CN105700070B - 一种高双折射保偏光纤 - Google Patents

一种高双折射保偏光纤 Download PDF

Info

Publication number
CN105700070B
CN105700070B CN201610129210.XA CN201610129210A CN105700070B CN 105700070 B CN105700070 B CN 105700070B CN 201610129210 A CN201610129210 A CN 201610129210A CN 105700070 B CN105700070 B CN 105700070B
Authority
CN
China
Prior art keywords
optical fiber
fibre core
stomata
fiber
maintaining optical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201610129210.XA
Other languages
English (en)
Other versions
CN105700070A (zh
Inventor
余海湖
郑羽
曹蓓蓓
李小甫
郭会勇
姜德生
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wuhan University of Technology WUT
Original Assignee
Wuhan University of Technology WUT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wuhan University of Technology WUT filed Critical Wuhan University of Technology WUT
Priority to CN201610129210.XA priority Critical patent/CN105700070B/zh
Publication of CN105700070A publication Critical patent/CN105700070A/zh
Application granted granted Critical
Publication of CN105700070B publication Critical patent/CN105700070B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/024Optical fibres with cladding with or without a coating with polarisation maintaining properties

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)

Abstract

本发明涉及一种高双折射保偏光纤,包括纤芯和包层,纤芯位于光纤的中心,在纤芯两侧的包层中设置有对称的应力区,其特征在于在纤芯与应力区相错90°的另外两侧包层中设置有对称的气孔。本发明的有益效果在于通过在保偏光纤中设置对应的气孔,构成气孔与应力区相结合的保偏光纤结构,使得光纤既具备单模传输和一般高双折射光纤特性,又具备较高的双折射特性和较强的外界压力敏感特性,可适于光纤通信器件及传感领域的应用,并使应用领域得到进一步拓宽。

Description

一种高双折射保偏光纤
技术领域
本发明涉及一种具有双空气孔双应力区的高双折射保偏光纤,属于光电传感技术领域。
技术背景
高双折射光纤是一种单模保偏光纤,其主要性能是产生较高的双折射效应来消除外界干扰对入射光偏振态的影响。这种光纤广泛应用于光纤器件、光纤传感等领域。
一般实际应用的高双折射光纤都具有非轴对称结构特点,典型结构比如,领结型、熊猫型和椭圆包层型。其产生双折射的主要因素是应力致双折射。
根据高双折射光纤的双折射特性,在光纤中写入布喇格光栅后,光栅反射峰能反应外界多个参量如(如温度、应力/应变、扭转等)的变化,说明高双折射光纤适合于多参量的测量。但是普通高双折射光纤对外界均匀压力(环境静压)敏感度很低。
发明内容
本发明所要解决的技术问题在于针对上述现有技术存在的不足提供一种具备应力及外界压力敏感特性的高双折射保偏光纤。
本发明为解决上述提出的问题所采用的技术方案为:包括纤芯和包层,纤芯位于光纤的中心,在纤芯两侧的包层中设置有对称的应力区,其特征在于在纤芯与应力区相错90°的另外两侧包层中设置有对称的气孔。
按上述方案,所述的纤芯直径2r为3.5μm~9μm,纤芯相对折射率差(相对于包层的折射率)Δr为0.3%~0.7%;所述的包层直径D为80μm~400μm,包层为纯二氧化硅玻璃层。
按上述方案,所述光纤的数值孔径NA为0.12~0.18,模场直径为4.6μm~10μm。
按上述方案,所述的气孔径向截面为圆形或椭圆形,圆形气孔的直径为0.15D~0.4D,椭圆气孔短轴与长轴之比a1/b1为0.4~1.0,所述气孔内边距光纤中心距d1为3μm~0.25D。
按上述方案,所述的纤芯径向截面为圆形或椭圆形,椭圆形纤芯的短轴与长轴之比a/b为0.5~1.0。
按上述方案,所述的应力区直径0.05D~0.32D,应力区内边距光纤中心距d2等于3μm~0.2D,应力区相对折射率差Δs为-0.1%~-0.7%。
按上述方案,所述光纤工作波长为1310nm时其截止波长为1100nm~1350nm;所述光纤工作波长为1550nm时其截止波长为1250nm~1650nm。
按上述方案,所述光纤双折射系数B值等于或大于1×10-4,较佳的等于或大于7.0×10-4
按上述方案,所述的光纤上刻入有光栅。
按上述方案,所述光纤的工作波长为850nm或1310nm或1550nm。
本发明的特点在于:所述光纤具有较高双折射,在写入光栅之后,将在双偏振轴发生光栅内的模式耦合,产生双峰反射(如图2所示)。
该反射谱线是由偏振态相互正交的两个子偏振态各自耦合,得到的反射谱线λxx和λyy组成。由于双折射的存在,使得两个光栅的峰值反射波长不再相同,其差值可表示为:
λxxyy=2Λ(nx-ny)=2BΛ
由此可见,两峰值反射波长的间距直接取决于光纤双折射的大小,因而通过检测双折射光纤光栅的双峰间距就可直接测量光纤的双折射。
由于本发明光纤结构中有双气孔的存在,使其具有一定的环境均匀压力敏感特性,光栅受到外界环境均匀压力后,会发生双偏振模式的布拉格反射峰峰距增大的现象。以下是某个此类结构光纤压力敏感测试,P为外界均匀压力,Δλ为双峰间距,B为双折射系数:
上表数据线性拟合,如图3所示:线性度为0.9984,压力灵敏度系数7.86pm/MPa。显示出光纤的压力敏感特性。
本发明的有益效果在于通过在保偏光纤中设置对应的气孔构成气孔与应力区相结合的保偏光纤结构,使得光纤既具备单模传输和一般高双折射光纤特性,又具备较高的双折射特性和较强的外界压力敏感特性,可适于光纤通信器件及传感领域的应用,并使应用领域得到进一步拓宽。
附图说明
图1为本发明一个实施例的剖面结构示意图。光纤直径即包层直径为D,气孔内边距光纤中心距为d1,应力区内边距光纤中心距为d2
图2为本发明光纤写入光栅之后,在双偏振轴都发生光栅内的模式耦合产生的双峰反射。
图3为本发明光纤在写入光栅后,光栅双偏振轴反射峰间距随环境静压变化的曲线。
图4为本发明第二个实施例的剖面结构示意图。
图5为本发明第三个实施例的剖面结构示意图。
图6为本发明第四个实施例的剖面结构示意图。
具体实施方式
以下结合附图进一步说明本发明的实施例。
实施例一,光纤剖面结构如图1所示:包括纤芯1和包层2,纤芯位于光纤的中心,纤芯由轻微正掺杂的石英玻璃组成,即在石英玻璃中掺入锗、磷、铝等组分使得折射率高于纯二氧化硅玻璃的折射率,纤芯直径2r为9μm,纤芯相对折射率差(相对于包层的折射率)Δr为0.3%~0.7%;所述的包层直径D为125μm,包层为纯二氧化硅玻璃层。在纤芯两侧的包层中设置有对称的应力区3,应力区为圆形,直径为40μm,应力区内边距光纤中心距d2为6μm,应力区掺杂B2O3玻璃区,使得应力区相对折射率差Δs为-0.2%~-0.7%。;在纤芯与应力区相错90°的另外两侧包层中设置有对称的气孔4,气孔为圆形气孔,直径为40μm;气孔内边距光纤中心距d1为6μm。光纤数值孔径NA为0.13;模场直径范围是10μm±0.5μm。该光纤双折射系数B值为1×10-4~5×10-4;压力灵敏度系数0.5~6pm/MPa。
实施例二,光纤剖面结构如图4所示:包层直径即光纤直径D为80μm;纤芯直径2r等于6μm;气孔直径为30μm;应力区直径为10μm;气孔内边距光纤中心距d1为5μm;应力区内边距光纤中心距d2为5μm,其它结构与上一个实施例相同。光纤数值孔径NA为0.13;模场直径范围是6.5μm±0.5μm。该光纤双折射系数B值为1×10-4~5×10-3;压力灵敏度系数1~30pm/MPa。
实施例三,光纤剖面结构如图5所示:光纤直径D等于125μm;纤芯直径2r等于9μm;气孔为椭圆形,a1为26μm,b1为50μm,椭圆形气孔的长轴沿光纤径向分布,气孔内边距光纤中心距d1为7μm;应力区直径为26μm,应力区内边距光纤中心距d2等于7μm。
光纤数值孔径NA为0.13,模场直径范围是10μm±0.5μm。该光纤双折射系数B值为1×10-3~2×10-2,压力灵敏度系数1pm/MPa~80pm/MPa。
实施例四,光纤剖面结构如图6所示:光纤直径D为125μm;纤芯为椭圆形,短轴a为10μm,长轴b为5μm;纤芯的短轴两侧设置对称的椭圆形气孔,短轴a1为30μm,长轴b1为52μm,椭圆形气孔的长轴沿光纤径向分布;应力区为圆形,直径为32μm;气孔内边距光纤中心距d1为6μm,应力区内边距光纤中心距d2等于9μm。
光纤数值孔径NA为0.13,模场直径范围是10μm±0.5μm。该光纤双折射系数B值为1×10-3~8×10-2,压力灵敏度系数1pm/MPa~100pm/MPa。

Claims (6)

1.一种高双折射保偏光纤,包括纤芯和包层,纤芯位于光纤的中心,在纤芯两侧的包层中设置有对称的应力区,其特征在于在纤芯与应力区相错90°的另外两侧包层中设置有对称的气孔;所述的纤芯直径2r为3.5μm~9μm,纤芯相对折射率差Δr为0.3%~0.7%;所述的包层直径D为80μm~400μm,包层为纯二氧化硅玻璃层;所述光纤的数值孔径NA为0.12~0.18,模场直径为4.6μm~10μm;所述的气孔径向截面为圆形或椭圆形,圆形气孔的直径为0.15D~0.4D,椭圆气孔短轴与长轴之比a1/b1为0.4~1.0,所述气孔内边距光纤中心距d1为3μm~0.25D;所述光纤双折射系数B值等于或大于7.0×10-4
2.如权利要求1所述的高双折射保偏光纤,其特征在于所述的纤芯径向截面为圆形或椭圆形,椭圆形纤芯的短轴与长轴之比a/b为0.5~1.0。
3.如权利要求1所述的高双折射保偏光纤,其特征在于所述的应力区直径0.05D~0.32D,应力区内边距光纤中心距d2等于3μm~0.2D,应力区相对折射率差Δs为-0.1%~-0.7%。
4.如权利要求1或2所述的高双折射保偏光纤,其特征在于所述光纤工作波长为1310nm时其截止波长为1100nm~1350nm;所述光纤工作波长为1550nm时其截止波长为1250nm~1650nm。
5.如权利要求1或2所述的高双折射保偏光纤,其特征在于所述的光纤上刻入有光栅。
6.如权利要求1或2所述的高双折射保偏光纤,其特征在于所述光纤的工作波长为850nm或1310nm或1550nm。
CN201610129210.XA 2016-03-08 2016-03-08 一种高双折射保偏光纤 Active CN105700070B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610129210.XA CN105700070B (zh) 2016-03-08 2016-03-08 一种高双折射保偏光纤

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610129210.XA CN105700070B (zh) 2016-03-08 2016-03-08 一种高双折射保偏光纤

Publications (2)

Publication Number Publication Date
CN105700070A CN105700070A (zh) 2016-06-22
CN105700070B true CN105700070B (zh) 2019-06-28

Family

ID=56220857

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610129210.XA Active CN105700070B (zh) 2016-03-08 2016-03-08 一种高双折射保偏光纤

Country Status (1)

Country Link
CN (1) CN105700070B (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106291807A (zh) 2016-09-19 2017-01-04 长飞光纤光缆股份有限公司 一种防开裂熊猫型保偏光纤
CN109471217A (zh) * 2018-12-18 2019-03-15 武汉理工大学 一种易于极化的双孔光纤
CN110243574B (zh) * 2019-05-31 2021-02-09 天津大学 基于孤子自频移的保偏光纤双折射系数的测量装置和方法
CN112882151B (zh) * 2021-01-25 2022-04-05 长飞光纤光缆股份有限公司 一种无源保偏光纤及其应用

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60247628A (ja) * 1984-05-24 1985-12-07 Nippon Telegr & Teleph Corp <Ntt> 光フアイバを用いた光増幅部
CN1462888A (zh) * 2003-06-05 2003-12-24 烽火通信科技股份有限公司 高双折射保偏光纤及其制造方法
CN1809771A (zh) * 2003-06-19 2006-07-26 康宁股份有限公司 单偏振光纤和系统以及其制造方法
US7412142B2 (en) * 2006-05-19 2008-08-12 Corning Incorporated Optical fiber with plurality of air holes and stress rods
US7489847B1 (en) * 2007-07-24 2009-02-10 The United States Of America As Represented By The Secretary Of The Air Force Optical fiber with tunable birefringence using pressurized liquid capillaries
CN202256757U (zh) * 2011-07-12 2012-05-30 武汉长盈通光电技术有限公司 细径熊猫型保偏光纤

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62269031A (ja) * 1986-05-19 1987-11-21 Nec Corp センサ用光フアイバ
US7382957B2 (en) * 2006-01-30 2008-06-03 Corning Incorporated Rare earth doped double clad optical fiber with plurality of air holes and stress rods

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60247628A (ja) * 1984-05-24 1985-12-07 Nippon Telegr & Teleph Corp <Ntt> 光フアイバを用いた光増幅部
CN1462888A (zh) * 2003-06-05 2003-12-24 烽火通信科技股份有限公司 高双折射保偏光纤及其制造方法
CN1809771A (zh) * 2003-06-19 2006-07-26 康宁股份有限公司 单偏振光纤和系统以及其制造方法
US7412142B2 (en) * 2006-05-19 2008-08-12 Corning Incorporated Optical fiber with plurality of air holes and stress rods
US7489847B1 (en) * 2007-07-24 2009-02-10 The United States Of America As Represented By The Secretary Of The Air Force Optical fiber with tunable birefringence using pressurized liquid capillaries
CN202256757U (zh) * 2011-07-12 2012-05-30 武汉长盈通光电技术有限公司 细径熊猫型保偏光纤

Also Published As

Publication number Publication date
CN105700070A (zh) 2016-06-22

Similar Documents

Publication Publication Date Title
Leal-Junior et al. Characterization of a new polymer optical fiber with enhanced sensing capabilities using a Bragg grating
Wu et al. Refractive index sensing based on Mach–Zehnder interferometer formed by three cascaded single-mode fiber tapers
Chen et al. A miniature reflective micro-force sensor based on a microfiber coupler
Liu et al. Strain force sensor with ultra-high sensitivity based on fiber inline Fabry-Perot micro-cavity plugged by cantilever taper
CN105700070B (zh) 一种高双折射保偏光纤
Cui et al. Compact bending sensor based on a fiber Bragg grating in an abrupt biconical taper
Guzman-Sepulveda et al. In-fiber directional coupler for high-sensitivity curvature measurement
Lang et al. Temperature-insensitive optical fiber strain sensor with ultra-low detection limit based on capillary-taper temperature compensation structure
Wen et al. Ultrasensitive temperature fiber sensor based on Fabry-Pérot interferometer assisted with iron V-groove
Szczurowski et al. Measurements of polarimetric sensitivity to hydrostatic pressure, strain and temperature in birefringent dual-core microstructured polymer fiber
CN105571750A (zh) 一种分布式压力传感系统
Liu et al. Simultaneous measurement of temperature and strain based on SCF-based MZI cascaded with FBG
Jiang et al. Highly sensitive torsion senor based on dual-side-hole fiber Mach-Zehnder interferometer
Yang et al. Highly sensitive curvature sensor based on a sandwich multimode fiber Mach–Zehnder interferometer
Jin et al. Highly sensitive vector bending sensor based on an embedded multimode D-shaped LPFG
Zhang et al. Simultaneous measurement of refractive index and temperature or temperature and axial strain based on an inline Mach–Zehnder interferometer with TCF–TF–TCF structure
CN102213791A (zh) 细径熊猫型保偏光纤
Ma et al. Refractometer based on fiber Mach-Zehnder interferometer composed of two micro bending cores
Zhao et al. Femtosecond laser-inscribed off-axis high-order mode long-period grating for independent sensing of curvature and temperature
Li et al. Simultaneous measurement of axial strain and temperature based on a twin-core single-hole fiber with the optical Vernier effect
Wang et al. High-sensitivity and high extinction ratio fiber strain sensor with temperature insensitivity by cascaded MZI and FPI
Ma et al. Highly sensitive curvature fiber sensor based on an enhanced core diameter mismatch
Nan et al. Optical fiber temperature sensor with insensitive refractive index and strain based on phase demodulation
CN102494816A (zh) 一种基于光子晶体光纤的压力传感方法及传感器
Tan et al. Optical fiber temperature sensor based on dumbbell-shaped Mach–Zehnder interferometer

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant