WO2018058975A1 - 带延伸筒体的直筒式浮式平台和泳圈式浮筒组 - Google Patents

带延伸筒体的直筒式浮式平台和泳圈式浮筒组 Download PDF

Info

Publication number
WO2018058975A1
WO2018058975A1 PCT/CN2017/085052 CN2017085052W WO2018058975A1 WO 2018058975 A1 WO2018058975 A1 WO 2018058975A1 CN 2017085052 W CN2017085052 W CN 2017085052W WO 2018058975 A1 WO2018058975 A1 WO 2018058975A1
Authority
WO
WIPO (PCT)
Prior art keywords
cylinder
floating platform
pontoon
sleeve
vertical
Prior art date
Application number
PCT/CN2017/085052
Other languages
English (en)
French (fr)
Inventor
吴植融
Original Assignee
吴植融
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 吴植融 filed Critical 吴植融
Priority to GB1903722.5A priority Critical patent/GB2569473B/en
Priority to US16/335,430 priority patent/US10793227B2/en
Priority to AU2017333180A priority patent/AU2017333180B2/en
Priority to CN201780056447.2A priority patent/CN110139798B/zh
Publication of WO2018058975A1 publication Critical patent/WO2018058975A1/zh
Priority to NO20190326A priority patent/NO20190326A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B1/00Hydrodynamic or hydrostatic features of hulls or of hydrofoils
    • B63B1/02Hydrodynamic or hydrostatic features of hulls or of hydrofoils deriving lift mainly from water displacement
    • B63B1/04Hydrodynamic or hydrostatic features of hulls or of hydrofoils deriving lift mainly from water displacement with single hull
    • B63B1/048Hydrodynamic or hydrostatic features of hulls or of hydrofoils deriving lift mainly from water displacement with single hull with hull extending principally vertically
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B35/00Vessels or similar floating structures specially adapted for specific purposes and not otherwise provided for
    • B63B35/44Floating buildings, stores, drilling platforms, or workshops, e.g. carrying water-oil separating devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B1/00Hydrodynamic or hydrostatic features of hulls or of hydrofoils
    • B63B1/02Hydrodynamic or hydrostatic features of hulls or of hydrofoils deriving lift mainly from water displacement
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B7/00Collapsible, foldable, inflatable or like vessels
    • B63B7/06Collapsible, foldable, inflatable or like vessels having parts of non-rigid material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B75/00Building or assembling floating offshore structures, e.g. semi-submersible platforms, SPAR platforms or wind turbine platforms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B35/00Vessels or similar floating structures specially adapted for specific purposes and not otherwise provided for
    • B63B35/44Floating buildings, stores, drilling platforms, or workshops, e.g. carrying water-oil separating devices
    • B63B2035/442Spar-type semi-submersible structures, i.e. shaped as single slender, e.g. substantially cylindrical or trussed vertical bodies
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B35/00Vessels or similar floating structures specially adapted for specific purposes and not otherwise provided for
    • B63B35/44Floating buildings, stores, drilling platforms, or workshops, e.g. carrying water-oil separating devices
    • B63B2035/448Floating hydrocarbon production vessels, e.g. Floating Production Storage and Offloading vessels [FPSO]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B39/00Equipment to decrease pitch, roll, or like unwanted vessel movements; Apparatus for indicating vessel attitude
    • B63B39/06Equipment to decrease pitch, roll, or like unwanted vessel movements; Apparatus for indicating vessel attitude to decrease vessel movements by using foils acting on ambient water
    • B63B2039/067Equipment to decrease pitch, roll, or like unwanted vessel movements; Apparatus for indicating vessel attitude to decrease vessel movements by using foils acting on ambient water effecting motion dampening by means of fixed or movable resistance bodies, e.g. by bilge keels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B2207/00Buoyancy or ballast means
    • B63B2207/02Variable ballast or buoyancy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B2241/00Design characteristics
    • B63B2241/20Designs or arrangements for particular purposes not otherwise provided for in this class
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A40/00Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
    • Y02A40/80Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in fisheries management
    • Y02A40/81Aquaculture, e.g. of fish

Definitions

  • the invention relates to the technical field of marine engineering, in particular to a straight type floating platform which can be used for various purposes such as offshore oil and gas exploration and development and production, offshore power generation, material storage and replenishment, deep water fish culture, tourism and the like.
  • the prior art straight-type floating platform can be divided into two types, one is a deep-drinking SPAR platform, and the other is a cylindrical floating type represented by a cylindrical FPSO with a low draft and a large outer diameter. platform.
  • the characteristics of the SPAR platform are: the draft is very deep, usually close to 200 meters; the waterline area is small, the diameter of the waterline of the cylinder is usually 30 to 40 meters; the floating center of the platform is higher than the center of gravity, thereby ensuring the stability of the platform.
  • Sexuality usually not liquid storage; among them, the traditional type SPAR is a floating platform with a fixed extension cylinder, and the lower part does not have a reduction structure.
  • the advantage of the SPAR platform is that due to the small stiffness of the heave, the natural period of the heave is more than 20 seconds, and the viscous damping effect, the response of the heave motion is small, and the maximum possible heave amplitude under the environmental conditions of a hundred years can be controlled.
  • a dry wellhead can be installed on the platform.
  • the disadvantage is that due to the small stiffness of the heave and the small weight of the platform operation, the draught changes will be caused, and it is difficult to adapt to the requirements of the liquid storage; the platform cylinder and the upper facility must be separately constructed, transported, and then installed at sea, Connection and commissioning require special transport vessels and large offshore floating cranes, with complicated installation procedures, high difficulty and risk, high construction cost, long construction and construction period; in addition, in production operation conditions, especially in harsh sea conditions, The SPAR platform has a large roll and roll.
  • the characteristics of the cylindrical platform are: the draft is not deep, usually about 20 to 30 meters; the waterline surface area is large, the waterline surface diameter of the cylinder is usually more than 50 meters, the large diameter platform can exceed 100 meters, and the displacement is relatively large;
  • the center of gravity is lower than the center of gravity, relying on the moment of inertia of the waterline to ensure the stability required by the platform; mainly relying on the damping structure (damping structure) surrounding the heel of the outer wall of the cylinder to improve the hydrodynamic performance, especially the vertical Swing performance.
  • the advantages are: and boat shape Similar to the FPSO, the entire floating platform, including the cylinder and the upper facility, can be built, installed and commissioned at one time in the shipyard, and the whole dry or wet towed transport to the sea destination, greatly saving engineering investment and construction period, suitable for liquid storage;
  • the heave motion of the cylindrical FPSO is comparable to that of the boat FPSO.
  • the motion performance such as roll is superior to the boat FPSO.
  • the overall performance of the platform is optimized, and its heave motion performance may be equivalent to the SPAR platform.
  • the disadvantage is that the current cylindrical floating platform has a heave stiffness of about 16 seconds, and the heave motion of most cylindrical floating platforms is not good under severe sea conditions; Intrinsic period, optimizing the performance of the sport, usually need to increase the scale of the structure, especially the outer diameter, increase the platform draft, usually the top of the structure is below 30 meters.
  • the inventor of the present application has proposed a new type of straight-type floating platform between the SPAR platform and the current cylindrical floating platform after long-term research and practice, and the outer wall of the cylinder
  • the heel has a reducing structure, so that it has the main advantages of the above two straight-type floating platforms, avoiding its disadvantages.
  • the present invention proposes a straight floating platform and a swimming pontoon assembly with an extended cylinder (COLUMN FLOATER WITH EXTENDED CYLINDER (S ) AND RING BUOY-GROUP), the straight floating platform has excellent hydrodynamic performance.
  • the entire floating platform can be built, installed and commissioned at one time in the shipyard, and the whole dry or wet tow is transported to the sea destination, which greatly saves
  • the project investment and construction period can be used for exploration, development and production of offshore oil and gas fields, offshore natural gas or nuclear power generation, marine material storage and replenishment, deepwater fish culture, and marine tourism.
  • the straight type floating platform with an extension cylinder of the invention comprises the following four parts:
  • An upright float which floats on the surface of the water, has a top plate and a bottom plate at both ends, the top of which is above the water surface, and the center of the vertical float is or is not provided with a moonpool that penetrates up and down;
  • An extension cylinder comprising at least one extension cylinder connected to the bottom plate of the upright pontoon and extending downwardly and having a bottom opening, the extension cylinder having the same vertical central axis, the outermost layer of the extension cylinder
  • the outer diameter is equal to or larger than the outer diameter of the upright cylinder of the outermost layer of the vertical buoy;
  • the outermost layer of the outer wall of the outer cylinder of the outer cylinder is provided with a reducing structure;
  • the extending cylinder is a fixed cylinder or a telescopic sliding cylinder, the fixed cylinder forms a floating platform with a fixed extension cylinder, and the retractable sliding cylinder forms a floating platform with a retractable sliding extension cylinder;
  • a floating platform positioning system which is a combination of one or both of a mooring positioning system and a dynamic positioning system
  • the upper facility is located on the top and/or inside of the upright pontoon.
  • the invention also provides a swimming lap type pontoon set for an upright floating platform, which provides stability required during offshore installation and relocation, the swimming rim type pontoon set comprising a plurality of identical construction pontoons
  • the two adjacent construction buoys are detachably connected by at least one chain/cable, and each of the construction buoys is evenly distributed, closely attached, and surrounded by the vertical float by pre-installation or on-site installation.
  • the floating platform with the fixed extension cylinder of the present invention during the construction of the dock, the launching or the wet mooring, all or part of the space in the integral air flotation adjustment cabin or the bottom air flotation adjustment cabin is filled with air to form a floating cabin.
  • the floating platform provides buoyancy.
  • the floating platform with the retractable sliding extension cylinder of the present invention is built in the dock, launched or wetly towed, the top of the entire sleeve is located at the upper part of the upright pontoon and temporarily fixed, the upright type The buoy provides buoyancy to the platform.
  • the reduction structure can be utilized. Additional buoyancy is temporarily provided to ensure that the entire platform can also float in the dock or at the shipyard dock (the front water depth is usually around 12 meters).
  • the damper structure can also provide the required stability for the wet drag of the floating platform. Therefore, the straight-type floating platform with the extended cylinder of the invention can realize the one-time completion construction, installation and commissioning of the entire floating platform in the shipyard, and the whole dry tow or wet tow transportation to the sea destination, greatly saving engineering investment and construction period .
  • the swimming lap type of the present invention provides the straight platform with the stability required during offshore installation and relocation.
  • FIG. 1 is a schematic view showing an embodiment of a straight-type floating platform with an extended cylinder according to the present invention, a structure of a fixed-type extended-tube floating platform with an integral air-floating adjustment cabin;
  • FIG. 2 is a cross-section of FIG. schematic diagram;
  • FIG. 3 is a schematic view showing another embodiment of a straight type floating platform with an extension cylinder according to the present invention, which is a floating platform with a retractable sliding type extension cylinder;
  • Figure 4 is a simplified schematic view showing the structure of the floating platform (without the upper facility) with the retractable sliding type extension cylinder in the in-position state;
  • Figure 5 is a simplified schematic view showing the construction of the floating platform (without the upper facility) with the retractable sliding type extension cylinder in the dock or the wet tow state;
  • FIG. 6 is a schematic structural view of a locking mechanism of a retractable sliding cylinder of a floating platform with a retractable sliding type extension cylinder according to the present invention
  • Figure 7-1 is a simplified schematic diagram of a reduced-motion structure with a rectangular box shape in a radial section.
  • Figure 7-2 is a simplified schematic view of the damper structure with a radial cross-section of a pentagonal box shape.
  • Figure 7-3 is a simplified schematic view of the damper structure with a trapezoidal box shape in a radial section.
  • Figure 7-4 is a simplified schematic diagram of the decrementing structure derived from Figure 7-1, with the bottom of the box structure opening to form a downward opening.
  • Figure 7-5 is a simplified schematic diagram of the deceleration structure derived from Figure 7-2, with the bottom of the box structure opening to form a downward opening.
  • Figure 7-6 is a simplified schematic diagram of the decrementing structure derived from Figure 7-3, with the bottom of the box structure opening to form a downward opening.
  • Figure 7-7 is a simplified schematic diagram of the decrementing structure derived from Figure 7-1, with the top plate of the box structure opened to form an upward opening.
  • Figure 7-8 is a simplified schematic diagram of the deceleration structure with a U-shaped radial section (opening upwards, with radial clearance).
  • Figure 7-9 is a simplified schematic diagram of the deceleration structure derived from Figure 7-8, with a large radial gap and a small bottom.
  • Figure 7-10 is a simplified schematic diagram of the deceleration structure derived from Figure 7-8, with a small radial gap and a large bottom.
  • Figure 7-11 is a simplified schematic diagram of the deceleration structure with an inverted U-shaped radial section (opening downward, with radial clearance).
  • Figure 7-12 is a simplified schematic diagram of the deceleration structure derived from Figure 7-1, with a small radial gap and a large bottom.
  • Figure 7-13 is a simplified schematic diagram of the deceleration structure derived from Figure 7-11, with a small radial upper portion and a large bottom portion;
  • Figure 8 is an embodiment of a straight-type floating platform with a fixed extension cylinder of a bottom air-floating adjustment cabin of the present invention---a floating platform with a fixed extension cylinder for aquaculture - fixed extension Schematic diagram of the floating aquaculture cage of the cylinder;
  • Fig. 9 is a schematic view showing the structure of a floating platform with a fixed extension cylinder for non-aquaculture according to an embodiment of a straight-type floating platform with a fixed extension cylinder of a bottom air-floating adjustment cabin.
  • the straight type floating platform 600 with the extension cylinder of the present invention comprises two kinds of floating platform 610 with a fixed extension cylinder and a floating platform 620 with a retractable sliding extension cylinder; wherein the belt has a fixed extension
  • the floating platform 610 of the cylinder includes a fixed extension cylinder floating platform 611 with an integral air flotation adjustment cabin and a fixed extension cylinder floating platform 612 with a bottom air flotation adjustment cabin.
  • the straight type floating platform 600 with an extended cylinder of the present invention comprises the following four parts:
  • the vertical buoy 1 floats on the water surface 5, the top plate and the bottom plate are both ends, the top of which is higher than the water surface, and the center of the vertical buoy 1 is provided or not provided with the moon pool 11 which is vertically penetrated;
  • the moon pool 11 is an upright cylinder, Or a conical cylinder having a large upper opening or a cone having an upper opening area smaller than the lower opening area; or, when the vertical buoy 1 is composed of a plurality of cylinders, and the cylinder is not disposed at the center,
  • the central space is a moonpool 11 that runs up and down.
  • the vertical pontoon 1 can be used as a cabin or room for various purposes, such as a seawater ballast tank, a liquid storage tank, an empty tank or a buoyancy tank, a nacelle, a pump cabin, a nuclear reactor, a control room, a living compartment, etc. Or several.
  • Moonpool 11 requires different scales depending on the application. For example, when used in deepwater fisheries, the diameter of the moonpool is quite large.
  • An extension cylinder 2 comprising at least one extension cylinder connected to the bottom plate of the vertical pontoon 1 and extending downwardly and having a bottom opening, the extension cylinder having the same vertical central axis, the outermost layer of which extends outside the cylinder The diameter is equal to or larger than the outer diameter of the upright cylinder of the outermost layer of the vertical buoy 1; the outermost layer of the outermost wall of the outer cylinder of the extension cylinder is provided with a reducing structure 214 or 225.
  • the extension cylinder 2 is a fixed cylinder 21 or a retractable sliding cylinder 22; the fixed cylinder 21 forms a floating platform 610 with a fixed extension cylinder, and the telescopic sliding cylinder 22 is formed with a telescopic sliding extension A floating platform 620 of the barrel.
  • the floating platform positioning system 3 is a combination of one or both of a mooring positioning system 31 and a dynamic positioning system.
  • the upper installation 4 is located in the top and/or inner compartment of the upright pontoon 1. Different upper facilities 4 are provided according to the different uses of the floating platform.
  • the vertical pontoons, cylinders and sleeves as described below are vertical, including a cylinder, a cylinder and a sleeve having a circular or regular polygonal cross section;
  • the term "circular or regular polygon” is no longer specifically added. In other words, even if it is a "cylinder", its cross section may be a regular polygon; the outer diameter is The outer diameter of the circular cross section or the diameter of the circumcircle of the regular polygonal cross section; the inner diameter is the inner diameter of the circular cross section, or the diameter of the inscribed circle of the regular polygonal cross section.
  • the upright type pontoon is composed of a plurality of cylinders (ie, a multi-cylinder type pontoon)
  • the pontoon "cylinder” has a plurality of circles in cross section, and the inner and outer diameters of the "cylinder” are respectively a multi-circle inscribed circle and The diameter of the circumscribed circle.
  • the structure of the pontoon, the cylinder and the sleeve of the present invention, and the damper structure are generally designed and constructed in the form of a steel plate plus an inner reinforcing structure, which is a horizontal strong frame (circular or regular polygon) and a vertical girders and
  • the inner diameter is the inner diameter of the horizontally strong frame with the largest dimension
  • the thickness of the section shown in the drawing is the thickness of the steel plate plus the thickness of the reinforcing structure; some or all of the above steel structures may be made of non-metal such as FRP.
  • the material replaces the steel; further, some of the steel or glass-steel cylinders with holes can be replaced by a steel or glass-steel cylinder skeleton to connect the fixed mesh fabric.
  • the upright pontoon 1 comprises at least one upright cylinder having the same vertical central axis and at least two horizontal plates connected to it in a watertight manner, the horizontal plate comprising a top plate and a bottom plate;
  • the cylinder wall is a cylinder, or the lower part is a cylinder (extended from the water surface 5), and the upper part is a cone having an upper opening area larger than the lower opening area.
  • the interior of the upright pontoon 1 can symmetrically provide a plurality of radially vertical partition structures that are watertightly connected to the cylinder and the horizontal plate as needed to form a plurality of compartments.
  • the upright pontoon 1 floats on the water surface 5, the top of which is higher than the water surface, and the moon pool 11 is arranged at the center or not, and the moon pool 11 is an upright cylinder, or a cone having a large upper mouth and a small mouth, or The upper part is a cone having a lower opening area smaller than the lower opening area.
  • the upright pontoon 1 comprises an outer layer cylinder and at least one inner vertical cylinder having the same vertical central axis as the outer cylinder, and is watertightly connected thereto.
  • At least two horizontal plates the horizontal plate includes the top plate and the bottom plate; the outer tube body is divided into four segments from bottom to top, respectively being an underwater cylinder, and the water surface cone having an upper opening area smaller than a lower opening area
  • the water cylinder and the upper part are cones having an upper opening area larger than the lower opening area; during the production operation of the straight type floating platform with the extending cylinder, the water surface 5 is always located at the surface cone at the high water level or the low water level In order to resist ice in winter.
  • the upright pontoon 1 comprises at least three cylinders which are closely connected to each other or have the same pitch to each other, and a top plate and a bottom plate which connect the tops and bottoms of the plurality of cylinders to form a
  • the overall structure is a multi-cylinder pontoon.
  • a cylinder is not provided at the center, and the space thus formed is a moonpool 11 that penetrates up and down.
  • the top and bottom plates are important structural members that connect a plurality of cylinders to make them a solid unit.
  • the bottom plate is circular or circular, and the diameter of the circle or the outer diameter of the ring is equal to or larger than the diameter of the circumscribed circle of the multi-cylindrical pontoon.
  • the inner diameter of the ring is equal to the diameter of the inscribed circle of the multi-cylindrical pontoon.
  • the ring hole is the bottom outlet of the moonpool 11 of the upright pontoon 1.
  • Another purpose of the circular or circular ring structure is to facilitate the watertight connection of the lower fixed cylinder 21 or the telescopic sliding cylinder 22 to which the lower portion is attached.
  • the structure of the roof is only It is convenient to connect/install the upper facility 4.
  • the diameter of the circle or the outer diameter of the ring is equal to or slightly larger than the diameter of the circumscribed circle of the multi-cylindrical pontoon.
  • the moment of inertia of the waterline area of the damper structure 214 or 225 should be capable of providing floating, wet dragging in the dock alone, or at least together with the overall air float 215, or the bottom air pontoon 215, or the upright pontoon 1. And the stability required in the early stages of the offshore installation process.
  • the first type is a fixed extension cylinder floating platform 611 with an integral air flotation adjustment cabin (see Fig. 1), and the second type is a bottom portion.
  • a fixed extension cylinder floating platform 612 of the air flotation chamber see Figures 8 and 9).
  • the bottoms of the two air flotation adjustment cabins are all open, and the tops of the two air flotation adjustment cabins are An inflation/exhaust pipe 211 inserted into the top of the upright buoy 1 or penetrating the top is provided, and a valve is provided at an upper portion thereof.
  • the bottom of the two air flotation adjustment cabins is provided with or without a bottom horizontal damping plate 212, and one or more damping holes are formed therein; the bottom horizontal damping plate 212 can increase the quality of the attached water of the air flotation adjustment cabin, Increase the heave damping and improve the performance.
  • an openable bilge cover can be provided at the opening of the damper hole of the horizontal damper plate 212 at the bottom of the two air flotation adjustment cabins; when the bilge cover is closed, the air hopper can be converted into a closed pontoon , Eli platform long distance wet tow.
  • the bottom of the two air flotation adjustment cabins may or may not be provided with a bottom fixed ballast tank 213, and the bottom fixed ballast tank 213 shall not close the openings of the two air flotation adjustment cabins; the bottom fixed ballast tank 213 may reduce the center of gravity of the platform Height, if necessary, can make the platform's center of gravity lower than the center of the circle.
  • the bottoms of the outer walls of the two kinds of air flotation adjusting cabins are arranged around the fixed cylinder reducing structure 214, which can greatly increase the quality of the attached water of the platform and increase the damping, and is the most important for improving the sports performance of the vertical cylindrical floating platform. Measures for mature technology.
  • some types of fixed cylinder reduction structures 214 can provide additional buoyancy and stability to the platform during platform construction and wet towing.
  • the fixed cylinder 21 of the fixed extension cylinder floating platform 611 of the present invention having an integral air flotation adjustment cabin a plurality of radially integral vertical watertight partition structures 2151 symmetrically disposed inside the one-layer cylinder, which are watertightly connected to the bottom plate of the vertical buoy 1 and one or more layers of the cylinder of the fixed cylinder, thereby forming at least one top A closed, bottom open integral air flotation chamber 215.
  • the innermost cylinder of the fixed cylinder 21 becomes an integral part of the moonpool 11 (as shown in Fig.
  • the fixed extension cylinder is provided with at least two layers. Fix the cylinder.
  • the horizontal section of the fixed cylinder 21 of the floating platform with the fixed extension cylinder of the integral air flotation adjustment cabin In the figure, the fixed cylinder 21 is a two-layer fixed cylinder (ie, an outermost fixed cylinder and a moonpool fixed cylinder), and four radial integral vertical watertight partition structures 2151 are disposed therebetween to form four bottoms.
  • the platform of some embodiments of the present invention does not require a moon pool, and the fixed cylinder 21 requires only one outermost fixed cylinder to meet the minimum requirements.
  • a second type of embodiment of the present invention with a fixed extension cylinder floating platform 610 - a fixed extension cylinder floating platform 612 with a bottom air flotation adjustment chamber comprises two embodiments: Floating platform 6121 for fixed augmentation of the bottom air flotation chamber for aquaculture - floating aquaculture cage for fixed extension cylinders for non-aquaculture with bottom air flotation chamber A floating platform 6122 of a stationary extension cylinder.
  • a horizontal partition 2161 or opening that is watertightly connected to the cylinder is disposed at an inner lower portion of the at least one cylinder of the fixed cylinder 21 of the fixed extension cylinder floating platform 612 of the bottom air flotation adjustment cabin.
  • the downward conical spacer 2162 divides the fixed cylinder into two parts; the upper part is a hole cylinder 2163, and the cylindrical walls are provided with distributed damping holes and/or lower rectangular holes 2164, so that the inner and outer seawater are connected.
  • the lower portion is a bottom air flotation adjustment chamber 216 having a structure consisting of at least one layer of a bottom bottom air flotation adjustment cylinder 2165 and a horizontal isolation plate 2161 or an open downward conical spacer 2162.
  • the innermost cylinder of the bottom air flotation chamber 216 is a bottom moon pool 2166 that runs up and down.
  • the bottom of the bottom air flotation adjustment cabin 216 is symmetrically disposed or not provided with a plurality of radial vertical bottom partition structures, watertightly connecting the cylinders and watertightly connecting the horizontal partitioning plate 2161 or the opening downwardly conical isolating plate 2162, This forms at least one sub-air-floating adjustment chamber with a closed top and a bottom opening, all of which together form the bottom air-floating adjustment chamber 216.
  • the present invention is applied to a floating platform 6121 of a stationary extension cylinder with a bottom air flotation adjustment cabin for aquaculture.
  • - Floating aquaculture cage with fixed extension cylinder see Figure 8
  • its vertical float 1 consists of only two layers of the same central vertical axis cylinder - the outer cylinder and the large diameter moon cylinder .
  • a seawater ballast tank/buoyancy tank Between the two layers of cylinders is a seawater ballast tank/buoyancy tank, and an upper facility 4 is located in the buoyancy tank and/or at the top of the upright pontoon 1.
  • the upper facility 4 includes specialized facilities and various utilities required for aquaculture, such as electromechanical equipment and systems such as pumps and air compressors.
  • the moonpool cylinder forms a moonpool 11, which is relatively large in diameter, typically up to tens of meters.
  • a retractable grille cover 111 is mounted at the top opening of the moonpool 11, and the grille cover 111 is locked on the top opening of the moonpool during the non-fishing operation, and the grille cover 111 is used during the fishing operation. It can be opened and fixed in place to facilitate the deployment of fishing operations.
  • a plurality of evenly spaced horizontal communication pipes (not shown in FIG. 8) are provided or not disposed in the underwater portion of the upright pontoon 1 such that the moonpool 11 is horizontally communicated with the outside seawater.
  • the hole cylinder 2163 is only a layer of a cylinder, and a plurality of symmetrically distributed lower rectangular holes 2164 are arranged at the bottom thereof, and the bottom edge of the hole rectangle is connected to the conical partition of the opening downward.
  • the plate 2162; the hole cylinder 2163 is located on the wall of the upper portion of the lower rectangular hole 2164 and is provided with a plurality of uniformly distributed orifices.
  • the bottom air flotation adjustment chamber 216 is composed of a bottom air flotation adjustment cylinder 2165 composed of at least two layers of cylinders including an outermost cylinder and a bottom moon cylinder, and a conical isolation plate 2162 at the top thereof.
  • the bottom moon pool 2166 is much smaller in diameter than the moon pool 11.
  • a bottom horizontal damper plate 212 is disposed at a lowermost end of the bottom air flotation adjustment cabin 216.
  • the conical spacer 2162 and the bottom horizontal damper 212 are watertightly connected to a plurality of bottom and bottom penetrating tubes, which should ensure the watertightness of the top of each sub-air flotation chamber;
  • the damper holes, each of the lower rectangular holes 2164, the top opening of the bottom moon pool 2166, and the top opening of each of the bottom tubes are each closed by a grid plate 2167 for the purpose of preventing fish from escaping.
  • the moon pool 11, the hole cylinder 2163 and the conical partition 2162 form aquaculture pond.
  • a bottom grill plate 2168 that can be raised and lowered can be disposed at a position near the bottom moon pool 2166 as needed.
  • the horizontal joint pipe, the lower rectangular hole 2164 of the hole cylinder 2163, the damper hole and the bottom pipe which penetrates the upper and lower sides serve to connect the culture pond with the external seawater, so as to increase the oxygen content of the culture pond and remove the fish manure and the fish bait. Slag and harmful substances.
  • the conical spacer 2162 receives fish manure, bait slag and harmful substances at the bottom of the culture pond; the conical surface facilitates the sliding of the fish manure, the bait slag and the harmful substances out of the pool.
  • the fish manure, bait slag and harmful substances on the conical surface can be automatically and periodically removed by means of a plurality of pressure seawater nozzles mounted to the cavity 2163, and/or the conical surface can be manually removed by pressure seawater injection through the lower rectangular hole 2164. Fish manure, bait slag and harmful substances.
  • the liftable bottom grille plate 2168 is lifted and positioned by at least two sets of winches/wires.
  • the liftable bottom grille plate 2168 When the liftable bottom grille plate 2168 is located at the bottom (the top of the cone spacer 2162), it is in a normal culture state, and the grille installed in the lower rectangular hole 2164 can be removed; when the liftable bottom grille plate 2168 is located in the hole
  • the top of the cylinder 2163 and the bottom of the vertical pontoon are in a fishing state, which is convenient for fishing.
  • the floating platform 6121 of the fixed extension cylinder with a bottom air flotation adjustment cabin for aquaculture - the fixed extension cylinder floating aquaculture cage is floated in the vertical buoy 1 during normal production operations On the water surface; if necessary, especially in the case of severe sea conditions, the seawater ballast tank in the vertical buoy 1 can be filled with ballast water to sink it but there is still a certain freeboard (do not make the vertical float 1 is not below the water surface), the mooring winch of the mooring positioning system 31 is activated to wrap the mooring chain and/or mooring line of all mooring legs until the vertical buoy 1 is completely submerged and floats in the depth set in the water. And lock the mooring leg through the chain stopper of the fairlead.
  • the mooring leg When the upright pontoon 1 needs to float again on the water surface, the mooring leg is released, the ballast water is filled, and the upright pontoon 1 floats until it reaches a set freeboard height, and then the mooring leg is again Lock and complete the required job.
  • the stationary extension cylinder floating platform 6122 of the non-aquaculture belt bottom air flotation adjustment tank of the present invention is used for Offshore oil and gas field Development and other non-aquaculture uses.
  • the inner lower portion of the fixed cylinder 21 of the fixed extension cylinder floating platform 612 of the non-aquaculture belt bottom air-floating adjustment cabin is provided with a horizontal insulation panel 2161 connected to the watertight connection to form a bottom air-floating adjustment cabin 216.
  • the entire cylindrical wall of the cavity barrel (2163) of the fixed extension cylinder floating platform 612 of the non-aquaculture belt bottom air flotation adjustment chamber is provided with a uniform damping hole.
  • the fixed extension cylinder floating platform 612 of the non-aquaculture belt bottom air flotation adjustment cabin has increased damping and better hydrodynamic performance.
  • the valve on the upper part of the inflation/exhaust pipe 211 is closed, and the entire air flotation adjustment cabin 215 or the bottom air flotation adjustment cabin 216 is completely Or part of the space is filled with air, forming a floating cabin in the water, providing buoyancy for a floating platform with a fixed extension cylinder.
  • the valve on the upper part of the inflation/exhaust pipe 211 opens the exhaust gas, and the floating platform with the fixed extension cylinder gradually sinks.
  • the whole air flotation adjustment cabin 215 or the bottom air flotation adjustment cabin 216 is filled with seawater until the upright buoy 1 provides buoyancy for the floating platform 610 with a fixed extension cylinder and completes offshore installation.
  • the floating platform 610 with the fixed extension cylinder is filled with seawater during the in-position period (during the offshore production operation and during the marine self-storage), and the vertical air float adjustment chamber 216 is filled with seawater, and the vertical buoy 1 is A floating platform 610 with a stationary extension cylinder provides buoyancy.
  • the air/air conditioning cabin 214 can be inflated and exhausted through the inflation/exhaust pipe 211.
  • the seawater inside is realized.
  • the floating platform 620 (in the in-position state, that is, the production operation state or the storm self-storing state) with the retractable sliding extension cylinder of the present invention is shown, and the retractable sliding cylinder 22 is At least one sleeve is fitted over the outer wall of the upright pontoon 1 and the sleeve has the same vertical axis through the center of the vertical pontoon 1 (center).
  • the floating platform 620 shown in FIG. 3 is a two-layer sleeve, that is, an outermost slip sleeve 221 and a slip sleeve 222 adjacent to the upright buoy 1.
  • the vertical pontoon 1 of the floating platform 620 shown in FIG. 3 is the vertical pontoon 1 of the floating platform 610 shown in FIG. 1 and the fixed cylinder 21 connected thereto (the outer cylinder of the two)
  • the walls are of equal diameter and are replaced by a lowering structure 217), and the telescopic sliding cylinder 22 is fitted over the outer wall of the fixed cylinder 21.
  • a plurality of sleeve damping holes are provided or not on the wall of each sleeve; the distributed sleeve damping holes help to reduce the influence of the turbine on the vortex leakage vibration (VIM) caused by current current current.
  • the outer circumference of the bottom heel portion of the outer wall of the vertical buoy 1 is fixedly connected to a horizontal vertical buoy bottom outer flange ring 12; or, as a special Should According to the scheme, if the lowermost floating cylinder 1 has the outermost fixed cylinder 21 and a special vertical pontoon is formed, the outer pontoon bottom outer flange ring 12 is connected to the bottom of the outer wall of the outermost fixed cylinder 21.
  • each sleeve of the retractable sliding cylinder 22 is fixedly connected with a horizontal sleeve bottom end flange ring 223 and a horizontal sleeve top inner wall flange ring 224; each layer sleeve
  • the inner diameter of the cylinder is equal to the outer diameter of the outer flange ring 12 of the upright pontoon of the upper adjacent vertical pontoon 1 or the outer diameter of the sleeve bottom end flange 223 of the upper adjacent sleeve thereof, and the sleeve can be ensured Sliding down the vertical flange bottom outer flange 12 or the sleeve bottom end flange ring 223;
  • the inner diameter of the sleeve top inner wall flange ring 224 of each sleeve is equal to or slightly larger than the upper adjacent vertical float 1 or sleeve
  • FIG. 4 is a simplified schematic view of the in-situ state of the floating platform 620 (not shown in the figure) with a retractable sliding extension cylinder, to show the vertical float 1 and the outermost slip sleeve in a concise manner. The position and connection between the 221 and the slip sleeve 222 in close proximity to the upright pontoon 1.
  • Figure 5 is a simplified schematic view of the construction or wet drag state of a floating platform dock with a retractable sliding extension cylinder.
  • the inner top surface of the bottom end flange ring 223 of each sleeve is constructed during the construction, launching or towing of the floating platform 620 with the retractable sliding extension cylinder (the upper installation 4 is not shown)
  • the bottom flange flange 12 of the upright pontoon of the upper adjacent vertical pontoon 1 or the bottom surface of the sleeve bottom end flange 223 of the upper adjacent sleeve is in contact with each other, so that the bottom of all the sleeves is slightly lower than the vertical pontoon 1 bottom of.
  • Figure 5 is a simplified illustration of a floating platform 620 with a retractable sliding extension cylinder during construction, launching or towing during the docking, vertical pontoon 1, outermost sliding sleeve 221 and upright pontoon 1 The position and connection relationship between the adjacent sliding sleeves 222.
  • each layer of the sleeve is lowered layer by layer until the bottom surface of the sleeve top inner wall flange ring 224 is adjacent to the upper portion of the vertical buoy 1 of the upright buoy 1
  • the top surface of the outer flange ring 12, or the outer top surface of the sleeve bottom end flange ring 223 of the upper adjacent sleeve, is in contact as shown in FIG.
  • the floating platform 620 of the present invention with a retractable sliding extension cylinder can be configured with various forms of sleeve lifting systems to effect lifting of the sleeve.
  • a lifting system shown in FIG. 3 is a winch system, which consists of three winches 228 that are mounted on the upper installation 4 and are evenly distributed at 120 degrees, and the outermost layer is slid by the lifting cable 2281. Move the top of the sleeve 221. Lifting the lifting cable 2281 can realize the stepwise sliding lifting of the sleeve; lowering the lifting cable 2281, the sleeve can be descended and lowered by gravity.
  • the floating platform 620 of the present invention with a retractable sliding extension cylinder can also be provided with various forms of locking mechanisms to ensure the locking of the telescopic sliding cylinder in the position of the floating platform 620.
  • a retractable sliding cylinder locking mechanism 229 shown in FIG. 6 is a latch type locking mechanism, and the lower sliding sleeve and the upper vertical buoy 1 or (upper) sleeve adjacent to the upper portion thereof The cylinder is fixedly locked.
  • the locking mechanism 229 is constructed as follows: 1.
  • the locking boss 2291 is mounted on the bottom or lower portion of the upright pontoon of the upright pontoon 1 with the top surface of the outer flange ring 12 at the bottom of the outermost fixing cylinder 211, or the upper sleeve
  • the outer top surface of the bottom flange ring 223 is integrated as a whole, and the radius of the outer circular arc surface is equal to the outer radius of the outer flange ring 12 of the vertical buoy, or the outer ring flange 223 of the upper sleeve, the inner arc
  • the radius of the face is equal to the inner radius of the outer cylinder of the vertical buoy 1, or the inner sleeve; the vertical planes on the left and right sides are all part of the radial vertical plane passing through the central axis of the vertical buoy 1; the top plane is horizontal
  • the plane shall be sized to meet the dimensional requirements and strength requirements for setting at least one (usually no more than three) horizontal radial locking pin bores.
  • the locking cover 2292 is mounted on the top of the sleeve top inner wall flange ring 224 of each sleeve, and the bottom planes of the two are the same plane, and become a whole, and the bottom thereof is matched with the locking boss 2291.
  • the groove surrounds the locking boss 2291 from the upper surface, the outer circular surface and the two sides: the outer circular arc surface of the locking boss 2291, the radial vertical surface of the left and right sides, and the locking cover 2292 concave
  • the groove surface is tightly fitted, and the top horizontal plane of the locking boss 2291 and the groove surface of the locking cover 2292 have a gap to realize the lower sliding sleeve and the upper vertical buoy 1 or (upper) sleeve adjacent thereto Limiting and positioning of the cylinder;
  • the radius of the outer circular arc surface of the locking cover 2292 is larger than the radius of the outer wall of the lower sleeve to ensure that the outer circular arc surface of the locking cover 2292 has sufficient radial thickness so that at least the upper surface thereof is disposed thereon
  • the strength requirement is still satisfied after one (usually no more than three) horizontal radial locking pin holes;
  • the radius of the inner circular arc surface of the locking cover 2292 is slightly larger than the pontoon 1 or the upper sle
  • the lower sleeve top inner wall flange ring 224 is correspondingly opened with a notch, the notch and the locking convex
  • the table 2291 is matched to become a groove component of the locking cover 2292, and it must be ensured that the locking cover 2292 and the lower sleeve top inner wall flange ring 224 become a solid overall structure.
  • the locking pin 2293 is horizontally inserted into the locking pin seat 2292 and the locking pin hole of the locking boss 2291. 4.
  • the pin plate cover 2294 is sealed on the outer opening of the locking pin shaft hole of the locking cover 2292. 5.
  • a wedge wedged between the lower sleeve top inner wall flange ring 224 and the upper vertical pontoon 1 or the outer wall of the upper sleeve thereof, for the purpose of eliminating the lower sleeve and the upper vertical pontoon adjacent thereto 1 or radial looseness that may occur between the upper sleeves.
  • a wedge groove is formed on the inner ring side of the lower sleeve top inner wall flange ring 224 (the wedge and the wedge groove are not shown in Fig. 6).
  • the floating platform 620 of the present invention is a floating platform with a retractable sliding extension cylinder for aquaculture - retractable Sliding floating aquaculture cages.
  • the structure of the vertical buoy 1 of the floating aquaculture cage 6121 of the above fixed extension cylinder is substantially the same, and the bottom heel outer circumference of the outer wall of the vertical buoy 1 of the retractable sliding floating aquaculture cage of the present invention
  • the outer flange ring 12 is fixedly attached to the bottom of a horizontal upright pontoon.
  • the upright pontoon 1 of the retractable sliding type floating aquaculture cage comprises only two layers of the same central vertical axis cylinder - the outer cylinder and the inner cylinder, that is, the large diameter moon cylinder a moon pool 11 formed; between the two layers of cylinders is a seawater ballast tank/buoyancy tank, the upper facility 4 is located in the buoyancy tank and/or the top of the vertical buoy 1; A retractable grille cover 111, or one or two layers of mesh fabric, is mounted at the top opening.
  • a plurality of evenly distributed horizontal communication pipes are disposed or not disposed in the underwater portion of the upright pontoon 1 of the retractable glide type floating aquaculture cage, so that the moonpool 11 communicates with the external seawater in a horizontal direction.
  • Each layer of the sliding sleeve of the retractable sliding cylinder 22 of the retractable sliding type floating aquaculture cage is connected by a cylinder skeleton and a layer fixedly connected therein, or an internal and external connection thereof.
  • the two-layer mesh fabric is composed of a cylinder wall layer; the horizontal sleeve bottom end flange ring 223 of each layer sleeve and the horizontal sleeve top inner wall flange ring 224 are connected with the cylinder skeleton of the layer thereof to form a the whole frame.
  • a bottom of the sliding cylinder is fixed to the ballast tank 226 for the purpose of normal production operation.
  • each layer of the cylinder in a stretched state in the water; the bottom opening of the outermost sliding sleeve 221 is sealed with one or two layers of mesh fabric, or a horizontal damping plate 227 is disposed on the bottom of the sliding cylinder. A plurality of damping holes at the bottom of the sliding cylinder are opened.
  • the vertical pontoon 1 of the retractable sliding type floating aquaculture cage 1 and the sleeve skeleton of each of the retractable sliding cylinders 22 are preferably made of glass reinforced plastic or other non-metallic materials.
  • a fairlead 311 is provided for mounting the telescopic sliding cage Mooring positioning system 31 of the platform.
  • the upright type buoy 1 of the retractable sliding type floating aquaculture cage floats on the water surface during normal production operation, and when it encounters unfavorable environmental conditions, it snorkels to a depth set by underwater; during fishing operations, Layer-by-layer lifting scalability
  • the slip sleeve of the sliding cylinder 22 is raised to the highest position and then fixed to facilitate the deployment of the fishing operation.
  • the retractable sliding type floating aquaculture cage of the present invention has the advantages of simple structure and low cost, and the disadvantage is that the ability to resist the external environment is low.
  • the bottom of the lowermost cylindrical structure of the straight cylindrical floating platform 600 of the present invention is surrounded by a lowering structure (see FIG. 1 and Figure 213 and 225) in the lower right corner of Figure 3.
  • the floating platform 600 with the extended cylinders is filled with seawater and communicated with the external seawater during the offshore production operation or during self-storage at sea, and the floating platform 1 is provided with buoyancy and stability by the upright pontoon 1. Therefore, the damper structure can increase the attached water quality and motion damping, improve the motion response, and increase the displacement of the platform.
  • Another important function of the damper structure 214 or 225 is to provide temporary buoyancy and stability to the floating platform 600 with the extended barrel.
  • Figures 7-1 to 7-13 show a total of 13 prior art reduction structures for cylindrical floating platforms, most of which are inventors in the "straight floating platform" (PCT/CN2015/ 083431) disclosed.
  • 7-1 can be regarded as a partial enlargement of the fixed cylinder reduction structure 217 and the sliding cylinder reduction structure 225 shown in the lower right corner of FIG. 1 or FIG. 3, and the remaining 12 kinds of the reduction structure and the platform upright buoy or the most
  • the positional relationship of the lower sleeve is the same as that of Fig. 1 or Fig. 3.
  • the straight-type floating platform 600 of the present invention has an extension cylinder, the outer side of the bottom of the fixed cylinder 21 of the floating platform 610 with the fixed extension cylinder, and a fixed cylinder
  • the outer side of the bottom slip portion of the outer slip sleeve 221 is provided with a sliding cylinder reduction structure 225. Further, the opening of the opening structure 214/225 of the opening upward or downward shown in FIG. 7-4 to FIG.
  • FIG. 7-13 can be horizontally mounted to connect an upper damping cover or a lower damping cover with at least one damping hole (in the figure) Not shown) to further improve the effectiveness of the deceleration structure. It should be noted that the annular gap between the ring-shaped damper structure of FIG. 7-8 and 7-13 and the outer wall of the platform vertical pontoon or the outermost sleeve is provided with a plurality of radial vertical bracket connections.
  • each of the above 13 types of mitigating structures is used as various embodiments of the present invention.
  • other forms of damper structures may be employed to suit different needs. It is well known that the water depth inside an existing dock is usually 7 meters or 10 meters, and the water depth at the front of the shipyard terminal is usually 10 to 14 meters. At the same time, the water depth of the towed channel is also limited.
  • the platform of the present invention can be integrally constructed at the shipyard and wetted overall, it is generally necessary to ensure that the upright pontoon 1 can provide sufficient buoyancy to balance the weight of the entire platform under the water depth conditions defined above.
  • some embodiments of the present invention utilize any of the damper structures shown in Figures 7-1 to 7-6 and 7-11 to 7-13 (wherein the box-shaped damper structure is a temporary floating cabin, the bottom opening, the upper portion And closed reduction on both sides
  • the moving structure is a temporary air-floating module), which temporarily provides additional buoyancy to ensure that the entire platform can also float in the dock or at the shipyard dock.
  • the reduction structure 214 or 225 adopts a multi-chamber reduction structure, which
  • the radial vertical section is a closed box shape
  • the bottom structure is an annular horizontal plate, as shown in Figures 7-1 to 7-3, or as shown in Figure 7-11 to Figure 7-13, and a bottom annular horizontal plate is added.
  • the movable structure 214 or 225 is internally provided with a plurality of radial vertical partitions, and is watertightly connected to the top structure, the inner and outer side vertical structures and the bottom horizontal annular plate to form a plurality of symmetrically uniform buckling compartments.
  • each of the damper chambers that provide buoyancy and stability is a damper tank with a reduction at the top
  • the air-inflating/exhaust pipe is provided with a valve on the upper part thereof; a damping hole is provided through the sea centering on the center of the horizontal plate of each bottom of the floating bunker, and a closable hole is arranged or not on the damper hole of the sea. Lower the bottom hatch cover to make it a reduced air float or reduce the closed float.
  • the full reduction of the damper structure 214 or 225 The tank or symmetrically selects at least two damper cabins, and at least one damper hole through the sea is provided on the top plate and the bottom plate of the damper cabin, so that it becomes a damper cabin directly inside the sea.
  • the integral air flotation adjustment cabin 215 and the bottom air flotation adjustment cabin 216 included in the floating platform 610 of the stationary extension cylinder that relies on the full or partial reduction of the suspension structure 214 to provide buoyancy and stability are required.
  • Each has a bottom horizontal damper plate 212, which is not provided with any vertical radial or annular watertight separation; the fixed cylinder 21 of the floating platform 610 without the fixed extension cylinder of the moonpool 11 adopts a single layer structure,
  • the bottom horizontal damping plate 212 is circular, and a damping hole is arranged in the center; the fixed cylinder 21 of the floating platform 610 with the fixed extension cylinder of the moon pool 11 is adopted.
  • the double layer structure has an outer layer extending from the outer cylinder wall of the vertical buoy 1 and an inner layer extending from the wall of the moon pool 11 of the vertical buoy 1 .
  • the bottom horizontal damping plate 212 is annular, and two dampings are symmetrically disposed thereon.
  • the hole, or the upper layer of the double-layer fixed cylinder 21 of the fixed extension cylinder floating platform 612 with the bottom air-slot adjustment cabin, that is, the hole cylinder 2163 only retains the lower layer of the inner layer , that is, the bottom moon pool 2166 cylinder;
  • the opening of one or both of the above-mentioned damper holes is provided with or without an openable bilge cover, thereby forming an air floating cabin or a closed floating cabin.
  • the valve above the inflation/exhaust pipe is deactivated during construction, launching, or wet towing in the dock.
  • the dampering hole connects the lower part of the floating buoy to the external seawater, and the upper space is filled with air to form a reduced air floating compartment;
  • the bottom hatch cover is such that the down-floating pod is a reduced-floating pod; the docking pod provides the required buoyancy and stability for the floating platform 600 with the extended barrel.
  • the safety and operability of a closed floating cabin will be superior to that of an air floating cabin during wet towing.
  • the damper is damped when it is towed to a destination at sea, begins offshore installation, and sinks.
  • the hole communicates with the external seawater, and then opens the valve exhaust of the upper part of the deflated inflation/exhaust pipe, the seawater is filled from the bottom of the damper floating tank, or the ballast is injected into the damped closed floating tank, so that the floating platform 600 is gradually lowered.
  • Sink or first water injection ballast, then open the bottom hatch cover, exhaust water into the water, so that the floating platform 600 gradually sinks, and finally reduce the floating tank to finally fill the seawater until the vertical float 1 is the platform 600 provides buoyancy and completes offshore installation.
  • the air can be inflated by reducing the inflation/exhaust pipe, discharging the seawater in the air floating cabin, or pumping out the movement. Seawater in a closed floating tank, or a combination of two methods.
  • each of the air-conditioning adjustment cabins of the fixed cylinder 21 of the floating platform 610 with the fixed extension cylinder The bottom bottom opening is provided with a fixed cylinder bottom horizontal damper plate 212, and the fixed cylinder bottom horizontal damper plate 212 defines one or more fixed cylinder bottom damping holes; and the floating platform 620 with the retractable sliding extension cylinder
  • the inner bottom of the outermost sliding sleeve 221 of the telescopic sliding cylinder 22 is provided with a horizontal damping plate 227 at the bottom of the sliding cylinder, and one or more sliding cylinder bottoms are opened on the horizontal damping plate 227 at the bottom of the sliding cylinder.
  • the orifice, the bottom of the horizontal damper plate 227 of the floating cylinder bottom of the floating platform 620 with the retractable sliding extension cylinder with the moonpool is provided with a moonpool hole.
  • the straight-type floating platform 600 with the extended cylinder of the present invention provides convenience for lowering the center of gravity of the platform by means of a fixed ballast due to the deep draft.
  • the inner bottom and/or the outer bottom of the fixed cylinder 21 of the floating platform 610 with the fixed extension cylinder of the present invention is provided with a fixed cylinder bottom fixed ballast tank 213, and the fixed cylinder bottom is fixed.
  • the ballast tank 213 must not close the bottom opening of the upper air flotation chamber 215 or the bottom portion 216 air flotation chamber.
  • the inner bottom and/or outer bottom bottom heel of the outermost sliding sleeve 221 of the retractable sliding cylinder 22 of the floating platform 620 of the present invention having a telescopic sliding extension cylinder is disposed.
  • the ballast tank 226 is fixed at the bottom of the sliding cylinder.
  • the straight-type floating platform 600 with the extension cylinder of the present invention is limited by the positioning system 3 to a fixed small extent of the water surface.
  • the positioning system 3 includes two systems, a mooring positioning system 31 and a dynamic positioning system, and the floating platform 600 with an extended cylinder employs one or both of the two systems.
  • the fairlead 311 of the mooring positioning system 31 of the floating platform 610 with the fixed extension cylinder is mounted and fixed on the outer cylinder wall of the vertical buoy 1 at the bottom or bottom portion of the bottom or bottom, or is fixed to the fixed cylinder 21 On the bottom of the outer cylinder wall.
  • the outer cylinder wall of the portion is provided with a fairlead 311 for mounting the mooring positioning system 31 of the floating platform; further, in another embodiment of the present invention, the fairlead 311 is disposed on the sliding sleeve adjacent to the vertical buoy 1
  • the outer side of the arc of the locking cover 2292 of the barrel 222 has the advantage of facilitating the transfer of mooring loads to the pontoon 1.
  • the floating and wet dragging process in the dock can be provided.
  • a floating platform 610 with a fixed extension cylinder for the required buoyancy and stability includes an integral air flotation adjustment cabin 215 and a bottom air flotation adjustment cabin 216
  • the bottom horizontal damper plate 212 no vertical radial or annular watertight separation is provided in the interior, in other words, the overall air flotation adjustment cabin 215 and the bottom air flotation adjustment cabin 216 are single air-floating adjustment cabins, and do not contain multiple sub-gas Floating adjustment cabin.
  • a single-layer structure may be adopted, which is an extension of the outer cylinder wall of the vertical buoy 1 , and the bottom horizontal damping plate 212 is circular.
  • a damping hole is provided in the center.
  • the outer layer is an extension of the outer cylinder wall of the vertical buoy 1 and the inner layer is the vertical buoy 1
  • the extension of the wall of the moon pool 11 is such that the bottom horizontal damper plate 212 is annular, and two damped holes are symmetrically disposed thereon.
  • the fixed extension of the bottom air flotation adjustment chamber with the moon pool is cancelled.
  • the upper inner layer of the double-layer fixed cylinder 21 of the cylindrical floating platform 612 that is, the hole cylinder 2163, retains only the lower inner layer, that is, the bottom moon pool 2166 cylinder.
  • the opening of one or both of the above-mentioned damper holes is provided with or without a bilge cover which can be opened and closed, thereby forming an air floating cabin or a closed floating cabin, and its function and operation mode are the same as those of the above-mentioned deflated air flotation adjustment cabin, Let me repeat.
  • the reduction of the floating tank solves the stability problem during the wet towing process, it can enter the water through the bottom, reduce the gas volume of the floating cabin, sink the platform and keep the displacement unchanged, but when sinking to the draft depth is equal to minus
  • the waterline surface area of the platform will suddenly change, which will inevitably bring serious stability problems.
  • the waterline surface area of the platform is only the waterline surface area of the overall air flotation adjustment cabin 215; for the fixed airfoil adjustment cabin with bottom air conditioning
  • the cylinder floating platform 612 is extended.
  • the present invention specifically designs a "swim-style" pontoon set that can be moved up and down to provide the stability required for offshore installation and relocation processes for straight-tube platforms.
  • the swimming lap type pontoon set includes a plurality of construction pontoons having the same structure, and the adjacent two construction pontoons are detachably connected by at least one chain/cable, and each construction pontoon is pre-installed (on the land construction site) Or (at sea) Field installation method, evenly distributed, close to the outer wall of the underwater straight cylinder surrounding the vertical floating platform, forming a "swimming circle"; static contact force between each construction buoy and the outer wall of the straight cylinder Very small, even zero.
  • the construction pontoon and the chain/cable used for connection shall avoid the chain guide or other protruding structure on the wall of the cylinder to ensure that the straight floating platform is sunk or floated up during the process, and the swimming pontoon
  • the groups can slide relative to each other up and down without barriers.
  • the swimming lap type float floats on the water. Adjusting the size and number of construction buoys so that the waterline surface moment of inertia after forming the "swim ring" must ensure the stability requirements of the vertical floating platform during offshore installation and relocation.
  • the construction buoy of the swimming-type buoy group can be “disconnected” at the disassembly point. And in a "one" line shape, use a tug to drag a string of construction buoys arranged in a row away from the vertical floating platform.
  • the construction buoy is an upright cylindrical container, and a flat head is arranged at both ends, and a layer of weight concrete is laid on the bottom of the bottom to ensure a high floating height when the single construction buoy and the entire swimming float type float on the water surface. Focus on the center of gravity. Construction buoys are recommended to be made of steel or fiberglass.
  • the mechanism of the hydrodynamic performance of the straight type floating platform 600 with the extended cylinder of the present invention is as follows: 1).
  • the downwardly extending cylinder can ensure that the top of the reducing structure is located at a very small depth of wave action, and the water depth is usually 30 ⁇ . 40 meters. Therefore, while fully utilizing the damper structure to increase the quality of the attached water, increase the natural period of the heave motion and the motion damping, the load of the wave acting on the damper structure is greatly reduced, and the existing cylindrical floating platform reduction structure is overcome.
  • the shortcomings of the water depth are not deep. 2).
  • the downwardly extending cylinder and the damper structure greatly increase the quality of the attached water, including the water body trapped within the cylinder and within the damper structure (which can approach or even exceed the displacement of the platform pontoon), and
  • the extension of the cylinder and the body of water attached to the outside of the damper structure increases the natural period of pontoon movement. Due to the effect of the water attached inside the floating body structure, the tank formed by the extension cylinder and the damper structure may also be referred to as an extension cylinder attachment water tank and a damper structure attachment water tank, respectively. 3)
  • the downwardly extending cylinder increases the damping of the movement of the floating body.
  • the damping hole of the bottom plate of the extending cylinder and the damping hole of the reducing structure further increase the heave damping of the floating body.
  • the outer cylinder wall without the orifice such as the outer cylinder wall of the vertical buoy 1, the fixed type with the integral air flotation adjustment cabin
  • the outer cylinder wall of the fixed cylinder 21 of the extension cylinder floating platform 611, and the like may be provided with a spiral vortex side panel similar to the SPAR platform cylinder. Therefore, the straight-type floating platform with the extension cylinder of the present invention can meet or exceed the SPAR platform regardless of the size and displacement of the vertical pontoon and the shallow draft.
  • the straight-type floating platform with the extended cylinder of the invention can realize the one-time completion construction, installation and commissioning of the entire floating platform in the shipyard, and the whole dry tow or wet tow transportation to the sea destination, which greatly saves engineering investment and construction period.
  • the straight-type floating platform with the extension cylinder of the invention is a novel floating platform with multiple uses, the advantages of the SPAR platform and the current cylindrical FPSO, excellent performance, safety, reliability and economy.

Abstract

一种带延伸筒体的直筒式浮式平台,包括漂浮于水面上的直立式浮筒(1)、延伸筒体(2)、浮式平台定位系统(3)和上部设施(4)。直立式浮筒(1)顶部高出水面。延伸筒体(2)从直立式浮筒底部向下延伸,延伸筒体(2)为固定筒体(21)或可伸缩滑移筒体(22),从而形成带固定式延伸筒体的浮式平台,或带可伸缩滑移式延伸筒体的浮式平台。浮式平台定位系统为系泊定位系统和动力定位系统之中的一种或两种。该带延伸筒体的直筒式浮式平台具有多种用途、兼具SPAR平台和现行圆筒形FPSO优点、性能优良、安全可靠,可在船厂一次性完成建造、安装和调试,整体干拖或湿拖运输至海上目的地,可大大节约工程投资和工期。

Description

带延伸筒体的直筒式浮式平台和泳圈式浮筒组
相关申请
本发明申请要求2016年9月30日提出的申请号为201610867431.7、名称为“带延伸筒体的直筒式浮式平台”的优先权,其相关内容在此引入作为参考,并对其作了进一步改进和优化。
技术领域
本发明涉及海洋工程技术领域,特别涉及一种可用于海上石油天然气勘探和开发及生产、海上发电、物资储存和补给、深水渔业养殖、旅游观光等多种用途的直筒式浮式平台。
背景技术
现有技术的直筒式浮式平台可分为两类,一类为深吃水的SPAR平台,另一类为以圆筒形FPSO为代表的吃水不深、外径较大的圆筒形浮式平台。
SPAR平台的特点是:吃水很深,通常接近200米;水线面面积小,筒体水线面直径通常为30~40米;平台的浮心高于重心,据此保证平台所需的稳性,通常不能储液;其中,传统型SPAR是一种带固定延伸筒体的浮式平台,下部不带有减动结构。SPAR平台的优点是:由于垂荡刚度小、通常垂荡固有周期超过20秒,加之粘性阻尼的作用,垂荡运动响应小,通常百年一遇环境条件下最大可能的升沉幅值可控制在±3米之内,因此可以在平台上安装干式井口。其缺点是:由于垂荡刚度小、平台操作重量较小的变动将引发吃水较大的变化,难以适应储液的要求;平台筒体和上部设施必须分开建造、运输,然后在海上完成安装、连接和调试,需要专门的运输船和大型海上浮吊,且安装程序复杂、难度和风险比较高,工程造价高、建造和施工周期长;此外,在生产操作状态,尤其是恶劣海况条件下,SPAR平台横摇和侧倾比较大。
圆筒形平台的特点是:吃水不深,通常20~30米左右;水线面面积较大,筒体水线面直径通常超过50米,大直径平台可超过100米,排水量比较大;平台的浮心低于重心,依靠水线面的惯性矩保证平台所需的稳性;主要依靠环绕安装在圆筒外壁底跟部的减动结构(阻尼结构)来改善水动力性能、尤其是垂荡运动性能。其优点是:和船形 FPSO相似,整个浮式平台包括筒体和上部设施可以在船厂一次性完成建造、安装和调试,整体干拖或湿拖运输至海上目的地,大大节约工程投资和工期,适于储液;圆筒形FPSO的垂荡运动性能和船形FPSO相当,横摇等运动性能则优于船形FPSO,平台的总体如经特别优化设计,其垂荡运动性能有可能相当于SPAR平台。其缺点是:现行圆筒形浮式平台由于垂荡刚度大,通常垂荡固有周期16秒左右,恶劣海况条件下多数圆筒形浮式平台的垂荡运动性能不佳;为了加大垂荡固有周期,优化运动性能,通常需要加大减动结构的尺度、尤其是外径,增加平台吃水、通常需使减动结构的顶部位于30米水深以下。但是,如需建造储液量小(如小型圆筒形FPSO)、或无须储液,以及操作重量小(如2~3万吨)的圆筒形浮式平台,如井口平台、油气生产平台、发电平台、水产养殖平台等,其排水量不大,吃水不深,在恶劣海况条件下水动力性能将很差,采用上述改善运动性能的措施的难度十分大、完全不能达到所希望的效果。
鉴于以上不足,本申请的发明人经过长期的研究和实践,提出了一种作业吃水深度介于SPAR平台和现行圆筒形浮式平台之间的新型直筒式浮式平台,其圆筒外壁底跟部带有减动结构,使之同时具有上述两种直筒式浮式平台的主要优点,避免其缺点。
发明内容
为了设计一种兼具SPAR平台和现行圆筒形FPSO优点的新型浮式平台,本发明提出一种带延伸筒体的直筒式浮式平台和泳圈式浮筒组(COLUMN FLOATER WITH EXTENDED CYLINDER(S)AND RING BUOY-GROUP),直筒式浮式平台具有优良的水动力性能,整个浮式平台可以在船厂一次性完成建造、安装和调试,整体干拖或湿拖运输至海上目的地,大大节约工程投资和工期,可用于海上油气田的勘探、开发和生产,海上天然气或核能发电,海上物资储存和补给,深水渔业养殖,海上旅游观光等多种用途。
本发明的一种带延伸筒体的直筒式浮式平台,其包括如下四部分:
直立式浮筒,其漂浮于水面上,两端为顶板和底板,其顶部高出水面,直立式浮筒的中心设置或不设置上下贯通的月池;
延伸筒体,其包括至少一层连接于直立式浮筒的底板并向下延伸、且底部开口的延伸圆筒,所述延伸圆筒具有同一垂直中心轴线,其最外层所述延伸圆筒的外径等于或大于直立式浮筒最外层所述直立式圆筒的外径;其最外层所述延伸圆筒的外壁底部外侧环绕设置一个减动结构;延伸筒体为固定筒体或可伸缩滑移筒体,固定筒体形成带固定式延伸筒体的浮式平台,可伸缩滑移筒体形成带可伸缩滑移式延伸筒体的浮式平台;
浮式平台定位系统,其为系泊定位系统和动力定位系统之中的一种或两种的组合;
上部设施,其位于直立式浮筒的顶部和/或内部。
本发明还提出一种泳圈式浮筒组,用于直立式浮式平台,为其提供海上安装和搬迁过程中所需的稳性,所述泳圈式浮筒组包括多个结构相同的施工浮筒,相邻的两个所述施工浮筒之间通过至少一条链/缆能拆卸地连接,各所述施工浮筒通过预安装或现场安装的方法,均匀分布、紧贴、环绕于所述直立式浮式平台的水下直筒筒体外壁上,形成泳圈,并保证所述泳圈式浮筒组与所述直立式浮式平台之间能够上下无障碍地相对滑移;所述泳圈式浮筒组漂浮在水面上,其水线面的惯性矩必须保证所述直立式浮式平台海上安装和搬迁过程中所需稳性的要求。
本发明带固定式延伸筒体的浮式平台在坞内建造、下水或湿式拖航期间,所述整体气浮调节舱或底部气浮调节舱内全部或部分空间充满空气、形成浮舱,为所述浮式平台提供浮力。本发明带可伸缩滑移式延伸筒体的浮式平台在坞内建造、下水或湿式拖航期间,所述全部套筒的顶部位于所述直立式浮筒的上部并临时固定,所述直立式浮筒为平台提供浮力。无论带固定式延伸筒体的浮式平台或是带可伸缩滑移式延伸筒体的浮式平台,如果其直立式浮筒外径较小(水线面面积较小),可利用减动结构临时提供额外的浮力,以确保整个平台在坞内或船厂码头(其前沿水深通常12米左右)也可以起浮。同时,减动结构还可为所述浮式平台的湿拖通过提供所需要的稳性。因此,本发明带延伸筒体的直筒式浮式平台均能够实现整个浮式平台在船厂一次性完成建造、安装和调试,整体干拖或湿拖运输至海上目的地,大大节约工程投资和工期。本发明的泳圈式浮筒组,为直筒式平台提供海上安装和搬迁过程中所需的稳性。
附图说明
在此描述的附图仅用于解释目的,而不意图以任何方式来限制本发明公开的范围。另外,图中的各部件的形状和比例尺寸等仅为示意性的,用于帮助对本发明的理解,并不是具体限定本发明各部件的形状和比例尺寸。本领域的技术人员在本发明的教导下,可以根据具体情况选择各种可能的形状和比例尺寸来实施本发明。
图1为本发明带延伸筒体的直筒式浮式平台的一个实施例----带整体气浮调节舱的固定式延伸筒体浮式平台的结构示意图;图2为图1的I-I截面示意图;
图3为本发明带延伸筒体的直筒式浮式平台的另一个实施例----带可伸缩滑移式延伸筒体的浮式平台的结构示意图;
图4为本发明的带可伸缩滑移式延伸筒体的浮式平台(不含上部设施)在在位状态的结构简化示意图;
图5为本发明的带可伸缩滑移式延伸筒体的浮式平台(不含上部设施)在坞内建造或湿拖状态结构简化示意图;
图6为本发明的带可伸缩滑移式延伸筒体的浮式平台的可伸缩滑移筒体的锁紧机构的结构示意图;
图7-1为径向截面为矩形箱形的减动结构简化示意图,
图7-2为径向截面为五边形箱形的减动结构简化示意图,
图7-3为径向截面为梯形箱形的减动结构简化示意图,
图7-4为图7-1派生的减动结构简化示意图,其箱型结构底板打开,形成向下的开口,
图7-5为图7-2派生的减动结构简化示意图,其箱型结构底板打开,形成向下的开口,
图7-6为图7-3派生的减动结构简化示意图,其箱型结构底板打开,形成向下的开口,
图7-7为图7-1派生的减动结构简化示意图,其箱型结构顶板打开,形成向上的开口,
图7-8为径向截面为U形(开口向上、带径向间隙)的减动结构简化示意图,
图7-9为图7-8派生的减动结构简化示意图,其径向间隙上部大,底部小,
图7-10为图7-8派生的减动结构简化示意图,其径向间隙上部小,底部大,
图7-11为径向截面为倒U形(开口向下、带径向间隙)的减动结构简化示意图,
图7-12为图7-1派生的减动结构简化示意图,其径向间隙上部小,底部大,
图7-13为图7-11派生的减动结构简化示意图,其径向间隙上部小,底部大;
图8为本发明带底部气浮调节舱的固定延伸筒体的直筒式浮式平台的一个实施例----用于水产养殖的带固定式延伸筒体的浮式平台——固定式延伸筒体的浮式水产养殖网箱的结构示意图;
图9为本发明带底部气浮调节舱的固定延伸筒体的直筒式浮式平台的一个实施例----用于非水产养殖的带固定式延伸筒体的浮式平台的结构示意图。
具体实施方式
结合附图和本发明具体实施方式的描述,能够更加清楚地了解本发明的细节。但是,在此描述的本发明的具体实施方式,仅用于解释本发明的目的,而不能以任何方式理解成是对本发明的限制。在本发明的教导下,技术人员可以构想基于本发明的任意可能的变形,这些都应被视为属于本发明的范围。
本发明的带延伸筒体的直筒式浮式平台600包括带固定式延伸筒体的浮式平台610和带可伸缩滑移式延伸筒体的浮式平台620两种;其中,带固定式延伸筒体的浮式平台610包括带整体气浮调节舱的固定式延伸筒体浮式平台611和带底部气浮调节舱的固定式延伸筒体浮式平台612两种。
请参见图1、图3、图8和图9,本发明的带延伸筒体的直筒式浮式平台600,包括如下四部分:
直立式浮筒1,其漂浮于水面5上,两端为顶板和底板,其顶部高出水面,直立式浮筒1的中心设置或不设置上下贯通的月池11;月池11为直立圆筒、或上口小下口大的圆锥筒、或上部为圆筒下部为上开口面积小于下开口面积的圆锥筒;或者,当直立式浮筒1由多个圆筒组成、且中心没有设置圆筒,其中心空间为上下贯通的月池11。
直立式浮筒1内部可根据需要成为多种用途的舱、室,如设置海水压载舱、储液舱、空舱或浮力舱、机舱、泵舱、核反应堆、控制室、居住舱室等的一种或数种。月池11根据不同用途,需要不同的尺度,例如,用于深水渔业时,月池的直径就相当大。
延伸筒体2,其包括至少一层连接于直立式浮筒1底板并向下延伸、且底部开口的延伸圆筒,所述延伸圆筒具有同一垂直中心轴线,其最外层延伸圆筒的外径等于或大于直立式浮筒1最外层所述直立式圆筒的外径;其最外层所述延伸圆筒的外壁底部外侧环绕设置一个减动结构214或225。延伸筒体2为固定筒体21或可伸缩滑移筒体22;固定筒体21形成带固定式延伸筒体的浮式平台610,可伸缩滑移筒体22形成带可伸缩滑移式延伸筒体的浮式平台620。
浮式平台定位系统3,其为系泊定位系统31和动力定位系统之中的一种或两种的组合。
上部设施4,其位于直立式浮筒1的顶部和/或内部的舱室中。根据浮式平台不同的用途,设置不同的上部设施4。
需要说明的是,本发明中如下所述的直立式浮筒、圆筒和套筒均为立式,包括横截面为圆形或正多边形的筒体、圆筒和套筒;为了简化文字,均不再特别加注“圆形或正多边形”这一定语,换言之,即使“圆筒”,其横截面也可以是正多边形;所述外径为 圆形截面的外径、或正多边形截面的外接圆的直径;所述内径为圆形截面的内径、或正多边形截面的内切圆的直径。当直立式浮筒由多圆筒组成(即多圆筒型浮筒),所述浮筒“圆筒”横截面为多个圆,所述“圆筒”的内外径分别为多圆的内切圆和外切圆直径。本发明所述浮筒、圆筒和套筒的结构、以及减动结构通常采用钢板加内侧加强结构的形式设计建造,所述加强结构为水平强框架(圆形或正多边形)和垂直纵桁及扶强材等结构形式,所述内径为尺度最大的水平强框架的内径,附图所示剖面的厚度为钢板厚度加上加强结构的厚度;上述钢结构中可部分甚至全部采用玻璃钢等非金属材料取代钢材;更进一步,部分带孔洞的钢或玻璃钢制筒体可采用钢或玻璃钢制筒体骨架连接固定网眼织物来取代。
作为直立式浮筒1的一个实施例,直立式浮筒1包括至少一层具有同一垂直中心轴线的直立式圆筒及与之水密连接的至少两层水平板,水平板包括顶板和底板;其外层筒壁为圆筒,或下部为圆筒(伸出水面5)、上部为上开口面积大于下开口面积的圆锥筒。较优地,直立式浮筒1的内部可根据需要对称设置多个与所述圆筒和水平板水密连接的径向垂直分隔结构,形成多个舱室。所述直立式浮筒1漂浮于水面5上、其顶部高出水面,中心设置或不设置上下贯通的月池11,月池11为直立圆筒、或上口小下口大的圆锥筒、或上部为圆筒下部为上开口面积小于下开口面积的圆锥筒。
作为本发明直立式浮筒1的另一个实施例,直立式浮筒1包括外层筒体和至少一层与外层筒体具有同一垂直中心轴线的内层直立式圆筒,以及与之水密连接的至少两层水平板,所述水平板包括所述顶板和所述底板;其外层筒体从下向上分为四段,分别为水下圆筒、上开口面积小于下开口面积的水面圆锥筒、水上圆筒、上部为上开口面积大于下开口面积的圆锥筒;在带延伸筒体的直筒式浮式平台生产作业期间,无论高水位还是低水位,水面5始终位于所述水面圆锥筒处,以便冬季抗冰。
作为本发明直立式浮筒1的又一个实施例,直立式浮筒1包括至少三个彼此紧密相连或彼此具有相同间距圆筒、及连接多个所述圆筒顶部和底部的顶板和底板,形成一个整体结构,即多圆筒型浮筒。对于需要设置月池的多圆筒型浮筒,其中心不设置圆筒,由此形成的空间为上下贯通的月池11。所述顶板和底板是连接多个圆筒使之成为一个坚固整体的重要结构件。底板为圆形或圆环形,其圆直径或圆环外径等于或大于多圆筒型浮筒的外切圆的直径,圆环内径等于多圆筒型浮筒的内切圆的直径,其圆环孔为直立式浮筒1的月池11的底部出口。底板为圆形或圆环形结构的另一个目的是,便于水密连接其下部的固定筒体21,或套装连接其下部的可伸缩滑移筒体22。顶板的结构形式只 要便于连接/安装上部设施4即可。较优地,圆直径或圆环外径等于或略大于多圆筒型浮筒的外切圆的直径。
对于水线面面积小、吃水深的带延伸筒体的浮式平台600,其在坞内漂浮、湿拖和海上安装过程中,不仅需要依靠固定筒体减动结构214或225作为浮舱,提供所需浮力,更需要提供所需的稳性。因此,减动结构214或225的水线面面积的惯性矩应能够单独、或至少能够和整体气浮舱215、或底部气浮舱215、或直立式浮筒1共同提供坞内漂浮、湿拖和海上安装过程前期所需的稳性。
本发明带固定式延伸筒体浮式平台610有两类实施例,第一类为带整体气浮调节舱的固定式延伸筒体浮式平台611(参见图1),第二类为带底部气浮调节舱的固定式延伸筒体浮式平台612(参见图8和图9)。
作为可行的几种实施方案,本发明所述两种气浮调节舱(即整体气浮调节舱215和底部气浮调节舱216)的底部均为开口,且两种气浮调节舱的顶部均设置插入直立式浮筒1内部或穿出顶部的充气/排气管211,其上部设置阀门。所述两种气浮调节舱的底部均设置或不设置底部水平阻尼板212,其上开设一个或多个阻尼孔;底部水平阻尼板212可以增加所述气浮调节舱的附连水质量、增加垂荡阻尼,改善运动性能。如果需要,在两种气浮调节舱的底部水平阻尼板212的阻尼孔的孔口,可设置可开合的舱底盖板;舱底盖板闭合,则气浮舱将转变为密闭浮舱,以利平台长距离湿式拖航。所述两种气浮调节舱的底部均设置或不设置底部固定压载舱213,底部固定压载舱213不得封闭两种气浮调节舱的开口;底部固定压载舱213可降低平台的重心高度,必要时可使得平台的重心低于浮心。所述两种气浮调节舱外壁的底部均环绕设置固定筒体减动结构214,它可大幅增加平台的附连水质量、增加阻尼,是立式圆筒形浮式平台改善运动性能最重要的措施,为成熟技术。同时,在平台建造和湿式拖航时,部分种类的固定筒体减动结构214可为所述平台提供额外的浮力和稳性。
参见图1所示本发明带固定式延伸筒体浮式平台610的第一类实施例,在本发明带整体气浮调节舱的固定式延伸筒体浮式平台611的固定筒体21的至少一层圆筒的内部,对称设置多个径向整体垂直水密分隔结构2151,其水密连接直立式浮筒1的底板和一层或多层所述固定筒体的圆筒,由此形成至少一个顶部密闭、底部开口的整体气浮调节舱215。如果直立式浮筒1的中心设置月池11,所述固定圆筒21的最内层圆筒成为月池11的一个组成部分(如图1所示),其固定式延伸筒体至少设置两层固定筒体。同样,如图2所示,带整体气浮调节舱的固定式延伸筒体的浮式平台的固定筒体21的水平截 面图,所述固定筒体21为两层固定圆筒(即最外层固定圆筒和月池固定圆筒),其间设置了四个径向整体垂直水密分隔结构2151,形成了四个底部密闭、下部开口的整体气浮调节舱215。本发明有些实施方案的平台无需月池,则其固定筒体21最少只需一个最外层固定圆筒即可满足最低要求。
本发明带固定式延伸筒体浮式平台610的第二类实施例——带底部气浮调节舱的固定式延伸筒体浮式平台612(参见图8和图9)包括两个实施例:用于水产养殖的带底部气浮调节舱的固定式延伸筒体的浮式平台6121——固定式延伸筒体的浮式水产养殖网箱,用于非水产养殖的带底部气浮调节舱的固定式延伸筒体的浮式平台6122。
在所述带底部气浮调节舱的固定式延伸筒体浮式平台612的固定筒体21的至少一层圆筒的内下部,设置一个与所述圆筒水密连接的水平隔离板2161或开口向下的圆锥隔离板2162,将所述固定筒体上下一分为二;上部为孔洞筒体2163,其圆筒壁均设有分布的阻尼孔和/或下部矩形孔洞2164,使得内外海水连通;下部为底部气浮调节舱216,其结构由至少一层圆筒的底部气浮调节舱筒体2165和与之水密连接的水平隔离板2161或开口向下的圆锥隔离板2162组成。如果直立式浮筒1的中心设置月池11,所述底部气浮调节舱216的最内层圆筒为上下贯通的底部月池2166。所述底部气浮调节舱216的内部对称设置或不设置多个径向垂直底部分隔结构,水密连接所述圆筒且水密连接所述水平隔离板2161或开口向下的圆锥隔离板2162,由此形成至少一个顶部密闭、底部开口的子气浮调节舱,全部子气浮调节舱共同组成所述底部气浮调节舱216。
作为本发明带固定式延伸筒体浮式平台610的第二类实施例的第一个实施例,本发明用于水产养殖的带底部气浮调节舱的固定式延伸筒体的浮式平台6121——固定式延伸筒体的浮式水产养殖网箱(参见图8),其直立式浮筒1仅包含两层具有同一中心垂直轴线筒体——外层筒体和大直径的月池筒体。所述两层筒体之间为海水压载舱/浮力空舱,上部设施4位于所述浮力空舱内和/或直立式浮筒1的顶部。所述上部设施4包括水产养殖所需的专用设施和各种公用设施,如泵、空气压缩机等机电设备和系统。所述月池筒体形成月池11,其直径相当大,通常可达数十米。月池11顶部开口处安装一个可开合的格栅盖板111,在非捕捞作业期间所述格栅盖板111锁紧在月池顶部开口上,在捕捞作业期间所述格栅盖板111可以打开并固定于适当的位置,以利捕捞作业的展开。
在所述直立式浮筒1的水下部分设置或不设置多个均布的水平联通管(图8中没有示明),使得月池11水平方向与外部海水连通。所述孔洞筒体2163仅为一层圆筒,其底部设置多个对称均布的下部矩形孔洞2164,孔洞矩形的底边连接于开口向下的圆锥隔 离板2162;孔洞筒体2163位于下部矩形孔洞2164以上部分的筒壁上开设有多个均布的阻尼孔。所述底部气浮调节舱216由包括最外层筒体和底部月池筒体在内的至少两层筒体所构成的底部气浮调节舱筒体2165和位于其顶部的圆锥隔离板2162共同组成,所述底部月池2166直径远小于月池11的直径。所述底部气浮调节舱216的最下端设置底部水平阻尼板212。作为一个优选的推荐实施方案,所述圆锥隔离板2162和所述底部水平阻尼板212之间水密连接多个上下贯通的底部圆管,其应保证每个子气浮调节舱顶部水密;所述每个阻尼孔、每个下部矩形孔洞2164、底部月池2166顶部开口和所述每个底部圆管顶部开口均采用格栅板2167封堵开口,其目的在于防止鱼的逃逸。所述月池11、孔洞筒体2163和圆锥隔离板2162形成养殖水池。作为一个可实施方案,可根据需要所述孔洞筒体2163靠近底部月池2166的位置设置一个可升降的底部格栅板2168。
所述水平联通管、孔洞筒体2163的下部矩形孔洞2164/阻尼孔和上下贯通的底部圆管的作用在于使养殖水池与外部海水连通,以利于增加养殖水池的氧含量并清除鱼粪、鱼饵渣和有害物质。所述圆锥隔离板2162在养殖水池的底部承接鱼粪、鱼饵渣和有害物质;圆锥面有利于将鱼粪、鱼饵渣和有害物质向下滑出水池之外。此外,借助安装与孔洞筒体2163的多个压力海水喷头可定期自动清除圆锥面上的鱼粪、鱼饵渣和有害物质,和/或通过下部矩形孔洞2164用压力海水喷射定期人工清除圆锥面上的鱼粪、鱼饵渣和有害物质。可升降的底部格栅板2168通过至少两组绞车/钢丝绳实现升降和定位。当可升降的底部格栅板2168位于底部(圆锥隔离板2162的顶部)时,其为正常养殖状态,安装在下部矩形孔洞2164的格栅可以撤除;当可升降的底部格栅板2168位于孔洞筒体2163的顶部和直立式浮筒的底部时为捕捞状态,可方便捕捞。
本发明用于水产养殖的带底部气浮调节舱的固定式延伸筒体的浮式平台6121——固定式延伸筒体浮式水产养殖网箱在通常生产作业期间,其直立式浮筒1漂浮在水面上;如果需要,特别是遭遇恶劣海况时,可向直立式浮筒1内的海水压载舱加注压载海水,使其下沉但仍然存在一定的干舷(千万勿使直立式浮筒1全部没于水面以下),启动系泊定位系统31的系泊绞车绞收全部系泊腿的系泊链和/系泊缆,直到直立式浮筒1完全潜没并漂浮在水中设定的深度,并通过导缆器的止链器将系泊腿锁定。当所述直立式浮筒1需要再次漂浮在水面上时松开系泊腿,排出所加注的压载海水,直立式浮筒1起浮直至达到设定个干舷高,然后将系泊腿再次锁定,完成所需的作业。
作为本发明带固定式延伸筒体浮式平台610的第二类实施例的第二个实施例,本发明非水产养殖带底部气浮调节舱的固定式延伸筒体浮式平台6122用于诸如海上油气田 开发等非水产养殖用途。所述非水产养殖带底部气浮调节舱的固定式延伸筒体浮式平台612的固定筒体21的内下部设置一个与之水密连接的水平隔离板2161,形成底部气浮调节舱216。所述非水产养殖带底部气浮调节舱的固定式延伸筒体浮式平台612的孔洞筒体(2163)的整个圆筒壁设有均布的阻尼孔,因此。和所述带整体固定式延伸筒体的浮式平台611相比,所述非水产养殖带底部气浮调节舱的固定式延伸筒体浮式平台612的阻尼增加,水动力性能更好。
当带固定式延伸筒体的浮式平台610在坞内建造、下水或湿式拖航期间,充气/排气管211上部的阀门关闭,整体气浮调节舱215或底部气浮调节舱216内全部或部分空间充满空气,在水中形成浮舱,为带固定式延伸筒体的浮式平台提供浮力。当带固定式延伸筒体的浮式平台610拖航至海上目的地、开始海上安装时,充气/排气管211上部的阀门打开排气,带固定式延伸筒体的浮式平台逐步下沉、整体气浮调节舱215或底部气浮调节舱216内充满海水,直至直立式浮筒1为带固定式延伸筒体的浮式平台610提供浮力、完成海上安装。带固定式延伸筒体的浮式平台610在在位期间(海上生产作业期间和海上自存期间),整体气浮调节舱215或底部气浮调节舱216内充满海水,依靠直立式浮筒1为带固定式延伸筒体的浮式平台610提供浮力。当带固定式延伸筒体的浮式平台610搬迁移位再次需要整体气浮调节舱215或底部气浮调节舱216提供浮力时,可通过充气/排气管211充气、排出气浮调节舱214内的海水来实现。
参见图3所示实施例,显示本发明带可伸缩滑移式延伸筒体的浮式平台620(在位状态,即生产操作状态或风暴自存状态),其可伸缩滑移筒体22为至少一层套装在直立式浮筒1外壁上的套筒,套筒与直立式浮筒1具有同一个垂直的且通过圆心(中心)的轴线。作为一个实施方案,图3所示的浮式平台620为两层套筒,即最外层滑移套筒221和与直立式浮筒1紧邻的滑移套筒222。作为另一个实施方案,图3所示的浮式平台620可为一层套筒,则最外层滑移套筒221和与立式浮筒1紧邻的滑移套筒222合二为一。作为一个特殊的实施例,图3所示的浮式平台620的直立式浮筒1被图1所示浮式平台610的直立式浮筒1及其所连接的固定圆筒21(二者的外筒壁的直径相等,不带减动结构217)所取代,可伸缩滑移筒体22套装在固定筒体21的外壁上。每层套筒的筒壁上均开设或不开设多个套筒阻尼孔;分布的套筒阻尼孔有助于降低平台因海流引起的涡泄振动(VIM)问题的影响。
为了解决滑移套筒上下限位和定位的需要,作为一种实施方案,直立式浮筒1外壁的底跟部外周固定连接一个水平的直立浮筒底部外法兰环12;或者,作为一个特殊的应 用方案,如果直立式浮筒1下部带有最外层固定圆筒21,形成一个特殊的直立式浮筒,则上述直立浮筒底部外法兰环12连接于最外层固定圆筒21外壁的底跟部外周;可伸缩滑移筒体22的每层套筒底端部和顶部内壁分别固定连接一个水平的套筒底端法兰环223和水平的套筒顶内壁法兰环224;每层套筒的内径等于其上部相邻直立式浮筒1的直立浮筒底部外法兰环12的外径、或等于其上部相邻套筒的套筒底端法兰环223外径,并保证套筒可以沿直立浮筒底部外法兰12或套筒底端法兰环223上下滑移;每层套筒的套筒顶内壁法兰环224的内径等于或略大于其上部相邻直立式浮筒1或套筒的外径;套筒的套筒底端法兰环223内径小于其上部相邻直立式浮筒1或套筒的外径;可伸缩滑移筒体22的最外层滑移套筒221的套筒底端法兰环223的外径等于最外层滑移套筒221的外径、其他层可伸缩滑移筒体22的套筒底端法兰环223外径略大于其所在层可伸缩滑移筒体22的外径。图4为带可伸缩滑移式延伸筒体的浮式平台620(图中没有显示上部设施4)在位状态结构简化示意图,以简明地示明直立式浮筒1、最外层滑移套筒221和与直立式浮筒1紧邻的滑移套筒222之间的位置和连接关系。
图5为带可伸缩滑移式延伸筒体的浮式平台坞内建造或湿拖状态结构简化示意图。当带可伸缩滑移式延伸筒体的浮式平台620(图中没有显示上部设施4)在坞内建造、下水或拖航期间,每层套筒的底端法兰环223的内顶面与其上部相邻直立式浮筒1的直立浮筒底部外法兰环12、或上部相邻套筒的套筒底端法兰环223底面相接触,使得全部套筒的底部略低于直立式浮筒1的底部。图5简明地示明带可伸缩滑移式延伸筒体的浮式平台620在坞内建造、下水或拖航期间,直立式浮筒1、最外层滑移套筒221和与直立式浮筒1紧邻的滑移套筒222之间的位置和连接关系。
当带可伸缩滑移式延伸筒体的浮式平台620在位期间,每层套筒逐层下放,直至套筒顶内壁法兰环224的底面与其上部相邻直立式浮筒1的直立浮筒底部外法兰环12的顶面、或上部相邻套筒的套筒底端法兰环223外顶面相接触,如图4所示。
总之,当带可伸缩滑移式延伸筒体的浮式平台620在坞内建造、下水或拖航期间,全部套筒的底部略低于(接近并低于)直立式浮筒1的底部并临时固定;当带可伸缩滑移式延伸筒体的浮式平台620到达海上目的地进行安装时,从最外层滑移套筒221开始,至与直立式浮筒1紧邻的滑移套筒222止,逐一解除临时固定,依靠自身重力使套筒一一下降和延伸,再将上下相邻的套筒、或套筒与直立式浮筒1首尾相连,并通过可伸缩滑移筒体锁紧机构229固定,使得带可伸缩滑移式延伸筒体的浮式平台620在位期间成为加长的、深吃水的直筒式浮式平台;当带可伸缩滑移式延伸筒体的浮式平台620搬迁 移位时,从最外层滑移套筒221开始,逐一解除可伸缩滑移筒体锁紧机构229的固定、向上提升,直至全部套筒的底部略低于(接近并低于)直立式浮筒1的底部并临时固定,以适应拖航。
本发明带可伸缩滑移式延伸筒体的浮式平台620可配置多种形式的套筒升降系统,以实现套筒的升降。作为一个实施方案,图3所示的一种升降系统为绞车系统,该系统由安装在上部设施4上、呈120度均布的三台绞车228组成,通过提升缆2281吊住最外层滑移套筒221的顶部。提升提升缆2281,可实现套筒的逐级上滑提升;下放提升缆2281,套筒可依靠重力的逐级下滑下放。
本发明带可伸缩滑移式延伸筒体的浮式平台620还可配置多种形式的锁紧机构,以确保浮式平台620在位状态下可伸缩滑移筒体的锁紧。作为一个实施方案,图6所示的一种可伸缩滑移筒体锁紧机构229为插销式锁紧机构,将下部滑移套筒和其上部相邻的直立式浮筒1或(上部)套筒固定锁紧。锁紧机构229构成如下:1.锁紧凸台2291,安装在直立式浮筒1的直立浮筒底部或下部带有最外层固定圆筒211底部外法兰环12的顶面、或上部套筒底端法兰环223外顶面、二者成为一个整体,其外侧圆弧面的半径等于直立浮筒底部外法兰环12、或上部套筒底端法兰环223的外半径,内侧圆弧面的半径等于直立式浮筒1外层筒体、或上部套筒的内半径;其左右两侧垂直平面均为通过直立式浮筒1的中心轴线的径向垂直面的一部分;其顶平面为水平平面,其尺度应能够满足设置至少1个(通常不超过3个)水平径向锁紧销轴孔的尺度要求和强度要求。2.锁紧盖座2292,安装在每层套筒的套筒顶内壁法兰环224的顶部、二者底部平面为同一个平面,成为一个整体,其底部设有与锁紧凸台2291匹配的凹槽,将锁紧凸台2291从上面、外侧圆弧面和两个侧面包围覆盖:锁紧凸台2291的外侧圆弧面、左右两侧的径向垂直面与锁紧盖座2292凹槽面紧紧贴合、锁紧凸台2291的顶部水平平面与锁紧盖座2292凹槽面存在间隙,以实现下部滑移套筒和其上部相邻的直立式浮筒1或(上部)套筒的限位和定位;锁紧盖座2292的外侧圆弧面的半径大于下部套筒外壁的半径,以保证锁紧盖座2292外侧圆弧面具有足够的径向厚度,使得其上设置至少1个(通常不超过3个)水平径向锁紧销轴孔之后仍然满足强度要求;锁紧盖座2292的内侧圆弧面的半径略大于锁紧凸台2291所在浮筒1或上部套筒的外筒壁的半径;锁紧盖座2292的左右两侧的外部垂直面和顶部水平面分别平行于锁紧凸台2291左右两侧的径向垂直面和顶部水平面,并保证锁紧盖座2292的左右两侧和顶部具有足够的厚度。换言之,由于锁紧盖座2292的存在,其所在下部套筒顶内壁法兰环224相应开设缺口,该缺口与锁紧凸 台2291相匹配,成为锁紧盖座2292凹槽组成部分,必须保证锁紧盖座2292和所在下部套筒顶内壁法兰环224成为一个坚固的整体结构。3.锁紧销轴2293,水平径向插进锁紧盖座2292和锁紧凸台2291的锁紧销轴孔中。4.销轴盖板2294,封堵在锁紧盖座2292的锁紧销轴孔的外口上。5.楔块,楔在下部套筒顶内壁法兰环224和其上部相邻的直立式浮筒1或上部套筒的外壁之间,目的在于消除下部套筒和其上部相邻的直立式浮筒1或上部套筒之间可能出现的径向松动。为此,下部套筒顶内壁法兰环224的内环侧开设楔槽(楔块和楔槽在图6均没有示明)。
作为本发明带可伸缩滑移式延伸筒体的浮式平台620的一个特殊的实施例,其为一种用于水产养殖的带可伸缩滑移式延伸筒体的浮式平台——可伸缩滑移式浮式水产养殖网箱。和上述固定式延伸筒体的浮式水产养殖网箱6121的直立式浮筒1的结构形式基本相同,本发明可伸缩滑移式浮式水产养殖网箱的直立式浮筒1外壁的底跟部外周固定连接一个水平的直立浮筒底部外法兰环12。所述可伸缩滑移式浮式水产养殖网箱的直立式浮筒1仅包含两层具有同一中心垂直轴线筒体——外层筒体和内层筒体、即大直径的月池筒体所形成的月池11;所述两层筒体之间为海水压载舱/浮力空舱,上部设施4位于所述浮力空舱内和/或直立式浮筒1的顶部;所述月池11的顶部开口处安装一个可开合的格栅盖板111、或一层或两层网眼织物。在所述可伸缩滑移式浮式水产养殖网箱的直立式浮筒1的水下部分设置或不设置多个均布的水平联通管,使得月池11沿水平方向与外部海水连通。可伸缩滑移式浮式水产养殖网箱的可伸缩滑移筒体22的各层滑移套筒均由一个筒体骨架、以及在其内部连接固定的一层、或其内部和外部连接固定的两层网眼织物的筒壁层组成;所述各层套筒的水平的套筒底端法兰环223和水平的套筒顶内壁法兰环224与其所在层的筒体骨架连接、形成一个整体结构。在所述可伸缩滑移式浮式水产养殖网箱的最外层滑移套筒221的外壁底跟部,设置滑移筒体底部固定压载舱226,其目的在于在通常生产作业状态下使各层筒体在水中保持张拉状态;所述最外层滑移套筒221的底部开口处采用一层或两层网眼织物封口,或设置滑移筒体底部水平阻尼板227,其上开设多个滑移筒体底部阻尼孔。所述可伸缩滑移式浮式水产养殖网箱的直立式浮筒1、可伸缩滑移筒体22的各层套筒骨架优选采用玻璃钢或其他非金属材料制造。在所述可伸缩滑移式浮式水产养殖网箱与直立式浮筒1紧邻的滑移套筒222顶部的外筒壁上,设置导缆器311,用于安装带可伸缩滑移式网箱平台的系泊定位系统31。所述可伸缩滑移式浮式水产养殖网箱的直立式浮筒1在通常生产作业期间漂浮于水面上,遭遇不利的环境条件时则潜浮于水下设定的深度;在捕捞作业时,逐层提升可伸缩 滑移筒体22的滑移套筒至最高位置然后固定,以便利捕捞作业的展开。和前述固定式延伸筒体的浮式水产养殖网箱平台6121相比,本发明可伸缩滑移式浮式水产养殖网箱优点在于结构简单、造价低,缺点是抗外部环境的能力较低。
为了改善平台的水动力性能,和现行圆筒形FPSO类似,本发明带延伸筒体的直筒式浮式平台600的最下端筒形结构的底跟部外侧环绕设置减动结构(参见图1和图3右下角的214和225)。带延伸筒体的浮式平台600在海上生产作业期间或海上自存期间,减动结构内充满海水且与外部海水连通,依靠直立式浮筒1为浮式平台600提供浮力和稳性。因此,减动结构能够增加附连水质量和运动阻尼,改善运动响应,没有增加平台的排水量。减动结构214或225另一个重要的功能是,可以为带延伸筒体的浮式平台600提供临时的浮力和稳性。图7-1~7-13显示了共13种现有技术的关于圆筒形浮式平台的减动结构,其中绝大部分为本发明人在“直筒式浮式平台”(PCT/CN2015/083431)所披露的。其中,图7-1可视为图1或图3右下角所示固定筒体减动结构217和滑移筒体减动结构225的局部放大,其余12种减动结构与平台直立浮筒或最下部套筒的位置关系均同图1或图3。换言之,作为一个实施方案,本发明带延伸筒体的直筒式浮式平台600,所述带固定式延伸筒体的浮式平台610的固定筒体21的底跟部外侧,环绕设置固定筒体减动结构214;作为一个实施方案,本发明带延伸筒体的直筒式浮式平台600,所述带可伸缩滑移式延伸筒体的浮式平台620的可伸缩滑移筒体22的最外层滑移套筒221的底跟部外侧,环绕设置滑移筒体减动结构225。进一步,图7-4~图7-13所示开口向上或向下的减动结构214/225的开口可水平安装连接一个带至少一个阻尼孔的上阻尼盖板或下阻尼盖板(图中没有示明),以进一步提高减动结构的效能。需要说明的是,图7-8~7-13环翼式减动结构与平台直立浮筒筒壁或最外层套筒外壁之间环形间隙设有多个径向垂直肘板连接。
上述13种减动结构的每一种均做为本发明的多种实施方案,此外,还可以采用其他形式的减动结构,以适应不同的需求。众所周知,现有船坞内部水深通常7米或10米,船厂码头前沿水深通常10~14米。同时,拖航的航道水深也有限制。为了保证本发明平台能够在船厂整体建造、整体湿拖,通常需要保证在上述限定的水深条件下直立式浮筒1能够提供足够的浮力以平衡整个平台的重量。对于直立式浮筒1外径较小(水线面面积较小)的平台,例如,不带储油功能的井口平台或生产平台,在上述限制水深条件下的浮力显然远远不足。为此本发明的一些实施方案利用图7-1~7-6和7-11~7-13所示任一种减动结构(其中,箱形减动结构为临时浮舱,底部开口、上部和两侧密闭的减 动结构为临时的气浮舱),临时提供额外的浮力,以确保整个平台在坞内或船厂码头也可以起浮。
为了确保带延伸筒体的浮式平台600以减动结构214或225作为浮舱开展湿拖作业的安全性和可操作性,减动结构214或225采用可形成多舱的减动结构,其径向垂直截面为密闭的箱形、底部结构为环形水平板,如图7-1~图7-3所示,或图7-11~图7-13所示并增设底部环形水平板,减动结构214或225内部设置多个径向垂直分隔,与顶部结构、内外侧面垂直结构和底部水平环形板水密连接,形成多个对称均布的减动舱。对于需要依靠减动结构214或225的全部或部分减动舱提供浮力和稳性的平台600,所述每个提供浮力和稳性的减动舱为减动浮舱,其顶部设置一根减动充气/排气管、其上部设置阀门;以每个减动浮舱底部水平板的形心为中心,设置一个通海的阻尼孔洞,在通海的阻尼孔洞上设置或不设置一个可开合的减动底舱口盖板,使之成为减动气浮舱或减动密闭浮舱。
作为可实施的方案,对于不需要依靠减动结构214或225、或仅需要依靠减动结构214或225部分减动舱提供浮力和稳性的平台600,减动结构214或225的全部减动舱、或者对称选择至少两个减动舱,在所述减动舱顶板和底板上均开设至少一个通海的阻尼孔洞,使之成为内部直接通海的减动舱。
进一步地,需要依靠减动结构214的全部或者部分减动浮舱提供浮力和稳性的固定式延伸筒体的浮式平台610所包含的整体气浮调节舱215和底部气浮调节舱216,均带有底部水平阻尼板212,其内部均不设置任何垂直的径向或环形水密分隔;不带月池11的固定式延伸筒体的浮式平台610的固定筒体21采用单层结构、为直立式浮筒1外层筒壁的延伸,其底部水平阻尼板212为圆形,中心设置一个阻尼孔洞;带有月池11的固定式延伸筒体的浮式平台610的固定筒体21采用双层结构,外层为直立式浮筒1外层筒壁的延伸,内层为直立式浮筒1的月池11筒壁的延伸,其底部水平阻尼板212为环形、其上对称设置两个阻尼孔洞;或者,取消带月池11的带底部气浮调节舱的固定式延伸筒体浮式平台612的双层固定筒体21的内层上段,即孔洞筒体2163,仅保留其内层下段,即底部月池2166筒体;上述一个或两个阻尼孔洞的洞口均设置或不设置可开合的舱底盖板,由此可形成气浮舱或密闭浮舱。
对于需要依靠减动结构214或225的全部或部分减动浮舱提供浮力和稳性的平台600,当其在坞内建造、下水或湿式拖航期间,减动充气/排气管上部的阀门关闭,阻尼孔洞使减动浮舱下部与外部海水连通、上部空间充满空气,形成减动气浮舱;闭合的减 动底舱口盖板,使减动浮舱为减动密闭浮舱;减动浮舱为带延伸筒体的浮式平台600提供所需浮力和稳性。显而易见,在湿拖过程中,采用密闭浮舱的安全性和可操作性将优于气浮舱。
对于需要依靠减动结构214或225的全部或部分减动浮舱提供浮力和稳性的平台600,当其拖航至海上目的地、开始海上安装、下沉时,使减动气浮舱通过阻尼孔洞与外部海水连通、然后打开减动充气/排气管上部的阀门排气,海水从减动浮舱底部灌,或者向减动密闭浮舱内注水压载,使浮式平台600逐步下沉,或者先注水压载、再打开减动底舱口盖板、排气进水,使浮式平台600逐步下沉,最终减动浮舱内最终充满海水,直至直立式浮筒1为平台600提供浮力、完成海上安装。当浮式平台600搬迁移位、再次需减动气浮舱或减动密闭浮舱提供浮力时,可通过减动充气/排气管充气、排出减动气浮舱内的海水,或者泵出减动密闭浮舱内海水,或者两种结合的方法来实现。
为了进一步改善本发明带延伸筒体的直筒式浮式平台600水动力性能,作为优化的实施方案,带固定式延伸筒体的浮式平台610的固定筒体21内部每个气浮调节舱的内底部开口处设置固定筒体底部水平阻尼板212,固定筒体底部水平阻尼板212开设一个或多个固定筒体底部阻尼孔;带可伸缩滑移式延伸筒体的浮式平台620的可伸缩滑移筒体22的最外层滑移套筒221的内底部设置滑移筒体底部水平阻尼板227,在滑移筒体底部水平阻尼板227上开设一个或多个滑移筒体底部阻尼孔,带有月池的带可伸缩滑移式延伸筒体的浮式平台620的滑移筒体底部水平阻尼板227的中心设有月池孔。
本发明带延伸筒体的直筒式浮式平台600由于吃水深,为借助固定压载降低平台的重心提供了方便。作为一种实施方案,本发明带固定式延伸筒体的浮式平台610的固定筒体21的内底部和/或外壁底跟部设置固定筒体底部固定压载舱213,固定筒体底部固定压载舱213不得封闭其上部整体气浮调节舱215或底部216气浮调节舱的底部开口。作为一种实施方案,本发明带可伸缩滑移式延伸筒体的浮式平台620的可伸缩滑移筒体22的最外层滑移套筒221的内底部和/或外壁底跟部设置滑移筒体底部固定压载舱226。
本发明带延伸筒体的直筒式浮式平台600通过定位系统3被限制在水面一个固定的小范围之内。定位系统3包括系泊定位系统31和动力定位系统两种系统,所述带延伸筒体的浮式平台600采用所述两种系统之中的一种或两种。带固定式延伸筒体的浮式平台610的系泊定位系统31的导缆器311安装固定于直立式浮筒1位于底部或底部上下附近部位的外筒壁上,或者安装固定于固定筒体21底部外筒壁上。带可伸缩滑移式延伸筒体的浮式平台620的可伸缩滑移筒体22的与直立式浮筒1紧邻的滑移套筒222顶 部的外筒壁上设置安装浮式平台的系泊定位系统31的导缆器311;进一步,本发明的另一种实施方案,导缆器311被设置在直立式浮筒1紧邻的滑移套筒222的锁紧盖座2292的圆弧外侧面,其优点是更有利于将系泊载荷传递至浮筒1。
依靠减动结构的浮力湿拖的带固定式延伸筒体的浮式平台610,如何保证海上安装下沉和和搬迁再上浮的稳性?
对于可完全或主要依靠固定筒体21的减动结构214作为浮舱,或者对于仅依靠整体气浮调节舱215或底部气浮调节舱216作为浮舱,即可提供坞内漂浮、湿拖过程所需浮力和稳性的带固定式延伸筒体的浮式平台610,作为优化实施例,所述浮式平台610所包含的整体气浮调节舱215和底部气浮调节舱216,均带有底部水平阻尼板212;其内部均不设置任何垂直的径向或环形水密分隔,换言之,整体气浮调节舱215和底部气浮调节舱216均为单一的气浮调节舱,不包含多个子气浮调节舱。对于不带月池的固定式延伸筒体的浮式平台610的固定筒体21,可采用单层结构、为直立式浮筒1外层筒壁的延伸,其底部水平阻尼板212为圆形,中心设置一个阻尼孔洞。对于带有月池的固定式延伸筒体的浮式平台610的固定筒体21,可采用双层结构,外层为直立式浮筒1外层筒壁的延伸,内层为直立式浮筒1的月池11筒壁的延伸,其底部水平阻尼板212为环形,其上对称设置两个阻尼孔洞;其中,作为进一步的优化设施例,取消带月池的带底部气浮调节舱的固定式延伸筒体浮式平台612的双层固定筒体21的内层上段,即孔洞筒体2163,仅保留其内层下段,即底部月池2166筒体。上述一个或两个阻尼孔洞的洞口均设置或不设置可开合的舱底盖板,由此可形成气浮舱或密闭浮舱,其功能和操作方式和上述减动气浮调节舱相同,不再赘述。
虽然减动浮舱解决了湿拖过程中的稳性问题,并可通过底部进水、减小浮舱的气体容积、使平台下沉并保持排水量不变,但是,当下沉至吃水深度等于减动结构高度的瞬间,平台水线面面积将突然改变,必然带来严重的稳性问题。对于带整体气浮调节舱的固定式延伸筒体浮式平台611,此时其平台水线面面积仅剩整体气浮调节舱215的水线面面积;对于带底部气浮调节舱的固定式延伸筒体浮式平台612,由于其底部气浮调节舱216的上部为孔洞筒体2163,此时其平台水线面面积为0。为此,本发明专门设计了一个可上下滑移的“泳圈式”浮筒组,为直筒式平台提供海上安装和搬迁过程中所需的稳性。
所述泳圈式浮筒组包括多个结构相同的施工浮筒,相邻的两个施工浮筒之间通过至少一条链/缆能拆卸地连接,各施工浮筒通过(在陆上建造场地上)预安装或(海上)现 场安装的办法,均匀分布、紧贴、环绕于直立式浮式平台的水下直筒式筒体外壁上,形成“泳圈”;每个施工浮筒与直筒式筒体外壁之间的静态接触力非常小、甚至为零。施工浮筒及用于连接的链/缆须避开筒壁上的导链器或其它凸出的结构物,以保证直筒式浮式平台下沉或向上浮起的过程中,与泳圈式浮筒组之间能够上下无障碍地相对滑移。泳圈式浮筒组漂浮在水面上。调整施工浮筒的尺寸和数量,使其组成“泳圈”后的水线面惯性矩必须保证直立式浮式平台海上安装和搬迁过程中所需稳性的要求。
当海上安装、搬迁完成后,或其他作业需要时,解开任意两个施工浮筒之间链/缆的连接卸扣,泳圈式浮筒组的施工浮筒即可在拆卸点处“断开”、并呈“一”字线形,用拖轮将呈一字排开的一串施工浮筒拖离直立式浮式平台。所述施工浮筒为直立式圆筒形容器,两端设置平板封头,其内底部敷设一层配重混凝土层,以保证单个施工浮筒和整个泳圈式浮筒组漂浮于水面时的浮心高于重心。施工浮筒推荐采用钢制或玻璃钢制。
本发明带延伸筒体的直筒式浮式平台600水动力性能优良的机理在于:1).向下延伸筒体可以确保减动结构的顶部位于波浪作用非常小的深度,该水深通常为30~40米。因此,在充分发挥减动结构增加附连水质量、增加垂荡运动固有周期和运动阻尼同时,极大地减小波浪作用于减动结构的载荷,克服现有圆筒形浮式平台减动结构所处水深不深的缺点。2).向下延伸筒体和减动结构大大增加了所带动的附连水质量,包括延伸筒体内和减动结构内所圈闭的水体(可接近甚至超过平台直立浮筒的排水量)、以及延伸筒体和减动结构外侧附连的水体,增加了浮筒运动的固有周期。由于浮体结构内部附连水的作用,延伸筒体和减动结构所形成的舱也可分别称之为延伸筒体附连水舱和减动结构附连水舱。3)向下延伸筒体增加了浮体运动的阻尼,延伸筒体底板的阻尼孔和减动结构的阻尼孔将进一步增加浮体的垂荡阻尼。为了进一步改善本发明浮式平台的水动力性能,降低VIM的不利影响,在没有开设阻尼孔的外筒壁上,如直立式浮筒1的外筒壁上、带整体气浮调节舱的固定式延伸筒体浮式平台611的固定筒体21的外筒壁上、等等,可以设置和SPAR平台筒体相类似的螺旋减涡侧板。因此,本发明带延伸筒体的直筒式浮式平台无论所述直立浮筒的尺度和排水量大小、吃水深浅,其水动力性能均能够达到或超过SPAR平台。
本发明带延伸筒体的直筒式浮式平台均能够实现整个浮式平台在船厂一次性完成建造、安装和调试,整体干拖或湿拖运输至海上目的地,大大节约工程投资和工期。总之,本发明带延伸筒体的直筒式浮式平台是一种具有多种用途、兼具SPAR平台和现行圆筒形FPSO优点、性能优良、安全可靠和经济性好的新型浮式平台。

Claims (19)

  1. 一种带延伸筒体的直筒式浮式平台,其特征在于,所述带延伸筒体的直筒式浮式平台包括如下四部分:
    直立式浮筒(1),其漂浮于水面(5)上,两端为顶板和底板,其顶部高出水面(5),直立式浮筒(1)的中心设置或不设置上下贯通的月池(11);
    延伸筒体(2),其包括至少一层连接于直立式浮筒(1)的底板并向下延伸、且底部开口的延伸圆筒,所述延伸圆筒具有同一垂直中心轴线,其最外层所述延伸圆筒的外壁底部外侧环绕设置一个减动结构(214或225);延伸筒体(2)为固定筒体(21),其最外层所述延伸圆筒的外径等于直立式浮筒(1)最外层所述直立式圆筒的外径,固定筒体(21)形成带固定式延伸筒体的浮式平台(610);或者延伸筒体(2)为可伸缩滑移筒体(22),其最外层所述延伸圆筒的外径大于直立式浮筒(1)最外层所述直立式圆筒的外径,可伸缩滑移筒体(22)形成带可伸缩滑移式延伸筒体的浮式平台(620);
    浮式平台定位系统(3),其为系泊定位系统(31)和动力定位系统之中的一种或两种的组合;
    上部设施(4),其位于直立式浮筒(1)的顶部和/或内部。
  2. 如权利要求1所述带延伸筒体的直筒式浮式平台,其特征在于,直立式浮筒(1)包括至少一层具有同一垂直中心轴线的直立式圆筒及与之水密连接的至少两层水平板,所述水平板包括所述顶板和所述底板;其外层筒壁为圆筒,或下部为伸出水面(5)的圆筒、上部为上开口面积大于下开口面积的圆锥筒。
  3. 如权利要求1所述带延伸筒体的直筒式浮式平台,其特征在于,直立式浮筒(1)包括外层筒体和至少一层与外层筒体具有同一垂直中心轴线的内层直立式圆筒,以及与之水密连接的至少两层水平板,所述水平板包括所述顶板和所述底板;其外层筒体从下向上分为四段,分别为水下圆筒、上开口面积小于下开口面积的水面圆锥筒、水上圆筒、上部为上开口面积大于下开口面积的圆锥筒;在带延伸筒体的直筒式浮式平台生产作业期间,水面(5)始终位于所述水面圆锥筒处,以便冬季抗冰。
  4. 如权利要求1所述带延伸筒体的直筒式浮式平台,其特征在于,直立式浮筒(1)包括至少三个彼此紧密相连或彼此具有相同间距圆筒、及连接多个所述圆筒顶部和底部的顶板和底板,形成一个整体结构,即多圆筒型浮筒;所述底板为圆形或圆环形,其圆 直径或圆环外径等于或大于所述多圆筒浮筒的外切圆的直径,圆环内径等于所述多圆筒型浮筒的内切圆的直径,其圆环孔为所述直立式浮筒(1)的月池(11)的底部出口。
  5. 如权利要求1至4任一项所述带延伸筒体的直筒式浮式平台,其特征在于,所述固定延伸筒体(21)水密连接于直立式浮筒(1)的底板;所述带固定式延伸筒体的浮式平台(610)为带整体气浮调节舱(215)的固定式延伸筒体浮式平台(611)或带底部气浮调节舱(216)的固定式延伸筒体浮式平台(612);
    整体气浮调节舱(215)的顶部和底部气浮调节舱(216)的顶部均设置插入直立式浮筒(1)内部或穿出顶部的充气/排气管(211),其上部设置阀门;整体气浮调节舱(215)的底部和底部气浮调节舱(216)的底部均设置或不设置底部水平阻尼板(212);整体气浮调节舱(215)的底部和底部气浮调节舱(216)的底部均设置或不设置底部固定压载舱(213),底部固定压载舱不得封闭整体气浮调节舱(215)和底部气浮调节舱(216)的底部开口;
    在带整体气浮调节舱的固定式延伸筒体浮式平台(611)的固定筒体(21)的内部,对称设置或不设置多个径向整体垂直水密分隔结构(2151),其水密连接直立式浮筒(1)的底板和一层或多层固定筒体(21)的圆筒,由此形成至少一个顶部密闭、底部开口的整体气浮调节舱(215);如果直立式浮筒(1)的中心设置月池(11),固定圆筒(21)的最内层圆筒成为月池(11)的一个组成部分;
    在带底部气浮调节舱的固定式延伸筒体浮式平台(612)的固定筒体(21)的内下部,设置一个与一层或多层固定筒体(21)的圆筒水密连接的水平隔离板(2161)或开口向下的圆锥隔离板(2162),将固定筒体(21)上下一分为二;上部为孔洞筒体(2163),其圆筒壁均设有分布的阻尼孔和/或下部矩形孔洞(2164),使得内外海水连通;下部为底部气浮调节舱(216),其结构由至少一层圆筒的底部气浮调节舱筒体(2165)和与之水密连接的水平隔离板(2161)或开口向下的圆锥隔离板(2162)组成;如果直立式浮筒(1)的中心设置月池(11),底部气浮调节舱(216)的最内层圆筒为上下贯通的底部月池(2166);底部气浮调节舱(216)的内部对称设置或不设置多个径向垂直底部分隔结构,水密连接所述圆筒且水密连接水平隔离板(2161)或开口向下的圆锥隔离板(2162),由此形成至少一个顶部密闭、底部开口的子气浮调节舱,各所述子气浮调节舱共同组成底部气浮调节舱(216)。
  6. 如权利要求5所述带延伸筒体的直筒式浮式平台,其特征在于,当带固定式延伸筒体的浮式平台(610)在坞内建造、下水或湿式拖航期间,充气/排气管(211)上 部的阀门关闭,整体气浮调节舱(215)或底部气浮调节舱(216)内全部或部分空间充满空气,在水中形成浮舱,为带固定式延伸筒体的浮式平台(610)提供浮力;
    当带固定式延伸筒体的浮式平台(610)拖航至海上目的地、开始海上安装时,充气/排气管(211)上部的阀门打开排气,带固定式延伸筒体的浮式平台(610)逐步下沉、整体气浮调节舱(215)或底部气浮调节舱(216)内充满海水,直至直立式浮筒(1)为带固定式延伸筒体的浮式平台(610)提供浮力、完成海上安装;带固定式延伸筒体的浮式平台(610)在海上生产作业期间或海上自存期间,整体气浮调节舱(215)或底部气浮调节舱(216)内充满海水,依靠直立式浮筒(1)为带固定式延伸筒体的浮式平台(610)提供浮力;
    当带固定式延伸筒体的浮式平台(610)搬迁移位、再次需要整体气浮调节舱(215)或底部气浮调节舱(216)提供浮力时,可通过充气/排气管(211)充气、排出整体气浮调节舱(215)或底部气浮调节舱(216)内的海水来实现。
  7. 如权利要求5所述带延伸筒体的直筒式浮式平台,其特征在于,带底部气浮调节舱的固定式延伸筒体浮式平台(612)为用于水产养殖的带固定式延伸筒体的浮式平台(6121)或用于非水产养殖的带固定式延伸筒体的浮式平台(6122)。
  8. 如权利要求7所述带延伸筒体的直筒式浮式平台,其特征在于,用于水产养殖的带固定式延伸筒体的浮式平台(6121)的直立式浮筒(1)仅包含两层具有同一中心垂直轴线的外层筒体和内层筒体、即形成月池(11)的月池筒体,以及与二者水密连接的至少两层水平板,所述水平板包括所述顶板和所述底板;所述外层筒体和所述内层筒体之间为海水压载舱/浮力空舱,上部设施(4)位于所述浮力空舱内和/或直立式浮筒(1)的顶部;月池(11)的顶部开口处安装一个可开合的格栅盖板(111);在直立式浮筒(1)的水下部分设置或不设置多个均布的水平联通管,使得月池(11)沿水平方向与外部海水连通;孔洞筒体(2163)仅为一层圆筒,其底部设置多个对称均布的下部矩形孔洞(2164),且下部矩形孔洞(2164)的底边连接于开口向下的圆锥隔离板(2162),孔洞筒体(2163)位于下部矩形孔洞(2164)以上部分的筒壁上开设有多个均布的阻尼孔;
    底部气浮调节舱(216)由包括最外层筒体和底部月池筒体在内的至少两层筒体所构成的底部气浮调节舱筒体(2165)和位于其顶部的圆锥隔离板(2162)共同组成,底部月池(2166)的直径小于月池(11)的直径,底部气浮调节舱筒体(2165)的最下端设置底部水平阻尼板(212);每个所述阻尼孔、下部矩形孔洞(2164)、底部月池(2166) 的顶部开口均采用格栅板(2167)封堵开口。
  9. 如权利要求7所述带延伸筒体的直筒式浮式平台,其特征在于,在用于非水产养殖的带固定式延伸筒体浮式平台(6122)的固定筒体的内下部,设置一个与之水密连接的水平隔离板(2161),水平隔离板2161的上部为孔洞筒体(2163),其孔洞筒体(2163)的整个圆筒壁设有均布的阻尼孔。
  10. 如权利要求1至4任一项所述带延伸筒体的直筒式浮式平台,其特征在于,带可伸缩滑移式延伸筒体的浮式平台(620)的可伸缩滑移筒体(22)包括至少一层套装在直立式浮筒(1)外壁上的套筒,直立式浮筒(1)带有或不带有最外层固定圆筒(21),所述套筒与直立式浮筒(1)具有同一个垂直中心轴线;每层所述套筒的筒壁上均开设或不开设多个套筒阻尼孔;
    当带可伸缩滑移式延伸筒体的浮式平台(620)在坞内建造、下水或拖航期间,全部所述套筒向上提升、使其底部接近并低于直立式浮筒(1)的底部并临时固定;当带可伸缩滑移式延伸筒体的浮式平台(620)到达海上目的地进行安装时,从最外层滑移套筒(221)开始,至与直立式浮筒(1)紧邻的滑移套筒(222)止,逐一解除临时固定,依靠自身重力使所述套筒一一下降和延伸,再将上下相邻的所述套筒、所述套筒与直立式浮筒(1)首尾相连,并通过可伸缩滑移筒体锁紧机构(229)固定,使得带可伸缩滑移式延伸筒体的浮式平台(620)在海上生产作业期间或海上自存期间成为加长的、深吃水的直筒式浮式平台;
    当带可伸缩滑移式延伸筒体的浮式平台(620)搬迁移位时,从最外层滑移套筒(221)开始,逐一解除固定、向上提升,直至全部所述套筒的底部接近并低于直立式浮筒(1)的底部并临时固定,以适应拖航。
  11. 如权利要求10所述带延伸筒体的直筒式浮式平台,其特征在于,直立式浮筒(1)外壁的底跟部、或直立式浮筒(1)底部延伸的最外层固定圆筒(21)的外壁的底跟部固定连接一个水平的直立浮筒底部外法兰环(12);
    可伸缩滑移筒体(22)的每层所述套筒底端部和顶部内壁分别固定连接一个水平的套筒底端法兰环(223)和水平的套筒顶内壁法兰环(224);每层所述套筒的内径等于其上部相邻直立式浮筒(1)的直立浮筒底部外法兰环(12)的外径、或等于其上部相邻所述套筒的套筒底端法兰环(223)的外径,并保证所述套筒可以沿直立浮筒底部外法兰(12)或套筒底端法兰环(223)上下滑移;
    每层所述套筒的套筒顶内壁法兰环(224)的内径等于或大于其上部相邻直立式浮 筒(1)或所述套筒的外径;所述套筒的套筒底端法兰环(223)内径小于其上部相邻直立式浮筒(1)或所述套筒的外径;可伸缩滑移筒体(22)的最外层滑移套筒(221)的套筒底端法兰环(223)的外径等于最外层滑移套筒(221)的外径、其他层可伸缩滑移筒体(22)的套筒底端法兰环(223)外径大于其所在层可伸缩滑移筒体(22)的外径;
    当带可伸缩滑移式延伸筒体的浮式平台(620)在坞内建造、下水或拖航期间,每层所述套筒的套筒底端法兰环(223)的内顶面与其上部相邻直立式浮筒(1)的直立浮筒底部外法兰环(12)、或上部相邻所述套筒的套筒底端法兰环(223)底面相接触;
    当带可伸缩滑移式延伸筒体的浮式平台(620)在海上生产作业期间或海上自存期间,每层所述套筒逐层下放,直至套筒顶内壁法兰环(224)的底面与其上部相邻直立式浮筒(1)的直立浮筒底部外法兰环(12)的顶面、或上部相邻所述套筒的套筒底端法兰环(223)外顶面相接触。
  12. 如权利要求10所述带延伸筒体的直筒式浮式平台,其特征在于,带可伸缩滑移式延伸筒体的浮式平台(620)的可伸缩滑移筒体(22)的最外层滑移套筒(221)的内底部和/或外壁底跟部设置滑移筒体底部固定压载舱(226)。
  13. 如权利要求10所述带延伸筒体的直筒式浮式平台,其特征在于,带可伸缩滑移式延伸筒体的浮式平台(620)的可伸缩滑移筒体(22)的最外层滑移套筒(221)的内底部设置滑移筒体底部水平阻尼板(227),在滑移筒体底部水平阻尼板(227)上开设多个滑移筒体底部阻尼孔。
  14. 如权利要求10所述带延伸筒体的直筒式浮式平台,其特征在于,在带可伸缩滑移式延伸筒体的浮式平台(620)的可伸缩滑移筒体(22)与直立式浮筒(1)紧邻的滑移套筒(222)顶部的外筒壁上,设置导缆器(311);导缆器(311)用于安装带可伸缩滑移式延伸筒体的浮式平台(620)的系泊定位系统(31)。
  15. 如权利要求11所述带延伸筒体的直筒式浮式平台,其特征在于,带可伸缩滑移式延伸筒体的浮式平台(620)为一种用于水产养殖的带可伸缩滑移式延伸筒体的浮式平台,其直立式浮筒(1)外壁的底跟部固定连接一个水平的直立浮筒底部外法兰环(12);直立式浮筒(1)仅包含两层具有同一中心垂直轴线的外层筒体和内层筒体、即形成月池(11)的月池筒体;所述外层筒体和所述内层筒体之间为海水压载舱/浮力空舱,上部设施(4)位于所述浮力空舱内和/或直立式浮筒(1)的顶部;月池(11)的顶部开口处安装一个可开合的格栅盖板(111)、或一层或两层网眼织物;在直立式浮筒(1)的水下部分设置或不设置多个均布的水平联通管,使得月池(11)沿水平方 向与外部海水连通;其可伸缩滑移筒体(22)的各层滑移套筒均由一个筒体骨架和其内部连接固定的一层、或其内部和外部连接固定的两层网眼织物的筒壁层组成;各层所述套筒的水平的套筒底端法兰环(223)和水平的套筒顶内壁法兰环(224)与其所在层的筒体骨架连接、形成一个整体结构;可伸缩滑移筒体(22)的最外层滑移套筒(221)的外壁底跟部设置滑移筒体底部固定压载舱(226);最外层滑移套筒(221)的底部开口处采用一层或两层网眼织物封口,或设置滑移筒体底部水平阻尼板(227),水平阻尼板(227)上开设多个滑移筒体底部阻尼孔;直立式浮筒(1)在通常生产作业期间漂浮于水面上、遭遇不利的环境条件时则潜浮于水下设定的深度;在捕捞作业时,逐层提升可伸缩滑移筒体(22)的滑移套筒并固定,以便利捕捞作业。
  16. 如权利要求1至4任一项所述带延伸筒体的直筒式浮式平台,其特征在于,所述减动结构(214或225)为可形成多舱的减动结构,其径向垂直截面为密闭的箱形、底部结构为环形水平板;减动结构(214或225)内部设置多个径向垂直分隔,与所述顶部结构、内外侧面垂直结构和底部水平环形板水密连接,形成多个对称均布的减动舱;对于需要依靠减动结构(214或225)的全部或者部分所述减动舱提供浮力和稳性的平台(600),每个需要提供浮力和稳性的所述减动舱为减动浮舱,其顶部均设置一根减动充气/排气管、其上部设置阀门;以每个所述减动浮舱底部水平板的形心为中心,设置一个通海的阻尼孔洞,在所述通海的阻尼孔洞上设置或不设置一个可开合的减动底舱口盖板,使之成为减动气浮舱或减动密闭浮舱;对于不需要依靠减动结构(214或225)、或仅需要依靠减动结构(214或225)部分所述减动舱提供浮力和稳性的平台(600),减动结构(214或225)的全部所述减动舱、或者对称选择至少两个所述减动舱,在所述减动舱顶板和底板上均开设至少一个通海的阻尼孔洞,使之成为内部始终直接通海的减动舱。
  17. 如权利要求16所述带延伸筒体的直筒式浮式平台,其特征在于,所述固定式延伸筒体的浮式平台(610)所包含的整体气浮调节舱(215)和底部气浮调节舱(216),均带有底部水平阻尼板(212),其内部均不设置任何垂直的径向或环形水密分隔;不带月池的所述固定式延伸筒体的浮式平台(610)的固定筒体(21)采用单层结构、为直立式浮筒(1)外层筒壁的延伸,其底部水平阻尼板(212)为圆形,中心设置一个阻尼孔洞;所述带有月池的固定式延伸筒体的浮式平台(610)的固定筒体(21)采用双层结构,外层为直立式浮筒(1)外层筒壁的延伸,内层为直立式浮筒(1)的月池(11)筒壁的延伸,其底部水平阻尼板(212)为环形、其上对称设置两个阻尼孔洞;
    或者,取消带月池的带底部气浮调节舱的固定式延伸筒体浮式平台(612)的双层固定筒体(21)的内层上段,即孔洞筒体(2163),仅保留其内层下段,即底部月池(2166)筒体;所述一个或两个阻尼孔洞的洞口均设置或不设置可开合的舱底盖板,由此可形成气浮舱或密闭浮舱。
  18. 一种泳圈式浮筒组,用于直立式浮式平台,为其提供海上安装和搬迁过程中所需的稳性,其特征在于:所述泳圈式浮筒组包括多个结构相同的施工浮筒,相邻的两个所述施工浮筒之间通过至少一条链/缆能拆卸地连接,各所述施工浮筒通过预安装或现场安装的方法,均匀分布、紧贴、环绕于所述直立式浮式平台的水下直筒筒体外壁上,形成“泳圈”,并保证所述泳圈式浮筒组与所述直立式浮式平台之间能够上下无障碍地相对滑移;所述泳圈式浮筒组漂浮在水面上,其水线面的惯性矩必须保证所述直立式浮式平台海上安装和搬迁过程中所需稳性的要求。
  19. 如权利要求18所述泳圈式浮筒组,其特征在于:所述施工浮筒为直立式圆筒形容器,两端设置平板封头,其内底部敷设一层配重混凝土层,以保证单个施工浮筒和整个泳圈式浮筒组漂浮于水面时的浮心高于重心。
PCT/CN2017/085052 2016-09-30 2017-05-19 带延伸筒体的直筒式浮式平台和泳圈式浮筒组 WO2018058975A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
GB1903722.5A GB2569473B (en) 2016-09-30 2017-05-19 Column floater with extended cylinder and ring buoy-group
US16/335,430 US10793227B2 (en) 2016-09-30 2017-05-19 Column floater with extended cylinder and ring buoy-group
AU2017333180A AU2017333180B2 (en) 2016-09-30 2017-05-19 Straight cylinder type floating platform with extension cylinder body, and swim ring type buoy group
CN201780056447.2A CN110139798B (zh) 2016-09-30 2017-05-19 带延伸筒体的直筒式浮式平台和泳圈式浮筒组
NO20190326A NO20190326A1 (en) 2016-09-30 2019-03-08 Column Floater with Extended Cylinder,and Ring Buoy-Group

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610867431.7 2016-09-30
CN201610867431.7A CN106428446A (zh) 2016-09-30 2016-09-30 带延伸筒体的直筒式浮式平台

Publications (1)

Publication Number Publication Date
WO2018058975A1 true WO2018058975A1 (zh) 2018-04-05

Family

ID=58171471

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/085052 WO2018058975A1 (zh) 2016-09-30 2017-05-19 带延伸筒体的直筒式浮式平台和泳圈式浮筒组

Country Status (6)

Country Link
US (1) US10793227B2 (zh)
CN (2) CN106428446A (zh)
AU (1) AU2017333180B2 (zh)
GB (1) GB2569473B (zh)
NO (1) NO20190326A1 (zh)
WO (1) WO2018058975A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NO20190481A1 (no) * 2019-04-08 2020-10-09 Stationmar As Teleskopisk flytende plattform for oppankring på dypt vann
CN114275110A (zh) * 2021-12-28 2022-04-05 谢沛鸿 一种水母冰山式的海中建筑结构
CN115056946A (zh) * 2022-04-14 2022-09-16 中国科学院水生生物研究所 一种监测鲸豚类的船基拖曳式移动声学考察装置及方法

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106428446A (zh) * 2016-09-30 2017-02-22 吴植融 带延伸筒体的直筒式浮式平台
CN108454798B (zh) * 2017-09-11 2022-04-26 青岛武船麦克德莫特海洋工程有限公司 浮式生产设施上部工艺模块的整体化建造安装方法
CN108142332B (zh) * 2017-12-29 2020-08-04 泉州天惠海洋生态科技有限公司 一种节能型水产品养殖装置
CN108739576B (zh) * 2018-05-03 2021-08-27 青岛博鲁泽海洋科技有限公司 一种用于深远海鱼类养殖的复合式网箱
CN108609123B (zh) * 2018-05-18 2019-11-22 武汉船用机械有限责任公司 海水提升装置
CN110576944A (zh) * 2018-06-07 2019-12-17 中集海洋工程研究院有限公司 自升式核发电平台
CN110803263A (zh) * 2018-08-06 2020-02-18 吴植融 一种直筒式浮式平台的减动结构
CN109339557A (zh) * 2018-11-06 2019-02-15 中冶北方(大连)工程技术有限公司 可伸缩机械式回水塔
EP3909920A4 (en) * 2019-01-10 2022-09-21 Sigan Peng CLEAN SAILING PROCEDURES FOR A SEA SHIP AND VESSEL
CN110723259A (zh) * 2019-10-17 2020-01-24 天津大学 带有可滑动套筒的Spar型基础海上浮式风力发电机
CN111414442A (zh) * 2020-01-08 2020-07-14 重庆大学 一种基于航道地形图和水位数据的航标位置校核方法
CN113976191B (zh) * 2021-12-27 2022-03-15 苏州英特模汽车科技有限公司 一种环境舱及其排气口设备

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007119051A1 (en) * 2006-04-17 2007-10-25 Petroleo Brasileiro Sa-Petrobras Mono-column fpso
CN101475048A (zh) * 2009-01-13 2009-07-08 中国海洋大学 一种新型海洋深水浮筒平台
CN101918270A (zh) * 2008-02-27 2010-12-15 三菱重工业株式会社 浮体结构物
CN101966868A (zh) * 2009-07-27 2011-02-09 刘吉彬 水陆两可的稳定浮体平台及其房屋的沉浮方法及其用途
CN102712348A (zh) * 2010-01-06 2012-10-03 泰克尼普法国公司 通过延伸浮筒增加在张力腿上的漂浮性和稳定性的系统
CN103410133A (zh) * 2013-08-20 2013-11-27 中国海洋石油总公司 利用气囊对深水导管架进行海上安装的方法
CN104321247A (zh) * 2013-01-22 2015-01-28 吴植融 一种环翼式浮式平台
KR20150049771A (ko) * 2013-10-31 2015-05-08 현대중공업 주식회사 원통형 부유식 해양구조물의 상하동요 저감장치
CN106428446A (zh) * 2016-09-30 2017-02-22 吴植融 带延伸筒体的直筒式浮式平台

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NO744314L (zh) * 1974-11-29 1976-06-01 Sigurd Heien
US4966495A (en) 1988-07-19 1990-10-30 Goldman Jerome L Semisubmersible vessel with captured constant tension buoy
NO319971B1 (no) 2001-05-10 2005-10-03 Sevan Marine As Offshore-plattform for boring etter eller produksjon av hydrokarboner
US7086810B2 (en) 2004-09-02 2006-08-08 Petróleo Brasileiro S.A. - Petrobras Floating structure
US7958835B2 (en) 2007-01-01 2011-06-14 Nagan Srinivasan Offshore floating production, storage, and off-loading vessel for use in ice-covered and clear water applications
DE102008033383A1 (de) 2008-07-16 2010-01-21 Osram Gesellschaft mit beschränkter Haftung Halterungsrahmen für ein optisches Element
US7891909B2 (en) * 2008-10-10 2011-02-22 Horton Deepwater Development Systems, Inc. Semi-submersible offshore structure
NO336206B1 (no) 2011-02-01 2015-06-15 Sevan Marine Asa Produksjonsenhet med slakt hengende stigerør og med tilpasset skrog og moonpool
NO20110173A1 (no) 2011-02-01 2012-08-02 Sevan Marine Asa Produksjonsenhet egnet for bruk av torre ventiltraer

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007119051A1 (en) * 2006-04-17 2007-10-25 Petroleo Brasileiro Sa-Petrobras Mono-column fpso
CN101918270A (zh) * 2008-02-27 2010-12-15 三菱重工业株式会社 浮体结构物
CN101475048A (zh) * 2009-01-13 2009-07-08 中国海洋大学 一种新型海洋深水浮筒平台
CN101966868A (zh) * 2009-07-27 2011-02-09 刘吉彬 水陆两可的稳定浮体平台及其房屋的沉浮方法及其用途
CN102712348A (zh) * 2010-01-06 2012-10-03 泰克尼普法国公司 通过延伸浮筒增加在张力腿上的漂浮性和稳定性的系统
CN104321247A (zh) * 2013-01-22 2015-01-28 吴植融 一种环翼式浮式平台
CN103410133A (zh) * 2013-08-20 2013-11-27 中国海洋石油总公司 利用气囊对深水导管架进行海上安装的方法
KR20150049771A (ko) * 2013-10-31 2015-05-08 현대중공업 주식회사 원통형 부유식 해양구조물의 상하동요 저감장치
CN106428446A (zh) * 2016-09-30 2017-02-22 吴植融 带延伸筒体的直筒式浮式平台

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NO20190481A1 (no) * 2019-04-08 2020-10-09 Stationmar As Teleskopisk flytende plattform for oppankring på dypt vann
WO2020209728A1 (en) 2019-04-08 2020-10-15 Stationmar As A single-column semi-submersible platform
NO346090B1 (no) * 2019-04-08 2022-02-07 Stationmar As Enkelt søyle halvt nedsenkbar plattform for fast forankring på dypt vann
CN114275110A (zh) * 2021-12-28 2022-04-05 谢沛鸿 一种水母冰山式的海中建筑结构
CN115056946A (zh) * 2022-04-14 2022-09-16 中国科学院水生生物研究所 一种监测鲸豚类的船基拖曳式移动声学考察装置及方法

Also Published As

Publication number Publication date
GB201903722D0 (en) 2019-05-01
CN110139798A (zh) 2019-08-16
GB2569473A (en) 2019-06-19
CN106428446A (zh) 2017-02-22
US20190217919A1 (en) 2019-07-18
GB2569473B (en) 2021-11-24
AU2017333180A1 (en) 2019-03-07
NO20190326A1 (en) 2019-03-08
CN110139798B (zh) 2021-06-22
AU2017333180B2 (en) 2020-04-09
US10793227B2 (en) 2020-10-06

Similar Documents

Publication Publication Date Title
WO2018058975A1 (zh) 带延伸筒体的直筒式浮式平台和泳圈式浮筒组
US5609442A (en) Offshore apparatus and method for oil operations
US8387550B2 (en) Offshore floating platform with motion damper columns
US7882794B2 (en) Buoyancy device and method for stabilizing and controlling lowering or raising of a structure between the surface and the sea floor
CN101475048B (zh) 一种新型海洋深水浮筒平台
CN108820148B (zh) 半潜平台及其下浮体
CN101980917A (zh) 液体储存、装卸装置及以其为基础的海上钻井和生产设施
WO2016004847A1 (zh) 直筒式浮式平台
CN103010615B (zh) 一种具有系泊功能的水面储油装置及其安装方法
CN102167141B (zh) 一种采用不对称软舱的箱型桁架式四立柱深水平台系统
AU2008294758B2 (en) An off-shore structure, a buoyancy structure, and method for installation of an off-shore structure
US20100269746A1 (en) Mating of buoyant hull structure with truss structure
TWI689446B (zh) 具有隨深度改變之水平截面之浮動支撐結構
CN107792306B (zh) 一种浮力塔平台
CN203094846U (zh) 一种具有系泊功能的水面储油装置
CN113417808A (zh) 一种适用于单桩基础和浮式风机组合结构体系的浮筒
CN107187554B (zh) 用于半潜式钻井平台干拖运输的双体半潜驳船及作业方法
CN105644705A (zh) 一种小水线面双体平台
CN216874529U (zh) 一种升降式养殖网箱
WO2023040062A1 (zh) 一种带有气囊的框架式浮岛、半潜船及半潜船控制方法
EP2903916B1 (en) Tank
CN112644653A (zh) 一种深远海半潜升降式hdpe多层平台
RU39565U1 (ru) Сухогрузно-наливное судно хусанова
CN102704506B (zh) 海上潜式基础结构的施工方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17854431

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017333180

Country of ref document: AU

Date of ref document: 20170519

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 201903722

Country of ref document: GB

Kind code of ref document: A

Free format text: PCT FILING DATE = 20170519

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 12/07/2019)

122 Ep: pct application non-entry in european phase

Ref document number: 17854431

Country of ref document: EP

Kind code of ref document: A1