WO2018058389A1 - 一种传输探测参考信号的方法、终端设备和网络设备 - Google Patents

一种传输探测参考信号的方法、终端设备和网络设备 Download PDF

Info

Publication number
WO2018058389A1
WO2018058389A1 PCT/CN2016/100678 CN2016100678W WO2018058389A1 WO 2018058389 A1 WO2018058389 A1 WO 2018058389A1 CN 2016100678 W CN2016100678 W CN 2016100678W WO 2018058389 A1 WO2018058389 A1 WO 2018058389A1
Authority
WO
WIPO (PCT)
Prior art keywords
time
terminal device
srs
subframe
control signaling
Prior art date
Application number
PCT/CN2016/100678
Other languages
English (en)
French (fr)
Inventor
苏立焱
李超君
邵家枫
马莎
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to CN201680088952.0A priority Critical patent/CN109644446A/zh
Priority to PCT/CN2016/100678 priority patent/WO2018058389A1/zh
Priority to EP16917143.6A priority patent/EP3500001A4/en
Publication of WO2018058389A1 publication Critical patent/WO2018058389A1/zh
Priority to US16/366,759 priority patent/US20190222390A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/0051Allocation of pilot signals, i.e. of signals known to the receiver of dedicated pilots, i.e. pilots destined for a single user or terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0078Timing of allocation
    • H04L5/0082Timing of allocation at predetermined intervals
    • H04L5/0083Timing of allocation at predetermined intervals symbol-by-symbol
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/2603Signal structure ensuring backward compatibility with legacy system
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports

Definitions

  • the present invention relates to the field of communications, and in particular, to a method, a terminal device, and a network device for transmitting a sounding reference signal in the field of communications.
  • a base station needs a terminal device to transmit a sounding reference signal (SRS), so that the base station can perform uplink channel information estimation according to the SRS, thereby implementing Correct scheduling of terminal devices.
  • SRS sounding reference signal
  • a non-periodic SRS transmission technology that is, a base station instructs a terminal device to transmit an SRS through control signaling.
  • This special control signaling is also referred to as an SRS request, and after receiving the control signaling, the terminal device receives the control signaling.
  • the SRS is sent according to the SRS triggering rule, but the triggering criterion is that the subframe in which the terminal device sends the SRS is at least 4 subframes apart from the subframe in which the SRS request is detected, that is, after receiving the control signaling, the terminal device must be in the subframe.
  • the SRS can be sent after 4 ms. In this way, the time interval between the time when the terminal device receives the control signaling and the time when the SRS is sent exceeds 4 ms, and it is difficult to meet the communication service with low delay requirement. Therefore, how to reduce the delay and enable the aperiodic SRS to respond quickly and send has become an urgent problem to be solved in the industry.
  • the present invention provides a method, device, and device for transmitting a sounding reference signal, which can effectively reduce the length of time between the time when the terminal device receives the control signaling and the time when the SRS is sent, thereby better meeting the low delay requirement. Communication business.
  • a method for transmitting a sounding reference signal SRS is provided, which is applied to a communication system configured with at least one transmission period in a time domain, the transmission period being a period for transmitting a sounding reference signal SRS, the method comprising: The terminal device receives the control signaling on the first time interval TI, where the control signaling is used to indicate that the terminal device sends the SRS; after receiving the control signaling, the terminal device determines the target transmission from the at least one sending period.
  • the target transmission period is a first transmission period after the first time in the at least one transmission period, and a duration between the first moment and a start time of the first TI is less than P milliseconds, or The duration of the interval between the first time and the symbol used to carry the control signaling in the first TI is less than P milliseconds, 0 ⁇ P ⁇ 4;
  • the terminal device transmits the SRS on the target transmission period.
  • the method for transmitting a sounding reference signal reduces the length of time between the time when the terminal device receives the control signaling and the time when the preparation for the information necessary for transmitting the SRS is completed, so that it is less than 4 ms, thereby The time interval between the time when the terminal device receives the control signaling and the time when the SRS is sent is reduced, and the fast response and transmission of the aperiodic SRS is realized, which effectively reduces the system delay.
  • the first time belongs to the second TI, and the start time of the first TI and the start time of the second TI are separated by L TIs.
  • L is an integer greater than or equal to 0
  • the L is a predefined value, or the L is configured by signaling.
  • the first TI includes M symbols
  • the second TI includes N symbols, where 1 ⁇ M ⁇ 7, 1 ⁇ N ⁇ 7, M ⁇ N, the M and the N are positive integers.
  • the terminal device can receive control signaling multiple times in one subframe, thereby improving system flexibility.
  • the first time instant is separated from the start time of the symbol used for carrying the control signaling in the first TI by a K symbol, where K is a positive integer greater than or equal to 1, the K being a predefined value, or the K being configured by signaling.
  • control signaling is carried on a first symbol of the first TI.
  • a method for transmitting a sounding reference signal SRS is provided, which is applied to a communication system configured with at least one transmission period in a time domain, where the transmission period is a period for transmitting a sounding reference signal SRS, the method comprising: The network device sends control signaling on the first time interval TI, where the control signaling is used to indicate that the terminal device sends the SRS, and after receiving the control signaling, the network device receives the SRS on the target sending period, where The target transmission period is the first transmission period after the first time in the at least one transmission period, and the interval between the first time and the start time of the first TI is less than P milliseconds, or the first time is The interval between the symbols used to carry the control signaling in the first TI is less than P milliseconds, and 0 ⁇ P ⁇ 4.
  • the method for transmitting a sounding reference signal reduces the length of time between the time when the terminal device receives the control signaling and the time when the preparation for the information necessary for transmitting the SRS is completed, so that it is less than 4 ms, thereby Reduce the time when the terminal device receives control signaling
  • the time interval between the times when the SRS is sent, the fast response and transmission of the aperiodic SRS is realized, and the system delay is effectively reduced.
  • the first time belongs to the second TI, and the start time of the second TI is separated from the start time of the first TI by L TIs.
  • L is an integer greater than or equal to 0
  • the L is a predefined value, or the L is configured by signaling.
  • the first TI includes M symbols
  • the second TI includes N symbols, where 1 ⁇ M ⁇ 7, 1 ⁇ N ⁇ 7, M ⁇ N, the M and the N are positive integers.
  • the first time instant is separated from the start time of the first TI type symbol used for carrying the control signaling by a K symbol, where K is a positive integer greater than or equal to 1, the K being a predefined value, or the K being configured by signaling.
  • the control signaling is carried on the first symbol of the first TI.
  • a terminal device which can perform the method in any of the above first aspect or any possible implementation of the first aspect.
  • the terminal device may comprise a modular unit for performing the method of the first aspect or any of the possible implementations of the first aspect described above.
  • a network device which may perform the method in any of the possible implementations of the second aspect or the second aspect above.
  • the network device may comprise a modular unit for performing the method of any of the above-described second or second aspects of the second aspect.
  • a terminal device includes: a bus, a processor connected to the bus, a memory connected to the bus, and a transceiver connected to the bus, wherein the memory is used to store an instruction,
  • the processor is operative to execute instructions stored in the memory to control a transceiver to receive or transmit a signal, and when the processor executes the memory stored instructions, the executing causes the processor to perform any of the first aspect or the first aspect The method in the possible implementation.
  • a network device comprising: a bus, and the bus a processor coupled to the bus, a memory coupled to the bus, and a transceiver coupled to the bus, wherein the memory is for storing instructions for executing instructions stored by the memory to control the transceiver to receive signals or transmit signals, And when the processor executes the instructions stored by the memory, the executing causes the processor to perform the method of any of the possible implementations of the second aspect or the second aspect.
  • a computer storage medium having stored therein program code for indicating a method of performing the first aspect or any of the possible implementations of the first aspect.
  • a computer storage medium having stored therein program code for indicating a method of performing any of the above-described second aspect or any of the possible implementations of the second aspect.
  • the value of the M is any one of the following: 2 or 3.
  • the value of the N is any one of the following: 2, 3, 4, or 7.
  • the signaling is high layer signaling or physical layer signaling.
  • FIG. 1 is an application scenario of a method for transmitting a sounding reference signal according to an embodiment of the present invention.
  • FIGS. 2a to 2f are diagrams showing a time interval structure of a transmission sounding reference signal suitable for use in an embodiment of the present invention.
  • FIG. 3 is a schematic interaction diagram of a method of transmitting a sounding reference signal in accordance with an embodiment of the present invention.
  • FIGS. 4a through 4d are diagrams showing the manner in which a sounding reference signal is arranged in the time domain according to an embodiment of the present invention.
  • FIG. 5 is a schematic block diagram of a terminal device according to an embodiment of the present invention.
  • FIG. 6 is a schematic block diagram of a network device according to an embodiment of the present invention.
  • FIG. 7 is a schematic structural diagram of a terminal device according to an embodiment of the present invention.
  • FIG. 8 is a schematic structural diagram of a network device according to an embodiment of the present invention.
  • the present invention describes various embodiments in connection with a network device, which may be a device that communicates with a terminal device, such as a base station or base station controller, and the like.
  • a network device can provide communication coverage for a particular geographic area and can communicate with terminal devices (e.g., UEs) located within the coverage area (cell).
  • the network device may be a base station (Base Transceiver Station, or "BTS”) in a GSM system or a CDMA system, or may be a base station (NodeB, referred to as "NB") in a WCDMA system, or may be an evolved type in an LTE system.
  • BTS Base Transceiver Station
  • NodeB NodeB
  • WCDMA Wideband Code Division Multiple Access
  • a base station (Evolutional Node B, referred to as “eNB” or “eNodeB”), or a wireless controller in a Cloud Radio Access Network (CRAN), or the network device may be in a future 5G network.
  • PLMN Public Land Mobile Network
  • the terminal device may refer to an access terminal, a user equipment (User Equipment, referred to as "UE"), a subscriber unit, a subscriber station, a mobile station, a mobile station, a remote station, and a remote station.
  • UE User Equipment
  • the access terminal may be a cellular phone, a cordless phone, a Session Initiation Protocol ("SSIP”) phone, a Wireless Local Loop (WLL) station, and a personal digital processing (Personal Digital) Assistant, referred to as "PDA"), handheld devices with wireless communication capabilities, computing devices or other processing devices connected to wireless modems, in-vehicle devices, wearable devices, terminal devices in the Internet of Things, virtual reality devices, future 5G networks
  • PLMN Public Land Mobile Network
  • the network device may be a base station, and the terminal device may be a user equipment.
  • the method and device for transmitting a sounding reference signal may be applied to a terminal device or a network device, where the terminal device or the network device includes a hardware layer, an operating system layer running on the hardware layer, and an operating system running on the operating system.
  • the application layer on the layer.
  • the hardware layer includes hardware such as a central processing unit (CPU), a memory management unit (MMU), and a memory (also referred to as main memory).
  • the operating system can be any one or more A computer operating system that implements business processing, such as a Linux operating system, a Unix operating system, an Android operating system, an iOS operating system, or a Windows operating system.
  • the application layer includes applications such as browsers, contacts, word processing software, and instant messaging software.
  • the specific structure of the execution body of the method of transmitting the sounding reference signal is not particularly limited as long as it can run the program of the code of the method of transmitting the signal of the embodiment of the present invention.
  • the method for transmitting a signal according to the embodiment of the present invention may be used for communication.
  • the execution body of the method for transmitting feedback information in the embodiment of the present invention may be a terminal device or a network device, or may be a callable program in a terminal device or a network device. And execute the function module of the program.
  • the term "article of manufacture” as used in this application encompasses a computer program accessible from any computer-readable device, carrier, or media.
  • the computer readable medium may include, but is not limited to, a magnetic storage device (eg, a hard disk, a floppy disk, or a magnetic tape, etc.), such as a compact disc (CD), a digital versatile disc (Digital Versatile Disc, DVD). Etc.), smart cards and flash memory devices (eg, Erasable Programmable Read-Only Memory (EPROM), cards, sticks or key drivers, etc.).
  • various storage media described herein can represent one or more devices and/or other machine-readable media for storing information.
  • the term "machine-readable medium” may include, without limitation, a wireless channel and various other mediums capable of storing, containing, and/or carrying instructions and/or data.
  • each radio frame is composed of 10 subframes, each subframe has a length of 1 ms, and the subframe number is 0-9.
  • the uplink symbol is called single carrier frequency division multiple access (single carrier-frequency division).
  • SC-FDMA multiple access
  • OFDMA Orthogonal Frequency Division Multiple Access
  • the uplink symbol may also be referred to as an OFDMA symbol.
  • the uplink symbol and the downlink symbol are collectively referred to as a symbol, and may be other types of communication symbols, which are not limited in this embodiment of the present invention.
  • each slot is related to the length of a cyclic prefix ("CP") in a subframe.
  • CP cyclic prefix
  • each slot includes 7 symbols, and each subframe includes 14 symbols, that is, each subframe is numbered #0, #1, #2, #3, #4, #5,# 6, #7, #8, #9, #10, #11, #12, #13 symbol composition;
  • CP is an extended CP
  • each slot includes 6 symbols, each sub-frame includes 12 symbols, ie, Each sub-frame consists of symbols with sequence numbers #0, #1, #2, #3, #4, #5, #6, #7, #8, #9, #10, #11.
  • TTI transmission time interval
  • the time domain resource occupied by the data transmission may be less than 1 ms.
  • the first 1, 2, 3 or 4 symbols in one downlink subframe may be used to transmit the PDCCH. Therefore, the downlink data transmission with a TTI length of 1 ms may occupy less than 1 ms.
  • the last symbol in an uplink subframe may be used to transmit the SRS. Therefore, the time domain resource occupied by the uplink data transmission with a TTI length of 1 ms may also be less than 1 ms.
  • latency is one of the important factors that affect the user experience.
  • New and emerging businesses such as those related to the Internet of Vehicles, are placing increasing demands on latency. Therefore, for the existing LTE system, the transmission mechanism based on TTI as one subframe cannot meet the requirements of low-latency services. Therefore, the transmission mechanism based on sTTI emerges at the historic moment, which can effectively reduce the time of grouping and demodulating the code, and thus achieve the purpose of reducing the delay of the physical layer air interface.
  • sTTI transmission refers to a transmission in which the TTI is less than 1 subframe or the TTI is less than 1 ms.
  • the sTTI has a length of one, two, three, four, five, six, and seven symbol lengths; or, the sTTI length is at least two different symbol lengths of the plurality of symbol lengths.
  • the combination includes 4 sTTIs in 1 ms, and has a length of 4 symbol lengths, 3 symbol lengths, 4 symbol lengths, and 3 symbol lengths.
  • the length is 3 symbol lengths, 4 symbol lengths, respectively. 3 symbol lengths, 4 symbol lengths, or other combinations.
  • the system supports sTTI length of 7 symbols and sTTI length of 0.25ms in 1ms. Internal transfer.
  • FIG. 1 shows an application scenario of a method for transmitting a sounding reference signal according to an embodiment of the present invention.
  • the application scenario includes a network device 110 , a terminal device 121 and a terminal device 122 that are within the coverage of the network device 110 and are in communication with the network device 110 .
  • the network device 110 and the terminal device 121 are both devices supporting sTTI transmission, and the terminal device 122 is a device supporting 1 ms TTI transmission.
  • the network device 110 can communicate with the terminal device 121 using the sTTI or the 1 ms TTI in the prior art, respectively, and the network device 110 can also communicate with the terminal device 122 using the 1 ms TTI in the prior art.
  • the embodiment of the present invention can be applied not only to TTI transmission but also to sTTI transmission. Therefore, in order to facilitate the description of the embodiments of the present invention, the TTI and the sTTI are collectively referred to as a time interval ("TI"), that is, the following description uses the TI to describe the embodiment of the present invention in detail.
  • TI time interval
  • FIG. 2 a schematic diagram of a TI structure for transmitting a sounding reference signal suitable for an embodiment of the present invention is described.
  • the 1 ms TTI in the LTE system is recorded as: TI0 includes symbols ⁇ #0, #1, #2, #3, #4, #5, #6, #7,# 8, #9, #10, #11, #12, #13 ⁇ .
  • TI0 includes symbols ⁇ #0, #1 ⁇
  • TI1 includes symbols ⁇ #2, #3.
  • TI2 includes the symbols ⁇ #4, #5, #6 ⁇
  • TI3 includes the symbols ⁇ #7, #8 ⁇
  • TI4 includes the symbols ⁇ #9, #10 ⁇
  • TI5 includes the symbols ⁇ #11, #12, #13 ⁇ .
  • TI length is 3 symbol lengths, 4 symbol lengths, 3 symbol lengths, and 4 symbol lengths, which are recorded as: TI0 includes symbols ⁇ #0,# 1, #2 ⁇ , TI1 includes symbols ⁇ #3, #4, #5, #6 ⁇ , TI2 includes symbols ⁇ #7, #8, #9 ⁇ , TI3 includes symbols ⁇ #10, #11, #12, #13 ⁇ .
  • TI lengths are 4 symbol lengths, respectively. It is recorded as: TI0 includes symbols ⁇ #0, #1, #2, #3 ⁇ , TI1 includes symbols ⁇ #3, #4, #5, #6 ⁇ , and TI2 includes symbols ⁇ #7, #8, #9, #10 ⁇ , TI3 includes the symbols ⁇ #10, #11, #12, #13 ⁇ .
  • TI structure 5 is different from TI structure 2 and TI structure 3. There are reusable symbols in this TI structure. The reason for this TI structure is that for some special information, it can be sent at the same time, and the information is Do not interfere with each other, for example, a comb-tooth orthogonal or code-orthogonal demodulation reference signal.
  • the above TI structures are all set based on the regular CP in the subframe, and the TI structure based on the extended CP setting in the subframe is described below.
  • TI0 includes symbols ⁇ #0, #1 ⁇
  • TI1 includes symbols ⁇ #2, #3 ⁇
  • TI2 includes symbols ⁇ #4, #5 ⁇
  • TI3 includes symbols ⁇ #6, #7 ⁇
  • TI4 includes symbols ⁇ #8, #9 ⁇
  • TI5 includes symbols ⁇ #10, #11 ⁇ .
  • TI0 includes symbols ⁇ #0, #1, #2 ⁇
  • TI1 includes symbols ⁇ #3,# 4
  • TI2 includes symbols ⁇ #6, #7, #8 ⁇
  • TI3 includes symbols ⁇ #9, #10, #11 ⁇ .
  • any form of TI structure based on sub-frame division in the system may be applied to the embodiments of the present invention, and the present invention is not limited thereto.
  • the embodiment of the present invention is applied to a communication system configured with at least one transmission period in the time domain, and the transmission period is a period for transmitting the sounding reference signal SRS.
  • each transmission period may be a duration corresponding to the at least one symbol, that is, the terminal device sends the SRS on the at least one symbol, or may be the at least one The TI where the symbol is located.
  • the sending period may be configured by the network device for the terminal device by using the high layer signaling, so that the terminal device can only send the SRS on the sending period, and the SRS cannot be sent in other periods.
  • each of the plurality of transmission periods is located on the last symbol of the TI that can transmit the SRS.
  • each transmission period may be periodically configured by the network device.
  • the network device may configure one period of 5 subframes, and the second subframe in each period is used for sending. SRS, and the terminal device may not send the SRS on other subframes; each transmission period may also be fixedly configured by the network device, that is, the terminal device must perform SRS transmission in a certain subframe for transmitting the SRS.
  • the terminal device may transmit the SRS on the last symbol in the subframe for transmitting the SRS, and by way of example and not limitation, the terminal device may also transmit the SRS on other symbols in the subframe for transmitting the SRS.
  • FIG. 3 shows a method and a schematic interaction diagram for transmitting a sounding reference signal according to an embodiment of the present invention.
  • the interactive objects may be network devices and terminal devices.
  • the method includes:
  • the network device sends control signaling on the first time interval TI, where the control signaling is used to instruct the terminal device to send the SRS.
  • the uplink channel information needs to be estimated. Therefore, the terminal device needs to send the SRS to the network device, so that the network device can obtain the channel necessary for scheduling in time. information. Therefore, the transmission network device for the aperiodic SRS needs to send control signaling to the terminal device, the control signaling is used to inform the terminal device that the terminal device needs to send the SRS to the network device.
  • the terminal device can receive the control signaling on the TI #1 (ie, an example of the first TI), and then configure the SRS so that the terminal device can correctly transmit the SRS.
  • the control signaling on the TI #1 ie, an example of the first TI
  • the terminal device determines a target transmission period from the at least one transmission period, where the target transmission period is the first transmission after the first moment in the at least one transmission period.
  • the duration of the interval between the first moment and the start time of the first TI is less than P milliseconds, or the duration between the first moment and the symbol used to carry the control signaling in the first TI is less than P milliseconds, 0 ⁇ P ⁇ 4;
  • the P value may be determined by the network device according to factors such as the demodulation capability of the terminal device for the control signaling and the uplink and downlink handover capability.
  • the terminal device After receiving and correctly demodulating the control signaling, the terminal device needs to perform SRS transmission. It should be noted that, before the terminal device sends the SRS, it needs to prepare information necessary for transmitting the SRS. For example, the terminal device generates an SRS sequence, calculates information such as the frequency domain in which the SRS is transmitted, and sends the SRS until all the information is prepared. Therefore, in the embodiment of the present invention, the time #1 (that is, an example of the first time) may be a time at which the terminal device completes the information necessary for transmitting the SRS. By way of example and not limitation, the time #1 may also be completed by the terminal device. Any time between the time at which the information necessary for the SRS is transmitted and the first transmission period.
  • the SRS triggering rule specifies that the subframe in which the terminal device transmits the SRS is at least four subframes apart from the subframe in which the SRS request is detected, that is, the ending time and completion of the TI at which the terminal device receives the control signaling.
  • the time interval between the end times of the TIs at which the preparations for the information necessary for transmitting the SRS are located is 4 ms, that is, if the terminal device receives the control signaling on the subframe n, it is required in the subframe n+4.
  • the preparation for the information necessary for transmitting the SRS is completed, so that the terminal device can only transmit the SRS after 4 ms, and the system for the traditional TTI transmission cannot meet the requirement of low delay, and for the system of the sTTI transmission, the system The timing mechanism is even unable to meet the low latency requirements.
  • the method for transmitting the sounding reference signal reduces the interval between the time when the terminal device receives the control signaling and the time when the preparation for the information necessary for transmitting the SRS is completed.
  • the duration is less than 4ms, thereby reducing the length of time between the time when the terminal device receives the control signaling and the time when the SRS is sent, and the fast response and transmission of the aperiodic SRS is realized, which effectively reduces the system delay.
  • the duration of the interval between the time when the terminal device receives the control signaling and the time when the preparation for the information necessary for transmitting the SRS is completed may be used in two ways, and the following two representation durations are used. The methods are described in detail separately.
  • the duration of the interval between the first moment and the start time of the first TI is less than P milliseconds, 0 ⁇ P ⁇ 4;
  • the first time belongs to the second TI, and the start time of the first TI is between the second TI and the second TI.
  • the L TIs are separated, wherein the L is an integer greater than or equal to 0, the L is a predefined value, or the L is configured by signaling.
  • the time interval between the time #1 and the start time of TI#1 is less than 4 milliseconds, and the time #1 belongs to TI#2, and the interval between the start time of TI#1 and the start time of TI#2 is L.
  • TI If time #1 is the start time of TI#2, the duration corresponding to the L TIs is equal to the time interval between the start time of time #1 and TI#1; if time #1 is located at TI#2 The time after the start time is shorter than the time interval between the time #1 and the start time of TI#1.
  • the signaling may be high layer signaling or physical layer signaling. That is, the L is sent by the network device to the terminal device through the high layer signaling, and the L may also be sent by the network device to the terminal device through physical layer signaling.
  • the L is controlled by the network device through the downlink control information (Downlink Control) Information, referred to as "DCI" for short, is sent to the terminal device.
  • DCI Downlink Control Information
  • the L may vary depending on the switching capability of the terminal device or the like.
  • the terminal device may also acquire L by other means, and the present invention is not limited thereto, for example, the network device notifies the terminal device by broadcasting.
  • the terminal device may determine, according to the value of L, that it needs to complete the preparation for completing the information necessary for transmitting the SRS in the TI #2 after the interval of L TIs from the start time of the current TI (ie, TI #1), and then The transmission of the SRS is performed, and therefore, it can also be said that TI#2 is used to determine the target transmission period.
  • TI#2 is an uplink TI.
  • time #1 belongs to TI#2
  • TI#2 includes the transmission period:
  • the target transmission period is the transmission period in TI#2;
  • the target transmission period does not belong to TI#2, TI#
  • the first transmission period after 2 is the target transmission period.
  • TI#2 does not include the sending period:
  • the terminal device completes preparation for the information necessary for transmitting the SRS at any time within TI#2, and the target transmission period is the first transmission period after TI#2.
  • TI#2 can be regarded as an indication information, which is used to indicate that the terminal device sends an SRS, and the specific content is used to indicate that the terminal device can be after TI#2 and TI#2, as described above.
  • the SRS is transmitted on the uplink TI, it is necessary for the terminal device to complete the preparation for the information necessary for transmitting the SRS before the end time of the TI #2, and further, the SRS can be transmitted.
  • TI#1 includes M symbols
  • TI#2 includes N symbols, where 1 ⁇ M ⁇ 14, 1 ⁇ N ⁇ 14, and M and N are positive integers.
  • sTTI transmission optionally, 1 ⁇ M ⁇ 7, 1 ⁇ N ⁇ 7; in view of the transmission capability of the terminal device and the network device, optionally, M ⁇ N.
  • TI#1 includes 7 symbols
  • TI#2 includes 7 symbols as an example.
  • control signaling is carried on the first symbol of TI0 of subframe n
  • the high layer signaling is configured for the terminal device, and the terminal device may send the SRS on the last symbol of TI1 of subframe n+2.
  • the terminal device needs to complete the preparation work for the information necessary for transmitting the SRS on the first TI after the interval of 4 TIs from the start time of the TI0 of the subframe n, that is, corresponding to the subframe n+ TI0 of 2, since the TI0 of the subframe n+2 is not the TI transmitting the SRS, the terminal device cannot transmit the SRS, and the SRS can only be transmitted on the TI1 of the subframe n+2.
  • the terminal device needs to complete the preparation work for the information necessary for transmitting the SRS on the first TI after the interval of 5 TIs from the start time of the TI0 of the subframe n, that is, corresponding to the subframe n+ TI1 of 2: If the symbol to which the time #1 belongs is the last symbol of TI1 of the subframe n+2, the terminal device may transmit the SRS on the TI1 of the subframe n+2; if the symbol to which the time #1 belongs is the subframe n The last symbol of TI1 of +2 means that the terminal device can only transmit the SRS on the TI for transmitting the SRS after the TI1 of the subframe n+2.
  • a method of configuring the time at which the terminal device receives the control signaling and the time interval between the completion of the preparation for the information necessary for transmitting the SRS is referred to as a preliminary timing scheme.
  • TI#1 and TI#2 may be configured according to any TI structure in FIG. 2a to FIG. 2f.
  • the value of M is any one of the following: 2 or 3, and the value of N is any one of the following: 2, 3, 4, or 7.
  • TI#1 includes two symbols or three symbols
  • TI#2 includes three symbols or four symbols as an example, and a preliminary timing scheme for transmitting SRS according to an embodiment of the present invention will be described.
  • the TI structure of TI#1 and TI#2 is as shown in FIG. 4b, and the high layer signaling is configured for the terminal device, so that the terminal device can transmit the SRS on the last symbol of the subframe n+1, and L is 8.
  • the L TIs may be L uplink TIs or L downlink TIs.
  • L TIs L downlink TIs
  • the control signaling is carried on the downlink TI0 of the subframe n, that is, the TI#1 is the downlink TI0 of the subframe n, and the terminal device needs to be the first one after the 8 downlink TIs are separated from the start time of the downlink TI0 of the subframe n.
  • the downlink TI performs the preparation work for the information necessary for transmitting the SRS.
  • the first downlink TI after the 8 downlink TIs are separated from the start time of the uplink TI0 of the subframe n is the subframe n+1.
  • Downstream TI2 for the uplink TI, corresponds to the uplink TI1 of the subframe n+1; since the uplink TI1 of the subframe n+1 is not the TI transmitting the SRS, the terminal device may not be in the uplink TI1 of the subframe n+1 When the SRS is transmitted, the SRS can only be sent on the uplink TI3 of the subframe n+1.
  • the preliminary timing scheme 1 is that TI#1 is the downlink TI0 of the subframe n, TI#2 is the uplink TI1 of the subframe n+1, and the target transmission period is the uplink TI3 of the subframe n+1.
  • TI#1 is a downlink TI and TI#2 is an uplink TI
  • the TI structures of the two are different. Therefore, it is necessary to determine an uplink TI after L downlink TIs are separated from the start time of TI#1.
  • TI#1 is the downlink TI0 of the subframe n
  • the first downlink TI after the 8 downlink TIs are separated from the start time of the downlink TI0 is the downlink TI2 of the subframe n+1
  • One symbol corresponds to the fourth symbol of the uplink TI1 of the subframe n+1, and it is determined that the uplink TI after the 8 downlink TIs are separated from the start time of the TI#1 is the uplink TI1 of the subframe n+1.
  • the uplink TI of the corresponding subframe is determined to be TI#2.
  • the control signaling is carried on the downlink TI1 of the subframe n, that is, TI#1 is the downlink TI1 of the subframe n, and the terminal device needs to be separated from the first downlink after 8 downlink TIs from the start time of the TI1 of the subframe n.
  • the preparation work necessary for transmitting the SRS is completed on the TI.
  • the first TI after the downlink TI is separated from the start time of the downlink TI1 of the subframe n is the downlink TI3 of the subframe n+1.
  • the terminal device may not send the SRS on the uplink TI2 of the subframe n+1.
  • the SRS can only be transmitted on the uplink TI3 of subframe n+1.
  • the preliminary timing scheme 2 is: TI#1 is the downlink TI1 of the subframe n, TI#2 is the uplink TI2 of the subframe n+1, and the target transmission period is the uplink TI3 of the subframe n+1.
  • the last symbol of the first downlink TI after 8 downlink TIs is separated from the start time of TI#1.
  • the uplink TI of the corresponding subframe is determined to be TI#2. That is, the last symbol (ie, symbol 8) of the first downlink TI after the eight downlink TIs are separated from the start time of TI#1 corresponds to the second symbol of the uplink TI2 of subframe n+1.
  • the specific determination method and process are the same as the preliminary timing scheme 1. Here, in order to avoid redundancy, the description will not be repeated.
  • the control signaling is carried on the downlink TI2 of the subframe n, that is, TI#1 is the downlink TI2 of the subframe n, and the terminal device needs to be the first one after the 8 downlink TIs are separated from the start time of the downlink TI2 of the subframe n.
  • the preparation for the information necessary for transmitting the SRS is completed on the TI.
  • the first TI after the downlink TI2 is separated from the start time of the downlink TI2 of the subframe n is the downlink TI4 of the subframe n+1.
  • the uplink TI3 corresponding to the subframe n+1 is the TI transmitting the SRS, and the symbol for transmitting the SRS is located in the subframe n+1.
  • the last symbol of the uplink TI3 ie, the symbol 10
  • the last symbol of the first downlink TI ie, the symbol 10
  • the target transmission period is the uplink TI3 of the subframe n+1.
  • the preliminary timing scheme 3 is: TI#1 is the downlink TI2 of the subframe n, TI#2 is the uplink TI3 of the subframe n+1, and the target transmission period is the downlink TI3 of the subframe n+1.
  • the uplink TI of the subframe corresponding to the last symbol of the first downlink TI after the start time of the TI #1 is separated by 8 downlink TIs is determined as TI#2. That is, the last symbol (ie, symbol 10) of the first downlink TI after the eight downlink TIs are separated from the start time of TI#1 corresponds to the first symbol of the uplink TI3 of subframe n+1.
  • the specific determination method and process are the same as the preliminary timing scheme 1. Here, in order to avoid redundancy, the description will not be repeated.
  • the control signaling is carried on the downlink TI3 of the subframe n, that is, TI#1 is the downlink TI3 of the subframe n, and the terminal device needs to be separated from the first time of the downlink TI3 of the subframe n by 8 downlink TIs.
  • the preparation for the SRS is completed on the TI.
  • the first TI after the downlink TI3 is separated from the start time of the downlink TI3 of the subframe n is the downlink TI5 of the subframe n+1, for the uplink TI.
  • the uplink TI3 corresponding to the subframe n+1 since the last symbol in the uplink TI3 of the subframe n+1 is used to transmit the SRS, the start time of the TI#1 is separated by 8 downlinks.
  • the last symbol of the first downlink TI after the TI corresponds to the last symbol of the uplink TI3 of the subframe n+1, and overlaps with the symbol for transmitting the SRS, and thus, only the subframe n+1
  • the first transmission period after that is determined as the target transmission period, which is not shown in the figure due to limited space.
  • the preliminary timing scheme 4 is: TI#1 is the downlink TI3 of the subframe n, TI#2 is the uplink TI3 of the subframe n+1, and the target transmission period is the first transmission period after the subframe n+1.
  • the last symbol of the first downlink TI after 8 downlink TIs is separated from the start time of TI#1.
  • the uplink TI of the corresponding subframe is determined to be TI#2. That is, the last symbol (ie, symbol 13) of the first downlink TI after the eight downlink TIs are separated from the start time of TI#1 corresponds to the fourth symbol of the uplink TI3 of subframe n+1.
  • the specific determination method and process are the same as the preliminary timing scheme 1. Here, in order to avoid redundancy, the description will not be repeated.
  • the control signaling is carried on the downlink TI4 of the subframe n, that is, TI#1 is the downlink TI4 of the subframe n, and the terminal device must be separated from the first start of the downlink TI4 of the subframe n by 8 downlink TIs.
  • the preparation for the information necessary for transmitting the SRS is completed on the TI.
  • the first TI after the start of the downlink TI4 of the subframe n is 8 downlink TIs is the downlink TI0 of the subframe n+2.
  • the terminal device may not send on the uplink TI0 of the subframe n+2.
  • SRS SRS can only be sent on the first transmission period after TI0 of subframe n+2, due to space Limit, not shown in the figure.
  • the preliminary timing scheme 5 is: TI#1 is the downlink TI4 of the subframe n, TI#2 is the uplink TI0 of the subframe n+2, and the target transmission period is the first transmission period after the uplink TI0 of the subframe n+2. .
  • the last symbol of the first downlink TI after 8 downlink TIs is separated from the start time of TI#1.
  • the uplink TI of the corresponding subframe is determined to be TI#2. That is, the last symbol (ie, symbol 1) of the first downlink TI after the eight downlink TIs are separated from the start time of TI#1 corresponds to the second symbol of the uplink TI0 of the subframe n+2.
  • the specific determination method and process are the same as the preliminary timing scheme 1. Here, in order to avoid redundancy, the description will not be repeated.
  • the control signaling is carried on the downlink TI5 of the subframe n, that is, the TI#1 is the downlink TI5 of the subframe n, and the terminal device needs to be the first one after the 8 downlink TIs are separated from the start time of the downlink TI5 of the subframe n.
  • the preparation for the information necessary for transmitting the SRS is completed on the TI.
  • the first TI after the eight downlink TIs is separated from the start time of the TI5 of the subframe n is the downlink TI1 of the subframe n+2.
  • the terminal device may not send the SRS on the uplink TI1 of the subframe n+2.
  • SRS can only be sent on the first transmission period after TI1 of subframe n+2, which is not shown in the figure due to limited space.
  • the preliminary timing scheme 6 is: TI#1 is the downlink TI5 of the subframe n, TI#2 is the uplink TI1 of the subframe n+2, and the target transmission period is the first transmission period after the uplink TI1 of the subframe n+2. .
  • the uplink TI after 8 downlink TIs is separated from the start time of TI#1
  • the last symbol of the first downlink TI after 8 downlink TIs is separated from the start time of TI#1.
  • the uplink TI of the corresponding subframe is determined to be TI#2.
  • the last symbol (ie, symbol 3) of the first downlink TI after the eight downlink TIs are separated from the start time of TI#1 corresponds to the first symbol of the uplink TI1 of the subframe n+2.
  • the specific determination method and process are the same as the preliminary timing scheme 1. Here, in order to avoid redundancy, the description will not be repeated.
  • the embodiments of the present invention are described in detail by taking the L TIs as L downlink TIs as an example. To avoid redundancy, the following describes the embodiments of the present invention by taking the L TIs as L downlink TIs as an example.
  • TI#1 includes 2 symbols or 3 symbols
  • TI#2 includes 3 symbols or 4 symbols.
  • the control signaling is carried on the downlink TI1 of the subframe n, that is, the TI#1 is the downlink TI1 of the subframe n, and the terminal device needs to be uplinked by 8 times from the start time of the downlink TI1 of the subframe n.
  • the preparation for the information necessary for transmitting the SRS is completed on the first uplink TI after the TI, that is, the uplink TI0 corresponding to the subframe n+2.
  • the terminal device may not transmit the SRS on the uplink TI0 of the subframe n+2, and may only transmit the SRS on the uplink TI3 of the subframe n+2.
  • TI#1 is the downlink TI
  • TI#2 is the uplink TI
  • the TI structure of the two is different. Therefore, it is necessary to determine the uplink TI label after the L uplink TI is separated from the start time of TI#1, that is, TI#2.
  • TI#1 is the downlink TI1 of the subframe n
  • the control signaling is carried by the first symbol on the downlink TI1, that is, the third symbol of the subframe n, and the third symbol of the subframe n is mapped to
  • the uplink TI corresponds to the third symbol of the subframe n on the terminal device side, that is, the third symbol corresponding to the uplink TI0 of the subframe n on the terminal device side, and the start time interval of the downlink TI1 from the subframe n.
  • the first uplink TI of the eight uplink TIs is the uplink TI0 of the subframe n+2, that is, the uplink TI0 of the subframe n+2 is determined to be TI#2. That is, when determining the first uplink TI of 8 uplink TIs from the start time of the downlink TI1 of the subframe n, the TI structure of the subframe n is divided, and the bearer control of the downlink TI1 of the subframe n is performed.
  • the symbol of the signaling is mapped to the uplink TI of the subframe n divided by the above-mentioned row TI structure, and the uplink TI of the uplink TI that is divided by the uplink TI structure of the subframe n is determined as TI#2.
  • FIG. 4c there are six schemes for determining the preparatory timing by using the L TIs as L uplink TIs, and the six schemes of the embodiment in which the L TIs are L downlink TIs are exemplified, At the same time, it is determined that the uplink TI of the L uplink TIs is the same as the method and the procedure of the SRS configuration mode in FIG. 4c, and the description is not repeated here.
  • the duration of the interval between the first time and the symbol used to carry the control signaling in the first TI is less than P milliseconds, 0 ⁇ P ⁇ 4;
  • the first moment is separated from the start time of the symbol used to carry the control signaling in the first TI by a K symbol, where the K is a positive integer greater than or equal to 1, and the K is A predefined value, or the K is configured by signaling.
  • the signaling may be high layer signaling or physical layer signaling. That is, the K is sent by the network device to the terminal device through the high layer signaling, and the K may also be sent by the network device to the terminal device through physical layer signaling. For example, the K is sent by the network device to the terminal device through the DCI.
  • the K may vary depending on the switching ability of the terminal device or the like.
  • the terminal device may also acquire K by other means, and the present invention is not limited thereto, for example, the network device notifies the terminal device by broadcasting.
  • the uplink TI to which the time #1 belongs is recorded as TI#3.
  • case 1 and Case 2 there are two cases regarding the determination of the target transmission period, the following two cases will be described below.
  • TI#3 includes the transmission period:
  • the target transmission period is the transmission period in the TI#3;
  • the target transmission period does not belong to TI#3, TI#
  • the first transmission period after 3 is the target transmission period.
  • TI#3 does not include the sending period:
  • the terminal device completes preparation for the information necessary for transmitting the SRS at any time within TI#3, and the target transmission period is the first transmission period after TI#3.
  • time #1 can be regarded as an indication information for indicating that the terminal device can send the SRS on the symbols after the time #1 and the time #1, then, for the terminal device, it is required at the time #
  • the preparatory work for the information necessary for transmitting the SRS is completed before 1 or at time #1, and the SRS can be transmitted.
  • TI#1 includes M symbols
  • TI#3 includes N symbols, where 1 ⁇ M ⁇ 14, 1 ⁇ N ⁇ 14, and M and N are positive integers.
  • sTTI transmission optionally, 1 ⁇ M ⁇ 7, 1 ⁇ N ⁇ 7; in view of the transmission capability of the terminal device and the network device, optionally, M ⁇ N.
  • the value of M is any one of the following: 2 or 3, and the value of N is any one of the following: 2, 3, 4, or 7.
  • a pre-timing scheme for transmitting an SRS will be described with TI#1 including 2 symbols or 3 symbols and TI#3 including 3 symbols or 4 symbols as an example.
  • the TI structure of TI#1 and TI#3 is as shown in FIG. 4d, and the high layer signaling is configured for the terminal device, so that the terminal device can send the SRS on the last symbol of the subframe n+1, and K is 16.
  • the control signaling is carried on the first symbol of the subframe n, and is denoted by the symbol 0, that is, the first symbol of the downlink TI0 of the subframe n, and the terminal device needs to be spaced apart from the start time of the symbol 0 by 16
  • the first symbol after the symbol completes the preparation work for the information necessary for transmitting the SRS that is, the third symbol corresponding to the subframe n+1, and for the downlink TI
  • the third symbol belongs to the subframe n+
  • the downlink TI1 of 1 is, for the uplink TI, the third symbol belongs to the uplink TI0 of the subframe n+1, that is, the third symbol corresponding to the uplink TI0 of the subframe n+1; because the subframe n+
  • the uplink TI0 of 1 is not the TI that transmits the SRS, so the terminal device cannot transmit the SRS, and the SRS can only be transmitted on the uplink TI3 of the subframe n+1.
  • the preliminary timing scheme 1 is that TI#1 is the downlink TI0 of the subframe n, and for the uplink TI, the first interval after the 16-symbol is separated from the start time of the symbol carrying the control signaling in the TI#1.
  • the symbol is the third symbol of the uplink TI0 of the subframe n+1
  • the TI#3 is the uplink TI0 of the subframe n+1
  • the target transmission period is the uplink TI3 of the subframe n+1.
  • the control signaling is carried on the third symbol of the subframe n, which is denoted by the symbol 2, that is, the first symbol of the downlink TI1 of the subframe n, and the terminal device needs to be spaced apart from the start time of the symbol 2 by 16
  • the downlink TI2 of 1 is, for the uplink TI, the fifth symbol belongs to the uplink TI1 of the subframe n+1, that is, the second symbol corresponding to the uplink TI1 of the subframe n+1; because the subframe n+
  • the uplink TI1 of 1 is not the TI that transmits the SRS, so the terminal device cannot transmit the SRS, and can only transmit the SRS on the uplink TI3 of the subframe n+1.
  • the preliminary timing scheme 2 is that TI#1 is the downlink TI1 of the subframe n, and for the uplink TI, the first symbol after the 16-symbol interval between the symbols carrying the control signaling in the TI#1 is a sub- frame
  • the second symbol of the uplink TI1 of n+1, TI#3 is the uplink TI1 of the subframe n+1, and the target transmission period is the uplink TI3 of the subframe n+1.
  • the control signaling is carried on the fifth symbol of the subframe n, which is denoted by the symbol 4, that is, the first symbol of the downlink TI2 of the subframe n, and the terminal device needs to be spaced apart from the start time of the symbol 4 by 16
  • the downlink TI2 of 1 for the uplink TI, the seventh symbol belongs to the uplink TI1 of the subframe n+1, that is, to the fourth symbol of the uplink TI1 corresponding to the subframe n+1; since the subframe n+
  • the uplink TI1 of 1 is not the TI that transmits the SRS, so the terminal device cannot transmit the SRS, and can only transmit the SRS on the uplink TI3 of the subframe n+1.
