CN110243574B - 基于孤子自频移的保偏光纤双折射系数的测量装置和方法 - Google Patents

基于孤子自频移的保偏光纤双折射系数的测量装置和方法 Download PDF

Info

Publication number
CN110243574B
CN110243574B CN201910467592.0A CN201910467592A CN110243574B CN 110243574 B CN110243574 B CN 110243574B CN 201910467592 A CN201910467592 A CN 201910467592A CN 110243574 B CN110243574 B CN 110243574B
Authority
CN
China
Prior art keywords
polarization
light
optical fiber
fiber
spectrum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910467592.0A
Other languages
English (en)
Other versions
CN110243574A (zh
Inventor
江俊峰
刘铁根
张永宁
王双
刘琨
丁振扬
张学智
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tianjin University
Original Assignee
Tianjin University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tianjin University filed Critical Tianjin University
Priority to CN201910467592.0A priority Critical patent/CN110243574B/zh
Publication of CN110243574A publication Critical patent/CN110243574A/zh
Application granted granted Critical
Publication of CN110243574B publication Critical patent/CN110243574B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M11/00Testing of optical apparatus; Testing structures by optical methods not otherwise provided for
    • G01M11/02Testing optical properties
    • G01M11/0228Testing optical properties by measuring refractive power
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M11/00Testing of optical apparatus; Testing structures by optical methods not otherwise provided for
    • G01M11/30Testing of optical devices, constituted by fibre optics or optical waveguides
    • G01M11/33Testing of optical devices, constituted by fibre optics or optical waveguides with a light emitter being disposed at one fibre or waveguide end-face, and a light receiver at the other end-face
    • G01M11/331Testing of optical devices, constituted by fibre optics or optical waveguides with a light emitter being disposed at one fibre or waveguide end-face, and a light receiver at the other end-face by using interferometer

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)

Abstract

本发明公开了一种基于孤子自频移的保偏光纤双折射系数的测量装置,包括飞秒激光器(1)、由电控液晶波片(2)、偏振分束棱镜(3)、二分之一波片(4)、扩束镜(5)以及光纤耦合镜(6构成的超短脉冲功率及偏振态调节部分、高非线性保偏光子晶体光纤(7)和由光纤准直扩束镜(8)、第一50:50分光片(9)、第一反射镜(10)、可调衰减片(11)、第二反射镜(12)、可调空间光延时线13以及第二50:50分光片(14)构成光谱相干及检测部分,通过光谱相干的方法测量快轴和慢轴方向光孤子的相对延时即可实现对光纤双折射系数的测量。本发明可测量波长大范围连续调节时光纤的双折射系数的变化、测量结果准确可靠。

Description

基于孤子自频移的保偏光纤双折射系数的测量装置和方法
技术领域
本发明属于非线性光纤光学和光纤参数测量领域,特别涉及一种保偏光纤双折射系数的测量装置和方法。
背景技术
由于保偏光纤能够保持光在传输过程中偏振态不变,因此在光纤通信、光纤传感、非线性光学领域等具有广泛应用。双折射系数是衡量保偏光纤的重要参数之一,准确测量保偏光纤的双折射系数对于提高相干光通信系统的通信速率、增加光纤传感器的测量性能、探究光纤非线性效应的本质具有重要作用,同时对于保偏光纤生产制造过程中的参数优化改进具有重要的反馈作用。光纤由于其芯径较细、双折射特性易受外界环境的干扰难以用传统的光学方法测量其双折射系数。此外,由于非线性光纤光学技术的发展,基于全光纤的超短脉冲发生器、超短脉冲压缩器以及超短脉冲放大器等器件中,超短脉冲的脉宽窄、峰值功率高、能量密度大,对光纤的双折射系数具有一定的影响,而使用传统的光学测量技术不能测量如此高能量密度下的光纤双折射系数的变化。因此,如何精确快速地测量光纤的双折射系数,尤其是非线性光纤光学领域中光纤的双折射系数成为急需解决的技术难题。
发明内容
为了克服现有技术存在的问题,本发明提出了一种基于孤子自频移测量保偏光纤双折射系数的装置和方法,利用保偏光纤快轴孤子和慢轴孤子同光谱、异时序的特征,通过光谱相干的方法检测保偏光纤输出快慢轴孤子之间的相对延时,进而计算其双折射系数。由于光孤子具有脉冲宽度窄、峰值功率高、波长可大范围连续调节的特点,因此可以实现保偏光纤宽波长范围、强电场、较短长度下的双折射系数测量。
本发明的一种基于孤子自频移的保偏光纤双折射系数的测量装置,包括飞秒激光器1、由电控液晶波片2、偏振分束棱镜3、二分之一波片4、扩束镜5以及光纤耦合镜6构成的超短脉冲功率及偏振态调节部分、高非线性保偏光子晶体光纤7和由光纤准直扩束镜8、第一50:50分光片9、第一反射镜10、可调衰减片11、第二反射镜12、可调空间光延时线13以及第二50:50分光片14构成光谱相干及检测部分;其中
所述飞秒激光器1输出脉宽为40~200fs、线偏振的超短脉冲,入射至电控液晶波片2;超短脉冲经电控液晶波片2后入射至偏振分束棱镜3,偏振分束棱镜3透射输出的水平线偏振超短脉冲依次经二分之一波片4、扩束镜5和光纤耦合镜6进入高非线性保偏光子晶体光纤7。其中电控液晶波片2和偏振分束棱镜3组合使用可以实现透射水平线偏振超短脉冲光功率的连续调节,旋转二分之一波片4使耦合进高非线性保偏光子晶体光纤7的线偏振方向沿光纤快轴和慢轴之间的角平分线入射;
高非线性保偏光子晶体光纤7输出端经光纤准直扩束镜8输出后由第一50:50分光片9分为功率相等的透射和反射两束光,其中反射光束依次经第一反射镜10、可调衰减片11和第二反射镜12入射至第二50:50分光片14,而另一透射光束则经可调空间延时线13同样入射至第二50:50分光片14与另一束光合束;
第二50:50分光片14输出的合束后的光束经滤光片15入射至光谱分析仪16。
本发明的一种基于孤子自频移的保偏光纤双折射系数的测量方法,包括以下步骤:
步骤1:飞秒激光器输出脉宽为40~200fs、线偏振的超短脉冲;
步骤2:当电控液晶波片所施加的电压变化时,偏振分束棱镜透射输出的水平线偏振超短脉冲光功率随之变化;
步骤3:连续调节水平线偏振超短脉冲,调节二分之一波片的旋转角度,使进入高非线性保偏光子晶体光纤的线偏振超短脉冲的偏振方向沿高非线性保偏光子晶体光纤快轴和慢轴之间的角平分线入射;
步骤4:超短脉冲光在高非线性保偏光子晶体光纤中传输时,同时激发快轴方向和慢轴方向的孤子自频移效应,进而同时产生快轴和慢轴方向的光孤子;
步骤5:调节参考光路功率,使参考光路光功率和测量光路光功率相等;
步骤6:调节测量光路的时间延时;
步骤7:输出的干涉光谱的振荡程度随延时量的变化,根据干涉光谱计算光谱振荡程度求得高非线性保偏光子晶体光纤输出光孤子在快轴方向和慢轴方向的相对延迟时间,具体处理如下:
进而计算出光纤的双折射系数,公式如下:
Figure BDA0002079901410000031
nx,nyxy,tx,ty
式中,nx,ny分别表示光纤快轴和慢轴方向的有效折射率,c表示光在真空中的速度,νx,νy表示光纤中快轴方向和慢轴方向的光速,L表示所使用的光纤长度,tx,ty表示光分别沿光纤的快轴和慢轴通过长度为L的光纤所用的时间,Δt表示光孤子在快轴方向和慢轴方向的相对延迟时间。
与现有技术相比,本发明存在以下技术优势:
1)由于光孤子波长可以通过控制入射超短脉冲光功率实现连续大范围的调谐,一般可达300nm以上,因此本发明可测量波长大范围连续调节时光纤的双折射系数的变化;
2)由于光孤子本身属于超短脉冲,具有脉冲宽度窄、峰值功率高、能量密度大的特点,因此本发明测量的双折射系数为光纤在强光场作用下的双折射系数,对于非线性光纤光学领域中偏振相关效应的分析具有重要支持作用;
3)本发明基于光谱相干方法直接测量快轴孤子和慢轴孤子之间的相对时间差,通过简单的计算即可得到光纤双折射系数,不涉及光纤的绝对有效折射率,测量结果准确可靠;
4)由于光孤子时间宽度很窄,因此快轴孤子和慢轴孤子的相对延时可以精确至飞秒量级,因此可以测量很短长度光纤的双折射系数。
附图说明
图1为本发明的基于孤子自频移的保偏光纤双折射系数的测量装置结构示意图;
图2为快轴孤子和慢轴孤子时域及光谱示意图;
图3为光孤子波长为900nm时光谱振荡程度随延时量变化时的实测结果示意图。
附图标记:
1、飞秒激光器,2、电控液晶波片,3、偏振分束棱镜,4、二分之一波片,5,、扩束镜,6、光纤耦合镜,7、高非线性保偏光子晶体光纤,8、光纤准直扩束镜,9、第一50:50分光片,10、第一反射镜,11、可调衰减片,12、第二反射镜,13、可调空间光延时线,14、第二50:50分光片,15、滤光片,16、光谱分析仪;131、第一直角反射棱镜,132、第二直角反射棱镜,133、高精度电控位移台。
具体实施方式
下面结合附图和具体实施例对本发明技术方案作进一步详细描述,所描述的具体实施例仅对本发明进行解释说明,并不用以限制本发明。
如图1所示,为本发明的基于孤子自频移的保偏光纤双折射系数测量装置结构示意图。包括飞秒激光器1、超短脉冲功率及偏振态调节部分、高非线性保偏光子晶体光纤、光谱相干及检测部分,具体工作过程如下:
飞秒激光器1输出脉宽为输出脉宽为40~200fs、线偏振的超短脉冲,入射至电控液晶波片2;
超短脉冲功率及偏振态调节部分由电控液晶波片2、偏振分束棱镜3、二分之一波片4、扩束镜5以及光纤耦合镜6构成:线偏振超短脉冲经电控液晶波片2后入射至偏振分束棱镜3,偏振分束棱镜3透射输出的水平线偏振超短脉冲依次经二分之一波片4和扩束镜5后,入射至光纤耦合镜6,光纤耦合镜6输出端接高非线性保偏光子晶体光纤7,用于将空间超短脉冲耦合进光纤;,电控液晶波片2和偏振分束棱镜3组合使用可以实现透射水平线偏振超短脉冲光功率的连续调节,旋转二分之一波片4的角度,调节进入保偏高非线性光子晶体光纤7的线偏振超短脉冲的偏振方向,使线偏振超短脉冲沿快轴和慢轴之间的角平分线入射至高非线性保偏光子晶体光纤7;
超短脉冲在高非线性保偏光子晶体光纤7中输出,发生孤子自频移效应,产生中心波长随入射超短脉冲光功率变化的光孤子,高非线性保偏光子晶体光纤7输出端经光纤准直扩束镜8将光纤传输的光孤子转换成空间光,然后进入光谱相干及检测部分;
光谱相干及检测部分分为参考光路和测量光路,由光纤准直扩束镜8、第一50:50分光片9、第一反射镜10、可调衰减片11、第二反射镜12、可调空间光延时线13以及第二50:50分光片14构成:光纤准直扩束镜8的输出光经第一50:50分光片9分为功率相等的透射光束和反射光束两部分,其中反射光束依次经第一反射镜10、可调衰减片11和第二反射镜12入射至第二50:50分光片14,此光路构成光谱相干及检测部分的参考光路;从第一50:50分光片9输出的透射光束入射至可调空间光延时线13,可调空间光延时线13由两个直角反射棱镜131、132和一个高精度电控位移台133组成,第一直角反射棱镜131将入射超短脉冲反射至固定于高精度电控位移台133的第二直角反射镜132,同时将第二直角反射棱镜132反射回来的光脉冲通过其另一直角边反射输出,高精度电控位移台133用于调节测量光路的时间延迟,可调空间光延时线13输出的超短脉冲入射至第二50:50分光片14,此光路构成光谱相干检测部分的测量光路;
参考光路输出光束经第二50:50分光片14的反射部分和测量光路输出光束经第二50:50分光片14的透射部分合束后经滤光片15后入射至光谱分析仪16,检测光谱相干及检测部分中参考光路和测量光路的干涉光谱随可调空间光延时线变化时振荡程度的变化,从而确定高非线性保偏光子晶体光纤7输出光谱中快轴孤子和慢轴孤子之间的相对时延,进而计算出高非线性保偏光子晶体光纤7的双折射系数。
电控液晶波片2可由外部电压控制,实现输出光偏振态的改变。
二分之一波片4用于调节进入高非线性保偏光子晶体光纤7的线偏振态方向,使之沿光纤快轴和慢轴之间的角平分线入射。
扩束镜5用于实现光束直径的扩大,提高空间光经光纤耦合镜6后耦合至高非线性保偏光子晶体光纤7的耦合效率。
超短脉冲在高非线性保偏光子晶体光纤7中传输时,应适当选择超短脉冲的入射波长,使之能够在高非线性保偏光子晶体光纤7产生明显的孤子自频移效应,产生中心波长随入射超短脉冲光功率变化的光孤子。
可调衰减片11用于调节参考光路的光功率,使之与测量光路的光功率向接近或者相等,以提高光谱相干的程度。
可调空间光延时线13用于调节测量光路的时间延迟。
滤光片14用于滤出高非线性保偏光子晶体光纤7输出的残余泵浦光脉冲。
光谱分析仪16应在整个孤子波长调节范围内具有响应,以检测孤子波长大范围连续调节时干涉光谱随可调空间光延时线13延时量的变化。
本发明提出的一种基于孤子自频移的保偏光纤双折射系数的测量方法,该方法包括如下步骤:
步骤1:飞秒激光器输出脉宽为40~200fs、线偏振的超短脉冲;以线偏振方向为水平的超短脉冲为例,超短脉冲经电控液晶波片后输出光的偏振态可在水平线偏振光、椭偏振光、圆偏振光、竖直线偏振光之间随电控液晶波片所施加的电压而变化;
步骤2:当电控液晶波片所施加的电压变化时,偏振分束棱镜透射输出的水平线偏振超短脉冲光功率随之变化;
步骤3:连续调节水平线偏振超短脉冲,调节二分之一波片的旋转角度,使进入高非线性保偏光子晶体光纤的线偏振超短脉冲的偏振方向沿高非线性保偏光子晶体光纤快轴和慢轴之间的角平分线入射;
步骤4:超短脉冲光在高非线性保偏光子晶体光纤中传输时,由于孤子自频移效应的影响,产生波长向长波长方向移动的光孤子,光孤子波长随入射超短脉冲光功率的增加而增加,由于本发明中使进入高非线性保偏光子晶体光纤的超短脉冲偏振方向沿光纤快轴和慢轴的角平分线方向,因此可以同时激发快轴方向和慢轴方向的孤子自频移效应,进而同时产生快轴和慢轴方向的光孤子,由于快轴和慢轴方向泵浦功率相同,光纤双折射效应对孤子自频移中光孤子波长的影响较小,因此快轴和慢轴方向的光孤子的光谱是近似相同的,而由于光纤双折射效应的影响,快轴和慢轴方向的光孤子传输速度是不同的,从而造成快轴和慢轴方向光孤子的时域分裂;
步骤5:调节参考光路功率,使参考光路光功率和测量光路光功率相等;
步骤6:调节测量光路的时间延时;
步骤7:输出的干涉光谱的振荡程度随延时量的变化,根据干涉光谱计算光谱振荡程度求得高非线性保偏光子晶体光纤输出光孤子在快轴方向和慢轴方向的相对延迟时间,进而求得光纤的双折射系数,。
根据干涉光谱计算光谱振荡程度求得延迟时间的方法如下所述:
将参考光路和测量光路的两束脉冲相互分离时光谱分析仪输出的光谱信号记为光谱参考曲线;逐步调节可调空间光延时线,每次调节均记录一条光谱曲线,直至两束脉冲相遇后又完全分开为止;将所记录的每条光谱曲线均与光谱参考曲线做差并取其有效值,该有效值即可用于衡量干涉光谱振荡程度,则有效值随延时量的变化即为光谱振荡程度随延时量的变化。
如图3所示,为光孤子波长为900nm时光谱振荡程度随延时量变化时的实测结果示意图,可以看出实际测量中光谱振荡程度随延时量的变化。根据其中极大值点的位置即可求得快轴孤子和慢轴孤子的相对延时Δt,进而根据公式B=nx-ny=c/(L×Δt)计算出光纤的双折射系数,式中nx,ny分别表示光纤快轴和慢轴方向的有效折射率,c表示光在真空中的速度,L表示所使用的光纤长度。
尽管上面结合附图对本发明进行了描述,但是本发明并不局限于上述的具体实施方式,上述的具体实施方式仅仅是示意性的,而不是限制性的,本领域的普通技术人员在本发明的启示下,在不脱离本发明宗旨的情况下,还可以做出很多变形,这些均属于本发明的保护之内。

Claims (3)

1.一种基于孤子自频移的保偏光纤双折射系数的测量装置,其特征在于,该装置包括飞秒激光器(1)、由电控液晶波片(2)、偏振分束棱镜(3)、二分之一波片(4)、扩束镜(5)以及光纤耦合镜(6)构成的超短脉冲功率及偏振态调节部分、高非线性保偏光子晶体光纤(7)和由光纤准直扩束镜(8)、第一50:50分光片(9)、第一反射镜(10)、可调衰减片(11)、第二反射镜(12)、可调空间光延时线(13)以及第二50:50分光片(14)构成光谱相干及检测部分;其中
所述飞秒激光器(1)输出脉宽为40~200fs、线偏振的超短脉冲,入射至电控液晶波片(2);超短脉冲经电控液晶波片(2)后入射至偏振分束棱镜(3),偏振分束棱镜(3)透射输出的水平线偏振超短脉冲依次经二分之一波片(4)、扩束镜(5)和光纤耦合镜(6)进入高非线性保偏光子晶体光纤(7),其中电控液晶波片(2)和偏振分束棱镜(3)组合使用实现透射水平线偏振超短脉冲光功率的连续调节,旋转二分之一波片(4)使耦合进高非线性保偏光子晶体光纤(7)的线偏振方向沿光纤快轴和慢轴之间的角平分线入射;
高非线性保偏光子晶体光纤(7)输出端经光纤准直扩束镜(8)输出后由第一50:50分光片(9)分为功率相等的透射和反射两束光,其中反射光束依次经第一反射镜(10)、可调衰减片(11)和第二反射镜(12)入射至第二50:50分光片(14),而另一透射光束则经可调空间延时线(13)同样入射至第二50:50分光片(14)与另一束光合束;
第二50:50分光片(14)输出的合束后的光束经滤光片(15)入射至光谱分析仪(16)。
2.利用如权利要求1所述的一种基于孤子自频移的保偏光纤双折射系数的测量装置实现的一种基于孤子自频移的保偏光纤双折射系数的测量方法,其特征在于,该方法包括以下步骤:
步骤1:飞秒激光器输出脉宽为40~200fs、线偏振的超短脉冲;
步骤2:当电控液晶波片所施加的电压变化时,偏振分束棱镜透射输出的水平线偏振超短脉冲光功率随之变化;
步骤3:连续调节水平线偏振超短脉冲,调节二分之一波片的旋转角度,使进入高非线性保偏光子晶体光纤的线偏振超短脉冲的偏振方向沿高非线性保偏光子晶体光纤快轴和慢轴之间的角平分线入射;
步骤4:超短脉冲光在高非线性保偏光子晶体光纤中传输时,同时激发快轴方向和慢轴方向的孤子自频移效应,进而同时产生快轴和慢轴方向的光孤子;
步骤5:调节参考光路功率,使参考光路光功率和测量光路光功率相等;
步骤6:调节测量光路的时间延时;
步骤7:输出的干涉光谱的振荡程度随延时量的变化,根据干涉光谱计算光谱振荡程度求得高非线性保偏光子晶体光纤输出光孤子在快轴方向和慢轴方向的相对延迟时间,具体处理如下:
进而计算出光纤的双折射系数,公式如下:
Figure FDA0002816808920000021
nx,nyxy,tx,ty
式中,nx,ny分别表示光纤快轴和慢轴方向的有效折射率,c表示光在真空中的速度,νx,νy表示光纤中快轴方向和慢轴方向的光速,L表示所使用的光纤长度,tx,ty表示光分别沿光纤的快轴和慢轴通过长度为L的光纤所用的时间,Δt表示光孤子在快轴方向和慢轴方向的相对延迟时间。
3.如权利要求2所述的基于孤子自频移的保偏光纤双折射系数的测量方法,其特征在于,其中所述步骤7中根据干涉光谱计算光谱振荡程度求得高非线性保偏光子晶体光纤输出光孤子在快轴方向和慢轴方向的相对延迟时间的具体步骤如下:
将参考光路和测量光路的两束脉冲相互分离时光谱分析仪输出的光谱信号记为光谱参考曲线;逐步调节可调空间光延时线,每次调节均记录一条光谱曲线,直至两束脉冲相遇后又完全分开为止;将所记录的每条光谱曲线均与光谱参考曲线做差并取其有效值,该有效值用于衡量干涉光谱振荡程度,则有效值随延时量的变化即为光谱振荡程度随延时量的变化。
CN201910467592.0A 2019-05-31 2019-05-31 基于孤子自频移的保偏光纤双折射系数的测量装置和方法 Active CN110243574B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910467592.0A CN110243574B (zh) 2019-05-31 2019-05-31 基于孤子自频移的保偏光纤双折射系数的测量装置和方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910467592.0A CN110243574B (zh) 2019-05-31 2019-05-31 基于孤子自频移的保偏光纤双折射系数的测量装置和方法

Publications (2)

Publication Number Publication Date
CN110243574A CN110243574A (zh) 2019-09-17
CN110243574B true CN110243574B (zh) 2021-02-09

Family

ID=67885613

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910467592.0A Active CN110243574B (zh) 2019-05-31 2019-05-31 基于孤子自频移的保偏光纤双折射系数的测量装置和方法

Country Status (1)

Country Link
CN (1) CN110243574B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112284567B (zh) * 2020-10-19 2021-09-21 东北大学 测量海水温盐的级联孤子自频移全光纤传感系统及方法
CN112665823B (zh) * 2020-12-14 2023-09-26 上海大学 一种光纤模式时域能量波动曲线测量装置和测量方法
CN113804299A (zh) * 2021-07-20 2021-12-17 广东工业大学 基于光频域干涉的光纤器件分布式双向偏振测量装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101710023B (zh) * 2009-11-12 2011-01-12 北京航空航天大学 一种保偏光纤拍长的测试方法及装置
JP2012128277A (ja) * 2010-12-16 2012-07-05 Nippon Telegr & Teleph Corp <Ntt> 導波路型光変調器の性能評価装置および性能評価方法
CN105700070B (zh) * 2016-03-08 2019-06-28 武汉理工大学 一种高双折射保偏光纤
CN106568580B (zh) * 2016-11-07 2019-02-12 河北大学 保偏光纤的轴向应变-双折射系数的测量系统及测量和计算方法
US10261246B2 (en) * 2016-12-14 2019-04-16 Ofs Fitel, Llc Polarization-maintaining fiber device supporting propagation in large mode field diameters
CN106647103B (zh) * 2017-03-09 2019-12-06 电子科技大学 一种用于孤子自频移全光模数转换的编码装置及方法
CN107910735A (zh) * 2017-12-15 2018-04-13 西北大学 基于啁啾光纤布拉格光栅多种孤子态输出的全保偏锁模光纤激光器

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
新型高双折射微结构纤芯光子晶体光纤的可调谐超连续谱的特性研究;熊梦杰 等;《物理学报》;20171231;第66卷(第9期);全文 *
高非线性高双折射光子晶体光纤的特性研究;曾维友;《大众科技》;20150930;第17卷(第9期);全文 *

Also Published As

Publication number Publication date
CN110243574A (zh) 2019-09-17

Similar Documents

Publication Publication Date Title
CN110243574B (zh) 基于孤子自频移的保偏光纤双折射系数的测量装置和方法
CN106289499B (zh) 一种利用飞秒激光的测微振动系统及测微振动方法
CN102854360B (zh) 光纤电流互感器传输光谱的稳定控制装置
CN101483310A (zh) 稳偏激光器
WO2021036167A1 (zh) 利用回音壁模式激光光源测fp透过率曲线的装置和方法
CN104914443B (zh) 一种快速扫描的高精度激光测距方法
CN104634370A (zh) 一种基于激光器的传感器
CN104535534A (zh) 一种基于白光干涉绝对光程比较法的光纤预制棒折射率分布剖面测量装置及测量方法
CN111896222B (zh) 一种保偏光纤拍长测量装置及测量方法
CN212844018U (zh) 一种激光脉冲自相关仪
CN203965129U (zh) 扫描共焦腔f-p干涉仪自由光谱范围测量系统
CN103438916A (zh) 基于可饱和吸收光纤的光纤光栅波长解调装置
CN201408015Y (zh) 一种具有激光谐振腔的光程四倍增测量装置
CN113324666B (zh) 飞秒激光脉冲载波包络相位偏移频率探测装置及方法
CN1317543C (zh) 猫眼折叠腔位移自传感氦氖激光器系统
CN204535729U (zh) 一种基于激光器的传感器
CN100386930C (zh) 能输出光强稳定的两垂直偏振光的HeNe激光器
CN113804402A (zh) 一种基于环行光路的光纤微量色散高精度测量装置及方法
JP2714754B2 (ja) 導波路分散測定方法および装置
CN104767112A (zh) 基于双偏振分光镜合光的正交双频激光生成方法与装置
CN106154570B (zh) 扫描式保偏全光纤法布里-珀罗干涉仪装置及系统
CN111982286A (zh) 一种薄膜偏振光学元件偏振比测量方法
CN214471016U (zh) 一种可同时测量温度和应变的光纤传感器
CN103837240A (zh) 自相关仪
Wang Research on Dynamic Grating Cascaded Fiber Bragg Grating Fabry-Perot Cavity

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant