDU会话分配的并且用于标识PDU会话。
可选的,第一指示信息包括PDU会话的指示符,PDU会话的指示符是由无线接入网设备或核心网控制面设备为PDU会话分配的并且用于在用户面标识PDU会话。发送端设备140还包括:
第一获取模块,用于在生成模块1401生成数据包之前,从第一映射表中获取PDU会话的标识对应的PDU会话的指示符。其中,第一映射表包括PDU会话的标识集合和PDU会话的指示符集合的对应关系,PDU会话的标识是由核心网控制面设备为PDU会话分配的并且用于在控制面标识PDU会话,PDU会话的指示符的字节长度小于PDU会话的标识的字节长度。
可选的,若发送端设备为终端设备,接收端设备为无线接入网设备,发送端设备140还包括:
第一接收模块,用于在第一获取模块从第一映射表中获取PDU会话的标识对应的PDU会话的指示符之前,接收无线接入网设备发送的第一映射表。
可选的,第一接收模块具体用于:接收无线接入网设备发送的RRC连接重配置消息,RRC连接重配置消息中包括第一映射表。
可选的,第二指示信息包括网络切片的标识,网络切片的标识是由核心网控制面设备为网络切片分配的并且用于标识网络切片。
可选的,第二指示信息包括网络切片的指示符,网络切片的指示符是由无线接入网设备或核心网控制面设备为网络切片分配的并且用于在用户面标识网络切片。发送端设备140还包括:
第二获取模块,用于在生成模块1401生成数据包之前,从第二映射表中获取网络切片的标识对应的网络切片的指示符,第二映射表包括网络切片的标识集合和网络切片的指示 符集合的对应关系,网络切片的标识是由核心网控制面设备为网络切片分配的并且用于在控制面标识网络切片的,网络切片的指示符的字节长度小于网络切片的标识的字节长度。
可选的,若发送端设备为终端设备,接收端设备为无线接入网设备,发送端设备140还包括:
第二接收模块,用于在第二获取模块从第二映射表中获取网络切片的标识对应的网络切片的指示符之前,接收无线接入网设备发送的第二映射表。
可选的,第二接收模块具体用于:接收无线接入网设备发送的RRC连接重配置消息,RRC连接重配置消息中包括第二映射表。
可选的,第一指示信息包括数据包所属业务数据流的QoS参数的标识,数据包所属业务数据流的QoS参数的标识是由核心网控制面设备为数据包所属业务数据流的QoS参数分配的。
可选的,第一指示信息包括第一指示符,第一指示符为无线接入网设备或核心网控制面设备为网络切片和PDU会话分配的并且用于在用户面标识网络切片和PDU会话。
可选的,无线接入网设备分配的第一指示符与核心网控制面设备分配的第一指示符相同或不同。
需要说明的是,本发明实施例所描述的发送端设备140各功能模块的功能可参见上述图5所示实施例中对应发送端设备的相关描述,此处不再赘述。
请参见图15,是本发明实施例提供的另一种接收端设备的结构示意图。如图15所示,接收端设备150包括:接收模块1501和处理模块1502,其中,
接收模块1501,用于接收发送端设备发送的数据包,数据包包括第一指示信息,第一指示信息用于指示数据包对应的PDU会话。
处理模块1502,用于根据第一指示信息确定数据包对应的PDU会话。
可选的,数据包还包括第二指示信息,第二指示信息用于指示数据包对应的网络切片。
可选的,第一指示信息还用于指示数据包对应的网络切片。
可选的,数据包还包括第三指示信息,第三指示信息用于指示数据包所属业务数据流的QoS参数。
可选的,第一指示信息还用于指示数据包所属业务数据流的QoS参数。
可选的,第一指示信息包括PDU会话的标识,PDU会话的标识是由核心网控制面设备为PDU会话分配的并且用于标识PDU会话。
可选的,第一指示信息包括PDU会话的标识对应的PDU会话的指示符,PDU会话的指示符是由无线接入网设备或核心网控制面设备为PDU会话分配的并且用于在用户面标识PDU会话。PDU会话的标识是由核心网控制面设备为PDU会话分配的并且用于在控制面标识PDU会话,PDU会话的指示符的字节长度小于PDU会话的标识的字节长度。
可选的,若发送端设备为终端设备,接收端设备为无线接入网设备,接收端设备150还包括:
第一发送模块,用于在接收模块1501接收发送端设备发送的数据包之前,向终端设备发送第一映射表。
可选的,第一发送模块具体用于:向终端设备发送RRC连接重配置消息,RRC连接 重配置消息中包括第一映射表。
可选的,第二指示信息包括网络切片的标识,网络切片的标识是由核心网控制面设备为网络切片分配的并且用于标识网络切片。
可选的,第二指示信息包括网络切片的标识对应的网络切片的指示符,网络切片的指示符是由无线接入网设备或核心网控制面设备为网络切片分配的并且用于在用户面标识网络切片。网络切片的标识是由核心网控制面设备为网络切片分配的并且用于在控制面标识网络切片的,网络切片的指示符的字节长度小于网络切片的标识的字节长度。
可选的,若接收端设备为终端设备,接收端设备为无线接入网设备,接收端设备150还包括:
第二发送模块,用于在接收模块1501接收发送端设备发送的数据包之前,向终端设备发送第二映射表。
可选的,第二发送模块具体用于:向终端设备发送RRC连接重配置消息,RRC连接重配置消息中包括第二映射表。
可选的,第一指示信息包括数据包所属业务数据流的QoS参数的标识,数据包所属业务数据流的QoS参数的标识是由核心网控制面设备为数据包所属业务数据流的QoS参数分配的。
可选的,第一指示信息包括第一指示符,第一指示符为无线接入网设备或核心网控制面设备为网络切片和PDU会话分配的并且用于在用户面标识网络切片和PDU会话。
可选的,无线接入网设备分配的第一指示符与核心网控制面设备分配的第一指示符相同或不同。
需要说明的是,本发明实施例所描述的接收端设备150各功能模块的功能可参见上述图5所示实施例中对应接收端设备的相关描述,此处不再赘述。
本发明实施例的说明书和权利要求书及附图中的术语“第一”、“第二”、“第三”“第四”等(如果存在)是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的本发明实施例例如能够以除了在这里图示或描述的那些以外的顺序实施。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。
本领域普通技术人员可以理解:实现上述各方法实施例的全部或部分步骤可以通过程序指令相关的硬件来完成。前述的程序可以存储于一计算机可读取存储介质中。该程序在执行时,执行包括上述各方法实施例的步骤;而前述的存储介质包括:ROM、RAM、磁碟或者光盘等各种可以存储程序代码的介质。
最后应说明的是:以上各实施例仅用以说明本发明实施例的技术方案,而非对其限制;尽管参照前述各实施例对本发明实施例进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明实施例技术方案的范围。

Claims (28)

  1. 一种数据传输方法,其特征在于,包括:
    发送端设备生成数据包,所述数据包包括第一指示信息,所述第一指示信息用于指示所述数据包对应的协议数据单元PDU会话;
    所述发送端设备将所述数据包发送给接收端设备。
  2. 根据权利要求1所述的方法,其特征在于,所述数据包还包括第二指示信息,所述第二指示信息用于指示所述数据包对应的网络切片。
  3. 根据权利要求1所述的方法,其特征在于,所述第一指示信息还用于指示所述数据包对应的网络切片。
  4. 根据权利要求1至3任一项所述的方法,其特征在于,所述第一指示信息包括所述PDU会话的标识,所述PDU会话的标识是由核心网控制面设备为所述PDU会话分配的并且用于标识所述PDU会话。
  5. 根据权利要求1至3任一项所述的方法,其特征在于,所述第一指示信息包括所述PDU会话的指示符,所述PDU会话的指示符是由无线接入网设备或核心网控制面设备为所述PDU会话分配的并且用于在用户面标识所述PDU会话;所述发送端设备生成数据包之前,还包括:
    所述发送端设备从第一映射表中获取所述PDU会话的标识对应的所述PDU会话的指示符,所述第一映射表包括PDU会话的标识集合和PDU会话的指示符集合的对应关系,所述PDU会话的标识是由核心网控制面设备为所述PDU会话分配的并且用于在控制面标识所述PDU会话,所述PDU会话的指示符的字节长度小于所述PDU会话的标识的字节长度。
  6. 根据权利要求2所述的方法,其特征在于,所述第二指示信息包括所述网络切片的标识,所述网络切片的标识是由所述核心网控制面设备为所述网络切片分配的并且用于标识所述网络切片。
  7. 根据权利要求2所述的方法,其特征在于,所述第二指示信息包括所述网络切片的指示符,所述网络切片的指示符是由无线接入网设备或核心网控制面设备为所述网络切片分配的并且用于在用户面标识所述网络切片;所述发送端设备生成数据包之前,还包括:
    所述发送端设备从第二映射表中获取所述网络切片的标识对应的所述网络切片的指示符,所述第二映射表包括网络切片的标识集合和网络切片的指示符集合的对应关系,所述网络切片的标识是由所述核心网控制面设备为所述网络切片分配的并且用于在控制面标识所述网络切片的,所述网络切片的指示符的字节长度小于所述网络切片的标识的字节长度。
  8. 一种数据传输方法,其特征在于,包括:
    接收端设备接收发送端设备发送的数据包,所述数据包包括第一指示信息,所述第一指示信息用于指示所述数据包对应的协议数据单元PDU会话;
    所述接收端设备根据所述第一指示信息确定所述数据包对应的PDU会话。
  9. 根据权利要求8所述的方法,其特征在于,所述数据包还包括第二指示信息,所述第二指示信息用于指示所述数据包对应的网络切片。
  10. 根据权利要求8所述的方法,其特征在于,所述第一指示信息还用于指示所述数据包对应的网络切片。
  11. 根据权利要求8至10任一项所述的方法,其特征在于,所述第一指示信息包括所述PDU会话的标识,所述PDU会话的标识是由核心网控制面设备为所述PDU会话分配的并且用于标识所述PDU会话。
  12. 根据权利要求8至10任一项所述的方法,其特征在于,所述第一指示信息包括所述PDU会话的标识对应的所述PDU会话的指示符,所述PDU会话的指示符是由无线接入网设备或核心网控制面设备为所述PDU会话分配的并且用于在用户面标识所述PDU会话,所述PDU会话的标识是由核心网控制面设备为所述PDU会话分配的并且用于在控制面标识所述PDU会话,所述PDU会话的指示符的字节长度小于所述PDU会话的标识的字节长度。
  13. 根据权利要求9所述的方法,其特征在于,所述第二指示信息包括所述网络切片的标识,所述网络切片的标识是由所述核心网控制面设备为所述网络切片分配的并且用于标识所述网络切片。
  14. 根据权利要求9所述的方法,其特征在于,所述第二指示信息包括所述网络切片的标识对应的所述网络切片的指示符,所述网络切片的指示符是由无线接入网设备或核心网控制面设备为所述网络切片分配的并且用于在用户面标识所述网络切片,所述网络切片的标识是由所述核心网控制面设备为所述网络切片分配的并且用于在控制面标识所述网络切片的,所述网络切片的指示符的字节长度小于所述网络切片的标识的字节长度。
  15. 一种发送端设备,其特征在于,包括处理器、存储器和收发器,其中,所述存储器用于存储指令,所述处理器用于调用所述存储器中存储的指令来执行如下操作:
    生成数据包,所述数据包包括第一指示信息,所述第一指示信息用于指示所述数据包对应的协议数据单元PDU会话;
    通过所述收发器将所述数据包发送给接收端设备。
