WO2018058485A1 - 下行控制信息监听、发送、接收方法及装置 - Google Patents

下行控制信息监听、发送、接收方法及装置 Download PDF

Info

Publication number
WO2018058485A1
WO2018058485A1 PCT/CN2016/100969 CN2016100969W WO2018058485A1 WO 2018058485 A1 WO2018058485 A1 WO 2018058485A1 CN 2016100969 W CN2016100969 W CN 2016100969W WO 2018058485 A1 WO2018058485 A1 WO 2018058485A1
Authority
WO
WIPO (PCT)
Prior art keywords
dci
time
tti
frequency domain
length
Prior art date
Application number
PCT/CN2016/100969
Other languages
English (en)
French (fr)
Inventor
邵家枫
李超君
马莎
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2016/100969 priority Critical patent/WO2018058485A1/zh
Priority to CN201680089268.4A priority patent/CN109690988A/zh
Publication of WO2018058485A1 publication Critical patent/WO2018058485A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received

Definitions

  • the present invention relates to the field of communications, and in particular, to a downlink control information monitoring, transmitting, and receiving method and apparatus.
  • the terminal device needs to know scheduling information configured by the network device to the terminal device, such as time-frequency resource allocation, modulation and coding, and the like before receiving the downlink data or transmitting the uplink data.
  • scheduling information configured by the network device to the terminal device, such as time-frequency resource allocation, modulation and coding, and the like before receiving the downlink data or transmitting the uplink data.
  • the network device mainly carries a Downlink Control Indicator (DCI) through a Physical Downlink Control Channel (PDCCH).
  • DCI Downlink Control Indicator
  • PDCCH Physical Downlink Control Channel
  • the currently defined PDCCH for example, the PDCCH defined by the version Rel-8 and the EPDCCH (enhanced PDCCH) defined by the Rel-11 are used to schedule the transmission time interval (TTI) to be 1 millisecond (ms). ) data transfer.
  • TTI transmission time interval
  • ms millisecond
  • the terminal device acquires scheduling information according to the DCI carried in the downlink control channel by monitoring (enhancing) the physical downlink control channel in all the search spaces for the DCI. Therefore, as the service and scenario requirements increase, the monitoring mode of the existing terminal device increases the amount of calculation of the terminal device, thereby increasing the power consumption of the terminal device and increasing the production cost of the terminal device.
  • the embodiments of the present invention provide a method and a device for monitoring, sending, and receiving downlink control information, which are used to solve the problem that the current LTE system supports different service requirements or scenario requirements, and the terminal device needs to be increased, thereby causing the terminal device to consume power.
  • the problem is that the amount is increased and the production cost is increased.
  • the embodiment of the present invention provides a method for monitoring downlink control information, where the execution subject of the method is a terminal device, including:
  • the terminal device monitors the first downlink control information DCI in the common search space CSS, where the first DCI includes scheduling information of the data transmission with the first transmission time interval TTI;
  • the terminal device monitors a second DCI and/or a third DCI in a dedicated search space UESS of the physical downlink control channel PDCCH;
  • the second DCI includes scheduling information of a data transmission with a second TTI, where the third DCI includes Scheduling information for data transmission with a third TTI;
  • the time length of the first TTI is greater than the length of time of the third TTI, and the length of time of the first TTI is equal to the length of time of the second TTI.
  • the first DCI is sent in the CSS by the network device, and the second DCI or the third DCI is sent in the UESS of the PDCCH.
  • the terminal device monitors the first DCI in the CSS, and monitors the second DCI and/or the third DCI in the UESS of the PDCCH, and the length of the first TTI is longer than the length of the third TTI.
  • the DCI transmitted by the partial search space indicates a specific TTI, so that the number of blind detections of the terminal device is reduced.
  • the first DCI is used to indicate that the response time of the data transmission is the first response time
  • the second DCI is used to indicate that the response time of the data transmission is the second response time
  • the third DCI The response time for indicating the data transmission is a third response time, and the time length of the first response time is greater than the length of time of the second response time;
  • the response time is an interval between the TTI in which the terminal device receives the downlink data, and the TTI in which the hybrid automatic retransmission request HARQ information corresponding to the downlink data transmission is sent, or the terminal device receives the uplink scheduling.
  • the terminal device can adopt different response times according to services or scenarios, thereby improving the efficiency of data transmission.
  • the length of the first response time is 4 times the length of the first TTI; the length of the second response time is 3 times the length of the first TTI. Or 2 times.
  • the duration of the third response time is the length of time of the K third TTIs, and K is a positive integer greater than 1.
  • the second DCI and the third DCI both contain K value indication information.
  • the first DCI does not include first indication information
  • the second DCI and the third DCI both include the first indication information
  • the first indication information is used to indicate a DCI format.
  • the method further includes:
  • the terminal device monitors the first DCI in the UESS of the EPDCCH.
  • the terminal device monitors the second DCI and/or the third DCI in the dedicated search space UESS of the physical downlink control channel PDCCH.
  • the terminal device monitors the second DCI and/or the third DCI in a search space other than the overlapping search space in a UESS of a PDCCH.
  • the second aspect of the present invention provides a method for receiving downlink control information, including:
  • the terminal device monitors the downlink control information DCI in the dedicated search space UESS of the common search space CSS and the physical downlink control channel PDCCH;
  • the time length of the first TTI is greater than the length of time of the third TTI, and the length of time of the first TTI is equal to the length of time of the second TTI.
  • the method further includes:
  • the terminal device determines that the response time of the data transmission is the fifth response time according to the fifth DCI monitored by the UESS of the PDCCH, and/or
  • the time length of the fourth response time is greater than the length of the fifth response time, and the response time is the hybrid automatic that is sent by the terminal device from the TTI where the downlink data is received to the downlink data.
  • the terminal device can adopt different response times according to services or scenarios, thereby improving the efficiency of data transmission.
  • the length of the fourth response time is 4 times the length of the first TTI; the length of the fifth response time is 3 times the length of the first TTI. Or 2 times.
  • the length of the sixth response time is the length of time of the K third TTIs, and K is a positive integer greater than 1.
  • the fifth DCI and the sixth DCI both contain K value indication information.
  • the terminal device after the terminal device monitors the downlink control information DCI in the dedicated search space UESS of the common search space CSS and the physical downlink control channel PDCCH, the terminal device further includes:
  • the terminal device monitors the DCI in the UESS of the PDCCH, determining, according to the first indication information in the DCI, that the DCI is the fifth DCI, or the DCI is the sixth DCI;
  • the first indication information is used to indicate a length of time of the DCI format identifier or TTI.
  • the method further includes:
  • the terminal device monitors the downlink control information DCI in the dedicated search space UESS of the enhanced physical downlink control channel EPDCCH;
  • the terminal device determines scheduling information of the data transmission with the first TTI according to the fourth DCI being monitored by the UESS of the EPDCCH.
  • the terminal device determines scheduling information of the data transmission with the second TTI according to the fifth DCI monitored by the UESS of the PDCCH. And/or, the terminal device determines scheduling information of the data transmission with the third TTI according to the sixth DCI monitored by the UESS of the PDCCH, including:
  • the terminal device according to the overlapped search space in the UESS of the PDCCH Listening to the fifth DCI in the outer search space, determining scheduling information of the data transmission with the second TTI; and/or,
  • the terminal device determines scheduling information of the data transmission with the third TTI according to the sixth DCI being monitored in the search space except the overlapping search space in the UESS of the PDCCH.
  • an embodiment of the present invention provides a method for receiving downlink control information, where the method includes:
  • the terminal device receives the seventh downlink control information DCI, where the seventh DCI includes first resource indication information, where the first resource indication information is used to indicate available time-frequency domain resources on the at least one TTI;
  • the terminal device can conveniently determine the occupied time-frequency domain resource and reduce the waste of the time-frequency domain resource.
  • the available time-frequency domain resource includes N sub-time-frequency domain resources, and the terminal device determines, according to the available time-frequency domain resource, that the terminal device performs data transmission on the at least one TTI.
  • Time-frequency domain resources including:
  • the terminal device determines, according to the occupancy indication information, a combination of one or more sub-time-frequency domain resources in the N sub-time-frequency domain resources, as the terminal device performs data transmission on the at least one TTI.
  • Time-frequency domain resources
  • N is a positive integer greater than 1, and N is configured for pre-defined or higher layer signaling, and the length of the TTI is less than 1 millisecond.
  • the terminal device determines, according to the occupancy indication information, a combination of one or more sub-time-frequency domain resources in the N sub-time-frequency domain resources, where the terminal device is at least Before the time-frequency domain resource for data transmission on a TTI, it also includes:
  • the terminal device determines, according to the frequency domain resource quantity M of the available time-frequency domain resource and the N, that the frequency domain resource quantity of the j-th time-frequency domain resource is a maximum integer equal to or smaller than M/N, and the Nth sub-time
  • the frequency domain resource of the frequency domain resource is the remaining of the frequency domain resource of the frequency domain resource M of the available time-frequency domain resource minus the frequency resource of the first sub-time frequency domain resource to the N-1th time-frequency domain resource.
  • j is a value from 1 to N-1, and M is a positive integer greater than N.
  • the seventh DCI further includes frequency domain indication information
  • the method further includes:
  • the terminal device determines, according to the frequency domain indication information, that the frequency domain of the time-frequency domain resource for performing data transmission on the at least one TTI is the same.
  • the seventh DCI further includes modulation and coding mode information
  • the method further includes:
  • the terminal device determines, according to the modulation and coding mode information, that modulation and coding modes for performing data transmission on the at least one TTI are the same.
  • the uplink transmission power of the terminal device for the sPUSCH channel is the same. In this way, when multiple sPUSCHs share an uplink reference signal, if the sPUSCH transmission power is different, the network device may fail to receive.
  • the following fourth aspect provides a method for transmitting downlink control information, which corresponds to the method for detecting downlink control information provided by the foregoing first aspect, and is a symmetric side method, which has corresponding technical features and technical effects, and is applicable to the embodiment of the present invention. This will not be repeated here.
  • the embodiment of the present invention provides a method for sending downlink control information, including:
  • the network device transmits first downlink control information DCI in a common search space CSS, the first DCI including scheduling information of a data transmission having a first transmission time interval TTI; and/or
  • the network device sends a second DCI and/or a third DCI in a dedicated search space UESS of the physical downlink control channel PDCCH;
  • the second DCI includes scheduling information of a data transmission with a second TTI, where the third DCI includes Scheduling information for data transmission with a third TTI;
  • the time length of the first TTI is greater than the length of time of the third TTI, and the length of time of the first TTI is equal to the length of time of the second TTI.
  • the first DCI is used to indicate that the response time of the data transmission is the first response time
  • the second DCI is used to indicate that the response time of the data transmission is the second response time
  • the third DCI The response time for indicating the data transmission is a third response time, and the time length of the first response time is greater than the length of time of the second response time;
  • the response time is an interval between the TTI from which the terminal device receives the downlink data and the TTI where the hybrid automatic repeat request HARQ information corresponding to the downlink data transmission is sent, or The time interval from the TTI at which the terminal device receives the uplink scheduling information to the TTI at which the uplink data corresponding to the uplink scheduling information is sent.
  • the length of the first response time is 4 times the length of the first TTI; the length of the second response time is 3 times the length of the first TTI. Or 2 times.
  • the duration of the third response time is the length of time of the K third TTIs, and K is a positive integer greater than 1.
  • the second DCI and the third DCI both contain K value indication information.
  • the first DCI does not include first indication information
  • the second DCI and the third DCI both include the first indication information
  • the first indication information is used to indicate a DCI format.
  • the method further includes:
  • the network device sends the first DCI in a UESS of the EPDCCH.
  • the network device sends the second DCI and/or the third DCI in the dedicated search space UESS of the physical downlink control channel PDCCH.
  • the network device sends the second DCI and/or the third DCI in a search space other than the overlapping search space in a UESS of a PDCCH.
  • the following fifth aspect provides a method for transmitting downlink control information, which corresponds to the method for receiving downlink control information provided by the foregoing second aspect, and is a symmetric side method, which has corresponding technical features and technical effects, and is applicable to the embodiment of the present invention. This will not be repeated here.
  • an embodiment of the present invention provides a method for sending downlink control information, including:
  • the network device sends the fifth downlink control information DCI and/or the sixth DCI in the dedicated search space UESS of the physical downlink control channel PDCCH;
  • the fifth DCI and the sixth DCI each include first indication information, where the first indication information is used to indicate a length of time of the DCI format identifier or the transmission time interval TTI.
  • the method further includes:
  • the network device sends a fourth DCI in a common search space CSS of the PDCCH;
  • the fourth DCI does not include the first indication information.
  • the following sixth aspect provides a method for transmitting downlink control information, which corresponds to the method for receiving downlink control information provided by the foregoing third aspect, and is a symmetric side method, which has corresponding technical features and technical effects, and is applicable to the embodiment of the present invention. This will not be repeated here.
  • the implementation of the present invention provides a method for sending downlink control information, where the method includes:
  • the network device sends the seventh downlink control information DCI, where the seventh DCI includes first resource indication information, where the first resource indication information is used to indicate available time-frequency domain resources on the at least one TTI.
  • the available time-frequency domain resources include N sub-time-frequency domain resources, and the method further includes:
  • the network device sends an eighth DCI, where the eighth DCI includes occupation indication information, where the occupation indication information is used to determine a combination of one or more sub-time-frequency domain resources in the N sub-time-frequency domain resources, as a time-frequency domain resource for performing data transmission on the at least one TTI by the terminal device;
  • N is a positive integer greater than 1, and N is configured for pre-defined or higher layer signaling, and the length of the TTI is less than 1 millisecond.
  • the frequency domain resource of the available time-frequency domain resource is M
  • the frequency domain resource of the j-th time-frequency domain resource in the N sub-time-frequency domain resources is less than or equal to M/N.
  • the largest integer, the frequency domain resource of the Nth sub-time-frequency domain resource is the frequency-domain resource quantity M of the available time-frequency domain resource minus the first sub-time frequency domain resource to the N-1th time-frequency domain The amount of remaining frequency domain resources of the frequency domain resource of the resource;
  • j is a value from 1 to N-1, and M is a positive integer greater than N.
  • the seventh DCI further includes frequency domain indication information, where the frequency domain indication information is used to determine that frequency domain resources of the time-frequency domain resources for data transmission on the at least one TTI are all the same.
  • the seventh DCI further includes modulation and coding mode information, and the modulation and coding mode information is used to determine that modulation coding modes for performing data transmission on the at least one TTI are the same.
  • a device for monitoring downlink control information provided by an embodiment of the present invention is described below.
  • the method for monitoring the downlink control information provided by the first aspect is used in the first embodiment to implement the monitoring method in the foregoing embodiment, and has the same technical features and technical effects, which are not repeatedly described in the embodiment of the present invention.
  • a seventh aspect of the present invention provides a device for monitoring downlink control information, where the device includes:
  • a monitoring module configured to monitor, in a common search space CSS, first downlink control information DCI, where the first DCI includes scheduling information of a data transmission with a first transmission time interval TTI;
  • the monitoring module is further configured to: monitor a second DCI and/or a third DCI in a dedicated search space UESS of the physical downlink control channel PDCCH; the second DCI includes scheduling information of a data transmission with a second TTI, where The third DCI includes scheduling information of the data transmission with the third TTI;
  • the time length of the first TTI is greater than the length of time of the third TTI, and the length of time of the first TTI is equal to the length of time of the second TTI.
  • the first DCI is used to indicate that the response time of the data transmission is the first response time
  • the second DCI is used to indicate that the response time of the data transmission is the second response time
  • the third DCI The response time for indicating the data transmission is a third response time, and the time length of the first response time is greater than the length of time of the second response time;
  • the response time is an interval between the TTI in which the device receives the downlink data, and the TTI in which the hybrid automatic repeat request HARQ information corresponding to the downlink data transmission is sent, or the device receives the uplink scheduling information.
  • the length of the first response time is 4 times the length of the first TTI; the length of the second response time is 3 times the length of the first TTI. Or 2 times.
  • the duration of the third response time is the length of time of the K third TTIs, and K is a positive integer greater than 1.
  • the first DCI does not include first indication information
  • the second DCI and the third DCI both include the first indication information
  • the first indication information is used to indicate a DCI format.
  • the monitoring module is further configured to monitor the first DCI in the UESS of the EPDCCH.
  • the listening module is further configured to: in a search space other than the overlapping search space in a UESS of the PDCCH, Listening to the second DCI and/or the third DCI.
  • the apparatus for receiving downlink control information according to the embodiment of the present invention.
  • the apparatus is in one-to-one correspondence with the method for receiving the downlink control information provided by the second aspect, and is used to implement the receiving method in the foregoing embodiment.
  • the technical features and technical effects are not described in detail in the embodiments of the present invention.
  • the eighth aspect of the present invention provides a receiving device for downlink control information, including:
  • a monitoring module configured to monitor downlink control information DCI in a common search space UESS of a common search space CSS and a physical downlink control channel PDCCH;
  • a processing module configured to determine scheduling information of a data transmission having a first transmission time interval TTI according to the fourth DCI being monitored by the CSS, and/or
  • the time length of the first TTI is greater than the length of time of the third TTI, and the length of time of the first TTI is equal to the length of time of the second TTI.
  • the processing module is further configured to:
  • the time length of the fourth response time is greater than the length of the fifth response time, and the response time is that the device starts from the TTI where the downlink data is received, and the hybrid automatic weight corresponding to the downlink data is sent.
  • the length of the fourth response time is 4 times the length of the first TTI; the length of the fifth response time is 3 times the length of the first TTI. Or 2 times.
  • the length of the sixth response time is the length of time of the K third TTIs, and K is a positive integer greater than 1.
  • the receiving module is further configured to:
  • the monitoring module monitors the DCI in the UESS of the PDCCH, determining, according to the first indication information in the DCI, that the DCI is the fifth DCI, or the DCI is the sixth DCI;
  • the first indication information is used to indicate a length of time of the DCI format identifier or TTI.
  • the listening module is further configured to listen to the downlink control information DCI in the dedicated search space UESS of the enhanced physical downlink control channel EPDCCH;
  • the processing module is further configured to determine scheduling information of the data transmission with the first TTI according to the fourth DCI being monitored by the UESS of the EPDCCH.
  • the processing module is further configured to:
  • Scheduling information of the data transmission having the third TTI is determined according to the sixth DCI being monitored in the search space other than the overlapping search space in the UESS of the PDCCH.
  • an embodiment of the present invention provides a device for receiving downlink control information, where the device includes:
  • a receiving module configured to receive a seventh downlink control information DCI, where the seventh DCI includes first resource indication information, where the first resource indication information is used to indicate available time-frequency domain resources on at least one TTI;
  • a processing module configured to determine, according to the available time-frequency domain resources, the downlink control information
  • the receiving device performs time-frequency domain resources for data transmission on the at least one TTI.
  • the available time-frequency domain resources include N sub-time-frequency domain resources
  • the processing module is specifically configured to:
  • N is a positive integer greater than 1, and N is configured for pre-defined or higher layer signaling, and the length of the TTI is less than 1 millisecond.
  • the processing module is further configured to:
  • the frequency domain resource quantity of the j-th time-frequency domain resource is a maximum integer equal to or smaller than M/N, and the N-th child time-frequency domain resource
  • the frequency domain resource quantity is the remaining frequency domain resource quantity in which the frequency domain resource of the first sub-time-frequency domain resource to the N-th sub-time frequency domain resource is subtracted from the frequency domain resource quantity M of the available time-frequency domain resource.
  • j is a value from 1 to N-1, and M is a positive integer greater than N.
  • the seventh DCI further includes frequency domain indication information
  • the processing module is further configured to:
  • the seventh DCI further includes modulation and coding mode information
  • the processing module is further configured to:
  • the following describes the sending device of the downlink control information provided by the embodiment of the present invention.
  • the device is in one-to-one correspondence with the sending method of the downlink control information provided by the foregoing fourth aspect, and is used to implement the sending method in the foregoing embodiment, which has the same
  • the technical features and technical effects are not described in detail in the embodiments of the present invention.
  • the embodiment of the present invention provides a device for sending downlink control information, including:
  • a sending module configured to send, in a common search space CSS, first downlink control information DCI, where the first DCI includes scheduling information of a data transmission with a first transmission time interval TTI;
  • the second DCI includes scheduling information of a data transmission having a second TCI, the third DCI including having a third TTI Scheduling information for data transmission;
  • the time length of the first TTI is greater than the length of time of the third TTI, and the length of time of the first TTI is equal to the length of time of the second TTI.
  • the first DCI is used to indicate that the response time of the data transmission is the first response time
  • the second DCI is used to indicate that the response time of the data transmission is the second response time
  • the third DCI The response time for indicating the data transmission is a third response time, and the time length of the first response time is greater than the length of time of the second response time;
  • the response time is an interval interval between the TTI in which the downlink control information is received by the receiving device of the downlink control information, and the TTI in which the hybrid automatic repeat request HARQ information corresponding to the downlink data transmission is sent, or the downlink control information is received.
  • the interval from the TTI in which the uplink scheduling information is received to the TTI in which the uplink data corresponding to the uplink scheduling information is sent is sent.
  • the length of the first response time is 4 times the length of the first TTI; the length of the second response time is 3 times the length of the first TTI. Or 2 times.
  • the duration of the third response time is the length of time of the K third TTIs, and K is a positive integer greater than 1.
  • the first DCI does not include first indication information
  • the second DCI and the third DCI both include the first indication information
  • the first indication information is used to indicate a DCI format.
  • the sending module is further configured to:
  • the sending module is specifically configured to:
  • the second DCI and/or the third DCI are transmitted in a search space other than the overlapping search space in the UESS of the PDCCH.
  • a device for transmitting downlink control information provided by an embodiment of the present invention is described below.
  • the method for transmitting the downlink control information provided in the above-mentioned fifth aspect has a one-to-one correspondence, and is used to implement the transmission method in the foregoing embodiment, which has the same technical features and technical effects, and is not repeatedly described in the embodiment of the present invention.
  • an embodiment of the present invention provides a device for sending downlink control information, including:
  • a sending module configured to send, in a dedicated search space UESS of the physical downlink control channel PDCCH, fifth downlink control information DCI and/or sixth DCI;
  • the fifth DCI and the sixth DCI each include first indication information, where the first indication information is used to indicate a length of time of the DCI format identifier or the transmission time interval TTI.
  • the transmitting device is further configured to:
  • the fourth DCI does not include the first indication information.
  • the following describes the sending device of the downlink control information provided by the embodiment of the present invention, which corresponds to the sending method of the downlink control information provided by the foregoing sixth aspect, and is used to implement the sending method in the foregoing embodiment, which has the same
  • the technical features and technical effects are not described in detail in the embodiments of the present invention.
  • the embodiment of the present invention provides a device for sending downlink control information, including:
  • a sending module configured to send the seventh downlink control information DCI, where the seventh DCI includes first resource indication information, where the first resource indication information is used to indicate available time-frequency domain resources on the at least one TTI.
  • the available time-frequency domain resources include N sub-time-frequency domain resources
  • the sending module is further configured to:
  • N is a positive integer greater than 1, and N is configured for pre-defined or higher layer signaling, and the length of the TTI is less than 1 millisecond.
  • the frequency domain resource of the available time-frequency domain resource is M
  • the frequency domain resource of the j-th time-frequency domain resource in the N sub-time-frequency domain resources is less than or equal to M/N.
  • the largest integer, the frequency domain resource of the Nth time-frequency domain resource is the frequency domain resource of the available time-frequency domain resource
  • the amount of remaining frequency domain resources of the frequency domain resource of the first sub-time frequency domain resource to the N-1th time-frequency domain resource is subtracted from M;
  • j is a value from 1 to N-1, and M is a positive integer greater than N.
  • the seventh DCI further includes frequency domain indication information, where the frequency domain indication information is used to determine that frequency domain resources of the time-frequency domain resources for data transmission on the at least one TTI are all the same.
  • the seventh DCI further includes modulation and coding mode information, and the modulation and coding mode information is used to determine that modulation coding modes for performing data transmission on the at least one TTI are the same.
  • the following describes the terminal device provided by the embodiment of the present invention, which corresponds to the monitoring method of the downlink control information provided by the foregoing first aspect, and is used to implement the monitoring method in the foregoing embodiment, and has the same technical features and The technical effects are not described in detail in the embodiments of the present invention.
  • the embodiment of the present invention provides a terminal device, where the device includes:
  • a transceiver configured to monitor, in a common search space CSS, a first downlink control information DCI, where the first DCI includes scheduling information of a data transmission with a first transmission time interval TTI;
  • the transceiver is further configured to: monitor a second DCI and/or a third DCI in a dedicated search space UESS of a physical downlink control channel PDCCH; the second DCI includes scheduling information of a data transmission with a second TTI, The third DCI includes scheduling information of the data transmission with the third TTI;
  • the time length of the first TTI is greater than the length of time of the third TTI, and the length of time of the first TTI is equal to the length of time of the second TTI.
  • the first DCI is used to indicate that the response time of the data transmission is the first response time
  • the second DCI is used to indicate that the response time of the data transmission is the second response time
  • the third DCI The response time for indicating the data transmission is a third response time, and the time length of the first response time is greater than the length of time of the second response time;
  • the response time is an interval between the TTI in which the terminal device receives the downlink data, and the TTI in which the hybrid automatic retransmission request HARQ information corresponding to the downlink data transmission is sent, or the terminal device receives the uplink scheduling.
  • the length of time of the first response time is the time of the first TTI 4 times the length of the second; the length of time of the second response time is 3 times or 2 times the length of time of the first TTI.
  • the duration of the third response time is the length of time of the K third TTIs, and K is a positive integer greater than 1.
  • the first DCI does not include first indication information
  • the second DCI and the third DCI both include the first indication information
  • the first indication information is used to indicate a DCI format.
  • the transceiver is further configured to listen to the first DCI in the UESS of the EPDCCH.
  • the transceiver is further configured to: in a search space other than the overlapping search space in a UESS of the PDCCH, Listening to the second DCI and/or the third DCI.
  • the following describes the terminal device provided by the embodiment of the present invention, which corresponds to the receiving method of the downlink control information provided by the foregoing second aspect, and is used to implement the receiving method in the foregoing embodiment, and has the same technical features and The technical effects are not described in detail in the embodiments of the present invention.
  • the embodiment of the present invention provides a terminal device, including:
  • a transceiver configured to monitor downlink control information DCI in a dedicated search space UESS of a common search space CSS and a physical downlink control channel PDCCH;
  • a processor configured to determine scheduling information of a data transmission having a first transmission time interval TTI according to the fourth DCI being monitored by the CSS, and/or
  • the time length of the first TTI is greater than the length of time of the third TTI, and the length of time of the first TTI is equal to the length of time of the second TTI.
  • the transceiver is also used to:
  • the time length of the fourth response time is greater than the length of the fifth response time, and the response time is the hybrid automatic that is sent by the terminal device from the TTI where the downlink data is received to the downlink data.
  • the length of the fourth response time is 4 times the length of the first TTI; the length of the fifth response time is 3 times the length of the first TTI. Or 2 times.
  • the length of the sixth response time is the length of time of the K third TTIs, and K is a positive integer greater than 1.
  • the processor is further configured to:
  • the DCI is determined to be the fifth DCI, or the DCI is the sixth DCI, according to the first indication information in the DCI.
  • the first indication information is used to indicate a length of time of the DCI format identifier or TTI.
  • the transceiver is further configured to listen to the downlink control information DCI in the dedicated search space UESS of the enhanced physical downlink control channel EPDCCH;
  • the processor is further configured to determine scheduling information of the data transmission with the first TTI according to the fourth DCI being monitored by the UESS of the EPDCCH.
  • the processor is further configured to:
  • Scheduling information of the data transmission having the third TTI is determined according to the sixth DCI being monitored in the search space other than the overlapping search space in the UESS of the PDCCH.
  • the following describes the terminal device provided by the embodiment of the present invention, which corresponds to the receiving method of the downlink control information provided by the foregoing third aspect, and is used to implement the receiving method in the foregoing embodiment, and has the same technical features and The technical effects are not described in detail in the embodiments of the present invention.
  • the embodiment of the present invention provides a terminal device, where the terminal device includes:
  • a receiver configured to receive a seventh downlink control information DCI, where the seventh DCI includes first resource indication information, where the first resource indication information is used to indicate available time-frequency domain resources on the at least one TTI;
  • the processor is further configured to determine, according to the available time-frequency domain resources, a time-frequency domain resource for performing data transmission by the terminal device on the at least one TTI.
  • the available time-frequency domain resources include N sub-time-frequency domain resources, and the receiver is specifically configured to:
  • N is a positive integer greater than 1, and N is configured for pre-defined or higher layer signaling, and the length of the TTI is less than 1 millisecond.
  • the processor is further configured to:
  • the frequency domain resource quantity of the j-th time-frequency domain resource is a maximum integer equal to or smaller than M/N, and the N-th child time-frequency domain resource
  • the frequency domain resource quantity is the remaining frequency domain resource quantity in which the frequency domain resource of the first sub-time-frequency domain resource to the N-th sub-time frequency domain resource is subtracted from the frequency domain resource quantity M of the available time-frequency domain resource.
  • j is a value from 1 to N-1, and M is a positive integer greater than N.
  • the seventh DCI further includes frequency domain indication information
  • the processor is further configured to:
  • the seventh DCI further includes modulation and coding mode information
  • the processor is further configured to:
  • the following describes the network device provided by the embodiment of the present invention, which corresponds to the sending method of the downlink control information provided by the foregoing fourth aspect, to implement the sending method in the foregoing embodiment, and has the same technical features and The technical effects are not described in detail in the embodiments of the present invention.
  • the embodiment of the present invention provides a network device, including:
  • a transceiver configured to send, in a common search space CSS, first downlink control information DCI, where the first DCI includes scheduling information of a data transmission having a first transmission time interval TTI;
  • the second DCI includes scheduling information of a data transmission having a second TCI, the third DCI including having a third TTI Scheduling information for data transmission;
  • the time length of the first TTI is greater than the length of time of the third TTI, and the length of time of the first TTI is equal to the length of time of the second TTI.
  • the first DCI is used to indicate that the response time of the data transmission is the first response time
  • the second DCI is used to indicate that the response time of the data transmission is the second response time
  • the third DCI The response time for indicating the data transmission is a third response time, and the time length of the first response time is greater than the length of time of the second response time;
  • the response time is an interval interval between the TTI in which the downlink control information is received by the receiving device of the downlink control information, and the TTI in which the hybrid automatic repeat request HARQ information corresponding to the downlink data transmission is sent, or the downlink control information is received.
  • the interval from the TTI in which the uplink scheduling information is received to the TTI in which the uplink data corresponding to the uplink scheduling information is sent is sent.
  • the length of the first response time is 4 times the length of the first TTI; the length of the second response time is 3 times the length of the first TTI. Or 2 times.
  • the duration of the third response time is the length of time of the K third TTIs, and K is a positive integer greater than 1.
  • the first DCI does not include first indication information
  • the second DCI and the third DCI both include the first indication information
  • the first indication information is used to indicate a DCI format.
  • the transceiver is also used to:
  • the transceiver is specifically configured to:
  • the second DCI and/or the third DCI are transmitted in a search space other than the overlapping search space in the UESS of the PDCCH.
  • the following describes the network device provided by the embodiment of the present invention, which corresponds to the sending method of the downlink control information provided by the foregoing fifth aspect, and is used to implement the sending method in the foregoing embodiment, and has the same technical features and The technical effects are not described in detail in the embodiments of the present invention.
  • the embodiment of the present invention provides a network device, including:
  • a transceiver configured to send fifth downlink control information DCI and/or sixth DCI in a dedicated search space UESS of the physical downlink control channel PDCCH;
  • the fifth DCI and the sixth DCI each include first indication information, where the first indication information is used to indicate a length of time of the DCI format identifier or the transmission time interval TTI.
  • the transceiver is also used to:
  • the fourth DCI does not include the first indication information.
  • the following describes the network device provided by the embodiment of the present invention, which corresponds to the sending method of the downlink control information provided by the foregoing sixth aspect, and is used to implement the sending method in the foregoing embodiment, and has the same technical features and The technical effects are not described in detail in the embodiments of the present invention.
  • the embodiment of the present invention provides a network device, including:
  • the transceiver is configured to send the seventh downlink control information DCI, where the seventh DCI includes first resource indication information, where the first resource indication information is used to indicate available time-frequency domain resources on the at least one TTI.
  • the available time-frequency domain resources include N sub-time-frequency domain resources, and the transceiver is further configured to:
  • N is a positive integer greater than 1, and N is configured for pre-defined or higher layer signaling, and the length of the TTI is less than 1 millisecond.
  • the frequency domain resource of the available time-frequency domain resource is M
  • the frequency domain resource of the j-th time-frequency domain resource in the N sub-time-frequency domain resources is less than or equal to M/N.
  • the largest integer, the frequency domain resource of the Nth sub-time-frequency domain resource is the frequency-domain resource quantity M of the available time-frequency domain resource minus the first sub-time frequency domain resource to the N-1th time-frequency domain The amount of remaining frequency domain resources of the frequency domain resource of the resource;
  • j is a value from 1 to N-1, and M is a positive integer greater than N.
  • the seventh DCI further includes frequency domain indication information, where the frequency domain indication information is used to determine that frequency domain resources of the time-frequency domain resources for data transmission on the at least one TTI are all the same.
  • the seventh DCI further includes modulation and coding mode information, and the modulation and coding mode information is used to determine that modulation coding modes for performing data transmission on the at least one TTI are the same.
  • 1 is a schematic diagram of response time of data transmission in an existing LTE system
  • FIG. 2 is a schematic structural diagram of an existing search space
  • FIG. 3 is a signaling flowchart of Embodiment 1 of a method for transmitting downlink control information according to an embodiment of the present disclosure
  • FIG. 4 is a signaling flowchart of Embodiment 1 of a method for monitoring downlink control information according to an embodiment of the present disclosure
  • FIG. 5 is a schematic diagram of a search space of Embodiment 2 of a method for sending and monitoring downlink control information according to an embodiment of the present disclosure
  • FIG. 6 is a schematic diagram of Embodiment 1 of response time of data transmission in an LTE system according to an embodiment of the present disclosure
  • FIG. 7 is a schematic diagram of Embodiment 2 of response time of data transmission in an LTE system according to an embodiment of the present disclosure
  • FIG. 8 is a schematic diagram of a scenario of Embodiment 3 of a method for sending and monitoring downlink control information according to an embodiment of the present disclosure
  • FIG. 9 is a schematic flowchart of Embodiment 4 of a method for sending and monitoring downlink control information according to an embodiment of the present disclosure
  • FIG. 10 is a schematic flowchart of Embodiment 5 of a method for receiving downlink control information according to an embodiment of the present disclosure
  • FIG. 11 is a schematic structural diagram of Embodiment 1 of a device for monitoring downlink control information according to an embodiment of the present disclosure
  • FIG. 12 is a schematic structural diagram of Embodiment 1 of a device for receiving downlink control information according to an embodiment of the present disclosure
  • FIG. 13 is a schematic structural diagram of Embodiment 2 of a device for receiving downlink control information according to an embodiment of the present disclosure
  • FIG. 14 is a schematic structural diagram of Embodiment 1 of a device for sending downlink control information according to an embodiment of the present disclosure
  • FIG. 15 is a schematic structural diagram of Embodiment 1 of a terminal device according to an embodiment of the present disclosure.
  • FIG. 16 is a schematic structural diagram of Embodiment 2 of a terminal device according to an embodiment of the present disclosure.
  • FIG. 17 is a schematic structural diagram of Embodiment 1 of a network device according to an embodiment of the present invention.
  • the embodiments of the present invention provide a method and a device for monitoring, transmitting, and receiving downlink control information, which are used to solve different service requirements or scenario requirements in the current LTE system, and the monitoring mode of the existing terminal device increases the terminal device calculation.
  • the quantity so that the power consumption of the terminal device is increased, and the production cost of the terminal device is increased.
  • the solution of the embodiments of the present invention can be applied to an LTE communication system or an LTE implementation communication system, such as a Long Term Evolution-Advanced (LTE-A) communication system.
  • LTE-A Long Term Evolution-Advanced
  • the LTE system is taken as an example for detailed description below.
  • Network devices and terminal devices are included in the LTE system.
  • the network device mainly carries the DCI through the downlink control channel, and sends scheduling information to the terminal device.
  • the terminal device monitors (ie, detects) whether there is a DCI belonging to itself in the search space formed by the candidate downlink control channel, and when detecting the DCI belonging to itself, the data transmission may be performed according to the scheduling information of the data transmission in the DCI.
  • the process of detecting DCI in the candidate downlink control channel of the search space is called blind detection.
  • the network device and the terminal device may be exemplified by servers, base stations, workstations, computers, gateways, mobile phones, notebook computers, and the like.
  • the search space in which the terminal device monitors the DCI is composed of one or more candidate downlink control channels, and each candidate downlink control channel can be used to carry the DCI.
  • the search space is a collection of candidate downlink control channels.
  • the terminal device needs to listen to the candidate downlink control channel, so the search space is also the candidate downlink control channel set monitored by the terminal device.
  • the search space consists of one or more PDCCHs, which may be referred to as a PDCCH search space.
  • the search space consists of one or more EPDCCHs, which may be referred to as an EPDCCH search space.
  • the search space includes two types: Common Search Space (CSS) and User Specific Search Space (UESS).
  • 2 is a schematic structural diagram of an existing search space.
  • the CSS is a search space that is monitored by multiple terminal devices in the cell, and is a spatial or shared candidate downlink control channel of a Control Channel Element (CCE) shared by all users.
  • the UESS is a search space that needs to be monitored by a specific terminal device in the cell, and is a space of a CCE owned by the terminal device or a set of candidate downlink control channels.
  • the UESS of different terminal devices can be the same or different.
  • the CSS and UESS of the same terminal device can be the same or different.
  • the PDCCH UESS is a UESS composed of PDCCHs defined by Rel-8
  • the PDCCH CSS is composed of Rel-8
  • the EPDCCH UESS is a UESS composed of the EPDCCH defined by Rel-11.
  • the CSS is composed only of the PDCCH. Therefore, the CSS in the embodiment of the present invention refers to the CSS of the PDCCH.
  • the downlink control channel may be a PDCCH, or an EPDCCH, and a channel defined by a future version for carrying DCI.
  • the channel carrying the DCI is located in a physical downlink shared channel (PDSCH) region, the channel is also regarded as a downlink control channel.
  • PDSCH physical downlink shared channel
  • the various physical channels in the existing LTE system are designed according to the length of the transmission time interval (TTI) of 1 ms, that is, the TTI is the minimum time unit, which is also called the subframe subframe.
  • TTI transmission time interval
  • a radio frame in an LTE system includes 10 subframes, each of which has a length of 1 ms, and each subframe includes two slots, each slot being 0.5 ms.
  • Each subframe consists of 14 or 12 symbols.
  • the TTI length is 1 ms
  • the time domain resource occupied by data transmission can be less than 1 ms.
  • the first 1, 2, 3, or 4 symbols in one downlink subframe may be used to transmit the PDCCH, but are not used to transmit the PDSCH.
  • the time domain resource occupied by the downlink data transmission with a TTI length of 1 ms may be less than 1 ms.
  • the last one symbol in an uplink subframe may be used to transmit a Sounding Reference Signal (SRS). Therefore, the time domain resource occupied by the uplink data transmission with a TTI length of 1 ms may also be less than 1 ms.
  • a TTI with a TTI length less than 1 subframe or 1 ms is recorded as a short TTI, and a short TTI data transmission is a TTI length of data transmission less than 1 subframe or 1 ms.
  • the short TTI length is 0.5 ms, 4 symbol lengths, 3 symbol lengths, 2 symbol lengths, or 1 symbol length.
  • the time domain resource occupied by short TTI data transmission can also be shorter than the short TTI length.
  • the terminal device listens to the downlink control channel to obtain its own DCI. After the terminal device monitors its own DCI, the terminal device can receive downlink data according to the indication information in the DCI, and receive the downlink data according to the received result.
  • the hybrid automatic repeat reQuest (HARQ) information is sent, and the uplink data may be sent according to the indication information in the DCI.
  • the terminal device receives the DCI, and the terminal device sends the HARQ information or sends the uplink data.
  • the terminal device needs a certain processing time for data processing. This period of time is considered as the response time of the data transmission. The response time makes the transmission of the terminal device and the reception of the network device consistent.
  • the prior art is based on the minimum time unit subframe described above.
  • FIG. 1 is a schematic diagram of response time of data transmission in an existing LTE system.
  • the time interval corresponding to the four 1 ms TTIs is the interval between the downlink subframe in which the terminal device receives the downlink data, and the uplink subframe in which the HARQ information corresponding to the downlink data is sent by the terminal device, or the terminal.
  • the device receives the interval between the downlink subframe in which the uplink scheduling information is located and the uplink subframe in which the uplink data corresponding to the uplink scheduling information is sent by the terminal device. For example, as shown in FIG.
  • the terminal device receives the downlink subframe in which the downlink data sent by the network device is located as the subframe i-4, and the terminal device sends the uplink subframe in which the HARQ information corresponding to the downlink data is located as the subframe i.
  • the interval between the subframe i-4 and the subframe i is a time interval. Where i is a positive integer greater than 4.
  • the terminal device when there are different service requirements or scenario requirements in the system, the terminal device needs to monitor the DCI corresponding to multiple service requirements in all the search spaces, thereby causing the number of blind detections to be too large, resulting in an increase in the calculation amount of the terminal device. Therefore, the power consumption of the terminal device is increased, and the production cost of the terminal device is increased.
  • An embodiment of the present invention provides a method for transmitting, monitoring, and receiving downlink control information, where an execution entity of the sending method is a network device, and an execution entity of the monitoring and receiving method is a terminal device.
  • FIG. 3 is a signaling flowchart of Embodiment 1 of a method for transmitting downlink control information according to an embodiment of the present invention.
  • FIG. 4 is a signaling flowchart of Embodiment 1 of a method for monitoring downlink control information according to an embodiment of the present invention. As shown in Figures 3 and 4, the method includes:
  • the network device sends the first downlink control information DCI in the common search space CSS, where the first DCI includes scheduling information of the data transmission with the first transmission time interval TTI.
  • the network device sends a second DCI or a third DCI in a dedicated search space UESS of the physical downlink control channel PDCCH.
  • the second DCI includes scheduling information of a data transmission with a second TCI, where the third DCI includes data with a third TTI.
  • the scheduling information of the transmission is not limited to a dedicated search space UESS of the physical downlink control channel PDCCH.
  • the terminal device monitors the first downlink control information DCI in the common search space CSS, where the first DCI includes scheduling information of the data transmission with the first transmission time interval TTI.
  • the terminal device monitors the second DCI and/or the third DCI in a dedicated search space UESS of the physical downlink control channel PDCCH.
  • the second DCI includes a tone of data transmission with the second TTI.
  • Degree information the third DCI contains scheduling information of the data transmission with the third TTI.
  • the length of the first TTI is greater than the length of the third TTI, and the length of the first TTI is equal to the length of the second TTI.
  • S301 and S302 have no strict timing relationship, and may be executed at the same time or separately; S401 and S402 have no strict timing relationship, and may be executed at the same time or separately; S301 and S302 may both be executed. It is also possible to perform only one of the steps, and both S401 and S402 are executed. It should be noted that the sending steps of S301 and S302 have no constraint relationship with the monitoring steps of S401 and S402, and may be separately performed, that is, S401 and S402 may be executed when there is no step S301 and/or S302.
  • the network device indicates that the specific TTI is indicated by the DCI on the candidate downlink control channel that is carried in the partial search area, so that the terminal device can determine different TTIs according to different DCIs that are monitored, which is improved.
  • the efficiency of data transmission at the same time, since all search areas are used to indicate different DCIs, the increase in the number of blind detections of the terminal devices is small.
  • the DCI is used to indicate data transmission, or the DCI is used to schedule a data packet.
  • the DCI schedules a Physical Upstream Shared Channel (PUSCH) or a PDSCH.
  • PUSCH Physical Upstream Shared Channel
  • the DCI may be used only to indicate scheduling information of data transmission, and is not used to trigger data transmission. Therefore, the terminal device needs to listen to the DCI sent by the network device to the terminal device before performing data transmission.
  • the downlink control channel carrying the DCI is a candidate downlink control channel in the search space, so the terminal device needs to determine the search space.
  • the terminal device determines the CSS.
  • the terminal device determines the UESS of the PDCCH. Further, the terminal device may determine the UESS of the CSS and/or the PDCCH according to the high layer signaling sent by the network device.
  • the high layer signaling may be Radio Resource Control (RRC) signaling.
  • RRC Radio Resource Control
  • the terminal device determines that the UESS of the CSS and the PDCCH does not have a strict timing relationship. For example, the terminal device may determine the CSS first, and then determine the UESS of the PDCCH, or first determine the UESS of the PDCCH, determine the CSS, or determine simultaneously. USS of CSS and PDCCH.
  • the first DCI is located in the CSS, and the second DCI and the third DCI are located in the UESS.
  • the first DCI is for scheduling data transmissions having a first TTI
  • the second DCI is for scheduling data transmissions having a second TTI
  • the third DCI is for scheduling data transmissions having a third TTI.
  • the data transmission with the first TTI The data transmission with the second TTI and the data transmission with the third TTI are both downlink data transmission or uplink data transmission, or two data transmissions are downlink data transmission and one data transmission is uplink data transmission, or Two data transmissions are uplink data transmissions and one data transmission is downlink data transmission.
  • the downlink data transmission mentioned above may be a PDSCH transmission or a short PDSCH transmission
  • the uplink data transmission may be a PUSCH transmission or a short PUSCH transmission
  • the short PDSCH may be a time-frequency domain resource for transmitting data on a transmission time period, and the transmission time period may be a transmission time period of less than or equal to 1 ms.
  • the short PUSCH may be a time-frequency domain resource for transmitting data over a transmission period, and the transmission period may be a transmission period of less than or equal to 1 ms.
  • the time length of the first TTI and the time length of the third TTI are 1 ms, 0.5 ms, 4 symbol lengths, 3 symbol lengths, 2 symbol lengths, and 1 symbol length.
  • the length of time of the first TTI is greater than the length of time of the third TTI.
  • the length of the first TTI is 1 subframe or 1 ms, and the length of the third TTI is less than 1 ms.
  • the third TTI is a short TTI.
  • the terminal device monitors the DCI, and if the terminal device monitors the candidate control channel with the correct cyclic redundancy check (CRC), the DCI carried by the candidate control channel is used by the network device to send to the terminal device. Schedule DCI for data transfer. If the terminal device does not hear the candidate control channel with the correct CRC, it indicates that the network device does not send the DCI to the terminal device.
  • CRC cyclic redundancy check
  • the present invention does not limit how the terminal device monitors the DCI.
  • the terminal device monitors the first DCI in the CSS, and the terminal device may decode all or part of the candidate downlink control channels in the CSS according to the information bit number of the first DCI.
  • the data transmission may be performed according to the DCI and the network device.
  • the terminal device may receive the downlink data packet sent by the network device on the data transmission resource indicated by the DCI.
  • the terminal device may send the uplink data packet to the network device on the data transmission resource indicated by the DCI.
  • the data transmission resource indicated by the DCI is a time domain resource of the data transmission.
  • the service or scenario of the terminal device is different, and the DCI sent by the network device is different. Therefore, the scheduling information of the data transmission of the terminal device may be indicated by different DCI. If the response time of the terminal device data transmission is different, the response time of the data transmission of the terminal device may also be indicated by a different DCI.
  • the terminal device monitors the first downlink control information DCI in the common search space CSS, where the first DCI includes scheduling information of the data transmission with the first TTI.
  • the terminal device monitors the DCI in the CSS, and the terminal device considers the DCI as the first DCI.
  • the method further includes: the terminal device performs data transmission with the first TTI according to the monitored first DCI and the network device, and the data transmission with the first TTI is uplink data. Transmission or downlink data transmission.
  • the terminal device monitors the second DCI and/or the third DCI in the UESS of the PDCCH; the second DCI includes scheduling information of the data transmission with the second TTI, and the third DCI includes the third TTI.
  • the scheduling information of the data transmission wherein the length of the first TTI is greater than the length of the third TTI, and the length of the first TTI is equal to the length of the second TTI.
  • the method further includes: the terminal device performs data transmission with the second TTI according to the monitored second DCI and the network device, and/or The terminal device performs data transmission with the third TTI according to the monitored third DCI and the network device, and the data transmission with the second TTI or the data transmission with the third TTI is the uplink data transmission or the downlink data transmission.
  • the terminal device performs S402.
  • the terminal device monitors the second DCI in the UESS of the PDCCH, otherwise it does not monitor the second DCI.
  • the shortened response time refers to a response time of less than 4 subframes, such as a response time of 3 subframes or a response time of 2 subframes.
  • the terminal device monitors the third DCI in the UESS of the PDCCH, otherwise it does not listen to the third DCI.
  • the terminal device When the terminal device is listening to the DCI, it is not clear which one or more of the first DCI, the second DCI, and the third DCI are monitored, and only the search space is determined to be monitored. Therefore, the terminal device needs to All DCIs are monitored in all search spaces, ie, the first DCI, the second DCI, and the third DCI are monitored in CCS and UESS. Since the embodiment of the present invention can cause a part of the search area to monitor the DCI indicating the specific TTI, the number of blind detections is reduced compared with the prior art DCI that monitors all TTIs in all search areas.
  • the network device is in CSS
  • the first DCI is sent, and the second DCI or the third DCI is sent in the UESS of the PDCCH.
  • the terminal device monitors the first DCI in the CSS, and monitors the second DCI and/or the third DCI in the UESS of the PDCCH, and the length of the first TTI is longer than the length of the third TTI.
  • the response time may be indicated by the DCI or the search space of the DCI is monitored, so that the number of blind detections is not increased. , indicating the response time of data transmission, to achieve the purpose of improving data transmission efficiency.
  • the first DCI is used to indicate that the response time of the data transmission is the first response time
  • the second DCI is used to indicate that the response time of the data transmission is the second response time
  • the third DCI is used to indicate that the response time of the data transmission is the third response time.
  • the length of time of the first response time is greater than the length of time of the second response time.
  • FIG. 5 is a schematic diagram of a search space in Embodiment 2 of a method for transmitting and monitoring downlink control information according to an embodiment of the present invention.
  • the terminal device determines the response time according to the search space in which the DCI is monitored.
  • the terminal device when the terminal device monitors the DCI in the CSS, the terminal device considers that the response time of the data transmission corresponding to the DCI is the first response time.
  • the terminal device when the terminal device monitors the DCI in the USS of the PDCCH, the terminal device considers that the response time of the data transmission corresponding to the DCI is the second response time or the third response time. Further, the terminal device determines, according to the indication information in the DCI, that the response time is the second response time or the third response time. For example, there is a bit indication information in the DCI to indicate that 0 represents the second response time and 1 represents the third response time. vice versa.
  • the length of the first response time is greater than the length of the third response time.
  • the length of the first response time is 4 subframes
  • the length of the second response time is 3 subframes or 2 subframes
  • the length of the third response time is 8 or 12 symbol lengths.
  • the response time is the time interval from the TTI where the terminal device receives the downlink data to the TTI where the hybrid automatic retransmission request HARQ information corresponding to the downlink data transmission is sent, or the terminal device receives the uplink scheduling information from the TTI to the TTI.
  • the TTI in which the uplink data corresponding to the uplink scheduling information is sent is the delay time of the TTI in which the uplink scheduling information is received is the response time.
  • FIG. 6 is a schematic diagram of Embodiment 1 of a response time of data transmission in an LTE system according to an embodiment of the present invention. As shown in FIG. 6, for example, a boundary between a TTI number 4 in which an uplink is transmitted and a TTI number 4 in which a downlink transmission is located may exist. Alignment, the current maximum difference is 0.67ms, and the response time is assumed to be 4 subframes.
  • the number 4 of the TTI where the hybrid automatic repeat request HARQ information corresponding to the downlink data transmission is transmitted is delayed by the TTI number 0 where the downlink data is received.
  • the time is approximately (4-0.67) ms is 3.33 ms, which is also considered to be 4 TTI or 4 subframes at the corresponding time.
  • the length of the uplink TTI and the length of the downlink TTI may be the same or different.
  • FIG. 7 is a schematic diagram of Embodiment 2 of a response time of data transmission in an LTE system according to an embodiment of the present invention. As shown in FIG. 7 , when the length of the uplink TTI is the same as the length of the downlink TTI, the method may be as shown in FIG. 7 . Define the response time. When the length of the uplink TTI is different from the length of the downlink TTI, the response time may be a multiple of the uplink TTI time length or a downlink TTI time length.
  • the response time may be a multiple of a larger time length in the uplink TTI and the downlink TTI, or may be a multiple of the downlink TTI time length when the DCI is indicating the downlink data reception; when the DCI is the uplink scheduling information
  • the response time is a multiple of the length of the uplink TTI.
  • the present invention does not limit the response time size and time unit.
  • the terminal device acquires a preset first response time, a preset second response time, and a preset third response time according to the monitored DCI, and the three response times may be the same or different, depending on Their respective preset values.
  • the first DCI has a corresponding relationship with the preset first response time.
  • the terminal device monitors the first DCI, the terminal device can learn the first response time.
  • the second DCI has a corresponding relationship with the preset second response time
  • the third DCI has a corresponding relationship with the preset third response time
  • the terminal device can be the first DCI or the second DCI according to the monitored DCI.
  • the third DCI determines the corresponding response time.
  • the terminal device may also acquire the length of time and the response time of the TTI indicated by the first DCI, the second DCI, and the third DCI.
  • the length of the first response time is 4 times of the length of the first TTI; and the length of the second response time is 3 times or 2 times the length of the first TTI.
  • the first response The time length of time is 4 times the first TTI, that is, 4 ms
  • the time length of the second response time is 3 times or 2 times the first TTI, that is, 3 ms or 2 ms.
  • the length of the third response time is a length of time of the K third TTIs, and K is a positive integer greater than 1.
  • K is the preset value or the higher layer signaling or indicated in the DCI.
  • the third response time is K times the third TTI.
  • the terminal device may preset a K value in advance with the network device, or may add a state of one or more bits in the third DCI to indicate the K value.
  • the second DCI and the third DCI are both included in the PDCCH on the UESS.
  • the second DCI and the third DCI both include the first indication information.
  • the first indication information is used to indicate the length of time of the DCI format identifier or TTI.
  • the status of the bit corresponds to the first indication information, which is used to indicate the length of the TTI of the data transmission or the DCI format identifier or the response time indication information.
  • the first indication information is 0, the time length of the TTI indicated by the DCI is the second TTI, or the DCI is the second DCI, or the response time indicated by the DCI is the second response time; when the first indication When the information is 1, the time length of the TTI indicated by the DCI is the third TTI, or the DCI is the third DCI, or the response time indicated by the DCI is the third response time. vice versa.
  • the terminal device can be prevented from increasing the number of blind detections.
  • the total number of information bits of the second DCI and the third DCI is the same, that is, the payload size of the second DCI and the third DCI are the same, so that when the first DCI and the second DCI are simultaneously detected, Reduce the number of blind detections of terminal devices.
  • the first indication information may also be used to indicate different DCI format identifiers, and different DCI format identifiers indicate lengths of time of different TTIs.
  • the first indication information may also be used to indicate different response times.
  • the first DCI does not include the first indication information, that is, the network device does not send the first indication information in the first DCI, and the terminal device does not receive the information.
  • the network device if the network device configures the terminal device to enhance the physical downlink control channel EPDCCH snooping, the network device sends the first in the UESS of the EPDCCH. A DCI. If the terminal device is configured to listen to the EPDCCH, the terminal device monitors the first DCI in the UESS of the EPDCCH. It can be understood that the terminal device does not listen to the second DCI or the third DCI in the UESS of the EPDCCH at this time. The network device does not send the second DCI or the third DCI in the UESS of the EPDCCH.
  • the UESS may be divided into a UESS of the PDCCH and a UESS of the EPDCCH. It can be understood that the terminal device monitors the first DCI in the CSS, monitors the second DCI and/or the third DCI in the UESS of the PDCCH, and listens to the first DCI in the UESS of the EPDCCH.
  • the DCI transmitted through the EPDCCH needs to be monitored until the end of the subframe, and the PDCCH region is located in the first 1, 2, 3 or 4 symbols of one subframe, so
  • the EPDCCH is sent as the first DCI, and the response time may be 4 times the first TTI.
  • other types of DCI are not carried on the EPDCCH, that is, only the first DCI is monitored in the UESS of the CSS and the EPDCCH.
  • the terminal device when configured to be monitored by the EPDCCH, the terminal identifies the DCI that is monitored in the UESS of the EPDCCH as the first DCI.
  • FIG. 8 is a schematic diagram of a scenario of Embodiment 3 of a method for sending and monitoring downlink control information according to an embodiment of the present invention.
  • the UESS of the CSS and the PDCCH may partially overlap or completely overlap, or the CSS may be part of the UESS of the PDCCH; or, the PDCCH
  • the UESS is part of the CSS; or, a portion of the CSS overlaps with a portion of the UESS of the PDCCH.
  • the UESS of the CSS and the PDCCH are completely overlapped, that is, the UESS of the CSS and the PDCCH are the same search space.
  • the terminal device is equivalent to determining only one search space. For overlapping search spaces, only the first DCI is only listened to within the search space.
  • the terminal device monitors the second DCI and/or the third DCI in the dedicated search space UESS of the physical downlink control channel PDCCH, including:
  • the terminal device listens to the second DCI and/or the third DCI in a search space other than the overlapping search space in the UESS of the PDCCH.
  • the network device sends the first DCI on the PDCCH in the overlapping search space, and sends the second DCI and/or the third DCI in the search space except the overlapping search space in the UESS of the PDCCH.
  • the terminal device only listens to the first DCI in the overlapping search space, instead of The second DCI and/or the third DCI are then monitored, and the second DCI and/or the third DCI are monitored in the non-overlapping search space in the UESS of the PDCCH.
  • the first DCI is located in the CSS corresponding to the maximum length of the TTI and/or the longest response time, so that the UE obtains the most reliable scheduling information in the overlapping search space, thereby It ensures that the UE has enough processing time to respond to the scheduling of the base station.
  • FIG. 9 is a schematic flowchart diagram of Embodiment 4 of a method for sending and monitoring downlink control information according to an embodiment of the present invention. As shown in FIG. 9, the method includes:
  • the network device sends the DCI in the CSS and the UESS of the PDCCH.
  • the terminal device monitors the DCI in the USS of the CSS and the PDCCH.
  • the terminal device determines scheduling information of the data transmission with the first transmission time interval TTI according to the fourth DCI being monitored by the CSS; and/or
  • the terminal device determines scheduling information of the data transmission with the second TTI according to the fifth DCI being monitored by the UESS of the PDCCH; and/or
  • the terminal device determines scheduling information of the data transmission with the third TTI according to the sixth DCI being monitored by the UESS of the PDCCH.
  • the length of the first TTI is greater than the length of the third TTI, and the length of the first TTI is equal to the length of the second TTI.
  • S901 to S905 indicate the steps of transmitting, monitoring, and receiving downlink control information when the terminal device receives the DCI.
  • the sending step of S901 has no constraint relationship with the monitoring step of S902, and is separately performed, and the monitoring of S902 is performed separately.
  • the execution of the step does not depend on whether the transmitting step of S901 is performed, and the number of executions of S902 may be one or more times before the receiving DCI step of S903 to S905.
  • the terminal device can only monitor the preset in the search space at the same time.
  • the terminal device can monitor the preset fourth DCI and preset in the search space.
  • One or two of the fifth DCI and the preset sixth DCI are two of the fifth DCI and the preset sixth DCI.
  • the network device sends DCIs indicating different TTIs in different partial search spaces, so that the terminal device roots
  • the DCI is monitored in different part of the search space to determine the TTI in the scheduling information when the terminal device performs data transmission.
  • the network device sends the DCI in the search space, the DCI itself does not include indication information indicating a specific TTI, and the terminal device determines the specific TTI of the data transmission according to the difference in the search space in which the DCI is monitored.
  • the indication information indicating the length of the TTI may be added to the DCI, so that the terminal device may determine, according to the DCI, that the scheduling information corresponds to the data transmission of the length of the TTI.
  • part of the search space in this embodiment is carried.
  • the DCI is the same as the DCI distribution of each search space in any of the above embodiments, and each TCI indicates the same TTI time length.
  • the terminal device when the terminal device monitors in the search space, it can be the same as the existing DCI listening mode, and only monitors whether there is its own DCI, and the terminal device monitors the DCI in the CSS and the UESS of the PDCCH, because the terminal device
  • the terminal device when the terminal device monitors the DCI in the CSS, it is determined that the scheduling information when the terminal device performs data transmission has a first TTI, and the DCI is recorded as a fourth DCI.
  • the fourth DCI may be the same as the first DCI in the foregoing embodiment.
  • the terminal device monitors the DCI in the UESS of the PDCCH it may be determined that the scheduling information when the terminal device performs data transmission has a second TTI, where the DCI is recorded as the fifth DCI, or the scheduling information when the terminal device performs data transmission has the third TTI, the DCI is recorded as the sixth DCI.
  • the fifth DCI may be the same as the second DCI in the foregoing embodiment
  • the sixth DCI may be the same as the third DCI in the foregoing embodiment.
  • the first to third TTIs in this embodiment are the same as the first to third TTIs in the embodiment shown in FIG. 2 to FIG. 8 , and the details are not described herein again.
  • one bit may be added in the existing DCI, and the status on the bit corresponds to the first indication information.
  • the network device sends the fifth DCI and/or the sixth DCI in the UESS of the PDCCH;
  • the terminal device monitors the DCI in the UESS of the PDCCH, determining, according to the first indication information in the DCI, that the DCI is the fifth DCI, or the DCI is the sixth DCI;
  • the fifth DCI and the sixth DCI each include first indication information, where the first indication information is used to indicate a length of time of the DCI format identifier or the transmission time interval TTI.
  • the first indication information in this embodiment is the same as the first indication information in the embodiment shown in FIG. 2 to FIG. 8 and has the same function, which is not described in detail herein.
  • the network device since the network device only transmits the fourth DCI indicating the first TTI in the CSS, no other DCI is transmitted. Therefore, the network device sends the fourth DCI in the common search space CSS of the PDCCH; wherein the fourth DCI does not include the first indication information. That is, the network device does not send the first indication information in the fourth DCI type, and the terminal device does not receive the information.
  • the method further includes:
  • the terminal device determines that the response time of the data transmission is the fourth response time according to the fourth DCI monitored by the CSS, and/or
  • the terminal device determines that the response time of the data transmission is the fifth response time according to the fifth DCI monitored by the UESS of the PDCCH, and/or
  • the terminal device determines that the response time of the data transmission is the sixth response time according to the sixth DCI being monitored by the UESS of the PDCCH;
  • the time length of the fourth response time is greater than the time length of the fifth response time, and the response time is the interval between the TTI of the hybrid automatic retransmission request HARQ information corresponding to the downlink data from the TTI where the terminal device receives the downlink data.
  • the response time in this embodiment is the same as the response time in the embodiment shown in FIG. 2 to FIG. 8, and the present invention will not be described again.
  • the response time can be indicated by the displayed DCI or the search space of the implicit DCI, so that the blindness is not increased.
  • the number of detection times indicates the response time of data transmission, which achieves the purpose of improving data transmission efficiency.
  • the terminal device monitors the fourth DCI determining that the response time of the data transmission is the fourth response time
  • the terminal device monitors the fifth DCI determining that the response time of the data transmission is the fifth response time
  • the terminal monitors the sixth DCI it determines that the response time of the data transmission is the sixth response time.
  • the time length of the fourth response time is greater than the length of time of the fifth response time.
  • the duration of the fourth response time is 4 subframes
  • the length of the fifth response time is 3 subframes or 2 subframes
  • the length of the sixth response time is 8 or 12 symbol lengths.
  • the fourth response time, the fifth response time, and the sixth response time are respectively associated with FIG. 2 to
  • the first response time, the second response time, and the third response time in the embodiment shown in FIG. 8 are the same, and the present invention will not be described again.
  • the length of the fourth response time is 4 times of the length of the first TTI; and the length of the fifth response time is 3 times or 2 times the length of the first TTI.
  • the time length of the fourth response time is 4 times the first TTI, that is, 4 ms
  • the time length of the fifth response time is 3 times or 2 times the first TTI, that is, 3 ms or 2 ms.
  • the length of the sixth response time is the length of time of the K third TTIs, and K is a positive integer greater than 1.
  • K is the preset value or the higher layer signaling or indicated in the DCI.
  • the method further includes:
  • the terminal device monitors the DCI in the UESS of the EPDCCH
  • the terminal device determines scheduling information of the data transmission with the first TTI according to the fourth DCI being monitored by the UESS of the EPDCCH.
  • the terminal device does not listen to the fifth DCI or the sixth DCI in the UESS of the EPDCCH at this time.
  • the network device does not send the fifth DCI or the sixth DCI in the UESS of the EPDCCH.
  • the UESS may be divided into a UESS of the PDCCH and a UESS of the EPDCCH. It can be understood that the terminal device monitors the first DCI in the CSS, monitors the second DCI and/or the third DCI in the UESS of the PDCCH, and listens to the first DCI in the UESS of the EPDCCH.
  • the DCI transmitted through the EPDCCH needs to be monitored until the end of the subframe, and the PDCCH region is located in the first 1, 2, 3 or 4 symbols of one subframe, so
  • the EPDCCH is sent as the first DCI, and the response time may be 4 times the first TTI.
  • other types of DCI are not carried on the EPDCCH, that is, only the first DCI is monitored in the UESS of the CSS and the EPDCCH.
  • the terminal device when configured to be monitored by the EPDCCH, the terminal identifies the DCI that is monitored in the UESS of the EPDCCH as the first DCI.
  • the terminal device determines scheduling information of the data transmission with the first TTI according to the fourth DCI being monitored in the overlapping search space.
  • a fourth response time can also be determined. specific:
  • the terminal device according to the search space except the overlapping search space in the UESS of the PDCCH Monitoring the fifth DCI, determining scheduling information of the data transmission with the second TTI; and/or,
  • the terminal device determines scheduling information of the data transmission with the third TTI according to the sixth DCI being monitored in the search space other than the overlapping search space in the UESS of the PDCCH.
  • the terminal will detect the DCI in the search space except the overlapping search space in the UESS of the PDCCH, and determine the fifth or sixth DCI.
  • the terminal will listen to the DCI in the search space where the CESS and the PDCCH UESS overlap, and determine the fourth DCI.
  • the network device sends the fourth DCI on the PDCCH in the overlapping search space, and sends the fifth DCI and/or the sixth DCI in the search space except the overlapping search space in the UESS of the PDCCH.
  • the terminal device only listens to the fourth DCI in the overlapping search space, and no longer listens to the fifth DCI and/or the sixth DCI, and listens to the fifth DCI and/or the non-overlapping search space in the UESS of the PDCCH.
  • the fourth DCI is located in the CSS corresponding to the maximum length of the TTI and/or the longest response time, so that the UE obtains the most reliable scheduling information in the overlapping search space, thereby It ensures that the UE has enough processing time to respond to the scheduling of the base station.
  • a further embodiment of the present invention provides a method for receiving downlink control information, and details a method for determining, by the terminal device, scheduling information according to the received downlink control information.
  • FIG. 10 is a schematic flowchart of Embodiment 5 of a method for receiving downlink control information according to an embodiment of the present disclosure. As shown in FIG. 10, the execution body of the method is a terminal device, and the method includes:
  • the terminal device receives the seventh downlink control information DCI, where the seventh DCI includes the first resource indication information, where the first resource indication information is used to indicate the available time-frequency domain resources on the at least one TTI;
  • the terminal device determines, according to the available time-frequency domain resources, a time-frequency domain resource that the terminal device performs data transmission on the at least one TTI.
  • a resource element occupies one symbol in the time domain, and the frequency domain occupies one subcarrier, which is a unit of minimum data transmission.
  • the available time-frequency domain resources can be composed of time domain resources and frequency domain resources.
  • the time domain resource is a symbol, a symbol group, a slot, or a subframe, where the symbol is a symbol of an LTE system in which the frequency domain of the subcarrier is 15 kHz.
  • the symbol is a symbol of a communication system in which the subcarrier is located in the frequency domain greater than 15 kHz;
  • the time slot is a time slot of an LTE system in which the frequency domain of one subcarrier is 15 kHz, or a communication in which the frequency domain of one subcarrier is greater than 15 kHz
  • the time slot of the system the length can be less than 0.5ms;
  • the subframe is a
  • the sub-frame of the LTE system in which the sub-carrier is located in the frequency domain of 15 kHz, or the sub-frame of the communication system in which the sub-carrier is located in the frequency domain of more than 15 kHz may be less than 1 ms in length, which is not limited in this embodiment.
  • the frequency domain resource may be a physical resource block (Physical Resource Block, PRB for short), a short physical resource block group (RBG), a virtual resource block (VRB), and a short physics.
  • PRB Physical Resource Block
  • RBG short physical resource block group
  • VRB virtual resource block
  • SPRB Short Physical Resource Block
  • SPRB and SVRB are the basic units for resource allocation of different meanings.
  • the SPRB is 12 consecutive subcarriers in the frequency domain. In the time domain, it is a resource with a transmission time length. The transmission time length can be from 1 symbol to any number of symbols in 14 symbols.
  • SVRB and SPRB In the centralized resource allocation, SVRB and SPRB. The definition is the same.
  • the SVRB has a certain correspondence with SPRB in distributed resource allocation.
  • the SPRB index is an SPRB index
  • the SVRB index is an SVRB index. Therefore, the SPRB index and the SVRB index may be different.
  • the SRBG may include multiple SPRBs, and the number of SPRBs included in the SRBG is determined according to the bandwidth of the terminal device or is indicated by the network device.
  • the SPRB index may be the number of the SPRB
  • the SRBG index may be the number of the SRBB
  • the SVRB index may be the number of the SVRB
  • the subcarrier index may be the number of the subcarrier
  • the subcarrier group index may be the number of the subcarrier group.
  • the subcarrier group includes at least one subcarrier, where one subcarrier is located in a frequency domain equal to or greater than 15 kHz.
  • the terminal device monitors and receives the seventh DCI according to the method in any of the embodiments shown in FIG. 2 to FIG. 9.
  • the seventh DCI may be a third DCI or a sixth DCI.
  • the TTI indicated by the seven DCI is the third TTI, and the length of the third TTI is less than 1 ms.
  • the first resource indication information included in the seventh DCI indicates available time-frequency domain resources of the terminal device on at least one TTI in the data transmission process.
  • the terminal device determines, according to the indicated available time-frequency domain resources, a time-frequency domain resource that the terminal device performs data transmission on the at least one TTI.
  • the terminal device may occupy all available time-frequency domain resources, or may select a part of the available time-frequency domain resources, and the occupied time-frequency domain resources may be discontinuous in all available time-frequency domain resources.
  • the terminal device By indicating to the terminal device that the time-frequency domain resource can be occupied, the terminal device can be conveniently determined to occupy the time. Frequency domain resources reduce the waste of time-frequency domain resources.
  • the available time-frequency domain resource includes N sub-time-frequency domain resources
  • the terminal device in S1002 determines, according to the available time-frequency domain resources, that the terminal device performs data transmission on at least one TTI.
  • the method further includes:
  • the terminal device determines, according to the occupation indication information, a combination of one or more sub-time-frequency domain resources in the N sub-time-frequency domain resources, as a time-frequency domain resource for performing data transmission on the at least one TTI by the terminal device;
  • N is a positive integer greater than 1
  • N is a predefined or higher layer signaling configuration or a seventh DCI/eighth DCI indication
  • the time length of the TTI is less than 1 millisecond.
  • the higher layer signaling may be RRC signaling.
  • the available time-frequency domain resources of the terminal device may be divided into N sub-time-frequency domain resources, and the minimum unit of the sub-time-frequency domain resource division may be one of RE, RB, sRB, RBG, and sRBG.
  • the terminal device may determine, according to the received indication information in the eighth DCI, the time-frequency domain resource that the terminal device performs data transmission on the at least one TTI in the N sub-time-frequency domain resources.
  • the available time-frequency domain resources include a first sub-time-frequency domain resource and a second sub-time-frequency domain resource.
  • the available time-frequency domain resources include the first sub-time-frequency domain resource, the second sub-time-frequency domain resource, and the third sub-time-frequency domain resource, and the three sub-time-frequency domain resources may have the same number of REs. It can also be different.
  • the occupancy indication information in the eighth DCI may be, for example, a first sub-time-frequency domain resource, a second sub-time-frequency domain resource, a third sub-time-frequency domain resource, a first sub-time-frequency domain resource, and a second sub-sub-domain.
  • the occupation indication information includes 2 bits information or 3 bits information, where the correspondence or table of the value and the indication information may be pre-defined or high-level signaling, and no limitation is imposed herein. That is, as the high-level signaling notification, 0 according to the high-level signaling may correspond to the second sub-time-frequency domain resource, instead of the first sub-time-frequency domain resource.
  • each sub-time-frequency domain resource may be sequentially arranged according to an index of the sub-time-frequency domain resources in the available time-frequency domain resources. For example, the first sub-time frequency domain resource, then the second sub-time frequency domain resource, and finally the third sub-time frequency domain resource.
  • the sub-time-frequency domain resources may also be sorted according to predefined rules in the available time-frequency domain resources, for example, the third sub-time-frequency domain resource, then the first sub-time-frequency domain resource, and finally the second sub-time-frequency domain resource. It is also possible to cross-order in the available time-frequency domain resources according to a predefined rule, for example, the first sub-time frequency domain resource in the first row, and the second sub-time-frequency domain resource in the second part.
  • the method for determining, by the terminal device, the sub-time-frequency domain resources is specifically:
  • the terminal device determines, according to the frequency domain resource quantities M and N of the available time-frequency domain resources, that the frequency domain resource quantity of the j-th time-frequency domain resource is a maximum integer equal to or smaller than M/N, and the frequency domain of the N-th child time-frequency domain resource
  • the amount of resources is the amount of remaining frequency domain resources in the frequency domain resource quantity M of the available time-frequency domain resource minus the frequency domain resource quantity of the first sub-time frequency domain resource to the N-1th time-frequency domain resource;
  • j is a value from 1 to N-1, and M is a positive integer greater than N.
  • each sub-time-frequency domain resource includes the same number of sRBGs.
  • the available time-frequency domain resources are divided into N-1 sRBGs containing the same sRBG. Sub-time-frequency domain resources, and one sub-time-frequency domain resource that is different from other sub-time-frequency domain resources.
  • the number of sRBGs included in the sub-time-frequency domain resources of the N-1 sub-time-frequency domain resources including the same sRBG is a maximum integer equal to or smaller than M/N, that is, the M/N is rounded down.
  • the number of the sRBGs included in the sub-time-frequency domain resources different from the other sub-time-frequency domain resources is the sRBG included in the available time-frequency domain resources except for the N-1 sub-time frequency domain resources including the same sRBG. The number of remaining sRBGs.
  • the first sub-time-frequency domain resource rounded down to ⁇ M/3 ⁇
  • the second sub-time-frequency domain resource rounded down to ⁇ M/3 ⁇
  • the third sub-time-frequency Domain resource M - first sub-time-frequency domain resource - second sub-time-frequency domain resource.
  • the seventh DCI further includes frequency domain indication information, and the terminal device determines, according to the frequency domain indication information, that the frequency domain of the time-frequency domain resource for performing data transmission on the at least one TTI is the same.
  • the seventh DCI further includes modulation and coding mode information, and the terminal device determines, according to the modulation and coding mode information, that the modulation and coding modes for performing data transmission on at least one TTI are the same.
  • the modulation coding mode and the frequency domain are the same on multiple TTIs, the uplink transmission power of the terminal device for the sPUSCH channel is the same. In this way, when multiple sPUSCHs share an uplink reference signal, if the sPUSCH transmission power is different, the network device may fail to receive.
  • a further embodiment of the present invention further provides a method for transmitting downlink control information, where the execution body of the method is a network device, and the method corresponds to the embodiment of the method for receiving downlink control information shown in FIG. 10, and has the same technology.
  • the method includes:
  • the network device sends the seventh downlink control information DCI, where the seventh DCI includes the first resource indication information, where the first resource indication information is used to indicate the available time-frequency domain resources on the at least one TTI.
  • the available time-frequency domain resource includes N sub-time-frequency domain resources, and the method further includes:
  • the network device sends an eighth DCI, where the eighth DCI includes occupation indication information, and the occupation indication information is used to determine a combination of one or more sub-time-frequency domain resources in the N sub-time-frequency domain resources, as the terminal device performs on at least one TTI.
  • N is a positive integer greater than 1
  • N is a predefined or higher layer signaling configuration
  • the time of the TTI The length is less than 1 millisecond.
  • the frequency domain resource of the available time-frequency domain resource is M, N sub-time-frequency domain resources;
  • the frequency domain resource of the time-domain resource of the j-th time is the largest integer less than or equal to M/N, and the frequency-domain resource of the N-th time-frequency domain resource is the frequency domain resource quantity M of the available time-frequency domain resource. Subtracting the remaining frequency domain resources of the frequency domain resources of the first sub-time frequency domain resource to the N-1th time-frequency domain resource;
  • j is a value from 1 to N-1, and M is a positive integer greater than N.
  • the frequency domain resource of the Nth time-frequency domain resource may be the same as the frequency domain resource of the j-th time-frequency domain resource, and is different if M cannot be divisible by N.
  • the seventh DCI further includes frequency domain indication information, where the frequency domain indication information is used to determine that the frequency domain of the time-frequency domain resources for performing data transmission on the at least one TTI is the same.
  • the seventh DCI further includes modulation and coding mode information, where the modulation and coding mode information is used to determine that the modulation and coding modes for performing data transmission on the at least one TTI are the same.
  • a further embodiment of the present invention provides a monitoring device, a receiving device, and a transmitting device for performing downlink control information, which are used to perform the method for transmitting, monitoring, and receiving downlink control information in the foregoing embodiments, and have the same technical features and technical effects. The present invention will not be described again.
  • the seventh DCI further includes frequency domain indication information, where the frequency domain indication information is used to determine that the frequency domain of the time-frequency domain resources for performing data transmission on the at least one TTI is the same.
  • the seventh DCI further includes modulation and coding mode information, and the modulation and coding mode information is used to determine that the modulation and coding modes for performing data transmission on at least one TTI are the same.
  • the modulation coding mode and the frequency domain are the same on multiple TTIs, the uplink transmission power of the terminal device for the sPUSCH channel is the same. In this way, when multiple sPUSCHs share an uplink reference signal, if the sPUSCH transmission power is different, the network device may fail to receive.
  • FIG 11 is a schematic structural diagram of Embodiment 1 of a device for monitoring downlink control information according to an embodiment of the present invention. As shown in Figure 11, the device includes:
  • the monitoring module 1101 is configured to listen to the first downlink control information DCI in the common search space CSS, where the first DCI includes scheduling information of the data transmission with the first transmission time interval TTI;
  • the monitoring module 1101 is further configured to: monitor a second DCI and/or a third DCI in a dedicated search space UESS of the physical downlink control channel PDCCH; the second DCI includes scheduling information of a data transmission with a second TTI, where the third DCI includes Scheduling information of data transmission of the third TTI;
  • the time length of the first TTI is greater than the length of the third TTI, and the time of the first TTI.
  • the length is equal to the length of time of the second TTI.
  • the first DCI is used to indicate that the response time of the data transmission is the first response time
  • the second DCI is used to indicate that the response time of the data transmission is the second response time
  • the third DCI is used to indicate that the response time of the data transmission is a third response time, the length of time of the first response time is greater than the length of time of the second response time;
  • the response time is the interval from the TTI where the device receives the downlink data to the TTI where the hybrid automatic retransmission request HARQ information corresponding to the downlink data transmission is sent, or the device sends the uplink scheduling information from the TTI where the uplink scheduling information is received. Interval of the TTI where the corresponding uplink data is located.
  • the length of the first response time is 4 times of the length of the first TTI; and the length of the second response time is 3 times or 2 times the length of the first TTI.
  • the length of the third response time is a length of time of the K third TTIs, and K is a positive integer greater than 1.
  • the first DCI does not include the first indication information
  • the second DCI and the third DCI both include first indication information, where the first indication information is used to indicate a length of time of the DCI format identifier or the TTI.
  • the monitoring module is further configured to: monitor the first DCI in the UESS of the EPDCCH.
  • the listening module is further configured to monitor the second DCI and/or the third DCI in a search space other than the overlapping search space in the UESS of the PDCCH.
  • FIG. 12 is a schematic structural diagram of Embodiment 1 of a device for receiving downlink control information according to an embodiment of the present invention. As shown in Figure 12, it includes:
  • the monitoring module 1201 is configured to listen to the downlink control information DCI in the dedicated search space UESS of the common search space CSS and the physical downlink control channel PDCCH;
  • the processing module 1202 is configured to determine scheduling information of a data transmission having a first transmission time interval TTI according to the fourth DCI being monitored by the CSS, and/or
  • the length of the first TTI is greater than the length of the third TTI, and the length of the first TTI is equal to the length of the second TTI.
  • processing module is further configured to:
  • the CSS determines that the response time of the data transmission is the fourth response time, and/or
  • Determining that the response time of the data transmission is the fifth response time according to the fifth DCI monitored by the UESS of the PDCCH, and/or
  • the time length of the fourth response time is greater than the time length of the fifth response time, and the response time is the interval between the TTI of the hybrid automatic repeat request and the HARQ information of the hybrid automatic retransmission request corresponding to the downlink data sent by the device. Or the interval from the TTI in which the uplink scheduling information is received to the TTI in which the uplink data corresponding to the uplink scheduling information is sent.
  • the length of the fourth response time is 4 times of the length of the first TTI; and the length of the fifth response time is 3 times or 2 times the length of the first TTI.
  • the length of the sixth response time is the length of time of the K third TTIs, and K is a positive integer greater than 1.
  • the receiving module is further configured to:
  • the monitoring module monitors the DCI in the UESS of the PDCCH, determining, according to the first indication information in the DCI, that the DCI is the fifth DCI, or the DCI is the sixth DCI;
  • the first indication information is used to indicate the length of time of the DCI format identifier or TTI.
  • the monitoring module is further configured to: monitor the downlink control information DCI in the dedicated search space UESS of the enhanced physical downlink control channel EPDCCH;
  • the processing module is further configured to determine scheduling information of the data transmission with the first TTI according to the fourth DCI being monitored by the UESS of the EPDCCH.
  • the processing module is further configured to:
  • the scheduling information of the data transmission having the third TTI is determined according to the sixth DCI being monitored in the search space other than the overlapping search space in the UESS of the PDCCH.
  • FIG. 13 is a schematic structural diagram of Embodiment 2 of a device for receiving downlink control information according to an embodiment of the present disclosure, as shown in FIG.
  • the receiving module 1301 is configured to receive the seventh downlink control information DCI, where the seventh DCI includes the first resource indication information, where the first resource indication information is used to indicate the available time-frequency domain resources on the at least one TTI;
  • the processing module 1302 is configured to determine, according to the available time-frequency domain resources, a time-frequency domain resource for performing data transmission on the at least one TTI by the receiving device of the downlink control information.
  • the available time-frequency domain resource includes N sub-time-frequency domain resources
  • the processing module is specifically configured to:
  • N is a positive integer greater than 1, and N is configured for pre-defined or higher layer signaling, and the length of the TTI is less than 1 millisecond.
  • processing module is further configured to:
  • the frequency domain resource quantity of the j-th time-frequency domain resource is the largest integer less than or equal to M/N, and the frequency domain resource quantity of the N-th child time-frequency domain resource The amount of the remaining frequency domain resources of the frequency domain resource of the first sub-time-frequency domain resource to the N-th sub-time-frequency domain resource is subtracted from the frequency domain resource quantity M of the available time-frequency domain resource;
  • j is a value from 1 to N-1, and M is a positive integer greater than N.
  • the seventh DCI further includes frequency domain indication information
  • the processing module is further configured to:
  • the seventh DCI further includes modulation and coding mode information
  • the processing module is further configured to:
  • the modulation and coding mode information it is determined that the modulation and coding modes for performing data transmission on at least one TTI are the same.
  • FIG. 14 is a schematic structural diagram of Embodiment 1 of a device for sending downlink control information according to an embodiment of the present invention. As shown in FIG.
  • the sending module 1401 is configured to send the first downlink control information DCI in the common search space CSS,
  • the first DCI includes scheduling information for data transmission having a first transmission time interval TTI;
  • the second DCI includes scheduling information of a data transmission having a second TTI
  • the third DCI includes data transmission having a third TTI Scheduling information
  • the length of the first TTI is greater than the length of the third TTI, and the length of the first TTI is equal to the length of the second TTI.
  • the first DCI is used to indicate that the response time of the data transmission is the first response time
  • the second DCI is used to indicate that the response time of the data transmission is the second response time
  • the third DCI is used to indicate that the response time of the data transmission is a third response time, the length of time of the first response time is greater than the length of time of the second response time;
  • the receiving time of the downlink control information is from the TTI where the downlink data is received, to the time interval of the TTI where the hybrid automatic repeat request HARQ information corresponding to the downlink data transmission is sent, or the receiving device of the downlink control information receives the uplink scheduling.
  • the length of the first response time is 4 times of the length of the first TTI; and the length of the second response time is 3 times or 2 times the length of the first TTI.
  • the length of the third response time is a length of time of the K third TTIs, and K is a positive integer greater than 1.
  • the first DCI does not include the first indication information
  • the second DCI and the third DCI both include first indication information, where the first indication information is used to indicate a length of time of the DCI format identifier or the TTI.
  • the sending module is further configured to:
  • the first DCI is sent in the UESS of the EPDCCH.
  • the sending module is specifically configured to:
  • the second DCI and/or the third DCI are transmitted in a search space other than the overlapping search space in the UESS of the PDCCH.
  • the embodiment of the invention further provides a device for transmitting downlink control information, as shown in FIG.
  • the sending module 1401 is configured to send the fifth downlink control information DCI and/or the sixth DCI in the dedicated search space UESS of the physical downlink control channel PDCCH;
  • the fifth DCI and the sixth DCI each include first indication information, where the first indication information is used to indicate a length of time of the DCI format identifier or the transmission time interval TTI.
  • the sending device is further configured to:
  • the fourth DCI does not include the first indication information.
  • the embodiment of the invention further provides a device for transmitting downlink control information, as shown in FIG.
  • the sending module 1401 is configured to send the seventh downlink control information DCI, where the seventh DCI includes first resource indication information, where the first resource indication information is used to indicate available time-frequency domain resources on the at least one TTI.
  • the available time-frequency domain resource includes N sub-time-frequency domain resources
  • the sending module is further configured to:
  • the eighth DCI includes occupation indication information
  • the occupation indication information is used to determine, in the N sub-time-frequency domain resources, a combination of one or more sub-time-frequency domain resources, as the receiving device of the downlink control information, in at least one TTI Time-frequency domain resources for data transmission;
  • N is a positive integer greater than 1, and N is configured for pre-defined or higher layer signaling, and the length of the TTI is less than 1 millisecond.
  • the frequency domain resource of the available time-frequency domain resource is M
  • the frequency domain resource of the j-th time-frequency domain resource in the N sub-time-frequency domain resources is a maximum integer equal to or smaller than M/N
  • the Nth sub-sub The frequency domain resource of the time-frequency domain resource is the residual frequency of the frequency domain resource of the first-time time-frequency domain resource to the N-th time-frequency domain resource in the frequency domain resource quantity M of the available time-frequency domain resource.
  • Domain resource amount
  • j is a value from 1 to N-1, and M is a positive integer greater than N.
  • the seventh DCI further includes frequency domain indication information, where the frequency domain indication information is used to determine that the frequency domain of the time-frequency domain resources for performing data transmission on the at least one TTI is the same.
  • the seventh DCI further includes modulation and coding mode information, where the modulation and coding mode information is used to determine that the modulation and coding modes for performing data transmission on the at least one TTI are the same.
  • a further embodiment of the present invention provides a terminal device and a network device, which are configured to perform the method for transmitting, monitoring, and receiving downlink control information in the foregoing embodiment, and have the same technical features and technical effects. Narration.
  • Figure 15 is a schematic structural diagram of Embodiment 1 of a terminal device according to an embodiment of the present invention. As shown in Figure 15, the method includes:
  • the transceiver 1501 is configured to listen to the first downlink control information DCI in the common search space CSS, where the first DCI includes scheduling information of the data transmission with the first transmission time interval TTI;
  • the transceiver is further configured to: monitor the second DCI and/or the third DCI in the dedicated search space UESS of the physical downlink control channel PDCCH; the second DCI includes scheduling information of the data transmission with the second TTI, where the third DCI includes the first Scheduling information for data transmission of three TTIs;
  • the length of the first TTI is greater than the length of the third TTI, and the length of the first TTI is equal to the length of the second TTI.
  • the first DCI is used to indicate that the response time of the data transmission is the first response time
  • the second DCI is used to indicate that the response time of the data transmission is the second response time
  • the third DCI is used to indicate that the response time of the data transmission is a third response time, the length of time of the first response time is greater than the length of time of the second response time;
  • the response time is the time interval from the TTI where the terminal device receives the downlink data to the TTI where the hybrid automatic repeat request HARQ information corresponding to the downlink data transmission is sent, or the terminal device sends the uplink from the TTI where the uplink scheduling information is received. Interval of the TTI where the uplink data corresponding to the scheduling information is located.
  • the length of the first response time is 4 times of the length of the first TTI; and the length of the second response time is 3 times or 2 times the length of the first TTI.
  • the length of the third response time is a length of time of the K third TTIs, and K is a positive integer greater than 1.
  • the first DCI does not include the first indication information
  • the second DCI and the third DCI both include first indication information, where the first indication information is used to indicate a length of time of the DCI format identifier or the TTI.
  • the transceiver is further configured to: monitor the first DCI in the UESS of the EPDCCH.
  • the transceiver is further configured to monitor the second DCI and/or the third DCI in a search space other than the overlapping search space in the UESS of the PDCCH.
  • Figure 16 is a schematic structural diagram of Embodiment 2 of a terminal device according to an embodiment of the present invention. As shown in Figure 16, the method includes:
  • the transceiver 1601 is configured to listen to the downlink control information DCI in the dedicated search space UESS of the common search space CSS and the physical downlink control channel PDCCH;
  • the processor 1602 is configured to determine scheduling information of a data transmission having a first transmission time interval TTI according to the fourth DCI being monitored by the CSS, and/or
  • the length of the first TTI is greater than the length of the third TTI, and the length of the first TTI is equal to the length of the second TTI.
  • the transceiver is also used to:
  • the CSS determines that the response time of the data transmission is the fourth response time, and/or
  • Determining that the response time of the data transmission is the fifth response time according to the fifth DCI monitored by the UESS of the PDCCH, and/or
  • the time length of the fourth response time is greater than the time length of the fifth response time, and the response time is the interval between the TTI of the hybrid automatic retransmission request HARQ information corresponding to the downlink data from the TTI where the terminal device receives the downlink data.
  • the length of the fourth response time is 4 times of the length of the first TTI; and the length of the fifth response time is 3 times or 2 times the length of the first TTI.
  • the length of the sixth response time is the length of time of the K third TTIs, and K is a positive integer greater than 1.
  • the processor is also used to:
  • the transceiver monitors the DCI in the UESS of the PDCCH, determining, according to the first indication information in the DCI, that the DCI is the fifth DCI, or the DCI is the sixth DCI;
  • the first indication information is used to indicate the length of time of the DCI format identifier or TTI.
  • the terminal device is configured to enhance physical downlink control channel EPDCCH monitoring, sending and receiving The device is further configured to: monitor downlink control information DCI in a dedicated search space UESS of the enhanced physical downlink control channel EPDCCH;
  • the processor is further configured to determine scheduling information of the data transmission with the first TTI according to the fourth DCI being monitored by the UESS of the EPDCCH.
  • the processor is further configured to:
  • the scheduling information of the data transmission having the third TTI is determined according to the sixth DCI being monitored in the search space other than the overlapping search space in the UESS of the PDCCH.
  • the embodiment of the invention further provides a terminal device.
  • the terminal device includes:
  • the receiver 1601 is configured to receive the seventh downlink control information DCI, where the seventh DCI includes first resource indication information, where the first resource indication information is used to indicate available time-frequency domain resources on the at least one TTI;
  • the processor 1602 is further configured to determine, according to the available time-frequency domain resources, a time-frequency domain resource that the terminal device performs data transmission on the at least one TTI.
  • the available time-frequency domain resource includes N sub-time-frequency domain resources, and the receiver is specifically configured to:
  • N is a positive integer greater than 1, and N is configured for pre-defined or higher layer signaling, and the length of the TTI is less than 1 millisecond.
  • the processor is also used to:
  • the frequency domain resource quantity of the j-th time-frequency domain resource is the largest integer less than or equal to M/N, and the frequency domain resource quantity of the N-th child time-frequency domain resource The amount of the remaining frequency domain resources of the frequency domain resource of the first sub-time-frequency domain resource to the N-th sub-time-frequency domain resource is subtracted from the frequency domain resource quantity M of the available time-frequency domain resource;
  • j is a value from 1 to N-1, and M is a positive integer greater than N.
  • the seventh DCI further includes frequency domain indication information
  • the processor is further configured to:
  • the seventh DCI further includes modulation and coding mode information
  • the processor is further configured to:
  • the modulation and coding mode information it is determined that the modulation and coding modes for performing data transmission on at least one TTI are the same.
  • FIG. 17 is a schematic structural diagram of Embodiment 1 of a network device according to an embodiment of the present invention. As shown in FIG. 17, the method includes:
  • the transceiver 1701 is configured to send, in a common search space CSS, first downlink control information DCI, where the first DCI includes scheduling information of a data transmission with a first transmission time interval TTI; and/or
  • the second DCI includes scheduling information of a data transmission having a second TTI
  • the third DCI includes data transmission having a third TTI Scheduling information
  • the length of the first TTI is greater than the length of the third TTI, and the length of the first TTI is equal to the length of the second TTI.
  • the first DCI is used to indicate that the response time of the data transmission is the first response time
  • the second DCI is used to indicate that the response time of the data transmission is the second response time
  • the third DCI is used to indicate that the response time of the data transmission is a third response time, the length of time of the first response time is greater than the length of time of the second response time;
  • the receiving time of the downlink control information is from the TTI where the downlink data is received, to the time interval of the TTI where the hybrid automatic repeat request HARQ information corresponding to the downlink data transmission is sent, or the receiving device of the downlink control information receives the uplink scheduling.
  • the length of the first response time is 4 times of the length of the first TTI; and the length of the second response time is 3 times or 2 times the length of the first TTI.
  • the length of the third response time is a length of time of the K third TTIs, and K is a positive integer greater than 1.
  • the first DCI does not include the first indication information
  • the second DCI and the third DCI both include first indication information, where the first indication information is used to indicate a length of time of the DCI format identifier or the TTI.
  • the transceiver is also used to:
  • the first DCI is sent in the UESS of the EPDCCH.
  • the transceiver is specifically configured to:
  • the second DCI and/or the third DCI are transmitted in a search space other than the overlapping search space in the UESS of the PDCCH.
  • the embodiment of the invention further provides a network device, as shown in FIG. 17, comprising:
  • the transceiver 1701 is configured to send, in a dedicated search space UESS of the physical downlink control channel PDCCH, fifth downlink control information DCI and/or sixth DCI;
  • the fifth DCI and the sixth DCI each include first indication information, where the first indication information is used to indicate a length of time of the DCI format identifier or the transmission time interval TTI.
  • the transceiver is also used to:
  • the fourth DCI does not include the first indication information.
  • the embodiment of the invention further provides a network device, as shown in FIG. 17, comprising:
  • the transceiver is configured to send the seventh downlink control information DCI, where the seventh DCI includes first resource indication information, where the first resource indication information is used to indicate available time-frequency domain resources on the at least one TTI.
  • the available time-frequency domain resources include N sub-time-frequency domain resources
  • the transceiver is further configured to:
  • the eighth DCI includes occupation indication information
  • the occupation indication information is used to determine, in the N sub-time-frequency domain resources, a combination of one or more sub-time-frequency domain resources, as the receiving device of the downlink control information, in at least one TTI Time-frequency domain resources for data transmission;
  • N is a positive integer greater than 1, and N is configured for pre-defined or higher layer signaling, and the length of the TTI is less than 1 millisecond.
  • the frequency domain resource of the available time-frequency domain resource is M
  • the frequency domain resource of the j-th time-frequency domain resource in the N sub-time-frequency domain resources is a maximum integer equal to or smaller than M/N
  • the Nth sub-sub The frequency domain resource of the time-frequency domain resource is the residual frequency of the frequency domain resource of the first-time time-frequency domain resource to the N-th time-frequency domain resource in the frequency domain resource quantity M of the available time-frequency domain resource.
  • Domain resource amount
  • j is a value from 1 to N-1, and M is a positive integer greater than N.
  • the seventh DCI further includes frequency domain indication information, where the frequency domain indication information is used to determine that the frequency domain of the time-frequency domain resources for performing data transmission on the at least one TTI is the same.
  • the seventh DCI further includes modulation and coding mode information, where the modulation and coding mode information is used to determine that the modulation and coding modes for performing data transmission on the at least one TTI are the same.
  • the disclosed systems, devices, and methods may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division.
  • there may be another division manner for example, multiple units or components may be combined or Can be integrated into another system, or some features can be ignored or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be in an electrical, mechanical or other form.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • each functional unit in each embodiment of the present invention may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the functions may be stored in a computer readable storage medium if implemented in the form of a software functional unit and sold or used as a standalone product.
  • the technical solution of the present invention which is essential or contributes to the prior art, or a part of the technical solution, may be embodied in the form of a software product, which is stored in a storage medium, including
  • the instructions are used to cause a computer device (which may be a personal computer, server, or network device, etc.) to perform all or part of the steps of the methods described in various embodiments of the present invention.
  • the foregoing storage medium includes: a U disk, a mobile hard disk, a read-only memory (ROM), a random access memory (RAM), a magnetic disk, or an optical disk, and the like, and the program code can be stored. Medium.

