WO2018058428A1 - 建立回程链路的方法及装置 - Google Patents

建立回程链路的方法及装置 Download PDF

Info

Publication number
WO2018058428A1
WO2018058428A1 PCT/CN2016/100789 CN2016100789W WO2018058428A1 WO 2018058428 A1 WO2018058428 A1 WO 2018058428A1 CN 2016100789 W CN2016100789 W CN 2016100789W WO 2018058428 A1 WO2018058428 A1 WO 2018058428A1
Authority
WO
WIPO (PCT)
Prior art keywords
base station
backhaul link
link
backhaul
terminal
Prior art date
Application number
PCT/CN2016/100789
Other languages
English (en)
French (fr)
Inventor
魏娜
徐然
Original Assignee
北京小米移动软件有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京小米移动软件有限公司 filed Critical 北京小米移动软件有限公司
Priority to JP2018519928A priority Critical patent/JP6546701B2/ja
Priority to PCT/CN2016/100789 priority patent/WO2018058428A1/zh
Priority to KR1020187025286A priority patent/KR102119635B1/ko
Priority to RU2017142139A priority patent/RU2676471C1/ru
Priority to CN201680000967.7A priority patent/CN108476554B/zh
Priority to EP17168155.4A priority patent/EP3301965B1/en
Priority to US15/712,176 priority patent/US10397969B2/en
Publication of WO2018058428A1 publication Critical patent/WO2018058428A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/12Setup of transport tunnels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/02Arrangements for optimising operational condition
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/0268Traffic management, e.g. flow control or congestion control using specific QoS parameters for wireless networks, e.g. QoS class identifier [QCI] or guaranteed bit rate [GBR]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/08Access restriction or access information delivery, e.g. discovery data delivery
    • H04W48/10Access restriction or access information delivery, e.g. discovery data delivery using broadcasted information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/046Wireless resource allocation based on the type of the allocated resource the resource being in the space domain, e.g. beams
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/56Allocation or scheduling criteria for wireless resources based on priority criteria
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W92/00Interfaces specially adapted for wireless communication networks
    • H04W92/16Interfaces between hierarchically similar devices
    • H04W92/20Interfaces between hierarchically similar devices between access points
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L45/00Routing or path finding of packets in data switching networks
    • H04L45/42Centralised routing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/02Resource partitioning among network components, e.g. reuse partitioning
    • H04W16/10Dynamic resource partitioning
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W40/00Communication routing or communication path finding
    • H04W40/24Connectivity information management, e.g. connectivity discovery or connectivity update
    • H04W40/246Connectivity information discovery
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/02Terminal devices
    • H04W88/04Terminal devices adapted for relaying to or from another terminal or user
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/08Access point devices
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W92/00Interfaces specially adapted for wireless communication networks
    • H04W92/04Interfaces between hierarchically different network devices
    • H04W92/045Interfaces between hierarchically different network devices between access point and backbone network device

Definitions

  • the present invention relates to the field of wireless communication technologies, and in particular, to a method and an apparatus for establishing a backhaul link.
  • the backhaul link refers to the communication link between the base station and the core network. After the base station accesses the core network through the backhaul link, the base station can provide communication services for the terminals within the coverage of the base station.
  • the operator usually deploys a fixed backhaul link for the base station, so that the base station can access the core network through the fixed backhaul link, thereby providing communication services for the terminals in the coverage, such as the core.
  • the data of the network is transmitted to the terminal, or the data of the terminal is transmitted to the core network or the like.
  • the embodiments of the present invention provide a method and an apparatus for establishing a backhaul link.
  • the technical solution is as follows:
  • a method of establishing a backhaul link comprising:
  • Broadcasting system information such that the designated terminal that receives the system information returns a backhaul link setup signaling, where the designated terminal refers to a terminal that has established a first communication link with the core network;
  • a communication link between the base station and any terminal located in a coverage range of the base station is different from a time resource configured by the backhaul link;
  • the communication link between the base station and any terminal located within the coverage of the base station is different from the frequency resource configured by the backhaul link;
  • the communication link between the base station and any terminal located within the coverage of the base station does not overlap with the space occupied by the beam corresponding to the backhaul link.
  • the method further includes:
  • QCI Quality of Service Class Identifier
  • the method further includes:
  • the base station does not establish a backhaul link, if an access request of any terminal is received, the access request is rejected.
  • a method of establishing a backhaul link comprising:
  • the second communication link and the first communication link form a backhaul link.
  • an apparatus for establishing a backhaul link comprising:
  • a broadcast module configured to broadcast system information, such that the designated terminal that receives the system information returns backhaul link setup signaling, where the designated terminal refers to a terminal that has established a first communication link with the core network;
  • a receiving module configured to receive backhaul link setup signaling returned by the designated terminal, where the backhaul link signaling is used to indicate that the designated terminal establishes a backhaul link for the base station;
  • a sending module configured to send an acknowledgment message to the designated terminal, so that after the specified terminal receives the acknowledgment message, establishing a second communication link with the base station, the second communication link and the A communication link forms a backhaul link.
  • a communication link between the base station and any terminal located in a coverage range of the base station is different from a time resource configured by the backhaul link;
  • the communication link between the base station and any terminal located within the coverage of the base station is different from the frequency resource configured by the backhaul link;
  • the communication link between the base station and any terminal located within the coverage of the base station does not overlap with the space occupied by the beam corresponding to the backhaul link.
  • the device further includes:
  • the receiving module is configured to: when the base station has established multiple backhaul links, receive a data packet sent by at least one terminal located in a coverage area of the base station;
  • An obtaining module configured to obtain a service quality level identifier QCI of the received at least one data packet, where the QCI is used to indicate a communication priority of the corresponding data packet;
  • an allocating module configured to allocate the at least one data packet to the multiple backhaul links based on a current remaining bandwidth of the multiple backhaul links and a QCI of the at least one data packet.
  • the device further includes:
  • a rejecting module configured to reject the access request if an access request of any terminal is received if the base station does not establish a backhaul link.
  • an apparatus for establishing a backhaul link comprising:
  • a receiving module configured to receive system information broadcast by the base station
  • a sending module configured to send backhaul link signaling to the base station, where the backhaul link signaling is used to indicate that a backhaul link is established for the base station;
  • a establishing module configured to establish a second communication link with the base station when receiving the acknowledgement message returned by the base station, where the second communication link and the first communication link form a backhaul link.
  • an apparatus for establishing a backhaul link comprising:
  • a memory for storing processor executable instructions
  • processor is configured to:
  • Broadcasting system information such that the designated terminal that receives the system information returns a backhaul link setup signaling, where the designated terminal refers to a terminal that has established a first communication link with the core network;
  • an apparatus for establishing a backhaul link comprising:
  • a memory for storing processor executable instructions
  • processor is configured to:
  • backhaul link signaling Transmitting backhaul link signaling to the base station, where the backhaul link signaling is used to indicate that the base station is built Establish a backhaul link;
  • the base station can access the core network through the backhaul link.
  • the method of establishing a backhaul link is more flexible and convenient, and any base station can establish multiple backhaul links by using this method, which is highly scalable.
  • FIG. 1 is a flowchart of a method of establishing a backhaul link, according to an exemplary embodiment
  • FIG. 2 is a flow chart showing a method of establishing a backhaul link, according to an exemplary embodiment
  • FIG. 3 is a flowchart of a method for establishing a backhaul link, according to an exemplary embodiment
  • FIG. 4A is a schematic diagram of a communication system according to an exemplary embodiment
  • FIG. 4B is a schematic diagram of a repacking process according to an exemplary embodiment
  • FIG. 4C is a schematic diagram of a communication system according to an exemplary embodiment
  • 4D is a schematic diagram of a communication system according to an exemplary embodiment
  • FIG. 5 is a block diagram of an apparatus for establishing a backhaul link, according to an exemplary embodiment
  • FIG. 6 is a block diagram of an apparatus for establishing a backhaul link, according to an exemplary embodiment
  • FIG. 7 is a block diagram of an apparatus for establishing a backhaul link, according to an exemplary embodiment
  • FIG. 8 is a block diagram of an apparatus for establishing a backhaul link, according to an exemplary embodiment
  • FIG. 9 is a block diagram of an apparatus 900 for establishing a backhaul link, according to an exemplary embodiment
  • FIG. 10 is a schematic structural diagram of a base station according to an exemplary embodiment.
  • FIG. 1 is a flow chart showing a method of establishing a backhaul link, according to an exemplary embodiment. As shown in FIG. 1, the method for establishing a backhaul link is applied to a base station, and includes the following steps:
  • step 101 the system information is broadcasted such that the designated terminal that receives the system information returns the backhaul link setup signaling, and the designated terminal refers to the terminal that has established the first communication link with the core network.
  • step 102 the backhaul link setup signaling returned by the designated terminal is received, and the backhaul link signaling is used to indicate that the designated terminal establishes a backhaul link for the base station.
  • step 103 an acknowledgment message is sent to the designated terminal, so that after the designated terminal receives the acknowledgment message, the second communication link is established with the base station, and the second communication link and the first communication link form a backhaul link.
  • the backhaul link of the small base station needs to be pre-deployed by the operator, and the deployed backhaul link is fixed and has poor scalability.
  • the base station may establish a backhaul link by using any designated terminal that has established a first communication link with the core network, and is free from the limitation of the fixed backhaul link in the related art.
  • the method provided in this embodiment establishes a second communication link between the designated terminal and the base station that has established the first communication link with the core network by providing a new manner of establishing a backhaul link, the first communication link.
  • the way and the second communication link form a backhaul link, and the base station can access the core network through the backhaul link.
  • the method of establishing a backhaul link is more flexible and convenient. In this way, multiple backhaul links can be established, which is highly scalable.
  • the communication link between the base station and any terminal located in the coverage of the base station is different from the time resource configured by the backhaul link;
  • the communication link between the base station and any terminal located within the coverage of the base station is different from the frequency resource configured by the backhaul link;
  • the method further includes:
  • the data packet sent by at least one terminal located in the coverage of the base station is received;
  • the at least one data packet is allocated to the plurality of backhaul links based on the current remaining bandwidth of the plurality of backhaul links and the QCI of the at least one data packet.
  • the method further includes:
  • the base station does not establish a backhaul link, if an access request of any terminal is received, the access request is rejected.
  • FIG. 2 is a flow chart showing a method of establishing a backhaul link, according to an exemplary embodiment.
  • the method for establishing a backhaul link is applied to a designated terminal, and the designated terminal is a terminal that has established a first communication link with the core network, and the method includes the following steps:
  • step 201 system information broadcast by the base station is received.
  • step 202 backhaul link signaling is sent to the base station, and the backhaul link signaling is used to indicate that a backhaul link is established for the base station.
  • step 203 when receiving the acknowledgment message returned by the base station, establishing a second communication link with the base station, the second communication link and the first communication link form a backhaul link.
  • the method provided in this embodiment establishes a second communication link between the designated terminal and the base station that has established the first communication link with the core network by providing a new manner of establishing a backhaul link, the first communication link.
  • the way and the second communication link form a backhaul link, and the base station can access the core network through the backhaul link.
  • the method of establishing a backhaul link is more flexible and convenient. In this way, multiple backhaul links can be established, which can be expanded. Strong exhibition.
  • FIG. 3 is a flowchart of a method for establishing a backhaul link according to an exemplary embodiment. As shown in FIG. 3, a method for establishing a backhaul link is used for an interaction process between a base station and a designated terminal, and includes the following steps:
  • step 301 the base station broadcasts system information.
  • the backhaul link refers to the communication link between the base station and the core network.
  • the core network can serve as the interface between the base station and the external network. Only when the base station accesses the core network can the communication be provided to the terminals in its coverage. service. For example, the base station transmits data of the core network to the terminal within the coverage, or transmits data of the terminal within the coverage to the core network, and transmits the data to the external network through the core network.
  • Embodiments of the present disclosure provide a manner for establishing a backhaul link for a base station, and a backhaul link may be established for any base station.
  • the base station can be a small base station or other type of base station or the like. If the existing backhaul link bandwidth of the small base station cannot meet the bandwidth requirement, or if the small base station has not deployed the backhaul link, the method can be used to establish the backhaul link.
  • the base station can establish multiple backhaul links by using the method of the embodiments of the present disclosure, thereby forming an aggregated backhaul link, so that the base station can communicate more efficiently.
  • the system information can be broadcasted for searching and accessing by the designated terminal.
  • the system information is pre-configured information of the base station, and may include basic base station configuration information such as an MIB (Master Information Module) and an SIB (System Information Block), etc. Not limited.
  • MIB Master Information Module
  • SIB System Information Block
  • the embodiment of the present disclosure starts broadcasting system information after initial startup to establish a backhaul link through the system information.
  • the designated terminal receives system information broadcast by the base station, and the designated terminal refers to a terminal that has established a first communication link with the core network.
  • step 303 the designated terminal sends backhaul link signaling to the base station, and the backhaul link setup signaling is used to indicate that the backhaul link is established for the base station.
  • the embodiment of the present disclosure does not specifically limit the designated terminal.
  • the designated terminal may be a mobile phone or a tablet computer that has access to the core network.
  • the position of the designated terminal is not limited in the embodiment of the present disclosure, and only needs to ensure that the designated terminal can receive the system information broadcast by the base station.
  • the backhaul link setup signaling may be RRC (Radio Resource Control) signaling, and the information unit of the signaling carries an identifier for establishing a backhaul link, and when the base station receives the signaling sent by the designated terminal, And determining, according to the identifier of the backhaul link carried in the signaling, that the signaling is signaling for the backhaul link.
  • RRC Radio Resource Control
  • the embodiment of the present disclosure does not limit the information unit.
  • the information unit of the following signaling may include an identifier "provideBackhaul" for establishing a backhaul link.
  • the backhaul link setup signaling may be generated, and the backhaul link setup signaling is sent to the base station to indicate that the designated terminal has Accessing the core network, a backhaul link can be established for the base station.
  • the designated terminal Since the designated terminal has established a first communication link with the core network, the first communication link can communicate with the core network. Therefore, as long as a communication link is established between the base station and the designated terminal, the base station can be connected to the core network through the designated terminal. To establish a communication link between the base station and the designated terminal, the designated terminal sends backhaul link signaling to the base station when receiving the system information broadcast by the base station.
  • the manner in which the first communication link is established is not limited in the embodiment of the present disclosure.
  • the designated terminal accesses the core network through a WLAN (Wireless Local Area Networks) to establish a first communication link.
  • WLAN Wireless Local Area Networks
  • the designated terminal may receive the system information, so that the backhaul link signaling is sent to the base station, and the base station may receive multiple backhaul link signaling. And establishing a backhaul link according to the received backhaul link signaling.
  • the process of establishing a backhaul link is similar for different designated terminals, and does not affect each other.
  • step 304 the base station receives backhaul link setup signaling returned by the designated terminal.
  • step 305 the base station sends an acknowledgement message to the designated terminal.
  • the base station when the base station receives the backhaul link setup signaling, the base station may determine that the designated terminal can establish a backhaul link for the base station according to the backhaul link setup signaling, and the base station may send a confirmation to the designated terminal. A message indicating that the base station agrees to establish a backhaul link.
  • the base station when receiving the backhaul link establishment signaling, may determine whether it needs to establish a backhaul link, and if the base station needs to establish a backhaul link, send a confirmation to the designated terminal. Message; if the base station does not need to establish a backhaul link, it can send a reject message to the designated terminal.
  • the situation that the base station needs to establish a backhaul link includes at least: no backhaul link is currently available, or the current bandwidth requirement is high, and the existing backhaul link bandwidth cannot meet the current bandwidth requirement; the base station does not need to establish a backhaul link.
  • the road conditions include at least: there is currently a backhaul link available, or the existing backhaul link bandwidth can meet the current bandwidth requirements.
  • the base station may establish a backhaul link through some designated terminals of the multiple designated terminals, and may not be used for other designated terminals. Establish a backhaul link.
  • the base station may select a designated terminal to establish a backhaul link from the plurality of designated terminals according to the current bandwidth requirement and the bandwidth provided by each designated terminal of the plurality of designated terminals, so as to select The sum of the bandwidths provided by the designated terminal can satisfy the current bandwidth requirement of the base station, and then the base station can send an acknowledgement message to the selected designated terminal, and send a reject message to the remaining designated terminals.
  • the base station may send an acknowledgement message to the three designated terminals in the next communication cycle, so as to establish a backhaul link through the three designated terminals. And sending a reject message to the other two designated terminals, can establish enough backhaul links to meet the current bandwidth requirements, and will not waste backhaul link resources.
  • step 306 when the designated terminal receives the acknowledgement message returned by the base station, the base station is established.
  • the second communication link forms a backhaul link with the first communication link.
  • the designated terminal Based on the foregoing step 305, if the designated terminal receives the acknowledgment message of the base station, the base station and the designated terminal at this time have mutually confirmed the identity, and both agree to establish a backhaul link for the base station by using the designated terminal. Therefore, in this step, the designated terminal establishes a second communication link with the base station, and at this time, the base station can be connected to the core network through the first communication link and the second communication link, that is, the base station is established for the base station. A backhaul link.
  • the operator deploys a backhaul link for the base station, and the base station transmits the fixed point transmission through the backhaul link.
  • the base station can establish a backhaul link through any designated terminal, and the type and location of the designated terminal are not limited, thereby greatly improving flexibility.
  • the base station can establish one or more backhaul links, fully satisfying the current communication requirements, and has strong scalability.
  • the base station can communicate with the core network through the backhaul link to provide communication services for terminals within its coverage.
  • FIG. 4A is a schematic diagram of a communication system, according to an exemplary embodiment.
  • terminal A may be any terminal within the coverage of the base station.
  • the uplink communication of the communication system is: the terminal A sends the data to the base station, the base station sends the data to the designated terminal B, and the designated terminal B uploads the data to the core network;
  • the downlink communication of the communication system is: the designated terminal obtains from the core network The data is sent to the base station, and the base station transmits the data to the terminal A.
  • the base station can establish one or more backhaul links.
  • the terminal in the coverage area sends the data packet to the base station, and the base station uploads the data packet to the core network through the backhaul link, specifically by using the second communication link first.
  • the data packet is sent to the designated terminal, and the data packet is uploaded to the core network by the designated terminal.
  • the base station acquires a data packet from the core network through the backhaul link, and then sends the data packet to the terminal in the coverage area.
  • the base station In the case that the base station establishes multiple backhaul links, in downlink communication, the base station receives the data packets on the multiple backhaul links, and transmits the received data packets to the terminals in the coverage area.
  • the base station receives the data packet sent by at least one terminal located in the coverage of the base station, acquires the QCI of the received at least one data packet, and based on the current remaining bandwidth of the multiple backhaul links and the QCI of the at least one data packet. , assign at least one packet to multiple backhaul links.
  • the QCI is used to indicate the communication priority of the corresponding data packet, and can be obtained according to the service type, the packet loss rate, and the expected delay of the data packet. For example, the QCI is divided into 9 levels, and the QCI of one of the two received data packets is level 1, and the QCI of the other data packet is level 7, indicating that the communication priority of the former is higher, and the former is transmitted preferentially.
  • the base station may allocate the data packet to a backhaul link with a current remaining bandwidth.
  • the base station has two backhaul links L1 and L2.
  • the current remaining bandwidth of L1 is 5M
  • the current remaining bandwidth of d is 10M
  • the data packet can be sent through L2.
  • the data packet with a higher communication priority is allocated to the currently remaining backhaul link with a larger bandwidth, and the data packet with lower communication priority is used. It is allocated to the backhaul link with the remaining remaining bandwidth to ensure that packets with higher communication priority can be transmitted preferentially.
  • the base station has two backhaul links L1 and L2, and receives two data packets p and y, the QCI of p is level 2, and the QCI of y is level 5, indicating that the communication priority of p is higher than that of y.
  • Level the current remaining bandwidth of L1 is 5M, and the current remaining bandwidth of L2 is 1M, then p is preferentially assigned to L1 and y is assigned to L2.
  • the base station when receiving, by the base station, a data packet of multiple terminals in its coverage, the base station may reassemble the received multiple data packets into one based on the current remaining bandwidth of the at least one backhaul link. Packets are assigned to any backhaul link.
  • the base station has two backhaul links L1 and L2, and when the base station receives 2 data packets, L1 The current remaining bandwidth is 1M, and the current remaining bandwidth of L2 is 10M.
  • the base station can reassemble two data packets into one data packet and allocate it to L2, thereby improving the utilization of the idle backhaul link.
  • FIG. 4B is a schematic diagram of a regrouping process, according to an exemplary embodiment.
  • the terminal sends two data packets to the base station, and the two data packets are in accordance with PHY (Physical Layer), MAC (Medium/Media Access Control), and RLC (Radio Link Control, wireless).
  • PHY Physical Layer
  • MAC Medium/Media Access Control
  • RLC Radio Link Control, wireless
  • the link layer control protocol and the PDCP Packet Data Convergence Protocol
  • the base station unpacks the received two data packets according to the sequence of PDCP, RLC, MAC, and PHY, so as to obtain data corresponding to each layer of two data packets, and data corresponding to the same layer of two data packets.
  • the data of each layer in the new data packet can be represented as PDCP_New, RLC_New, MAC_New, and PHY_New.
  • the data packets may be re-recovered.
  • the packet is sent to the terminal corresponding to the plurality of data packets.
  • the packet mode is similar to the above packet mode, and is not described here.
  • the base station in order to avoid the situation that the communication is invalid, if the base station does not establish a backhaul link, if the access request of any terminal is received, the access request is rejected. This is because the system information broadcast by the base station may be received by any terminal within its coverage, and after receiving the system information, these terminals may send an access request to the base station. At this time, if the base station does not have available backhaul links, after they access the base station, the data cannot be transmitted to the core network through the base station, or the data is acquired from the core network through the base station. Therefore, in order to avoid waste of resources, the base station can reject the access request, thereby preventing the terminal from accessing the base station.
  • the base station when the base station communicates with any terminal in the coverage range, the base station can also communicate with the core network through the backhaul link, in order to avoid any one of the base station and the coverage of the base station.
  • the communication link between the terminals interferes with the established backhaul link, and Both allocate different transmission resources.
  • the transmission resource may be a time resource, a frequency resource, a beam, or the like.
  • the communication link between the base station and any terminal located within the coverage of the base station is different from the time resource configured by the backhaul link.
  • two links respectively allocate different subframes on the base station, and for subframe 1 to subframe 10, the communication link between the base station and any terminal located within the coverage of the base station allocates an odd-numbered subframe, and the backhaul The link allocates even-numbered subframes so that the two transmit data in different subframes.
  • the same frequency resource can be used for communication on the two links, which saves frequency resources, and since the subframes of the two communication links are isolated from each other, the communication does not interfere with each other.
  • the communication link between the base station and any terminal located within the coverage of the base station is different from the frequency resource configured by the backhaul link.
  • different carrier frequencies are used on each of the two links.
  • the carrier frequency used by the base station and any terminal located within the coverage of the base station is 2300 MHz
  • the carrier frequency used by the backhaul link is 2500 MHz.
  • the same time resource can be used for communication on the two links, for example, communication is performed on the same subframe, and the communication delay is reduced.
  • the communication link between the base station and any terminal located within the coverage of the base station does not overlap with the space occupied by the beam corresponding to the backhaul link.
  • the space occupied by the beam refers to the coverage of the beam.
  • the communication link and the backhaul link may correspond to the non-overlapping beams occupied by the space.
  • the occupied non-overlapping beams may be applied to avoid mutual interference.
  • the communication link and the backhaul link can use the same time resource and/or frequency resource, which can reduce the communication delay and save the frequency resource without causing communication interference.
  • the above allocation of different transmission resources for the two links is exemplary. If multiple backhaul links are established, or the base station needs to provide communication services for multiple terminals in the coverage area, the above manner of allocating transmission resources may also be applied, which is multiple backhaul links, and multiple base stations and coverage areas.
  • One The communication link of the terminal allocates different transmission resources to avoid interference during communication.
  • the method provided in this embodiment establishes a second communication link between the designated terminal that has established the first communication link with the core network and the base station by providing a new manner of establishing a backhaul link, and the first communication link And the second communication link constitutes a backhaul link, and the base station can access the core network through the backhaul link.
  • the method of establishing a backhaul link is more flexible and convenient, and any base station can establish multiple backhaul links by using this method, which is highly scalable.
  • the embodiment of the present disclosure supports establishing multiple backhaul links for a base station. Therefore, one or more backhaul links can be established for the base station in time and reasonably according to the amount of communication requirements, that is, an aggregation chain forming a backhaul link. Road, while solving the limitation of bandwidth, can also improve communication efficiency.
  • embodiments of the present disclosure can be applied to a variety of different scenarios.
  • FIG. 4C is a schematic diagram of a communication system, according to an exemplary embodiment.
  • the base station serves as a control center of the sensor network, and can communicate with any sensor terminal within the coverage, and can establish a backhaul link through at least one designated terminal.
  • the data collected by the sensor can be periodically uploaded to the server, but cannot be uploaded in real time, so that the data acquired by the server may be outdated.
  • the data collected by the sensor terminal may pass through the base station.
  • the backhaul link is uploaded to the core network in real time, and then can be transmitted to the server through the core network, realizing the real-time transmission of the data collected by the sensor, ensuring immediacy.
  • FIG. 4D is a schematic diagram of a communication system, according to an exemplary embodiment.
  • a small base station is deployed on the drone, and the small base station can communicate with any terminal within the coverage, and the backhaul link can be established through at least one designated terminal.
  • the traditional backhaul link is generally fixed, and it is difficult to implement a mobile small base station.
  • the embodiment of the present invention solves the problem that a small base station can be deployed on a drone to adjust the coverage by controlling the drone movement to provide communication services for an area lacking infrastructure, or Temporary provision of communication services for a certain area is more flexible.
  • FIG. 5 is a block diagram of an apparatus for establishing a backhaul link, according to an exemplary embodiment.
  • the apparatus includes a broadcast module 501, a receiving module 502, and an establishing module 503.
  • the broadcast module 501 is configured to broadcast system information, such that the designated terminal that receives the system information returns backhaul link setup signaling, and the designated terminal refers to the terminal that has established the first communication link with the core network;
  • the receiving module 502 is configured to receive backhaul link setup signaling returned by the designated terminal, where the backhaul link signaling is used to indicate that the designated terminal establishes a backhaul link for the base station;
  • the sending module 503 is configured to send an acknowledgment message to the designated terminal, so that after the designated terminal receives the acknowledgment message, the second communication link is established with the base station, and the second communication link and the first communication link form a backhaul link.
  • the apparatus provided in this embodiment establishes a second communication link between the designated terminal that has established the first communication link with the core network and the base station by providing a new manner of establishing a backhaul link, and the first communication link And the second communication link constitutes a backhaul link, and the base station can access the core network through the backhaul link.
  • the method of establishing a backhaul link is more flexible and convenient, and any base station can establish multiple backhaul links by using this method, which is highly scalable.
  • the communication link between the base station and any terminal located in the coverage of the base station is different from the time resource configured by the backhaul link;
  • the communication link between the base station and any terminal located within the coverage of the base station is different from the frequency resource configured by the backhaul link;
  • the communication link between the base station and any terminal located within the coverage of the base station does not overlap with the space occupied by the beam corresponding to the backhaul link.
  • the device further includes an acquisition module 504 and an allocation module 505.
  • the receiving module 502 is configured to receive, when the base station has established multiple backhaul links, a data packet sent by at least one terminal located in a coverage area of the base station;
  • the obtaining module 504 is configured to obtain a service quality level identifier QCI of the received at least one data packet, where the QCI is used to indicate a communication priority of the corresponding data packet;
  • the allocation module 505 is configured to allocate at least one data packet to the plurality of backhaul links based on the current remaining bandwidth of the plurality of backhaul links and the QCI of the at least one data packet.
  • the device further includes a rejection module 506.
  • the reject module 506 is configured to reject the access request if an access request from any of the terminals is received if the base station does not establish a backhaul link.
  • FIG. 8 is a block diagram of an apparatus for establishing a backhaul link, according to an exemplary embodiment.
  • the apparatus is applied to a designated terminal, and the designated terminal refers to a terminal that has established a first communication link with a core network, and the apparatus includes a receiving module 801, a transmitting module 802, and an establishing module 803.
  • the receiving module 801 is configured to receive system information broadcast by the base station;
  • the sending module 802 is configured to send backhaul link signaling to the base station, where the backhaul link signaling is used to indicate that the backhaul link is established for the base station;
  • the establishing module 803 is configured to establish a second communication link with the base station when receiving the acknowledgment message returned by the base station, and the second communication link and the first communication link form a backhaul link.
  • the apparatus provided in this embodiment establishes a second communication link between the designated terminal that has established the first communication link with the core network and the base station by providing a new manner of establishing a backhaul link, and the first communication link And the second communication link constitutes a backhaul link, and the base station can access the core network through the backhaul link.
  • the method of establishing a backhaul link is more flexible and convenient, and any base station can establish multiple backhaul links by using this method, which is highly scalable.
  • FIG. 9 is a block diagram of an apparatus 900 for establishing a backhaul link, according to an exemplary embodiment.
  • device 900 can be a mobile phone, a computer, a digital broadcast terminal, a messaging device, a gaming console, a tablet device, a medical device, a fitness device, a personal digital assistant, and the like.
  • device 900 can include one or more of the following components: processing component 902, memory 904, power component 906, multimedia component 908, audio component 910, input/output (I/O) interface 912, sensor component 914, And a communication component 916.
  • Processing component 902 typically controls the overall operation of device 900, such as operations associated with display, telephone calls, data communications, camera operations, and recording operations.
  • Processing component 902 can include one or more processors 920 to execute instructions to perform all or part of the steps described above.
  • processing component 902 can include one or more modules to facilitate interaction between component 902 and other components.
  • processing component 902 can include a multimedia module to facilitate interaction between multimedia component 908 and processing component 902.
  • Memory 904 is configured to store various types of data to support operation at device 900. Examples of such data include instructions for any application or method operating on device 900, contact data, phone book data, messages, pictures, videos, and the like.
  • the memory 904 can be implemented by any type of volatile or non-volatile storage device, or a combination thereof, such as static random access memory (SRAM), electrically erasable programmable read only memory (EEPROM), erasable.
  • SRAM static random access memory
  • EEPROM electrically erasable programmable read only memory
  • EPROM Programmable Read Only Memory
  • PROM Programmable Read Only Memory
  • ROM Read Only Memory
  • Magnetic Memory Flash Memory
  • Disk Disk or Optical Disk.
  • Power component 906 provides power to various components of device 900.
  • Power component 906 can include a power management system, one or more power sources, and other components associated with generating, managing, and distributing power for device 900.
  • the multimedia component 908 includes a screen between the device 900 and the user that provides an output interface.
  • the screen can include a liquid crystal display (LCD) and a touch panel (TP). If the screen includes a touch panel, the screen can be implemented as a touch screen to receive input signals from the user.
  • the touch panel includes one or more touch sensors to sense touches, slides, and gestures on the touch panel. The touch sensor may sense not only the boundary of the touch or sliding action, but also the duration and pressure associated with the touch or slide operation.
  • the multimedia component 908 includes a front camera and/or a rear camera. When the device 900 is in an operational mode, such as a shooting mode or In video mode, the front camera and/or rear camera can receive external multimedia data. Each front and rear camera can be a fixed optical lens system or have focal length and optical zoom capabilities.
  • the audio component 910 is configured to output and/or input an audio signal.
  • audio component 910 includes a microphone (MIC) that is configured to receive an external audio signal when device 900 is in an operational mode, such as a call mode, a recording mode, and a voice recognition mode.
  • the received audio signal may be further stored in memory 904 or transmitted via communication component 916.
  • the audio component 910 also includes a speaker for outputting an audio signal.
  • the I/O interface 912 provides an interface between the processing component 902 and the peripheral interface module, which may be a keyboard, a click wheel, a button, or the like. These buttons may include, but are not limited to, a home button, a volume button, a start button, and a lock button.
  • Sensor assembly 914 includes one or more sensors for providing device 900 with various aspects of status assessment.
  • sensor component 914 can detect an open/closed state of device 900, a relative positioning of components, such as the display and keypad of device 900, and sensor component 914 can also detect a change in position of one component of device 900 or device 900. The presence or absence of user contact with device 900, device 900 orientation or acceleration/deceleration, and temperature variation of device 900.
  • Sensor assembly 914 can include a proximity sensor configured to detect the presence of nearby objects without any physical contact.
  • Sensor assembly 914 may also include a light sensor, such as a CMOS or CCD image sensor, for use in imaging applications.
  • the sensor component 914 can also include an acceleration sensor, a gyro sensor, a magnetic sensor, a pressure sensor, or a temperature sensor.
  • Communication component 916 is configured to facilitate wired or wireless communication between device 900 and other devices.
  • the device 900 can access a wireless network based on a communication standard, such as WiFi, 2G or 3G, or a combination thereof.
  • communication component 916 receives broadcast signals or broadcast associated information from an external broadcast management system via a broadcast channel.
  • the communication component 916 also includes a near field communication (NFC) module to facilitate short range communication.
  • NFC near field communication
  • the NFC module can be based on radio frequency identification (RFID) technology, infrared data association (IrDA) technology, ultra-wideband (UWB) Technology, Bluetooth (BT) technology and other technologies to achieve.
  • RFID radio frequency identification
  • IrDA infrared data association
  • UWB ultra-wideband
  • Bluetooth Bluetooth
  • device 900 may be implemented by one or more application specific integrated circuits (ASICs), digital signal processors (DSPs), digital signal processing devices (DSPDs), programmable logic devices (PLDs), field programmable A gate array (FPGA), controller, microcontroller, microprocessor, or other electronic component implementation for performing the above method of establishing a backhaul link:
  • ASICs application specific integrated circuits
  • DSPs digital signal processors
  • DSPDs digital signal processing devices
  • PLDs programmable logic devices
  • FPGA field programmable A gate array
  • controller microcontroller, microprocessor, or other electronic component implementation for performing the above method of establishing a backhaul link:
  • Receiving system information broadcasted by the base station transmitting backhaul link signaling to the base station, where the backhaul link signaling is used to indicate that the backhaul link is established for the base station; when receiving the acknowledgement message returned by the base station, establishing a second communication link with the base station, Then the second communication link forms a backhaul link with the first communication link.
  • non-transitory computer readable storage medium comprising instructions, such as a memory 904 comprising instructions executable by processor 920 of apparatus 900 to perform the method of establishing a backhaul link described above .
  • the non-transitory computer readable storage medium can be a ROM, a random access memory (RAM), a CD-ROM, a magnetic tape, a floppy disk, and an optical data storage device.
  • FIG. 10 is a schematic structural diagram of a base station according to an exemplary embodiment.
  • the base station includes a transmitter 1001, a receiver 1002, a memory 1003, and a processor 1004 coupled to a transmitter, a receiver, and a memory, respectively.
  • the base station may further include a common component such as an antenna, a baseband processing component, a medium RF processing component, an input/output device, and the like, and the embodiment of the present disclosure is not limited herein.
  • the processor is configured to perform the method of any of the possible implementations provided by the above embodiments.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Computer Security & Cryptography (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明公开了一种建立回程链路的方法及装置,属于无线通信技术领域。方法包括:广播系统信息,使得接收到系统信息的指定终端返回回程链路建立信令,指定终端是指已与核心网建立第一通信链路的终端;接收指定终端返回的回程链路建立信令,回程链路信令用于指示指定终端为基站建立回程链路;指定终端发送确认消息,使得指定终端接收到确认消息后,与基站建立第二通信链路,则第二通信链路与第一通信链路构成回程链路。本发明通过提供一种新的建立回程链路的方式,建立回程链路的方式更加灵活便捷,任一基站采用该方式可以建立多条回程链路,可扩展性强。

Description

建立回程链路的方法及装置 技术领域
本发明涉及无线通信技术领域,特别涉及一种建立回程链路的方法及装置。
背景技术
回程链路是指基站与核心网之间的通信链路,基站通过该回程链路接入核心网后,即可为该基站覆盖范围内的终端提供通信服务。
而随着无线通信技术的发展,为了扩大通信覆盖范围,大规模地部署基站成为一种趋势。针对于每个基站,运营商通常会为该基站部署固定的回程链路,使得该基站可以通过该固定的回程链路接入核心网,从而为覆盖范围内的终端提供通信服务,如将核心网的数据传输至终端,或者将终端的数据传输至核心网等。
发明内容
为克服相关技术中存在的问题,本发明实施例提供了一种建立回程链路的方法及装置。所述技术方案如下:
根据本公开实施例的第一方面,提供一种建立回程链路的方法,所述方法包括:
广播系统信息,使得接收到所述系统信息的指定终端返回回程链路建立信令,所述指定终端是指已与核心网建立第一通信链路的终端;
接收所述指定终端返回的回程链路建立信令,所述回程链路信令用于指示所述指定终端为所述基站建立回程链路;
向所述指定终端发送确认消息,使得所述指定终端接收到所述确认消息后,与所述基站建立第二通信链路,则所述第二通信链路与所述第一通信链路构成回程链路。
在一种可能实现方式中,所述基站与位于所述基站的覆盖范围内的任一终端之间的通信链路与所述回程链路配置的时间资源不同;或者,
所述基站与位于所述基站的覆盖范围内的任一终端之间的通信链路与所述回程链路配置的频率资源不同;或者,
所述基站与位于所述基站的覆盖范围内的任一终端之间的通信链路与所述回程链路对应的波束所占的空间不重叠。
在一种可能实现方式中,所述方法还包括:
所述基站已建立多条回程链路的情况下,接收位于所述基站的覆盖范围内的至少一个终端发送的数据包;
获取接收到的至少一个数据包的业务质量级别标识QCI(Quality of service Class Identifier,业务质量级别标识),所述QCI用于指示对应的数据包的通信优先级;
基于所述多条回程链路当前剩余的带宽及所述至少一个数据包的QCI,将所述至少一个数据包分配给所述多条回程链路。
在一种可能实现方式中,所述方法还包括:
在所述基站未建立回程链路的情况下,如果接收到任一终端的接入请求,则拒绝所述接入请求。
根据本公开实施例的第二方面,提供一种建立回程链路的方法,所述方法包括:
接收基站广播的系统信息;
向所述基站发送回程链路信令,所述回程链路信令用于指示为所述基站建立回程链路;
当接收到所述基站返回的确认消息时,与所述基站建立第二通信链路,则 所述第二通信链路与所述第一通信链路构成回程链路。
根据本公开实施例的第三方面,提供一种建立回程链路的装置,所述装置包括:
广播模块,用于广播系统信息,使得接收到所述系统信息的指定终端返回回程链路建立信令,所述指定终端是指已与核心网建立第一通信链路的终端;
接收模块,用于接收所述指定终端返回的回程链路建立信令,所述回程链路信令用于指示所述指定终端为所述基站建立回程链路;
发送模块,用于向所述指定终端发送确认消息,使得所述指定终端接收到所述确认消息后,与所述基站建立第二通信链路,则所述第二通信链路与所述第一通信链路构成回程链路。
在一种可能实现方式中,所述基站与位于所述基站的覆盖范围内的任一终端之间的通信链路与所述回程链路配置的时间资源不同;或者,
所述基站与位于所述基站的覆盖范围内的任一终端之间的通信链路与所述回程链路配置的频率资源不同;或者,
所述基站与位于所述基站的覆盖范围内的任一终端之间的通信链路与所述回程链路对应的波束所占的空间不重叠。
在一种可能实现方式中,所述装置还包括:
所述接收模块,用于所述基站已建立多条回程链路的情况下,接收位于所述基站的覆盖范围内的至少一个终端发送的数据包;
获取模块,用于获取接收到的至少一个数据包的业务质量级别标识QCI,所述QCI用于指示对应的数据包的通信优先级;
分配模块,用于基于所述多条回程链路当前剩余的带宽及所述至少一个数据包的QCI,将所述至少一个数据包分配给所述多条回程链路。
在一种可能实现方式中,所述装置还包括:
拒绝模块,用于在所述基站未建立回程链路的情况下,如果接收到任一终端的接入请求,则拒绝所述接入请求。
根据本公开实施例的第四方面,提供一种建立回程链路的装置,所述装置包括:
接收模块,用于接收基站广播的系统信息;
发送模块,用于向所述基站发送回程链路信令,所述回程链路信令用于指示为所述基站建立回程链路;
建立模块,用于当接收到所述基站返回的确认消息时,与所述基站建立第二通信链路,则所述第二通信链路与所述第一通信链路构成回程链路。
根据本公开实施例的第五方面,提供一种建立回程链路的装置,所述装置包括:
处理器;
用于存储处理器可执行指令的存储器;
其中,所述处理器被配置为:
广播系统信息,使得接收到所述系统信息的指定终端返回回程链路建立信令,所述指定终端是指已与核心网建立第一通信链路的终端;
接收所述指定终端返回的回程链路建立信令,所述回程链路信令用于指示所述指定终端为所述基站建立回程链路;
向所述指定终端发送确认消息,使得所述指定终端接收到所述确认消息后,与所述基站建立第二通信链路,则所述第二通信链路与所述第一通信链路构成回程链路。
根据本公开实施例的第六方面,提供一种建立回程链路的装置,所述装置包括:
处理器;
用于存储处理器可执行指令的存储器;
其中,所述处理器被配置为:
接收基站广播的系统信息;
向所述基站发送回程链路信令,所述回程链路信令用于指示为所述基站建 立回程链路;
当接收到所述基站返回的确认消息时,与所述基站建立第二通信链路,则所述第二通信链路与所述第一通信链路构成回程链路。
本发明实施例提供的技术方案的有益效果是:
通过提供一种新的建立回程链路的方式,在已与核心网建立第一通信链路的指定终端与基站之间建立第二通信链路,第一通信链路和第二通信链路构成回程链路,则基站可以通过该回程链路接入核心网。建立回程链路的方式更加灵活便捷,任一基站采用该方式可以建立多条回程链路,可扩展性强。
附图说明
此处的附图被并入说明书中并构成本说明书的一部分,示出了符合本公开的实施例,并与说明书一起用于解释本公开的原理。
图1是根据一示例性实施例示出的一种建立回程链路的方法的流程图;
图2是根据一示例性实施例示出的一种建立回程链路的方法的流程图;
图3是根据一示例性实施例示出的一种建立回程链路的方法的流程图;
图4A是根据一示例性实施例示出的一种通信系统的示意图;
图4B是根据一示例性实施例示出的一种重新组包过程的示意图;
图4C是根据一示例性实施例示出的一种通信系统示意图;
图4D是根据一示例性实施例示出的一种通信系统示意图;
图5是根据一示例性实施例示出的一种建立回程链路的装置的框图;
图6是根据一示例性实施例示出的一种建立回程链路的装置的框图;
图7是根据一示例性实施例示出的一种建立回程链路的装置的框图;
图8是根据一示例性实施例示出的一种建立回程链路的装置的框图;
图9是根据一示例性实施例示出的一种建立回程链路的装置900的框图;
图10是根据一示例性实施例示出的一种基站结构示意图。
具体实施方式
为使本公开的目的、技术方案和优点更加清楚,下面将结合附图对本公开实施方式作进一步地详细描述。
图1是根据一示例性实施例示出的一种建立回程链路的方法的流程图。如图1所示,建立回程链路的方法应用于基站,包括以下步骤:
在步骤101中,广播系统信息,使得接收到系统信息的指定终端返回回程链路建立信令,指定终端是指已与核心网建立第一通信链路的终端。
在步骤102中,接收指定终端返回的回程链路建立信令,回程链路信令用于指示指定终端为基站建立回程链路。
在步骤103中,向指定终端发送确认消息,使得指定终端接收到确认消息后,与基站建立第二通信链路,则第二通信链路与第一通信链路构成回程链路。
相关技术中,小基站的回程链路需要运营商预先部署,而且部署的回程链路都是固定的,可扩展性差。本公开实施例中,基站可以通过任一个已与核心网建立第一通信链路的指定终端,建立一条回程链路,而摆脱了相关技术中固定回程链路的限制。
本实施例提供的方法,通过提供了一种新的建立回程链路的方式,在已与核心网建立第一通信链路的指定终端与基站之间建立第二通信链路,第一通信链路和第二通信链路构成回程链路,则基站可以通过该回程链路接入核心网。建立回程链路的方式更加灵活便捷,采用该方式可以建立多条回程链路,可扩展性强。
在一种可能实现方式中,基站与位于基站的覆盖范围内的任一终端之间的通信链路与回程链路配置的时间资源不同;或者,
基站与位于基站的覆盖范围内的任一终端之间的通信链路与回程链路配置的频率资源不同;或者,
基站与位于基站的覆盖范围内的任一终端之间的通信链路与回程链路对 应的波束所占的空间不重叠。
在一种可能实现方式中,方法还包括:
基站已建立多条回程链路的情况下,接收位于基站的覆盖范围内的至少一个终端发送的数据包;
获取接收到的至少一个数据包的业务质量级别标识QCI,QCI用于指示对应的数据包的通信优先级;
基于多条回程链路当前剩余的带宽及至少一个数据包的QCI,将至少一个数据包分配给多条回程链路。
在一种可能实现方式中,方法还包括:
在基站未建立回程链路的情况下,如果接收到任一终端的接入请求,则拒绝接入请求。
上述所有可选技术方案,可以采用任意结合形成本公开的可选实施例,在此不再一一赘述。
图2是根据一示例性实施例示出的一种建立回程链路的方法的流程图。如图2所示,建立回程链路的方法应用于指定终端,指定终端是指已与核心网建立第一通信链路的终端,该方法包括以下步骤:
在步骤201中,接收基站广播的系统信息。
在步骤202中,向基站发送回程链路信令,回程链路信令用于指示为基站建立回程链路。
在步骤203中,当接收到基站返回的确认消息时,与基站建立第二通信链路,则第二通信链路与第一通信链路构成回程链路。
本实施例提供的方法,通过提供了一种新的建立回程链路的方式,在已与核心网建立第一通信链路的指定终端与基站之间建立第二通信链路,第一通信链路和第二通信链路构成回程链路,则基站可以通过该回程链路接入核心网。建立回程链路的方式更加灵活便捷,采用该方式可以建立多条回程链路,可扩 展性强。
图3是根据一示例性实施例示出的一种建立回程链路的方法的流程图,如图3所示,建立回程链路的方法用于基站与指定终端的交互过程,包括以下步骤:
在步骤301中,基站广播系统信息。
回程链路是指基站与核心网之间的通信链路,核心网可以作为基站与外部网络之间的接口,只有当基站接入核心网后,才能正常地为其覆盖范围内的终端提供通信服务。例如,基站将核心网的数据传输至覆盖范围内的终端,或者将覆盖范围内的终端的数据传输至核心网,通过核心网传输至外部网络。
本公开实施例提供了一种为基站建立回程链路的方式,可以为任一基站建立回程链路。例如,该基站可以是小基站或者其他类型的基站等。如果小基站已有的回程链路带宽不能满足带宽需求,或者,如果小基站还未部署回程链路,均可以采用本公开实施例的方法建立回程链路。当然,该基站可以采用本公开实施例的方法建立多条回程链路,从而形成聚合的回程链路,使得基站更高效地进行通信。
该基站初始启动后,可以广播系统信息,供指定终端进行搜索和接入。该系统信息为该基站预先配置的信息,可以包括MIB(Master Information Block,主系统模块)和SIB(System Information Block,系统信息块)等基本的基站配置信息等,本公开实施例对该系统信息不做限定。
与相关技术中在接入核心网之后广播系统信息不同,本公开实施例在初始启动后即开始广播系统信息,以便通过该系统信息建立回程链路。
在步骤302中,指定终端接收基站广播的系统信息,指定终端是指已与核心网建立第一通信链路的终端。
在步骤303中,指定终端向基站发送回程链路信令,回程链路建立信令用于指示为该基站建立回程链路。
本公开实施例对指定终端不做具体限定,例如,指定终端可以为已接入核心网的移动电话或者平板电脑等。本公开实施例对该指定终端的位置也不做限定,只需保证该指定终端能够接收到该基站广播的系统信息即可。
回程链路建立信令可以为RRC(Radio Resource Control,无线资源控制)信令,且该信令的信息单元中携带了建立回程链路的标识,基站在接收到指定终端所发送的信令时,可以基于该信令携带的建立回程链路的标识,确定该信令为回程链路建立信令。本公开实施例对信息单元不做限定。例如,以下信令的信息单元中可以包含建立回程链路的标识“provideBackhaul”。
EstablishmentCause::=ENUMERATED{
emergency,highPriorityAccess,mt-Access,mo-Signalling,mo-Data,
delayTolerantAccess-v1020,provideBackhaul,spare1}
在该基站广播系统信息的过程中,当指定终端接收到基站所广播的系统信息时,可以生成回程链路建立信令,并且向基站发送该回程链路建立信令,以指示该指定终端已经接入核心网,可以为该基站建立回程链路。
由于该指定终端已经与核心网建立第一通信链路,可以通过该第一通信链路与核心网进行通信。因此,只要在该基站与该指定终端之间建立通信链路,该基站即可通过该指定终端连接至核心网。而为了在该基站与该指定终端之间建立通信链路,该指定终端接收到该基站广播的系统信息时,向基站发送回程链路信令。
本公开实施例对第一通信链路的建立方式不做限定。例如,指定终端通过WLAN(Wireless Local Area Networks,无线局域网)接入核心网,从而建立第一通信链路。
需要说明的是,基站广播系统信息时,可以有多个指定终端接收到该系统信息,从而向该基站发送该回程链路信令,此时该基站可以接收到多个回程链路信令,并根据接收到的回程链路信令建立回程链路。其中,对于不同的指定终端来说,建立回程链路的过程类似,且相互之间并不影响。
在步骤304中,基站接收指定终端返回的回程链路建立信令。
在步骤305中,基站向指定终端发送确认消息。
本公开实施例中,当基站接收到回程链路建立信令时,根据该回程链路建立信令可以确定该指定终端能够为该基站建立回程链路,此时该基站可以向指定终端发送确认消息,表示该基站同意建立回程链路。
在本公开实施例的一种可能实现方式中,基站接收到该回程链路建立信令时,可以判断自身是否需要建立回程链路,如果该基站需要建立回程链路,则向指定终端发送确认消息;如果该基站无需建立回程链路,则可以向指定终端发送拒绝消息。
其中,该基站需要建立回程链路的情况至少包括:当前没有可用的回程链路,或者,当前带宽需求较高,已有的回程链路带宽不能满足当前的带宽需求;该基站无需建立回程链路的情况至少包括:当前有可用的回程链路,或者,已有的回程链路带宽能够满足当前的带宽需求。
需要说明的是,如果基站接收到多个指定终端的回程链路信令,则该基站可以通过该多个指定终端中某些指定终端建立回程链路,而针对于其他的指定终端可以不再建立回程链路。
一种可能实现方式中,基站可以根据当前的带宽需求,以及该多个指定终端中每个指定终端提供的带宽,从该多个指定终端中选取要建立回程链路的指定终端,以使选取的指定终端提供的带宽之和可以满足基站当前的带宽需求,后续该基站可以向选取的指定终端发送确认消息,而向剩余的指定终端发送拒绝消息。
例如,基站在当前的通信周期内接收到5个指定终端发送的回程链路信令,则在下一通信周期可以向其中3个指定终端发送确认消息,以便通过这3个指定终端建立回程链路,而向另外2个指定终端发送拒绝消息,既能建立足够的回程链路,满足当前的带宽需求,也不会浪费回程链路资源。
在步骤306中,当指定终端接收到基站返回的确认消息时,与基站建立第 二通信链路,则第二通信链路与第一通信链路构成回程链路。
基于上述步骤305,如果指定终端接收到基站的确认消息,则此时的基站与指定终端已经相互确认身份,并且均同意通过指定终端为基站建立回程链路。因此,在该步骤中,指定终端与基站建立第二通信链路,此时,基站通过该第一通信链路和该第二通信链路可以连接至核心网,也即是为该基站建立了一条回程链路。
相关技术中都是由运营商为基站部署回程链路,由基站通过该回程链路实现定点传输。而本公开实施例中,对于一个基站来说,该基站可以通过任一指定终端来建立回程链路,该指定终端的类型、位置均不受限制,大大提高了灵活性。而且,该基站可以建立一条或者多条回程链路,充分满足了当前的通信需求,可扩展性强。
当回程链路建立完成时,该基站即可通过该回程链路与核心网进行通信,从而为其覆盖范围内的终端提供通信服务。
例如,图4A是根据一示例性实施例示出的一种通信系统的示意图。如图4A所示,在该通信系统中,终端A可以是基站覆盖范围内的任一终端。该通信系统的上行通信为:终端A将数据发送至基站,基站将数据发送至指定终端B,由指定终端B将数据上传至核心网;该通信系统的下行通信为:指定终端从核心网获取数据,并将数据发送至基站,由基站将数据发送至终端A。
实际应用中,该基站可以建立一条或者多条回程链路。
基站建立一条回程链路的情况下,在上行通信时,覆盖范围内的终端将数据包发送至基站,基站通过回程链路将数据包上传至核心网,具体是先通过该第二通信链路将数据包发送至指定终端,由指定终端将数据包上传至核心网。在下行通信时,基站通过回程链路从核心网获取数据包,再将数据包发送至覆盖范围内的终端。
基站建立多条回程链路的情况下,在下行通信时,基站接收多条回程链路上的数据包,并将接收到的数据包发送至覆盖范围内的终端。
在上行通信时,基站接收位于基站的覆盖范围内的至少一个终端发送的数据包,获取接收到的至少一个数据包的QCI,基于多条回程链路当前剩余的带宽及至少一个数据包的QCI,将至少一个数据包分配给多条回程链路。
其中,QCI用于指示对应的数据包的通信优先级,可根据该数据包的业务类型、丢包率和预计延时得到。例如,QCI划分为9级,接收的两个数据包中一个数据包的QCI为1级,另一个数据包的QCI为7级,表明前者的通信优先级较高,则优先传输前者。
在一种可能实现方式中,该基站接收到数据包时,可以将该数据包分配给当前剩余带宽较大的回程链路。
例如,该基站有两条回程链路L1和L2,L1当前剩余带宽为5M,d当前剩余带宽为10M,则可以将数据包通过L2发送。
通过这种分配方式,不仅能优先发送数据包,而且该数据包占用回程链路的带宽之后,该回程链路剩余带宽变小,可以使不同回程链路的剩余带宽不会相差太大,从而保证了回程链路负载均衡,缓解回程链路的带宽紧张。
在另一种可能实现方式中,该基站接收到多个数据包时,将通信优先级较高的数据包分配给当前剩余的带宽较大的回程链路,将通信优先级较低的数据包分配给当前剩余的带宽较小的回程链路,以保证通信优先级较高的数据包可以优先传输。
例如,基站具有两条回程链路L1和L2,且接收到了两个数据包p和y,p的QCI为2级,y的QCI为5级,表示p的通信优先级高于y的通信优先级,L1的当前剩余带宽为5M,L2的当前剩余带宽为1M,则优先将p分配至L1,将y分配至L2。
在另一种可能实现方式中,该基站接收到其覆盖范围内的多个终端的数据包时,可以基于至少一个回程链路的当前剩余带宽,将接收到的多个数据包重新组合成一个数据包,并分配给任一回程链路。
例如,基站具有两条回程链路L1和L2,当基站接收到2个数据包时,L1 的当前剩余带宽为1M,L2的当前剩余带宽为10M,则基站可以将两个数据包重新组合成1个数据包,并分配给L2,从而提高空闲的回程链路的利用率。
本公开实施例对上述重新组包的方式不做限定。例如,图4B是根据一示例性实施例示出的一种重新组包过程的示意图。参见图4B,终端向基站发送2个数据包,2个数据包按照PHY(Physical Layer,物理层协议)、MAC(Medium/Media Access Control,媒介访问控制层协议)、RLC(Radio Link Control,无线链路层控制协议)、PDCP(Packet Data Convergence Protocol,分组数据汇聚协议)的顺序依次进行组包。则基站将接收到的2个数据包分别按照PDCP、RLC、MAC及PHY的顺序层层拆包,以获取2个数据包每一层对应的数据,并将2个数据包同一层对应的数据进行组合,进而以PHY、MAC、RLC及PDCP的顺序重新组成一个新的数据包,则新的数据包中每一层的数据可表示为PDCP_New、RLC_New、MAC_New及PHY_New。
在另一种可能实现方式中,下行通信时,如果基站接收到来自于不同回程链路的多个数据包,且该多个数据包对应的终端为同一个终端,也可以将这些数据包重新组包,并发送给该多个数据包对应的终端。该组包方式与上述组包方式类似,在此不再赘述。
需要说明的是,为了避免发生通信无效的情况,在基站未建立回程链路的情况下,如果接收到任一终端的接入请求,则拒绝接入请求。这是因为基站所广播的系统信息可能被其覆盖范围内的任一终端接收到,并且这些终端在接收到系统信息后,可能向该基站发送接入请求。此时,如果该基站还没有可用的回程链路,则它们接入该基站后,也不能通过基站将数据传输至核心网,或者通过基站从核心网获取数据。因此,为了避免资源的浪费,该基站可以拒绝该接入请求,从而避免该终端接入基站。
基于本实施例所建立的回程链路,当基站与覆盖范围内的任一终端进行通信时,也可以通过回程链路与核心网进行通信,为了避免基站与位于基站的覆盖范围内的任一终端之间的通信链路与所建立的回程链路相互干扰,则可以为 二者分配不同的传输资源。本公开实施例对此不做限定。例如,该传输资源可以是时间资源、频率资源或者波束等。
1、基站与位于基站的覆盖范围内的任一终端之间的通信链路与回程链路配置的时间资源不同。
例如,两个链路分别分配基站上的不同子帧,对于子帧1到子帧10,基站与位于基站的覆盖范围内的任一终端之间的通信链路分配奇数标号的子帧,回程链路分配偶数标号的子帧,以使两者在不同的子帧进行数据传输。此时,两个链路上可以使用同一频率资源进行通信,节约频率资源,且由于两个通信链路的子帧互相隔离,则通信时不会相互干扰。
2、基站与位于基站的覆盖范围内的任一终端之间的通信链路与回程链路配置的频率资源不同。
例如,两个链路上分别使用不同的载波频率。如,基站与位于基站的覆盖范围内的任一终端之间的通信链路所使用的载波频率为2300MHZ,而回程链路所使用的载波频率为2500MHZ。此时,两个链路上可以使用相同的时间资源进行通信,如,在同一子帧上进行通信,降低通信时延。
3、基站与位于基站的覆盖范围内的任一终端之间的通信链路与回程链路对应的波束所占的空间不重叠。
不同波束在空间上指向性不同,所占的空间也不同,其中波束所占的空间是指波束的覆盖范围。该通信链路和该回程链路可以对应于所占的空间不重叠的波束,该基站通过这两个链路传输数据时,可以应用所占的空间不重叠的波束,从而避免相互干扰。此时,该通信链路和该回程链路可以使用相同的时间资源和/或频率资源,既能降低通信时延,也能节约频率资源,且不会造成通信干扰。
当然,上述为两个链路分配不同的传输资源是示例性的。如果建立了多条回程链路,或者基站需要为覆盖范围内的多个终端提供通信服务,则也可以应用上述分配传输资源的方式,为多条回程链路、以及基站与覆盖范围内的多个 终端的通信链路分配不同的传输资源,以避免通信时的干扰。
本实施例提供的方法,通过提供一种新的建立回程链路的方式,在已与核心网建立第一通信链路的指定终端与基站之间建立第二通信链路,第一通信链路和第二通信链路构成回程链路,则基站可以通过该回程链路接入核心网。建立回程链路的方式更加灵活便捷,任一基站采用该方式可以建立多条回程链路,可扩展性强。
另外,本公开实施例支持为基站建立多条回程链路,因此,可以根据通信需求量的多少,及时且合理地为该基站建立一个或多个回程链路,即形成回程链路的聚合链路,在解决带宽受限的同时,也能提高通信效率。
事实上,本公开实施例可以应用于多种不同的场景下。
本公开实施例可以应用于采集传感器数据的场景下,例如,图4C是根据一示例性实施例示出的一种通信系统的示意图。参见图4C,基站作为传感器网络的控制中心,可以与覆盖范围内的任一传感器终端进行通信,而且可以通过至少一个指定终端建立回程链路。
相关技术中,传感器采集的数据可以定期上传至服务器,而不能实时上传,导致服务器所获取的数据可能过时,而应用本公开实施例建立回程链路之后,传感器终端所采集的数据可以通过基站、回程链路,实时地上传到核心网,进而可以通过核心网上传到服务器,实现了传感器所采集数据的实时传输,保证了即时性。
本公开实施例可以应用于无人机的场景下,例如,图4D是根据一示例性实施例示出的一种通信系统的示意图。参见图4D,在无人机上部署小基站,小基站可以与覆盖范围内的任一终端进行通信,而且可以通过至少一个指定终端建立回程链路。
相关技术中,传统的回程链路一般是固定的,很难实现部署移动的小基站。而本发明实施例解决了这一问题,即可以实现在无人机上部署小基站,从而通过控制无人机移动调整覆盖范围,为缺乏基础设施的地区提供通信服务,或者 临时为某一地区提供通信服务,灵活性更高。
图5是根据一示例性实施例示出的一种建立回程链路的装置的框图。参照图5,该装置包括广播模块501,接收模块502和建立模块503。
该广播模块501被配置为广播系统信息,使得接收到系统信息的指定终端返回回程链路建立信令,指定终端是指已与核心网建立第一通信链路的终端;
该接收模块502被配置为接收指定终端返回的回程链路建立信令,回程链路信令用于指示指定终端为基站建立回程链路;
该发送模块503被配置为向指定终端发送确认消息,使得指定终端接收到确认消息后,与基站建立第二通信链路,则第二通信链路与第一通信链路构成回程链路。
本实施例提供的装置,通过提供一种新的建立回程链路的方式,在已与核心网建立第一通信链路的指定终端与基站之间建立第二通信链路,第一通信链路和第二通信链路构成回程链路,则基站可以通过该回程链路接入核心网。建立回程链路的方式更加灵活便捷,任一基站采用该方式可以建立多条回程链路,可扩展性强。
在一种可能实现方式中,基站与位于基站的覆盖范围内的任一终端之间的通信链路与回程链路配置的时间资源不同;或者,
基站与位于基站的覆盖范围内的任一终端之间的通信链路与回程链路配置的频率资源不同;或者,
基站与位于基站的覆盖范围内的任一终端之间的通信链路与回程链路对应的波束所占的空间不重叠。
在一种可能实现方式中,基于图5的装置组成,参见图6,装置还包括:获取模块504和分配模块505。
该接收模块502被配置为基站已建立多条回程链路的情况下,接收位于基站的覆盖范围内的至少一个终端发送的数据包;
该获取模块504被配置为获取接收到的至少一个数据包的业务质量级别标识QCI,QCI用于指示对应的数据包的通信优先级;
该分配模块505被配置为基于多条回程链路当前剩余的带宽及至少一个数据包的QCI,将至少一个数据包分配给多条回程链路。
在一种可能实现方式中,基于图5的装置组成,参见图7,装置还包括:拒绝模块506。
该拒绝模块506被配置为在基站未建立回程链路的情况下,如果接收到任一终端的接入请求,则拒绝接入请求。
图8是根据一示例性实施例示出的一种建立回程链路的装置的框图。参照图8,该装置应用于指定终端,指定终端是指已与核心网建立第一通信链路的终端,该装置包括接收模块801,发送模块802和建立模块803。
该接收模块801被配置为接收基站广播的系统信息;
该发送模块802被配置为向基站发送回程链路信令,回程链路信令用于指示为基站建立回程链路;
该建立模块803被配置为当接收到基站返回的确认消息时,与基站建立第二通信链路,则第二通信链路与第一通信链路构成回程链路。
本实施例提供的装置,通过提供一种新的建立回程链路的方式,在已与核心网建立第一通信链路的指定终端与基站之间建立第二通信链路,第一通信链路和第二通信链路构成回程链路,则基站可以通过该回程链路接入核心网。建立回程链路的方式更加灵活便捷,任一基站采用该方式可以建立多条回程链路,可扩展性强。
图9是根据一示例性实施例示出的一种建立回程链路的装置900的框图。例如,装置900可以是移动电话,计算机,数字广播终端,消息收发设备,游戏控制台,平板设备,医疗设备,健身设备,个人数字助理等。
参照图9,装置900可以包括以下一个或多个组件:处理组件902,存储器904,电源组件906,多媒体组件908,音频组件910,输入/输出(I/O)的接口912,传感器组件914,以及通信组件916。
处理组件902通常控制装置900的整体操作,诸如与显示,电话呼叫,数据通信,相机操作和记录操作相关联的操作。处理组件902可以包括一个或多个处理器920来执行指令,以完成上述的方法的全部或部分步骤。此外,处理组件902可以包括一个或多个模块,便于处理组件902和其他组件之间的交互。例如,处理组件902可以包括多媒体模块,以方便多媒体组件908和处理组件902之间的交互。
存储器904被配置为存储各种类型的数据以支持在装置900的操作。这些数据的示例包括用于在装置900上操作的任何应用程序或方法的指令,联系人数据,电话簿数据,消息,图片,视频等。存储器904可以由任何类型的易失性或非易失性存储设备或者它们的组合实现,如静态随机存取存储器(SRAM),电可擦除可编程只读存储器(EEPROM),可擦除可编程只读存储器(EPROM),可编程只读存储器(PROM),只读存储器(ROM),磁存储器,快闪存储器,磁盘或光盘。
电源组件906为装置900的各种组件提供电力。电源组件906可以包括电源管理系统,一个或多个电源,及其他与为装置900生成、管理和分配电力相关联的组件。
多媒体组件908包括在所述装置900和用户之间的提供一个输出接口的屏幕。在一些实施例中,屏幕可以包括液晶显示器(LCD)和触摸面板(TP)。如果屏幕包括触摸面板,屏幕可以被实现为触摸屏,以接收来自用户的输入信号。触摸面板包括一个或多个触摸传感器以感测触摸、滑动和触摸面板上的手势。所述触摸传感器可以不仅感测触摸或滑动动作的边界,而且还检测与所述触摸或滑动操作相关的持续时间和压力。在一些实施例中,多媒体组件908包括一个前置摄像头和/或后置摄像头。当装置900处于操作模式,如拍摄模式或 视频模式时,前置摄像头和/或后置摄像头可以接收外部的多媒体数据。每个前置摄像头和后置摄像头可以是一个固定的光学透镜系统或具有焦距和光学变焦能力。
音频组件910被配置为输出和/或输入音频信号。例如,音频组件910包括一个麦克风(MIC),当装置900处于操作模式,如呼叫模式、记录模式和语音识别模式时,麦克风被配置为接收外部音频信号。所接收的音频信号可以被进一步存储在存储器904或经由通信组件916发送。在一些实施例中,音频组件910还包括一个扬声器,用于输出音频信号。
I/O接口912为处理组件902和外围接口模块之间提供接口,上述外围接口模块可以是键盘,点击轮,按钮等。这些按钮可包括但不限于:主页按钮、音量按钮、启动按钮和锁定按钮。
传感器组件914包括一个或多个传感器,用于为装置900提供各个方面的状态评估。例如,传感器组件914可以检测到装置900的打开/关闭状态,组件的相对定位,例如所述组件为装置900的显示器和小键盘,传感器组件914还可以检测装置900或装置900一个组件的位置改变,用户与装置900接触的存在或不存在,装置900方位或加速/减速和装置900的温度变化。传感器组件914可以包括接近传感器,被配置用来在没有任何的物理接触时检测附近物体的存在。传感器组件914还可以包括光传感器,如CMOS或CCD图像传感器,用于在成像应用中使用。在一些实施例中,该传感器组件914还可以包括加速度传感器,陀螺仪传感器,磁传感器,压力传感器或温度传感器。
通信组件916被配置为便于装置900和其他设备之间有线或无线方式的通信。装置900可以接入基于通信标准的无线网络,如WiFi,2G或3G,或它们的组合。在一个示例性实施例中,通信组件916经由广播信道接收来自外部广播管理系统的广播信号或广播相关信息。在一个示例性实施例中,所述通信组件916还包括近场通信(NFC)模块,以促进短程通信。例如,在NFC模块可基于射频识别(RFID)技术,红外数据协会(IrDA)技术,超宽带(UWB) 技术,蓝牙(BT)技术和其他技术来实现。
在示例性实施例中,装置900可以被一个或多个应用专用集成电路(ASIC)、数字信号处理器(DSP)、数字信号处理设备(DSPD)、可编程逻辑器件(PLD)、现场可编程门阵列(FPGA)、控制器、微控制器、微处理器或其他电子元件实现,用于执行上述建立回程链路的方法:
接收基站广播的系统信息;向基站发送回程链路信令,回程链路信令用于指示为基站建立回程链路;当接收到基站返回的确认消息时,与基站建立第二通信链路,则第二通信链路与第一通信链路构成回程链路。
在示例性实施例中,还提供了一种包括指令的非临时性计算机可读存储介质,例如包括指令的存储器904,上述指令可由装置900的处理器920执行以完成上述建立回程链路的方法。例如,非临时性计算机可读存储介质可以是ROM、随机存取存储器(RAM)、CD-ROM、磁带、软盘和光数据存储设备等。
图10是根据一示例性实施例示出的一种基站结构示意图。如图10所示,该基站包括发射机1001、接收机1002、存储器1003以及分别与发射机、接收机和存储器连接的处理器1004。当然,基站还可以包括天线、基带处理部件、中射频处理部件、输入输出装置等通用部件,本公开实施例在此不再任何限制。
处理器被配置为执行上述实施例所提供的任一种可能实现方式中的方法。
以上所述仅为本发明的较佳实施例,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (12)

  1. 一种建立回程链路的方法,其特征在于,应用于基站,所述方法包括:
    广播系统信息,使得接收到所述系统信息的指定终端返回回程链路建立信令,所述指定终端是指已与核心网建立第一通信链路的终端;
    接收所述指定终端返回的回程链路建立信令,所述回程链路信令用于指示所述指定终端为所述基站建立回程链路;
    向所述指定终端发送确认消息,使得所述指定终端接收到所述确认消息后,与所述基站建立第二通信链路,则所述第二通信链路与所述第一通信链路构成回程链路。
  2. 根据权利要求1所述的方法,其特征在于,
    所述基站与位于所述基站的覆盖范围内的任一终端之间的通信链路与所述回程链路配置的时间资源不同;或者,
    所述基站与位于所述基站的覆盖范围内的任一终端之间的通信链路与所述回程链路配置的频率资源不同;或者,
    所述基站与位于所述基站的覆盖范围内的任一终端之间的通信链路与所述回程链路对应的波束所占的空间不重叠。
  3. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    所述基站已建立多条回程链路的情况下,接收位于所述基站的覆盖范围内的至少一个终端发送的数据包;
    获取接收到的至少一个数据包的业务质量级别标识QCI,所述QCI用于指示对应的数据包的通信优先级;
    基于所述多条回程链路当前剩余的带宽及所述至少一个数据包的QCI,将所述至少一个数据包分配给所述多条回程链路。
  4. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    在所述基站未建立回程链路的情况下,如果接收到任一终端的接入请求,则拒绝所述接入请求。
  5. 一种建立回程链路的方法,其特征在于,应用于指定终端,所述指定终端是指已与核心网建立第一通信链路的终端,所述方法包括:
    接收基站广播的系统信息;
    向所述基站发送回程链路信令,所述回程链路信令用于指示为所述基站建立回程链路;
    当接收到所述基站返回的确认消息时,与所述基站建立第二通信链路,则所述第二通信链路与所述第一通信链路构成回程链路。
  6. 一种建立回程链路的装置,其特征在于,应用于基站,所述装置包括:
    广播模块,用于广播系统信息,使得接收到所述系统信息的指定终端返回回程链路建立信令,所述指定终端是指已与核心网建立第一通信链路的终端;
    接收模块,用于接收所述指定终端返回的回程链路建立信令,所述回程链路信令用于指示所述指定终端为所述基站建立回程链路;
    发送模块,用于向所述指定终端发送确认消息,使得所述指定终端接收到所述确认消息后,与所述基站建立第二通信链路,则所述第二通信链路与所述第一通信链路构成回程链路。
  7. 根据权利要求6所述的装置,其特征在于,
    所述基站与位于所述基站的覆盖范围内的任一终端之间的通信链路与所述回程链路配置的时间资源不同;或者,
    所述基站与位于所述基站的覆盖范围内的任一终端之间的通信链路与所述回程链路配置的频率资源不同;或者,
    所述基站与位于所述基站的覆盖范围内的任一终端之间的通信链路与所述回程链路对应的波束所占的空间不重叠。
  8. 根据权利要求6所述的装置,其特征在于,所述装置还包括:
    所述接收模块,用于所述基站已建立多条回程链路的情况下,接收位于所述基站的覆盖范围内的至少一个终端发送的数据包;
    获取模块,用于获取接收到的至少一个数据包的业务质量级别标识QCI,所述QCI用于指示对应的数据包的通信优先级;
    分配模块,用于基于所述多条回程链路当前剩余的带宽及所述至少一个数据包的QCI,将所述至少一个数据包分配给所述多条回程链路。
  9. 根据权利要求6所述的装置,其特征在于,所述装置还包括:
    拒绝模块,用于在所述基站未建立回程链路的情况下,如果接收到任一终端的接入请求,则拒绝所述接入请求。
  10. 一种建立回程链路的装置,其特征在于,应用于指定终端,所述指定终端是指已与核心网建立第一通信链路的终端,所述装置包括:
    接收模块,用于接收基站广播的系统信息;
    发送模块,用于向所述基站发送回程链路信令,所述回程链路信令用于指示为所述基站建立回程链路;
    建立模块,用于当接收到所述基站返回的确认消息时,与所述基站建立第二通信链路,则所述第二通信链路与所述第一通信链路构成回程链路。
  11. 一种建立回程链路的装置,其特征在于,应用于指定终端,所述指定终端是指已与核心网建立第一通信链路的终端,所述装置包括:
    处理器;
    用于存储处理器可执行指令的存储器;
    其中,所述处理器被配置为:
    广播系统信息,使得接收到所述系统信息的指定终端返回回程链路建立信令,所述指定终端是指已与核心网建立第一通信链路的终端;
    接收所述指定终端返回的回程链路建立信令,所述回程链路信令用于指示所述指定终端为所述基站建立回程链路;
    向所述指定终端发送确认消息,使得所述指定终端接收到所述确认消息后,与所述基站建立第二通信链路,则所述第二通信链路与所述第一通信链路构成回程链路。
  12. 一种建立回程链路的装置,其特征在于,应用于指定终端,所述指定终端是指已与核心网建立第一通信链路的终端,所述装置包括:
    处理器;
    用于存储处理器可执行指令的存储器;
    其中,所述处理器被配置为:
    接收基站广播的系统信息;
    向所述基站发送回程链路信令,所述回程链路信令用于指示为所述基站建立回程链路;
    当接收到所述基站返回的确认消息时,与所述基站建立第二通信链路,则所述第二通信链路与所述第一通信链路构成回程链路。
PCT/CN2016/100789 2016-09-29 2016-09-29 建立回程链路的方法及装置 WO2018058428A1 (zh)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2018519928A JP6546701B2 (ja) 2016-09-29 2016-09-29 バックホールリンクの確立方法及び装置
PCT/CN2016/100789 WO2018058428A1 (zh) 2016-09-29 2016-09-29 建立回程链路的方法及装置
KR1020187025286A KR102119635B1 (ko) 2016-09-29 2016-09-29 백홀 링크 설정 방법 및 장치
RU2017142139A RU2676471C1 (ru) 2016-09-29 2016-09-29 Способ и устройство для установления транзитного канала
CN201680000967.7A CN108476554B (zh) 2016-09-29 2016-09-29 建立回程链路的方法及装置
EP17168155.4A EP3301965B1 (en) 2016-09-29 2017-04-26 Method and device for establishing backhaul link
US15/712,176 US10397969B2 (en) 2016-09-29 2017-09-22 Method and device for establishing backhaul link

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/100789 WO2018058428A1 (zh) 2016-09-29 2016-09-29 建立回程链路的方法及装置

Publications (1)

Publication Number Publication Date
WO2018058428A1 true WO2018058428A1 (zh) 2018-04-05

Family

ID=58714913

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/100789 WO2018058428A1 (zh) 2016-09-29 2016-09-29 建立回程链路的方法及装置

Country Status (7)

Country Link
US (1) US10397969B2 (zh)
EP (1) EP3301965B1 (zh)
JP (1) JP6546701B2 (zh)
KR (1) KR102119635B1 (zh)
CN (1) CN108476554B (zh)
RU (1) RU2676471C1 (zh)
WO (1) WO2018058428A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11252748B2 (en) 2018-05-07 2022-02-15 Qualcomm Incorporated System information for access and backhaul
WO2020013740A1 (en) * 2018-07-11 2020-01-16 Telefonaktiebolaget Lm Ericsson (Publ) A first radio node, a backhaul wireless device and a second radio node and methods therein for enabling wireless backhaul in a wireless communications network
US10834773B2 (en) 2018-09-28 2020-11-10 At&T Intellectual Property I, L.P. On-demand backhaul link management measurements for integrated access backhaul for 5G or other next generation network
WO2022256315A1 (en) * 2021-06-01 2022-12-08 Google Llc Backhaul link for a high altitude platform

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120026865A1 (en) * 2010-07-28 2012-02-02 At&T Intellectual Property I, L.P. Femtocell service through a secondary connection
CN103501499A (zh) * 2013-09-13 2014-01-08 北京创毅讯联科技股份有限公司 一种基于lte企业网系统的无线回传方法及其实现设备
US20140092803A1 (en) * 2011-08-28 2014-04-03 PureWave Networks, Inc Mobile base station
WO2015042966A1 (zh) * 2013-09-30 2015-04-02 华为技术有限公司 建立回程链路方法、装置及系统
CN104969653A (zh) * 2013-04-07 2015-10-07 华为技术有限公司 无线回程链路的建立方法和设备

Family Cites Families (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7840214B2 (en) * 2006-04-21 2010-11-23 Alcatel-Lucent Usa Inc. Method of providing access information to an access terminal
BRPI0719505A2 (pt) * 2006-12-21 2013-12-10 Du Pont "Processos de preparação de óleo de erva dos gatos hidrogenado"
US8185060B2 (en) * 2008-04-22 2012-05-22 Qualcomm Incorporated Serving base station selection using backhaul quality information
US8254943B1 (en) * 2008-12-22 2012-08-28 Sprint Communications Company L.P. Method for backhaul transport recovery
CN101873674B (zh) * 2009-04-21 2013-03-27 财团法人资讯工业策进会 移动装置、基站、后端网络装置及用于移动装置的方法
TWI426807B (zh) * 2009-06-23 2014-02-11 Inst Information Industry 基地台、中繼台及其後端控制通訊方法
CN101938798A (zh) * 2009-07-03 2011-01-05 中兴通讯股份有限公司 一种无线中继系统中终端的移动性管理方法及系统
US8488514B2 (en) * 2009-10-02 2013-07-16 Research In Motion Limited Relay backhaul link quality considerations for mobility procedures
US9131495B2 (en) 2010-03-30 2015-09-08 Nokia Solutions And Networks Oy Enhanced admission control in relay-enhanced access networks
US20120120887A1 (en) * 2010-11-12 2012-05-17 Battelle Energy Alliance, Llc Systems, apparatuses, and methods to support dynamic spectrum access in wireless networks
EP2671416A1 (en) * 2011-02-04 2013-12-11 Telefonaktiebolaget L M Ericsson (PUBL) Methods and devices for supporting backhaul selection
CN103733682A (zh) * 2011-06-01 2014-04-16 株式会社Ntt都科摩 使用小节点设备的移动通信中的增强的本地接入
US8634339B2 (en) 2011-08-28 2014-01-21 PureWave Networks, Inc Methods and systems for sharing resources between a radio access network and a backhaul network
US8693093B2 (en) * 2012-01-27 2014-04-08 LeRoy Francis Kepley, JR. Portable projector and screen mounting system
EP2848083B1 (en) * 2012-05-10 2017-09-20 IDAC Holdings, Inc. Systems and methods for directional mesh networks with joint backhaul and access link design
US9350515B2 (en) * 2012-10-15 2016-05-24 Headwater Partners LLC Enhanced relay node with additional backhaul alternative and selection
US8913494B1 (en) * 2013-01-22 2014-12-16 Sprint Spectrum L.P. Dynamic allocation of backhaul bearer services based on loading conditions
WO2014180004A1 (zh) * 2013-05-10 2014-11-13 华为技术有限公司 一种信号传输方法及设备
US9894164B2 (en) * 2013-06-06 2018-02-13 Samsung Electronics Co., Ltd. Computing system with control mechanism and method of operation thereof
US10383028B2 (en) * 2013-07-30 2019-08-13 Sony Corporation Method of requesting activation of a repeater function and user equipment
US9386480B2 (en) * 2013-08-06 2016-07-05 Parallel Wireless, Inc. Systems and methods for providing LTE-based backhaul
ES2774943T3 (es) * 2013-09-25 2020-07-23 Sony Corp Aparato de control de comunicaciones, método de control de comunicaciones, aparato de radiocomunicaciones y método de radiocomunicaciones
EP3123760B1 (en) * 2014-03-26 2020-07-15 Telefonaktiebolaget LM Ericsson (PUBL) Establishment of a wireless backhaul connection from a small cell rbs
CN104135541B (zh) * 2014-08-15 2017-10-17 宇龙计算机通信科技(深圳)有限公司 资源共享方法和资源共享系统
EP3190843B1 (en) * 2014-09-05 2020-11-04 LG Electronics Inc. Method for performing communication between devices in wireless communication system and device for performing same
US10154440B2 (en) * 2014-11-14 2018-12-11 Parallel Wireless, Inc. Seamless mobile handover
BR112017017674A2 (pt) * 2015-02-17 2018-07-17 Huawei Tech Co Ltd método de estabelecimento de enlace de backhaul, estação base, e dispositivo.

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120026865A1 (en) * 2010-07-28 2012-02-02 At&T Intellectual Property I, L.P. Femtocell service through a secondary connection
US20140092803A1 (en) * 2011-08-28 2014-04-03 PureWave Networks, Inc Mobile base station
CN104969653A (zh) * 2013-04-07 2015-10-07 华为技术有限公司 无线回程链路的建立方法和设备
CN103501499A (zh) * 2013-09-13 2014-01-08 北京创毅讯联科技股份有限公司 一种基于lte企业网系统的无线回传方法及其实现设备
WO2015042966A1 (zh) * 2013-09-30 2015-04-02 华为技术有限公司 建立回程链路方法、装置及系统

Also Published As

Publication number Publication date
US10397969B2 (en) 2019-08-27
CN108476554B (zh) 2021-10-15
KR102119635B1 (ko) 2020-06-08
EP3301965A1 (en) 2018-04-04
JP6546701B2 (ja) 2019-07-17
RU2676471C1 (ru) 2018-12-29
CN108476554A (zh) 2018-08-31
JP2018532336A (ja) 2018-11-01
US20180092141A1 (en) 2018-03-29
EP3301965B1 (en) 2020-09-16
KR20180110003A (ko) 2018-10-08

Similar Documents

Publication Publication Date Title
WO2021088009A1 (zh) 反馈方法、反馈装置及存储介质
CN110622617B (zh) 信息处理方法、装置及计算机存储介质
CN110495196B (zh) 能力参数处理方法及装置、通信设备及存储介质
WO2018058428A1 (zh) 建立回程链路的方法及装置
WO2022021326A1 (zh) 带宽资源复用方法及装置、通信设备及存储介质
WO2021232439A1 (zh) 频率资源授权方法、装置及计算机可读存储介质
WO2021088010A1 (zh) 反馈方法、反馈装置及存储介质
WO2022120854A1 (zh) 信息传输方法、装置、通信设备和存储介质
CN110622601B (zh) 数据处理方法及装置、通信设备及存储介质
WO2022006759A1 (zh) 信息传输方法、装置、通信设备和存储介质
US20230091685A1 (en) Communication processing method and device, and computer storage medium
WO2021109148A1 (zh) 信息处理方法及装置、通信设备
US20220287014A1 (en) Resource allocation methods and apparatuses, message frame processing methods, apparatuses and storage mediums
WO2022198389A1 (zh) 侧行链路的配置方法及装置、通信设备和存储介质
WO2022021271A1 (zh) 波束切换方法及装置、网络设备、终端及存储介质
CN110786035A (zh) 控制资源集合的处理方法、装置及计算机存储介质
CN113383589B (zh) 数据传输方法、装置及计算机存储介质
WO2022047713A1 (zh) 通信方法、装置、通信设备和存储介质
US20230396399A1 (en) Information transmission method, communication device and storage medium
WO2021237710A1 (zh) 通信方法、装置及计算机可读存储介质
WO2021164020A1 (zh) 通信处理方法、装置及计算机存储介质
WO2022032571A1 (zh) 资源配置方法、装置、通信设备和存储介质
WO2024011467A1 (zh) 辅助信息上报方法、装置、存储介质、终端以及网络侧设备
CN117136616A (zh) 信息处理方法及装置、通信设备及存储介质

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2017142139

Country of ref document: RU

WWE Wipo information: entry into national phase

Ref document number: 2018519928

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 20187025286

Country of ref document: KR

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16917182

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16917182

Country of ref document: EP

Kind code of ref document: A1