WO2018058580A1 - 数据传输的方法和装置 - Google Patents

数据传输的方法和装置 Download PDF

Info

Publication number
WO2018058580A1
WO2018058580A1 PCT/CN2016/101214 CN2016101214W WO2018058580A1 WO 2018058580 A1 WO2018058580 A1 WO 2018058580A1 CN 2016101214 W CN2016101214 W CN 2016101214W WO 2018058580 A1 WO2018058580 A1 WO 2018058580A1
Authority
WO
WIPO (PCT)
Prior art keywords
terminal
data
manner
transmission diversity
indication information
Prior art date
Application number
PCT/CN2016/101214
Other languages
English (en)
French (fr)
Inventor
唐海
许华
Original Assignee
广东欧珀移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广东欧珀移动通信有限公司 filed Critical 广东欧珀移动通信有限公司
Priority to PCT/CN2016/101214 priority Critical patent/WO2018058580A1/zh
Priority to CN201680087388.0A priority patent/CN109417405A/zh
Priority to EP16917330.9A priority patent/EP3454476A4/en
Priority to US16/308,639 priority patent/US20190149208A1/en
Priority to TW106128828A priority patent/TWI685223B/zh
Publication of WO2018058580A1 publication Critical patent/WO2018058580A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/068Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission using space frequency diversity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0408Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas using two or more beams, i.e. beam diversity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0602Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using antenna switching
    • H04B7/0604Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using antenna switching with predefined switching scheme
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0686Hybrid systems, i.e. switching and simultaneous transmission
    • H04B7/0689Hybrid systems, i.e. switching and simultaneous transmission using different transmission schemes, at least one of them being a diversity transmission scheme
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0686Hybrid systems, i.e. switching and simultaneous transmission
    • H04B7/0695Hybrid systems, i.e. switching and simultaneous transmission using beam selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/02Arrangements for detecting or preventing errors in the information received by diversity reception
    • H04L1/06Arrangements for detecting or preventing errors in the information received by diversity reception using space diversity
    • H04L1/0606Space-frequency coding
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/02Arrangements for detecting or preventing errors in the information received by diversity reception
    • H04L1/06Arrangements for detecting or preventing errors in the information received by diversity reception using space diversity
    • H04L1/0618Space-time coding
    • H04L1/0625Transmitter arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver

Definitions

  • Embodiments of the present invention relate to the field of communications and, more particularly, to methods and apparatus for data transmission.
  • Diversity is a method in which the receiving end performs specific processing on the fading characteristics it receives independently of each other to reduce the fluctuation of the signal level.
  • Diversity refers to distributed transmission and centralized reception.
  • the so-called distributed transmission enables the receiving end (for example, the terminal device) to obtain a plurality of statistically independent fading signals carrying the same information.
  • Centralized reception is the receiver combines (selects and combines) multiple statistically independent fading signals received to reduce the effect of signal fading on the signal transmission quality during transmission.
  • diversity technology is usually used to compensate for fading channel loss, and the transmission quality of the wireless communication channel can be improved without increasing transmission power and bandwidth.
  • a terminal uses the transmission diversity after performing a blind check on a Physical Broadcast Channel (PBCH) to determine a transmission diversity used for transmitting subsequent data.
  • PBCH Physical Broadcast Channel
  • the method of transmitting subsequent data, and the manner of transmission diversity used by the terminal to transmit data is fixed, that is, the data transmission method of the above-described fixed diversity transmission method reduces the flexibility of the data transmission mode.
  • the application provides a method and apparatus for data transmission to improve the flexibility of data transmission.
  • the first aspect provides a method for data transmission, including: receiving, by a terminal, indication information sent by a network side device, where the indication information is used to indicate a manner of the first transmission diversity; and the terminal is in the manner of the first transmission diversity Receive the first data.
  • the network side device sends the indication information to the terminal, and informs the terminal of the manner of using the transmission diversity when receiving the data, so that the terminal does not need to receive data in a manner of fixed transmission diversity that can only be used in the prior art.
  • the manner of transmitting diversity can be adjusted according to the indication information sent by the network side device, so as to improve the flexibility of the data transmission mode.
  • the method before the receiving, by the terminal, the indication information sent by the network side device, the method further includes: the terminal transmitting the second transmission The set mode receives the second data.
  • the network side device sends the indication information to the terminal, and notifies the terminal to switch the manner of receiving the data from the second transmission diversity mode to the first transmission diversity mode, so that the network side device can dynamically adjust the terminal.
  • the transmission mode is configured for the terminal to configure the transmission diversity suitable for the terminal, and the data transmission quality can be improved while improving the flexibility of data transmission.
  • the terminal is located in a switching area of the first beam and the second beam, where the first Data is sent to the terminal by using a first beam and a second beam, where the first beam is a source beam that the terminal serves the terminal before switching to the second beam, and the second beam is The target beam to which the terminal switches.
  • data may be sent to the terminal through the first beam and the second beam to improve the data transmission quality by the gain of the transmission diversity.
  • the first beam and the second beam are transmitted by the same transceiver node TRP.
  • the first beam and the second beam are transmitted through the same TRP, so that the terminal can receive data using two beams in the same cell to improve the quality of data transmission.
  • the first beam and the second beam are respectively transmitted by different TRPs.
  • the first beam and the second beam are transmitted through different TRPs, so that the terminal can be in the same cell or at the boundary of the neighboring cell, and two beams can be used to receive data to improve data transmission. quality.
  • the foregoing indication information is sent by physical layer signaling to improve the sending speed of the indication information, thereby further saving the time for the terminal to determine the manner of transmitting diversity according to the indication information.
  • the terminal by using the first transmission diversity, includes: The terminal determines, according to the physical layer signaling, a physical resource location for transmitting the data; the terminal receives the data in the first transmission diversity manner at the physical resource location.
  • the physical resource location used for transmitting the data may also be indicated to the terminal at the same time, so that the terminal receives the data in the first transmission diversity manner at the physical resource location.
  • the network side device sends the indication information to the terminal through the high layer signaling, and the manner of the transmission diversity used by the terminal to receive the data is adjusted, and the manner of transmitting the diversity may be adjusted according to the indication information sent by the network side device, Increase the flexibility of data transfer methods.
  • the terminal by using the first transmission diversity, to receive data, includes:
  • the first transmission diversity manner is prepared to receive the data from the time when the high layer signaling is received.
  • the network side device sends the indication information to the terminal through the high layer signaling, and the manner of the transmission diversity used by the terminal to receive the data is adjusted, and the manner of transmitting the diversity may be adjusted according to the indication information sent by the network side device, Increase the flexibility of data transfer methods.
  • the first transmission diversity manner is a spatial frequency block code SFBC-frequency selective transmission diversity FSTD, where
  • the second transmission diversity method is SFBC.
  • the network side device sends the indication information to the terminal, and notifies the terminal to switch the transmission diversity mode from the SFBC to the SFBC-FSTD, and can obtain the transmission diversity gain by switching the transmission diversity manner to improve the data transmission manner. Flexibility.
  • the indication information further includes at least one of the following information: a mode of data demodulation of the transmission diversity The pilot signal used, the number of antenna ports corresponding to the manner of the transmission diversity, the resource configuration information of the pilot signal, and the sequence information of the pilot signal.
  • the second aspect provides a method for data transmission, including: the network side device sends indication information to the terminal, where the indication information is used to indicate a manner of the first transmission diversity; and the network side device uses the first transmission diversity The mode sends data to the terminal.
  • the network side device sends the indication information to the terminal, and informs the terminal of the manner of using the transmission diversity when receiving the data, so that the terminal does not need to receive data in a manner of fixed transmission diversity that can only be used in the prior art.
  • the manner of transmitting diversity can be adjusted according to the indication information sent by the network side device, so as to improve the flexibility of the data transmission mode.
  • the indication information is further used to indicate a manner in which the terminal switches from the second transmission diversity manner to the first transmission diversity manner, where
  • the second transmission diversity mode is the manner in which the terminal currently uses the transmission diversity used for receiving data.
  • the network side device sends the indication information to the terminal, and notifies the terminal to switch the manner of receiving the data from the second transmission diversity mode to the first transmission diversity mode, so that the network side device can dynamically adjust the terminal.
  • the transmission mode is configured for the terminal to configure the transmission diversity suitable for the terminal, and the data transmission quality can be improved while improving the flexibility of data transmission.
  • the method before the network side device sends the indication information to the terminal, the method further includes: the network side device Determining, by the terminal, a handover area between the first beam and the second beam, where the first beam is a source beam serving the terminal before the terminal switches to the second beam, the second beam The target beam to which the terminal is switched.
  • data may be sent to the terminal through the first beam and the second beam to improve the data transmission quality by the gain of the transmission diversity.
  • the first beam and the second beam are transmitted by the same transceiver node TRP.
  • the first beam and the second beam are transmitted through the same TRP, so that the terminal can receive data using two beams in the same cell to improve the quality of data transmission.
  • the first beam and the second beam are respectively transmitted by different TRPs.
  • the first beam and the second beam are transmitted through different TRPs, so that the terminal can be in the same cell or at the boundary of the neighboring cell, and two beams can be used to receive data to improve data transmission. quality.
  • the network side device sends the indication information to the terminal, including: the network side device Sending high layer signaling or physical layer signaling to the terminal, where the high layer signaling or the physical layer signaling carries the indication information.
  • the foregoing indication information is sent by using the physical layer signaling or the high layer signaling, where the sending of the indication information by using physical layer signaling may improve the sending speed of the indication information, thereby further saving the terminal to determine the transmission according to the indication information.
  • the first transmission diversity manner is a spatial frequency block code SFBC-frequency selective transmission diversity FSTD, where
  • the second transmission diversity method is SFBC.
  • the network side device sends the indication information to the terminal, and notifies the terminal to switch the transmission diversity mode from the SFBC to the SFBC-FSTD, and can obtain the transmission diversity gain by switching the transmission diversity manner to improve the data transmission manner. Flexibility.
  • the indication information further includes at least one of the following information: the data demodulation of the transmission diversity mode The pilot signal used, the number of antenna ports corresponding to the manner of the transmission diversity, the resource configuration information of the pilot data, and the sequence information of the pilot signal.
  • an apparatus for data transmission comprising means for performing the method of the first aspect.
  • an apparatus for data transmission comprising means for performing the method of the second aspect.
  • an apparatus for data transmission comprising: a memory, a processor, an input/output interface, a communication interface, and a bus system.
  • the memory, the processor, the input/output interface, and the communication interface are connected by a bus system for storing instructions for executing instructions stored by the memory, and when the instructions are executed, the processor passes The communication interface performs the method of the first aspect, and controls the input/output interface to receive input data and information, and output data such as an operation result.
  • an apparatus for data transmission comprising: a memory, a processor, an input/output interface, a communication interface, and a bus system.
  • the memory, the processor, the input/output interface, and the communication interface are connected by a bus system for storing instructions for executing instructions stored by the memory, and when the instructions are executed, the processor passes The communication interface performs the method of the second aspect, and controls the input/output interface to receive input data and information, and output data such as an operation result.
  • a computer readable storage medium for program code for a method of signal detection, the program code for performing the method instructions of the first aspect.
  • a computer readable storage medium for program code for a method of signal detection, the program code for performing the method instructions of the second aspect.
  • FIG. 1 shows a schematic flow chart of a method of data transmission according to an embodiment of the present invention.
  • FIG. 2 is a schematic diagram showing an application scenario of a method of data transmission according to an embodiment of the present invention.
  • FIG. 3 shows a schematic diagram of transmitting data in a manner of transmission diversity using SFBC-FSTD.
  • FIG. 4 is a schematic diagram showing an application scenario of a method for data transmission according to another embodiment of the present invention.
  • FIG. 5 shows a schematic flow chart of a method of data transmission according to another embodiment of the present invention.
  • FIG. 6 shows a schematic block diagram of an apparatus for data transmission according to an embodiment of the present invention.
  • FIG. 7 shows a schematic block diagram of an apparatus for data transmission according to another embodiment of the present invention.
  • FIG. 8 shows a schematic block diagram of an apparatus for data transmission according to another embodiment of the present invention.
  • FIG. 9 shows a schematic block diagram of an apparatus for data transmission according to another embodiment of the present invention.
  • GSM Global System of Mobile communication
  • CDMA Code Division Multiple Access
  • WCDMA Wideband Code Division Multiple Access Wireless
  • GPRS General Packet Radio Service
  • LTE Long Term Evolution
  • NR 5G New Radio
  • a terminal may be referred to as a terminal device or a user equipment (User Equipment, UE), which may also be called a mobile terminal (Mobile Terminal), a mobile user equipment, etc., and may be accessed via a wireless access network (for example, The Radio Access Network (RAN) communicates with one or more core networks, which may be mobile terminals, such as mobile phones (or "cellular" phones) and computers with mobile terminals, for example, may be portable, pocket-sized , handheld, computer built-in or in-vehicle mobile devices that exchange language and/or data with a wireless access network.
  • UE User Equipment
  • Mobile Terminal mobile terminal
  • the Radio Access Network communicates with one or more core networks, which may be mobile terminals, such as mobile phones (or "cellular" phones) and computers with mobile terminals, for example, may be portable, pocket-sized , handheld, computer built-in or in-vehicle mobile devices that exchange language and/or data with a wireless access network.
  • RAN Radio Access Network
  • the network device may be a device for communicating with the mobile device, such as a network device, and the network device may be an access point (APCESS POINT, AP) in the WLAN, GSM or Code Division Multiple Access (CDMA).
  • Base station Base Transceiver Station, BTS
  • BTS Base Transceiver Station
  • Node B, NB base station
  • a relay station or an access point or an in-vehicle device, a wearable device, and a network device in a future 5G network or a network device in a future evolved PLMN network.
  • FIG. 1 is a schematic flowchart of a method for data transmission according to an embodiment of the present invention. The method shown in Figure 1 includes:
  • the terminal receives the indication information sent by the network side device, where the indication information is used to indicate the manner of the first transmission diversity.
  • the manner of the foregoing first transmission diversity may be Space Frequency Block Code-Frequency Switch Transmit Diversity (SFBC-FSTD) or SFBC, or may be specified in other future communication standards.
  • the manner of the transmission diversity is not specifically limited in the embodiment of the present invention.
  • the foregoing indication information may be carried in the high layer signaling, and the foregoing indication information may also be carried in the physical layer (L1) signaling.
  • the manner of sending the indication information is not specifically limited in the embodiment of the present invention.
  • the indication information further includes at least one of the following information: a pilot signal used for data demodulation in the manner of the transmission diversity, and a number of antenna ports corresponding to the manner of the transmission diversity, Transmitting resource configuration information of the pilot signal and sequence information of the pilot signal.
  • the number of antenna ports corresponding to the manner of the foregoing transmission diversity may refer to a manner that does not use transmission diversity corresponds to one antenna port; SFBC corresponds to two antenna ports; and SFBC-FSTD corresponds to four antenna ports.
  • the resource configuration information of the pilot signal may be a physical resource location used for transmitting the pilot signal, or may be a time domain resource location used for transmitting the pilot signal or a frequency domain resource location used by the transmission pilot signal, and the present invention This is not specifically limited.
  • the sequence information of the pilot signal may be a sequence ID of the pilot signal or other information related to the sequence of the pilot signal.
  • the pilot signal may be a terminal-specific pilot signal, that is, the terminal may demodulate downlink data sent to the terminal by using the terminal-specific pilot signal, and the terminal-specific pilot signal does not need to be used. Continuous transmission over the entire frequency band and time like a common pilot signal, the terminal-specific pilot resources can be transmitted only in the resources allocated for the terminal to save the overhead of transmitting pilot signals.
  • the receiving, by the terminal, the indication information sent by the network side device includes: the terminal receiving the indication information that is sent by the network side device by using physical layer signaling.
  • the terminal receives the data in the manner of the transmission diversity, where: the terminal determines, according to the physical layer signaling, a physical resource location for transmitting the data; where the terminal is at the physical resource location
  • the manner of transmitting diversity receives the data.
  • the network side device sends the indication information to the terminal through the physical layer signaling, and the network side device sends the indication information to the terminal through the high layer signaling, because it is directly sent through the physical layer (Layer 1) signaling, The report is sent to the upper layer (Layer 2 or Layer 3). Therefore, the manner of sending the indication information by the physical layer signaling may save the time for transmitting the indication information, so that the terminal can determine the transmission diversity of the data according to the indication information. the way.
  • the receiving, by the terminal, the indication information sent by the network side device includes: the terminal receiving the indication information that is sent by the network side device by using the high layer signaling.
  • the foregoing high layer signaling may be a data connection layer, that is, layer 2 (Layer 2) signaling, and may also be a network layer, that is, layer 3 (Layer 3) signaling.
  • layer 2 Layer 2
  • Layer 3 Layer 3
  • the receiving, by the terminal, the data in the manner of the transmission diversity including: the terminal preparing to receive the data from a time of receiving the high layer signaling in the manner of the transmission diversity.
  • the terminal receives the data after a preset period of time from the time when the indication information is received.
  • the foregoing preset time period may be that the network side device is pre-configured for the terminal, or may be sent by the network side device to the terminal, which is not specifically limited by the present invention.
  • the terminal receives the first data in the manner of the first transmission diversity.
  • the method before the terminal receives the indication information sent by the network side device, the method further includes: the terminal receiving the second data in a manner of the second transmission diversity.
  • the manner of the foregoing second transmission diversity may be spatial frequency block code-frequency selective transmission diversity SFBC-FSTD or SFBC, and may also be a manner of transmission diversity specified in other future communication standards, and the embodiment of the present invention transmits diversity.
  • the method is not specifically limited.
  • the manner of the first transmission diversity and the manner of the second transmission diversity may be the same or different.
  • the manner in which the terminal determines the second transmission diversity may be determined by the terminal performing blind detection on the PBCH, determining the number of antenna ports, and then determining the mapping relationship between the number of antenna ports and the manner of transmission diversity.
  • the manner in which the terminal determines the second transmission diversity may also be determined by the terminal by receiving the indication information sent by the network side device.
  • the method for determining the manner of the second transmission diversity is not specifically limited in the embodiment of the present invention.
  • the first transmission diversity manner is a spatial frequency block code SFBC-frequency selective transmission diversity FSTD
  • the second transmission diversity manner is SFBC
  • the terminal may receive data in a manner of transmission diversity of the SFBC before receiving the indication information, and when the terminal receives the indication information for instructing the terminal to transmit the spoof in the manner of the first transmission diversity, the terminal may Data is received in a manner of transmission diversity.
  • the first data is sent to the terminal by using a first beam and a second beam, where the first beam is before the terminal switches to the second beam.
  • the terminal provides a source beam of the service, and the second beam is a target beam to which the terminal switches.
  • the foregoing beam serving the terminal may refer to that the terminal can use the beam to transmit data.
  • the network side device sends the first data to the terminal by using the first beam and the second beam, and the network side device
  • the first data may be received by the indication information indicating to the terminal that the transmission diversity corresponding to the 4-antenna port (which may be SFBC-FSTD) is used.
  • the terminal sends the location information to the network side device, where the location information is used to indicate the current location of the terminal, so that the network side device determines, according to the current location information of the terminal, whether the terminal is located. a switching area between the first beam and the second beam.
  • the terminal sends the measurement information for the different beams to the network side device, where the measurement information is used to provide a basis for the network side device to determine the current location of the terminal, so that the network side device determines, according to the current location information of the terminal, whether the terminal is located. a switching area between the first beam and the second beam.
  • the network side device may determine the location of the terminal by itself, where the location information is used to indicate the current location of the terminal, so that the network side device determines, according to the current location information of the terminal, whether the terminal is located in the first beam and the The switching area between the second beams.
  • the switching area between the first beam and the second beam may refer to an overlapping area of the coverage of the first beam and the coverage of the second beam.
  • the terminal located in the area may be in a "soft handover" state, that is, the terminal may be in a communication state that can already receive data using the second beam, and can also receive data using the first beam.
  • the first beam and the second beam are transmitted by a same Transmit and Receive Point (TRP).
  • TRP Transmit and Receive Point
  • the foregoing that the first beam and the second beam are transmitted by the same transceiver node may mean that the first beam and the second beam belong to the same cell.
  • the first beam and the second beam are respectively transmitted by different TRPs.
  • the first beam may be transmitted by the first TRP
  • the second beam may be transmitted by the second TRP
  • the first TRP and the second TRP may belong to different cells respectively, and the first beam and the second beam are also
  • the first TRP and the second TRP may belong to the same cell, and the first beam and the second beam also belong to the same cell.
  • the network side device where the first TRP is located and the network side device where the second TRP is located may be pre-agreed (or negotiated). Determine the way the terminal transmits the transmission diversity used by the data.
  • the network side device where the first TRP is located or the network device where the second TRP is located may send the indication information to the terminal, which is in the embodiment of the present invention. This is not specifically limited.
  • FIG. 2 shows an application scenario of a method for data transmission according to an embodiment of the present invention. From the picture shown in Figure 2.
  • the first beam is transmitted by the 2 antenna port of the first TRP
  • the second beam is transmitted by the 2 antenna port of the second TRP.
  • the first beam and the second beam may be in the same cell or may not be in the same cell, which is not specifically limited in this embodiment of the present invention.
  • the terminal shown in FIG. 2 can receive data by using the first beam, and the terminal can also receive data by using the second beam, that is, the terminal can receive two data streams from the 2-port antenna on the first TRP, and the terminal can also The other two data streams are received from the two-port antenna on the second TRP.
  • the terminal can process the four data streams to determine the data transmitted by the network side device, that is, the manner in which the terminal transmits the diversity through the SFBC-FSTD. Receive data.
  • FIG. 3 a schematic diagram of the transmission mode of transmitting data in the manner of the transmission diversity is shown in FIG. 3.
  • the terminal uses the transmission diversity of the SFBC-FSTD to receive data. It can be understood that the terminal needs to receive four data streams from the two antenna ports on the first TRP and the two antenna ports on the second TRP, respectively. See the first data stream, the second data stream, the third data stream, and the fourth data stream shown in FIG.
  • the first data stream and the second data stream may be sent by using a first beam transmitted by the 2 antenna port of the first TRP, and the third data stream and The fourth data stream may be transmitted using a second beam transmitted by the 2 antenna port of the second TRP; or the first data stream and the third data stream may be transmitted using the first beam transmitted by the 2 antenna port of the first TRP, the second data stream And the fourth data stream may be sent by using the second beam that is transmitted by the 2 antenna port of the second TRP, which is not specifically limited in this embodiment of the present invention.
  • the foregoing antenna port may refer to a physical transmit antenna, and may also be a virtual antenna port that carries a set of pilot signals, which is not specifically limited in this embodiment of the present invention.
  • FIG. 4 shows an application scenario of a method for data transmission according to another embodiment of the present invention.
  • the first beam and the second beam can be transmitted by the 4 antenna ports on the same TRP.
  • the terminal can receive data by using the first beam, and the terminal can also receive data by using the second beam. That is, the terminal can receive two data streams by using the first beam transmitted by the 2-port antenna on the TRP, and the terminal can also use the data.
  • the second beam transmitted by the other two-port antenna on the TRP receives two data streams.
  • the terminal processes the four data streams to determine downlink data transmitted by the network side device, that is, the transmission diversity of the terminal through the SFBC-FSTD. The way to receive data.
  • FIG. 3 a schematic diagram of the transmission mode of transmitting data in the manner of the transmission diversity is shown in FIG. 3.
  • the terminal uses the transmission diversity of the SFBC-FSTD to receive data. It can be understood that the terminal needs to receive 4 data streams by using the first beam and the second beam respectively transmitted by the 4 antenna ports on the TRP (see the figure).
  • the foregoing data stream and the corresponding manner of the antenna port may be flexibly combined.
  • the first data stream and the second data stream may be sent by using a first beam transmitted by the first group 2 antenna ports of the TRP, and the third data stream is sent.
  • the fourth data stream may be transmitted using a second beam transmitted by the second set of 2 antenna ports of the TRP; or the first data stream and the third data stream may be transmitted using a first beam transmitted by the first set of 2 antenna ports of the TRP,
  • the second data stream and the fourth data stream may be sent by using the second beam that is transmitted by the second group of 2 antenna ports of the TRP, which is not specifically limited in this embodiment of the present invention.
  • the foregoing antenna port may refer to a physical transmit antenna, and may also be a virtual antenna port that carries a set of pilot signals, which is not specifically limited in this embodiment of the present invention.
  • FIG. 5 is a schematic flow chart showing a method of data transmission according to another embodiment of the present invention. It should be understood that the specific details of the method shown in FIG. 5 and the method shown in FIG. 1 above are substantially the same, and are not described herein again for brevity.
  • the method shown in Figure 5 includes:
  • the network side device sends indication information to the terminal, where the indication information is used to indicate a manner of the first transmission diversity.
  • the network side device sends data to the terminal in the manner of the first transmission diversity.
  • the indication information is further used to indicate a manner in which the terminal switches from the second transmission diversity manner to the first transmission diversity manner, where the second transmission diversity manner is that the terminal currently receives The way the data is transmitted using diversity.
  • the method before the network side device sends the indication information to the terminal, the method further includes: determining, by the network side device, a switching area between the first beam and the second beam of the terminal
  • the first beam is a source beam serving the terminal before the terminal switches to the second beam
  • the second beam is a target beam to which the terminal switches.
  • the first beam and the second beam are transmitted by the same transceiver node TRP.
  • the first beam and the second beam are respectively different. TRP launch.
  • the network side device sends the indication information to the terminal, where the network side device sends the high layer signaling or the physical layer signaling to the terminal, the high layer signaling or the physical Layer signaling carries the indication information.
  • the first transmission diversity manner is a spatial frequency block code SFBC-frequency selective transmission diversity FSTD
  • the second transmission diversity manner is SFBC
  • the indication information further includes at least one of the following information: a pilot signal used for data demodulation in the manner of the transmission diversity, and a number of antenna ports corresponding to the manner of the transmission diversity, Transmitting resource configuration information of the pilot data and sequence information of the pilot signal.
  • FIGS. 6 through 9 The method of data transmission according to the embodiment of the present invention is described in detail above with reference to FIGS. 1 through 5.
  • FIGS. 6 through 9 the apparatus for data transmission according to the embodiment of the present invention will be described in detail with reference to FIGS. 6 through 9. It should be understood that the apparatus shown in FIG. 6 and FIG. 8 can implement the various steps in FIG. 1.
  • the apparatus shown in FIG. 7 and FIG. 9 can implement the various steps in FIG. 5. To avoid repetition, details are not described herein again.
  • FIG. 6 shows a schematic block diagram of an apparatus for data transmission according to an embodiment of the present invention.
  • the apparatus 600 shown in FIG. 6 includes a first receiving module 610 and a second receiving module 620.
  • a first receiving module configured to receive indication information sent by the network side device, where the indication information is used to indicate a manner of the first transmission diversity
  • a second receiving module configured to receive the first data in the manner of the first transmission diversity.
  • the network side device sends the indication information to the terminal, and informs the terminal of the manner of using the transmission diversity when receiving the data, so that the terminal does not need to receive data in a manner of fixed transmission diversity that can only be used in the prior art.
  • the manner of transmitting diversity can be adjusted according to the indication information sent by the network side device, so as to improve the flexibility of the data transmission mode.
  • the apparatus further includes: a third receiving module, configured to receive the second data in a manner of the second transmission diversity.
  • the first data is sent to the terminal by using a first beam and a second beam, where the terminal is located in a switching area of the first beam and the second beam, where The first beam is a source beam that the terminal serves for the terminal before switching to the second beam, and the second beam is a target beam to which the terminal switches.
  • the first beam and the second beam are transmitted by the same transceiver node TRP.
  • the first beam and the second beam are respectively transmitted by different TRPs.
  • the first receiving module is specifically configured to: receive the indication information that is sent by the network side device by using physical layer signaling.
  • the first receiving module is further configured to: determine, according to the physical layer signaling, a physical resource location for transmitting the data; and use the first transmission at the physical resource location The data is received in a diversity manner.
  • the first receiving module is specifically configured to: receive the indication information that is sent by the network side device by using the high layer signaling.
  • the first receiving module is further configured to: in the manner of the first transmission diversity, prepare to receive the data from a time when the high layer signaling is received.
  • the first transmission diversity manner is a spatial frequency block code SFBC-frequency selective transmission diversity FSTD
  • the second transmission diversity manner is SFBC
  • the indication information further includes at least one of the following information: a pilot signal used for data demodulation in the manner of the transmission diversity, and a number of antenna ports corresponding to the manner of the transmission diversity, Transmitting resource configuration information of the pilot signal and sequence information of the pilot signal.
  • FIG. 7 shows a schematic block diagram of an apparatus for data transmission according to another embodiment of the present invention.
  • the apparatus 700 shown in FIG. 7 includes a first sending module 710 and a second sending module 720.
  • the first sending module 710 is configured to send, to the terminal, indication information, where the indication information is used to indicate a manner of the first transmission diversity;
  • the second sending module 720 is configured to send data to the terminal in the manner of the first transmission diversity.
  • the network side device sends the indication information to the terminal, and informs the terminal of the manner of using the transmission diversity when receiving the data, so that the terminal does not need to receive data in a manner of fixed transmission diversity that can only be used in the prior art.
  • the manner of transmitting diversity can be adjusted according to the indication information sent by the network side device, so as to improve the flexibility of the data transmission mode.
  • the indication information is further used to indicate a manner in which the terminal switches from the second transmission diversity manner to the first transmission diversity manner, where the second transmission diversity manner is that the terminal currently receives The way the data is transmitted using diversity.
  • the apparatus further includes: a determining module, configured to determine the a switching area between the first beam and the second beam of the terminal, where the first beam is a source beam serving the terminal before the terminal switches to the second beam, and the second beam is the The target beam to which the terminal switches.
  • a determining module configured to determine the a switching area between the first beam and the second beam of the terminal, where the first beam is a source beam serving the terminal before the terminal switches to the second beam, and the second beam is the The target beam to which the terminal switches.
  • the first beam and the second beam are transmitted by the same transceiver node TRP.
  • the first beam and the second beam are respectively transmitted by different TRPs.
  • the first sending module is specifically configured to: send high-level signaling or physical layer signaling to the terminal, where the high-layer signaling or the physical layer signaling carries the indication information .
  • the first transmission diversity manner is a spatial frequency block code SFBC-frequency selective transmission diversity FSTD
  • the second transmission diversity manner is SFBC
  • the indication information further includes at least one of the following information: a pilot signal used for data demodulation in the manner of the transmission diversity, and a number of antenna ports corresponding to the manner of the transmission diversity, Transmitting resource configuration information of the pilot data and sequence information of the pilot signal.
  • FIG. 8 shows a schematic block diagram of an apparatus for data transmission according to another embodiment of the present invention.
  • the apparatus 800 for data transmission shown in FIG. 8 includes a memory 810, a processor 820, an input/output interface 830, a communication interface 840, and a bus system 850.
  • the memory 810, the processor 820, the input/output interface 830, and the communication interface 840 are connected by a bus system 850 for storing instructions for executing instructions stored in the memory 820 to control input/
  • the output interface 830 receives the input data and information, outputs data such as an operation result, and controls the communication interface 840 to transmit a signal.
  • the communication interface 840 is configured to receive indication information sent by the network side device, where the indication information is used to indicate a manner of the first transmission diversity.
  • the communication interface 840 is further configured to receive the first data in the manner of the first transmission diversity.
  • the processor 820 may be a general-purpose central processing unit (CPU), a microprocessor, an application specific integrated circuit (ASIC), or one or more.
  • the integrated circuit is used to implement the related program to implement the technical solution provided by the embodiment of the present invention.
  • communication interface 840 uses transceivers such as, but not limited to, transceivers. Communication between the device 800 implementing signal detection and other devices or communication networks.
  • the memory 810 can include read only memory and random access memory and provides instructions and data to the processor 820.
  • a portion of processor 820 may also include a non-volatile random access memory.
  • the processor 820 can also store information of the device type.
  • the bus system 850 may include a power bus, a control bus, a status signal bus, and the like in addition to the data bus. However, for clarity of description, various buses are labeled as bus system 850 in the figure.
  • each step of the foregoing method may be completed by an integrated logic circuit of hardware in the processor 820 or an instruction in a form of software.
  • the steps of the method for data transmission disclosed in the embodiments of the present invention may be directly implemented as hardware processor execution completion, or performed by a combination of hardware and software modules in the processor.
  • the software module can be located in a conventional storage medium such as random access memory, flash memory, read only memory, programmable read only memory or electrically erasable programmable memory, registers, and the like.
  • the storage medium is located in the memory 810, and the processor 820 reads the information in the memory 810 and completes the steps of the above method in combination with its hardware. To avoid repetition, it will not be described in detail here.
  • the network side device sends the indication information to the terminal, and informs the terminal of the manner of using the transmission diversity when receiving the data, so that the terminal does not need to receive data in a manner of fixed transmission diversity that can only be used in the prior art.
  • the manner of transmitting diversity can be adjusted according to the indication information sent by the network side device, so as to improve the flexibility of the data transmission mode.
  • the communication interface is further configured to receive the second data in a manner of the second transmission diversity.
  • the first data is sent to the terminal by using a first beam and a second beam, where the terminal is located in a switching area of the first beam and the second beam, where The first beam is a source beam that the terminal serves for the terminal before switching to the second beam, and the second beam is a target beam to which the terminal switches.
  • the first beam and the second beam are transmitted by the same transceiver node TRP.
  • the first beam and the second beam are respectively transmitted by different TRPs.
  • the communications interface is specifically configured to: receive the indication information that is sent by the network side device by using physical layer signaling.
  • the communications interface is further configured to: according to the physical layer Signaling determines a physical resource location at which the data is transmitted; the data is received at the physical resource location in the manner of the first transmission diversity.
  • the communications interface is specifically configured to: receive the indication information that is sent by the network side device by using the high layer signaling.
  • the communications interface is further configured to: in the manner of the first transmit diversity, prepare to receive the data from a time of receiving the high layer signaling.
  • the first transmission diversity manner is a spatial frequency block code SFBC-frequency selective transmission diversity FSTD
  • the second transmission diversity manner is SFBC
  • the indication information further includes at least one of the following information: a pilot signal used for data demodulation in the manner of the transmission diversity, and a number of antenna ports corresponding to the manner of the transmission diversity, Transmitting resource configuration information of the pilot signal and sequence information of the pilot signal.
  • FIG. 9 shows a schematic block diagram of an apparatus for data transmission according to another embodiment of the present invention.
  • the apparatus 900 shown in FIG. 9 includes a memory 910, a processor 920, an input/output interface 930, a communication interface 940, and a bus system 950.
  • the memory 910, the processor 920, the input/output interface 930, and the communication interface 940 are connected by a bus system 950 for storing instructions for executing instructions stored in the memory 920 to control input/
  • the output interface 930 receives the input data and information, outputs data such as an operation result, and controls the communication interface 940 to transmit a signal.
  • the communication interface 940 is configured to receive indication information sent by the network side device, where the indication information is used to indicate a manner of the first transmission diversity.
  • the communication interface 940 is further configured to receive the first data in the manner of the first transmission diversity.
  • the processor 920 may be a general-purpose central processing unit (CPU), a microprocessor, an application specific integrated circuit (ASIC), or one or more.
  • the integrated circuit is used to implement the related program to implement the technical solution provided by the embodiment of the present invention.
  • communication interface 940 enables communication between device 900 for signal detection and other devices or communication networks using transceivers such as, but not limited to, transceivers.
  • the memory 910 can include read only memory and random access memory and provides instructions and data to the processor 920.
  • a portion of processor 920 may also include a non-volatile random access memory.
  • processor 920 can also store information of the type of device.
  • the bus system 950 may include a power bus, a control bus, a status signal bus, and the like in addition to the data bus. However, for clarity of description, various buses are labeled as bus system 950 in the figure.
  • each step of the foregoing method may be completed by an integrated logic circuit of hardware in the processor 920 or an instruction in a form of software.
  • the steps of the method for data transmission disclosed in the embodiments of the present invention may be directly implemented as hardware processor execution completion, or performed by a combination of hardware and software modules in the processor.
  • the software module can be located in a conventional storage medium such as random access memory, flash memory, read only memory, programmable read only memory or electrically erasable programmable memory, registers, and the like.
  • the storage medium is located in the memory 910, and the processor 920 reads the information in the memory 910 and completes the steps of the above method in combination with its hardware. To avoid repetition, it will not be described in detail here.
  • the network side device sends the indication information to the terminal, and informs the terminal of the manner of using the transmission diversity when receiving the data, so that the terminal does not need to receive data in a manner of fixed transmission diversity that can only be used in the prior art.
  • the manner of transmitting diversity can be adjusted according to the indication information sent by the network side device, so as to improve the flexibility of the data transmission mode.
  • the indication information is further used to indicate a manner in which the terminal switches from the second transmission diversity manner to the first transmission diversity manner, where the second transmission diversity manner is that the terminal currently receives The way the data is transmitted using diversity.
  • the communications interface is further configured to: determine a switching area between the first beam and the second beam of the terminal, where the first beam is switched to the terminal.
  • the second beam is a source beam that is served by the terminal, and the second beam is a target beam to which the terminal is switched.
  • the first beam and the second beam are transmitted by the same transceiver node TRP.
  • the first beam and the second beam are respectively transmitted by different TRPs.
  • the communications interface is specifically configured to: send the high layer signaling or the physical layer signaling to the terminal, where the high layer signaling or the physical layer signaling carries the indication information.
  • the first transmission diversity manner is a spatial frequency block code SFBC-frequency selective transmission diversity FSTD
  • the second transmission diversity manner is SFBC
  • the indication information further includes at least one of the following information: a pilot signal used for data demodulation in the manner of the transmission diversity, where the manner of the transmission diversity corresponds The number of antenna ports, resource configuration information of the pilot data and sequence information of the pilot signal.
  • the disclosed systems, devices, and methods may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division.
  • there may be another division manner for example, multiple units or components may be combined or Can be integrated into another system, or some features can be ignored or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be in an electrical, mechanical or other form.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • each functional unit in each embodiment of the present invention may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the functions may be stored in a computer readable storage medium if implemented in the form of a software functional unit and sold or used as a standalone product.
  • the technical solution of the present invention which is essential or contributes to the prior art, or a part of the technical solution, may be embodied in the form of a software product, which is stored in a storage medium, including
  • the instructions are used to cause a computer device (which may be a personal computer, server, or network device, etc.) to perform all or part of the steps of the methods described in various embodiments of the present invention.
  • the foregoing storage medium includes: a U disk, a mobile hard disk, a read-only memory (ROM), A variety of media that can store program code, such as random access memory (RAM), disk, or optical disk.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Radio Transmission System (AREA)

Abstract

本发明公开了一种数据传输的方法和装置,该方法包括:终端接收网络侧设备发送的指示信息,所述指示信息用于指示第一传输分集的方式;所述终端以所述第一传输分集的方式接收第一数据。在本发明实施例中,通过网络侧设备向终端发送指示信息,通知终端接收数据时使用的传输分集的方式,使得终端无需像现有技术中只能使用的固定的传输分集的方式接收数据,可以根据网络侧设备发送的指示信息对传输分集的方式进行调整,以提高数据传输方式的灵活性。

Description

数据传输的方法和装置 技术领域
本发明实施例涉及通信领域,并且更具体地,涉及数据传输的方法和装置。
背景技术
分集是接收端对它收到的衰落特性相互独立地进行特定处理,以降低信号电平起伏的办法。分集是指分散传输和集中接收。所谓分散传输是使接收端(例如,终端设备)能获得多个统计独立的、携带同一信息的衰落信号。集中接收是接收机把收到的多个统计独立的衰落信号进行合并(选择与组合)以降低信号在传输时的信号衰落的对信号传输质量的影响。在移动通信中,通常采用分集技术来补偿衰落信道损耗,可以在不增加传输功率和带宽的前提下,改善无线通信信道的传输质量。
在长期演进(Long Term Evolution,LTE)通信系统中,终端在通过对物理广播信道(Physical Broadcast Channel,PBCH)进行盲检,确定传输后续数据使用的传输分集的方式后,终端会使用该传输分集的方式传输后续数据,并且该终端传输数据所使用的传输分集的方式就固定了,也就是说,上述这种固定分集传输的方式的数据传输方法,降低了数据传输方式的灵活性。
发明内容
本申请提供一种数据传输的方法和装置,以提高数据传输方式的灵活性。
第一方面,提供一种数据传输的方法,包括:终端接收网络侧设备发送的指示信息,所述指示信息用于指示第一传输分集的方式;所述终端以所述第一传输分集的方式接收第一数据。
在本发明实施例中,通过网络侧设备向终端发送指示信息,通知终端接收数据时使用的传输分集的方式,使得终端无需像现有技术中只能使用的固定的传输分集的方式接收数据,可以根据网络侧设备发送的指示信息对传输分集的方式进行调整,以提高数据传输方式的灵活性。
结合第一方面,在第一方面的一种可能的实现方式中,在所述终端接收网络侧设备发送的指示信息之前,所述方法还包括:所述终端以第二传输分 集的方式接收第二数据。
在本发明实施例中,通过网络侧设备向终端发送指示信息,通知终端将接收数据的方式从第二传输分集的方式切换为第一传输分集的方式,以使网络侧设备可以动态调整终端的传输方式,为终端配置该终端适合的传输分集的方式,在提高数据传输的灵活性的同时可以提高数据传输的质量。
结合第一方面或上述任一种可能的实现方式,在第一方面的一种可能的实现方式中,所述终端位于所述第一波束和所述第二波束的切换区,所述第一数据是通过第一波束和第二波束向所述终端发送的,所述第一波束为所述终端在切换至所述第二波束之前为所述终端服务的源波束,所述第二波束为所述终端切换至的目标波束。
在本发明实施例中,若终端位于第一波束和第二波束的切换区,可以通过第一波束和第二波束向终端发送数据,以通过传输分集的增益提高数据传输质量。
结合第一方面或上述任一种可能的实现方式,在第一方面的一种可能的实现方式中,所述第一波束和所述第二波束由相同的收发节点TRP发射。
在本发明实施例中,通过相同的TRP发射第一波束和第二波束,以使终端可以在同一个小区中可以使用两个波束接收数据,以提高数据传输的质量。
结合第一方面或上述任一种可能的实现方式,在第一方面的一种可能的实现方式中,所述第一波束和所述第二波束分别由不同的TRP发射。
在本发明实施例中,通过不同的TRP发射第一波束和第二波束,以使终端可以在同一个小区中或相邻小区的交界处,可以使用两个波束接收数据,以提高数据传输的质量。
结合第一方面或上述任一种可能的实现方式,在第一方面的一种可能的实现方式中,所述终端接收网络侧设备发送的指示信息,包括:所述终端接收网络侧设备通过物理层信令发送的所述指示信息。
在本发明实施例中,通过物理层信令发送上述指示信息,以提高指示信息的发送速度,从而进一步的节省终端根据指示信息确定传输分集的方式的时间。
结合第一方面或上述任一种可能的实现方式,在第一方面的一种可能的实现方式中,所述终端以所述第一传输分集的方式接收数据,包括:所述终 端根据所述物理层信令确定传输所述数据的物理资源位置;所述终端在所述物理资源位置上以所述第一传输分集的方式接收所述数据。
在本发明实施例中,通过物理层信令传输指示信息时,还可以同时向终端指示传输数据所用的物理资源位置,以使终端在物理资源位置上以第一传输分集的方式接收数据。
结合第一方面或上述任一种可能的实现方式,在第一方面的一种可能的实现方式中,所述终端接收网络侧设备发送的指示信息,包括:所述终端接收网络侧设备通过高层信令发送的所述指示信息。
在本发明实施例中,网络侧设备通过高层信令向终端发送指示信息,通知终端接收数据时使用的传输分集的方式,可以根据网络侧设备发送的指示信息对传输分集的方式进行调整,以提高数据传输方式的灵活性。
结合第一方面或上述任一种可能的实现方式,在第一方面的一种可能的实现方式中,所述终端以所述第一传输分集的方式接收数据,包括:所述终端以所述第一传输分集的方式,从接收所述高层信令的时间开始准备接收所述数据。
在本发明实施例中,网络侧设备通过高层信令向终端发送指示信息,通知终端接收数据时使用的传输分集的方式,可以根据网络侧设备发送的指示信息对传输分集的方式进行调整,以提高数据传输方式的灵活性。
结合第一方面或上述任一种可能的实现方式,在第一方面的一种可能的实现方式中,所述第一传输分集的方式为空间频率块码SFBC-频率选择性发送分集FSTD,所述第二传输分集的方式为SFBC。
在本发明实施例中,通过网络侧设备向终端发送指示信息,通知终端将传输分集的方式从SFBC切换到SFBC-FSTD,可以通过切换传输分集的方式,获得传输分集增益,以提高数据传输方式的灵活性。
结合第一方面或上述任一种可能的实现方式,在第一方面的一种可能的实现方式中,所述指示信息还包括下列信息中的至少一种:所述传输分集的方式数据解调所用的导频信号,所述传输分集的方式对应的天线端口数目,传输所述导频信号的资源配置信息和所述导频信号的序列信息。
第二方面,提供一种数据传输的方法,包括:网络侧设备向终端发送指示信息,所述指示信息用于指示第一传输分集的方式;所述网络侧设备以所述第一传输分集的方式向所述终端发送数据。
在本发明实施例中,通过网络侧设备向终端发送指示信息,通知终端接收数据时使用的传输分集的方式,使得终端无需像现有技术中只能使用的固定的传输分集的方式接收数据,可以根据网络侧设备发送的指示信息对传输分集的方式进行调整,以提高数据传输方式的灵活性。
结合第二方面,在第二方面的一种可能的实现方式中,所述指示信息还用于指示所述终端从第二传输分集的方式切换至所述第一传输分集的方式,所述第二传输分集的方式为终端当前接收数据所使用的传输分集的方式。
在本发明实施例中,通过网络侧设备向终端发送指示信息,通知终端将接收数据的方式从第二传输分集的方式切换为第一传输分集的方式,以使网络侧设备可以动态调整终端的传输方式,为终端配置该终端适合的传输分集的方式,在提高数据传输的灵活性的同时可以提高数据传输的质量。
结合第二方面或上述任一种可能的实现方式,在第二方面的一种可能的实现方式中,所述网络侧设备向终端发送指示信息之前,所述方法还包括:所述网络侧设备确定所述终端的处于第一波束与第二波束之间的切换区,所述第一波束为所述终端切换至所述第二波束之前为所述终端服务的源波束,所述第二波束为所述终端切换至的目标波束。
在本发明实施例中,若终端位于第一波束和第二波束的切换区,可以通过第一波束和第二波束向终端发送数据,以通过传输分集的增益提高数据传输质量。
结合第二方面或上述任一种可能的实现方式,在第二方面的一种可能的实现方式中,所述第一波束和所述第二波束由相同的收发节点TRP发射。
在本发明实施例中,通过相同的TRP发射第一波束和第二波束,以使终端可以在同一个小区中可以使用两个波束接收数据,以提高数据传输的质量。
结合第二方面或上述任一种可能的实现方式,在第二方面的一种可能的实现方式中,所述第一波束和所述第二波束分别由不同的TRP发射。
在本发明实施例中,通过不同的TRP发射第一波束和第二波束,以使终端可以在同一个小区中或相邻小区的交界处,可以使用两个波束接收数据,以提高数据传输的质量。
结合第二方面或上述任一种可能的实现方式,在第二方面的一种可能的实现方式中,所述网络侧设备向终端发送指示信息,包括:所述网络侧设备 向所述终端发送高层信令或物理层信令,所述高层信令或所述物理层信令携带所述指示信息。
在本发明实施例中,通过物理层信令或高层信令发送上述指示信息,其中,通过物理层信令发送上述指示信息可以提高指示信息的发送速度,从而进一步的节省终端根据指示信息确定传输分集的方式的时间。
结合第二方面或上述任一种可能的实现方式,在第二方面的一种可能的实现方式中,所述第一传输分集的方式为空间频率块码SFBC-频率选择性发送分集FSTD,所述第二传输分集的方式为SFBC。
在本发明实施例中,通过网络侧设备向终端发送指示信息,通知终端将传输分集的方式从SFBC切换到SFBC-FSTD,可以通过切换传输分集的方式,获得传输分集增益,以提高数据传输方式的灵活性。
结合第二方面或上述任一种可能的实现方式,在第二方面的一种可能的实现方式中,所述指示信息还包括下列信息中的至少一种:所述传输分集的方式数据解调所用的导频信号,所述传输分集的方式对应的天线端口数目,传输所述导频数据的资源配置信息和所述导频信号的序列信息。
第三方面,提供一种数据传输的装置,所述装置包括用于执行第一方面中的方法的模块。
第四方面,提供一种数据传输的装置,所述装置包括用于执行第二方面中的方法的模块。
第五方面,提供一种数据传输的装置,所述装置包括:存储器、处理器、输入/输出接口、通信接口和总线系统。其中,存储器、处理器、输入/输出接口和通信接口通过总线系统相连,该存储器用于存储指令,该处理器用于执行该存储器存储的指令,当所述指令被执行时,所述处理器通过所述通信接口执行第一方面的方法,并控制输入/输出接口接收输入的数据和信息,输出操作结果等数据。
第六方面,提供一种数据传输的装置,所述装置包括:存储器、处理器、输入/输出接口、通信接口和总线系统。其中,存储器、处理器、输入/输出接口和通信接口通过总线系统相连,该存储器用于存储指令,该处理器用于执行该存储器存储的指令,当所述指令被执行时,所述处理器通过所述通信接口执行第二方面的方法,并控制输入/输出接口接收输入的数据和信息,输出操作结果等数据。
第七方面,提供一种计算机可读存储介质,所述计算机可读存储介质用于信号检测的方法的程序代码,所述程序代码用于执行第一方面中的方法指令。
第八方面,提供一种计算机可读存储介质,所述计算机可读存储介质用于信号检测的方法的程序代码,所述程序代码用于执行第二方面中的方法指令。
附图说明
为了更清楚地说明本发明实施例的技术方案,下面将对本发明实施例中所需要使用的附图作简单地介绍,显而易见地,下面所描述的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1示出了根据本发明实施例的数据传输的方法的示意性流程图。
图2示出了根据本发明实施例的数据传输的方法的应用场景的示意图。
图3示出了采用SFBC-FSTD的传输分集的方式传输数据的示意图。
图4示出了根据本发明另一实施例的数据传输的方法的应用场景的示意图。
图5示出了根据本发明另一实施例的数据传输的方法的示意性流程图。
图6示出了根据本发明实施例的数据传输的装置的示意性框图。
图7示出了根据本发明另一实施例的数据传输的装置的示意性框图。
图8示出了根据本发明另一实施例的数据传输的装置的示意性框图。
图9示出了根据本发明另一实施例的数据传输的装置的示意性框图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
应理解,本发明的技术方案,可以应用于各种通信系统,例如:全球移动通讯系统(Global System of Mobile communication,GSM),码分多址(Code Division Multiple Access,CDMA)系统,宽带码分多址(Wideband Code  Division Multiple Access Wireless,WCDMA),通用分组无线业务(General Packet Radio Service,GPRS),长期演进(Long Term Evolution,LTE),5G新空口(New Radio,NR)等。
还应理解,终端(Terminal)可称之为终端设备或用户设备(User Equipment,UE),也可称之为移动终端(Mobile Terminal)、移动用户设备等,可以经无线接入网(例如,Radio Access Network,RAN)与一个或多个核心网进行通信,用户设备可以是移动终端,如移动电话(或称为“蜂窝”电话)和具有移动终端的计算机,例如,可以是便携式、袖珍式、手持式、计算机内置的或者车载的移动装置,它们与无线接入网交换语言和/或数据。
还应理解,网络设备可以是网络设备等用于与移动设备通信的设备,网络设备可以是WLAN中的接入点(ACCESS POINT,AP),GSM或码分多址(Code Division Multiple Access,CDMA)中的基站(Base Transceiver Station,BTS),也可以是WCDMA中的基站(Node B,NB),还可以是长期演进(Long Term Evolution,LTE)中的演进型基站(Evolutional Node B,eNB或eNodeB),或者中继站或接入点,或者车载设备、可穿戴设备以及未来5G网络中的网络设备或者未来演进的PLMN网络中的网络设备等。
图1示出了本发明实施例的数据传输的方法的示意性流程图。图1所示的方法包括:
110,终端接收网络侧设备发送的指示信息,所述指示信息用于指示第一传输分集的方式。
具体地,上述第一传输分集的方式可以是空间频率块码-频率选择性发送分集(Space Frequency Block Code-Frequency Switch Transmit Diversity,SFBC-FSTD)或SFBC,还可以是其他未来通信标准中规定的传输分集的方式,本发明实施例对传输分集的方式不作具体限定。
需要说明的是,上述指示信息可以承载在高层信令中,上述指示信息还可以承载在物理层(L1)信令中,本发明实施例对指示信息的发送方式不作具体限定。
可选地,作为一个实施例,所述指示信息还包括下列信息中的至少一种:所述传输分集的方式数据解调所用的导频信号,所述传输分集的方式对应的天线端口数目,传输所述导频信号的资源配置信息和所述导频信号的序列信息。
具体地,上述传输分集的方式对应的天线端口数目可以指不使用传输分集的方式对应1天线端口;SFBC对应2天线端口;SFBC-FSTD对应4天线端口。
上述导频信号的资源配置信息可以是传输导频信号所使用的物理资源位置,还可以是传输导频信号所使用的时域资源位置或传输导频信号所使用的频域资源位置,本发明对此不作具体限定。
上述导频信号的序列信息可以是该导频信号的序列ID,或者其他与导频信号的序列相关的信息。
需要说明的是,上述导频信号可以是终端特定的导频信号,也就是说,终端可以通过上述终端特定的导频信号解调发送给终端的下行数据,该终端特定的导频信号不需要像公共导频信号一样在整个频段和时间上连续传输,该终端特定的导频资源可以仅在为终端分配的资源中传输,以达到节省传输导频信号所用的开销。
可选地,作为一个实施例,所述终端接收网络侧设备发送的指示信息,包括:所述终端接收网络侧设备通过物理层信令发送的所述指示信息。
可选地,所述终端以所述传输分集的方式接收数据,包括:所述终端根据所述物理层信令确定传输所述数据的物理资源位置;所述终端在所述物理资源位置上以所述传输分集的方式接收所述数据。
需要说明的是,网络侧设备通过物理层信令向终端发送指示信息,与网络侧设备通过高层信令向终端发送指示信息相比,由于是直接通过物理层(Layer 1)信令发送,无需再向高层(Layer 2或Layer 3)上报,所以前一种通过物理层信令发送指示信息的方式可以节省发送指示信息的时间,使得终端可以更快的根据该指示信息确定数据的传输分集的方式。
可选地,作为一个实施例,所述终端接收网络侧设备发送的指示信息,包括:所述终端接收网络侧设备通过高层信令发送的所述指示信息。
具体地,上述高层信令可以是数据连接层,即层2(Layer 2)的信令,还可以是网络层,即层3(Layer 3)的信令。
可选地,所述终端以所述传输分集的方式接收数据,包括:所述终端以所述传输分集的方式,从接收所述高层信令的时间开始准备接收所述数据。
具体地,终端以接收指示信息的时刻起,经过预设的时间段后,接收数据。
需要说明的是,上述预设的时间段可以是网络侧设备为终端预先配置的,还可以是网络侧设备向终端发送的,本发明对此不作具体限定。
120,所述终端以所述第一传输分集的方式接收第一数据。
可选地,作为一个实施例,在所述终端接收网络侧设备发送的指示信息之前,所述方法还包括:所述终端以第二传输分集的方式接收第二数据。
具体地,上述第二传输分集的方式可以是空间频率块码-频率选择性发送分集SFBC-FSTD或SFBC,还可以是其他未来通信标准中规定的传输分集的方式,本发明实施例对传输分集的方式不作具体限定。
需要说明的是,上述第一传输分集的方式和上述第二传输分集的方式可以相同也可以不同。
上述终端确定第二传输分集的方式可以是终端通过对PBCH进行盲检,确定天线端口数目,再通过天线端口数目和传输分集的方式的映射关系,确定的。上述终端确定第二传输分集的方式还可以是终端通过接收网络侧设备发送的指示信息确定的。本发明实施例对于上述确定第二传输分集的方式的方法不作具体限定。
可选地,作为一个实施例,所述第一传输分集的方式为空间频率块码SFBC-频率选择性发送分集FSTD,所述第二传输分集的方式为SFBC。
具体地,终端在接收到指示信息之前,可以以SFBC的传输分集的方式接收数据,当该终端接收到用于指示终端以第一传输分集的方式传输书记的指示信息后,该终端可以以第一传输分集的方式接收数据。
可选地,作为一个实施例,所述第一数据是通过第一波束和第二波束向所述终端发送的,所述第一波束为所述终端切换至所述第二波束之前为所述终端提供服务的源波束,所述第二波束为所述终端切换至的目标波束。
具体地,上述为终端提供服务的波束可以指该终端可以使用该波束传输数据。
需要说明的是,若上述第一波束对应的2天线端口,上述第二波束也对应的2天线端口,则网络侧设备通过第一波束和第二波束向终端发送第一数据时,网络侧设备可以通过指示信息向终端指示使用4天线端口对应的传输分集的方式(可以是SFBC-FSTD)接收第一数据。
可选地,终端向网络侧设备发送位置信息,该位置信息用于指示该终端的当前位置,以便网络侧设备根据该终端的当前位置信息确定该终端是否位 于所述第一波束和所述第二波束之间的切换区。
可选地,终端向网络侧设备发送对于不同波束的测量信息,该测量信息用于为网络侧设备确定终端的当前位置提供依据,以便网络侧设备根据该终端的当前位置信息确定该终端是否位于所述第一波束和所述第二波束之间的切换区。
可选地,网络侧设备可以自行判断终端的位置,该位置信息用于指示该终端的当前位置,以便网络侧设备根据该终端的当前位置信息确定该终端是否位于所述第一波束和所述第二波束之间的切换区。
具体地,上述第一波束和第二波束之间的切换区可以指第一波束的覆盖范围和第二波束的覆盖范围的重叠区域。
需要说明的是,位于该区域的终端可以处于“软切换”的状态,也就是说,该终端可以处于已经能够使用第二波束接收数据,同时也可以使用第一波束接收数据的通信状态。
可选地,作为一个实施例,所述第一波束和所述第二波束由相同的收发节点(Transmit and Receive Point,TRP)发射。
具体地,上述第一波束和第二波束由相同的收发节点发射可以指第一波束和第二波束属于相同的小区。
可选地,作为一个实施例,所述第一波束和所述第二波束分别由不同的TRP发射。
具体地,上述第一波束可以由第一TRP发射,上述第二波束可以由第二TRP发射,其中,第一TRP和第二TRP可以分别属于不同的小区,则第一波束和第二波束也分别属于不同的小区;第一TRP和第二TRP也可以属于相同的小区,则第一波束和第二波束也属于同一的小区。
需要说明的是,上述第一TRP和第二TRP分别属于不同的小区时,第一TRP所在的网络侧设备和第二TRP所在的网络侧设备之间可以通过预先约定(或协商)的方式,确定该终端传输数据使用的传输分集的方式。
应理解,上述第一TRP和第二TRP分别属于不同的小区时,第一TRP所在的网络侧设备或第二TRP所在的网络侧设备都可以向该终端发送上述指示信息,本发明实施例对此不作具体限定。
下面结合具体的应用场景详细地介绍本发明实施例。
图2示出了本发明实施例的数据传输的方法的应用场景。从图2所示的 应用场景中可以看出第一波束由第一TRP的2天线端口发射,第二波束由第二TRP的2天线端口发射。应理解,第一波束和第二波束可以在相同的小区内,也可以不在同一小区,本发明实施例对此不作具体限定。
图2所示的终端可以使用第一波束接收数据,同时该终端还可以使用第二波束接收数据,也就是说,终端可以从第一TRP上的2端口天线接收2个数据流,终端还可以从第二TRP上的2端口天线接收另外2个数据流,此时,该终端可以对上述4个数据流进行处理,确定网络侧设备传输的数据,即终端通过SFBC-FSTD的传输分集的方式接收数据。
当终端通过SFBC-FSTD的传输分集的方式接收数据时,以该传输分集的方式传输数据的传输方式示意图如图3所示。如前文所述,终端使用SFBC-FSTD的传输分集的方式接收数据,可以理解为,该终端需要分别从第一TRP上的2天线端口和第二TRP上的2天线端口接收4个数据流(参见图3所示的第一数据流、第二数据流、第三数据流和第四数据流)。
需要说明的是,上述数据流和天线端口的对应方式可以灵活组合,例如,第一数据流和第二数据流可以使用第一TRP的2天线端口发射的第一波束发送,第三数据流和第四数据流可以使用第二TRP的2天线端口发射的第二波束发送;或者第一数据流和第三数据流可以使用第一TRP的2天线端口发射的第一波束发送,第二数据流和第四数据流可以使用第二TRP的2天线端口发射的第二波束发送,本发明实施例对此不作具体限定。
应理解,上述天线端口可以指物理的发射天线,还可以指承载一组导频信号的虚拟的天线端口,本发明实施例对此不作具体限定。
还应理解,SFBC-FSTD的传输分集的方式的传输原理属于现有技术,在此不再详细赘述。
图4示出了本发明另一实施例的数据传输的方法的应用场景。从图4所示的应用场景中可以看出第一波束和第二波束可以由相同的TRP上的4天线端口发射。终端可以使用第一波束接收数据,同时该终端还可以使用第二波束接收数据,也就是说,终端可以使用TRP上的2端口天线发射的第一波束接收2个数据流,终端还可以使用该TRP上的另外2端口天线发射的第二波束接收2个数据流,此时,该终端对上述4个数据流进行处理,确定网络侧设备传输的下行数据,即终端通过SFBC-FSTD的传输分集的方式接收数据。
当终端通过SFBC-FSTD的传输分集的方式接收数据时,以该传输分集的方式传输数据的传输方式示意图如图3所示。如前文所述,终端使用SFBC-FSTD的传输分集的方式接收数据,可以理解为,该终端需要分别使用TRP上的4天线端口发射的第一波束和第二波束接收4个数据流(参见图3所示的第一数据流、第二数据流、第三数据流和第四数据流)。
需要说明的是,上述数据流和天线端口的对应方式可以灵活组合,例如,第一数据流和第二数据流可以使用TRP的第一组2天线端口发射的第一波束发送,第三数据流和第四数据流可以使用该TRP的第二组2天线端口发射的第二波束发送;或者第一数据流和第三数据流可以使用TRP的第一组2天线端口发射的第一波束发送,第二数据流和第四数据流可以使用该TRP的第二组2天线端口发射的第二波束发送,本发明实施例对此不作具体限定。
应理解,上述天线端口可以指物理的发射天线,还可以指承载一组导频信号的虚拟的天线端口,本发明实施例对此不作具体限定。
还应理解,SFBC-FSTD的传输分集的方式的传输原理属于现有技术,在此不再详细赘述。
图5示出了本发明另一实施例的数据传输的方法的示意性流程图。应理解,图5所示的方法和上文中图1所示的方法的具体细节大致相同,为了简洁,在此不再赘述。图5所示的方法包括:
510,网络侧设备向终端发送指示信息,所述指示信息用于指示第一传输分集的方式。
520,所述网络侧设备以所述第一传输分集的方式向所述终端发送数据。
可选地,作为一个实施例,所述指示信息还用于指示所述终端从第二传输分集的方式切换至所述第一传输分集的方式,所述第二传输分集的方式为终端当前接收数据所使用的传输分集的方式。
可选地,作为一个实施例,所述网络侧设备向终端发送指示信息之前,所述方法还包括:所述网络侧设备确定所述终端的处于第一波束与第二波束之间的切换区,所述第一波束为所述终端切换至第二波束之前为所述终端服务的源波束,所述第二波束为所述终端切换至的目标波束。
可选地,作为一个实施例,所述第一波束和所述第二波束由相同的收发节点TRP发射。
可选地,作为一个实施例,所述第一波束和所述第二波束分别由不同的 TRP发射。
可选地,作为一个实施例,所述网络侧设备向终端发送指示信息,包括:所述网络侧设备向所述终端发送高层信令或物理层信令,所述高层信令或所述物理层信令携带所述指示信息。
可选地,作为一个实施例,所述第一传输分集的方式为空间频率块码SFBC-频率选择性发送分集FSTD,所述第二传输分集的方式为SFBC。
可选地,作为一个实施例,所述指示信息还包括下列信息中的至少一种:所述传输分集的方式数据解调所用的导频信号,所述传输分集的方式对应的天线端口数目,传输所述导频数据的资源配置信息和所述导频信号的序列信息。
上文结合图1至图5详细的说明了描述了本发明实施例的数据传输的方法,下面结合图6至图9详细描述本发明实施例的数据传输的装置。应理解,图6和图8所示的装置能够实现图1中的各个步骤,图7和图9所示的装置能够实现图5中的各个步骤,为避免重复,在此不再详细赘述。
图6示出了根据本发明实施例的数据传输的装置的示意性框图。图6所示的装置600包括:第一接收模块610和第二接收模块620。
第一接收模块,用于接收网络侧设备发送的指示信息,所述指示信息用于指示第一传输分集的方式;
第二接收模块,用于以所述第一传输分集的方式接收第一数据。
在本发明实施例中,通过网络侧设备向终端发送指示信息,通知终端接收数据时使用的传输分集的方式,使得终端无需像现有技术中只能使用的固定的传输分集的方式接收数据,可以根据网络侧设备发送的指示信息对传输分集的方式进行调整,以提高数据传输方式的灵活性。
可选地,作为一个实施例,所述装置还包括:第三接收模块,用于以第二传输分集的方式接收第二数据。
可选地,作为一个实施例,所述第一数据是通过第一波束和第二波束向所述终端发送的,所述终端位于所述第一波束和所述第二波束的切换区,所述第一波束为所述终端在切换至所述第二波束之前为所述终端服务的源波束,所述第二波束为所述终端切换至的目标波束。
可选地,作为一个实施例,所述第一波束和所述第二波束由相同的收发节点TRP发射。
可选地,作为一个实施例,所述第一波束和所述第二波束分别由不同的TRP发射。
可选地,作为一个实施例,所述第一接收模块具体用于:接收网络侧设备通过物理层信令发送的所述指示信息。
可选地,作为一个实施例,所述第一接收模块具体还用于:根据所述物理层信令确定传输所述数据的物理资源位置;在所述物理资源位置上以所述第一传输分集的方式接收所述数据。
可选地,作为一个实施例,所述第一接收模块具体用于:接收网络侧设备通过高层信令发送的所述指示信息。
可选地,作为一个实施例,所述第一接收模块具体还用于:以所述第一传输分集的方式,从接收所述高层信令的时间开始准备接收所述数据。
可选地,作为一个实施例,所述第一传输分集的方式为空间频率块码SFBC-频率选择性发送分集FSTD,所述第二传输分集的方式为SFBC。
可选地,作为一个实施例,所述指示信息还包括下列信息中的至少一种:所述传输分集的方式数据解调所用的导频信号,所述传输分集的方式对应的天线端口数目,传输所述导频信号的资源配置信息和所述导频信号的序列信息。
图7示出了根据本发明另一实施例的数据传输的装置的示意性框图。图7所示的装置700包括:第一发送模块710和第二发送模块720。
第一发送模块710,用于向终端发送指示信息,所述指示信息用于指示第一传输分集的方式;
第二发送模块720,用于以所述第一传输分集的方式向所述终端发送数据。
在本发明实施例中,通过网络侧设备向终端发送指示信息,通知终端接收数据时使用的传输分集的方式,使得终端无需像现有技术中只能使用的固定的传输分集的方式接收数据,可以根据网络侧设备发送的指示信息对传输分集的方式进行调整,以提高数据传输方式的灵活性。
可选地,作为一个实施例,所述指示信息还用于指示所述终端从第二传输分集的方式切换至所述第一传输分集的方式,所述第二传输分集的方式为终端当前接收数据所使用的传输分集的方式。
可选地,作为一个实施例,所述装置还包括:确定模块,用于确定所述 终端的处于第一波束与第二波束之间的切换区,所述第一波束为所述终端切换至所述第二波束之前为所述终端服务的源波束,所述第二波束为所述终端切换至的目标波束。
可选地,作为一个实施例,所述第一波束和所述第二波束由相同的收发节点TRP发射。
可选地,作为一个实施例,所述第一波束和所述第二波束分别由不同的TRP发射。
可选地,作为一个实施例,所述第一发送模块具体用于:向所述终端发送高层信令或物理层信令,所述高层信令或所述物理层信令携带所述指示信息。
可选地,作为一个实施例,所述第一传输分集的方式为空间频率块码SFBC-频率选择性发送分集FSTD,所述第二传输分集的方式为SFBC。
可选地,作为一个实施例,所述指示信息还包括下列信息中的至少一种:所述传输分集的方式数据解调所用的导频信号,所述传输分集的方式对应的天线端口数目,传输所述导频数据的资源配置信息和所述导频信号的序列信息。
图8示出了根据本发明另一实施例的数据传输的装置的示意性框图。图8所示的数据传输的装置800包括:存储器810、处理器820、输入/输出接口830、通信接口840和总线系统850。其中,存储器810、处理器820、输入/输出接口830和通信接口840通过总线系统850相连,该存储器810用于存储指令,该处理器820用于执行该存储器820存储的指令,以控制输入/输出接口830接收输入的数据和信息,输出操作结果等数据,并控制通信接口840发送信号。
通信接口840,用于接收网络侧设备发送的指示信息,所述指示信息用于指示第一传输分集的方式;
所述通信接口840,还用于以所述第一传输分集的方式接收第一数据。
应理解,在本发明实施例中,该处理器820可以采用通用的中央处理器(Central Processing Unit,CPU),微处理器,应用专用集成电路(Application Specific Integrated Circuit,ASIC),或者一个或多个集成电路,用于执行相关程序,以实现本发明实施例所提供的技术方案。
还应理解,通信接口840使用例如但不限于收发器一类的收发装置,来 实现信号检测的装置800与其他设备或通信网络之间的通信。
该存储器810可以包括只读存储器和随机存取存储器,并向处理器820提供指令和数据。处理器820的一部分还可以包括非易失性随机存取存储器。例如,处理器820还可以存储设备类型的信息。
该总线系统850除包括数据总线之外,还可以包括电源总线、控制总线和状态信号总线等。但是为了清楚说明起见,在图中将各种总线都标为总线系统850。
在实现过程中,上述方法的各步骤可以通过处理器820中的硬件的集成逻辑电路或者软件形式的指令完成。结合本发明实施例所公开的数据传输的方法的步骤可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器810,处理器820读取存储器810中的信息,结合其硬件完成上述方法的步骤。为避免重复,这里不再详细描述。
在本发明实施例中,通过网络侧设备向终端发送指示信息,通知终端接收数据时使用的传输分集的方式,使得终端无需像现有技术中只能使用的固定的传输分集的方式接收数据,可以根据网络侧设备发送的指示信息对传输分集的方式进行调整,以提高数据传输方式的灵活性。
可选地,作为一个实施例,所述通信接口还用于以第二传输分集的方式接收第二数据。
可选地,作为一个实施例,所述第一数据是通过第一波束和第二波束向所述终端发送的,所述终端位于所述第一波束和所述第二波束的切换区,所述第一波束为所述终端在切换至所述第二波束之前为所述终端服务的源波束,所述第二波束为所述终端切换至的目标波束。
可选地,作为一个实施例,所述第一波束和所述第二波束由相同的收发节点TRP发射。
可选地,作为一个实施例,所述第一波束和所述第二波束分别由不同的TRP发射。
可选地,作为一个实施例,所述通信接口具体用于:接收网络侧设备通过物理层信令发送的所述指示信息。
可选地,作为一个实施例,所述通信接口具体还用于:根据所述物理层 信令确定传输所述数据的物理资源位置;在所述物理资源位置上以所述第一传输分集的方式接收所述数据。
可选地,作为一个实施例,所述通信接口具体用于:接收网络侧设备通过高层信令发送的所述指示信息。
可选地,作为一个实施例,所述通信接口具体还用于:以所述第一传输分集的方式,从接收所述高层信令的时间开始准备接收所述数据。
可选地,作为一个实施例,所述第一传输分集的方式为空间频率块码SFBC-频率选择性发送分集FSTD,所述第二传输分集的方式为SFBC。
可选地,作为一个实施例,所述指示信息还包括下列信息中的至少一种:所述传输分集的方式数据解调所用的导频信号,所述传输分集的方式对应的天线端口数目,传输所述导频信号的资源配置信息和所述导频信号的序列信息。
图9示出了根据本发明另一实施例的数据传输的装置的示意性框图。图9所示的装置900包括:存储器910、处理器920、输入/输出接口930、通信接口940和总线系统950。其中,存储器910、处理器920、输入/输出接口930和通信接口940通过总线系统950相连,该存储器910用于存储指令,该处理器920用于执行该存储器920存储的指令,以控制输入/输出接口930接收输入的数据和信息,输出操作结果等数据,并控制通信接口940发送信号。
通信接口940,用于接收网络侧设备发送的指示信息,所述指示信息用于指示第一传输分集的方式;
所述通信接口940,还用于以所述第一传输分集的方式接收第一数据。
应理解,在本发明实施例中,该处理器920可以采用通用的中央处理器(Central Processing Unit,CPU),微处理器,应用专用集成电路(Application Specific Integrated Circuit,ASIC),或者一个或多个集成电路,用于执行相关程序,以实现本发明实施例所提供的技术方案。
还应理解,通信接口940使用例如但不限于收发器一类的收发装置,来实现信号检测的装置900与其他设备或通信网络之间的通信。
该存储器910可以包括只读存储器和随机存取存储器,并向处理器920提供指令和数据。处理器920的一部分还可以包括非易失性随机存取存储器。例如,处理器920还可以存储设备类型的信息。
该总线系统950除包括数据总线之外,还可以包括电源总线、控制总线和状态信号总线等。但是为了清楚说明起见,在图中将各种总线都标为总线系统950。
在实现过程中,上述方法的各步骤可以通过处理器920中的硬件的集成逻辑电路或者软件形式的指令完成。结合本发明实施例所公开的数据传输的方法的步骤可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器910,处理器920读取存储器910中的信息,结合其硬件完成上述方法的步骤。为避免重复,这里不再详细描述。
在本发明实施例中,通过网络侧设备向终端发送指示信息,通知终端接收数据时使用的传输分集的方式,使得终端无需像现有技术中只能使用的固定的传输分集的方式接收数据,可以根据网络侧设备发送的指示信息对传输分集的方式进行调整,以提高数据传输方式的灵活性。
可选地,作为一个实施例,所述指示信息还用于指示所述终端从第二传输分集的方式切换至所述第一传输分集的方式,所述第二传输分集的方式为终端当前接收数据所使用的传输分集的方式。
可选地,作为一个实施例,所述通信接口还用于:确定所述终端的处于第一波束与第二波束之间的切换区,所述第一波束为所述终端切换至所述第二波束之前为所述终端服务的源波束,所述第二波束为所述终端切换至的目标波束。
可选地,作为一个实施例,所述第一波束和所述第二波束由相同的收发节点TRP发射。
可选地,作为一个实施例,所述第一波束和所述第二波束分别由不同的TRP发射。
可选地,作为一个实施例,所述通信接口具体用于:向所述终端发送高层信令或物理层信令,所述高层信令或所述物理层信令携带所述指示信息。
可选地,作为一个实施例,所述第一传输分集的方式为空间频率块码SFBC-频率选择性发送分集FSTD,所述第二传输分集的方式为SFBC。
可选地,作为一个实施例,所述指示信息还包括下列信息中的至少一种:所述传输分集的方式数据解调所用的导频信号,所述传输分集的方式对应的 天线端口数目,传输所述导频数据的资源配置信息和所述导频信号的序列信息。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本发明的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本发明各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本发明的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本发明各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,ROM)、 随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应以所述权利要求的保护范围为准。

Claims (38)

  1. 一种数据传输的方法,其特征在于,包括:
    终端接收网络侧设备发送的指示信息,所述指示信息用于指示第一传输分集的方式;
    所述终端以所述第一传输分集的方式接收第一数据。
  2. 如权利要求1所述的方法,其特征在于,在所述终端接收网络侧设备发送的指示信息之前,所述方法还包括:
    所述终端以第二传输分集的方式接收第二数据。
  3. 如权利要求1或2所述的方法,其特征在于,所述第一数据是通过第一波束和第二波束向所述终端发送的,所述终端位于所述第一波束和所述第二波束的切换区,所述第一波束为所述终端在切换至所述第二波束之前为所述终端服务的源波束,所述第二波束为所述终端切换至的目标波束。
  4. 如权利要求3所述的方法,其特征在于,所述第一波束和所述第二波束由相同的收发节点TRP发射。
  5. 如权利要求3所述的方法,其特征在于,所述第一波束和所述第二波束分别由不同的TRP发射。
  6. 如权利要求1-5中任一项所述的方法,其特征在于,所述终端接收网络侧设备发送的指示信息,包括:
    所述终端接收网络侧设备通过物理层信令发送的所述指示信息。
  7. 如权利要求6所述的方法,其特征在于,所述终端以所述第一传输分集的方式接收数据,包括:
    所述终端根据所述物理层信令确定传输所述数据的物理资源位置;
    所述终端在所述物理资源位置上以所述第一传输分集的方式接收所述数据。
  8. 如权利要求1-5中任一项所述的方法,其特征在于,所述终端接收网络侧设备发送的指示信息,包括:
    所述终端接收网络侧设备通过高层信令发送的所述指示信息。
  9. 如权利要求8所述的方法,其特征在于,所述终端以所述第一传输分集的方式接收数据,包括:
    所述终端以所述第一传输分集的方式,从接收所述高层信令的时间开始准备接收所述数据。
  10. 如权利要求2-9中任一项所述的方法,其特征在于,所述第一传输分集的方式为空间频率块码SFBC-频率选择性发送分集FSTD,所述第二传输分集的方式为SFBC。
  11. 如权利要求1-10中任一项所述的方法,其特征在于,所述指示信息还包括下列信息中的至少一种:
    所述传输分集的方式数据解调所用的导频信号,所述传输分集的方式对应的天线端口数目,传输所述导频信号的资源配置信息和所述导频信号的序列信息。
  12. 一种数据传输的方法,其特征在于,包括:
    网络侧设备向终端发送指示信息,所述指示信息用于指示第一传输分集的方式;
    所述网络侧设备以所述第一传输分集的方式向所述终端发送数据。
  13. 如权利要求12所述的方法,其特征在于,所述指示信息还用于指示所述终端从第二传输分集的方式切换至所述第一传输分集的方式,所述第二传输分集的方式为终端当前接收数据所使用的传输分集的方式。
  14. 如权利要求12或13所述的方法,其特征在于,所述网络侧设备向终端发送指示信息之前,所述方法还包括:
    所述网络侧设备确定所述终端的处于第一波束与第二波束之间的切换区,所述第一波束为所述终端切换至所述第二波束之前为所述终端服务的源波束,所述第二波束为所述终端切换至的目标波束。
  15. 如权利要求14所述的方法,其特征在于,所述第一波束和所述第二波束由相同的收发节点TRP发射。
  16. 如权利要求14所述的方法,其特征在于,所述第一波束和所述第二波束分别由不同的TRP发射。
  17. 如权利要求12-16中任一项所述的方法,其特征在于,所述网络侧设备向终端发送指示信息,包括:
    所述网络侧设备向所述终端发送高层信令或物理层信令,所述高层信令或所述物理层信令携带所述指示信息。
  18. 如权利要求13-17中任一项所述的方法,其特征在于,所述第一传输分集的方式为空间频率块码SFBC-频率选择性发送分集FSTD,所述第二传输分集的方式为SFBC。
  19. 如权利要求12-18中任一项所述的方法,其特征在于,所述指示信息还包括下列信息中的至少一种:
    所述传输分集的方式数据解调所用的导频信号,所述传输分集的方式对应的天线端口数目,传输所述导频数据的资源配置信息和所述导频信号的序列信息。
  20. 一种数据传输的装置,其特征在于,包括:
    第一接收模块,用于接收网络侧设备发送的指示信息,所述指示信息用于指示第一传输分集的方式;
    第二接收模块,用于以所述第一传输分集的方式接收第一数据。
  21. 如权利要求20所述的装置,其特征在于,所述装置还包括:
    第三接收模块,用于以第二传输分集的方式接收第二数据。
  22. 如权利要求20或21所述的装置,其特征在于,所述第一数据是通过第一波束和第二波束向所述终端发送的,所述终端位于所述第一波束和所述第二波束的切换区,所述第一波束为所述终端在切换至所述第二波束之前为所述终端服务的源波束,所述第二波束为所述终端切换至的目标波束。
  23. 如权利要求22所述的装置,其特征在于,所述第一波束和所述第二波束由相同的收发节点TRP发射。
  24. 如权利要求22所述的装置,其特征在于,所述第一波束和所述第二波束分别由不同的TRP发射。
  25. 如权利要求20-24中任一项所述的装置,其特征在于,所述第一接收模块具体用于:
    接收网络侧设备通过物理层信令发送的所述指示信息。
  26. 如权利要求25所述的装置,其特征在于,所述第一接收模块具体还用于:
    根据所述物理层信令确定传输所述数据的物理资源位置;
    在所述物理资源位置上以所述第一传输分集的方式接收所述数据。
  27. 如权利要求20-24中任一项所述的装置,其特征在于,所述第一接收模块具体用于:
    接收网络侧设备通过高层信令发送的所述指示信息。
  28. 如权利要求27所述的装置,其特征在于,所述第一接收模块具体还用于:
    以所述第一传输分集的方式,从接收所述高层信令的时间开始准备接收所述数据。
  29. 如权利要求20-28中任一项所述的装置,其特征在于,所述第一传输分集的方式为空间频率块码SFBC-频率选择性发送分集FSTD,所述第二传输分集的方式为SFBC。
  30. 如权利要求20-29中任一项所述的装置,其特征在于,所述指示信息还包括下列信息中的至少一种:
    所述传输分集的方式数据解调所用的导频信号,所述传输分集的方式对应的天线端口数目,传输所述导频信号的资源配置信息和所述导频信号的序列信息。
  31. 一种数据传输的装置,其特征在于,包括:
    第一发送模块,用于向终端发送指示信息,所述指示信息用于指示第一传输分集的方式;
    第二发送模块,用于以所述第一传输分集的方式向所述终端发送数据。
  32. 如权利要求31所述的装置,其特征在于,所述指示信息还用于指示所述终端从第二传输分集的方式切换至所述第一传输分集的方式,所述第二传输分集的方式为终端当前接收数据所使用的传输分集的方式。
  33. 如权利要求31或32所述的装置,其特征在于,所述装置还包括:
    确定模块,用于确定所述终端的处于第一波束与第二波束之间的切换区,所述第一波束为所述终端切换至所述第二波束之前为所述终端服务的源波束,所述第二波束为所述终端切换至的目标波束。
  34. 如权利要求33所述的装置,其特征在于,所述第一波束和所述第二波束由相同的收发节点TRP发射。
  35. 如权利要求33所述的装置,其特征在于,所述第一波束和所述第二波束分别由不同的TRP发射。
  36. 如权利要求31-35中任一项所述的装置,其特征在于,所述第一发送模块具体用于:
    向所述终端发送高层信令或物理层信令,所述高层信令或所述物理层信令携带所述指示信息。
  37. 如权利要求32-36中任一项所述的装置,其特征在于,所述第一传输分集的方式为空间频率块码SFBC-频率选择性发送分集FSTD,所述第二 传输分集的方式为SFBC。
  38. 如权利要求31-37中任一项所述的装置,其特征在于,所述指示信息还包括下列信息中的至少一种:
    所述传输分集的方式数据解调所用的导频信号,所述传输分集的方式对应的天线端口数目,传输所述导频数据的资源配置信息和所述导频信号的序列信息。
PCT/CN2016/101214 2016-09-30 2016-09-30 数据传输的方法和装置 WO2018058580A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
PCT/CN2016/101214 WO2018058580A1 (zh) 2016-09-30 2016-09-30 数据传输的方法和装置
CN201680087388.0A CN109417405A (zh) 2016-09-30 2016-09-30 数据传输的方法和装置
EP16917330.9A EP3454476A4 (en) 2016-09-30 2016-09-30 METHOD AND APPARATUS FOR DATA TRANSMISSION
US16/308,639 US20190149208A1 (en) 2016-09-30 2016-09-30 Data transmission method and device
TW106128828A TWI685223B (zh) 2016-09-30 2017-08-24 數據傳輸的方法和裝置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/101214 WO2018058580A1 (zh) 2016-09-30 2016-09-30 数据传输的方法和装置

Publications (1)

Publication Number Publication Date
WO2018058580A1 true WO2018058580A1 (zh) 2018-04-05

Family

ID=61763623

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/101214 WO2018058580A1 (zh) 2016-09-30 2016-09-30 数据传输的方法和装置

Country Status (5)

Country Link
US (1) US20190149208A1 (zh)
EP (1) EP3454476A4 (zh)
CN (1) CN109417405A (zh)
TW (1) TWI685223B (zh)
WO (1) WO2018058580A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116155443A (zh) * 2021-11-17 2023-05-23 维沃移动通信有限公司 信息传输方法、装置、终端、网络侧设备及可读存储介质

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1878022A (zh) * 2005-06-07 2006-12-13 上海贝尔阿尔卡特股份有限公司 一种在移动通信网络中用于自适应多天线分集的装置及其方法
US20100302978A1 (en) * 2009-05-27 2010-12-02 Lg Electronics Inc. Method of indicating number of antennas in network broadcast system
CN101919176A (zh) * 2008-01-04 2010-12-15 诺基亚公司 用于传送天线配置信息的方法和装置
CN101939927A (zh) * 2008-02-04 2011-01-05 诺基亚公司 用于经由屏蔽来传递天线配置信息的方法和装置
WO2016119640A1 (en) * 2015-01-30 2016-08-04 Qualcomm Incorporated Support of transmission mode and impact on pdcch blind decodes of ptm (point-to-multipoint) transmission

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7095709B2 (en) * 2002-06-24 2006-08-22 Qualcomm, Incorporated Diversity transmission modes for MIMO OFDM communication systems
EP1929819B1 (en) * 2005-09-30 2019-08-07 Apple Inc. Initial access channel for scalable wireless mobile communication networks
CA2690990C (en) * 2007-07-16 2016-08-23 Nortel Networks Limited Providing space division multiple access in a wireless network
US8254429B1 (en) * 2007-10-02 2012-08-28 Apple Inc. Communication systems and methods
US8892161B2 (en) * 2008-01-18 2014-11-18 Huawei Technologies Co., Inc. Radio communication system and method using spatial diversity and spatial multiplexing modes
US8144797B2 (en) * 2008-03-25 2012-03-27 Intel Mobile Communications GmbH CQI table for wireless MIMO networks
JP5154295B2 (ja) * 2008-05-02 2013-02-27 株式会社エヌ・ティ・ティ・ドコモ 基地局装置及びユーザ装置並びに通信制御方法
WO2010130097A1 (zh) * 2009-05-14 2010-11-18 华为技术有限公司 信息处理方法、设备和系统
WO2012102652A1 (en) * 2011-01-26 2012-08-02 Telefonaktiebolaget L M Ericsson (Publ) Methods and arrangements for transmit mode adaptation
US8842628B2 (en) * 2011-09-12 2014-09-23 Blackberry Limited Enhanced PDCCH with transmit diversity in LTE systems
CN104012024B (zh) * 2011-10-14 2018-06-26 诺基亚通信公司 用于向用户设备分配传输模式的方法及其装置
CN103974446B (zh) * 2013-01-30 2018-07-31 华为技术有限公司 一种随机接入方法及用户设备
US10511411B2 (en) * 2018-01-12 2019-12-17 Huawei Technologies Co., Ltd. Method for configuring channel state information reporting band and communications apparatus

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1878022A (zh) * 2005-06-07 2006-12-13 上海贝尔阿尔卡特股份有限公司 一种在移动通信网络中用于自适应多天线分集的装置及其方法
CN101919176A (zh) * 2008-01-04 2010-12-15 诺基亚公司 用于传送天线配置信息的方法和装置
CN101939927A (zh) * 2008-02-04 2011-01-05 诺基亚公司 用于经由屏蔽来传递天线配置信息的方法和装置
US20100302978A1 (en) * 2009-05-27 2010-12-02 Lg Electronics Inc. Method of indicating number of antennas in network broadcast system
WO2016119640A1 (en) * 2015-01-30 2016-08-04 Qualcomm Incorporated Support of transmission mode and impact on pdcch blind decodes of ptm (point-to-multipoint) transmission

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3454476A4 *

Also Published As

Publication number Publication date
TWI685223B (zh) 2020-02-11
US20190149208A1 (en) 2019-05-16
EP3454476A1 (en) 2019-03-13
EP3454476A4 (en) 2019-06-12
CN109417405A (zh) 2019-03-01
TW201815092A (zh) 2018-04-16

Similar Documents

Publication Publication Date Title
US11647411B2 (en) Beam measurement method, terminal and network device
CN109890079B (zh) 一种资源配置方法及其装置
US11723114B2 (en) Command indication method and apparatus and information interaction method and apparatus
US11470665B2 (en) Negotiation on bearer type configurations
US11153053B2 (en) Method of performing data transmission by terminal device in a wireless communication system
US11825322B2 (en) Measurement control method, terminal, and non-transitory computer-readable storage medium
US11564134B2 (en) Beamforming information interaction method and network device
WO2018059470A1 (zh) 传输信息的方法和设备
WO2018000439A1 (zh) 无线通信的方法和装置
WO2017107644A1 (zh) 无线通信方法和装置
JP2023532803A (ja) ビーム指示方法、ネットワークデバイス、端末、装置及び記憶媒体
TWI685223B (zh) 數據傳輸的方法和裝置
TW201916621A (zh) 一種指示ue發射端口數量的方法、ue及網路設備
US11218936B2 (en) Method and device for handover
CN113709821A (zh) 一种通信方法及装置
WO2018119596A1 (zh) 分布式基站中的信号处理方法和分布式控制装置
KR20220143441A (ko) 무선 통신 시스템에서의 조건부 재구성 방법 및 장치
CN113543278A (zh) WiFi热点管理方法、电子设备以及存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16917330

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016917330

Country of ref document: EP

Effective date: 20181204

NENP Non-entry into the national phase

Ref country code: DE