Abstract

本发明实施例提供一种下行控制信息监听、发送、接收方法及装置。该监听方法包括:终端设备在公共搜索空间CSS中监听第一下行控制信息DCI,第一DCI包含具有第一传输时间间隔TTI的数据传输的调度信息;终端设备在物理下行控制信道PDCCH的专用搜索空间UESS中监听第二DCI和/或第三DCI;第二DCI包含具有第二TTI的数据传输的调度信息,第三DCI包含具有第三TTI的数据传输的调度信息;其中,第一TTI的时间长度大于第三TTI的时间长度,第一TTI的时间长度等于第二TTI的时间长度。为由部分搜索空间发送的DCI指示特定的TTI,使得终端设备的盲检次数减少。

Description

下行控制信息监听、发送、接收方法及装置 技术领域
本发明涉及通信领域,尤其涉及一种下行控制信息监听、发送、接收方法及装置。
背景技术
在长期演进(Long Term Evolution,简称LTE)系统中,终端设备在接收下行数据或者发送上行数据前,需要知道网络设备配置给终端设备的调度信息,例如时频资源分配、调制编码方式等。
LTE系统中,网络设备主要通过物理下行控制信道(Physical downlink Control Channel,简称PDCCH)承载下行控制指示(Downlink Control Indicator,简称DCI)。目前定义的PDCCH,例如版本Rel-8定义的PDCCH和Rel-11定义的EPDCCH(enhanced PDCCH,增强PDCCH),都是用于调度传输时间间隔(Transmission Time Interval,简称TTI)长度为1毫秒(ms)的数据传输。而为了匹配不同的业务需求或场景需求,可能存在多种DCI。
现有技术中,终端设备通过在所有搜索空间中监听(增强)物理下行控制信道上是否存在属于自己的DCI,根据下行控制信道中承载的DCI获取调度信息。因此,随着业务和场景需求增多,现有终端设备的监听方式会增加终端设备计算量,从而使得终端设备耗电量增大,提高终端设备生产成本。
发明内容
本发明实施例提供一种下行控制信息的监听、发送和接收方法及装置,用于解决当前LTE系统为同时支持不同的业务需求或场景需求,需增加终端设备计算量,而导致终端设备耗电量增大,生产成本增加的问题。
第一方面,本发明实施例提供一种下行控制信息的监听方法,该方法的执行主体为终端设备,包括:
终端设备在公共搜索空间CSS中监听第一下行控制信息DCI,所述第一DCI包含具有第一传输时间间隔TTI的数据传输的调度信息;
所述终端设备在物理下行控制信道PDCCH的专用搜索空间UESS中监听第二DCI和/或第三DCI;所述第二DCI包含具有第二TTI的数据传输的调度信息,所述第三DCI包含具有第三TTI的数据传输的调度信息;
其中,所述第一TTI的时间长度大于所述第三TTI的时间长度,所述第一TTI的时间长度等于所述第二TTI的时间长度。
通过网络设备在CSS中发送第一DCI,在PDCCH的UESS中发送第二DCI或第三DCI。终端设备在CSS中监听第一DCI,在PDCCH的UESS中监听第二DCI和/或第三DCI,且第一TTI的时间长度大于第三TTI的时间长度。为由部分搜索空间发送的DCI指示特定的TTI,使得终端设备的盲检次数减少。
一种可能的设计中,所述第一DCI用于指示数据传输的响应时间为第一响应时间,所述第二DCI用于指示数据传输的响应时间为第二响应时间,所述第三DCI用于指示数据传输的响应时间为第三响应时间,所述第一响应时间的时间长度大于所述第二响应时间的时间长度;
所述响应时间为所述终端设备自接收到下行数据所在TTI起,至发送所述下行数据传输对应的混合自动重传请求HARQ信息所在TTI的间隔时间,或所述终端设备自接收到上行调度信息所在TTI起,至发送所述上行调度信息对应的上行数据所在TTI的间隔时间。
通过采用不同的DCI指示不同的响应时间,使得终端设备可根据业务或场景采用不同的响应时间,提高了数据传输的效率。
一种可能的设计中,所述第一响应时间的时间长度为所述第一TTI的时间长度的4倍;所述第二响应时间的时间长度为所述第一TTI的时间长度的3倍或2倍。
一种可能的设计中,所述第三响应时间的时间长度为K个所述第三TTI的时间长度,K为大于1的正整数。
可通过设置不同的K值,更灵活的设置数据传输的响应时间。
一种可能的设计中,所述第二DCI和所述第三DCI均包含K值指示信息。
一种可能的设计中,所述第一DCI不包含第一指示信息,所述第二DCI和所述第三DCI均包含所述第一指示信息,所述第一指示信息用于指示DCI格式标识或TTI的时间长度。
一种可能的设计中,所述方法还包括:
若所述终端设备被配置增强物理下行控制信道EPDCCH监听,所述终端设备在所述EPDCCH的UESS中监听所述第一DCI。
一种可能的设计中,若所述CSS和所述PDCCH的UESS存在重叠的搜索空间,所述终端设备在物理下行控制信道PDCCH的专用搜索空间UESS中监听第二DCI和/或第三DCI,包括:
所述终端设备在PDCCH的UESS中的除所述重叠的搜索空间外的搜索空间中,监听所述第二DCI和/或所述第三DCI。
第二方面,本发明实施例提供一种下行控制信息的接收方法,包括:
终端设备在公共搜索空间CSS和物理下行控制信道PDCCH的专用搜索空间UESS中监听下行控制信息DCI;
所述终端设备根据在所述CSS监听到第四DCI,确定具有第一传输时间间隔TTI的数据传输的调度信息,和/或
所述终端设备根据在所述PDCCH的UESS监听到第五DCI,确定具有第二TTI的数据传输的调度信息,和/或
所述终端设备根据在所述PDCCH的UESS监听到第六DCI,确定具有第三TTI的数据传输的调度信息;
其中,所述第一TTI的时间长度大于所述第三TTI的时间长度,所述第一TTI的时间长度等于所述第二TTI的时间长度。
通过采用在不同的部分搜索空间监听到DCI指示不同的TTI,实现了在不增加盲检次数的前提下,为数据传输提供了多种TTI,可满足终端设备的不同业务和应用场景的需求。
一种可能的设计中,所述方法还包括:
所述终端设备根据在所述CSS监听到第四DCI,确定数据传输的响应时间为第四响应时间,和/或
所述终端设备根据在所述PDCCH的UESS监听到第五DCI,确定数据传输的响应时间为第五响应时间,和/或
所述终端设备根据在所述PDCCH的UESS监听到第六DCI,确定数据传输的响应时间为第六响应时间;
其中,所述第四响应时间的时间长度大于所述第五响应时间的时间长度,所述响应时间为所述终端设备自接收到下行数据所在TTI起,至发送所述下行数据对应的混合自动重传请求HARQ信息所在TTI的间隔时间,或所述终端设备自接收到上行调度信息所在TTI起,至发送所述上行调度信息对应的上行数据所在TTI的间隔时间。
通过采用不同的DCI指示不同的响应时间,使得终端设备可根据业务或场景采用不同的响应时间,提高了数据传输的效率。
一种可能的设计中,所述第四响应时间的时间长度为所述第一TTI的时间长度的4倍;所述第五响应时间的时间长度为所述第一TTI的时间长度的3倍或2倍。
一种可能的设计中,所述第六响应时间的时间长度为K个所述第三TTI的时间长度,K为大于1的正整数。
可通过设置不同的K值,更灵活的设置数据传输的响应时间。
一种可能的设计中,所述第五DCI和所述第六DCI均包含K值指示信息。
一种可能的设计中,所述终端设备在公共搜索空间CSS和物理下行控制信道PDCCH的专用搜索空间UESS中监听下行控制信息DCI之后,还包括:
若所述终端设备在所述PDCCH的UESS监听到DCI,则根据所述DCI中的第一指示信息,确定所述DCI为第五DCI,或者所述DCI为第六DCI;
所述第一指示信息用于指示DCI格式标识或TTI的时间长度。
一种可能的设计中,若所述终端设备被配置增强物理下行控制信道EPDCCH监听,所述方法还包括:
所述终端设备在增强物理下行控制信道EPDCCH的专用搜索空间UESS中监听下行控制信息DCI;
所述终端设备根据在所述EPDCCH的UESS监听到第四DCI,确定具有第一TTI的数据传输的调度信息。
一种可能的设计中,若所述CSS和所述PDCCH的UESS存在重叠的搜索空间,所述终端设备根据在所述PDCCH的UESS监听到第五DCI确定具有第二TTI的数据传输的调度信息,和/或,所述终端设备根据在所述PDCCH的UESS监听到第六DCI确定具有第三TTI的的数据传输的调度信息,包括:
所述终端设备根据在所述PDCCH的UESS中的除所述重叠的搜索空间 外的搜索空间中监听到第五DCI,确定具有第二TTI的数据传输的调度信息;和/或,
所述终端设备根据在所述PDCCH的UESS中的除所述重叠的搜索空间外的搜索空间中监听到第六DCI,确定具有第三TTI的的数据传输的调度信息。
第三方面,本发明实施例提供一种下行控制信息的接收方法,所述方法包括:
终端设备接收第七下行控制信息DCI,所述第七DCI包括第一资源指示信息,所述第一资源指示信息用于指示至少一个TTI上的可用时频域资源;
所述终端设备根据所述可用时频域资源,确定所述终端设备在所述至少一个TTI上进行数据传输的时频域资源。
通过为终端设备指示可占用时频域资源,可方便终端设备确定占用的时频域资源,减少时频域资源的浪费。
一种可能的设计中,所述可用时频域资源包括N个子时频域资源,所述终端设备根据所述可用时频域资源,确定所述终端设备在所述至少一个TTI上进行数据传输的时频域资源,包括:
所述终端设备接收第八DCI,所述第八DCI包括占用指示信息;
所述终端设备根据所述占用指示信息,在所述N个子时频域资源中,确定一个或多个子时频域资源的组合,作为所述终端设备在所述至少一个TTI上进行数据传输的时频域资源;
其中,N为大于1的正整数,N为预定义或高层信令配置的,所述TTI的时间长度小于1毫秒。
一种可能的设计中,所述终端设备根据所述占用指示信息,在所述N个子时频域资源中,确定一个或多个子时频域资源的组合,作为所述终端设备在所述至少一个TTI上进行数据传输的时频域资源之前,还包括:
所述终端设备根据所述可用时频域资源的频域资源量M和所述N,确定第j子时频域资源的频域资源量为小于等于M/N的最大整数,第N子时频域资源的频域资源量为在所述可用时频域资源的频域资源量M中减去第1子时频域资源至第N-1子时频域资源的频域资源量的剩余频域资源量;
其中,j的取值为从1至N-1的所有整数,M为大于N的正整数。
一种可能的设计中,所述第七DCI还包括频域指示信息,所述方法还包括:
所述终端设备根据所述频域指示信息,确定在所述至少一个TTI上进行数据传输的时频域资源的频域均相同。
一种可能的设计中,所述第七DCI还包括调制编码方式信息,所述方法还包括:
所述终端设备根据所述调制编码方式信息,确定在所述至少一个TTI上进行数据传输的调制编码方式均相同。
当在多个TTI上的调制编码方式和频域均相同时,终端设备的对于sPUSCH信道的上行发送功率相同。这样会可以避免多个sPUSCH共享一个上行参考信号的时候,如果多个sPUSCH发送功率不同就可能导致网络设备接收失败的问题。
下面第四方面提供一种下行控制信息的发送方法,与上述第一方面提供的下行控制信息的检测方法相对应,为对称侧方法,具有相对应的技术特征和技术效果,本发明实施例对此不再赘述。
第四方面,本发明实施例提供一种下行控制信息的发送方法,包括:
网络设备在公共搜索空间CSS中发送第一下行控制信息DCI,所述第一DCI包含具有第一传输时间间隔TTI的数据传输的调度信息;和/或
所述网络设备在物理下行控制信道PDCCH的专用搜索空间UESS中发送第二DCI和/或第三DCI;所述第二DCI包含具有第二TTI的数据传输的调度信息,所述第三DCI包含具有第三TTI的数据传输的调度信息;
其中,所述第一TTI的时间长度大于所述第三TTI的时间长度,所述第一TTI的时间长度等于所述第二TTI的时间长度。
一种可能的设计中,所述第一DCI用于指示数据传输的响应时间为第一响应时间,所述第二DCI用于指示数据传输的响应时间为第二响应时间,所述第三DCI用于指示数据传输的响应时间为第三响应时间,所述第一响应时间的时间长度大于所述第二响应时间的时间长度;
所述响应时间为终端设备自接收到下行数据所在TTI起,至发送所述下行数据传输对应的混合自动重传请求HARQ信息所在TTI的间隔时间,或所 述终端设备自接收到上行调度信息所在TTI起,至发送所述上行调度信息对应的上行数据所在TTI的间隔时间。
一种可能的设计中,所述第一响应时间的时间长度为所述第一TTI的时间长度的4倍;所述第二响应时间的时间长度为所述第一TTI的时间长度的3倍或2倍。
一种可能的设计中,所述第三响应时间的时间长度为K个所述第三TTI的时间长度,K为大于1的正整数。
一种可能的设计中,所述第二DCI和所述第三DCI均包含K值指示信息。
一种可能的设计中,所述第一DCI不包含第一指示信息,所述第二DCI和所述第三DCI均包含所述第一指示信息,所述第一指示信息用于指示DCI格式标识或TTI的时间长度。
一种可能的设计中,所述方法还包括:
所述网络设备向所述终端设备发送用于配置增强物理下行控制信道EPDCCH监听的配置信息;
所述网络设备在所述EPDCCH的UESS中发送所述第一DCI。
一种可能的设计中,若所述CSS和所述PDCCH的UESS存在重叠的搜索空间,所述网络设备在物理下行控制信道PDCCH的专用搜索空间UESS中发送第二DCI和/或第三DCI,包括:
所述网络设备在PDCCH的UESS中的除所述重叠的搜索空间外的搜索空间中,发送所述第二DCI和/或所述第三DCI。
下面第五方面提供一种下行控制信息的发送方法,与上述第二方面提供的下行控制信息的接收方法相对应,为对称侧方法,具有相对应的技术特征和技术效果,本发明实施例对此不再赘述。
第五方面,本发明实施例提供一种下行控制信息的发送方法,包括:
网络设备在物理下行控制信道PDCCH的专用搜索空间UESS中发送第五下行控制信息DCI和/或第六DCI;
其中,所述第五DCI和第六DCI均包含第一指示信息,所述第一指示信息用于指示DCI格式标识或传输时间间隔TTI的时间长度。
一种可能的设计中,所述方法还包括:
所述网络设备在PDCCH的公共搜索空间CSS中发送第四DCI;
其中,所述第四DCI不包含所述第一指示信息。
下面第六方面提供一种下行控制信息的发送方法,与上述第三方面提供的下行控制信息的接收方法相对应,为对称侧方法,具有相对应的技术特征和技术效果,本发明实施例对此不再赘述。
第六方面,本发明实施提供一种下行控制信息的发送方法,所述方法包括:
网络设备发送第七下行控制信息DCI,所述第七DCI包括第一资源指示信息,所述第一资源指示信息用于指示至少一个TTI上的可用时频域资源。
一种可能的设计中,所述可用时频域资源包括N个子时频域资源,所述方法还包括:
所述网络设备发送第八DCI,所述第八DCI包括占用指示信息,所述占用指示信息用于在所述N个子时频域资源中,确定一个或多个子时频域资源的组合,作为终端设备在所述至少一个TTI上进行数据传输的时频域资源;
其中,N为大于1的正整数,N为预定义或高层信令配置的,所述TTI的时间长度小于1毫秒。
一种可能的设计中,所述可用时频域资源的频域资源量为M,所述N个子时频域资源中的第j子时频域资源的频域资源量为小于等于M/N的最大整数,第N子时频域资源的频域资源量为在所述可用时频域资源的频域资源量M中减去第1子时频域资源至第N-1子时频域资源的频域资源量的剩余频域资源量;
其中,j的取值为从1至N-1的所有整数,M为大于N的正整数。
一种可能的设计中,所述第七DCI还包括频域指示信息,所述频域指示信息用于确定在所述至少一个TTI上进行数据传输的时频域资源的频域均相同。
一种可能的设计中,所述第七DCI还包括调制编码方式信息,所述调制编码方式信息用于确定在所述至少一个TTI上进行数据传输的调制编码方式均相同。
下面介绍本发明实施例提供的一种下行控制信息的监听装置,该装置 与上述第一方面提供的下行控制信息的监听方法一一对应,用以实现上述实施例中的监听方法,具有相同的技术特征和技术效果,本发明实施例对此不再赘述。
第七方面,本发明实施例提供一种下行控制信息的监听装置,所述装置包括:
监听模块,用于在公共搜索空间CSS中监听第一下行控制信息DCI,所述第一DCI包含具有第一传输时间间隔TTI的数据传输的调度信息;
所述监听模块还用于,在物理下行控制信道PDCCH的专用搜索空间UESS中监听第二DCI和/或第三DCI;所述第二DCI包含具有第二TTI的数据传输的调度信息,所述第三DCI包含具有第三TTI的数据传输的调度信息;
其中,所述第一TTI的时间长度大于所述第三TTI的时间长度,所述第一TTI的时间长度等于所述第二TTI的时间长度。
一种可能的设计中,所述第一DCI用于指示数据传输的响应时间为第一响应时间,所述第二DCI用于指示数据传输的响应时间为第二响应时间,所述第三DCI用于指示数据传输的响应时间为第三响应时间,所述第一响应时间的时间长度大于所述第二响应时间的时间长度;
所述响应时间为所述装置自接收到下行数据所在TTI起,至发送所述下行数据传输对应的混合自动重传请求HARQ信息所在TTI的间隔时间,或所述装置自接收到上行调度信息所在TTI起,至发送所述上行调度信息对应的上行数据所在TTI的间隔时间。
一种可能的设计中,所述第一响应时间的时间长度为所述第一TTI的时间长度的4倍;所述第二响应时间的时间长度为所述第一TTI的时间长度的3倍或2倍。
一种可能的设计中,所述第三响应时间的时间长度为K个所述第三TTI的时间长度,K为大于1的正整数。
一种可能的设计中,所述第一DCI不包含第一指示信息,所述第二DCI和所述第三DCI均包含所述第一指示信息,所述第一指示信息用于指示DCI格式标识或TTI的时间长度。
一种可能的设计中,若所述装置被配置增强物理下行控制信道EPDCCH监听,所述监听模块还用于,在所述EPDCCH的UESS中监听所述第一DCI。
一种可能的设计中,若所述CSS和所述PDCCH的UESS存在重叠的搜索空间,所述监听模块还用于,在PDCCH的UESS中的除所述重叠的搜索空间外的搜索空间中,监听所述第二DCI和/或所述第三DCI。
下面介绍本发明实施例提供的一种下行控制信息的接收装置,该装置与上述第二方面提供的下行控制信息的接收方法一一对应,用以实现上述实施例中的接收方法,具有相同的技术特征和技术效果,本发明实施例对此不再赘述。
第八方面,本发明实施例提供一种下行控制信息的接收装置,包括:
监听模块,用于在公共搜索空间CSS和物理下行控制信道PDCCH的专用搜索空间UESS中监听下行控制信息DCI;
处理模块,用于根据在所述CSS监听到第四DCI,确定具有第一传输时间间隔TTI的数据传输的调度信息,和/或
根据在所述PDCCH的UESS监听到第五DCI,确定具有第二TTI的数据传输的调度信息,和/或
根据在所述PDCCH的UESS监听到第六DCI,确定具有第三TTI的数据传输的调度信息;
其中,所述第一TTI的时间长度大于所述第三TTI的时间长度,所述第一TTI的时间长度等于所述第二TTI的时间长度。
一种可能的设计中,所述处理模块还用于:
根据在所述CSS监听到第四DCI,确定数据传输的响应时间为第四响应时间,和/或
根据在所述PDCCH的UESS监听到第五DCI,确定数据传输的响应时间为第五响应时间,和/或
根据在所述PDCCH的UESS监听到第六DCI,确定数据传输的响应时间为第六响应时间;
其中,所述第四响应时间的时间长度大于所述第五响应时间的时间长度,所述响应时间为所述装置自接收到下行数据所在TTI起,至发送所述下行数据对应的混合自动重传请求HARQ信息所在TTI的间隔时间,或所述装置自接收到上行调度信息所在TTI起,至发送所述上行调度信息对应的上行数据所在TTI的间隔时间。
一种可能的设计中,所述第四响应时间的时间长度为所述第一TTI的时间长度的4倍;所述第五响应时间的时间长度为所述第一TTI的时间长度的3倍或2倍。
一种可能的设计中,所述第六响应时间的时间长度为K个所述第三TTI的时间长度,K为大于1的正整数。
一种可能的设计中,所述接收模块还用于:
若所述监听模块在所述PDCCH的UESS监听到DCI,则根据所述DCI中的第一指示信息,确定所述DCI为第五DCI,或者所述DCI为第六DCI;
所述第一指示信息用于指示DCI格式标识或TTI的时间长度。
一种可能的设计中,若所述装置被配置增强物理下行控制信道EPDCCH监听,所述监听模块还用于,在增强物理下行控制信道EPDCCH的专用搜索空间UESS中监听下行控制信息DCI;
所述处理模块还用于,根据在所述EPDCCH的UESS监听到第四DCI,确定具有第一TTI的数据传输的调度信息。
一种可能的设计中,若所述CSS和所述PDCCH的UESS存在重叠的搜索空间,所述处理模块还用于:
根据在所述PDCCH的UESS中的除所述重叠的搜索空间外的搜索空间中监听到第五DCI,确定具有第二TTI的数据传输的调度信息;和/或,
根据在所述PDCCH的UESS中的除所述重叠的搜索空间外的搜索空间中监听到第六DCI,确定具有第三TTI的的数据传输的调度信息。
下面介绍本发明实施例提供的一种下行控制信息的接收装置,该装置与上述第三方面提供的下行控制信息的接收方法一一对应,用以实现上述实施例中的接收方法,具有相同的技术特征和技术效果,本发明实施例对此不再赘述。
第九方面,本发明实施例提供一种下行控制信息的接收装置,所述装置包括:
接收模块,用于接收第七下行控制信息DCI,所述第七DCI包括第一资源指示信息,所述第一资源指示信息用于指示至少一个TTI上的可用时频域资源;
处理模块,用于根据所述可用时频域资源,确定所述下行控制信息的接 收装置在所述至少一个TTI上进行数据传输的时频域资源。
一种可能的设计中,所述可用时频域资源包括N个子时频域资源,所述处理模块具体用于:
接收第八DCI,所述第八DCI包括占用指示信息;
根据所述占用指示信息,在所述N个子时频域资源中,确定一个或多个子时频域资源的组合,作为所述装置在所述至少一个TTI上进行数据传输的时频域资源;
其中,N为大于1的正整数,N为预定义或高层信令配置的,所述TTI的时间长度小于1毫秒。
一种可能的设计中,所述处理模块还用于:
根据所述可用时频域资源的频域资源量M和所述N,确定第j子时频域资源的频域资源量为小于等于M/N的最大整数,第N子时频域资源的频域资源量为在所述可用时频域资源的频域资源量M中减去第1子时频域资源至第N-1子时频域资源的频域资源量的剩余频域资源量;
其中,j的取值为从1至N-1的所有整数,M为大于N的正整数。
一种可能的设计中,所述第七DCI还包括频域指示信息,所述处理模块还用于:
根据所述频域指示信息,确定在所述至少一个TTI上进行数据传输的时频域资源的频域均相同。
一种可能的设计中,所述第七DCI还包括调制编码方式信息,所述处理模块还用于:
根据所述调制编码方式信息,确定在所述至少一个TTI上进行数据传输的调制编码方式均相同。
下面介绍本发明实施例提供的一种下行控制信息的发送装置,该装置与上述第四方面提供的下行控制信息的发送方法一一对应,用以实现上述实施例中的发送方法,具有相同的技术特征和技术效果,本发明实施例对此不再赘述。
第十方面,本发明实施例提供一种下行控制信息的发送装置,包括:
发送模块,用于在公共搜索空间CSS中发送第一下行控制信息DCI,所述第一DCI包含具有第一传输时间间隔TTI的数据传输的调度信息;和/或
在物理下行控制信道PDCCH的专用搜索空间UESS中发送第二DCI和/或第三DCI;所述第二DCI包含具有第二TTI的数据传输的调度信息,所述第三DCI包含具有第三TTI的数据传输的调度信息;
其中,所述第一TTI的时间长度大于所述第三TTI的时间长度,所述第一TTI的时间长度等于所述第二TTI的时间长度。
一种可能的设计中,所述第一DCI用于指示数据传输的响应时间为第一响应时间,所述第二DCI用于指示数据传输的响应时间为第二响应时间,所述第三DCI用于指示数据传输的响应时间为第三响应时间,所述第一响应时间的时间长度大于所述第二响应时间的时间长度;
所述响应时间为下行控制信息的接收装置自接收到下行数据所在TTI起,至发送所述下行数据传输对应的混合自动重传请求HARQ信息所在TTI的间隔时间,或所述下行控制信息的接收装置自接收到上行调度信息所在TTI起,至发送所述上行调度信息对应的上行数据所在TTI的间隔时间。
一种可能的设计中,所述第一响应时间的时间长度为所述第一TTI的时间长度的4倍;所述第二响应时间的时间长度为所述第一TTI的时间长度的3倍或2倍。
一种可能的设计中,所述第三响应时间的时间长度为K个所述第三TTI的时间长度,K为大于1的正整数。
一种可能的设计中,所述第一DCI不包含第一指示信息,所述第二DCI和所述第三DCI均包含所述第一指示信息,所述第一指示信息用于指示DCI格式标识或TTI的时间长度。
一种可能的设计中,所述发送模块还用于:
向下行控制信息的接收装置发送用于配置增强物理下行控制信道EPDCCH监听的配置信息;
在所述EPDCCH的UESS中发送所述第一DCI。
一种可能的设计中,若所述CSS和所述PDCCH的UESS存在重叠的搜索空间,所述发送模块具体用于:
在PDCCH的UESS中的除所述重叠的搜索空间外的搜索空间中,发送所述第二DCI和/或所述第三DCI。
下面介绍本发明实施例提供的一种下行控制信息的发送装置,该装置 与上述第五方面提供的下行控制信息的发送方法一一对应,用以实现上述实施例中的发送方法,具有相同的技术特征和技术效果,本发明实施例对此不再赘述。
第十一方面,本发明实施例提供一种下行控制信息的发送装置,包括:
发送模块,用于在物理下行控制信道PDCCH的专用搜索空间UESS中发送第五下行控制信息DCI和/或第六DCI;
其中,所述第五DCI和第六DCI均包含第一指示信息,所述第一指示信息用于指示DCI格式标识或传输时间间隔TTI的时间长度。
一种可能的设计中,所述发送装置还用于:
在PDCCH的公共搜索空间CSS中发送第四DCI;
其中,所述第四DCI不包含所述第一指示信息。
下面介绍本发明实施例提供的一种下行控制信息的发送装置,该装置与上述第六方面提供的下行控制信息的发送方法一一对应,用以实现上述实施例中的发送方法,具有相同的技术特征和技术效果,本发明实施例对此不再赘述。
第十二方面,本发明实施例提供一种下行控制信息的发送装置,包括:
发送模块,用于发送第七下行控制信息DCI,所述第七DCI包括第一资源指示信息,所述第一资源指示信息用于指示至少一个TTI上的可用时频域资源。
一种可能的设计中,所述可用时频域资源包括N个子时频域资源,所述发送模块还用于:
发送第八DCI,所述第八DCI包括占用指示信息,所述占用指示信息用于在所述N个子时频域资源中,确定一个或多个子时频域资源的组合,作为下行控制信息的接收装置在所述至少一个TTI上进行数据传输的时频域资源;
其中,N为大于1的正整数,N为预定义或高层信令配置的,所述TTI的时间长度小于1毫秒。
一种可能的设计中,所述可用时频域资源的频域资源量为M,所述N个子时频域资源中的第j子时频域资源的频域资源量为小于等于M/N的最大整数,第N子时频域资源的频域资源量为在所述可用时频域资源的频域资源量 M中减去第1子时频域资源至第N-1子时频域资源的频域资源量的剩余频域资源量;
其中,j的取值为从1至N-1的所有整数,M为大于N的正整数。
一种可能的设计中,所述第七DCI还包括频域指示信息,所述频域指示信息用于确定在所述至少一个TTI上进行数据传输的时频域资源的频域均相同。
一种可能的设计中,所述第七DCI还包括调制编码方式信息,所述调制编码方式信息用于确定在所述至少一个TTI上进行数据传输的调制编码方式均相同。
下面介绍本发明实施例提供的一种终端设备,该终端设备与上述第一方面提供的下行控制信息的监听方法一一对应,用以实现上述实施例中的监听方法,具有相同的技术特征和技术效果,本发明实施例对此不再赘述。
第十三方面,本发明实施例提供一种终端设备,所述设备包括:
收发器,用于在公共搜索空间CSS中监听第一下行控制信息DCI,所述第一DCI包含具有第一传输时间间隔TTI的数据传输的调度信息;
所述收发器还用于,在物理下行控制信道PDCCH的专用搜索空间UESS中监听第二DCI和/或第三DCI;所述第二DCI包含具有第二TTI的数据传输的调度信息,所述第三DCI包含具有第三TTI的数据传输的调度信息;
其中,所述第一TTI的时间长度大于所述第三TTI的时间长度,所述第一TTI的时间长度等于所述第二TTI的时间长度。
一种可能的设计中,所述第一DCI用于指示数据传输的响应时间为第一响应时间,所述第二DCI用于指示数据传输的响应时间为第二响应时间,所述第三DCI用于指示数据传输的响应时间为第三响应时间,所述第一响应时间的时间长度大于所述第二响应时间的时间长度;
所述响应时间为所述终端设备自接收到下行数据所在TTI起,至发送所述下行数据传输对应的混合自动重传请求HARQ信息所在TTI的间隔时间,或所述终端设备自接收到上行调度信息所在TTI起,至发送所述上行调度信息对应的上行数据所在TTI的间隔时间。
一种可能的设计中,所述第一响应时间的时间长度为所述第一TTI的时 间长度的4倍;所述第二响应时间的时间长度为所述第一TTI的时间长度的3倍或2倍。
一种可能的设计中,所述第三响应时间的时间长度为K个所述第三TTI的时间长度,K为大于1的正整数。
一种可能的设计中,所述第一DCI不包含第一指示信息,所述第二DCI和所述第三DCI均包含所述第一指示信息,所述第一指示信息用于指示DCI格式标识或TTI的时间长度。
一种可能的设计中,若所述终端设备被配置增强物理下行控制信道EPDCCH监听,所述收发器还用于,在所述EPDCCH的UESS中监听所述第一DCI。
一种可能的设计中,若所述CSS和所述PDCCH的UESS存在重叠的搜索空间,所述收发器还用于,在PDCCH的UESS中的除所述重叠的搜索空间外的搜索空间中,监听所述第二DCI和/或所述第三DCI。
下面介绍本发明实施例提供的一种终端设备,该终端设备与上述第二方面提供的下行控制信息的接收方法一一对应,用以实现上述实施例中的接收方法,具有相同的技术特征和技术效果,本发明实施例对此不再赘述。
第十四方面,本发明实施例提供一种终端设备,包括:
收发器,用于在公共搜索空间CSS和物理下行控制信道PDCCH的专用搜索空间UESS中监听下行控制信息DCI;
处理器,用于根据在所述CSS监听到第四DCI,确定具有第一传输时间间隔TTI的数据传输的调度信息,和/或
根据在所述PDCCH的UESS监听到第五DCI,确定具有第二TTI的数据传输的调度信息,和/或
根据在所述PDCCH的UESS监听到第六DCI,确定具有第三TTI的数据传输的调度信息;
其中,所述第一TTI的时间长度大于所述第三TTI的时间长度,所述第一TTI的时间长度等于所述第二TTI的时间长度。
一种可能的设计中,所述收发器还用于:
根据在所述CSS监听到第四DCI,确定数据传输的响应时间为第四响应 时间,和/或
根据在所述PDCCH的UESS监听到第五DCI,确定数据传输的响应时间为第五响应时间,和/或
根据在所述PDCCH的UESS监听到第六DCI,确定数据传输的响应时间为第六响应时间;
其中,所述第四响应时间的时间长度大于所述第五响应时间的时间长度,所述响应时间为所述终端设备自接收到下行数据所在TTI起,至发送所述下行数据对应的混合自动重传请求HARQ信息所在TTI的间隔时间,或所述终端设备自接收到上行调度信息所在TTI起,至发送所述上行调度信息对应的上行数据所在TTI的间隔时间。
一种可能的设计中,所述第四响应时间的时间长度为所述第一TTI的时间长度的4倍;所述第五响应时间的时间长度为所述第一TTI的时间长度的3倍或2倍。
一种可能的设计中,所述第六响应时间的时间长度为K个所述第三TTI的时间长度,K为大于1的正整数。
一种可能的设计中,所述处理器还用于:
若所述收发器在所述PDCCH的UESS监听到DCI,则根据所述DCI中的第一指示信息,确定所述DCI为第五DCI,或者所述DCI为第六DCI;
所述第一指示信息用于指示DCI格式标识或TTI的时间长度。
一种可能的设计中,若所述终端设备被配置增强物理下行控制信道EPDCCH监听,所述收发器还用于,在增强物理下行控制信道EPDCCH的专用搜索空间UESS中监听下行控制信息DCI;
所述处理器还用于,根据在所述EPDCCH的UESS监听到第四DCI,确定具有第一TTI的数据传输的调度信息。
一种可能的设计中,若所述CSS和所述PDCCH的UESS存在重叠的搜索空间,所述处理器还用于:
根据在所述PDCCH的UESS中的除所述重叠的搜索空间外的搜索空间中监听到第五DCI,确定具有第二TTI的数据传输的调度信息;和/或,
根据在所述PDCCH的UESS中的除所述重叠的搜索空间外的搜索空间中监听到第六DCI,确定具有第三TTI的的数据传输的调度信息。
下面介绍本发明实施例提供的一种终端设备,该终端设备与上述第三方面提供的下行控制信息的接收方法一一对应,用以实现上述实施例中的接收方法,具有相同的技术特征和技术效果,本发明实施例对此不再赘述。
第十五方面,本发明实施例提供一种终端设备,所述终端设备包括:
接收器,用于接收第七下行控制信息DCI,所述第七DCI包括第一资源指示信息,所述第一资源指示信息用于指示至少一个TTI上的可用时频域资源;
处理器,还用于根据所述可用时频域资源,确定所述终端设备在所述至少一个TTI上进行数据传输的时频域资源。
一种可能的设计中,所述可用时频域资源包括N个子时频域资源,所述接收器具体用于:
接收第八DCI,所述第八DCI包括占用指示信息;
根据所述占用指示信息,在所述N个子时频域资源中,确定一个或多个子时频域资源的组合,作为所述装置在所述至少一个TTI上进行数据传输的时频域资源;
其中,N为大于1的正整数,N为预定义或高层信令配置的,所述TTI的时间长度小于1毫秒。
一种可能的设计中,所述处理器还用于:
根据所述可用时频域资源的频域资源量M和所述N,确定第j子时频域资源的频域资源量为小于等于M/N的最大整数,第N子时频域资源的频域资源量为在所述可用时频域资源的频域资源量M中减去第1子时频域资源至第N-1子时频域资源的频域资源量的剩余频域资源量;
其中,j的取值为从1至N-1的所有整数,M为大于N的正整数。
一种可能的设计中,所述第七DCI还包括频域指示信息,所述处理器还用于:
根据所述频域指示信息,确定在所述至少一个TTI上进行数据传输的时频域资源的频域均相同。
一种可能的设计中,所述第七DCI还包括调制编码方式信息,所述处理器还用于:
根据所述调制编码方式信息,确定在所述至少一个TTI上进行数据传输的调制编码方式均相同。
下面介绍本发明实施例提供的一种网络设备,该网络设备与上述第四方面提供的下行控制信息的发送方法一一对应,用以实现上述实施例中的发送方法,具有相同的技术特征和技术效果,本发明实施例对此不再赘述。
第十六方面,本发明实施例提供一种网络设备,包括:
收发器,用于在公共搜索空间CSS中发送第一下行控制信息DCI,所述第一DCI包含具有第一传输时间间隔TTI的数据传输的调度信息;和/或
在物理下行控制信道PDCCH的专用搜索空间UESS中发送第二DCI和/或第三DCI;所述第二DCI包含具有第二TTI的数据传输的调度信息,所述第三DCI包含具有第三TTI的数据传输的调度信息;
其中,所述第一TTI的时间长度大于所述第三TTI的时间长度,所述第一TTI的时间长度等于所述第二TTI的时间长度。
一种可能的设计中,所述第一DCI用于指示数据传输的响应时间为第一响应时间,所述第二DCI用于指示数据传输的响应时间为第二响应时间,所述第三DCI用于指示数据传输的响应时间为第三响应时间,所述第一响应时间的时间长度大于所述第二响应时间的时间长度;
所述响应时间为下行控制信息的接收装置自接收到下行数据所在TTI起,至发送所述下行数据传输对应的混合自动重传请求HARQ信息所在TTI的间隔时间,或所述下行控制信息的接收装置自接收到上行调度信息所在TTI起,至发送所述上行调度信息对应的上行数据所在TTI的间隔时间。
一种可能的设计中,所述第一响应时间的时间长度为所述第一TTI的时间长度的4倍;所述第二响应时间的时间长度为所述第一TTI的时间长度的3倍或2倍。
一种可能的设计中,所述第三响应时间的时间长度为K个所述第三TTI的时间长度,K为大于1的正整数。
一种可能的设计中,所述第一DCI不包含第一指示信息,所述第二DCI和所述第三DCI均包含所述第一指示信息,所述第一指示信息用于指示DCI格式标识或TTI的时间长度。
一种可能的设计中,所述收发器还用于:
向下行控制信息的接收装置发送用于配置增强物理下行控制信道EPDCCH监听的配置信息;
在所述EPDCCH的UESS中发送所述第一DCI。
一种可能的设计中,若所述CSS和所述PDCCH的UESS存在重叠的搜索空间,所述收发器具体用于:
在PDCCH的UESS中的除所述重叠的搜索空间外的搜索空间中,发送所述第二DCI和/或所述第三DCI。
下面介绍本发明实施例提供的一种网络设备,该网络设备与上述第五方面提供的下行控制信息的发送方法一一对应,用以实现上述实施例中的发送方法,具有相同的技术特征和技术效果,本发明实施例对此不再赘述。
第十七方面,本发明实施例提供一种网络设备,包括:
收发器,用于在物理下行控制信道PDCCH的专用搜索空间UESS中发送第五下行控制信息DCI和/或第六DCI;
其中,所述第五DCI和第六DCI均包含第一指示信息,所述第一指示信息用于指示DCI格式标识或传输时间间隔TTI的时间长度。
一种可能的设计中,所述收发器还用于:
在PDCCH的公共搜索空间CSS中发送第四DCI;
其中,所述第四DCI不包含所述第一指示信息。
下面介绍本发明实施例提供的一种网络设备,该网络设备与上述第六方面提供的下行控制信息的发送方法一一对应,用以实现上述实施例中的发送方法,具有相同的技术特征和技术效果,本发明实施例对此不再赘述。
第十八方面,本发明实施例提供一种网络设备,包括:
收发器,用于发送第七下行控制信息DCI,所述第七DCI包括第一资源指示信息,所述第一资源指示信息用于指示至少一个TTI上的可用时频域资源。
一种可能的设计中,所述可用时频域资源包括N个子时频域资源,所述收发器还用于:
发送第八DCI,所述第八DCI包括占用指示信息,所述占用指示信息用于在所述N个子时频域资源中,确定一个或多个子时频域资源的组合,作为下行控制信息的接收装置在所述至少一个TTI上进行数据传输的时频域资源;
其中,N为大于1的正整数,N为预定义或高层信令配置的,所述TTI的时间长度小于1毫秒。
一种可能的设计中,所述可用时频域资源的频域资源量为M,所述N个子时频域资源中的第j子时频域资源的频域资源量为小于等于M/N的最大整数,第N子时频域资源的频域资源量为在所述可用时频域资源的频域资源量M中减去第1子时频域资源至第N-1子时频域资源的频域资源量的剩余频域资源量;
其中,j的取值为从1至N-1的所有整数,M为大于N的正整数。
一种可能的设计中,所述第七DCI还包括频域指示信息,所述频域指示信息用于确定在所述至少一个TTI上进行数据传输的时频域资源的频域均相同。
一种可能的设计中,所述第七DCI还包括调制编码方式信息,所述调制编码方式信息用于确定在所述至少一个TTI上进行数据传输的调制编码方式均相同。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作一简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为现有LTE系统中数据传输的响应时间示意图;
图2为现有搜索空间的结构示意图;
图3为本发明实施例提供的下行控制信息的发送方法实施例一的信令流程图;
图4为本发明实施例提供的下行控制信息的监听方法实施例一的信令流程图;
图5为本发明实施例提供的下行控制信息的发送、监听方法实施例二的搜索空间示意图;
图6为本发明实施例提供的LTE系统中数据传输的响应时间实施例一的示意图;
图7为本发明实施例提供的LTE系统中数据传输的响应时间实施例二的示意图;
图8为本发明实施例提供的下行控制信息的发送、监听方法实施例三的场景示意图;
图9为本发明实施例提供的下行控制信息的发送、监听方法实施例四的流程示意图;
图10为本发明实施例提供的下行控制信息的接收方法实施例五的流程示意图;
图11为本发明实施例提供的下行控制信息的监听装置实施例一的结构示意图;
图12为本发明实施例提供的下行控制信息的接收装置实施例一的结构示意图;
图13为本发明实施例提供的下行控制信息的接收装置实施例二的结构示意图;
图14为本发明实施例提供的下行控制信息的发送装置实施例一的结构示意图;
图15为本发明实施例提供的终端设备实施例一的结构示意图;
图16为本发明实施例提供的终端设备实施例二的结构示意图;
图17为本发明实施例提供的网络设备实施例一的结构示意图。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
本发明实施例提供一种下行控制信息的监听、发送和接收方法及装置,用于解决当前LTE系统中,同时支持不同的业务需求或场景需求,现有终端设备的监听方式会增加终端设备计算量,从而使得终端设备耗电量增大,提高终端设备生产成本的问题。
本发明各实施例的方案可适用于LTE通信系统或LTE的演进行通信系统,如高级长期演进(Long Term Evolution-Advanced,简称LTE-A)通信系统中。下面以LTE系统为例进行详细说明。LTE系统中包括网络设备和终端设备。网络设备主要通过下行控制信道承载DCI,向终端设备发送调度信息。终端设备在由候选下行控制信道构成的搜索空间中监听(即检测)是否存在属于自己的DCI,当检测到属于自己的DCI时,则可根据DCI中的数据传输的调度信息进行数据传输。终端设备在搜索空间的候选下行控制信道中检测DCI的过程称为盲检测,当搜索空间越大,或固定搜索空间内需检测的候选下行控制信道越多,盲检次数越多。其中,网络设备和终端设备示例性的可以为服务器、基站、工作站、计算机、网关、手机、笔记本电脑等设备。
具体实现时,终端设备监听DCI的搜索空间由一个或多个候选下行控制信道组合而成,每个候选下行控制信道均能够用于承载DCI。简言之,搜索空间为候选下行控制信道的集合。终端设备需要监听候选下行控制信道,所以搜素空间也就是终端设备监听的候选下行控制信道集合。示例性的,搜索空间由一个或多个PDCCH组成,该搜索空间可以称为PDCCH搜索空间。示例性的,搜索空间由一个或多个EPDCCH组成,该搜索空间可以称为EPDCCH搜索空间。
搜索空间包括公共搜索空间(Common Search Space,简称CSS)和用户设备特定搜索空间(UE Specific Search Space,简称UESS)两种类型。图2为现有搜索空间的结构示意图。如图2所示,其中,CSS是小区内多个终端设备都要监听的搜索空间,是所有用户都是共享的控制信道单元(Control Channel Element,简称CCE)的空间或共享的候选下行控制信道的集合,UESS是小区内特定终端设备需要监听的搜索空间,是终端设备拥有的CCE的空间或候选下行控制信道的集合。不同终端设备的UESS可以一样也可以不一样,对于同一个终端设备的CSS和UESS可以一样也可以不一样。相应地,PDCCH UESS是由Rel-8定义的PDCCH组成的UESS,PDCCH CSS是由Rel-8 定义的PDCCH组成的CSS,EPDCCH UESS是由Rel-11定义的EPDCCH组成的UESS。现有技术中,CSS只由PDCCH组成,所以本发明实施例中CSS即指PDCCH的CSS。
进一步的,下行控制信道可以是PDCCH,或者是EPDCCH,以及未来版本定义的用于承载DCI的信道。例如,若承载DCI的信道位于物理下行共享信道(Physical downlink Shared Channel,简称PDSCH)区域时,该信道也看作是下行控制信道。
现有LTE系统中的各种物理信道都是按照1ms的传输时间间隔(Transmission Time Interval,简称TTI)长度设计的,即TTI为最小时间单位,也称为子帧subframe。LTE系统中的一个无线帧(radio frame)包括10个子帧,每一个子帧的长度为1ms,每个子帧均包括两个时隙(slot),每个slot为0.5ms。每个子帧由14或12个符号组成。虽然TTI长度为1ms,但是数据传输占用的时域资源可以小于1ms。例如,一个下行子帧中的前1、2、3或4个符号可以用于传输PDCCH,但是不用于传输PDSCH。因此,TTI长度为1ms的下行数据传输占用的时域资源可以小于1ms。又例如,一个上行子帧中的最后1个符号可以用于传输信道探测参考信号(Sounding Reference Signal,简称SRS),因此,TTI长度为1ms的上行数据传输占用的时域资源也可以小于1ms。将TTI长度小于1个子帧或1ms的TTI记为短TTI,短TTI数据传输即为数据传输的TTI长度小于1个子帧或1ms。例如,短TTI长度为0.5ms,4个符号长度,3个符号长度,2个符号长度或1个符号长度。同理,短TTI数据传输占用的时域资源也可以小于短TTI长度。
在目前LTE系统中,终端设备监听下行控制信道获取自己的DCI,当终端设备监听到自己的DCI后,可以根据DCI中的指示信息进行下行数据的接收,并根据接收到的下行数据的接收结果发送混合自动重传请求(Hybrid Automatic Repeat reQuest,简称HARQ)信息,也可以根据DCI中的指示信息进行上行数据的发送。从终端设备接收到DCI,到终端设备发送HARQ信息或发送上行数据,终端设备需要一定的处理时间进行数据处理,这段时间认为是数据传输的响应时间。响应时间使得终端设备的发送和网络设备的接收具有一致性。现有技术根据上述最小时间单位子帧,预 设响应时间为1ms TTI的固定倍数,通常为4ms,即4个subframe(4个1ms TTI)。图1为现有LTE系统中数据传输的响应时间示意图。如图1所示,该4个1ms TTI对应的时间间隔为终端设备自接收到下行数据所在的下行子帧,与终端设备发送该下行数据对应的HARQ信息所在上行子帧的间隔时间,或终端设备接收到上行调度信息所在下行子帧与终端设备发送该上行调度信息对应的上行数据所在上行子帧的间隔时间。示例性的,如图1所示,终端设备接收到网络设备发送的下行数据所在的下行子帧为子帧i-4,终端设备发送该下行数据对应的HARQ信息所在上行子帧为子帧i,子帧i-4与子帧i之间的间隔即为时间间隔。其中,i为大于4的正整数。
根据上述分析可知,当系统中存在匹配不同的业务需求或场景需求,终端设备需要在全部搜索空间中监听多种业务需求对应的DCI,从而造成盲检测次数过大,导致增加终端设备计算量,从而使得终端设备耗电量增大,提高终端设备生产成本的问题。
下面采用具体实施例,对本发明提供的下行控制信息的发送、监听、接收方法进行详细说明。
本发明实施例一方面提供一种下行控制信息的发送、监听、接收方法,其中发送方法的执行主体为网络设备,监听、接收方法的执行主体为终端设备。
图3为本发明实施例提供的下行控制信息的发送方法实施例一的信令流程图。图4为本发明实施例提供的下行控制信息的监听方法实施例一的信令流程图。如图3和图4所示,该方法包括:
S301、网络设备在公共搜索空间CSS中发送第一下行控制信息DCI,第一DCI包含具有第一传输时间间隔TTI的数据传输的调度信息。
S302、网络设备在物理下行控制信道PDCCH的专用搜索空间UESS中发送第二DCI或第三DCI;第二DCI包含具有第二TTI的数据传输的调度信息,第三DCI包含具有第三TTI的数据传输的调度信息。
S401、终端设备在公共搜索空间CSS中监听第一下行控制信息DCI,第一DCI包含具有第一传输时间间隔TTI的数据传输的调度信息。
S402、终端设备在物理下行控制信道PDCCH的专用搜索空间UESS中监听第二DCI和/或第三DCI;第二DCI包含具有第二TTI的数据传输的调 度信息,第三DCI包含具有第三TTI的数据传输的调度信息。
其中,第一TTI的时间长度大于第三TTI的时间长度,第一TTI的时间长度等于第二TTI的时间长度。
具体的,S301与S302没有严格的时序关系,可在同一时刻执行,也可以分别执行;S401与S402没有严格的时序关系,可在同一时刻执行,也可以分别执行;S301和S302可以均执行,也可只执行其中的一步,S401和S402均执行。需要说明的是,S301、S302的发送步骤与S401、S402的监听步骤没有制约关系,可各自分开执行,即S401和S402可以在不存在S301和/或S302步骤时仍执行。
示例性的,在S301和S302中,网络设备通过指示承载在部分搜索区域的候选下行控制信道上的DCI指示特定的TTI,使得终端设备可根据监听到的不同DCI,确定不同的TTI,提高了数据传输的效率;同时,由于全部搜索区域用于指示不同的DCI,因此,终端设备的盲检次数的增加量较小。
DCI用于指示数据传输,或者说,DCI用于调度数据包,例如,DCI调度物理上行共享信道(Physical uplink Shared Channel,简称PUSCH)或PDSCH。可选的,虽然DCI用于调度数据传输,但是DCI可以只用于指示数据传输的调度信息,而不用于触发数据传输。因此,终端设备在进行数据传输之前,需要监听网络设备向终端设备发送的DCI。而承载DCI的下行控制信道为搜索空间中的一个候选下行控制信道,所以终端设备需要确定搜索空间。
可选的,在步骤S401之前,终端设备确定CSS。在步骤S401之前,终端设备确定PDCCH的UESS。进一步的,终端设备可以根据网络设备发送的高层信令,确定CSS和/或PDCCH的UESS。高层信令可以是无线资源控制(Radio Resource Control,简称RRC)信令。需要说明的是,终端设备确定CSS和PDCCH的UESS没有严格的时序关系,例如,终端设备可以先确定CSS,再确定PDCCH的UESS,或者,先确定PDCCH的UESS,再确定CSS,或者,同时确定CSS和PDCCH的UESS。
第一DCI位于CSS,第二DCI和第三DCI位于UESS。第一DCI用于调度具有第一TTI的数据传输,第二DCI用于调度具有第二TTI的数据传输,第三DCI用于调度具有第三TTI的数据传输。其中,具有第一TTI的数据传 输、具有第二TTI的数据传输和具有第三TTI的数据传输均为下行数据传输或上行数据传输,或者,其中两个数据传输为下行数据传输且一个数据传输为上行数据传输,或者,其中两个数据传输为上行数据传输且一个数据传输为下行数据传输。
可选的,上述提到的下行数据传输可以是PDSCH传输或者短PDSCH传输,上行数据传输可以是PUSCH传输或者短PUSCH传输。其中,短PDSCH可以是传输时间段上用于传输数据的时频域资源,该传输时间段可以是小于等于1ms的传输时间段。短PUSCH可以是传输时间段上用于传输数据的时频域资源,该传输时间段可以是小于等于1ms的传输时间段。
可选的,第一TTI的时间长度和第三TTI的时间长度为1ms,0.5ms,4个符号长度,3个符号长度,2个符号长度和1个符号长度中的两种。其中,第一TTI的时间长度大于第三TTI的时间长度。例如,第一TTI的时间长度为1个子帧或1ms,第三TTI的长度为小于1ms的时间长度。第三TTI为短TTI。
可选的,终端设备监听DCI,终端设备如果监听到循环冗余校验(cyclic redundancy check,CRC)正确的候选控制信道,则该候选控制信道承载的DCI为网络设备发送给终端设备的用于调度数据传输的DCI。如果终端设备没有监听到CRC正确的候选控制信道,则说明网络设备没有向终端设备发送DCI。需要说明的是,本发明对终端设备如何监听DCI不作限制。例如,终端设备在CSS中监听第一DCI,可以是终端设备根据第一DCI的信息比特数对CSS中所有或部分候选下行控制信道译码。
其中,可选的,如果终端设备监听到用于调度数据传输的DCI,则可以根据该DCI与网络设备进行数据传输。对于下行数据传输,终端设备可以在DCI指示的数据传输资源上接收网络设备发送的下行数据包,对于上行数据传输,终端设备可以在DCI指示的数据传输资源上向网络设备发送上行数据包。可选的,DCI指示的数据传输资源为数据传输的时域资源。
示例性的,终端设备的业务或场景不同,网络设备向其发送的DCI不同,因此,可由不同的DCI指示终端设备的数据传输的调度信息。若终端设备数据传输的响应时间不同,那么也可以由不同的DCI指示终端设备的数据传输的响应时间。
在具体实现时,在S401中,终端设备在公共搜索空间CSS中监听第一下行控制信息DCI,第一DCI包含具有第一TTI的数据传输的调度信息。可选的,终端设备在CSS中监听到的DCI,终端设备将此DCI认为是第一DCI。,可选的,终端设备在CSS中监听第一DCI之后,还包括:终端设备根据监听到的第一DCI与网络设备进行具有第一TTI的数据传输,具有第一TTI的数据传输为上行数据传输或下行数据传输。
在具体实现时,在S402中,终端设备在PDCCH的UESS中监听第二DCI和/或第三DCI;第二DCI包含具有第二TTI的数据传输的调度信息,第三DCI包含具有第三TTI的数据传输的调度信息;其中,第一TTI的时间长度大于第三TTI的时间长度,第一TTI的时间长度等于第二TTI的时间长度。可选的,终端设备在PDCCH的UESS中监听第二DCI和/或第三DCI之后,还包括:终端设备根据监听到的第二DCI与网络设备进行具有第二TTI的数据传输,和/或,终端设备根据监听到的第三DCI与网络设备进行具有第三TTI的数据传输,具有第二TTI的数据传输或具有第三TTI的数据传输为上行数据传输或下行数据传输。
可选的,若在S402之前终端设备被配置PDCCH的UESS监听,则终端设备执行S402。
可选的,若终端设备具有1ms TTI的缩短响应时间的能力或被配置具有1ms TTI的缩短响应时间,终端设备则在PDCCH的UESS中监听第二DCI,否则就不监听第二DCI。缩短响应时间是指小于4个子帧的响应时间,如3个子帧的响应时间或2个子帧的响应时间。
可选的,若终端设备具有短TTI的能力或被配置具有1短TTI,终端设备则在PDCCH的UESS中监听第三DCI,否则就不监听第三DCI。
由于终端设备在监听DCI时,并不清楚监听得到的DCI为第一DCI、第二DCI、第三DCI中的哪一种或几种,只确定在哪个搜索空间中监听,因此,终端设备需在所有搜索空间中监听所有DCI,即在CCS和UESS中监听第一DCI,第二DCI,第三DCI。由于本发明实施例可以使得部分的搜索区域监听指示特定TTI的DCI,因此与现有技术中的在所有搜索区域监听全部TTI的DCI相比,并减少了盲检次数。
本发明实施例提供的下行控制信息的发送、监听方法,网络设备在CSS 中发送第一DCI,在PDCCH的UESS中发送第二DCI或第三DCI。终端设备在CSS中监听第一DCI,在PDCCH的UESS中监听第二DCI和/或第三DCI,且第一TTI的时间长度大于第三TTI的时间长度。通过为由部分搜索空间发送的DCI指示特定的TTI,使得终端设备的盲检次数减少。
进一步的,在上述实施例的基础上,为进一步适用更多的业务需求和场景,可通过DCI指示响应时间或监听到DCI的搜索空间指示响应时间,从而使得在不增加盲检测次数的情况下,指示数据传输的响应时间,达到提高数据传输效率的目的。具体的:
第一DCI用于指示数据传输的响应时间为第一响应时间,第二DCI用于指示数据传输的响应时间为第二响应时间,第三DCI用于指示数据传输的响应时间为第三响应时间,第一响应时间的时间长度大于第二响应时间的时间长度。
示例性的,图5为本发明实施例提供的下行控制信息的发送、监听方法实施例二的搜索空间示意图。如图5所示,终端设备根据监听到DCI的搜索空间,确定响应时间。
可选的,当终端设备在CSS中监听到DCI,终端设备认为此DCI对应的数据传输的响应时间为第一响应时间。
可选的,当终端设备在PDCCH的USS中监听到DCI,终端设备认为此DCI对应的数据传输的响应时间为第二响应时间或第三响应时间。进一步的,终端设备根据DCI中的指示信息确定响应时间为第二响应时间或第三响应时间。例如DCI中有一个比特指示信息来指示,0代表第二响应时间,1代表第三响应时间。反之亦然。
可选的,第一响应时间的时间长度大于第三响应时间的时间长度。例如第一响应时间的时间长度为4个子帧,第二响应时间的时间长度为3个子帧或2个子帧,第三响应时间的时间长度为8或12个符号长度。
其中,响应时间为终端设备自接收到下行数据所在TTI起,至发送下行数据传输对应的混合自动重传请求HARQ信息所在TTI的间隔时间,或终端设备自接收到上行调度信息所在TTI起,至发送上行调度信息对应的上行数据所在TTI的间隔时间。可以理解的,发送下行数据传输对应的混合自动重传请求HARQ信息所在TTI是接收到下行数据所在TTI延后的时间为响应时 间,或发送上行调度信息对应的上行数据所在TTI是接收到上行调度信息所在TTI延后的时间为响应时间。这里的TTI可以是子帧,也可以是几个符号,与前面第一TTI的时间长度相同,不再赘述。需要说明的是,因为存在传播时延,网络设备可以指示终端设备提前或拖后发送上行信息。图6为本发明实施例提供的LTE系统中数据传输的响应时间实施例一的示意图,如图6所示,例如上行发送的所在TTI编号4与下行传输的所在TTI编号4的边界可能存在不对齐,目前最多相差0.67ms,假定响应时间为4个子帧,但实际中从发送下行数据传输对应的混合自动重传请求HARQ信息所在TTI的编号4是接收到下行数据所在TTI编号0延后的时间大约为(4-0.67)ms为3.33ms,这里也认为是相应时间仍为4个TTI或4个子帧。
本发明实施例上行TTI的时间长度和下行TTI的时间长度可以相同,也可以不相同。图7为本发明实施例提供的LTE系统中数据传输的响应时间实施例二的示意图,如图7所示,当上行TTI的时间长度和下行TTI的时间长度相同时,可以根据图7所示定义响应时间。当上行TTI的时间长度和下行TTI的时间长度不同时,那么响应时间可以为上行TTI时间长度的倍数或下行TTI时间长度。可选的,响应时间的可以为上行TTI和下行TTI中较大时间长度的倍数,也可以为当DCI为指示下行数据接收时,响应时间是下行TTI时间长度的倍数;当DCI为上行调度信息时,响应时间是上行TTI时间长度的倍数。本发明对于响应时间大小和时间单位不做限定。
可选的,终端设备根据监听到的DCI,获取预设的第一响应时间、预设的第二响应时间、预设的第三响应时间,三种响应时间可以相同也可以不相同,取决于各自的预设值。可以理解的,第一DCI与预设的第一响应时间存在对应关系,当终端设备监听到第一DCI时,终端设备可以获知此第一响应时间。同理,第二DCI与预设的第二响应时间存在对应关系,第三DCI与预设的第三响应时间存在对应关系,终端设备可以根据监听到DCI,为第一DCI还是第二DCI或者第三DCI,确定对应的响应时间。终端设备也可依据监听到的第一DCI、第二DCI、第三DCI中的指示信息,获取各自指示的TTI的时间长度及响应时间。
可选的,第一响应时间的时间长度为第一TTI的时间长度的4倍;第二响应时间的时间长度为第一TTI的时间长度的3倍或2倍。例如,第一响应 时间的时间长度为4倍第一TTI,即4ms,第二响应时间的时间长度为3倍或2倍的第一TTI,即3ms或2ms。
可选的,第三响应时间的时间长度为K个第三TTI的时间长度,K为大于1的正整数。其中,K为预设值或高层信令通知的或DCI中指示的。例如,第三响应时间为K倍的第三TTI,当第三TTI为2个符号时,若K为6,第三DCI指示的响应时间为12个符号,若K为8,第三DCI指示的响应时间为16个符号,因此,可通过设置不同的K值,更灵活的设置数据传输的响应时间。示例性的,终端设备可与网络设备提前预设好K值,也可在第三DCI增加一个或多个比特位的状态用以指示K值。
在上述任一实施例的基础上,由于第二DCI和第三DCI均承载在UESS中的PDCCH上,为减少终端设备的盲检测次数,第二DCI和第三DCI均包含第一指示信息,第一指示信息用于指示DCI格式标识或TTI的时间长度。
具体的,可在现有DCI中,增加一个比特位,该比特位的状态对应指示第一指示信息,用于指示数据传输的TTI的时间长度或指示DCI格式标识或响应时间指示信息。例如当第一指示信息为0时,可代表该DCI指示的TTI的时间长度为第二TTI,或该DCI为第二DCI,或该DCI指示的响应时间为第二响应时间;当第一指示信息为1时,可代表该DCI指示的TTI的时间长度为第三TTI,或该DCI为第三DCI,或该DCI指示的响应时间为第三响应时间。反之亦然。通过在DCI中增加第一指示信息,可使得终端设备不用增加盲检次数。可选的,第二DCI和第三DCI的总信息比特数相同,即第二DCI和第三DCI的负载大小(payload size)相同,这样在同时对第一DCI和第二DCI进行检测时可以减少终端设备的盲检测次数。
可选的,该第一指示信息也可用于指示不同DCI格式标识,不同的DCI格式标识指示不同的TTI的时间长度。
可选的,该第一指示信息也可用于指示不同响应时间。
可以理解的,由于CSS中的PDCCH仅承载第一DCI,因此第一DCI不包含第一指示信息,即网络设备不会在第一DCI中发送第一指示信息,终端设备不会去接收。
进一步的,在上述任一实施例的基础上,若网络设备配置终端设备增强物理下行控制信道EPDCCH监听,网络设备在EPDCCH的UESS中发送第 一DCI。若终端设备被配置EPDCCH监听,终端设备在EPDCCH的UESS中监听第一DCI。可以理解的,终端设备在此时不会在EPDCCH的UESS中监听第二DCI或第三DCI。网络设备不会在EPDCCH的UESS中发送第二DCI或第三DCI。
可选的,当终端设备被配置EPDCCH监听,即将UESS可划分为PDCCH的UESS和EPDCCH的UESS。可以理解的是,终端设备在CSS中监听第一DCI,在PDCCH的UESS中监听第二DCI和/或第三DCI,在EPDCCH的UESS中监听第一DCI。由于EPDCCH的传输截止时间为一个子帧的结尾,所以通过EPDCCH发送的DCI需要到子帧结尾处才可以监听到,而PDCCH区域位于一个子帧的前1,2,3或4个符号,所以为了保证终端设备有足够的处理时间完成数据接收和到达响应时间时的上行发送,所以EPDCCH发送的为第一DCI,响应时间示例性的可以为4倍的第一TTI。且在EPDCCH上不承载其他类型的DCI,即在CSS和EPDCCH的UESS中仅监听第一DCI。
可选的,当终端设备被设备被配置EPDCCH监听,终端将在EPDCCH的UESS中监听到的DCI,认定为第一DCI。
进一步的,在上述任一实施例的基础上,图8为本发明实施例提供的下行控制信息的发送、监听方法实施例三的场景示意图。如图8所示,当CSS和PDCCH的UESS存在重叠的搜索空间时,示例性的,可以为CSS和PDCCH的UESS部分重叠或完全重叠,或者,CSS为PDCCH的UESS的一部分;或者,PDCCH的UESS为CSS的一部分;或者,CSS的一部分和PDCCH的UESS的一部分重叠。CSS和PDCCH的UESS完全重叠,即CSS和PDCCH的UESS为同一个搜索空间。这样,终端设备相当于只确定了一个搜索空间。针对重叠的搜索空间,仅在该搜索空间内仅监听第一DCI。
具体的,终端设备在物理下行控制信道PDCCH的专用搜索空间UESS中监听第二DCI和/或第三DCI,包括:
终端设备在PDCCH的UESS中的除重叠的搜索空间外的搜索空间中,监听第二DCI和/或第三DCI。
可以理解的,网络设备在重叠的搜索空间中的PDCCH上发送第一DCI,在PDCCH的UESS中的除重叠的搜索空间外的搜索空间中,发送第二DCI和/或第三DCI。终端设备对应的在重叠的搜索空间中只监听第一DCI,而不 再监听第二DCI和/或第三DCI,在PDCCH的UESS中的非重叠搜索空间中,监听第二DCI和/或第三DCI。基于任一实施例,第一DCI位于CSS中对应的为最大的TTI的时间长度和/或最长的响应时间,以使得UE在此重叠的搜索空间中,获取可靠性最高的调度信息,从而保证了UE有足够的处理时间去响应基站的调度。
本发明实施例另一方面提供一种下行控制信息的发送、接收方法。图9为本发明实施例提供的下行控制信息的发送、监听方法实施例四的流程示意图。如图9所示,该方法包括:
S901、网络设备在CSS和PDCCH的UESS中发送DCI;
S902、终端设备在CSS和PDCCH的UESS中监听DCI;
S903、终端设备根据在CSS监听到第四DCI,确定具有第一传输时间间隔TTI的数据传输的调度信息;和/或
S904、终端设备根据在PDCCH的UESS监听到第五DCI,确定具有第二TTI的数据传输的调度信息;和/或
S905、终端设备根据在PDCCH的UESS监听到第六DCI,确定具有第三TTI的数据传输的调度信息;
其中,第一TTI的时间长度大于第三TTI的时间长度,第一TTI的时间长度等于第二TTI的时间长度。
具体的,S901至S905示意终端设备接收到DCI情况下的下行控制信息的发送、监听与接收步骤,需要说明的,S901的发送步骤与S902的监听步骤没有制约关系,各自分开执行,S902的监听步骤的执行不依赖于S901的发送步骤是否执行,且在S903至S905的接收DCI步骤之前,S902的执行次数可以为1次或多次。当预设的第四DCI、预设的第五DCI、预设的第六DCI均用于调度下行数据传输或上行数据传输时,在同一时刻终端设备在搜索空间中仅可监听到预设的第四DCI、预设的第五DCI、预设的第六DCI中的一种。当预设的第四DCI、预设的第五DCI、预设的第六DCI同时调度下行数据传输和上行数据传输时,终端设备可在搜索空间中监听到预设的第四DCI、预设的第五DCI、预设的第六DCI中的一种或两种。
具体的,在S901至S905中,针对终端设备的业务和应用场景的不同,网络设备在不同的部分搜索空间发送指示不同TTI的DCI,以使终端设备根 据在不同的部分搜索空间中监听到DCI,以确定终端设备进行数据传输时的调度信息中的TTI。
示例性的,在S901中,网络设备在搜索空间中发送DCI,DCI本身不包含指示特定TTI的指示信息,终端设备根据监听到DCI的搜索空间的不同,来确定数据传输的特定TTI。可选的,也可在DCI中增加指示TTI时间长度的指示信息,以使终端设备可根据DCI确定调度信息对应此TTI时间长度的数据传输,此时,本实施例中的部分搜索空间承载的DCI与上述任一实施例中的各搜索空间承载的DCI分布相同,且各DCI指示的TTI时间长度相同。
示例性的,在S902中,终端设备在搜索空间中监听时,可与现有的DCI监听方式相同,仅监听是否存在自己的DCI,终端设备在CSS和PDCCH的UESS中监听DCI,由于终端设备与网络设备将指示不同特定TTI时间长度的DCI在不同的搜索空间中发送,因此,不用在所有搜索区域监听全部TTI的DCI。因此,本发明实现了减少盲检次数,为数据传输提供了多种TTI的时间长度,可满足终端设备的不同业务和应用场景的需求。
示例性的,在S903至S905中,当终端设备在CSS监听到DCI,则确定终端设备进行数据传输时的调度信息具有第一TTI,该DCI记为第四DCI。可选的,该第四DCI可以与上述实施例中的第一DCI相同。当终端设备在PDCCH的UESS监听到DCI,则可确定终端设备进行数据传输时的调度信息具有第二TTI,该DCI记为第五DCI,或者确定终端设备进行数据传输时的调度信息具有第三TTI,该DCI记为第六DCI。可选的,该第五DCI可以与上述实施例中的第二DCI相同,该第六DCI可以与上述实施例中的第三DCI相同。其中,本实施例中的第一至第三TTI与图2至图8所示实施例中的第一至第三TTI相同,本发明对此不再赘述。
可选的,为区分第五DCI和第六DCI,可在现有DCI中,增加一个比特位,该比特位上的状态对应指示第一指示信息。具体的:
网络设备在PDCCH的UESS中发送第五DCI和/或第六DCI;
若终端设备在PDCCH的UESS监听到DCI,则根据DCI中的第一指示信息,确定DCI为第五DCI,或者DCI为第六DCI;
其中,第五DCI和第六DCI均包含第一指示信息,第一指示信息用于指示DCI格式标识或传输时间间隔TTI的时间长度。
本实施例中的第一指示信息与图2至图8所示实施例中的第一指示信息相同,具有相同的作用,本发明对此不再赘述。
可以理解的,由于网络设备仅在CSS中发送指示第一TTI的第四DCI,不发送其他DCI。因此,网络设备在PDCCH的公共搜索空间CSS中发送第四DCI;其中,第四DCI不包含第一指示信息。即网络设备不会在第四DCI种发送第一指示信息,终端设备不会去接收。
进一步的,在图9所示实施例的基础上,本方法还包括:
终端设备根据在CSS监听到第四DCI,确定数据传输的响应时间为第四响应时间,和/或
终端设备根据在PDCCH的UESS监听到第五DCI,确定数据传输的响应时间为第五响应时间,和/或
终端设备根据在PDCCH的UESS监听到第六DCI,确定数据传输的响应时间为第六响应时间;
其中,第四响应时间的时间长度大于第五响应时间的时间长度,响应时间为终端设备自接收到下行数据所在TTI起,至发送下行数据对应的混合自动重传请求HARQ信息所在TTI的间隔时间,或终端设备自接收到上行调度信息所在TTI起,至发送上行调度信息对应的上行数据所在TTI的间隔时间。
本实施例中的响应时间与图2至图8所示实施例中的响应时间相同,本发明对此不再赘述。
具体的,在图9所示实施例的基础上,为进一步适用更多的业务需求和场景,通过显示的DCI或监听到隐式DCI的搜索空间可以指示的响应时间,从而使得在不增加盲检测次数的情况,指示数据传输的响应时间,达到提高数据传输效率的目的。示例性的,当终端设备监听到第四DCI,则确定数据传输的响应时间为第四响应时间,当终端设备监听到第五DCI,则确定数据传输的响应时间为第五响应时间,当终端设备监听到第六DCI,则确定数据传输的响应时间为第六响应时间。其中,第四响应时间的时间长度大于第五响应时间的时间长度。例如第四响应时间的时间长度为4个子帧,第五响应时间的时间长度为3个子帧或2个子帧,第六响应时间的时间长度为8或12个符号长度。
可选的,第四响应时间、第五响应时间、第六响应时间可分别与图2至 图8所示实施例中的第一响应时间、第二响应时间、第三响应时间相同,本发明对此不再赘述。
可选的,第四响应时间的时间长度为第一TTI的时间长度的4倍;第五响应时间的时间长度为第一TTI的时间长度的3倍或2倍。例如,第四响应时间的时间长度为4倍第一TTI,即4ms,第五响应时间的时间长度为3倍或2倍的第一TTI,即3ms或2ms。
可选的,第六响应时间的时间长度为K个第三TTI的时间长度,K为大于1的正整数。其中,K为预设值或高层信令通知的或DCI中指示的。
进一步的,在图9所述实施例的基础上,若终端设备被配置增强物理下行控制信道EPDCCH监听,该方法还包括:
终端设备在EPDCCH的UESS中监听DCI;
终端设备根据在EPDCCH的UESS监听到第四DCI,确定具有第一TTI的数据传输的调度信息。
可以理解的,终端设备在此时不会在EPDCCH的UESS中监听第五DCI或第六DCI。网络设备不会在EPDCCH的UESS中发送第五DCI或第六DCI。
可选的,当终端设备被配置EPDCCH监听,即将UESS可划分为PDCCH的UESS和EPDCCH的UESS。可以理解的是,终端设备在CSS中监听第一DCI,在PDCCH的UESS中监听第二DCI和/或第三DCI,在EPDCCH的UESS中监听第一DCI。由于EPDCCH的传输截止时间为一个子帧的结尾,所以通过EPDCCH发送的DCI需要到子帧结尾处才可以监听到,而PDCCH区域位于一个子帧的前1,2,3或4个符号,所以为了保证终端设备有足够的处理时间完成数据接收和到达响应时间时的上行发送,所以EPDCCH发送的为第一DCI,响应时间示例性的可以为4倍的第一TTI。且在EPDCCH上不承载其他类型的DCI,即在CSS和EPDCCH的UESS中仅监听第一DCI。
可选的,当终端设备被设备被配置EPDCCH监听,终端将在EPDCCH的UESS中监听到的DCI,认定为第一DCI。
可选的,若CSS和PDCCH的UESS存在重叠的搜索空间,终端设备根据在重叠的搜索空间内监听到第四DCI,确定具有第一TTI的数据传输的调度信息。可选的,还可确定第四响应时间。具体的:
终端设备根据在PDCCH的UESS中的除重叠的搜索空间外的搜索空间 中监听到第五DCI,确定具有第二TTI的数据传输的调度信息;和/或,
终端设备根据在PDCCH的UESS中的除重叠的搜索空间外的搜索空间中监听到第六DCI,确定具有第三TTI的的数据传输的调度信息。
可选的,终端将在PDCCH的UESS中的除重叠的搜索空间外的搜索空间中监听到DCI,认定为第五或第六DCI。终端将在CSS和PDCCH的UESS存在重叠的搜索空间中监听到DCI,认定为第四DCI。
可以理解的,网络设备在重叠的搜索空间中的PDCCH上发送第四DCI,在PDCCH的UESS中的除重叠的搜索空间外的搜索空间中,发送第五DCI和/或第六DCI。终端设备对应的在重叠的搜索空间中只监听第四DCI,而不再监听第五DCI和/或第六DCI,在PDCCH的UESS中的非重叠搜索空间中,监听第五DCI和/或第六DCI。基于任一实施例,第四DCI位于CSS中对应的为最大的TTI的时间长度和/或最长的响应时间,以使得UE在此重叠的搜索空间中,获取可靠性最高的调度信息,从而保证了UE有足够的处理时间去响应基站的调度。
本发明实施例再一方面提供一种下行控制信息的接收方法,对终端设备根据接收到的下行控制信息确定调度信息的方法进行详细说明。图10为本发明实施例提供的下行控制信息的接收方法实施例五的流程示意图。如图10所示,该方法的执行主体为终端设备,该方法包括:
S1001、终端设备接收第七下行控制信息DCI,第七DCI包括第一资源指示信息,第一资源指示信息用于指示至少一个TTI上的可用时频域资源;
S1002、终端设备根据可用时频域资源,确定终端设备在至少一个TTI上进行数据传输的时频域资源。
具体的,在数据传输过程中,资源单元(Resource Element,RE)在时域占用一个符号,频域占用一个子载波,是最小数据传输的单元。可用时频域资源可以由时域资源和频域资源组成。
可选的,时域资源是符号(symbol)、符号组(symbol group)、时隙(slot)或子帧(subframe),其中,符号是一个子载波所在的频域为15kHz的LTE系统的符号,是一个子载波所在的频域大于15kHz的通信系统的符号;时隙是一个子载波所在的频域为15kHz的LTE系统的时隙,或者,是一个子载波所在的频域大于15kHz的通信系统的时隙,长度可以小于0.5ms;子帧是一个 子载波所在的频域为15kHz的LTE系统的子帧,或者是一个子载波所在的频域大于15kHz的通信系统的子帧,长度可以小于1ms,本实施例对此不作限定。如,一个子载波所在的频域大于15kHz的频域可以为30kHz,60kHz,120kHz,本实施例对此不作限定。
可选的,频域资源可以是物理资源块(Physical Resource Block,简称PRB),短物理资源块组(Physical Resource Block Group,简称RBG),虚拟资源块(Virtul Resource Block,简称VRB),短物理资源块(Short Physical Resource Block,简称SPRB),短物理资源块组(Short Physical Resource Block Group,简称SRBG),短虚拟资源块(Short Virtul Resource Block,简称SVRB),子载波或子载波组。其中,SPRB和SVRB分别为不同含义的资源分配的基本单位。SPRB为频域上12个连续的子载波,时域上是一个传输时间长度的资源,传输时间长度可以从1个符号至14个符号中的任意符号数,在集中式资源分配时SVRB与SPRB的定义相同,在分布式资源分配时SVRB与SPRB有一定的对应关系。SPRB索引为SPRB索引,SVRB索引为SVRB索引,因此,该SPRB索引和该SVRB索引可以不同。SRBG可包括多个SPRB,SRBG中包括的SPRB的个数根据终端设备的带宽确定或者由网络设备指示得到。其中,SPRB索引可以为SPRB的编号,SRBG索引可以为SRBG的编号,SVRB索引可以为SVRB的编号,子载波索引可以为子载波的编号,子载波组索引可以为子载波组的编号。子载波组包括至少一个子载波,这里的一个子载波所在的频域可以是等于或大于15kHz的。
示例性的,在S1001中,终端设备根据如图2至图9所示任一实施例中的方法监听接收第七DCI,该第七DCI示例性的可以为第三DCI或第六DCI,第七DCI指示的TTI为第三TTI,第三TTI的时间长度小于1ms。第七DCI中包括的第一资源指示信息指示了终端设备在数据传输过程中的至少一个TTI上的可用时频域资源。
示例性的,在S1002中,终端设备根据指示的可用时频域资源,确定终端设备在至少一个TTI上进行数据传输的时频域资源。可选的,终端设备可占用所有的可用时频域资源,也可选择占用可用时频域资源中的一部分,且占用的时频域资源在所有可用时频域资源中可以不连续。
通过为终端设备指示可占用时频域资源,可方便终端设备确定占用的时 频域资源,减少时频域资源的浪费。
可选的,在上述实施例的基础上,可用时频域资源包括N个子时频域资源,在S1002的终端设备根据可用时频域资源,确定终端设备在至少一个TTI上进行数据传输的时频域资源之前,该方法还包括:
终端设备接收第八DCI,第八DCI包括占用指示信息;
终端设备根据占用指示信息,在N个子时频域资源中,确定一个或多个子时频域资源的组合,作为终端设备在至少一个TTI上进行数据传输的时频域资源;
其中,N为大于1的正整数,N为预定义或高层信令配置的或第七DCI/第八DCI指示的,TTI的时间长度小于1毫秒。高层信令可以为RRC信令。
具体的,根据N,终端设备的可用时频域资源可划分为N个子时频域资源,子时频域资源划分的最小单元可以是为RE,RB,sRB,RBG,sRBG中的一个。终端设备可根据接收到的第八DCI中的占用指示信息,在N个子时频域资源中,确定终端设备在至少一个TTI上进行数据传输的时频域资源。
示例性的,当N为2时,可用时频域资源包括第1子时频域资源、第2子时频域资源。当N为3时,可用时频域资源包括第1子时频域资源、第2子时频域资源和第3子时频域资源,三个子时频域资源所包含的RE数量可以相同,也可不同。
第八DCI中的占用指示信息,示例性的可以为:第1子时频域资源、第2子时频域资源、第3子时频域资源、第1子时频域资源和第2子时频域资源、第1子时频域资源和第3子时频域资源、第2子时频域资源和第3子时频域资源、所有可用时频域资源。
示例的,如下表1和表2所示,占用指示信息包含2bits信息或3bits信息,这里对取值和指示信息的对应关系或表格可以是预先定义或者高层信令通知的,这里不做限制,即如高层信令通知,那么根据高层信令指示的0可以对应第2子时频域资源,而不是对应第1子时频域资源。
表1
Figure PCTCN2016100969-appb-000001
Figure PCTCN2016100969-appb-000002
表2
Figure PCTCN2016100969-appb-000003
可选的,各子时频域资源可以在可用时频域资源中按子时频域资源的索引依次排列。例如,先为第1子时频域资源,然后是第2子时频域资源,最后为第3子时频域资源。也可以在可用时频域资源中按照预定义的规则排序子时频域资源,例如先排第3子时频域资源,然后第1子时频域资源,最后第2子时频域资源。也可以在可用时频域资源中按照预定义的规则交叉排序,例如,先排部分第1子时频域资源,再排部分的第2子时频域资源。
可选的,在上述任一实施例的基础上,终端设备确定各子时频域资源的方法具体为:
终端设备根据可用时频域资源的频域资源量M和N,确定第j子时频域资源的频域资源量为小于等于M/N的最大整数,第N子时频域资源的频域资源量为在所述可用时频域资源的频域资源量M中减去第1子时频域资源至第N-1子时频域资源的频域资源量的剩余频域资源量;
其中,j的取值为从1至N-1的所有整数,M为大于N的正整数。
可以理解的,若M可以被N整除,第N子时频域资源的频域资源量 可以和第j子时频域资源的频域资源量相同,若M不可以被N整除,则不同。示例性的,当M可以被N等分时,各子时频域资源包含的sRBG数量相同,当M不能被N等分时,将可用时频域资源划分为N-1个包含相同sRBG的子时频域资源,以及一个包含与其他子时频域资源不同的子时频域资源。其中,所述N-1个包含相同sRBG的子时频域资源中各子时频域资源所包含的sRBG的数量为小于等于M/N的最大整数,即对M/N进行向下取整,一个包含与其他子时频域资源不同的子时频域资源所述包含的sRBG的数量即为可用时频域资源中除去N-1个包含相同sRBG的子时频域资源所包含的sRBG的数量的剩余sRBG的数量。例如,当N等于3的时候,第1子时频域资源=向下取整{M/3},第2子时频域资源=向下取整{M/3},第3子时频域资源=M-第1子时频域资源-第2子时频域资源。
可选的,在上述任一实施的基础上,第七DCI还包括频域指示信息,终端设备根据频域指示信息,确定在至少一个TTI上进行数据传输的时频域资源的频域均相同。进一步可选的,在上述任一实施的基础上,第七DCI还包括调制编码方式信息,终端设备根据调制编码方式信息,确定在至少一个TTI上进行数据传输的调制编码方式均相同。当在多个TTI上的调制编码方式和频域均相同时,终端设备的对于sPUSCH信道的上行发送功率相同。这样会可以避免多个sPUSCH共享一个上行参考信号的时候,如果多个sPUSCH发送功率不同就可能导致网络设备接收失败的问题。
本发明实施例再一方面还提供一种下行控制信息的发送方法,该方法的执行主体为网络设备,该方法与图10所示的下行控制信息的接收方法实施例相对应,具有相同的技术特征和技术效果,本发明不再赘述。具体的,该方法包括:
网络设备发送第七下行控制信息DCI,第七DCI包括第一资源指示信息,第一资源指示信息用于指示至少一个TTI上的可用时频域资源。
可选的,可用时频域资源包括N个子时频域资源,方法还包括:
网络设备发送第八DCI,第八DCI包括占用指示信息,占用指示信息用于在N个子时频域资源中,确定一个或多个子时频域资源的组合,作为终端设备在至少一个TTI上进行数据传输的时频域资源;
其中,N为大于1的正整数,N为预定义或高层信令配置的,TTI的时 间长度小于1毫秒。
可选的,可用时频域资源的频域资源量为M,N个子时频域资源;
第j子时频域资源的频域资源量为小于等于M/N的最大整数,第N子时频域资源的频域资源量为在所述可用时频域资源的频域资源量M中减去第1子时频域资源至第N-1子时频域资源的频域资源量的剩余频域资源量;
其中,j的取值为从1至N-1的所有整数,M为大于N的正整数。
可以理解的,若M可以被N整除,第N子时频域资源的频域资源量可以和第j子时频域资源的频域资源量相同,若M不可以被N整除,则不同。
可选的,第七DCI还包括频域指示信息,频域指示信息用于确定在至少一个TTI上进行数据传输的时频域资源的频域均相同。
可选的,第七DCI还包括调制编码方式信息,调制编码方式信息用于确定在至少一个TTI上进行数据传输的调制编码方式均相同。
本发明实施例再一方面提供一种下行控制信息的监听装置、接收装置和发送装置,用以执行上述实施例中的下行控制信息的发送、监听、接收方法,具有相同的技术特征和技术效果,本发明对此不再赘述。
可选的,第七DCI还包括频域指示信息,频域指示信息用于确定在至少一个TTI上进行数据传输的时频域资源的频域均相同。进一步的,第七DCI还包括调制编码方式信息,调制编码方式信息用于确定在至少一个TTI上进行数据传输的调制编码方式均相同。当在多个TTI上的调制编码方式和频域均相同时,终端设备的对于sPUSCH信道的上行发送功率相同。这样会可以避免多个sPUSCH共享一个上行参考信号的时候,如果多个sPUSCH发送功率不同就可能导致网络设备接收失败的问题。
图11为本发明实施例提供的下行控制信息的监听装置实施例一的结构示意图,如图11所示,该装置包括:
监听模块1101,用于在公共搜索空间CSS中监听第一下行控制信息DCI,第一DCI包含具有第一传输时间间隔TTI的数据传输的调度信息;
监听模块1101还用于,在物理下行控制信道PDCCH的专用搜索空间UESS中监听第二DCI和/或第三DCI;第二DCI包含具有第二TTI的数据传输的调度信息,第三DCI包含具有第三TTI的数据传输的调度信息;
其中,第一TTI的时间长度大于第三TTI的时间长度,第一TTI的时间 长度等于第二TTI的时间长度。
可选的,第一DCI用于指示数据传输的响应时间为第一响应时间,第二DCI用于指示数据传输的响应时间为第二响应时间,第三DCI用于指示数据传输的响应时间为第三响应时间,第一响应时间的时间长度大于第二响应时间的时间长度;
响应时间为装置自接收到下行数据所在TTI起,至发送下行数据传输对应的混合自动重传请求HARQ信息所在TTI的间隔时间,或装置自接收到上行调度信息所在TTI起,至发送上行调度信息对应的上行数据所在TTI的间隔时间。
可选的,第一响应时间的时间长度为第一TTI的时间长度的4倍;第二响应时间的时间长度为第一TTI的时间长度的3倍或2倍。
可选的,第三响应时间的时间长度为K个第三TTI的时间长度,K为大于1的正整数。
可选的,第一DCI不包含第一指示信息,第二DCI和第三DCI均包含第一指示信息,第一指示信息用于指示DCI格式标识或TTI的时间长度。
可选的,若装置被配置增强物理下行控制信道EPDCCH监听,监听模块还用于,在EPDCCH的UESS中监听第一DCI。
可选的,若CSS和PDCCH的UESS存在重叠的搜索空间,监听模块还用于,在PDCCH的UESS中的除重叠的搜索空间外的搜索空间中,监听第二DCI和/或第三DCI。
图12为本发明实施例提供的下行控制信息的接收装置实施例一的结构示意图。如图12所示,包括:
监听模块1201,用于在公共搜索空间CSS和物理下行控制信道PDCCH的专用搜索空间UESS中监听下行控制信息DCI;
处理模块1202,用于根据在CSS监听到第四DCI,确定具有第一传输时间间隔TTI的数据传输的调度信息,和/或
根据在PDCCH的UESS监听到第五DCI,确定具有第二TTI的数据传输的调度信息,和/或
根据在PDCCH的UESS监听到第六DCI,确定具有第三TTI的数据传输的调度信息;
其中,第一TTI的时间长度大于第三TTI的时间长度,第一TTI的时间长度等于第二TTI的时间长度。
可选的,处理模块还用于:
根据在CSS监听到第四DCI,确定数据传输的响应时间为第四响应时间,和/或
根据在PDCCH的UESS监听到第五DCI,确定数据传输的响应时间为第五响应时间,和/或
根据在PDCCH的UESS监听到第六DCI,确定数据传输的响应时间为第六响应时间;
其中,第四响应时间的时间长度大于第五响应时间的时间长度,响应时间为装置自接收到下行数据所在TTI起,至发送下行数据对应的混合自动重传请求HARQ信息所在TTI的间隔时间,或装置自接收到上行调度信息所在TTI起,至发送上行调度信息对应的上行数据所在TTI的间隔时间。
可选的,第四响应时间的时间长度为第一TTI的时间长度的4倍;第五响应时间的时间长度为第一TTI的时间长度的3倍或2倍。
可选的,第六响应时间的时间长度为K个第三TTI的时间长度,K为大于1的正整数。
可选的,接收模块还用于:
若监听模块在PDCCH的UESS监听到DCI,则根据DCI中的第一指示信息,确定DCI为第五DCI,或者DCI为第六DCI;
第一指示信息用于指示DCI格式标识或TTI的时间长度。
可选的,若装置被配置增强物理下行控制信道EPDCCH监听,监听模块还用于,在增强物理下行控制信道EPDCCH的专用搜索空间UESS中监听下行控制信息DCI;
处理模块还用于,根据在EPDCCH的UESS监听到第四DCI,确定具有第一TTI的数据传输的调度信息。
可选的,若CSS和PDCCH的UESS存在重叠的搜索空间,处理模块还用于:
根据在PDCCH的UESS中的除重叠的搜索空间外的搜索空间中监听到第五DCI,确定具有第二TTI的数据传输的调度信息;和/或,
根据在PDCCH的UESS中的除重叠的搜索空间外的搜索空间中监听到第六DCI,确定具有第三TTI的的数据传输的调度信息。
图13为本发明实施例提供的下行控制信息的接收装置实施例二的结构示意图,如图13所示,包括:
接收模块1301,用于接收第七下行控制信息DCI,第七DCI包括第一资源指示信息,第一资源指示信息用于指示至少一个TTI上的可用时频域资源;
处理模块1302,用于根据可用时频域资源,确定下行控制信息的接收装置在至少一个TTI上进行数据传输的时频域资源。
可选的,可用时频域资源包括N个子时频域资源,处理模块具体用于:
接收第八DCI,第八DCI包括占用指示信息;
根据占用指示信息,在N个子时频域资源中,确定一个或多个子时频域资源的组合,作为装置在至少一个TTI上进行数据传输的时频域资源;
其中,N为大于1的正整数,N为预定义或高层信令配置的,TTI的时间长度小于1毫秒。
可选的,处理模块还用于:
根据可用时频域资源的频域资源量M和N,确定第j子时频域资源的频域资源量为小于等于M/N的最大整数,第N子时频域资源的频域资源量为在可用时频域资源的频域资源量M中减去第1子时频域资源至第N-1子时频域资源的频域资源量的剩余频域资源量;
其中,j的取值为从1至N-1的所有整数,M为大于N的正整数。
可选的,第七DCI还包括频域指示信息,处理模块还用于:
根据频域指示信息,确定在至少一个TTI上进行数据传输的时频域资源的频域均相同。
可选的,第七DCI还包括调制编码方式信息,处理模块还用于:
根据调制编码方式信息,确定在至少一个TTI上进行数据传输的调制编码方式均相同。
图14为本发明实施例提供的下行控制信息的发送装置实施例一的结构示意图,如图14所示,包括:
发送模块1401,用于在公共搜索空间CSS中发送第一下行控制信息DCI, 第一DCI包含具有第一传输时间间隔TTI的数据传输的调度信息;和/或
在物理下行控制信道PDCCH的专用搜索空间UESS中发送第二DCI和/或第三DCI;第二DCI包含具有第二TTI的数据传输的调度信息,第三DCI包含具有第三TTI的数据传输的调度信息;
其中,第一TTI的时间长度大于第三TTI的时间长度,第一TTI的时间长度等于第二TTI的时间长度。
可选的,第一DCI用于指示数据传输的响应时间为第一响应时间,第二DCI用于指示数据传输的响应时间为第二响应时间,第三DCI用于指示数据传输的响应时间为第三响应时间,第一响应时间的时间长度大于第二响应时间的时间长度;
响应时间为下行控制信息的接收装置自接收到下行数据所在TTI起,至发送下行数据传输对应的混合自动重传请求HARQ信息所在TTI的间隔时间,或下行控制信息的接收装置自接收到上行调度信息所在TTI起,至发送上行调度信息对应的上行数据所在TTI的间隔时间。
可选的,第一响应时间的时间长度为第一TTI的时间长度的4倍;第二响应时间的时间长度为第一TTI的时间长度的3倍或2倍。
可选的,第三响应时间的时间长度为K个第三TTI的时间长度,K为大于1的正整数。
可选的,第一DCI不包含第一指示信息,第二DCI和第三DCI均包含第一指示信息,第一指示信息用于指示DCI格式标识或TTI的时间长度。
可选的,发送模块还用于:
向下行控制信息的接收装置发送用于配置增强物理下行控制信道EPDCCH监听的配置信息;
在EPDCCH的UESS中发送第一DCI。
可选的,若CSS和PDCCH的UESS存在重叠的搜索空间,发送模块具体用于:
在PDCCH的UESS中的除重叠的搜索空间外的搜索空间中,发送第二DCI和/或第三DCI。
本发明实施例还提供一种下行控制信息的发送装置,如图14所示包括:
发送模块1401,用于在物理下行控制信道PDCCH的专用搜索空间UESS中发送第五下行控制信息DCI和/或第六DCI;
其中,第五DCI和第六DCI均包含第一指示信息,第一指示信息用于指示DCI格式标识或传输时间间隔TTI的时间长度。
可选的,发送装置还用于:
在PDCCH的公共搜索空间CSS中发送第四DCI;
其中,第四DCI不包含第一指示信息。
本发明实施例还提供一种下行控制信息的发送装置,如图14所示包括:
发送模块1401,用于发送第七下行控制信息DCI,第七DCI包括第一资源指示信息,第一资源指示信息用于指示至少一个TTI上的可用时频域资源。
可选的,可用时频域资源包括N个子时频域资源,发送模块还用于:
发送第八DCI,第八DCI包括占用指示信息,占用指示信息用于在N个子时频域资源中,确定一个或多个子时频域资源的组合,作为下行控制信息的接收装置在至少一个TTI上进行数据传输的时频域资源;
其中,N为大于1的正整数,N为预定义或高层信令配置的,TTI的时间长度小于1毫秒。
可选的,可用时频域资源的频域资源量为M,N个子时频域资源中的第j子时频域资源的频域资源量为小于等于M/N的最大整数,第N子时频域资源的频域资源量为在可用时频域资源的频域资源量M中减去第1子时频域资源至第N-1子时频域资源的频域资源量的剩余频域资源量;
其中,j的取值为从1至N-1的所有整数,M为大于N的正整数。
可选的,第七DCI还包括频域指示信息,频域指示信息用于确定在至少一个TTI上进行数据传输的时频域资源的频域均相同。
可选的,第七DCI还包括调制编码方式信息,调制编码方式信息用于确定在至少一个TTI上进行数据传输的调制编码方式均相同。
本发明实施例再一方面提供一种终端设备和网络设备,用以执行上述实施例中的下行控制信息的发送、监听、接收方法,具有相同的技术特征和技术效果,本发明对此不再赘述。
图15为本发明实施例提供的终端设备实施例一的结构示意图,如图15所示,包括:
收发器1501,用于在公共搜索空间CSS中监听第一下行控制信息DCI,第一DCI包含具有第一传输时间间隔TTI的数据传输的调度信息;
收发器还用于,在物理下行控制信道PDCCH的专用搜索空间UESS中监听第二DCI和/或第三DCI;第二DCI包含具有第二TTI的数据传输的调度信息,第三DCI包含具有第三TTI的数据传输的调度信息;
其中,第一TTI的时间长度大于第三TTI的时间长度,第一TTI的时间长度等于第二TTI的时间长度。
可选的,第一DCI用于指示数据传输的响应时间为第一响应时间,第二DCI用于指示数据传输的响应时间为第二响应时间,第三DCI用于指示数据传输的响应时间为第三响应时间,第一响应时间的时间长度大于第二响应时间的时间长度;
响应时间为终端设备自接收到下行数据所在TTI起,至发送下行数据传输对应的混合自动重传请求HARQ信息所在TTI的间隔时间,或终端设备自接收到上行调度信息所在TTI起,至发送上行调度信息对应的上行数据所在TTI的间隔时间。
可选的,第一响应时间的时间长度为第一TTI的时间长度的4倍;第二响应时间的时间长度为第一TTI的时间长度的3倍或2倍。
可选的,第三响应时间的时间长度为K个第三TTI的时间长度,K为大于1的正整数。
可选的,第一DCI不包含第一指示信息,第二DCI和第三DCI均包含第一指示信息,第一指示信息用于指示DCI格式标识或TTI的时间长度。
可选的,若终端设备被配置增强物理下行控制信道EPDCCH监听,收发器还用于,在EPDCCH的UESS中监听第一DCI。
可选的,若CSS和PDCCH的UESS存在重叠的搜索空间,收发器还用于,在PDCCH的UESS中的除重叠的搜索空间外的搜索空间中,监听第二DCI和/或第三DCI。
图16为本发明实施例提供的终端设备实施例二的结构示意图,如图16所示,包括:
收发器1601,用于在公共搜索空间CSS和物理下行控制信道PDCCH的专用搜索空间UESS中监听下行控制信息DCI;
处理器1602,用于根据在CSS监听到第四DCI,确定具有第一传输时间间隔TTI的数据传输的调度信息,和/或
根据在PDCCH的UESS监听到第五DCI,确定具有第二TTI的数据传输的调度信息,和/或
根据在PDCCH的UESS监听到第六DCI,确定具有第三TTI的数据传输的调度信息;
其中,第一TTI的时间长度大于第三TTI的时间长度,第一TTI的时间长度等于第二TTI的时间长度。
可选的,收发器还用于:
根据在CSS监听到第四DCI,确定数据传输的响应时间为第四响应时间,和/或
根据在PDCCH的UESS监听到第五DCI,确定数据传输的响应时间为第五响应时间,和/或
根据在PDCCH的UESS监听到第六DCI,确定数据传输的响应时间为第六响应时间;
其中,第四响应时间的时间长度大于第五响应时间的时间长度,响应时间为终端设备自接收到下行数据所在TTI起,至发送下行数据对应的混合自动重传请求HARQ信息所在TTI的间隔时间,或终端设备自接收到上行调度信息所在TTI起,至发送上行调度信息对应的上行数据所在TTI的间隔时间。
可选的,第四响应时间的时间长度为第一TTI的时间长度的4倍;第五响应时间的时间长度为第一TTI的时间长度的3倍或2倍。
可选的,第六响应时间的时间长度为K个第三TTI的时间长度,K为大于1的正整数。
可选的,处理器还用于:
若收发器在PDCCH的UESS监听到DCI,则根据DCI中的第一指示信息,确定DCI为第五DCI,或者DCI为第六DCI;
第一指示信息用于指示DCI格式标识或TTI的时间长度。
可选的,若终端设备被配置增强物理下行控制信道EPDCCH监听,收发 器还用于,在增强物理下行控制信道EPDCCH的专用搜索空间UESS中监听下行控制信息DCI;
处理器还用于,根据在EPDCCH的UESS监听到第四DCI,确定具有第一TTI的数据传输的调度信息。
可选的,若CSS和PDCCH的UESS存在重叠的搜索空间,处理器还用于:
根据在PDCCH的UESS中的除重叠的搜索空间外的搜索空间中监听到第五DCI,确定具有第二TTI的数据传输的调度信息;和/或,
根据在PDCCH的UESS中的除重叠的搜索空间外的搜索空间中监听到第六DCI,确定具有第三TTI的的数据传输的调度信息。
本发明实施例还提供一种终端设备,如图16所示,终端设备包括:
接收器1601,用于接收第七下行控制信息DCI,第七DCI包括第一资源指示信息,第一资源指示信息用于指示至少一个TTI上的可用时频域资源;
处理器1602,还用于根据可用时频域资源,确定终端设备在至少一个TTI上进行数据传输的时频域资源。
可选的,可用时频域资源包括N个子时频域资源,接收器具体用于:
接收第八DCI,第八DCI包括占用指示信息;
根据占用指示信息,在N个子时频域资源中,确定一个或多个子时频域资源的组合,作为装置在至少一个TTI上进行数据传输的时频域资源;
其中,N为大于1的正整数,N为预定义或高层信令配置的,TTI的时间长度小于1毫秒。
可选的,处理器还用于:
根据可用时频域资源的频域资源量M和N,确定第j子时频域资源的频域资源量为小于等于M/N的最大整数,第N子时频域资源的频域资源量为在可用时频域资源的频域资源量M中减去第1子时频域资源至第N-1子时频域资源的频域资源量的剩余频域资源量;
其中,j的取值为从1至N-1的所有整数,M为大于N的正整数。
可选的,第七DCI还包括频域指示信息,处理器还用于:
根据频域指示信息,确定在至少一个TTI上进行数据传输的时频域资源的频域均相同。
可选的,第七DCI还包括调制编码方式信息,处理器还用于:
根据调制编码方式信息,确定在至少一个TTI上进行数据传输的调制编码方式均相同。
图17为本发明实施例提供的网络设备实施例一的结构示意图,如图17所示,包括:
收发器1701,用于在公共搜索空间CSS中发送第一下行控制信息DCI,第一DCI包含具有第一传输时间间隔TTI的数据传输的调度信息;和/或
在物理下行控制信道PDCCH的专用搜索空间UESS中发送第二DCI和/或第三DCI;第二DCI包含具有第二TTI的数据传输的调度信息,第三DCI包含具有第三TTI的数据传输的调度信息;
其中,第一TTI的时间长度大于第三TTI的时间长度,第一TTI的时间长度等于第二TTI的时间长度。
可选的,第一DCI用于指示数据传输的响应时间为第一响应时间,第二DCI用于指示数据传输的响应时间为第二响应时间,第三DCI用于指示数据传输的响应时间为第三响应时间,第一响应时间的时间长度大于第二响应时间的时间长度;
响应时间为下行控制信息的接收装置自接收到下行数据所在TTI起,至发送下行数据传输对应的混合自动重传请求HARQ信息所在TTI的间隔时间,或下行控制信息的接收装置自接收到上行调度信息所在TTI起,至发送上行调度信息对应的上行数据所在TTI的间隔时间。
可选的,第一响应时间的时间长度为第一TTI的时间长度的4倍;第二响应时间的时间长度为第一TTI的时间长度的3倍或2倍。
可选的,第三响应时间的时间长度为K个第三TTI的时间长度,K为大于1的正整数。
可选的,第一DCI不包含第一指示信息,第二DCI和第三DCI均包含第一指示信息,第一指示信息用于指示DCI格式标识或TTI的时间长度。
可选的,收发器还用于:
向下行控制信息的接收装置发送用于配置增强物理下行控制信道EPDCCH监听的配置信息;
在EPDCCH的UESS中发送第一DCI。
可选的,若CSS和PDCCH的UESS存在重叠的搜索空间,收发器具体用于:
在PDCCH的UESS中的除重叠的搜索空间外的搜索空间中,发送第二DCI和/或第三DCI。
本发明实施例还提供一种网络设备,如图17所示,包括:
收发器1701,用于在物理下行控制信道PDCCH的专用搜索空间UESS中发送第五下行控制信息DCI和/或第六DCI;
其中,第五DCI和第六DCI均包含第一指示信息,第一指示信息用于指示DCI格式标识或传输时间间隔TTI的时间长度。
可选的,收发器还用于:
在PDCCH的公共搜索空间CSS中发送第四DCI;
其中,第四DCI不包含第一指示信息。
本发明实施例还提供一种网络设备,如图17所示,包括:
收发器,用于发送第七下行控制信息DCI,第七DCI包括第一资源指示信息,第一资源指示信息用于指示至少一个TTI上的可用时频域资源。
可选的,可用时频域资源包括N个子时频域资源,收发器还用于:
发送第八DCI,第八DCI包括占用指示信息,占用指示信息用于在N个子时频域资源中,确定一个或多个子时频域资源的组合,作为下行控制信息的接收装置在至少一个TTI上进行数据传输的时频域资源;
其中,N为大于1的正整数,N为预定义或高层信令配置的,TTI的时间长度小于1毫秒。
可选的,可用时频域资源的频域资源量为M,N个子时频域资源中的第j子时频域资源的频域资源量为小于等于M/N的最大整数,第N子时频域资源的频域资源量为在可用时频域资源的频域资源量M中减去第1子时频域资源至第N-1子时频域资源的频域资源量的剩余频域资源量;
其中,j的取值为从1至N-1的所有整数,M为大于N的正整数。
可选的,第七DCI还包括频域指示信息,频域指示信息用于确定在至少一个TTI上进行数据传输的时频域资源的频域均相同。
可选的,第七DCI还包括调制编码方式信息,调制编码方式信息用于确定在至少一个TTI上进行数据传输的调制编码方式均相同。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本发明的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
本发明的说明书和权利要求书及上述附图中的术语“第一”、“第二”、“第三”“第四”等(如果存在)是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的本发明的实施例例如能够以除了在这里图示或描述的那些以外的顺序实施。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本发明各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本发明的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本发明各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,简称ROM)、随机存取存储器(Random Access Memory,简称RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
最后应说明的是:以上各实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述各实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围。

Claims (66)

  1. 一种下行控制信息的监听方法,其特征在于,包括:
    终端设备在公共搜索空间CSS中监听第一下行控制信息DCI,所述第一DCI包含具有第一传输时间间隔TTI的数据传输的调度信息;
    所述终端设备在物理下行控制信道PDCCH的专用搜索空间UESS中监听第二DCI和/或第三DCI;所述第二DCI包含具有第二TTI的数据传输的调度信息,所述第三DCI包含具有第三TTI的数据传输的调度信息;
    其中,所述第一TTI的时间长度大于所述第三TTI的时间长度,所述第一TTI的时间长度等于所述第二TTI的时间长度。
  2. 根据权利要求1所述的方法,其特征在于,所述第一DCI用于指示数据传输的响应时间为第一响应时间,所述第二DCI用于指示数据传输的响应时间为第二响应时间,所述第三DCI用于指示数据传输的响应时间为第三响应时间,所述第一响应时间的时间长度大于所述第二响应时间的时间长度;
    所述响应时间为所述终端设备自接收到下行数据所在TTI起,至发送所述下行数据传输对应的混合自动重传请求HARQ信息所在TTI的间隔时间,或所述终端设备自接收到上行调度信息所在TTI起,至发送所述上行调度信息对应的上行数据所在TTI的间隔时间。
  3. 根据权利要求2所述的方法,其特征在于,所述第一响应时间的时间长度为所述第一TTI的时间长度的4倍;所述第二响应时间的时间长度为所述第一TTI的时间长度的3倍或2倍。
  4. 根据权利要求2所述的方法,其特征在于,所述第三响应时间的时间长度为K个所述第三TTI的时间长度,K为大于1的正整数。
  5. 根据权利要求1-4中任一所述的方法,其特征在于,所述第一DCI不包含第一指示信息,所述第二DCI和所述第三DCI均包含所述第一指示信息,所述第一指示信息用于指示DCI格式标识或TTI的时间长度。
  6. 根据权利要求1-5中任一所述的方法,其特征在于,所述方法还包括:
    若所述终端设备被配置增强物理下行控制信道EPDCCH监听,所述终端设备在所述EPDCCH的UESS中监听所述第一DCI。
  7. 根据权利要求1-6中任一所述的方法,其特征在于,若所述CSS和所 述PDCCH的UESS存在重叠的搜索空间,所述终端设备在物理下行控制信道PDCCH的专用搜索空间UESS中监听第二DCI和/或第三DCI,包括:
    所述终端设备在PDCCH的UESS中的除所述重叠的搜索空间外的搜索空间中,监听所述第二DCI和/或所述第三DCI。
  8. 一种下行控制信息的接收方法,其特征在于,包括:
    终端设备在公共搜索空间CSS和物理下行控制信道PDCCH的专用搜索空间UESS中监听下行控制信息DCI;
    所述终端设备根据在所述CSS监听到第四DCI,确定具有第一传输时间间隔TTI的数据传输的调度信息,和/或
    所述终端设备根据在所述PDCCH的UESS监听到第五DCI,确定具有第二TTI的数据传输的调度信息,和/或
    所述终端设备根据在所述PDCCH的UESS监听到第六DCI,确定具有第三TTI的数据传输的调度信息;
    其中,所述第一TTI的时间长度大于所述第三TTI的时间长度,所述第一TTI的时间长度等于所述第二TTI的时间长度。
  9. 根据权利要求8所述的方法,其特征在于,所述方法还包括:
    所述终端设备根据在所述CSS监听到第四DCI,确定数据传输的响应时间为第四响应时间,和/或
    所述终端设备根据在所述PDCCH的UESS监听到第五DCI,确定数据传输的响应时间为第五响应时间,和/或
    所述终端设备根据在所述PDCCH的UESS监听到第六DCI,确定数据传输的响应时间为第六响应时间;
    其中,所述第四响应时间的时间长度大于所述第五响应时间的时间长度,所述响应时间为所述终端设备自接收到下行数据所在TTI起,至发送所述下行数据对应的混合自动重传请求HARQ信息所在TTI的间隔时间,或所述终端设备自接收到上行调度信息所在TTI起,至发送所述上行调度信息对应的上行数据所在TTI的间隔时间。
  10. 根据权利要求9所述的方法,其特征在于,所述第四响应时间的时间长度为所述第一TTI的时间长度的4倍;所述第五响应时间的时间长度为所述第一TTI的时间长度的3倍或2倍。
  11. 根据权利要求9所述的方法,其特征在于,所述第六响应时间的时间长度为K个所述第三TTI的时间长度,K为大于1的正整数。
  12. 根据权利要求8-11任一所述的方法,其特征在于,所述终端设备在公共搜索空间CSS和物理下行控制信道PDCCH的专用搜索空间UESS中监听下行控制信息DCI之后,还包括:
    若所述终端设备在所述PDCCH的UESS监听到DCI,则根据所述DCI中的第一指示信息,确定所述DCI为第五DCI,或者所述DCI为第六DCI;
    所述第一指示信息用于指示DCI格式标识或TTI的时间长度。
  13. 根据权利要求8-12任一所述的方法,其特征在于,若所述终端设备被配置增强物理下行控制信道EPDCCH监听,所述方法还包括:
    所述终端设备在增强物理下行控制信道EPDCCH的专用搜索空间UESS中监听下行控制信息DCI;
    所述终端设备根据在所述EPDCCH的UESS监听到第四DCI,确定具有第一TTI的数据传输的调度信息。
  14. 根据权利要求8-13任一所述的方法,其特征在于,若所述CSS和所述PDCCH的UESS存在重叠的搜索空间,所述终端设备根据在所述PDCCH的UESS监听到第五DCI确定具有第二TTI的数据传输的调度信息,和/或,所述终端设备根据在所述PDCCH的UESS监听到第六DCI确定具有第三TTI的的数据传输的调度信息,包括:
    所述终端设备根据在所述PDCCH的UESS中的除所述重叠的搜索空间外的搜索空间中监听到第五DCI,确定具有第二TTI的数据传输的调度信息;和/或,
    所述终端设备根据在所述PDCCH的UESS中的除所述重叠的搜索空间外的搜索空间中监听到第六DCI,确定具有第三TTI的的数据传输的调度信息。
  15. 一种下行控制信息的接收方法,其特征在于,所述方法包括:
    终端设备接收第七下行控制信息DCI,所述第七DCI包括第一资源指示信息,所述第一资源指示信息用于指示至少一个TTI上的可用时频域资源;
    所述终端设备根据所述可用时频域资源,确定所述终端设备在所述至少一个TTI上进行数据传输的时频域资源。
  16. 根据权利要求15所述的方法,其特征在于,所述可用时频域资源包括N个子时频域资源,所述终端设备根据所述可用时频域资源,确定所述终端设备在所述至少一个TTI上进行数据传输的时频域资源,包括:
    所述终端设备接收第八DCI,所述第八DCI包括占用指示信息;
    所述终端设备根据所述占用指示信息,在所述N个子时频域资源中,确定一个或多个子时频域资源的组合,作为所述终端设备在所述至少一个TTI上进行数据传输的时频域资源;
    其中,N为大于1的正整数,N为预定义或高层信令配置的,所述TTI的时间长度小于1毫秒。
  17. 根据权利要求16所述的方法,其特征在于,所述终端设备根据所述占用指示信息,在所述N个子时频域资源中,确定一个或多个子时频域资源的组合,作为所述终端设备在所述至少一个TTI上进行数据传输的时频域资源之前,还包括:
    所述终端设备根据所述可用时频域资源的频域资源量M和所述N,确定第j子时频域资源的频域资源量为小于等于M/N的最大整数,第N子时频域资源的频域资源量为在所述可用时频域资源的频域资源量M中减去第1子时频域资源至第N-1子时频域资源的频域资源量的剩余频域资源量;
    其中,j的取值为从1至N-1的所有整数,M为大于N的正整数。
  18. 根据权利要求15-17任一所述的方法,其特征在于,所述第七DCI还包括频域指示信息,所述方法还包括:
    所述终端设备根据所述频域指示信息,确定在所述至少一个TTI上进行数据传输的时频域资源的频域均相同。
  19. 根据权利要求15-18任一所述的方法,其特征在于,所述第七DCI还包括调制编码方式信息,所述方法还包括:
    所述终端设备根据所述调制编码方式信息,确定在所述至少一个TTI上进行数据传输的调制编码方式均相同。
  20. 一种下行控制信息的发送方法,其特征在于,包括:
    网络设备在公共搜索空间CSS中发送第一下行控制信息DCI,所述第一DCI包含具有第一传输时间间隔TTI的数据传输的调度信息;和/或
    所述网络设备在物理下行控制信道PDCCH的专用搜索空间UESS中发 送第二DCI和/或第三DCI;所述第二DCI包含具有第二TTI的数据传输的调度信息,所述第三DCI包含具有第三TTI的数据传输的调度信息;
    其中,所述第一TTI的时间长度大于所述第三TTI的时间长度,所述第一TTI的时间长度等于所述第二TTI的时间长度。
  21. 根据权利要求20所述的方法,其特征在于,所述第一DCI用于指示数据传输的响应时间为第一响应时间,所述第二DCI用于指示数据传输的响应时间为第二响应时间,所述第三DCI用于指示数据传输的响应时间为第三响应时间,所述第一响应时间的时间长度大于所述第二响应时间的时间长度;
    所述响应时间为终端设备自接收到下行数据所在TTI起,至发送所述下行数据传输对应的混合自动重传请求HARQ信息所在TTI的间隔时间,或所述终端设备自接收到上行调度信息所在TTI起,至发送所述上行调度信息对应的上行数据所在TTI的间隔时间。
  22. 根据权利要求21所述的方法,其特征在于,所述第一响应时间的时间长度为所述第一TTI的时间长度的4倍;所述第二响应时间的时间长度为所述第一TTI的时间长度的3倍或2倍。
  23. 根据权利要求21所述的方法,其特征在于,所述第三响应时间的时间长度为K个所述第三TTI的时间长度,K为大于1的正整数。
  24. 根据权利要求20-23中任一所述的方法,其特征在于,所述第一DCI不包含第一指示信息,所述第二DCI和所述第三DCI均包含所述第一指示信息,所述第一指示信息用于指示DCI格式标识或TTI的时间长度。
  25. 根据权利要求20-24中任一所述的方法,其特征在于,所述方法还包括:
    所述网络设备向所述终端设备发送用于配置增强物理下行控制信道EPDCCH监听的配置信息;
    所述网络设备在所述EPDCCH的UESS中发送所述第一DCI。
  26. 根据权利要求20-25中任一所述的方法,其特征在于,若所述CSS和所述PDCCH的UESS存在重叠的搜索空间,所述网络设备在物理下行控制信道PDCCH的专用搜索空间UESS中发送第二DCI和/或第三DCI,包括:
    所述网络设备在PDCCH的UESS中的除所述重叠的搜索空间外的搜索 空间中,发送所述第二DCI和/或所述第三DCI。
  27. 一种下行控制信息的发送方法,其特征在于,包括:
    网络设备在物理下行控制信道PDCCH的专用搜索空间UESS中发送第五下行控制信息DCI和/或第六DCI;
    其中,所述第五DCI和第六DCI均包含第一指示信息,所述第一指示信息用于指示DCI格式标识或传输时间间隔TTI的时间长度。
  28. 根据权利要求27所述的方法,其特征在于,所述方法还包括:
    所述网络设备在PDCCH的公共搜索空间CSS中发送第四DCI;
    其中,所述第四DCI不包含所述第一指示信息。
  29. 一种下行控制信息的发送方法,其特征在于,所述方法包括:
    网络设备发送第七下行控制信息DCI,所述第七DCI包括第一资源指示信息,所述第一资源指示信息用于指示至少一个TTI上的可用时频域资源。
  30. 根据权利要求29所述的方法,其特征在于,所述可用时频域资源包括N个子时频域资源,所述方法还包括:
    所述网络设备发送第八DCI,所述第八DCI包括占用指示信息,所述占用指示信息用于在所述N个子时频域资源中,确定一个或多个子时频域资源的组合,作为终端设备在所述至少一个TTI上进行数据传输的时频域资源;
    其中,N为大于1的正整数,N为预定义或高层信令配置的,所述TTI的时间长度小于1毫秒。
  31. 根据权利要求30所述的方法,其特征在于,所述可用时频域资源的频域资源量为M,所述N个子时频域资源中的第j子时频域资源的频域资源量为小于等于M/N的最大整数,第N子时频域资源的频域资源量为在所述可用时频域资源的频域资源量M中减去第1子时频域资源至第N-1子时频域资源的频域资源量的剩余频域资源量;
    其中,j的取值为从1至N-1的所有整数,M为大于N的正整数。
  32. 根据权利要求29-31任一所述的方法,其特征在于,所述第七DCI还包括频域指示信息,所述频域指示信息用于确定在所述至少一个TTI上进行数据传输的时频域资源的频域均相同。
  33. 根据权利要求29-32任一所述的方法,其特征在于,所述第七DCI还包括调制编码方式信息,所述调制编码方式信息用于确定在所述至少一个 TTI上进行数据传输的调制编码方式均相同。
  34. 一种下行控制信息的监听装置,其特征在于,所述装置包括:
    监听模块,用于在公共搜索空间CSS中监听第一下行控制信息DCI,所述第一DCI包含具有第一传输时间间隔TTI的数据传输的调度信息;
    所述监听模块还用于,在物理下行控制信道PDCCH的专用搜索空间UESS中监听第二DCI和/或第三DCI;所述第二DCI包含具有第二TTI的数据传输的调度信息,所述第三DCI包含具有第三TTI的数据传输的调度信息;
    其中,所述第一TTI的时间长度大于所述第三TTI的时间长度,所述第一TTI的时间长度等于所述第二TTI的时间长度。
  35. 根据权利要求34所述的装置,其特征在于,所述第一DCI用于指示数据传输的响应时间为第一响应时间,所述第二DCI用于指示数据传输的响应时间为第二响应时间,所述第三DCI用于指示数据传输的响应时间为第三响应时间,所述第一响应时间的时间长度大于所述第二响应时间的时间长度;
    所述响应时间为所述装置自接收到下行数据所在TTI起,至发送所述下行数据传输对应的混合自动重传请求HARQ信息所在TTI的间隔时间,或所述装置自接收到上行调度信息所在TTI起,至发送所述上行调度信息对应的上行数据所在TTI的间隔时间。
  36. 根据权利要求35所述的装置,其特征在于,所述第一响应时间的时间长度为所述第一TTI的时间长度的4倍;所述第二响应时间的时间长度为所述第一TTI的时间长度的3倍或2倍。
  37. 根据权利要求35所述的装置,其特征在于,所述第三响应时间的时间长度为K个所述第三TTI的时间长度,K为大于1的正整数。
  38. 根据权利要求34-37中任一所述的装置,其特征在于,所述第一DCI不包含第一指示信息,所述第二DCI和所述第三DCI均包含所述第一指示信息,所述第一指示信息用于指示DCI格式标识或TTI的时间长度。
  39. 根据权利要求34-38中任一所述的装置,其特征在于,若所述装置被配置增强物理下行控制信道EPDCCH监听,所述监听模块还用于,在所述EPDCCH的UESS中监听所述第一DCI。
  40. 根据权利要求34-39中任一所述的装置,其特征在于,若所述CSS 和所述PDCCH的UESS存在重叠的搜索空间,所述监听模块还用于,在PDCCH的UESS中的除所述重叠的搜索空间外的搜索空间中,监听所述第二DCI和/或所述第三DCI。
  41. 一种下行控制信息的接收装置,其特征在于,包括:
    监听模块,用于在公共搜索空间CSS和物理下行控制信道PDCCH的专用搜索空间UESS中监听下行控制信息DCI;
    处理模块,用于根据在所述CSS监听到第四DCI,确定具有第一传输时间间隔TTI的数据传输的调度信息,和/或
    根据在所述PDCCH的UESS监听到第五DCI,确定具有第二TTI的数据传输的调度信息,和/或
    根据在所述PDCCH的UESS监听到第六DCI,确定具有第三TTI的数据传输的调度信息;
    其中,所述第一TTI的时间长度大于所述第三TTI的时间长度,所述第一TTI的时间长度等于所述第二TTI的时间长度。
  42. 根据权利要求41所述的装置,其特征在于,所述处理模块还用于:
    根据在所述CSS监听到第四DCI,确定数据传输的响应时间为第四响应时间,和/或
    根据在所述PDCCH的UESS监听到第五DCI,确定数据传输的响应时间为第五响应时间,和/或
    根据在所述PDCCH的UESS监听到第六DCI,确定数据传输的响应时间为第六响应时间;
    其中,所述第四响应时间的时间长度大于所述第五响应时间的时间长度,所述响应时间为所述装置自接收到下行数据所在TTI起,至发送所述下行数据对应的混合自动重传请求HARQ信息所在TTI的间隔时间,或所述装置自接收到上行调度信息所在TTI起,至发送所述上行调度信息对应的上行数据所在TTI的间隔时间。
  43. 根据权利要求42所述的装置,其特征在于,所述第四响应时间的时间长度为所述第一TTI的时间长度的4倍;所述第五响应时间的时间长度为所述第一TTI的时间长度的3倍或2倍。
  44. 根据权利要求42所述的装置,其特征在于,所述第六响应时间的 时间长度为K个所述第三TTI的时间长度,K为大于1的正整数。
  45. 根据权利要求41-44任一所述的装置,其特征在于,所述接收模块还用于:
    若所述监听模块在所述PDCCH的UESS监听到DCI,则根据所述DCI中的第一指示信息,确定所述DCI为第五DCI,或者所述DCI为第六DCI;
    所述第一指示信息用于指示DCI格式标识或TTI的时间长度。
  46. 根据权利要求41-45任一所述的装置,其特征在于,若所述装置被配置增强物理下行控制信道EPDCCH监听,所述监听模块还用于,在增强物理下行控制信道EPDCCH的专用搜索空间UESS中监听下行控制信息DCI;
    所述接收模块还用于,根据在所述EPDCCH的UESS监听到第四DCI,确定具有第一TTI的数据传输的调度信息。
  47. 根据权利要求41-46任一所述的装置,其特征在于,若所述CSS和所述PDCCH的UESS存在重叠的搜索空间,所述接收模块还用于:
    根据在所述PDCCH的UESS中的除所述重叠的搜索空间外的搜索空间中监听到第五DCI,确定具有第二TTI的数据传输的调度信息;和/或,
    根据在所述PDCCH的UESS中的除所述重叠的搜索空间外的搜索空间中监听到第六DCI,确定具有第三TTI的的数据传输的调度信息。
  48. 一种下行控制信息的接收装置,其特征在于,所述装置包括:
    接收模块,用于接收第七下行控制信息DCI,所述第七DCI包括第一资源指示信息,所述第一资源指示信息用于指示至少一个TTI上的可用时频域资源;
    处理模块,用于根据所述可用时频域资源,确定所述装置在所述至少一个TTI上进行数据传输的时频域资源。
  49. 根据权利要求48所述的装置,其特征在于,所述可用时频域资源包括N个子时频域资源,所述处理模块具体用于:
    接收第八DCI,所述第八DCI包括占用指示信息;
    根据所述占用指示信息,在所述N个子时频域资源中,确定一个或多个子时频域资源的组合,作为所述装置在所述至少一个TTI上进行数据传输的时频域资源;
    其中,N为大于1的正整数,N为预定义或高层信令配置的,所述TTI 的时间长度小于1毫秒。
  50. 根据权利要求49所述的装置,其特征在于,所述处理模块还用于:
    根据所述可用时频域资源的频域资源量M和所述N,确定第j子时频域资源的频域资源量为小于等于M/N的最大整数,第N子时频域资源的频域资源量为在所述可用时频域资源的频域资源量M中减去第1子时频域资源至第N-1子时频域资源的频域资源量的剩余频域资源量;
    其中,j的取值为从1至N-1的所有整数,M为大于N的正整数。
  51. 根据权利要求48-50任一所述的装置,其特征在于,所述第七DCI还包括频域指示信息,所述处理模块还用于:
    根据所述频域指示信息,确定在所述至少一个TTI上进行数据传输的时频域资源的频域均相同。
  52. 根据权利要求48-51任一所述的装置,其特征在于,所述第七DCI还包括调制编码方式信息,所述处理模块还用于:
    根据所述调制编码方式信息,确定在所述至少一个TTI上进行数据传输的调制编码方式均相同。
  53. 一种下行控制信息的发送装置,其特征在于,包括:
    发送模块,用于在公共搜索空间CSS中发送第一下行控制信息DCI,所述第一DCI包含具有第一传输时间间隔TTI的数据传输的调度信息;和/或
    在物理下行控制信道PDCCH的专用搜索空间UESS中发送第二DCI和/或第三DCI;所述第二DCI包含具有第二TTI的数据传输的调度信息,所述第三DCI包含具有第三TTI的数据传输的调度信息;
    其中,所述第一TTI的时间长度大于所述第三TTI的时间长度,所述第一TTI的时间长度等于所述第二TTI的时间长度。
  54. 根据权利要求53所述的装置,其特征在于,所述第一DCI用于指示数据传输的响应时间为第一响应时间,所述第二DCI用于指示数据传输的响应时间为第二响应时间,所述第三DCI用于指示数据传输的响应时间为第三响应时间,所述第一响应时间的时间长度大于所述第二响应时间的时间长度;
    所述响应时间为下行控制信息的接收装置自接收到下行数据所在TTI起,至发送所述下行数据传输对应的混合自动重传请求HARQ信息所在TTI 的间隔时间,或所述下行控制信息的接收装置自接收到上行调度信息所在TTI起,至发送所述上行调度信息对应的上行数据所在TTI的间隔时间。
  55. 根据权利要求54所述的装置,其特征在于,所述第一响应时间的时间长度为所述第一TTI的时间长度的4倍;所述第二响应时间的时间长度为所述第一TTI的时间长度的3倍或2倍。
  56. 根据权利要求54所述的装置,其特征在于,所述第三响应时间的时间长度为K个所述第三TTI的时间长度,K为大于1的正整数。
  57. 根据权利要求53-56中任一所述的装置,其特征在于,所述第一DCI不包含第一指示信息,所述第二DCI和所述第三DCI均包含所述第一指示信息,所述第一指示信息用于指示DCI格式标识或TTI的时间长度。
  58. 根据权利要求53-57中任一所述的装置,其特征在于,所述发送模块还用于:
    向下行控制信息的接收装置发送用于配置增强物理下行控制信道EPDCCH监听的配置信息;
    在所述EPDCCH的UESS中发送所述第一DCI。
  59. 根据权利要求53-58中任一所述的装置,其特征在于,若所述CSS和所述PDCCH的UESS存在重叠的搜索空间,所述发送模块具体用于:
    在PDCCH的UESS中的除所述重叠的搜索空间外的搜索空间中,发送所述第二DCI和/或所述第三DCI。
  60. 一种下行控制信息的发送装置,其特征在于,包括:
    发送模块,用于在物理下行控制信道PDCCH的专用搜索空间UESS中发送第五下行控制信息DCI和/或第六DCI;
    其中,所述第五DCI和第六DCI均包含第一指示信息,所述第一指示信息用于指示DCI格式标识或传输时间间隔TTI的时间长度。
  61. 根据权利要求60所述的装置,其特征在于,所述发送装置还用于:
    在PDCCH的公共搜索空间CSS中发送第四DCI;
    其中,所述第四DCI不包含所述第一指示信息。
  62. 一种下行控制信息的发送装置,其特征在于,包括:
    发送模块,用于发送第七下行控制信息DCI,所述第七DCI包括第一资源指示信息,所述第一资源指示信息用于指示至少一个TTI上的可用时频域 资源。
  63. 根据权利要求62所述的装置,其特征在于,所述可用时频域资源包括N个子时频域资源,所述发送模块还用于:
    发送第八DCI,所述第八DCI包括占用指示信息,所述占用指示信息用于在所述N个子时频域资源中,确定一个或多个子时频域资源的组合,作为下行控制信息的接收装置在所述至少一个TTI上进行数据传输的时频域资源;
    其中,N为大于1的正整数,N为预定义或高层信令配置的,所述TTI的时间长度小于1毫秒。
  64. 根据权利要求63所述的装置,其特征在于,所述可用时频域资源的频域资源量为M,所述N个子时频域资源中的第j子时频域资源的频域资源量为小于等于M/N的最大整数,第N子时频域资源的频域资源量为在所述可用时频域资源的频域资源量M中减去第1子时频域资源至第N-1子时频域资源的频域资源量的剩余频域资源量;
    其中,j的取值为从1至N-1的所有整数,M为大于N的正整数。
  65. 根据权利要求62-64任一所述的装置,其特征在于,所述第七DCI还包括频域指示信息,所述频域指示信息用于确定在所述至少一个TTI上进行数据传输的时频域资源的频域均相同。
  66. 根据权利要求62-65任一所述的装置,其特征在于,所述第七DCI还包括调制编码方式信息,所述调制编码方式信息用于确定在所述至少一个TTI上进行数据传输的调制编码方式均相同。
PCT/CN2016/100969 2016-09-29 2016-09-29 下行控制信息监听、发送、接收方法及装置 WO2018058485A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2016/100969 WO2018058485A1 (zh) 2016-09-29 2016-09-29 下行控制信息监听、发送、接收方法及装置
CN201680089268.4A CN109690988A (zh) 2016-09-29 2016-09-29 下行控制信息监听、发送、接收方法及装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/100969 WO2018058485A1 (zh) 2016-09-29 2016-09-29 下行控制信息监听、发送、接收方法及装置

Publications (1)

Publication Number Publication Date
WO2018058485A1 true WO2018058485A1 (zh) 2018-04-05

Family

ID=61762979

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/100969 WO2018058485A1 (zh) 2016-09-29 2016-09-29 下行控制信息监听、发送、接收方法及装置

Country Status (2)

Country Link
CN (1) CN109690988A (zh)
WO (1) WO2018058485A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020087326A1 (zh) * 2018-10-31 2020-05-07 Oppo广东移动通信有限公司 Pdcch的监听方法和设备
CN111148125A (zh) * 2018-11-02 2020-05-12 维沃移动通信有限公司 下行信息的监听方法、配置方法、终端及网络设备
CN111277381A (zh) * 2019-01-18 2020-06-12 维沃软件技术有限公司 物理下行控制信道监听、监听配置方法、终端及网络设备
WO2020164136A1 (zh) * 2019-02-15 2020-08-20 华为技术有限公司 一种信息发送方法及装置
WO2022206893A1 (zh) * 2021-04-02 2022-10-06 华为技术有限公司 一种通信方法及通信装置

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112218391A (zh) * 2019-07-12 2021-01-12 普天信息技术有限公司 数据传输方法、网络侧设备及移动终端
CN112398572A (zh) * 2019-08-14 2021-02-23 华为技术有限公司 一种通信方法及装置
CN114696970A (zh) * 2020-12-25 2022-07-01 展讯通信(上海)有限公司 指示物理下行共享信道监听方法及装置、介质
WO2023184455A1 (zh) * 2022-03-31 2023-10-05 北京小米移动软件有限公司 一种通信方法、通信装置及通信设备

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103002477A (zh) * 2011-09-15 2013-03-27 华为技术有限公司 传输调度信息的方法、用户设备和基站
US20140369242A1 (en) * 2013-06-18 2014-12-18 Samsung Electronics Co., Ltd. Methods of ul tdm for inter-enodeb carrier aggregation
CN104468030A (zh) * 2014-08-26 2015-03-25 上海华为技术有限公司 一种数据传输方法、用户设备及基站
CN105264995A (zh) * 2013-03-28 2016-01-20 三星电子株式会社 Tdd通信系统中用于上行链路-下行链路配置的适应的下行链路信令
WO2016127488A1 (zh) * 2015-02-12 2016-08-18 中兴通讯股份有限公司 配置信息通知方法、获取方法、装置、基站及终端

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE602004012702T2 (de) * 2004-01-22 2009-04-16 Matsushita Electric Industrial Co., Ltd., Kadoma-shi Verfahren zur HARQ-Wiederholungszeitsteuerung
US8942208B2 (en) * 2009-06-22 2015-01-27 Qualcomm Incorporated Wireless communication having reduced feedback delay

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103002477A (zh) * 2011-09-15 2013-03-27 华为技术有限公司 传输调度信息的方法、用户设备和基站
CN105264995A (zh) * 2013-03-28 2016-01-20 三星电子株式会社 Tdd通信系统中用于上行链路-下行链路配置的适应的下行链路信令
US20140369242A1 (en) * 2013-06-18 2014-12-18 Samsung Electronics Co., Ltd. Methods of ul tdm for inter-enodeb carrier aggregation
CN104468030A (zh) * 2014-08-26 2015-03-25 上海华为技术有限公司 一种数据传输方法、用户设备及基站
WO2016127488A1 (zh) * 2015-02-12 2016-08-18 中兴通讯股份有限公司 配置信息通知方法、获取方法、装置、基站及终端

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020087326A1 (zh) * 2018-10-31 2020-05-07 Oppo广东移动通信有限公司 Pdcch的监听方法和设备
CN111148125A (zh) * 2018-11-02 2020-05-12 维沃移动通信有限公司 下行信息的监听方法、配置方法、终端及网络设备
CN111148125B (zh) * 2018-11-02 2023-10-27 维沃移动通信有限公司 下行信息的监听方法、配置方法、终端及网络设备
CN111277381A (zh) * 2019-01-18 2020-06-12 维沃软件技术有限公司 物理下行控制信道监听、监听配置方法、终端及网络设备
WO2020164136A1 (zh) * 2019-02-15 2020-08-20 华为技术有限公司 一种信息发送方法及装置
CN113424594A (zh) * 2019-02-15 2021-09-21 华为技术有限公司 一种信息发送方法及装置
WO2022206893A1 (zh) * 2021-04-02 2022-10-06 华为技术有限公司 一种通信方法及通信装置

Also Published As

Publication number Publication date
CN109690988A (zh) 2019-04-26

Similar Documents

Publication Publication Date Title
US11924849B2 (en) Method and apparatus for transmitting control and data information in wireless cellular communication system
KR101959123B1 (ko) 무선 통신 시스템에서의 서로 다른 전송 시간 간격들을 통한 제어 채널들의 원활한 탐지
WO2018058485A1 (zh) 下行控制信息监听、发送、接收方法及装置
CN110476385B (zh) 用于接收下行链路数据传输的方法和装置
JP6755181B2 (ja) ワイヤレス端末装置間通信のスケジューリング
TWI708498B (zh) 用於指示動態子框架類型的技術
JP6604524B2 (ja) データ伝送のための方法及び端末
CN111108716B (zh) 用于在无线通信系统中发送和接收控制信息的方法和装置
CN109565397A (zh) 报告信道状态信息的方法和装置
KR20220063224A (ko) 업링크 제어 정보를 멀티플렉싱하는 방법 및 관련 디바이스
JP2015537449A (ja) 情報送信方法、ユーザ装置及び基地局
US10470177B2 (en) Method to determine the starting subframe of data channel
TW201412166A (zh) 方法及設備
TW201320692A (zh) 資料傳送方法及使用此方法的基地台及用戶端設備
WO2014179958A1 (en) Method, apparatus and computer program for wireless communications
WO2012149848A1 (zh) 一种数据传输的方法、系统和设备
US11277860B2 (en) Rate-matching behavior for overlapping resource block (RB) sets
WO2019052455A1 (zh) 数据信道参数配置方法及装置
KR102322471B1 (ko) 다운링크 데이터 송신에 사용되는 자원을 결정 및 구성하는 방법, 단말 및 기지국
WO2016123772A1 (zh) 一种传输业务数据的方法和装置
WO2018171352A1 (zh) 一种数据传输方法及终端
WO2018054147A1 (zh) 一种指示、确定下行控制信息格式的方法及装置
US20220330299A1 (en) Method and apparatus for repetitive transmission of downlink control information in network cooperative communications
TW202241105A (zh) 用於實體下行鏈路共享通道上的下行鏈路控制資訊的回饋技術
JP2021100250A (ja) データ伝送のための方法及び端末

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16917237

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16917237

Country of ref document: EP

Kind code of ref document: A1