WO2018058896A1 - 一种激光干涉仪用的稳频装置和方法 - Google Patents

一种激光干涉仪用的稳频装置和方法 Download PDF

Info

Publication number
WO2018058896A1
WO2018058896A1 PCT/CN2017/075823 CN2017075823W WO2018058896A1 WO 2018058896 A1 WO2018058896 A1 WO 2018058896A1 CN 2017075823 W CN2017075823 W CN 2017075823W WO 2018058896 A1 WO2018058896 A1 WO 2018058896A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
laser
frequency stabilization
beam splitter
optical path
Prior art date
Application number
PCT/CN2017/075823
Other languages
English (en)
French (fr)
Inventor
刘龙为
张和君
Original Assignee
深圳市中图仪器股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市中图仪器股份有限公司 filed Critical 深圳市中图仪器股份有限公司
Publication of WO2018058896A1 publication Critical patent/WO2018058896A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B9/00Measuring instruments characterised by the use of optical techniques
    • G01B9/02Interferometers
    • G01B9/02015Interferometers characterised by the beam path configuration
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • H01S3/13Stabilisation of laser output parameters, e.g. frequency or amplitude
    • H01S3/136Stabilisation of laser output parameters, e.g. frequency or amplitude by controlling devices placed within the cavity
    • H01S3/137Stabilisation of laser output parameters, e.g. frequency or amplitude by controlling devices placed within the cavity for stabilising of frequency

Definitions

  • the present invention relates to a frequency stabilization device, and more particularly to a frequency stabilization device and method for a laser interferometer.
  • a laser interferometer is an optical measuring instrument that measures linear displacement using light wave interference techniques.
  • the frequency-stabilized laser is the core component.
  • the frequency stabilization performance of the laser is directly related to the performance of the whole instrument.
  • the methods of laser frequency stabilization mainly include the following, as shown in Figure 1 and Figure 2.
  • the frequency-stabilized laser is mainly used to stabilize the cavity length of the laser.
  • the general method is to use a part of the light intensity of the laser as feedback, monitor the change of the output through the photodetector, or adjust the working cavity length of the laser actively or passively.
  • the way to stabilize the cavity length is mainly thermal frequency stabilization, saturation absorption peak stabilization and so on.
  • the existing frequency stabilization device includes a control system 101, a laser 102, a cavity length stabilization system 103, a first mirror 104, a second mirror 105, a polarizer 106, a subsequent optical system 107, and a polarization beam splitter.
  • the light used for frequency stabilization is the light coming out of the end of the laser 102.
  • This technique is not suitable for a single-ended light-emitting laser. And if it is a double-ended output laser, there is a case where there is a difference between the tail light and the work output light, and the frequency stabilization effect is not good.
  • another conventional frequency stabilization device includes a cavity length stabilization system 201, a laser 202, a control system 203, a photocell 204, a depolarization beam splitting prism (NPBS) 205, a mirror 206, a polarizer 207, and a subsequent
  • the optical system 208 employs a portion of the output light as a frequency stabilized laser. This monitors that the change in laser power is consistent with the change in light intensity of the output. This solves the effect of stray light on the laser frequency stability in the tail light.
  • NPBS depolarization beam splitting prism
  • the ratio of the two longitudinal modes coming out of the laser 202 should be substantially equal, but if a non-1:1 ratio of the special beam splitter is used, it will be more or less The effect of the S-light and P-light ratio in the stabilized light is to eliminate this effect. It is very difficult to design through the splitting film layer, and this special beam splitter is also particularly expensive.
  • the NPBS depolarization beam splitting prism 205
  • the S light component and the P light component in the light used for the frequency stabilization are not equal, but this will cause the frequency stabilization. The proportion of light is large.
  • NPBS generally has a ratio of transmitted light to reflected light of 1:1, which means that the light required for frequency stabilization already accounts for half of the output intensity of the laser, resulting in loss of laser output energy, which is required for output light intensity. Occasionally, it is very undesirable.
  • the present invention provides a frequency stabilization device and method for a laser interferometer.
  • the present invention provides a frequency stabilization device for a laser interferometer, comprising a circuit control system, a laser, a guiding optical path, a frequency stabilizing optical path, and a laser output optical path, wherein the guiding optical path directs light emitted by the laser to the a frequency stabilizing optical path, the stable optical path comprising a first beam splitter, a second beam splitter and a photocell, wherein the first beam splitter splits the light output by the guiding light path into a reflected light and a transmitted light, the reflected light being incident
  • the second beam splitter, the second beam splitter splits the reflected light into S light and P light according to an S vibration mode and a P vibration mode, and the S light and the P light respectively enter the photo cell
  • the circuit control system is electrically connected to the laser and the photocell respectively, and the circuit control system controls the cavity length of the frequency stabilization cavity of the laser according to the light intensity of the S light and the P light fed back by the photovoltaic cell, thereby
  • the guiding optical path includes a first total reflection mirror and a second total reflection mirror, and the light emitted by the laser is reflected by the first total reflection mirror and is incident on the second total reflection mirror. And reflected by the second total reflection mirror, and injected into the first beam splitter.
  • the surfaces of the first total reflection mirror and the second total reflection mirror are each plated with a metal film.
  • the laser output optical path includes a polarization beam splitting prism, and the transmitted light beam is incident on the polarization beam splitting prism.
  • the normal direction of the first beam splitter is 15 degrees from the incident beam.
  • the transmission surface of the first beam splitter is plated with an antireflection film of a corresponding wavelength.
  • the second beam splitter is a birefringent crystal device.
  • the photovoltaic cell is a two-quadrant optoelectronic component.
  • a small aperture stop is disposed between the first beam splitter and the second beam splitter, and the reflected light of the first beam splitter is filtered through the aperture to remove stray light.
  • the second beam splitter is described.
  • the invention also provides a frequency stabilization method for a laser interferometer, which guides the light emitted by the laser to a frequency stabilization optical path through a guiding optical path, the stable optical path comprising a first beam splitter, a second beam splitter and a photocell,
  • the first beam splitter splits the light outputted by the guiding light path into reflected light and transmitted light, and the reflected light is incident on the second beam splitter, and the reflected light is vibrated by S through the second beam splitter.
  • the mode and the P vibration mode are divided into S light and P light, and the S light and the P light are respectively injected into the photovoltaic cell, and the circuit control system controls the laser according to the light intensity of the S light and the P light fed back by the photovoltaic cell.
  • the cavity of the frequency stabilization cavity is configured to achieve a frequency stabilization effect, and the transmitted light is incident into the laser output optical path for operation output.
  • the invention has the beneficial effects that: through the above scheme, the design of the frequency division splitting makes the proportion of the light for frequency stabilization in the laser very small, so that the energy loss of the frequency stabilization part is extremely small, and the utility model is greatly increased for The laser intensity of the work, and the design of the angle and size of the first beam splitter can greatly reduce the influence of stray light on the frequency stability; the frequency-division spectroscopic adjustment is more convenient, the structure is simple and easy, and the structure is compact and easy to mechanically package; Symmetrical optical and electronic design ensures the accuracy and reliability of frequency-stabilized data.
  • FIG. 1 is a schematic diagram of a prior art frequency stabilization device.
  • FIG. 2 is a schematic diagram of another frequency stabilization device in the prior art.
  • FIG 3 is a schematic view of a frequency stabilization device for a laser interferometer of the present invention.
  • FIG. 4 is a schematic view showing the splitting of a first beam splitter for a laser interferometer of the present invention.
  • Fig. 5 is a schematic view showing the splitting of a first beam splitter for a laser interferometer of the present invention.
  • FIGS. 3 to 5 are: a frequency stabilization cavity 1; a laser 2; a first total reflection mirror 3; an incident surface 51; a transmission surface 52; a second total reflection mirror 4; a first beam splitter 5; Dichroic prism 6; second beam splitter 7; photocell 8; circuit control system 9.
  • the S-light and P-light intensity used in the frequency stabilization are substantially equal.
  • the present invention provides a frequency stabilization device for a laser interferometer, comprising a circuit control system 9, a laser 2, a guiding optical path, a frequency stabilization optical path, and a laser output optical path, wherein And guiding the light path to direct the light emitted by the laser 2 to the frequency stabilization optical path, the frequency stabilization optical path comprising a first beam splitter 5, a second beam splitter 7 and a photocell 8, wherein the first beam splitter 5
  • the light outputted by the guiding optical path is divided into reflected light and transmitted light, and the reflected light is incident on the second beam splitter 7, and the second beam splitter 7 divides the reflected light into an S vibration mode and a P vibration mode.
  • the S light and the P light are respectively incident on the photovoltaic cell 8 , and the circuit control system 9 is electrically connected to the laser 2 and the photovoltaic cell 8 respectively, and the circuit control system 9 is based on the photovoltaic cell 8
  • the intensity of the S-light and the P-light is fed back, and the cavity length of the frequency-stabilized cavity of the laser 2 is controlled to achieve the effect of frequency stabilization, and the transmitted light is incident into the laser output light path for operation output.
  • the circuit control system 9 is mainly for receiving the light intensity of two modes S light and P light in the frequency stabilization, and using the light intensity of the two modes for frequency stabilization.
  • the guiding light path includes a first total reflection mirror 3 and a second total reflection mirror 4, and the light emitted by the laser 2 is reflected by the first total reflection mirror 3, and is injected into the The second total reflection mirror 4 is reflected by the second total reflection mirror 4 and incident on the first beam splitter 5.
  • the light output by the laser 2 passes through two adjustable total reflection mirrors, which can be adjusted until the desired position is incident on the first beam splitter 5.
  • the surfaces of the first total reflection mirror 3 and the second total reflection mirror 4 are plated with a metal film. This can effectively reflect the light intensity of S and P light without causing a difference in additional strength. If a mirror with a dielectric film is used, the difference between S light and P light will be very large, which will result in very stable frequency effect. not good.
  • the laser output optical path includes a polarization beam splitting prism 6, and the transmitted light beam is incident on the polarization beam splitting prism 6 (abbreviated as PBS), and the polarization beam splitting prism 6 is used to filter out a pattern.
  • PBS polarization beam splitting prism 6
  • More innovative approach can simultaneously output transmitted light and reflected light, with the corresponding detection system, can play a role of two, a laser interferometer, there can be a double-ended output interface.
  • the PBS can also be replaced by a polarizing device such as a polarizing plate, and PBS is preferred.
  • the normal direction of the first dichroic mirror 5 is 15 degrees from the incident beam.
  • the transmission surface of the first beam splitter 5 is plated with an antireflection film of a corresponding wavelength.
  • the light reflected by the incident surface 51 enters the second dichroic mirror 7, and most of the light is transmitted into the polarization beam splitting prism 6.
  • the first beam splitter 5 is preferably a beam splitting prism.
  • the incident surface 51 is not subjected to any treatment, and only requires polishing to the corresponding optical surface precision index, and the transmitting surface 52 is coated with an antireflection film of a corresponding wavelength. .
  • the second beam splitter 7 is preferably a birefringent crystal device, and the second beam splitter 7 is mainly used as a light that reflects the incident surface 51 of the first beam splitter 5 by S.
  • the vibration mode is separated from the P vibration mode.
  • the photovoltaic cell 8 is a two-quadrant photoelectric element for detecting the light intensity of the S light and the P light.
  • the light intensity signal is converted into an electrical signal, and the input circuit control system 9 is used as a characteristic signal of the frequency stabilization.
  • the incident surface 51 of the first beam splitter 5 is a normal optical surface, and the transmission surface 52 is plated with an antireflection film corresponding to the wavelength of the laser.
  • the angle between the laser beam and the normal to the incident surface 51 of the first beam splitter 5 is 15°, which is better if it is smaller. It can be known from the Fresnel formula in optics that in the case of incident at a small angle, the reflectivity of the glass surface is generally about 4%, so that 96% of the light intensity is used by us, and the effective utilization rate of the laser is very high.
  • the ratio of the thickness and the width of the first beam splitter 5 the reflected light of the transmission surface 52 of the first beam splitter 5 can be reflected not to be reflected on the second beam splitter 7, although the transmission surface 52 is coated with an anti-reflection film, There will still be some light reflections, which is about 0.2%. Therefore, by controlling the ratio of the thickness and the width of the first beam splitter 5, the influence on the frequency stabilization accuracy can be eliminated.
  • Another method is to add a small aperture stop to filter out other stray light before the first beam splitter 5 enters the second beam splitter 7. After about 4% of the reflected light enters the second beam splitter 7, the light beam is split into two beams according to the polarization direction, and is incident on the photocell 8, respectively.
  • the two-quadrant photocell can be preferentially selected. After receiving the photocell 8, the cavity length of the frequency stabilization cavity 1 of the laser 2 is controlled by the circuit control system 9, thereby achieving the effect of frequency stabilization.
  • the invention also provides a frequency stabilization method for a laser interferometer, which guides the light emitted by the laser 2 to a frequency stabilization optical path through a guiding optical path, the stable optical path comprising a first beam splitter 5, a second beam splitter 7 and a photocell 8.
  • the light outputted by the guiding light path is divided into reflected light and transmitted light by the first beam splitter 5, and the reflected light is incident on the second beam splitter 7 through the second beam splitter 7
  • the reflected light is divided into S light and P light according to the S vibration mode and the P vibration mode, and the S light and the P light are respectively injected into the photovoltaic cell 8, and the circuit control system 9 according to the S light and the feedback of the photovoltaic cell 8
  • the light intensity of the P light controls the cavity length of the frequency stabilization cavity 1 of the laser 2 to achieve the effect of frequency stabilization, and the transmitted light is incident into the laser output light path for operation output.
  • the first beam splitter 5 splits the beam into two parts, a small amount of light is reflected and incident on the second beam splitter 7 for the stabilization of the laser system, most of which is transmitted as a laser output for operation.
  • the light beam can be incident on the first beam splitter 5 at a certain angle and can be reflected at a specified angle.
  • the laser output light path is mainly composed of one PBS, the high extinction ratio of the PBS transmitted light can ensure the single mode of the output light, and the PBS can also output the reflected light, and the reflected light is also a single mode, which can be used as an extension. application.
  • the frequency stabilization splitting system is more convenient to adjust, has a simple and easy structure, and is compact in structure and easy to mechanically package.
  • the design of the first beam splitter 5 is such that the energy loss in the frequency-stabilized portion is extremely small, the laser intensity for operation is greatly increased, and the design of the angle and size of the first beam splitter 5 can greatly reduce the stray light stability. The effect of frequency accuracy.
  • the frequency-stabilized part of the optical path system adopts symmetrical optical and electronic design to ensure the accuracy and reliability of the frequency-stabilized data.
  • the laser output optical path retains another single mode as an extended standby light source while ensuring that the optical path outputs a single mode.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Optics & Photonics (AREA)
  • General Physics & Mathematics (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)
  • Lasers (AREA)

Abstract

一种激光干涉仪用的稳频装置,包括电路控制系统(9)、激光器(2)、导向光路、稳频光路和激光输出光路,其中,导向光路将激光器(2)射出的光导向到稳频光路,稳频光路包括第一分光镜(5)、第二分光镜(7)和光电池(8)。通过稳频分光的设计,使得激光器(2)中用于稳频的光所占比例非常少,使得稳频部分的能量损失极小,极大的增加了用于工作的激光强度,并且第一分光镜(5)的角度和尺寸的设计可以大大减少杂散光对稳频精度的影响;稳频分光调节更为方便,结构简单易行,并且结构紧凑,易于机械封装;采用对称的光学和电子设计,可以确保稳频数据的精度和可靠性。

Description

一种激光干涉仪用的稳频装置和方法 技术领域
本发明涉及稳频装置,尤其涉及一种激光干涉仪用的稳频装置和方法。
背景技术
激光干涉仪是用光波干涉技术测量线性位移的光学测量仪器。而稳频激光器是其中的核心部件,激光器的稳频性能直接关系到整个仪器的性能,现阶段激光稳频的方法主要有以下几种,如图1和图2所示。
稳频激光器主要是稳定激光器的腔长,一般采用的方法就是将激光器输出的光强的一部分作为反馈,通过光电探测器监测其输出的变化,或主动或被动的调节激光器的工作腔长。在我们工业用的激光器,特别是氦氖激光器中,稳定腔长的方式主要是热稳频,饱和吸收峰稳频等等。
如图1所示,现有的稳频装置包括控制系统101、激光器102、腔长稳定系统103、第一反射镜104、第二反射镜105、偏振片106、后续光学系统107、偏振分光镜108和光电池109,稳频所用的光为激光器102尾部出来的光,这种技术对于单端出光的激光器并不适用。并且若是双端输出激光器,则还存在着尾光与工作输出光存在差异,而导致稳频效果不好的情况。
如图2所示,现有的另一种稳频装置包括腔长稳定系统201、激光器202、控制系统203、光电池204、消偏振分光棱镜(NPBS)205、反射镜206、偏振片207和后续光学系统208,采用了输出光的一部分作为稳频激光。这样监测到激光器功率变化与输出的光强的变化是一致的。这样倒是解决了尾光中杂散光对激光频率稳定度的影响。但是这种方案中也存在一些弊端,首先,激光器202出来的两个纵模所分出的比例应该要基本相等,但是若是采用非1:1比例的特制的分光镜,就会或多或少的影响稳频光中S光和P光的比例,要消除这个影响,通过分光膜层的设计又是非常难,并且这个特制的分光镜也特别昂贵。其次,如果采用如图2这种NPBS(消偏振分光棱镜205)分光稳频的方式,可以消除稳频所用光中S光分量和P光分量不相等的问题,但是这样又会使得稳频所分的光所占比例较大。NPBS一般透射光和反射光的比例为1:1,这样就代表了稳频需要的光已经占了激光器输出光强的一半,造成了激光输出能量的损失,这对于对输出光强有要求的场合,是非常不可取的。
此外,专利《双纵模稳频激光器(专利号:CN200710049396)》中用到 了液晶调制器。采用非对称稳频,虽然看起来非常的好,但是,此方案首先依赖于电路上面的控制。并且,用于稳频的S光和P光是间隔被光电池接收,这会影响稳频的精度。并且从数学微分来说,控制两个光强相等的平衡点要比控制一个极大另一个极小要容易的多。
因此,现有技术的缺点总结如下:
1.采用尾光稳频的热稳频方式,难以避免的会有一些杂散光的影响,从而影响到稳频的精度。
2.利用部分工作光稳频的效果好,但是稳频中分光比例,以及所分光中S光分量和P光分量的比例难以控制。
3.利用复杂的电路控制系统和不常用的光学器件,依赖于电子方面的特性。
发明内容
为了解决现有技术中的问题,本发明提供了一种激光干涉仪用的稳频装置和方法。
本发明提供了一种激光干涉仪用的稳频装置,包括电路控制系统、激光器、导向光路、稳频光路和激光输出光路,其中,所述导向光路将所述激光器射出的光导向到所述稳频光路,所述稳频光路包括第一分光镜、第二分光镜和光电池,所述第一分光镜将所述导向光路输出的光分为反射光线和透射光线,所述反射光线射入所述第二分光镜,所述第二分光镜将所述反射光线按S振动模式和P振动模式分为S光和P光,所述S光和P光分别射入所述光电池,所述电路控制系统分别与所述激光器、光电池电连接,所述电路控制系统根据所述光电池反馈的S光和P光的光强,控制所述激光器的稳频腔体的腔长,从而达到稳频的作用,所述透射光线射入所述激光输出光路进行工作输出。
作为本发明的进一步改进,所述导向光路包括第一全反射镜和第二全反射镜,所述激光器射出的光经所述第一全反射镜反射,射入所述第二全反射镜,再经所述第二全反射镜反射,射入所述第一分光镜。
作为本发明的进一步改进,所述第一全反射镜和第二全反射镜的表面均镀有金属膜。
作为本发明的进一步改进,所述激光输出光路包括偏振分光棱镜,所述透射光线射入所述偏振分光棱镜。
作为本发明的进一步改进,所述第一分光镜的法线方向与入射光束成15度。
作为本发明的进一步改进,所述第一分光镜的透射面镀有对应波长的增透膜。
作为本发明的进一步改进,所述第二分光镜为双折射晶体器件。
作为本发明的进一步改进,所述光电池为二象限光电元件。
作为本发明的进一步改进,所述第一分光镜、第二分光镜之间设有小孔光阑,所述第一分光镜的反射光线经所述小孔光阑滤去杂散光射入所述第二分光镜。
本发明还提供了一种激光干涉仪用的稳频方法,通过导向光路将激光器射出的光导向到稳频光路,所述稳频光路包括第一分光镜、第二分光镜和光电池,通过所述第一分光镜将所述导向光路输出的光分为反射光线和透射光线,将所述反射光线射入所述第二分光镜,通过所述第二分光镜将所述反射光线按S振动模式和P振动模式分为S光和P光,将所述S光和P光分别射入所述光电池,电路控制系统根据所述光电池反馈的S光和P光的光强,控制所述激光器的稳频腔体的腔长,从而达到稳频的作用,将所述透射光线射入所述激光输出光路进行工作输出。
本发明的有益效果是:通过上述方案,通过稳频分光的设计,使得激光器中用于稳频的光所占比例非常少,使得稳频部分的能量损失极小,极大的增加了用于工作的激光强度,并且第一分光镜的角度和尺寸的设计可以大大减少杂散光对稳频精度的影响;稳频分光调节更为方便,结构简单易行,并且结构紧凑,易于机械封装;采用对称的光学和电子设计,可以确保稳频数据的精度和可靠性。
附图说明
图1是现有技术中稳频装置的示意图。
图2是现有技术中另一种稳频装置的示意图。
图3是本发明一种激光干涉仪用的稳频装置的示意图。
图4是本发明一种激光干涉仪用的第一分光镜的分光示意图。
图5是本发明一种激光干涉仪用的第一分光镜的分光示意图。
具体实施方式
下面结合附图说明及具体实施方式对本发明进一步说明。
图3至图5中的附图标号为:稳频腔体1;激光器2;第一全反射镜3;入射面51;透射面52;第二全反射镜4;第一分光镜5;偏振分光棱镜6;第二分光镜7;光电池8;电路控制系统9。
本发明的目的如下:
1.通过稳频分光光路的设计,使得激光器中用于稳频的光所占比例非常少。
2.通过稳频分光光路和器件结构的设计,使得用于稳频中的S光和P光光强基本相等。
3.通过使用普通光学器件达到高精度分光,使其用于稳频系统。
4.简化电子控制上面的难度,保证S光和P光的同步性。
如图3至图5所示,为了实现上述目的,本发明提供了一种激光干涉仪用的稳频装置,包括电路控制系统9、激光器2、导向光路、稳频光路和激光输出光路,其中,所述导向光路将所述激光器2射出的光导向到所述稳频光路,所述稳频光路包括第一分光镜5、第二分光镜7和光电池8,所述第一分光镜5将所述导向光路输出的光分为反射光线和透射光线,所述反射光线射入所述第二分光镜7,所述第二分光镜7将所述反射光线按S振动模式和P振动模式分为S光和P光,所述S光和P光分别射入所述光电池8,所述电路控制系统9分别与所述激光器2、光电池8电连接,所述电路控制系统9根据所述光电池8反馈的S光和P光的光强,控制所述激光器2的稳频腔体的腔长,从而达到稳频的作用,所述透射光线射入所述激光输出光路进行工作输出。
如图3至图5所示,所述电路控制系统9主要是为了接收稳频中两个模式S光和P光的光强,并将两个模式的光强用于稳频。
如图3至图5所示,所述导向光路包括第一全反射镜3和第二全反射镜4,所述激光器2射出的光经所述第一全反射镜3反射,射入所述第二全反射镜4,再经所述第二全反射镜4反射,射入所述第一分光镜5。激光器2输出的光通过两个可调的全反射镜,可以调整准直到所需要的位置入射到第一分光镜5上
如图3至图5所示,所述第一全反射镜3和第二全反射镜4的表面均镀有金属膜。这样可以有效的反射S光和P光的光强,而不会引起附加强度的差别,若是采用介质膜的反射镜,S光和P光的差别将会非常大,这样会造成稳频效果非常不好。
如图3至图5所示,所述激光输出光路包括偏振分光棱镜6,所述透射光线射入所述偏振分光棱镜6(简称PBS),所述偏振分光棱镜6用来滤去一个模式,更有新意的做法可以将透射光和反射光同时输出,配合相应的探测系统,可以起到一分为二的作用,一台激光干涉仪,可以存在双端输出接口。相应的,PBS也可以用偏振片等偏振器件代替,优先考虑PBS。
如图3至图5所示,所述第一分光镜5的法线方向与入射光束成15度。所述第一分光镜5的透射面镀有对应波长的增透膜。入射面51反射的光进入到第二分光镜7,大部分光透射进入偏振分光棱镜6。其中第一分光镜5优选为分光棱镜,如图4、5所示,入射面51未做任何处理,只要求抛光到相应的光学面精度的指标,透射面52镀上对应波长的增透膜。
如图3至图5所示,所述第二分光镜7优选为双折射晶体器件,所述第二分光镜7主要用作是将第一分光镜5中入射面51反射过来的光按S振动模式和P振动模式分开。
如图3至图5所示,所述光电池8为二象限光电元件,用来探测S光和P光的光强。并将光强信号转化为电学信号,输入电路控制系统9,用来作为稳频的特征信号。
如图5所示,其中第一分光镜5的入射面51为普通的光学表面,未做任何处理,透射面52镀上了与激光波长相对应的增透膜。激光光束与第一分光镜5中入射面51的法线的夹角为15°,这个角度如果能更小更好。由光学中的菲涅尔公式可以知道,在小角度入射的情况下,一般玻璃表面的反射率约为4%,这样96%的光强被我们拿来使用,激光的有效利用率非常高。并且通过设计第一分光镜5的厚度和宽度的比例,可以使得第一分光镜5中透射面52的反射光反射不到第二分光镜7上,虽然透射面52镀有增透膜,但是依然会有部分光反射,这个反射量大约为0.2%。所以通过控制第一分光镜5的厚度和宽度的比,可以消除这个对稳频精度的影响。另外一种方法就是在第一分光镜5进入到第二分光镜7之前加入一个小孔光阑用来滤去其他杂散光。4%左右的反射光进入到第二分光镜7后,光束按照偏振方向分为两束,分别入射到光电池8上,为了保证光电池8的一致性,可优先选择二象限光电池。光电池8接收后通过电路控制系统9来控制激光器2的稳频腔体1的腔长,从而达到稳频的作用。
本发明还提供了一种激光干涉仪用的稳频方法,通过导向光路将激光器2射出的光导向到稳频光路,所述稳频光路包括第一分光镜5、第二分光镜7和光电池8,通过所述第一分光镜5将所述导向光路输出的光分为反射光线和透射光线,将所述反射光线射入所述第二分光镜7,通过所述第二分光镜7将所述反射光线按S振动模式和P振动模式分为S光和P光,将所述S光和P光分别射入所述光电池8,电路控制系统9根据所述光电池8反馈的S光和P光的光强,控制所述激光器2的稳频腔体1的腔长,从而达到稳频的作用,将所述透射光线射入所述激光输出光路进行工作输出。
第一分光镜5将光束分为两个部分,少量的光线反射并射入所述第二分光镜7,用于激光系统的稳频,大部分的光线透射,作为工作用的激光输出。
本发明提供的一种激光干涉仪用的稳频装置和方法的特点如下:
(1)可以使得光束按一定的角度入射到第一分光镜5上,并能够按指定的角度反射。
(2)仅仅利用玻璃表面的反射光作为稳频部分的光源,并且设计合理的角度可以大大减少杂散光对激光器稳频的影响。
(3)通过一个高消光比的第二分光镜7,一个对称的光电器件,可以大大消除电路带来的不确定性。
(4)激光输出光路,激光输出光路主要由一个PBS组成,PBS透射光的高消光比可以确保输出光的单模特性,并且PBS还可以输出反射光,反射光也为单模,可以作为扩展应用。
本发明提供的一种激光干涉仪用的稳频装置和方法的优点如下:
(1)稳频分光系统调节更为方便,结构简单易行,并且结构紧凑,易于机械封装。
(2)第一分光镜5的设计使得稳频部分的能量损失极小,极大的增加了用于工作的激光强度,并且第一分光镜5角度和尺寸的设计可以大大减少杂散光对稳频精度的影响。
(3)稳频部分光路系统,采用对称的光学和电子设计,可以确保稳频数据的精度和可靠性。
(4)激光输出光路,在确保光路输出单模的情况下,保留了另外一路单模,作为扩展备用的光源。
以上内容是结合具体的优选实施方式对本发明所作的进一步详细说明,不能认定本发明的具体实施只局限于这些说明。对于本发明所属技术领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干简单推演或替换,都应当视为属于本发明的保护范围。

Claims (10)

  1. 一种激光干涉仪用的稳频装置,其特征在于:包括电路控制系统、激光器、导向光路、稳频光路和激光输出光路,其中,所述导向光路将所述激光器射出的光导向到所述稳频光路,所述稳频光路包括第一分光镜、第二分光镜和光电池,所述第一分光镜将所述导向光路输出的光分为反射光线和透射光线,所述反射光线射入所述第二分光镜,所述第二分光镜将所述反射光线按S振动模式和P振动模块分为S光和P光,所述S光和P光分别射入所述光电池,所述电路控制系统分别与所述激光器、光电池相连接,所述电路控制系统根据所述光电池反馈的S光和P光的光强,控制所述激光器的稳频腔体的腔长,从而达到稳频的作用,所述透射光线射入所述激光输出光路进行工作输出。
  2. 根据权利要求1所述的激光干涉仪用的稳频装置,其特征在于:所述导向光路包括第一全反射镜和第二全反射镜,所述激光器射出的光经所述第一全反射镜反射,射入所述第二全反射镜,再经所述第二全反射镜反射,射入所述第一分光镜。
  3. 根据权利要求2所述的激光干涉仪用的稳频装置,其特征在于:所述第一全反射镜和第二全反射镜的表面均镀有金属膜。
  4. 根据权利要求1所述的激光干涉仪用的稳频装置,其特征在于:所述激光输出光路包括偏振分光棱镜,所述透射光线射入所述偏振分光棱镜。
  5. 根据权利要求1所述的激光干涉仪用的稳频装置,其特征在于:所述第一分光镜的法线方向与入射光束成15度。
  6. 根据权利要求1所述的激光干涉仪用的稳频装置,其特征在于:所述第一分光镜的透射面镀有对应波长的增透膜。
  7. 根据权利要求1所述的激光干涉仪用的稳频装置,其特征在于:所述第二分光镜为双折射晶体器件。
  8. 根据权利要求1所述的激光干涉仪用的稳频装置,其特征在于:所述光电池为二象限光电元件。
  9. 根据权利要求1所述的激光干涉仪用的稳频装置,其特征在于:所述第一分光镜、第二分光镜之间设有小孔光阑,所述第一分光镜的反射光线经所述小孔光阑滤去杂散光射入所述第二分光镜。
  10. 一种激光干涉仪用的稳频方法,其特征在于:通过导向光路将激光器射出的光导向到稳频光路,所述稳频光路包括第一分光镜、第二分光镜和光电池,通过所述第一分光镜将所述导向光路输出的光分为反射光线和透射光线,将所述反射光线射入所述第二分光镜,通过所述第二分光镜将所述反射光线按S振动模式和P振动模式分为S光和P光,将所述S光和P光分别射入所述光电池,电路控制系统根据所述光电池反馈的S光和P光的光强,控制所述激光器的稳频腔体的腔长,从而达到稳频的作用,将所述透射光线射入所述激光输出光路进行工作输出。
PCT/CN2017/075823 2016-09-27 2017-03-07 一种激光干涉仪用的稳频装置和方法 WO2018058896A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610854014.9A CN106524897A (zh) 2016-09-27 2016-09-27 一种激光干涉仪用的稳频装置和方法
CN201610854014.9 2016-09-27

Publications (1)

Publication Number Publication Date
WO2018058896A1 true WO2018058896A1 (zh) 2018-04-05

Family

ID=58344456

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/075823 WO2018058896A1 (zh) 2016-09-27 2017-03-07 一种激光干涉仪用的稳频装置和方法

Country Status (2)

Country Link
CN (1) CN106524897A (zh)
WO (1) WO2018058896A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109483051A (zh) * 2018-12-27 2019-03-19 深圳镭锳激光科技有限公司 一种yag多光束分光渐变式光路负反馈控制系统
CN112924418A (zh) * 2019-12-05 2021-06-08 深圳迈瑞生物医疗电子股份有限公司 特定蛋白分析系统
CN113097842A (zh) * 2021-03-29 2021-07-09 中国科学院上海光学精密机械研究所 一种基于保偏光纤的超稳激光系统
CN116487985A (zh) * 2023-04-06 2023-07-25 哈尔滨工业大学 基于非平衡功率锁定的宽温域激光稳频方法与装置

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107370016B (zh) * 2017-08-14 2019-12-06 北京大学 一种通信波段1.5微米激光波长标准产生方法及其装置
CN109813425A (zh) * 2019-03-18 2019-05-28 北京镭创高科光电科技有限公司 一种光源光功率检测装置及激光光源
CN111786255B (zh) * 2020-08-04 2024-04-19 中国工程物理研究院总体工程研究所 一种稳频和稳光强双压电陶瓷调谐外腔半导体激光器

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005093917A1 (en) * 2004-03-24 2005-10-06 University Of Strathclyde Improved mode selection and frequency tuning of a laser cavity
CN102564321A (zh) * 2011-12-22 2012-07-11 清华大学 一种基于外腔调制稳频的激光回馈位移测量方法及系统
CN103794982A (zh) * 2014-01-20 2014-05-14 山西大学 稳定1529nm光纤通信激光频率的方法及装置
CN104104007A (zh) * 2014-06-26 2014-10-15 山西大学 激光腔外功率稳定装置及其方法
CN205212173U (zh) * 2015-11-06 2016-05-04 江汉大学 一种激光器稳频系统

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3510569B2 (ja) * 2000-06-22 2004-03-29 三菱重工業株式会社 光周波数変調方式距離計
CN100367579C (zh) * 2005-01-06 2008-02-06 四川大学 双纵模激光电磁感应加热的稳频装置及其稳频方法
CN101615758B (zh) * 2009-07-17 2011-02-02 哈尔滨工业大学 基于腔长热调节的双纵模激光器复合稳频方法与装置
CN102155916B (zh) * 2011-03-02 2012-10-10 清华大学 位相正交双频激光回馈位移测量系统
CN102684058B (zh) * 2011-03-07 2015-09-30 上海微电子装备有限公司 双频激光器稳频装置及其控制方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005093917A1 (en) * 2004-03-24 2005-10-06 University Of Strathclyde Improved mode selection and frequency tuning of a laser cavity
CN102564321A (zh) * 2011-12-22 2012-07-11 清华大学 一种基于外腔调制稳频的激光回馈位移测量方法及系统
CN103794982A (zh) * 2014-01-20 2014-05-14 山西大学 稳定1529nm光纤通信激光频率的方法及装置
CN104104007A (zh) * 2014-06-26 2014-10-15 山西大学 激光腔外功率稳定装置及其方法
CN205212173U (zh) * 2015-11-06 2016-05-04 江汉大学 一种激光器稳频系统

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109483051A (zh) * 2018-12-27 2019-03-19 深圳镭锳激光科技有限公司 一种yag多光束分光渐变式光路负反馈控制系统
CN109483051B (zh) * 2018-12-27 2023-12-12 深圳镭锳激光科技有限公司 一种yag多光束分光渐变式光路负反馈控制系统
CN112924418A (zh) * 2019-12-05 2021-06-08 深圳迈瑞生物医疗电子股份有限公司 特定蛋白分析系统
CN113097842A (zh) * 2021-03-29 2021-07-09 中国科学院上海光学精密机械研究所 一种基于保偏光纤的超稳激光系统
CN116487985A (zh) * 2023-04-06 2023-07-25 哈尔滨工业大学 基于非平衡功率锁定的宽温域激光稳频方法与装置

Also Published As

Publication number Publication date
CN106524897A (zh) 2017-03-22

Similar Documents

Publication Publication Date Title
WO2018058896A1 (zh) 一种激光干涉仪用的稳频装置和方法
CN107463007B (zh) 一种用于拉曼激光系统的双通道相位抖动抑制装置和方法
US20190006816A1 (en) Wavelength locker using multiple feedback curves to wavelength lock a beam
JP2019114813A (ja) 光アイソレータ機能を有するレーザ装置
CN110243574B (zh) 基于孤子自频移的保偏光纤双折射系数的测量装置和方法
US20210281046A1 (en) Tunable laser assembly
KR100996140B1 (ko) 극초단 레이저 펄스를 측정하기 위한 크로스 코릴레이터 및그 방법
US20170302052A1 (en) Polarization-based dual channel wavelength locker
CN210005836U (zh) 紧凑型单晶体薄腔和运用该薄腔的纠缠光子源系统
CN105896254A (zh) 一种复合器件及应用复合器件的光纤激光器
CN112271532A (zh) 一种腔外倍频激光器
JP3341718B2 (ja) レーザ加工光学系並びにレーザ出力モニタ光学系
CN106154570B (zh) 扫描式保偏全光纤法布里-珀罗干涉仪装置及系统
JPH02244782A (ja) 周波数安定化半導体レーザー装置
RU214632U1 (ru) Устройство стабилизации частоты диодного лазера
CN218102018U (zh) 一种可监控回返光的光隔离器和激光器
CN113675713B (zh) 一种近红外掺铒光纤激光器
CN113346347B (zh) 一种用于Nd:YVO4激光器的激光强度噪声抑制装置
JP5231554B2 (ja) 周波数安定化レーザー装置及びレーザー周波数安定化方法
CN102230990A (zh) 带有集成分光器的光隔离器
CN117192815B (zh) 一种基于内调制的光束相位控制系统及方法
CN111262129B (zh) 一种功率可调、可检偏的452nm倍频系统
CN201345494Y (zh) 一种opo激光器
JPS5841794B2 (ja) レ−ザ−発振装置
CN112636184A (zh) 一种混合型高功率单频激光器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17854356

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17854356

Country of ref document: EP

Kind code of ref document: A1