WO2018058482A1 - 触控手写笔 - Google Patents

触控手写笔 Download PDF

Info

Publication number
WO2018058482A1
WO2018058482A1 PCT/CN2016/100962 CN2016100962W WO2018058482A1 WO 2018058482 A1 WO2018058482 A1 WO 2018058482A1 CN 2016100962 W CN2016100962 W CN 2016100962W WO 2018058482 A1 WO2018058482 A1 WO 2018058482A1
Authority
WO
WIPO (PCT)
Prior art keywords
touch
stylus
module
main control
component
Prior art date
Application number
PCT/CN2016/100962
Other languages
English (en)
French (fr)
Inventor
杜灿鸿
Original Assignee
深圳市汇顶科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市汇顶科技股份有限公司 filed Critical 深圳市汇顶科技股份有限公司
Priority to EP16900772.1A priority Critical patent/EP3330840B1/en
Priority to CN201690000163.2U priority patent/CN206178720U/zh
Priority to PCT/CN2016/100962 priority patent/WO2018058482A1/zh
Priority to KR1020177033699A priority patent/KR20180050253A/ko
Priority to US15/812,354 priority patent/US10345929B2/en
Publication of WO2018058482A1 publication Critical patent/WO2018058482A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/033Pointing devices displaced or positioned by the user, e.g. mice, trackballs, pens or joysticks; Accessories therefor
    • G06F3/0354Pointing devices displaced or positioned by the user, e.g. mice, trackballs, pens or joysticks; Accessories therefor with detection of 2D relative movements between the device, or an operating part thereof, and a plane or surface, e.g. 2D mice, trackballs, pens or pucks
    • G06F3/03545Pens or stylus

Definitions

  • the present application relates to an electronic device, and more particularly to a stylus.
  • the touch stylus is a commonly used tool in the touch mobile terminal, which can facilitate the user to write normally on the display screen of the touch mobile terminal.
  • the touch stylus is mainly divided into two types: a pressure sensitive touch stylus and a pressureless touch stylus, and the pressure sensitive touch stylus has a writing pressure sensing function, so that when the user writes hard The writing on the screen will automatically become thicker, and when the user's writing intensity becomes small, the writing on the screen will be automatically thinned, which makes the user's writing experience closer to the writing effect on the paper, and thus is widely welcomed.
  • the pressure of the pen tip 11 is transmitted to the pressure sensor 12, thereby changing the output signal of the pressure sensor 12, and the output signal of the pressure sensor 12 is sent to the main control module 14 through the connection line 15, and the main control module 14 can be based on the output signal.
  • a technical problem to be solved by some embodiments of the present invention is to provide a touch stylus with a pressure detecting function, which can output different writing effects according to pressure, thereby simplifying the assembly process of the touch stylus while improving the user experience. And reduce the production cost of the stylus.
  • An embodiment of the present invention provides a touch stylus comprising: a touch member disposed in a housing of the stylus for writing, and a touch change function according to the size of the writing force of the touch member on the touch screen a main control module for the thickness of the handwriting on the screen, and a resisting member fixed in the outer casing of the stylus for limiting the movement of the touch member;
  • the touch member and the resisting member are elastically connected, and the head of the touch member is exposed outside the outer casing to form a tip of the touch stylus;
  • the touch stylus further includes: a magnetic component disposed in the outer casing and fixed on the touch component to move along with the movement of the pen head, and disposed in the outer casing for detecting magnetic field strength of the magnetic component Detection module;
  • the magnetic component and the detecting module are oppositely disposed and spaced apart from each other in the housing, and the detecting module is electrically connected to the main control module, and the touch component is on the touch screen.
  • the writing force is at a preset ratio to the magnetic field strength of the magnetic component detected by the detecting module.
  • the touch stylus is composed of a touch component, a main control module, a resisting member, a magnetic component, and a detecting module, and the touch component is resisted by the resisting member, and the resisting member is Elastically connected, and the head is exposed outside the outer casing to form a writing head, and the magnetic component is fixed on the touching member, and at the same time, since the magnetic component is separated from the detecting module, the magnetic component and the detecting module are pressed after the tip of the touching member is pressed
  • the spacing between the touches is constantly changing due to the pressure of the touch member, thereby changing the strength of the magnetic field detected by the detecting module, and at the same time, due to the magnetic field strength detected by the detecting module.
  • the touch component has a predetermined proportional relationship between the writing forces on the touch screen, so that the detecting module can obtain the writing force of the touch component on the touch screen according to the detected magnetic field strength around the magnetic component and the proportional relationship.
  • the size is such that the main control module can change the thickness of the handwriting on the touch screen according to the size of the writing force, that is, output different writing effects according to the pressure of the touch component, without using a pressure sensor, thereby improving
  • the assembly process of the touch stylus is simplified, the production cost of the stylus is reduced, and the yield of the stylus can be improved.
  • the housing has a first cavity for accommodating the main control module, the detection module and the magnetic component, and for accommodating the touch component a first cavity; wherein the first cavity and the second cavity are separated from each other by the abutting member. And the tail portion of the touch member passes through the resisting member into the first cavity of the outer casing and is fixedly connected with the magnetic component.
  • the inner portion of the outer casing is divided into two cavities by the abutting member, and the tail portion of the touch member enters the first cavity through the abutting member from the second cavity, and the portion is connected with the magnetic component to realize the detecting module to the magnetic component. Detection of magnetic field strength.
  • the touch member includes a main body portion having a pen tip, and an elastic member connecting the main body portion and the abutting member; wherein the main body portion is elastically coupled to the abutting member by the elastic member. Since the main body portion of the touch member is elastically connected to the resisting member through the elastic member, the elastic member is compressed by the resilient member, so that when the touch member is written on the touch screen, the elastic member is compressed due to the pressure of the main body of the touch member, so that The tail of the touch component drives the magnetic component to move toward the side of the detecting module to change the spacing between the magnetic component and the detecting module, thereby changing the intensity of the magnetic field detected by the detecting module.
  • the elastic member and the main body portion are integrally or detachably connected.
  • the elastic member is an elastic gasket. Since the elastic gasket has good resilience performance, and has a simple structure and a wide source, the elastic member can be provided with excellent elastic expansion and contraction performance, and the assembly connection between the main body portion and the elastic member can be facilitated, and the production cost can be reduced.
  • the main control module is a main control board
  • the detection module is fixed on the main control board and electrically connected to the main control board.
  • the staff can realize the communication between the detection module and the main control module without connecting the detection module and the main control module by using the connecting line, thereby simplifying the assembly process and improving the production efficiency and the yield.
  • the direct fixing method can effectively improve the connection strength between the detection module and the main control board, and prevent the circuit between the detection module and the main control board from being in poor contact after prolonged use.
  • the detecting module includes a sensor for detecting a magnetic field strength of the magnetic component, and is electrically connected to the sensor for calculating the touch component on the touch screen according to the magnetic field strength measured by the sensor.
  • Pressure-sized signal processing sub-module Since the detecting module is composed of a sensor and a signal processing sub-module, and the magnetic field strength of the magnetic component can be detected by the sensor, the signal processing sub-module can calculate the pressure of the touch component on the touch screen according to the magnetic field strength measured by the sensor. The size is so that the main control module can accurately change the handwriting thickness on the touch screen according to the pressure calculated by the signal processing sub-module.
  • the signal processing submodule includes a signal amplifying circuit for amplifying a signal output by the sensor, and an analog signal connected to the signal amplifying circuit for converting the analog signal output by the signal amplifying circuit into a digital And an analog-to-digital converter of the signal, and a microprocessor connected to the analog-to-digital converter for calculating a pressure of the touch control on the touch screen according to the digital signal output by the analog-to-digital converter.
  • the signal processing sub-module is composed of a signal amplifying circuit, an analog-to-digital converter and a microprocessor, and the signal amplifying circuit is connected to the sensor, and the analog-to-digital converter is respectively connected to the signal amplifying circuit and the microprocessor, thereby working in practice
  • the sensor may output a corresponding analog signal to the signal processing sub-module according to the detected magnetic field strength of the magnetic component, and the signal processing sub-module may first amplify the analog signal by the signal amplifying circuit after receiving the analog signal.
  • the control module can accurately change the thickness of the handwriting on the touch screen according to the pressure value.
  • the senor is a Hall sensor. Since the Hall sensor has high sensitivity and can output a corresponding signal according to the detected change of the magnetic field strength, it can ensure that the sensor can accurately convert the change of the magnetic field strength caused by the magnetic component into a corresponding signal transmission. To signal The sub-module is processed to facilitate precise control of the writing thickness on the touch screen by the subsequent main control module.
  • the magnetic component is a permanent magnet. Because the permanent magnet can not only generate the magnetic field permanently, but also has a wide range of sources, it can adapt to various environments and is not easy to cause damage. Therefore, the production cost of the touch stylus can be reduced while ensuring the reliability of the touch stylus.
  • the touch stylus further includes a power source detachably mounted in the outer casing; wherein the power source is respectively The main control module and the detection module are electrically connected.
  • FIG. 1 is a schematic structural diagram of a touch stylus in the prior art provided by the present invention.
  • FIG. 2 is a schematic structural diagram of a touch stylus provided in a first embodiment of the present invention.
  • FIG. 3 is a block diagram of a circuit module of a touch stylus provided in the first embodiment of the present invention.
  • Fig. 4 is a view showing the operation of the sensor provided in the first embodiment of the present invention.
  • Fig. 5 is a graph showing the relationship between the magnetic field intensity detected by the sensor and the induced voltage of the sensor provided in the first embodiment of the present invention.
  • Fig. 6 is a graph showing the proportional relationship between the pressure applied to the main body portion and the displacement of the main body portion provided in the first embodiment of the present invention.
  • Fig. 7 is a graph showing the relationship between the displacement of the main body portion and the magnetic field intensity detected by the sensor provided in the first embodiment of the present invention.
  • Fig. 8 is a graph showing the relationship between the pressure applied to the main body portion and the induced voltage of the sensor provided in the first embodiment of the present invention.
  • a first embodiment of the present invention provides a touch stylus, as shown in FIGS. 2 and 3, including a touch member 21, a main control module 22, a resisting member 23, and a magnetic member 24 in a housing 20 in which a stylus is disposed.
  • the detecting module 25 wherein the touch component 21 is used for writing on the touch screen by the user, and is elastically connected to the resisting member 23, and the head of the touching member 21 is exposed outside the outer casing 20 to form a writing head of the touch stylus.
  • the main control module 22 is configured to change the handwriting thickness on the touch screen according to the size of the writing force of the touch component 21 on the touch screen.
  • the resisting member 23 is fixed in the outer casing 20 of the stylus for limiting the movement of the touch member 21.
  • the magnetic member 24 is fixed to the touch member 21 and is movable with the movement of the writing head.
  • the detecting module 25 and the magnetic component 24 are separated from each other, and the detecting module 25 is electrically connected to the main control module 22 .
  • the writing force of the touch component 21 on the touch screen and the magnetic field strength of the magnetic component 24 detected by the detecting module 25 are at a preset ratio.
  • the detection module 25 and the magnetic component 24 are disposed opposite each other within the outer casing 20.
  • the touch stylus further includes a power source 28 detachably mounted in the outer casing 20.
  • the power source 28 is electrically connected to the main control module 22 and the detection module 25 respectively after being mounted into the outer casing 20.
  • the touch stylus is composed of the touch component 21, the main control module 22, the resisting member 23, the magnetic component 24 and the detecting module 25, and the touching member 21 is resisted by the resisting member 23, and the resisting member 23 is
  • the head is elastically connected, and the head is exposed outside the outer casing 20 to form a pen head, and the magnetic member 24 is fixed on the touch member 21, and since the magnetic member 24 and the detecting module 25 are spaced apart from each other, after the tip of the touch member 21 is pressed
  • the spacing between the magnetic component 24 and the detecting module 25 is constantly changed due to the pressure of the touch component 21, thereby changing the strength of the magnetic field detected by the detecting module 25, and at the same time, due to the magnetic field strength detected by the detecting module 25.
  • the touch member 21 is between the writing forces on the touch screen a predetermined proportional relationship, so that the main control module 22 can obtain the writing force of the touch component 21 on the touch screen according to the detected magnetic field strength around the magnetic component 24 and the proportional relationship, so that the main control module 22 can According to the size of the writing force, the change of the handwriting thickness on the touch screen is realized, that is, different writing effects are output according to the pressure received by the touch component 21, without using a pressure sensor, and the touch component 21 and the main control module 22 are
  • the assembly between the resisting member 23, the magnetic component 24 and the detecting module 25 is relatively simple, and the magnetic component 24 has a wide range of sources and is not affected by the external environment, and can be used for a long time without being easily damaged, thereby improving the user experience.
  • the simplification of the touch stylus assembly process, the production cost of the stylus, and the yield of the stylus are also improved.
  • the outer casing 20 of the touch stylus has a portion for accommodating the main control module 22, the detecting module 25, and the magnetic component 24.
  • a cavity 26 is provided for accommodating the second cavity 27 of the touch member 21.
  • the first cavity 26 and the second cavity 27 are separated from each other by the abutting member 23.
  • the touch component 21 is mainly composed of a main body portion 211 with a pen tip, an elastic member 212 connecting the main body portion 211 and the resisting member 23, and a tail portion 213, and the tail portion 213 of the touch member 21 passes through the resisting member 23 and enters the first portion of the outer casing 20.
  • the cavity 26 is fixedly connected to the magnetic member 24.
  • the inside of the outer casing 20 is divided into two cavities by the abutting member 23, and the tail portion 213 of the touch member 21 is passed from the second cavity 27 through the abutting member 23 into the first cavity 26, and the portion and the magnetic member 24 are Connected to achieve detection of the magnetic field strength of the magnetic component 24 by the detection module 25.
  • the power source 28 is located within the first cavity 26 for ease of assembly in an actual application.
  • the above-mentioned main body portion 211 is elastically coupled to the abutting member 23 by the elastic member 212. Moreover, the elastic member 212 of the touch member 21 and the main body portion 211 are detachably connected, and the tail portion 213 of the touch member 21 is connected to the magnetic member 24.
  • the resilient member 212 is compressed by the touch member body 211 when the touch member 21 is written on the touch screen, so that the tail portion 213 of the touch member 21 drives the magnetic force.
  • the member 24 moves toward the side of the detecting module 25 and generates a corresponding displacement ⁇ , which causes a change in the spacing between the magnetic member 24 and the detecting module 25, thereby changing the magnetic field detected by the sensor 251. strength.
  • the elastic member 212 may be an elastic spacer. Since the elastic gasket has good resilience performance, and has a simple structure and a wide source, the elastic member 212 can be provided with excellent resilience performance, and the assembly connection between the main body portion 211 and the elastic member 212 can be facilitated and reduced. Cost of production. It should be noted that, in this embodiment, the elastic member 212 is a metal gasket, and in practical applications, the elastic member 212 may also be other types of elastic gaskets, such as springs, and will not be elaborated here. The elastic member 212 and the main body portion 211 may also be integrally formed, and the present embodiment is not specifically limited or illustrated for whether the elastic member 212 and the main body portion 211 are integrally formed or detachably connected.
  • the above-mentioned detection module 25 may be composed of a sensor 251 and a signal processing sub-module 252 electrically connected to the sensor 251.
  • the signal processing sub-module 252 is composed of a signal amplifying circuit 2521, an analog-to-digital converter 2522 and a microprocessor 2523, and the signal amplifying circuit 2521 is connected to the sensor 251, and the analog-to-digital converter 2522 and the signal amplifying circuit 2521, respectively. It is connected to the microprocessor 2523.
  • the sensor 251 in the detecting module 25 can be used to detect the magnetic field strength of the magnetic component 24, and the signal processing sub-module 252 can be used to calculate the pressure of the touch component 21 on the touch screen according to the magnetic field strength measured by the sensor 251.
  • the signal amplifying circuit 2521 in the signal processing sub-module 252 is used to amplify the signal output by the sensor 251, and the analog-to-digital converter 2522 is used to convert the analog signal outputted by the signal amplifying circuit 2521 into a digital signal.
  • the microprocessor 2523 can be used to calculate the pressure of the touch device 21 on the touch screen according to the digital signal output by the analog-to-digital converter 2522.
  • the sensor 251 can transmit a corresponding signal, that is, an analog signal, to the signal processing sub-module 252 according to the detected magnetic field strength of the magnetic component 24, and the signal processing sub-module 252 receives the simulation.
  • the analog signal measured and outputted by the sensor 251 is first amplified by the signal amplifying circuit 2521, and then the analog signal is converted into a digital signal by the analog-to-digital converter 2522, and finally the microprocessor receiving the digital signal 2523 calculates a corresponding pressure value, so that the main control module 22 can accurately change the thickness of the handwriting on the touch screen according to the pressure value.
  • the sensor 251 is a Hall sensor. Since the Hall sensor has high sensitivity and can output a corresponding signal according to the detected change of the magnetic field strength, it can be ensured that the sensor 251 can accurately convert the change of the magnetic field strength caused by the magnetic component 24 into a corresponding one.
  • the signal is sent to the signal processing sub-module 252 to facilitate precise control of the thickness of the handwriting on the touch screen by the subsequent master module 22.
  • the magnetic member 24 mentioned above is a permanent magnet. Because the permanent magnet can not only generate the magnetic field permanently, but also has a wide range of sources, it can adapt to various environments and is not easy to cause damage. Therefore, the production cost of the touch stylus can be reduced while ensuring the reliability of the touch stylus.
  • the magnetic component 24 is a permanent magnet
  • the generated spatial magnetic field is not uniform, and the non-uniform magnetic field B can be orthogonally decomposed into perpendicular to the Hall sensor.
  • B 1 of the sensing surface and B 2 parallel to the sensing surface of the Hall sensor, so that when the driving current I flows from the a terminal to the b terminal, the magnetic field B 1 causes the flow through the a terminal and b due to the Lorentz force.
  • the electrons at the terminals are shifted, causing charge accumulation at both ends of c and f, thereby generating an induced voltage U H , and as shown in FIG. 5, the induced voltage U H is proportional to the magnetic field B 1 .
  • the pressure applied to the main body portion 211 and the displacement ⁇ after the main body portion 211 is pressed ie, between the magnetic member 24 and the detecting module 25
  • the ratio between the pitch change value is linear, and since non-uniform magnetic field generated by the magnetic member 24, shown in Figure 7 so that, the ratio between the displacements ⁇ 1 and the magnetic field B is non-linear, and therefore, as shown in FIG. 8, the proportional relationship between the pressure received by the main body portion 211 and the induced voltage U H outputted by the sensor 251 is also non-linear, so that the current main body portion 211 can be known by the magnitude of the U H voltage measured by the Hall sensor. Subject to the pressure F.
  • the Hall sensor will induce the voltage U H in the form of an analog signal.
  • the amplitude of the analog signal needs to be amplified first by using the signal amplifying circuit 2521 to improve the accuracy of the measurement result.
  • the resistors R1, R2, R3, and R4 in the signal amplifying circuit 2521 and the operational amplifiers (not shown) collectively constitute a differential amplifying circuit, and in order to secure the multiple of the amplification, it is preferable in actual setting.
  • the circuit amplification factor is R2/R1
  • the amplified output voltage is R2/R1*U H .
  • the analog to digital converter 2522 can convert it to a corresponding digital signal and then transmit it to the microprocessor 2523 so that the microprocessor 2523 can
  • the digital signal calculates the magnitude of the pressure F received by the main body portion 211 (i.e., the magnitude of the writing force of the touch member 21 on the touch screen).
  • the second embodiment of the present application provides a touch stylus.
  • the second embodiment is substantially the same as the first embodiment.
  • the main difference is that in the embodiment, the detecting module 25 is directly fixed on the main control.
  • the board is electrically connected to the main control board.
  • the detection module 25 and the main control module 22 can be realized by connecting the detection module 25 directly to the main control board, so that the worker does not need to connect the detection module 25 and the main control module 22 by using the connection line.
  • the communication connection between them simplifies the assembly process and improves production efficiency and yield.
  • the connection strength between the detecting module 25 and the main control board can be effectively improved, and the phenomenon that the circuit between the detecting module 25 and the main control board is in poor contact after long-term use is prevented.
  • the detecting module 25 may be fixed to the main control board by soldering.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Position Input By Displaying (AREA)

Abstract

一种触控手写笔,其包含设置在手写笔的外壳(20)内的触控件(21)、用于改变触控屏上笔迹粗细的主控模块(22)、及固设在手写笔的外壳(20)内用于对触控件(21)的运动进行限位的抵挡件(23)。其中,触控件(21)和抵挡件(23)弹性连接,且触控件(21)头部构成笔头。触控手写笔还包含设置在外壳(20)内并固定在所述触控件(21)上随笔头的运动而运动的磁力部件(24),设置在外壳(20)内用于检测所述磁力部件(24)磁场强度的检测模块(25),其中,磁力部件(24)和检测模块(25)相互隔开,且检测模块(25)与主控模块(22)电性连接,且触控件(21)在触控屏上的书写力与检测模块(25)检测到的磁力部件(24)的磁场强度呈一预设比例。

Description

触控手写笔 技术领域
本申请涉及一种电子设备,尤其涉及一种触控笔。
背景技术
触控手写笔,作为触摸式移动终端中常用的一种配备工具,可以方便用户在触摸式移动终端的显示屏幕上的正常书写。通常,触控手写笔主要分为压感型触控手写笔和无压感型触控手写笔两种类型,而压感型触控手写笔由于带有书写压力感应功能,使得用户用力书写时,屏幕上的字迹就会自动变粗,而当用户的书写力度变小时,屏幕上的字迹就会自动变细,从而使得用户的书写体验更贴近纸张上的书写效果,因而受到广泛的欢迎。
发明人在实现本发明的过程中发现,在现有技术中,如图1所示,压感型触控手写笔1中的笔头11、压力传感器12、挡板13三者之间是紧密接触的,且笔头11和压感型触控手写笔1的外壳之间是彼此相互独立的,挡板13和压感型触控手写笔1的外壳是固定连接在一起,因而使用手写笔书写时,笔头11压力会传递到压力传感器12,从而改变压力传感器12的输出信号,并且,压力传感器12的输出信号通过连接线15输送至主控模块14中,而主控模块14则可根据输出信号计算出压力传感器输出电压大小,并相应的改变笔头11书写笔迹的粗细。然而在已有的压感型触控手写笔1中,由于其压力传感器通常都是由电阻压力应变片所构成,使得内部的装配较为复杂,且加工精度较高,容易受外界环境的影响,因而造成压力传感器以及触控手写笔的生产成本较高。此外,在压感型触控手写笔1中,由于其压力传感器12和主控板14之间必须采用连接线15进行连接,因而会造成装配工艺复杂、降低生产效率、且在复杂的 装配过程中容易降低产品良率。
因此,如何在不影响用户体验的情况下,降低触控手写笔的生产成本,简化装配工艺,提高触控手写笔的生产效率,及良率是目前所要解决的问题。
发明内容
本发明部分实施例所要解决的一个技术问题在于提供一种具有压力检测功能的触控手写笔,可根据压力输出不同的书写效果,进而在提高用户体验的情况下,简化触控手写笔装配工艺且降低手写笔的生产成本。
本发明的一个实施例提供了一种触控手写笔,包括:设置在手写笔的外壳内用于书写的触控件、用于根据所述触控件在触控屏上书写力的大小改变触控屏上笔迹粗细的主控模块、及固设在手写笔的外壳内用于对所述触控件的运动进行限位的抵挡件;
其中,所述触控件和所述抵挡件弹性连接,且所述触控件的头部暴露在所述外壳外构成触控手写笔的笔头;
所述触控手写笔还包含:设置在所述外壳内并固定在所述触控件上随所述笔头的运动而运动的磁力部件,设置在所述外壳内用于检测所述磁力部件磁场强度的检测模块;
其中,所述磁力部件和所述检测模块在所述外壳内相对设置并相互隔开,且所述检测模块与所述主控模块电性连接,且所述触控件在所述触控屏上的书写力与所述检测模块检测到的所述磁力部件的磁场强度之间呈一预设比例。
本发明部分实施例相对于现有技术而言,由于触控手写笔是由触控件、主控模块、抵挡件、磁力部件和检测模块构成,且触控件被抵挡件抵挡,并与抵挡件是弹性连接的,且其头部暴露在外壳外构成笔头,而磁力部件固定在触控件上,同时由于磁力部件与检测模块相互隔开,因此在触控件的笔头受压后,磁力部件和检测模块之间的间距会因触控件的受压情况而不断发生变化,从而改变检测模块所检测到的磁场强度,同时由于检测模块所检测到的磁场强度与 触控件在触控屏上的书写力之间呈一预设的比例关系,从而使得检测模块可根据检测到的磁力部件周围的磁场强度及该比例关系得到触控件在触控屏上的书写力大小,以使得主控模块能够根据该书写力的大小实现对触控屏上笔迹粗细的改变,即根据触控件所受压力输出不同的书写效果,而无需通过使用压力传感器来实现,进而在提高用户体验的情况下,还简化了触控手写笔的装配工艺、降低了手写笔的生产成本、也可以提高手写笔的良率。
进一步的,为了满足实际应用中的设计和装配需求,所述外壳内具有用于容纳所述主控模块、所述检测模块和所述磁力部件的第一腔体及用于容纳所述触控件的第一腔体;其中,所述第一腔体和所述第二腔体通过所述抵挡件相互隔开。且所述触控件的尾部穿过所述抵挡件进入所述外壳的第一腔体内,并与所述磁力部件固定连接。通过抵挡件将外壳内部分割成两个腔体,并使得触控件尾部从第二腔体中穿过抵挡件进入第一腔体内,且该部分与磁力部件相连,以实现检测模块对磁力部件的磁场强度的检测。
进一步的,所述触控件包含带有笔头的主体部、连接所述主体部和所述抵挡件的弹性件;其中,所述主体部通过所述弹性件与所述抵挡件弹性连接。由于触控件中的主体部通过弹性件与抵挡件弹性连接,通过弹性件的回弹力,从而当触控件在触控屏上书写时,弹性件会因触控件主体部受压而被压缩,使得触控件的尾部带动磁力部件朝向检测模块一侧运动,实现磁力部件与检测模块之间间距的改变,从而改变检测模块所检测到的磁场的强度。
进一步的,为了满足实际应用中的装配和设计需求,所述弹性件和所述主体部一体成型或可拆卸连接。
另外,所述弹性件为弹性垫片。由于弹性垫片具有良好的回弹性能,且结构简单、来源广泛,从而可在保证弹性件具备优异的弹性伸缩性能的同时,方便主体部与弹性件之间的装配连接,并降低生产成本。
进一步的,所述主控模块为主控板,且所述检测模块固定在所述主控板上且与所述主控板电性连接。通过将检测模块直接固定在主控板上的方式,使得 工作人员无需采用连接线对检测模块和主控模块进行连接,即可实现检测模块与主控模块之间的通讯,从而简化了装配工艺,提高了生产效率及良率。另外,采用直接固定的方式,可有效提升检测模块与主控板之间的连接强度,防止长时间使用后,检测模块与主控板之间的电路出现接触不良的现象。
另外,所述检测模块包含用于检测磁力部件磁场强度的传感器、与所述传感器电性连接的用于根据所述传感器所测得的磁场强度计算出所述触控件在所述触控屏上压力大小的信号处理子模块。由于检测模块是由传感器和信号处理子模块构成,并且通过传感器可检测磁力部件的磁场强度,而信号处理子模块可根据传感器所测得的磁场强度,计算出触控件在触控屏上的压力大小,以便于主控模块根据信号处理子模块计算出的压力大小,准确的改变触控屏上的笔迹粗细。
另外,所述信号处理子模块包含用于将所述传感器所输出的信号进行放大的信号放大电路、与所述信号放大电路连接的用于将所述信号放大电路所输出的模拟信号转换为数字信号的模数转换器、与所述模数转换器连接的用于根据所述模数转换器所输出的数字信号计算出所述触控件在所述触控屏上压力大小的微处理器。由于信号处理子模块是由信号放大电路、模数转换器和微处理器构成,并且信号放大电路与传感器相连,而模数转换器又分别与信号放大电路和微处理器相连,从而在实际工作时,传感器可根据检测到的磁力部件的磁场强度,输出相应的模拟信号至信号处理子模块,而信号处理子模块在接收该模拟信号后,可先由信号放大电路将该模拟信号进行放大,并将放大后的模拟信号输出至模数转换器,再由模数转换器将该模拟信号转换为数字信号,最终由接收到该数字信号的微处理器计算出相应的压力值,以便于主控模块能够根据该压力值精确的改变触控屏上笔迹的粗细。
另外,所述传感器为霍尔传感器。由于霍尔传感器具有较高的灵敏度,且能够根据检测到磁场强度的变化输出相应的信号,因而可确保传感器能够准确的将磁力部件所引起的磁场强度的变化,准确的转换成相应的信号输送至信号 处理子模块,以便于后续主控模块对触控屏上字迹粗细的精确控制。
另外,所述磁力部件为永磁铁。由于永磁铁不仅可以永久的产生磁场,而且来源广泛,还能够适应各种环境而不易产生损伤,因而可在保证触控手写笔的使用可靠性的情况下,降低触控手写笔的生产成本。
另外,为了防止触控手写笔在长期使用后出现供电不足的情况,并方便用户的操作,所述触控手写笔还包含可拆卸安装在所述外壳内的电源;其中,所述电源分别与所述主控模块和所述检测模块电连接。
附图说明
一个或多个实施例通过与之对应的附图中的图片进行示例性说明,这些示例性说明并不构成对实施例的限定,附图中具有相同参考数字标号的元件表示为类似的元件,除非有特别申明,附图中的图不构成比例限制。
图1是本发明提供的一种现有技术中的触控手写笔的结构示意图。
图2是本发明第一实施例中提供的触控手写笔的结构示意图。
图3是本发明第一实施例中提供的触控手写笔的电路模块框图。
图4是本发明第一实施例中提供的传感器的工作原理图。
图5是本发明第一实施例中提供的传感器检测到的磁场强度与传感器的感应电压之间的比例关系图。
图6是本发明第一实施例中提供的主体部所受压力与主体部的位移之间的比例关系图。
图7是本发明第一实施例中提供的主体部的位移与传感器检测到的磁场强度之间的比例关系图。
图8是本发明第一实施例中提供的主体部所受压力与传感器的感应电压之间的比例关系图。
具体实施例
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明部分实施例进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
本发明的第一实施例提供了一种触控手写笔,如图2和图3所示,包含设置手写笔的外壳20内的触控件21、主控模块22、抵挡件23、磁力部件24和检测模块25,其中,触控件21用于用户在触控屏上书写,并与抵挡件23弹性连接,且触控件21的头部暴露在外壳20外构成触控手写笔的笔头。而相应的,主控模块22用于根据触控件21在触控屏上书写力的大小改变触控屏上笔迹粗细。抵挡件23固设在手写笔的外壳20内用于对触控件21的运动进行限位。
并且,在实际装配时,如图2和图3所示,磁力部件24被固定在触控件21上,并可随笔头的运动而运动。其中,检测模块25与磁力部件24相互隔开,且该检测模块25与主控模块22电性连接。其中,触控件21在触控屏上书写力与检测模块25检测到的磁力部件24的磁场强度之间呈一预设比例。在本实施例中,作为优选,为了方便检测模块25对磁力部件24进行检测,检测模块25与磁力部件24在外壳20内相对设置。
此外,还需要说明的是,主控模块22与检测模块25之间电性相连。并为了保证触控手写笔的正常运行,触控手写笔还包含可拆卸地安装在外壳20内的电源28。其中,电源28在被安装到外壳20的内后,分别与主控模块22和检测模块25电连接。
通过上述内容可知,由于触控手写笔是由触控件21、主控模块22、抵挡件23、磁力部件24和检测模块25构成,且触控件21被抵挡件23抵挡,并与抵挡件23是弹性连接的,且其头部暴露在外壳20外构成笔头,而磁力部件24固定在触控件21上,同时由于磁力部件24与检测模块25相互隔开,因此在触控件21的笔头受压后,磁力部件24和检测模块25之间的间距会因触控件21的受压情况而不断发生变化,从而改变检测模块25所检测到的磁场强度,同时由于检测模块25所检测到的磁场强度与触控件21在触控屏上的书写力之间呈 一预设的比例关系,从而使得主控模块22可根据检测到的磁力部件24周围的磁场强度及该比例关系得到触控件21在触控屏上的书写力大小,以使得主控模块22能够根据该书写力的大小实现对触控屏上笔迹粗细的改变,即根据触控件21所受压力输出不同的书写效果,而无需通过使用压力传感器来实现,并且由于触控件21、主控模块22、抵挡件23、磁力部件24和检测模块25之间的装配较为简单,且磁力部件24来源广泛,并可不受外界环境的影响,且可长久的使用而不易损坏,进而在提高用户体验的情况下,还简化了触控手写笔装配工艺、降低了手写笔的生产成本、也可以提高手写笔的良率。
具体的说,在本实施例中,为了满足实际应用中的设计和装配需求,作为优选,触控手写笔的外壳20内具有用于容纳主控模块22、检测模块25和磁力部件24的第一腔体26、用于容纳触控件21的第二腔体27。其中,第一腔体26和第二腔体27通过抵挡件23相互隔开。并且,触控件21主要由带有笔头的主体部211、连接主体部211和抵挡件23的弹性件212、尾部213构成,且触控件21的尾部213穿过抵挡件23进入外壳20的第一腔体26内,并与磁力部件24固定连接。从而通过抵挡件23将外壳20内部分割成两个腔体,并使得触控件21的尾部213从第二腔体27穿过抵挡件23进入第一腔体26内,且该部分与磁力部件24相连,以实现检测模块25对磁力部件24的磁场强度的检测。并且需要说明的是,在本实施例中,为了便于实际应用中的装配,电源28位于第一腔体26内。
另外,在本实施例中,如图2所示,上述所提到的主体部211通过弹性件212与抵挡件23弹性连接。并且,触控件21的弹性件212和主体部211是可拆卸连接的,且触控件21的尾部213与磁力部件24相连。
由此可知,通过弹性件212的回弹力,从而当触控件21在触控屏上书写时,弹性件212会因触控件主体部211受压而被压缩,使得触控件21的尾部213带动磁力部件24朝向检测模块25一侧运动,并产生相应的位移ε,实现磁力部件24和检测模块25之间间距的改变,从而改变传感器251所检测到的磁场的 强度。
并且,在本实施例中,作为优选,弹性件212可以为弹性垫片。由于弹性垫片具有良好的回弹性能,且结构简单、来源广泛,从而可在保证弹性件212具备优异的回弹性能的同时,方便主体部211与弹性件212之间的装配连接,并降低生产成本。需要说明的是,在本实施例中,弹性件212为金属垫片,而在实际应用中,弹性件212还可以为弹簧等其他类型的弹性垫片,在此就不作过多的阐述,并且,弹性件212和主体部211也可以是一体成型的,而本实施例对于弹性件212和主体部211之间是一体成型还是可拆卸地连接不作具体的限定和说明。
另外,在本实施例中,如图2和图3所示,上述所提到的检测模块25可以是由传感器251、与传感器251电性连接的信号处理子模块252构成。相应的,信号处理子模块252则是由信号放大电路2521、模数转换器2522和微处理器2523构成,并且信号放大电路2521与传感器251相连,而模数转换器2522分别与信号放大电路2521和微处理器2523相连。其中,检测模块25中的传感器251可用于检测磁力部件24的磁场强度,而信号处理子模块252则可用于根据传感器251所测得的磁场强度,计算出触控件21在触控屏上的压力大小,并且,信号处理子模块252中的信号放大电路2521用于将传感器251所输出的信号进行放大,模数转换器2522则用于将信号放大电路2521所输出的模拟信号转换为数字信号,而微处理器2523则可用于根据模数转换器2522所输出的数字信号计算出触控件21在触控屏上压力大小。
由此不难发现,在实际工作时,传感器251可根据检测到磁力部件24的磁场强度,将相应的信号,即模拟信号输送至信号处理子模块252,而信号处理子模块252在接收该模拟信号后,可先由信号放大电路2521将传感器251所测得并输出的模拟信号进行放大,再由模数转换器2522将模拟信号转换为数字信号,最终由接收到该数字信号的微处理器2523计算出相应的压力值,以便于主控模块22能够根据该压力值精确的改变触控屏上笔迹的粗细。
另外,值得一提的是,在本实施例中,作为优选,传感器251为霍尔传感器。由于霍尔传感器具有较高的灵敏度,且能够根据检测到磁场强度的变化输出相应的信号,因而可确保传感器251能够准确的将磁力部件24所引起的磁场强度的变化,准确的转换成相应的信号输送至信号处理子模块252,以便于后续主控模块22对触控屏上字迹粗细的精确控制。
相应的,在本实施例中,作为优选,上述所提到的磁力部件24为永磁铁。由于永磁铁不仅可以永久的产生磁场,而且来源广泛,还能够适应各种环境而不易产生损伤,因而可在保证触控手写笔的使用可靠性的情况下,降低触控手写笔的生产成本。
另外,需要说明的是,如图3和图4所示,由于磁力部件24为永磁铁时,所产生的空间磁场是不均匀的,且非均匀磁场B可正交分解为垂直于霍尔传感器感应面的B1和平行于霍尔传感器感应面的B2,从而当驱动电流I从a端流入b端流出时,由于洛仑兹力的作用,磁场B1会使得流经a端和b端的电子产生偏移,导致c、f两端有电荷累积,从而产生了感应电压UH,并且如图5所示,该感应电压UH大小正比于磁场B1。其中,当触控件21在触控屏上书写受压时,如图6所示,主体部211所受压力与主体部211受压后的位移ε(即磁力部件24和检测模块25之间的间距变化值)之间比例是呈线性的,而由于磁力部件24产生的是非均匀磁场,所以如图7所示,磁场B1和位移ε之间的比例关系是呈非线性的,因此,如图8所示可知,主体部211所受压力和传感器251输出的感应电压UH之间的比例关系也是非线性的,从而可通过霍尔传感器测量的UH电压大小得知当前主体部211所受压力F的大小。
此外,值得一提的是,由于霍尔传感器测量的感应电压UH的大小,在通常情况下,只有几毫伏(mV),因此,在霍尔传感器将感应电压UH以模拟信号的形式输送给信号处理子模块252后,需要先使用信号放大电路2521对该模拟信号的幅度进行放大,以提升测量结果的精度。如图3所示,信号放大电路2521中的电阻R1、R2、R3、R4和运算放大器(图中未标示)共同构成差分放 大电路,并且为了保证放大的倍数,在实际设置时,作为优选,可使得R1=R3,R2=R4,则此时的电路放大倍数为R2/R1,而放大后的输出电压为R2/R1*UH。从而当放大后的输出电压以模拟信号的形式输入模数转换器2522后,模数转换器2522可将其转换为对应的数字信号,然后传输给微处理器2523,以便于微处理器2523根据数字信号计算出主体部211所受压力F的大小(即触控件21在触控屏上书写力的大小)。
本申请的第二实施例提供了一种触控手写笔,第二实施例与本第一实施例大致相同,其主要不同之处在于:在本实施例中,检测模块25直接固定在主控板上,且与主控板电性连接。
通过上述内容可知,通过将检测模块25直接固定在主控板上的方式,使得工作人员无需采用连接线对检测模块25和主控模块22进行连接,即可实现检测模块25与主控模块22之间的通讯连接,从而简化了装配工艺,提高了生产效率及良率。另外,采用直接固定的方式,可有效提升检测模块25与主控板之间的连接强度,防止长时间使用后,检测模块25与主控板之间的电路出现接触不良的现象。并且,需要说明的是,在本实施例中,作为优选,检测模块25可以采用焊接的方式固定在主控板上。
最后应说明的是:以上实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的精神和范围。

Claims (12)

  1. 一种触控手写笔,包括:设置在手写笔的外壳内用于书写的触控件、用于根据所述触控件在触控屏上书写力的大小改变触控屏上笔迹粗细的主控模块、及固设在手写笔的外壳内用于对所述触控件的运动进行限位的抵挡件;
    其中,所述触控件和所述抵挡件弹性连接,且所述触控件的头部暴露在所述外壳外构成触控手写笔的笔头;
    所述触控手写笔还包含:设置在所述外壳内并固定在所述触控件上随所述笔头的运动而运动的磁力部件,设置在所述外壳内用于检测所述磁力部件磁场强度的检测模块;
    其中,所述磁力部件和所述检测模块相互隔开,且所述检测模块与所述主控模块电性连接,所述触控件在所述触控屏上的书写力与所述检测模块检测到的所述磁力部件的磁场强度之间呈一预设比例。
  2. 如权利要求1所述的触控手写笔,所述外壳内具有用于容纳所述主控模块、所述检测模块和所述磁力部件的第一腔体及用于容纳所述触控件的第二腔体;
    其中,所述第一腔体和所述第二腔体通过所述抵挡件相互隔开。
  3. 如权利要求2所述的触控手写笔,所述触控件的尾部穿过所述抵挡件进入所述外壳的第一腔体内并与所述磁力部件固定连接。
  4. 如权利要求3所述的触控手写笔,所述触控件包含带有笔头的主体部、连接所述主体部和所述抵挡件的弹性件;
    其中,所述主体部通过所述弹性件与所述抵挡件弹性连接。
  5. 如权利要求4所述的触控手写笔,所述弹性件和所述主体部一体成型或可拆卸连接。
  6. 如权利要求4所述的触控手写笔,所述弹性件为弹性垫片。
  7. 如权利要求1所述的触控手写笔,所述主控模块为主控板,所述检测模块固定在所述主控板上且与所述主控板电性连接。
  8. 如权利要求1所述的触控手写笔,所述检测模块包含用于检测磁力部件磁场强度的传感器、与所述传感器电性连接的用于根据所述传感器所测得的磁场强度计算出所述触控件在所述触控屏上压力大小的信号处理子模块。
  9. 如权利要求8所述的触控手写笔,所述信号处理子模块包含用于将所述传感器所输出的信号进行放大的信号放大电路、与所述信号放大电路连接的用于将所述信号放大电路所输出的模拟信号转换为数字信号的模数转换器、与所述模数转换器连接的用于根据所述模数转换器所输出的数字信号计算出所述触控件在所述触控屏上压力大小的微处理器。
  10. 如权利要求9所述的触控手写笔,所述传感器为霍尔传感器。
  11. 如权利要求1所述的触控手写笔,所述磁力部件为永磁铁。
  12. 如权利要求1至11中任意一项所述的触控手写笔,所述触控手写笔还包含可拆卸安装在所述外壳内的电源;
    其中,所述电源分别与所述主控模块和所述检测模块电连接。
PCT/CN2016/100962 2016-09-29 2016-09-29 触控手写笔 WO2018058482A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP16900772.1A EP3330840B1 (en) 2016-09-29 2016-09-29 Touch stylus
CN201690000163.2U CN206178720U (zh) 2016-09-29 2016-09-29 触控手写笔
PCT/CN2016/100962 WO2018058482A1 (zh) 2016-09-29 2016-09-29 触控手写笔
KR1020177033699A KR20180050253A (ko) 2016-09-29 2016-09-29 터치 스타일러스 펜
US15/812,354 US10345929B2 (en) 2016-09-29 2017-11-14 Pressure sensitive stylus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/100962 WO2018058482A1 (zh) 2016-09-29 2016-09-29 触控手写笔

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/812,354 Continuation US10345929B2 (en) 2016-09-29 2017-11-14 Pressure sensitive stylus

Publications (1)

Publication Number Publication Date
WO2018058482A1 true WO2018058482A1 (zh) 2018-04-05

Family

ID=60241865

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/100962 WO2018058482A1 (zh) 2016-09-29 2016-09-29 触控手写笔

Country Status (5)

Country Link
US (1) US10345929B2 (zh)
EP (1) EP3330840B1 (zh)
KR (1) KR20180050253A (zh)
CN (1) CN206178720U (zh)
WO (1) WO2018058482A1 (zh)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108169978B (zh) * 2018-01-03 2021-08-17 京东方科技集团股份有限公司 电子纸及其制备方法、手写电子纸装置
CN108491100A (zh) * 2018-03-26 2018-09-04 安徽壁虎智能科技有限公司 一种无线压感笔
US10691209B2 (en) * 2018-06-19 2020-06-23 Apple Inc. Stylus with haptic feedback for texture simulation
US10659866B2 (en) * 2018-09-14 2020-05-19 Apple Inc. Elastomeric pressure transduction based user interface
US10627923B2 (en) * 2018-09-18 2020-04-21 Apple Inc. Stylus for electronic devices
CN109542254B (zh) * 2018-10-31 2022-03-22 广州三星通信技术研究有限公司 手写笔以及包含该手写笔的电子装置
EP3789855A1 (en) 2019-09-05 2021-03-10 Microsoft Technology Licensing, LLC Stylus nib design and accuracy improvement
CN111273992B (zh) * 2020-01-21 2024-04-19 维沃移动通信有限公司 一种图标显示方法及电子设备
CN113178900B (zh) * 2021-03-15 2023-02-17 荣耀终端有限公司 无线充电系统、芯片和无线充电电路

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4580007A (en) * 1983-10-14 1986-04-01 Quantel Limited Stylus devices responsive to pressure changes for use in videographic and like apparatus
EP2743807A1 (en) * 2012-12-13 2014-06-18 BlackBerry Limited Capacitive force sensor with magnetic spring
CN203689461U (zh) * 2013-11-29 2014-07-02 比亚迪股份有限公司 触控笔及触控装置
CN104915027A (zh) * 2014-03-14 2015-09-16 义隆电子股份有限公司 电容式触控笔
CN205210836U (zh) * 2015-11-27 2016-05-04 立迈科技股份有限公司 主动式触控笔

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2378076B (en) * 2001-07-27 2005-06-08 Hewlett Packard Co Image transmission system including a camera apparatus and a viewer apparatus
US20030214490A1 (en) * 2002-05-20 2003-11-20 Gateway, Inc. Stylus providing variable line width as a function of pressure
US7332065B2 (en) * 2003-06-19 2008-02-19 Akzo Nobel N.V. Electrode
US20050140663A1 (en) * 2003-12-15 2005-06-30 Sharp Kabushiki Kaisha Ultrasonic electronic stylus and stylus-input system
KR100890366B1 (ko) * 2007-09-05 2009-03-25 (주)펜앤프리 입력펜 및 이를 이용하는 입력 시스템
US8917262B2 (en) 2010-01-08 2014-12-23 Integrated Digital Technologies, Inc. Stylus and touch input system
CN101727218A (zh) * 2010-01-27 2010-06-09 北京爱易玛克科技有限公司 具有压力值检测功能的电子手写笔
WO2013125506A1 (ja) * 2012-02-24 2013-08-29 東レ株式会社 分離膜エレメント及び分離膜モジュール
KR102065703B1 (ko) * 2013-02-07 2020-02-11 삼성전자주식회사 터치 펜, 터치 펜 인식을 위한 전자 장치 및 그 운용 방법
TW201530365A (zh) * 2014-01-29 2015-08-01 Waltop Int Corp 能提供可調變電磁場的主動式電容觸控筆
TWI480770B (zh) * 2014-06-27 2015-04-11 Waltop Int Corp 電容式指標裝置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4580007A (en) * 1983-10-14 1986-04-01 Quantel Limited Stylus devices responsive to pressure changes for use in videographic and like apparatus
EP2743807A1 (en) * 2012-12-13 2014-06-18 BlackBerry Limited Capacitive force sensor with magnetic spring
CN203689461U (zh) * 2013-11-29 2014-07-02 比亚迪股份有限公司 触控笔及触控装置
CN104915027A (zh) * 2014-03-14 2015-09-16 义隆电子股份有限公司 电容式触控笔
CN205210836U (zh) * 2015-11-27 2016-05-04 立迈科技股份有限公司 主动式触控笔

Also Published As

Publication number Publication date
KR20180050253A (ko) 2018-05-14
US20180088692A1 (en) 2018-03-29
EP3330840A1 (en) 2018-06-06
EP3330840A4 (en) 2018-08-29
US10345929B2 (en) 2019-07-09
EP3330840B1 (en) 2021-01-06
CN206178720U (zh) 2017-05-17

Similar Documents

Publication Publication Date Title
WO2018058482A1 (zh) 触控手写笔
JP6966471B2 (ja) 座標測定プローブ本体
WO2018133054A1 (zh) 压力感应式结构及电子产品
JP6139917B2 (ja) 接触センサ、接触入力装置および電子機器
WO2019024575A1 (zh) 一种准确定位末端位置的三维触须传感器
CN101539463B (zh) 对称互补结构的霍尔差分式测力方法
CN102830248B (zh) 小型温度补偿石英加速度计伺服电路
US7997126B2 (en) Texture measuring apparatus and method
KR20200033190A (ko) 공통 모드 검출을 갖춘 증폭기
US9689757B2 (en) Strain transmitter
JP2018532124A (ja) 力測定装置
CN116147823B (zh) 一种平膜型薄膜芯体及平膜型纳米薄膜压力变送器
CN210603570U (zh) 一种应用于在检测应变片压力传感器断线电路
CN103196598A (zh) 一种光电式力传感器
CN103017971A (zh) 一种气体压力传感器
TW201405111A (zh) 壓力偵測電路
CN213688283U (zh) 一种涂层厚度检测装置
KR20100113883A (ko) 변위 센서
JP4255926B2 (ja) ひずみ及び温度の測定装置
CN218566760U (zh) 一种高性能压阻式压力传感器
CN203132595U (zh) 汽车用电阻式水温燃油采样系统
CN103968995A (zh) 基于弹性测压的流体压力传感器
CN205919922U (zh) 一种数字式压力损失检测的压力表
CN107907635A (zh) 一种多功能气体集成传感器
CN109115097A (zh) 一种四霍尔元件对称分布位移测量传感器探头

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 20177033699

Country of ref document: KR

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16900772

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE