WO2018059155A1 - 带有几何误差的三维实体模型的构建方法及计算机可读存储介质 - Google Patents

带有几何误差的三维实体模型的构建方法及计算机可读存储介质 Download PDF

Info

Publication number
WO2018059155A1
WO2018059155A1 PCT/CN2017/098083 CN2017098083W WO2018059155A1 WO 2018059155 A1 WO2018059155 A1 WO 2018059155A1 CN 2017098083 W CN2017098083 W CN 2017098083W WO 2018059155 A1 WO2018059155 A1 WO 2018059155A1
Authority
WO
WIPO (PCT)
Prior art keywords
geometric
data
model
error
entity
Prior art date
Application number
PCT/CN2017/098083
Other languages
English (en)
French (fr)
Inventor
张之敬
金鑫
张忠清
叶鑫
张秋爽
Original Assignee
北京理工大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京理工大学 filed Critical 北京理工大学
Priority to US16/338,396 priority Critical patent/US10832475B2/en
Publication of WO2018059155A1 publication Critical patent/WO2018059155A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T19/00Manipulating 3D models or images for computer graphics
    • G06T19/20Editing of 3D images, e.g. changing shapes or colours, aligning objects or positioning parts
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T17/00Three dimensional [3D] modelling, e.g. data description of 3D objects
    • G06T17/30Polynomial surface description
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation
    • G06F30/23Design optimisation, verification or simulation using finite element methods [FEM] or finite difference methods [FDM]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T17/00Three dimensional [3D] modelling, e.g. data description of 3D objects
    • G06T17/10Constructive solid geometry [CSG] using solid primitives, e.g. cylinders, cubes
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/10Geometric CAD
    • G06F30/17Mechanical parametric or variational design
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2219/00Indexing scheme for manipulating 3D models or images for computer graphics
    • G06T2219/20Indexing scheme for editing of 3D models
    • G06T2219/2021Shape modification
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P90/00Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
    • Y02P90/30Computing systems specially adapted for manufacturing

Definitions

  • the present application relates to the technical field of computer model construction, and in particular relates to a method for constructing a three-dimensional solid model with geometric errors, which can fuse real geometric errors into a three-dimensional solid model.
  • the application also relates to a computer readable storage medium.
  • the assembly process of precision/ultra-precision mechanical systems generally encounters the following problems: in the case of qualified parts processing, the accuracy of the system after assembly cannot meet the design requirements, and the assembly success rate is low.
  • the main reason is that in addition to the dimensional error of machined parts, there are always some geometric errors in their respective surfaces. These surfaces are microscopically composed of many different sizes and shapes of peaks and valleys.
  • the influence of the geometric error of the surface of the part on the assembly quality is mainly reflected in the influence of the irregular micro-convex on the surface of the part on the matching property and the matching precision.
  • the CAD system is the main means of building part models in virtual assembly.
  • common 3D models mainly include surface models and solid models representing three-dimensional shapes.
  • the solid model is the most complete representation model for expressing the geometric and topological information of three-dimensional objects. It accurately defines the geometric shape of three-dimensional objects, and is the geometric model expression commonly used in 3D CAD systems.
  • the CAD models used in the assembly simulation are ideal. model. Due to the inevitable manufacturing error and other factors in the actual production process of the parts, the actual assembly parts have a certain deviation from the ideal model, which makes the assembly simulation analysis can not accurately analyze the assembly error accumulation and assembly of the actual product. Information such as stress and assembly deformation.
  • the main purpose of the present application is to propose a method for constructing a three-dimensional solid model, which can integrate the geometric error of the part with the CAD model to obtain a three-dimensional solid model with geometric errors, so as to facilitate the virtual assembly technology. To simulate or pre-determine the accuracy of the assembled system.
  • a method for constructing a three-dimensional solid model with geometric errors includes the following steps:
  • step S10 a geometrical entity ideal model of the part is established in the CAD system.
  • step S10 points, lines, and faces of the geometric entity are generated according to the structure and nominal size, nominal angle, and nominal position of the geometric entity of the part, and a geometrical entity ideal model of the part is established.
  • step S20 the geometric error NURBS surface model of the surface is established using geometric error data of the surface of the part.
  • step S20 specifically includes the steps of:
  • the rectangular domain type dot matrix Q k,j obtained in step S220 is parameterized by using an averaging technique in the row direction u and the column direction v, respectively, to obtain a node parameter value. with Further obtaining node vectors U and V;
  • step S250 the ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇
  • step S30 the geometric error model obtained in step S20 is imported into the CAD system in an IGES format file, and a surface CAD model of the geometric error is established to determine the true surface of the part, with the real surface as a geometric error.
  • step S30 after determining the source of the Brep data,
  • Geometric element data table and topology element data table extract the Brep data of the geometric error surface CAD model, obtain the geometric element information of the changing surface, the variation line and the variation point, and the topological relationship between the geometric elements, and construct corresponding data according to the geometric data and the data structure of the topology data.
  • Geometric element data table and topology element data table extract the Brep data of the geometric error surface CAD model, obtain the geometric element information of the changing surface, the variation line and the variation point, and the topological relationship between the geometric elements, and construct corresponding data according to the geometric data and the data structure of the topology data.
  • step S30 the Brep data of the corresponding ideal geometric element in the Brep data structure of the geometric entity ideal model is replaced by the Brep data of the geometric error surface CAD model, and the topological structure of the geometric entity ideal model is kept unchanged, and the Bpre data is constructed.
  • the NURBS-Brep data structure of the real geometric entity model is constructed.
  • step S30 after the data replacement is completed, the replaced data is parsed in the CAD system to reconstruct a three-dimensional solid model of the geometric error.
  • step S30 the topology data and the geometric data of the NURBS-Brep data structure are written into the SAT file, and the SAT file is restored into the CAD system through the exchange interface between the SAT file and the CAD system for analysis. Obtain a 3D solid model with geometric errors.
  • Another object of the present application is to provide a computer readable storage medium having stored thereon a computer program capable of implementing a three-dimensional solid model with geometric errors proposed by the present application when the computer program is executed by a processor The steps to build a method.
  • the method for constructing the three-dimensional solid model of the present application is sufficient to integrate the geometric error of the part with the CAD model, thereby obtaining a three-dimensional solid model with geometric errors, which can describe the regular shape features of the real surface of the part at a macro level, and
  • the microscopic level reflects irregular geometric error shape features of the surface of the part, and the entire process of constructing the three-dimensional solid model of the present application can be automatically implemented in a computer system.
  • FIG. 1 is a flow chart of a method of constructing a three-dimensional solid model with geometric errors in accordance with a preferred embodiment of the present application
  • FIG. 2 is a schematic diagram of a process of generating a geometrical model of a part based on a SAT file
  • FIG. 3 is a schematic diagram of a Brep data extraction and reconstruction process
  • Figure 4 is a schematic diagram of an example of a real geometric solid model of a part with common geometric features.
  • a three-dimensional shape is represented in a computer and is usually represented by a wireframe model, a surface model, or a solid model.
  • the three-dimensional shape information preserved by the wireframe model and the surface model is incomplete, and only the solid model can represent the three-dimensional shape completely and unambiguously. Therefore, the solid model is the main design object of the engineering and manufacturing industry in the current CAD system. the way.
  • geometric solid models are used to describe the geometric information of the shape, size, position and structural relationship of the product. model.
  • the geometric entity model representation methods in CAD system mainly include: CSG representation (ie, constructing solid geometric representation, CSG is short for Constructive Solid Geometry), Brep representation (ie, boundary representation, Brep is short for Boundary Representation) and CSG/Brep hybrid representation.
  • CSG representation ie, constructing solid geometric representation, CSG is short for Constructive Solid Geometry
  • Brep representation ie, boundary representation, Brep is short for Boundary Representation
  • CSG/Brep hybrid representation Three major categories.
  • the Brep representation (ie, the boundary representation) represents the entity by describing the boundary of the entity, which is an unambiguous representation of the solid model in the three-dimensional geometric modeling.
  • Boundary representation is the use of a finite number of curved crop body boundary surfaces to describe three-dimensional objects that divide the object into internal and external, defining the boundaries of the entity, and the entities are uniquely defined.
  • these surfaces include: planes, quadric surfaces (such as cylinders, cones, spheres, etc.), and/or free-form surfaces (such as B-spline surfaces, NURBS surfaces, etc.).
  • NURBS is a non-uniform rational B-spline, which is an abbreviation of Non-Uniform Rational B-Splines.
  • geometric information refers to basic geometric element information such as point, curve, and surface of the model, which can describe the size, size, position and shape of the part, such as the coordinate value of the vertex and the surface of the part ( Surface) equation parameters and other information.
  • the topology information is information describing the number, type, and relationship between the topological node elements on the part shape.
  • the topology information usually describes the topological relationship between three-dimensional solid geometric elements by eight levels of structure: body->block->shell->face->ring->directed edge->edge->point", according to topology information. Determine the adjacency of the surface of the object.
  • FIG. 1 The basic flow of the method for constructing a three-dimensional solid model with geometric errors of the present application is as shown in FIG. 1 , and mainly includes the following steps:
  • step S10 and step S20 is not limited, and may be interchanged or may be performed synchronously.
  • the geometrical entity ideal model of the part can be established in the CAD system, or the established geometric entity ideal model can be imported.
  • a local coordinate system of a current real geometric feature (such as a geometric entity of a part) may be first established in, for example, a Creo system; then a point of the geometric feature is generated based on the structure and nominal size, nominal angle, nominal position, etc. of the current geometric feature. , line, surface, get the ideal geometry of the geometric feature, that is, get the geometric entity ideal model of the part.
  • the geometric error data of the surface of the part can be obtained by direct measurement, for example, by an error measuring tool such as a three-dimensional scanner directly connected to a computer, or the previously measured error data can be imported into a computer. These geometric error data can then be used to build a geometric error model. Specifically, the geometric error NURBS surface model of the surface can be constructed using these geometric error data. The preferred specific establishment process will be described in detail later.
  • step S30 the geometric error NURBS surface model obtained in step S20 can be imported into the Creo system as an IGES format file in the same coordinate system as in step S10, and a geometric error surface CAD model is established to determine the true surface of the part.
  • the real surface serves as a Brep data source for a three-dimensional solid model with geometric errors, wherein the Brep data includes geometric information and topology information.
  • the corresponding Brep data can be extracted based on the geometric entity ideal CAD model, and the ideal point, line and surface geometric element information of the CAD model and the topological relationship between the geometric elements can be obtained, and the data structure of the geometric data and the topology data is constructed.
  • Corresponding geometric element data table and topological element data table on the other hand, the same method can be used to extract the Brep data of the geometric error surface CAD model, and obtain the changing surface, the variation line and the variation point, that is, the real, error-bearing geometry. Elements (faces, lines, and points) that build the corresponding data structure tables.
  • extracting the corresponding Brep data can be completed based on the Creo secondary development technology.
  • the Brep data of the geometric error surface CAD model (ie, the Brep data of the change surface, the change line and the change point) is used to replace the Brep data of the corresponding ideal geometric element in the Brep data structure of the ideal geometric model of the part geometric entity, and the ideal CAD model.
  • the topology remains the same, This constructs the NURBS-Brep data structure of the real geometric entity model. That is to say, in the method of the present application, the idea of separating the geometric information from the topology information is adopted, and the topology of the ideal model of the geometric entity is kept unchanged, and only the corresponding geometric element information is modified.
  • the topology data of the NURBS-Brep data structure and the geometric data associated with the topology data may be directly written into the SAT file according to the topology information of the CAD model and the SAT file data format, through the CAD system and
  • the mapping relationship between the SAT files and the direct exchange of the SAT file into the CAD system through the exchange interface between the SAT file and the Creo system the geometric error and the underlying data of the CAD model can be effectively integrated, thereby rapidly generating the geometry.
  • the 3D solid model of the error The generation process of the geometrical solid model of the part based on the SAT file is shown in Fig. 2.
  • a surface of the rectangular parallelepiped part is taken as an example, (a) is a schematic diagram before the surface is replaced, and (b) is a schematic diagram after the surface is replaced. .
  • the CAD model can be regenerated, that is, the integrated data is parsed in the CAD system, the 3D solid model of the geometric error is reconstructed, and the topology integrity check can be performed. To avoid disrupting the topology of the CAD model.
  • the geometric error is superimposed on the ideal model of the geometrical entity of the part, and the geometric error is effectively integrated with the underlying data of the CAD model to generate a 3D solid model with geometric errors. Construct the real geometric entity features of the part.
  • the geometric error of a surface may be superimposed on the ideal model of the geometrical entity of the part, or the geometric errors of the multiple surfaces may be superimposed one by one or simultaneously.
  • the SAT file is a storage file of the geometric entity model topology information and the geometric information.
  • the topology data and the associated geometric element information may be performed according to the standard format of the SAT file.
  • the pattern is written to a text file.
  • the process of integrating the geometric error with the underlying data of the CAD model preferably includes the following two steps:
  • the specific process includes:
  • A1 Traversing the topological structure tree of the geometric entity model from top to bottom, extracting the topological elements one by one from the top level nodes of the topology according to the hierarchical relationship of the topology information, and constructing the topology element data structure;
  • Topological element information and geometric element information are respectively stored in the corresponding database, and the complete Brep data structure of the solid model is constructed, that is, the geometric element table and the topological element table; wherein, according to the geometric element (such as point, line, surface) data structure is established.
  • step (2) preferably as shown in FIG. 3(b), the specific process includes:
  • each topology node in the topology is established from bottom to top, and the geometric information is associated with the corresponding topology node to establish a mapping relationship between the topology element and the geometric element;
  • the idea of separating geometric information from topological information is an important three-dimensional geometric design idea of Brep's geometrical solid model. Based on this separate design idea, in the solid model represented by Brep, geometric element data and topological element data can be relative in the computer. Independently stored, the CAD system establishes the mapping relationship between them through the association operation to realize the accurate expression of the three-dimensional geometric model. Therefore, the extraction and reconstruction of CAD model geometric element data and topology element data are relatively independent, so in this application, geometric element data and topological element data can be extracted first, then the topological element data is kept unchanged, and only the corresponding geometry is modified.
  • Elemental data such as the coordinates of points, equations of curves and surfaces, etc.
  • the modification of geometric element data does not affect the topological element data, thus achieving the effective integration of geometric errors and CAD models.
  • the topology of the solid model with geometric errors is identical to the topology of the ideal cube model.
  • the geometric information is only different between the models. The difference is that the boundaries of the ideal cube are straight lines and planes, while the boundaries of the solid model with geometric errors are curves and surfaces.
  • step S20 preferably uses a NURBS surface mathematical model to characterize the geometric error surface of the actual part surface, and establishes a geometric error NURBS surface mathematical model based on the actual surface measurement data of the part.
  • step S20 may include the following steps:
  • the geometric error data of the surface of the part can be directly measured by a high-precision measuring instrument such as a coordinate measuring machine, and the measurement data of the double-ordered topological rectangular mesh characteristic on the surface of the part is obtained.
  • the topological rectangular grid includes n+1 ⁇ m+1 data points, and the double ordering means that the rectangular domain lattices are arranged in order in both directions;
  • a measurement data lattice regularized on the surface of the part that is, a rectangular domain value.
  • node parameter values and the specific calculation method of the node vector U is:
  • node parameter value can be calculated.
  • node vector V node vector
  • the mathematical model of error generates a geometric error surface model through positive calculation.
  • step S250 is as follows:
  • R i,p (u) represents the rational basis function of the p-NURBS curve determined by the i-th data point
  • R j,q (v) represents the rational basis function of the q-th NURBS curve determined by the j-th data point
  • P i,j represents the NURBS surface control grid vertices
  • the intermediate control vertex C i,l is obtained by solving the matrix equation
  • the real geometric model of the part contains dimensional deviation, positional deviation and irregular surface shape error, which reflects the geometrical shape of the actual surface of the part.
  • Figures 4(a)-(c) show examples of real geometric solid models of parts with common geometric features.
  • (a) is a real geometrical solid model of a cubic part containing multiple surface geometric errors
  • (b) The real geometric solid model of the ring-shaped part including the geometric error of the inner cylindrical surface
  • (c) is the real geometric solid model of the axial part containing the geometric error of the outer cylindrical surface.
  • the surface error is magnified 100 times in the surface method.
  • the real geometric model of the part can not only describe the shape features of the real surface rules of the parts at the macro level, but also reflect the irregular geometric error shape details of the parts surface at the micro level.
  • the construction method of the 3D solid model of the present application can be summarized as: using the existing CAD software to construct the ideal 3D model of the part, which is the basis of the real part geometric entity model construction; using the geometric error model construction method based on NURBS reconstruction CAD surface model describing the geometric error of the surface of the real part; according to the design idea of separating the geometric data of the solid model and the topological data based on the Brep boundary, extract the geometric data and topological data of the ideal 3D model Brep data respectively, by using the geometric error surface data and ideal
  • the surface geometry data is replaced and integrated with the topological data to realize the effective integration of the geometric error with the underlying data of the CAD model, and the corresponding 3D solid model with geometric error is constructed.
  • the output is a real physical geometry model that is ultimately easy to analyze and apply.
  • the present application also proposes that the geometric error NURBS surface mathematical model based on the IGES data interface is accurately expressed in the CAD model system, and the geometric error surface CAD model is established, that is, the actual measurement data of the part surface is used.
  • Geometric error NURBS surface The mathematical model parameters are stored in IGES format, and the NURBS surface model is first converted into a standard IGES file, and then imported into the existing CAD system to generate a geometric error CAD surface model.
  • the present application also provides a computer readable storage medium having stored thereon a computer program capable of implementing the present application when the computer program is executed by the processor The steps of the proposed method of constructing a three-dimensional solid model with geometric errors.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Geometry (AREA)
  • Software Systems (AREA)
  • Computer Graphics (AREA)
  • Algebra (AREA)
  • Mathematical Analysis (AREA)
  • Mathematical Optimization (AREA)
  • Mathematical Physics (AREA)
  • Pure & Applied Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Evolutionary Computation (AREA)
  • Architecture (AREA)
  • Image Generation (AREA)
  • Numerical Control (AREA)

Abstract

本申请提供了带有几何误差的三维实体模型的构建方法及计算机可读存储介质。所述三维实体模型的构建方法,包括以下步骤:S10、获得零件的几何实体理想模型;S20、利用零件表面的几何误差数据建立零件表面的几何误差模型;S30、利用所述几何误差模型替换所述几何实体理想模型中的对应表面,获得带有几何误差的三维实体模型。本申请的三维实体模型的构建方法够将零件的几何误差与CAD模型相集成,从而获得带有几何误差的三维实体模型,既能在宏观层面描述零件真实表面的规则的外形特征,又能在微观层面反映零件表面的不规则的几何误差形状特征。

Description

带有几何误差的三维实体模型的构建方法及计算机可读存储介质
本申请要求享有2016年9月28日向中国专利局提交的、申请号为CN201610866082.7、发明名称为“一种基于NURBS曲面重构的几何误差表征方法”的中国专利申请的优先权,该中国专利申请的全部内容以引用的方式合并于本申请中。
技术领域
本申请涉及计算机模型构建技术领域,具体涉及一种带有几何误差的三维实体模型的构建方法,能够将真实的几何误差融合在三维实体模型中。本申请还涉及一种计算机可读存储介质。
背景技术
精密/超精密机械系统的装配过程普遍会遇到如下问题:在各个零部件加工合格的情况下,装配后系统的精度却无法满足设计要求,装配成功率低。主要原因在于,机械加工零件除了具有尺寸误差之外,其各个表面实际上总是存在一些几何误差,这些表面从微观上看是由许多不同尺寸和形状的凸峰和凹谷组成。零件表面几何误差对装配质量的影响,主要体现在零件表面不规则的微凸体对配合性质和配合精度的影响。
为了能够对装配后的系统精度进行仿真或预先确定,相关领域的技术人员开发了虚拟装配技术,以便在计算机系统中利用各个零部件的三维模型进行装配验证。为此,需要用到零件模型构建技术,特别是需要建立零件的三维模型。
目前,CAD系统是虚拟装配中零件模型构建的主要手段。在当前商业CAD系统中,常见的三维模型主要包括表示三维形体的曲面模型和实体模型。其中,实体模型是一种表达三维物体几何和拓扑信息最完整的表示模型,它准确地定义了三维物体的几何形状,是目前三维CAD系统所普遍采用的几何模型表达方式。
然而,由于目前各CAD系统中零件实体模型构建技术均无法将几何误差信息表示到CAD模型中,因而进行装配仿真所使用的CAD模型都是理想 模型。由于零件的实际生产过程中不可避免地存在制造误差等因素,实际装配使用的零件与理想模型相比总有一定的偏差,这使得装配仿真分析并不能准确分析出实际产品的装配误差累积、装配应力、装配变形等信息。
另外,尽管现有技术中已存在多种几何误差模型的构建方法,但这些构建方法大多局限于加工零件表面几何误差的数学模拟,误差较大,且无法实现几何误差模型与CAD模型的集成,也就无法建立带有几何误差的三维实体模型,也使得所建立的几何误差模型无法应用有装配仿真中,进而仍然无法分析几何误差对装配精度与装配性能的影响。
上述问题导致现有的虚拟装配技术并不能准确实现对装配后的系统精度的仿真或预先确定。
发明内容
鉴于上述现状,本申请的主要目的在于提出一种三维实体模型的构建方法,其能够将零件的几何误差与CAD模型相集成,从而获得带有几何误差的三维实体模型,以便于通过虚拟装配技术来对装配后的系统精度进行仿真或预先确定。
为此,本申请采用的技术方案如下:
一种带有几何误差的三维实体模型的构建方法,包括以下步骤:
S10、获得零件的几何实体理想模型;
S20、利用零件表面的几何误差数据建立零件表面的几何误差模型;
S30、利用所述几何误差模型替换所述几何实体理想模型中的对应表面,获得带有几何误差的三维实体模型。
优选地,步骤S10中,在CAD系统中建立零件的几何实体理想模型。
优选地,步骤S10中,根据零件的几何实体的结构和名义尺寸、名义角度、以及名义位置,生成所述几何实体的点、线、面,建立起零件的几何实体理想模型。
优选地,步骤S20中,利用零件表面的几何误差数据建立所述表面的几何误差NURBS曲面模型。
优选地,步骤S20具体包括步骤:
S210、获得零件表面的测量数据,所述测量数据具有双有序化的拓扑矩形网格特性,其中拓扑矩形网格上包括n+1×m+1个数据点;
S220、对测量数据进行预处理,获得零件表面的测量数据点阵,即矩形域型值点阵,其中,拓扑矩形网格上第k行第l列数据点对应的型值点为Qk,l(k=0,1,…,n;l=0,1,…,m);
S230、确定NURBS曲面的次数为p和q,型值点Qk,l的权因子为wk,l=1;
S240、对步骤S220所获得的矩形域型值点阵Qk,j在行方向u和列方向v上分别采用平均技术进行参数化,得到节点参数值
Figure PCTCN2017098083-appb-000001
Figure PCTCN2017098083-appb-000002
进而得到节点矢量U和V;
S250、进行NURBS曲面插值,反算得到全部控制顶点坐标Pk,l,k=0,1,…,n;l=0,1,…,m;
S260、根据步骤S230中确定的NURBS曲面次数p、q和权因子wk,l,步骤S240中计算的节点矢量U和V,并利用步骤S250中得到的全部控制顶点坐标Pk,l,k=0,1,…,n;l=0,1,…,m作为NURBS曲面参数,通过NURBS曲面重构建立零件表面的几何误差模型。
优选地,步骤S250中,
首先利用节点矢量U和参数
Figure PCTCN2017098083-appb-000003
做m+1次NURBS曲线插值,具体过程包括:对于l=0,1,…m,分别构造插值于点Q0,l,Q1,l…Qn,l的曲线,得到中间控制顶点坐标Ci,0,Ci,1…Ci,m
然后利用节点矢量V和参数
Figure PCTCN2017098083-appb-000004
,做n+1次NURBS曲线插值,具体过程包括:对于i=0,1,…n,分别构造插值于点Ci,0,Ci,1…Ci,m的曲线,即得到全部控制顶点坐标Pk,l,k=0,1,…,n;l=0,1,…,m。
优选地,步骤S30中,将步骤S20中获得的几何误差模型以IGES格式文件导入CAD系统中,建立几何误差的曲面CAD模型,以确定零件真实表面,以所述真实表面作为带有几何误差的三维实体模型的Brep数据来源。
优选地,步骤S30中,在确定Brep数据来源后,
提取所述几何实体理想模型的Brep数据,获得CAD模型理想的点、线、面几何元素信息及几何元素之间的拓扑结构关系,并根据几何数据与拓扑数据的数据结构构建相应的几何元素数据表和拓扑元素数据表;
和/或,提取几何误差曲面CAD模型的Brep数据,获得变动面、变动线和变动点的几何元素信息及几何元素之间的拓扑结构关系,并根据几何数据与拓扑数据的数据结构构建相应的几何元素数据表和拓扑元素数据表。
优选地,步骤S30中,用几何误差曲面CAD模型的Brep数据替换几何实体理想模型的Brep数据结构中相应的理想几何元素的Brep数据,同时,保持几何实体理想模型的拓扑结构不变,构建出真实几何实体模型的NURBS-Brep数据结构。
优选地,步骤S30中,在完成数据替换后,在CAD系统中对替换后的数据进行解析,重构出几何误差的三维实体模型。
优选地,步骤S30中,将NURBS-Brep数据结构的拓扑数据和几何数据写入SAT文件中,并通过SAT文件与CAD系统之间的交换接口,将SAT文件还原导入CAD系统中,以进行解析获得带有几何误差的三维实体模型。
本申请的另一目的在于提供一种计算机可读存储介质,其上存储有计算机程序,当所述计算机程序被处理器运行时,能够实现本申请所提出的带有几何误差的三维实体模型的构建方法的步骤。
本申请的三维实体模型的构建方法够将零件的几何误差与CAD模型相集成,从而获得带有几何误差的三维实体模型,既能在宏观层面描述零件真实表面的规则的外形特征,又能在微观层面反映零件表面的不规则的几何误差形状特征,并且,本申请的三维实体模型的构建方法的整个过程能够在计算机系统中自动实现。
附图说明
图1为根据本申请的优选实施方式的带有几何误差的三维实体模型的构建方法的流程图;
图2为基于SAT文件的零件几何实体模型的生成过程示意图;
图3为Brep数据提取与重构过程示意图;
图4为带有常见几何特征的零件真实几何实体模型实例的示意图。
具体实施方式
计算机中表示三维形体,通常用线框模型、表面模型或实体模型来表示。其中,线框模型和表面模型保存的三维形体信息都不完整,只有实体模型才能够完整地、无歧义地表示三维形体,因而实体模型是目前CAD系统中表示工程和制造行业的设计对象的主要方式。在CAD系统中,几何实体模型是用来描述产品的形状、尺寸大小、位置与结构关系等几何信息的 模型。目前CAD系统中几何实体模型表示方法主要有:CSG表示(即构造实体几何表示,CSG为Constructive Solid Geometry的简称)、Brep表示(即边界表示,Brep为Boundary Representation的简称)和CSG/Brep混合表示三大类。
其中,Brep表示(即边界表示)是通过描述实体的边界来表示实体,它是三维几何造型中无二义性的实体模型表示方法。边界表示就是用一组有限数量的曲面作物体边界表面来描述三维物体,这些曲面将物体分为内部和外部,定义了实体的边界,实体就被唯一定义。其中,这些曲面包括:平面,二次曲面(如柱面、锥面、球面等),和/或自由曲面(如B样条曲面、NURBS曲面等)。其中,NURBS为非均匀有理B样条,是Non-Uniform Rational B-Splines的缩写。
Brep表示中要表达的信息有两类:一类是几何信息,它反映物体的大小及位置;另一类是拓扑信息,用来说明体、面、边及顶点之间的连接关系。
其中,几何信息是指模型的点(Point)、线(Curve)、面(Surface)等基本几何元素信息,能够描述零件形体的大小、尺寸、位置和形状,如顶点的坐标值、零件表面(曲面)方程参数等信息。
而拓扑信息是描述零件形体上的拓扑节点元素的个数、类型以及它们之间的相互关系的信息。拓扑信息通常以“体->块->壳->面->环->有向边->边->点”八个层次的结构来描述三维实体几何元素之间的拓扑关系,根据拓扑信息确定物体表面的邻接关系。
因此,在Brep表示方法中,按照“体->块->壳->面->环->有向边->边->点”的层次,详细记录构成形体的所有几何信息及其相互连接的拓扑信息。在进行各种运算和操作中,可以直接取得这些信息,从而易于进行局部操作。局部操作从宏观上来看不改变形体的整体结构,只作局部修改。
以上介绍了与本申请的三维实体模型的构建方法有关的信息,下面将详细描述本申请的带有几何误差的三维实体模型的构建方法。
本申请的带有几何误差的三维实体模型的构建方法的基本流程如图1所示,主要包括以下步骤:
S10、获得零件的几何实体理想模型,即几何实体理想CAD模型;
S20、利用零件表面的几何误差数据建立零件表面的几何误差模型;
S30、利用所述几何误差模型替换所述几何实体理想模型中的对应表面,获得带有几何误差的三维实体模型。
其中,在具体实施时,步骤S10和步骤S20的执行顺序没有限制,可以互换,也可以同步地进行。
以下结合实例详细说明本申请的三维实体模型的构件方法的具体实施过程。
步骤S10中,可以在CAD系统中建立零件的几何实体理想模型,或者导入已建立好的几何实体理想模型。例如,可以先在例如Creo系统中建立当前真实几何特征(如零件的几何实体)的局部坐标系;然后根据当前几何特征的结构和名义尺寸、名义角度、名义位置等,生成该几何特征的点、线、面,得到该几何特征的理想几何体,即得到零件的几何实体理想模型。
步骤S20中,零件表面的几何误差数据可以通过直接测量而获得,例如通过与计算机直接相连的三维扫描仪等误差测量工具直接测量,也可以向计算机中导入事先测量好的误差数据。之后,便可以利用这些几何误差数据来建立几何误差模型。具体地,可利用这些几何误差数据建立该表面的几何误差NURBS曲面模型。优选的具体建立过程将在后面详细描述。
步骤S30中,可以在与步骤S10中相同的坐标系下将步骤S20中获得的几何误差NURBS曲面模型以IGES格式文件导入Creo系统中,建立几何误差曲面CAD模型,以便确定零件的真实表面,以所述真实表面作为带有几何误差的三维实体模型的Brep数据来源,其中,Brep数据包括几何信息和拓扑信息。
进一步地,可以基于几何实体理想CAD模型提取相应的Brep数据,获得CAD模型理想的点、线、面几何元素信息及几何元素之间的拓扑结构关系,并根据几何数据与拓扑数据的数据结构构建相应的几何元素数据表和拓扑元素数据表;另一方面,可以采用同样的方法提取几何误差曲面CAD模型的Brep数据,获得变动面、变动线和变动点,即真实的、带有误差的几何元素(面、线和点),构建相应的数据结构表。具体实施时,提取相应的Brep数据可以基于Creo二次开发技术完成。
然后,用几何误差曲面CAD模型的Brep数据(即变动面、变动线和变动点的Brep数据)替换零件几何实体理想CAD模型的Brep数据结构中相应的理想几何元素的Brep数据,而理想CAD模型的拓扑结构保持不变,由 此构建出真实几何实体模型的NURBS-Brep数据结构。也即,本申请的方法中,采用了几何信息与拓扑信息分离的思想,保持几何实体理想模型的拓扑结构不变,只修改相应的几何元素信息。
优选地,为了实现上述过程,可以按照CAD模型的拓扑信息与SAT文件数据格式,将NURBS-Brep数据结构的拓扑数据及与该拓扑数据关联的几何数据直接写入SAT文件中,通过CAD系统与SAT文件之间的映射关系,通过SAT文件与Creo系统之间的交换接口,将SAT文件直接还原导入CAD系统中,即可实现几何误差与CAD模型底层数据的有效集成,从而快速生成带有几何误差的三维实体模型。基于SAT文件的零件几何实体模型的生成过程如图2所示,图中,以长方体零件的一个表面为例,(a)为该表面替换前的示意图,(b)为该表面替换后的示意图。
优选地,在完成上述的数据集成之后,还可进行CAD模型的再生,即在CAD系统中对集成后的数据进行解析,重构出几何误差的三维实体模型,并可以进行拓扑完整性检查,以避免破坏CAD模型的拓扑结构。
上述三维实体模型的构建过程涉及到三个重要方面:
(1)基于Creo二次开发技术的几何实体模型Brep数据提取,构建几何元素数据表和拓扑信息数据表;
(2)基于几何实体模型Brep几何信息与拓扑信息分离的思想,保持拓扑信息不变,修改几何信息,实现几何误差与CAD模型底层数据的融合;
(3)基于SAT文件格式的几何实体模型重构,几何误差叠加到零件几何实体理想模型上,实现几何误差与CAD模型底层数据的有效集成,生成带有几何误差的三维实体模型,在CAD系统中构建零件真实几何实体特征。
本申请的三维实体模型的构建方法中,可以在零件几何实体理想模型上叠加一个表面的几何误差,也可以逐一或同时叠加多个表面的几何误差。
本申请的三维实体模型的构建方法中,SAT文件是几何实体模型拓扑信息和几何信息的存储文件,在具体实施时,可以按照SAT文件的标准格式,将拓扑数据及关联的几何元素信息以行模式写入文本文件中。
将几何误差与CAD模型底层数据进行集成的过程优选包括如下两个步骤:
(1)Brep数据拓扑信息与几何信息的提取;
(2)基于SAT文件格式的几何实体模型重构。
对于上述步骤(1),优选如图3(a)所示,其具体过程包括:
A1.自顶向下遍历几何实体模型的拓扑结构树,按照拓扑信息层次关系从拓扑顶层节点逐一提取拓扑元素,构建拓扑元素数据结构;
A2.对于每一个拓扑元素节点,如果该节点有关联的几何元素,则提取几何元素数据,构建几何元素数据结构;
A3.拓扑元素信息与几何元素信息分别存储到相应的数据库,构建实体模型完整的Brep数据结构,即几何元素表和拓扑元素表;其中,根据几何元素(如点、线、面)数据结构建立几何元素表,并存储相应信息;根据拓扑元素“体-块-壳-面-环-有向边-边-顶点”的数据结构建立拓扑元素表,并存储相应信息。
对于上述步骤(2),优选如图3(b)所示,其具体过程包括:
B1.自下而上顺序建立拓扑结构中各拓扑节点的映射关系,并将几何信息关联到相应的拓扑节点,建立拓扑元素与几何元素之间的映射关系;
B2.保持拓扑元素数据结构不变,对几何元素数据结构进行修改,删除理想几何数据,插入零件表面NURBS曲面的几何数据;也即,修改替换相关的Brep数据,对Brep信息进行保留、修复、添加、摒弃等相应操作,删除理想几何数据,插入误差表面几何数据;
B3.关联目标模型的拓扑数据和几何数据,按照SAT文件格式将拓扑信息与修改后的几何信息写入到SAT文件中,通过SAT文件与CAD系统之间数据交换接口重构几何实体模型,生成带有几何误差的三维实体模型,最终实现几何误差与CAD模型的集成。
几何信息与拓扑信息分离的思想是Brep表示几何实体模型的一个重要的三维几何设计思想,基于这一分离的设计思想,Brep表示的实体模型中,几何元素数据和拓扑元素数据在计算机中可相对独立地存储,CAD系统通过关联操作建立它们之间的映射关系,实现三维几何模型的精确表达。因而,CAD模型几何元素数据与拓扑元素数据的提取与重构也是相对独立的,所以本申请中可以首先分别提取几何元素数据与拓扑元素数据,然后保持拓扑元素数据不变,只修改相应的几何元素数据(例如点的坐标,曲线曲面的方程表达,等等),几何元素数据的修改不会影响拓扑元素数据,进而实现几何误差与CAD模型的有效集成。例如,以立方体零件为例,带有几何误差的实体模型的拓扑结构和理想立方体模型的拓扑结构完全相同,这两种 模型之间仅仅是几何信息不同而已,其差别表现为理想立方体的边界为直线和平面,而带几何误差的实体模型的边界为曲线和曲面。
零件表面的几何误差数据与零件CAD三维实体模型数据集成的前提条件是零件表面的几何误差曲面数学模型在CAD系统中能够精确表达。本申请中,步骤S20优选可采用NURBS曲面数学模型表征实际零件表面的几何误差曲面,并基于零件实际表面测量数据建立几何误差NURBS曲面数学模型。
因此,步骤S20的优选实施过程可包括如下步骤:
S210、获得零件表面的几何误差测量数据,例如可利用三坐标测量机等高精度测量仪器直接对零件表面进行几何误差数据测量,获得零件表面具有双有序化拓扑矩形网格特性的测量数据,其中拓扑矩形网格上包括n+1×m+1个数据点,双有序化是指矩形域点阵在两个方向上均按顺序排列;
S220、对测量数据进行预处理,例如,可针对步骤S210中获得的测量数据进行测头半径补偿、以及剔除坏点,等等,获得零件表面规则化的测量数据点阵,即矩形域型值点阵,其中,拓扑矩形网格上第k行第l列数据点对应的型值点为Qk,l(k=0,1,…,n;l=0,1,…,m);
S230、随机确定NURBS曲面的次数为p和q,型值点Qk,l的权因子为wk,l=1;
S240、对型值点进行参数化,可对步骤S220所获得的矩形域型值点阵Qk,j在行方向u和列方向v上分别采用平均技术进行参数化,得到节点参数值
Figure PCTCN2017098083-appb-000005
Figure PCTCN2017098083-appb-000006
进而得到节点矢量U和V;
例如,节点参数值
Figure PCTCN2017098083-appb-000007
和节点矢量U的具体的计算方法为:
Figure PCTCN2017098083-appb-000008
Figure PCTCN2017098083-appb-000009
同理,可计算出节点参数值
Figure PCTCN2017098083-appb-000010
和节点矢量V;
S250、进行NURBS曲面插值,反算得到全部控制顶点坐标Pk,l,k=0,1,…,n;l=0,1,…,m;例如,可利用节点矢量U和参数
Figure PCTCN2017098083-appb-000011
做m+1次NURBS曲线插值,过程包括:对于l=0,1,…m,分别构造插值于点Q0,l,Q1,l…Qn,l 的曲线,得到中间控制顶点坐标Ci,0,Ci,1…Ci,m;然后利用节点矢量V和参数
Figure PCTCN2017098083-appb-000012
做n+1次NURBS曲线插值,过程包括:对于i=0,1,…n,分别构造插值于点Ci,0,Ci,1…Ci,m的曲线,得到全部控制顶点坐标Pk,l,k=0,1,…,n;l=0,1,…,m;
S260、通过NURBS曲面重构建立零件表面的几何误差模型,其中,可根据步骤S230中确定的NURBS曲面次数p、q和权因子wk,l,步骤S240中计算的节点矢量U和V,以及步骤S250中得到的全部控制顶点坐标Pk,l,k=0,1,…,n;l=0,1,…,m作为NURBS曲面参数,采用NURBS曲面重构技术建立零件表面真实几何形状误差数学模型,通过正算生成几何误差曲面模型。
具体地,步骤S250的实施过程如下:
根据NURBS曲面方程,并且使曲面严格地过各型值点,可得:
Figure PCTCN2017098083-appb-000013
其中,
Figure PCTCN2017098083-appb-000014
Ri,p(u)表示由第i个数据点确定的p次NURBS曲线的有理基函数,
Rj,q(v)表示由第j个数据点确定的q次NURBS曲线的有理基函数,
Pi,j表示NURBS曲面控制网格顶点;
于是,可进行如下运算:
(a)用节点矢量U和参数
Figure PCTCN2017098083-appb-000015
做m+1次NURBS曲线插值:对于l=0,1,…m,分别构造插值于点Q0,l,Q1,l…Qn,l的曲线,构造以下矩阵方程:
Figure PCTCN2017098083-appb-000016
写成矩阵形式:
Figure PCTCN2017098083-appb-000017
通过矩阵方程求解得到中间控制顶点Ci,l
(b)用节点矢量V和参数
Figure PCTCN2017098083-appb-000018
,做n+1次NURBS曲线插值,对于i=0,1,…n
分别构造插值于点Ci,0,Ci,1…Ci,m的曲线,构造以下矩阵方程:
Figure PCTCN2017098083-appb-000019
写成矩阵形式:
Figure PCTCN2017098083-appb-000020
通过矩阵方程求解得到全部控制顶点Pi,j
零件真实几何实体模型包含尺寸偏差、位置偏差和不规则的表面形状误差,体现零件实际加工表面几何形态特点。图4(a)-(c)示出了带有常见几何特征的零件真实几何实体模型实例,图中,(a)为包含多个表面几何误差的立方体零件真实几何实体模型,(b)为包含内圆柱面几何误差的环套类零件真实几何实体模型,(c)为包含外圆柱面几何误差的轴类零件真实几何实体模型。为了能够更显著地体现模型中的形状误差,图中把表面误差在表面法向上放大了100倍。零件真实几何实体模型不仅能够在宏观层面下描述零件真实表面规则的外形特征,也能在微观层面下反映零件表面不规则的几何误差形状细节特征。
综上,本申请的三维实体模型的构建方法可总结为:利用现有CAD软件构建零件理想三维模型,这是真实零件几何实体模型构建的基础;利用基于NURBS重构的几何误差模型构建方法构建描述真实零件表面几何误差的CAD曲面模型;根据基于Brep边界表示实体模型几何数据与拓扑数据分离的设计思想,分别提取理想三维模型Brep数据的几何数据和拓扑数据,通过将几何误差曲面数据与理想表面几何数据替换,并与拓扑数据有机整合起来,实现几何误差与CAD模型底层数据的有效集成,构建相应的带有几何误差的三维实体模型;最后通过对模型的检查、检验及补充修改后,输出最终便于分析与应用的真实零件几何实体模型。
为更好地实现上述方法,本申请还提出了基于IGES数据接口实现几何误差NURBS曲面数学模型在CAD模型系统中精确表达,建立几何误差曲面CAD模型,也即,将采用零件表面实际测量数据重构的几何误差NURBS曲面 数学模型参数以IGES格式存储,将NURBS曲面模型先转化为标准IGES文件,然后导入到现有CAD系统生成几何误差CAD曲面模型。
基于上述的带有几何误差的三维实体模型的构建方法,本申请还提供了一种计算机可读存储介质,其上存储有计算机程序,当所述计算机程序被处理器运行时,能够实现本申请所提出的带有几何误差的三维实体模型的构建方法的步骤。
以上所述仅为本申请的优选实施例而已,并不用于限制本申请,对于本领域的技术人员来说,本申请可以有各种更改、组合和变化。凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的权利要求范围之内。

Claims (12)

  1. 一种带有几何误差的三维实体模型的构建方法,其特征在于,包括以下步骤:
    S10、获得零件的几何实体理想模型;
    S20、利用零件表面的几何误差数据建立零件表面的几何误差模型;
    S30、利用所述几何误差模型替换所述几何实体理想模型中的对应表面,获得带有几何误差的三维实体模型。
  2. 根据权利要求1所述的构建方法,其特征在于,步骤S10中,在CAD系统中建立零件的几何实体理想模型。
  3. 根据权利要求2所述的构建方法,其特征在于,步骤S10中,根据零件的几何实体的结构和名义尺寸、名义角度、以及名义位置,生成所述几何实体的点、线、面,建立起零件的几何实体理想模型。
  4. 根据权利要求1-3任一项所述的构建方法,其特征在于,步骤S20中,利用零件表面的几何误差数据建立所述表面的几何误差NURBS曲面模型。
  5. 根据权利要求4所述的构建方法,其特征在于,步骤S20具体包括步骤:
    S210、获得零件表面的测量数据,所述测量数据具有双有序化的拓扑矩形网格特性,其中拓扑矩形网格上包括n+1×m+1个数据点;
    S220、对测量数据进行预处理,获得零件表面的测量数据点阵,即矩形域型值点阵,其中,拓扑矩形网格上第k行第l列数据点对应的型值点为Qk,l(k=0,1,…,n;l=0,1,…,m);
    S230、确定NURBS曲面的次数为p和q,型值点Qk,l的权因子为wk,l=1;
    S240、对步骤S220所获得的矩形域型值点阵Qk,j在行方向u和列方向v上分别采用平均技术进行参数化,得到节点参数值
    Figure PCTCN2017098083-appb-100001
    Figure PCTCN2017098083-appb-100002
    进而得到节点矢量U和V;
    S250、进行NURBS曲面插值,反算得到全部控制顶点坐标Pk,l,k=0,1,…,n;l=0,1,…,m;
    S260、根据步骤S230中确定的NURBS曲面次数p、q和权因子wk,l,步骤S240中计算的节点矢量U和V,并利用步骤S250中得到的全部控制顶点坐标Pk,l,k=0,1,…,n;l=0,1,…,m作为NURBS曲面参数,通过NURBS曲面重构建立零件表面的几何误差模型。
  6. 根据权利要求5所述的构建方法,其特征在于,步骤S250中,
    首先利用节点矢量U和参数
    Figure PCTCN2017098083-appb-100003
    做m+1次NURBS曲线插值,具体过程包括:对于l=0,1,…m,分别构造插值于点Q0,l,Q1,l…Qn,l的曲线,得到中间控制顶点坐标Ci,0,Ci,1…Ci,m
    然后利用节点矢量V和参数
    Figure PCTCN2017098083-appb-100004
    做n+1次NURBS曲线插值,具体过程包括:对于i=0,1,…n,分别构造插值于点Ci,0,Ci,1…Ci,m的曲线,即得到全部控制顶点坐标Pk,l,k=0,1,…,n;l=0,1,…,m。
  7. 根据权利要求1-6任一项所述的构建方法,其特征在于,步骤S30中,将步骤S20中获得的几何误差模型以IGES格式文件导入CAD系统中,建立几何误差的曲面CAD模型,以确定零件真实表面,以所述真实表面作为带有几何误差的三维实体模型的Brep数据来源。
  8. 根据权利要求7所述的构建方法,其特征在于,步骤S30中,在确定Brep数据来源后,
    提取所述几何实体理想模型的Brep数据,获得CAD模型理想的点、线、面几何元素信息及几何元素之间的拓扑结构关系,并根据几何数据与拓扑数据的数据结构构建相应的几何元素数据表和拓扑元素数据表;
    和/或,提取几何误差曲面CAD模型的Brep数据,获得变动面、变动线和变动点的几何元素信息及几何元素之间的拓扑结构关系,并根据几何数据与拓扑数据的数据结构构建相应的几何元素数据表和拓扑元素数据表。
  9. 根据权利要求7所述的构建方法,其特征在于,步骤S30中,用几 何误差曲面CAD模型的Brep数据替换几何实体理想模型的Brep数据结构中相应的理想几何元素的Brep数据,同时,保持几何实体理想模型的拓扑结构不变,构建出真实几何实体模型的NURBS-Brep数据结构。
  10. 根据权利要求9所述的构建方法,其特征在于,步骤S30中,在完成数据替换后,在CAD系统中对替换后的数据进行解析,重构出几何误差的三维实体模型。
  11. 根据权利要求10所述的构建方法,其特征在于,步骤S30中,将NURBS-Brep数据结构的拓扑数据和几何数据写入SAT文件中,并通过SAT文件与CAD系统之间的交换接口,将SAT文件还原导入CAD系统中,以进行解析获得带有几何误差的三维实体模型。
  12. 一种计算机可读存储介质,其上存储有计算机程序,其特征在于,当所述计算机程序被处理器运行时,能够实现根据权利要求1-11之一所述的带有几何误差的三维实体模型的构建方法的步骤。
PCT/CN2017/098083 2016-09-29 2017-08-18 带有几何误差的三维实体模型的构建方法及计算机可读存储介质 WO2018059155A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/338,396 US10832475B2 (en) 2016-09-29 2017-08-18 Method for constructing three-dimensional solid model with geometric error and computer-readable storage medium

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610866082.7 2016-09-29
CN201610866082.7A CN107067472A (zh) 2016-09-29 2016-09-29 一种基于nurbs曲面重构的几何误差表征方法

Publications (1)

Publication Number Publication Date
WO2018059155A1 true WO2018059155A1 (zh) 2018-04-05

Family

ID=59616997

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/098083 WO2018059155A1 (zh) 2016-09-29 2017-08-18 带有几何误差的三维实体模型的构建方法及计算机可读存储介质

Country Status (3)

Country Link
US (1) US10832475B2 (zh)
CN (2) CN107067472A (zh)
WO (1) WO2018059155A1 (zh)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110276814A (zh) * 2019-06-05 2019-09-24 上海大学 一种基于拓扑特征的编织复合材料细观结构快速重构方法
CN111028899A (zh) * 2020-01-03 2020-04-17 河南理工大学 一种建立多晶体几何模型的方法
US20200134245A1 (en) * 2018-10-26 2020-04-30 Dassault Systemes 3d design of b-rep skin
CN111489437A (zh) * 2020-04-04 2020-08-04 哈尔滨理工大学 一种用于机器人辅助牙体预备的邻面备牙曲线生成方法
CN112149611A (zh) * 2020-10-10 2020-12-29 山东科技大学 一种基于MBD的Creo模型特征识别及其相似度评价方法、存储介质
CN113591169A (zh) * 2021-07-02 2021-11-02 深圳智造谷工业互联网创新中心有限公司 3d非几何信息转换方法、系统、装置及存储介质
CN113658184A (zh) * 2021-06-02 2021-11-16 重庆大学 一种基于iges模型引导的点云曲面分割方法
CN114460743A (zh) * 2022-03-25 2022-05-10 泽景(西安)汽车电子有限责任公司 图像展示设备的成像效果分析方法、装置、设备及介质
CN114494637A (zh) * 2022-01-11 2022-05-13 武汉大学 一种基于结构体矩阵的砂岩三维真实模型重构方法

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107798732B (zh) * 2017-10-27 2021-03-12 中国工程物理研究院应用电子学研究所 一种自由曲面形态控制方法
CN110069041B (zh) * 2018-01-24 2020-09-29 北京理工大学 一种基于在机测量的工件加工方法及系统
CN108647411A (zh) * 2018-04-25 2018-10-12 桂林电子科技大学 一种基于Grassmann空间和递归曲面表达的桁架受力模型建模方法
CN108917687B (zh) * 2018-04-26 2020-08-04 太原理工大学 一种航空发动机叶片前后缘微小弧面检测方法
CN109446539B (zh) * 2018-08-29 2020-08-21 北京理工大学 结合面误差实体建模方法及装置
CN109871608B (zh) * 2019-02-16 2022-03-01 西南科技大学 一种曲面测量定位误差的不确定性分析方法
CN110426991B (zh) * 2019-07-30 2021-10-08 苏州行远志成自动化科技有限公司 一种复合位置误差补偿方法和装置
CN110414175B (zh) * 2019-08-07 2023-02-03 合肥学院 一种利用三维工艺加工零件的方法
CN111415411B (zh) * 2020-03-02 2023-12-12 重庆市勘测院 三维模型空间坐标纠正及加密方法
CN111951403B (zh) * 2020-07-19 2023-10-13 贵阳职业技术学院 一种基于外围Bezier参数空间的曲面特征自动提取方法
CN112150637B (zh) * 2020-07-31 2024-06-04 宝利根(成都)精密工业股份有限公司 一种基于三次元坐标测量的修模快速改图方法
CN112033338B (zh) * 2020-09-14 2021-12-28 中国航空工业集团公司北京长城计量测试技术研究所 一种叶片类曲面接触式扫描测量测头半径面补偿方法
CN112396690B (zh) * 2020-11-11 2022-09-20 大连理工大学 基于改进型向心参数化法的曲面高精重构方法
CN112926207B (zh) * 2021-02-25 2022-07-26 华南理工大学 等几何拓扑优化结果的可编辑模型自动构建方法及系统
CN113283025B (zh) * 2021-05-11 2022-09-06 北京理工大学 一种包含系统误差的渐开线齿廓误差建模方法
CN113536406B (zh) * 2021-05-21 2024-02-09 杭州群核信息技术有限公司 板件编辑信息处理方法、装置、存储介质及处理器
CN113450458B (zh) * 2021-06-28 2023-03-14 杭州群核信息技术有限公司 家居参数化模型的数据转化系统、方法、装置和存储介质
CN113459660B (zh) * 2021-09-02 2021-11-19 深圳市创博未来科技有限公司 基于三维建模的多面拼接印制品印制模拟系统
CN113916169B (zh) * 2021-09-02 2024-05-17 北京航空材料研究院股份有限公司 基于曲面基准要素建立基准特征的测量方法
CN114491769B (zh) * 2022-02-17 2022-12-09 河海大学 一种基于等几何分析法自由曲面结构一体化形态创构方法
CN114969976B (zh) * 2022-06-01 2024-04-16 沈阳飞机工业(集团)有限公司 基于数字化实测数据的一体化结构虚拟装配方法
CN115797601B (zh) * 2022-09-08 2023-10-27 上海新迪数字技术有限公司 一种Brep三维模型的中面自动提取方法及系统
CN115638754B (zh) * 2022-10-03 2024-03-15 北京工业大学 一种基于区间层次分析法的三坐标测量机精度分配方法
CN116204974B (zh) * 2022-12-22 2024-01-09 中国航空综合技术研究所 航空发动机叶片零件cad模型几何一致性评价方法
CN116956465A (zh) * 2023-07-26 2023-10-27 中基科技(武汉)有限公司 一种基于xml的船体结构模型构建方法、装置、设备及介质
CN117010093B (zh) * 2023-10-07 2023-12-05 中国人民解放军国防科技大学 一种汽车造型设计方法及设备

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103810343A (zh) * 2014-02-24 2014-05-21 清华大学 一种零件关键工艺表面的创成式精细化表征方法
US8914257B1 (en) * 2009-08-27 2014-12-16 The Boeing Company Simulating a surface of a structure
CN105739440A (zh) * 2016-04-29 2016-07-06 南京航空航天大学 一种宽弦空心风扇叶片的自适应加工方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101692257B (zh) * 2009-09-25 2012-05-16 华东理工大学 一种复杂曲面的配准方法
CN103440382B (zh) * 2013-08-30 2016-06-08 常州轻工职业技术学院 一种基于逆向反求技术的3d打印塑件产品的方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8914257B1 (en) * 2009-08-27 2014-12-16 The Boeing Company Simulating a surface of a structure
CN103810343A (zh) * 2014-02-24 2014-05-21 清华大学 一种零件关键工艺表面的创成式精细化表征方法
CN105739440A (zh) * 2016-04-29 2016-07-06 南京航空航天大学 一种宽弦空心风扇叶片的自适应加工方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
LIU, JUNQIANG: "The Research of Surface Reconstruction in Reverse Engineering based on Characteristic Surface", CHINA DISSERTATION DATABASE, 13 October 2010 (2010-10-13), pages 10 - 44 *

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200134245A1 (en) * 2018-10-26 2020-04-30 Dassault Systemes 3d design of b-rep skin
US11886777B2 (en) * 2018-10-26 2024-01-30 Dassault Systemes 3D design of B-rep skin
CN110276814B (zh) * 2019-06-05 2022-05-10 上海大学 一种基于拓扑特征的编织复合材料细观结构快速重构方法
CN110276814A (zh) * 2019-06-05 2019-09-24 上海大学 一种基于拓扑特征的编织复合材料细观结构快速重构方法
CN111028899A (zh) * 2020-01-03 2020-04-17 河南理工大学 一种建立多晶体几何模型的方法
CN111489437A (zh) * 2020-04-04 2020-08-04 哈尔滨理工大学 一种用于机器人辅助牙体预备的邻面备牙曲线生成方法
CN112149611A (zh) * 2020-10-10 2020-12-29 山东科技大学 一种基于MBD的Creo模型特征识别及其相似度评价方法、存储介质
CN112149611B (zh) * 2020-10-10 2022-07-19 山东科技大学 一种Creo模型特征识别及相似度评价方法、存储介质
CN113658184A (zh) * 2021-06-02 2021-11-16 重庆大学 一种基于iges模型引导的点云曲面分割方法
CN113658184B (zh) * 2021-06-02 2024-03-12 重庆大学 一种基于iges模型引导的点云曲面分割方法
CN113591169A (zh) * 2021-07-02 2021-11-02 深圳智造谷工业互联网创新中心有限公司 3d非几何信息转换方法、系统、装置及存储介质
CN114494637A (zh) * 2022-01-11 2022-05-13 武汉大学 一种基于结构体矩阵的砂岩三维真实模型重构方法
CN114460743A (zh) * 2022-03-25 2022-05-10 泽景(西安)汽车电子有限责任公司 图像展示设备的成像效果分析方法、装置、设备及介质

Also Published As

Publication number Publication date
US20200043231A1 (en) 2020-02-06
US10832475B2 (en) 2020-11-10
CN107067472A (zh) 2017-08-18
CN116091734A (zh) 2023-05-09

Similar Documents

Publication Publication Date Title
WO2018059155A1 (zh) 带有几何误差的三维实体模型的构建方法及计算机可读存储介质
CN113348459B (zh) 将网格几何结构转换为水密边界表示的方法、系统及介质
JP4381743B2 (ja) 境界表現データからボリュームデータを生成する方法及びそのプログラム
Foucault et al. Adaptation of CAD model topology for finite element analysis
CN110009727A (zh) 一种具有结构语义的室内三维模型自动重构方法及系统
TWI425442B (zh) Method of Reconstructing Three - dimensional Housing Model on Aeronautical Mapping System
CN111581776B (zh) 一种基于几何重建模型的等几何分析方法
EP4092558A1 (en) Parameterization of cad model
US7333104B2 (en) Method and program of converting three-dimensional shape data into cell internal data
CN110532670B (zh) 一种适分析样条实体模型构建方法及系统
Foucault et al. Mechanical Criteria for the Preparation of Finite Element Models.
JP2003345839A (ja) 三次元モデル作成方法及びシステム
Samareh Geometry modeling and grid generation for design and optimization
Patel et al. Automatic CAD model topology generation
Navangul Stereolithography (STL) file modification by vertex translation algorithm (VTA) for precision layered manufacturing
Liu Volumetric T-spline Construction for Isogeometric Analysis–Feature Preservation, Weighted Basis and Arbitrary Degree
CN110782527B (zh) 建筑建模方法及装置
Zhu et al. Three-dimensional TIN algorithm for digital terrain modeling
Gao et al. Cavity vertex regeneration through optimal energy model for restoration of worn parts
JP2003345840A (ja) 三次元モデル作成方法
US20230290064A1 (en) Processing a tesselation
Xu Hexahedral Mesh Generation, Optimization, and Visualization
Abt et al. Domain preparation for RANSE simulations about hull and appendage assemblies
Jadhav et al. Modeling of complex and freeform surfaces by using reverse engineering approach
Patel et al. Robust and efficient CAD topology generation using adaptive tolerances

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17854607

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17854607

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 11.09.2019)

122 Ep: pct application non-entry in european phase

Ref document number: 17854607

Country of ref document: EP

Kind code of ref document: A1