  16. 根据权利要求15所述的发送端设备,其特征在于,所述数据包还包括第二指示信息,所述第二指示信息用于指示所述数据包对应的网络切片。
  17. 根据权利要求15所述的发送端设备,其特征在于,所述第一指示信息还用于指示所述数据包对应的网络切片。
  18. 根据权利要求15至17任一项所述的发送端设备,其特征在于,所述第一指示信息包括所述PDU会话的标识,所述PDU会话的标识是由核心网控制面设备为所述PDU会话分配的并且用于标识所述PDU会话。
  19. 根据权利要求15至17任一项所述的发送端设备,其特征在于,所述第一指示信息包括所述PDU会话的指示符,所述PDU会话的指示符是由无线接入网设备或核心网控制面设备为所述PDU会话分配的并且用于在用户面标识所述PDU会话;所述处理器生成数据包之前,所述处理器还用于:
    从第一映射表中获取所述PDU会话的标识对应的所述PDU会话的指示符,所述第一映射表包括PDU会话的标识集合和PDU会话的指示符集合的对应关系,所述PDU会话的标识是由核心网控制面设备为所述PDU会话分配的并且用于在控制面标识所述PDU会话,所述PDU会话的指示符的字节长度小于所述PDU会话的标识的字节长度。
  20. 根据权利要求16所述的发送端设备,其特征在于,所述第二指示信息包括所述网络切片的标识,所述网络切片的标识是由所述核心网控制面设备为所述网络切片分配的并且用于标识所述网络切片。
  21. 根据权利要求16所述的发送端设备,其特征在于,所述第二指示信息包括所述网络切片的指示符,所述网络切片的指示符是由无线接入网设备或核心网控制面设备为所述网络切片分配的并且用于在用户面标识所述网络切片;所述处理器生成数据包之前,所述处理器还用于:
    所述处理器从第二映射表中获取所述网络切片的标识对应的所述网络切片的指示符,所述第二映射表包括网络切片的标识集合和网络切片的指示符集合的对应关系,所述网络切片的标识是由所述核心网控制面设备为所述网络切片分配的并且用于在控制面标识所述网络切片的,所述网络切片的指示符的字节长度小于所述网络切片的标识的字节长度。
  22. 一种接收端设备,其特征在于,包括处理器、存储器和收发器,其中,所述存储器用于存储指令,所述处理器用于调用所述存储器中存储的指令来执行如下操作:
    通过所述收发器接收发送端设备发送的数据包,所述数据包包括第一指示信息,所述第一指示信息用于指示所述数据包对应的协议数据单元PDU会话;
    根据所述第一指示信息确定所述数据包对应的PDU会话。
  23. 根据权利要求22所述的接收端设备,其特征在于,所述数据包还包括第二指示信息,所述第二指示信息用于指示所述数据包对应的网络切片。
  24. 根据权利要求22所述的接收端设备,其特征在于,所述第一指示信息还用于指示所述数据包对应的网络切片。
  25. 根据权利要求22至24任一项所述的接收端设备,其特征在于,所述第一指示信息包括所述PDU会话的标识,所述PDU会话的标识是由核心网控制面设备为所述PDU会话分配的并且用于标识所述PDU会话。
  26. 根据权利要求22至24任一项所述的接收端设备,其特征在于,所述第一指示信息包括所述PDU会话的标识对应的所述PDU会话的指示符,所述PDU会话的指示符是由无线接入网设备或核心网控制面设备为所述PDU会话分配的并且用于在用户面标识所述PDU会话,所述PDU会话的标识是由核心网控制面设备为所述PDU会话分配的并且用于在控制面标识所述PDU会话,所述PDU会话的指示符的字节长度小于所述PDU会话的标识的字节长度。
  27. 根据权利要求22至25任一项所述的接收端设备,其特征在于,所述第二指示信息包括所述网络切片的标识,所述网络切片的标识是由所述核心网控制面设备为所述网络切片分配的并且用于标识所述网络切片。
  28. 根据权利要求23所述的接收端设备,其特征在于,所述第二指示信息包括所述网络切片的标识对应的所述网络切片的指示符,所述网络切片的指示符是由无线接入网设备或核心网控制面设备为所述网络切片分配的并且用于在用户面标识所述网络切片,所述网络切片的标识是由所述核心网控制面设备为所述网络切片分配的并且用于在控制面标识所述网络切片的,所述网络切片的指示符的字节长度小于所述网络切片的标识的字节长度。
PCT/CN2017/102874 2016-09-30 2017-09-22 数据传输方法及相关设备 WO2018059313A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610875272.5 2016-09-30
CN201610875272.5A CN108307516B (zh) 2016-09-30 2016-09-30 数据传输方法及相关设备

Publications (1)

Publication Number Publication Date
WO2018059313A1 true WO2018059313A1 (zh) 2018-04-05

Family

ID=61763355

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/102874 WO2018059313A1 (zh) 2016-09-30 2017-09-22 数据传输方法及相关设备

Country Status (2)

Country Link
CN (1) CN108307516B (zh)
WO (1) WO2018059313A1 (zh)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108810903B (zh) * 2017-05-04 2020-08-18 中国移动通信有限公司研究院 一种数据传输配置及数据传输方法和装置
EP3735025A4 (en) 2017-12-27 2020-12-16 Guangdong Oppo Mobile Telecommunications Corp., Ltd. PROCESS AND DEVICE FOR DATA TRANSMISSION AND COMPUTER STORAGE MEDIA
CN110868232B (zh) * 2018-08-27 2022-03-08 创意电子股份有限公司 信号传输装置与其连线方法
CN110912795B (zh) * 2018-09-14 2022-04-15 中兴通讯股份有限公司 一种传输控制方法、节点、网络系统及存储介质
CN109040322B (zh) 2018-10-08 2021-05-11 腾讯科技(深圳)有限公司 车辆通信方法、装置、计算机可读介质及电子设备
CN112584545B (zh) * 2019-09-30 2023-06-06 华为技术有限公司 数据传输方法及装置
WO2021128110A1 (zh) * 2019-12-25 2021-07-01 华为技术有限公司 通信方法及装置
CN113573381A (zh) * 2020-04-28 2021-10-29 大唐移动通信设备有限公司 非ip类型数据的传输处理方法、设备、装置及介质
CN115443723A (zh) * 2020-05-14 2022-12-06 Oppo广东移动通信有限公司 一种多路径传输方法及装置、网络设备、终端
CN117560112A (zh) * 2022-08-01 2024-02-13 大唐移动通信设备有限公司 一种信息传输方法、装置及通信设备
CN117676634A (zh) * 2022-09-07 2024-03-08 荣耀终端有限公司 通信方法和通信装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050073974A1 (en) * 2003-10-02 2005-04-07 Samsung Electronics Co., Ltd. Apparatus and method for ID allocation in MBMS mobile communication system
CN101651510A (zh) * 2008-08-14 2010-02-17 中兴通讯股份有限公司 业务数据同步发送的恢复处理方法和装置
CN102761905A (zh) * 2011-04-26 2012-10-31 华为技术有限公司 消息处理方法、设备及系统

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2314534T3 (es) * 2005-09-20 2009-03-16 Panasonic Corporation Procedimiento y dispositivo para la señalizacion de segmentacion y concatenacion de paquetes en un sistema de telecomunicaciones.
KR101426960B1 (ko) * 2008-03-03 2014-08-06 엘지전자 주식회사 무선통신 시스템에서 데이터 패킷 생성방법 및 전송방법
US9973876B2 (en) * 2013-03-20 2018-05-15 Provenance Asset Group Llc Application recommendations

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050073974A1 (en) * 2003-10-02 2005-04-07 Samsung Electronics Co., Ltd. Apparatus and method for ID allocation in MBMS mobile communication system
CN101651510A (zh) * 2008-08-14 2010-02-17 中兴通讯股份有限公司 业务数据同步发送的恢复处理方法和装置
CN102761905A (zh) * 2011-04-26 2012-10-31 华为技术有限公司 消息处理方法、设备及系统

Also Published As

Publication number Publication date
CN108307516B (zh) 2021-08-13
CN108307516A (zh) 2018-07-20

Similar Documents

Publication Publication Date Title
WO2018059313A1 (zh) 数据传输方法及相关设备
US20210219207A1 (en) Apparatus and method for routing data packet to user equipment in lte-wlan aggregation system
CN109952781B (zh) 用于处理数据分组的ue、网络节点及方法
US10412650B2 (en) Data transmission method, apparatus and system
US9781652B2 (en) Method and apparatus of LWA PDU routing
EP3793240A1 (en) Configuration method, data transmission method and apparatus
CN108307536B (zh) 一种路由方法和设备
US11432346B2 (en) Wireless communications system, base station, and mobile station
US11737128B2 (en) Wireless communications system, base station, mobile station, and processing method
US20200196384A1 (en) Communication processing method and apparatus using relay
WO2019242747A1 (zh) 数据包的发送、接收方法及装置和数据包的传输系统
JP5406373B2 (ja) 広帯域無線通信システムでマルチホップ中継通信のための装置及び方法
WO2019214729A1 (zh) 数据处理的方法和设备
US20210377930A1 (en) Data transmission method and apparatus
WO2021062803A1 (zh) 一种数据包传输方法及装置
US8315192B2 (en) Method and system for configuring a media access control header to reduce a header overhead
CN111373834B (zh) 用于建立数据无线承载的客户端设备、接入网设备、方法及计算机程序
CN105704069B (zh) 一种节省网元内处理资源的方法及装置
CN111491333B (zh) 一种数据处理方法、发送端设备和接收端设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17854763

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17854763

Country of ref document: EP

Kind code of ref document: A1