  • the preliminary timing scheme 3 is: TI#1 is the downlink TI2 of the subframe n, and for the uplink TI, the first symbol after the 16-symbol is separated from the symbol carrying the control signaling in the TI#1 is the sub-symbol
  • the control signaling is carried on the 8th symbol of the subframe n, which is denoted by the symbol 7, that is, the first symbol of the downlink TI3 of the subframe n, and the terminal device needs to be spaced apart from the start time of the symbol 7 by 16
  • the downlink TI4 of 1 for the uplink TI, the 10th symbol belongs to the uplink TI2 of the subframe n+1, that is, the third symbol corresponding to the uplink TI2 of the subframe n+1; because the subframe n+
  • the uplink TI2 of 1 is not the TI that transmits the SRS, so the terminal device cannot transmit the SRS, and can only transmit the SRS on the uplink TI3 of the subframe n+1.
  • the preliminary timing scheme 4 is: TI#1 is the downlink TI3 of the subframe n, and for the uplink TI, the first symbol after the 16-symbol is separated from the symbol carrying the control signaling in the TI#1 is the sub- The third symbol of the uplink TI2 of the frame n+1, the TI#3 is the uplink TI2 of the subframe n+1, and the target transmission period is the TI3 of the subframe n+1.
  • the control signaling is carried on the 10th symbol of the subframe n, and is recorded as the symbol 9, that is, on the first symbol of the downlink TI4 of the subframe n, the terminal device needs to be spaced apart from the start time of the symbol 9 by 16 Symbol
  • the first symbol after the number completes the preparation for the information necessary for transmitting the SRS, that is, the 12th symbol corresponding to the subframe n+1, and for the downlink TI, the 12th symbol belongs to the subframe n+
  • the downlink TI5 of 1 is, for the uplink TI, the 12th symbol belongs to the uplink TI3 of the subframe n+1, that is, the second symbol corresponding to the uplink TI3 of the subframe n+1; since the subframe n+
  • the uplink TI3 of 1 is the TI transmitting the SRS, and the symbol for transmitting the SRS is located on the last symbol of the uplink TI3 of the subframe n+1, and the first one after the 16-
  • the preliminary timing scheme 5 is that TI#1 is the downlink TI4 of the subframe n, and for the uplink TI, the first symbol after the 16-symbol interval is separated from the symbol carrying the control signaling in the TI#1.
  • the second symbol of the uplink TI3 of the frame n+1, the TI#3 is the uplink TI3 of the subframe n+1, and the target transmission period is the TI3 of the subframe n+1.
  • the control signaling is carried on the 12th symbol of the subframe n, which is denoted by the symbol 11, that is, the first symbol of the downlink TI5 of the subframe n, and the terminal device needs to be spaced apart from the start time of the symbol 11 by 16
  • the downlink TI5 of 1 is, for the uplink TI, the 14th symbol belongs to the uplink TI3 of the subframe n+1, that is, the 4th symbol of the uplink TI3 corresponding to the subframe n+1; it should be noted that Since the last symbol in the TI3 of the subframe n+1 is used to transmit the SRS, the first symbol after the 16-symbol interval from the start time of the symbol carrying the control signaling (ie, the symbol 11) corresponds to
  • the preliminary timing scheme 6 is: TI#1 is the downlink TI5 of the subframe n, and for the uplink TI, the first symbol after the 16-symbol is separated from the symbol carrying the control signaling in the TI#1 is the sub-symbol
  • the terminal device transmits the SRS on the target transmission period.
  • the network device can receive the SRS on the target transmission period.
  • the method for transmitting a sounding reference signal reduces the length of time between the time when the terminal device receives the control signaling and the time when the preparation for the information necessary for transmitting the SRS is completed, so that it is less than 4 ms, thereby
  • the time interval between the time when the terminal device receives the control signaling and the time when the SRS is sent is reduced, and the fast response and transmission of the aperiodic SRS is realized, which effectively reduces the system delay, which is a sTTI transmission with high delay requirement. It is particularly important.
  • sTTI with a short transmission time interval, it is possible to transmit control signaling multiple times in one subframe, which improves system flexibility.
  • the method for transmitting a sounding reference signal according to an embodiment of the present invention is described in detail above with reference to FIG. 1 to FIG. 4 .
  • the terminal device and the network device according to the embodiment of the present invention are respectively described in conjunction with FIG. 5 to FIG.
  • the described technical features are equally applicable to the following embodiments of terminal devices and network devices.
  • FIG. 5 shows a terminal device 300 according to an embodiment of the present invention.
  • the terminal device 300 includes:
  • the receiving module 310 is configured to receive control signaling on the first time interval TI, where the control signaling is used to indicate that the terminal device sends the SRS;
  • the determining module 320 is configured to determine, after receiving the control signaling, a target sending period from the at least one sending period, where the target sending period is the first sending after the first moment in the at least one sending period
  • the duration of the interval between the first time and the start time of the first TI is less than P milliseconds, or the interval between the first time and the start time of the first TI is less than P milliseconds, 0 ⁇ P ⁇ 4;
  • the sending module 330 is configured to send the SRS on the target sending period determined in the determining module 320.
  • the terminal device of the embodiment of the present invention reduces the terminal device by reducing the interval between the time when the terminal device receives the control signaling and the time when the preparation for the information necessary for transmitting the SRS is completed, so that it is less than 4 ms.
  • the first time belongs to the second TI, and the starting time of the first TI is separated from the starting time of the second TI by L TI, where the L is an integer greater than or equal to 0, where L is a predefined value, or the L is configured by signaling.
  • the first TI includes M symbols
  • the second TI includes N symbols, where 1 ⁇ M ⁇ 7, 1 ⁇ N ⁇ 7, M ⁇ N, and the M and the N are positive integers.
  • the terminal device can receive control signaling multiple times in one subframe, thereby improving system flexibility.
  • the first moment is separated from the start time of the symbol used to carry the control signaling in the first TI by a K symbol, where the K is a positive integer greater than or equal to 1, and the K is A predefined value, or the K is configured by signaling.
  • control signaling is carried on the first symbol of the first TI.
  • the terminal device 300 may correspond to the network device in the method of the embodiment of the present invention, and each unit in the terminal device 300, that is, the module and the other operations and/or functions described above are respectively implemented by the terminal in the method 200.
  • the corresponding process performed by the device is not cumbersome here for the sake of brevity.
  • the terminal device of the embodiment of the present invention reduces the terminal device by reducing the interval between the time when the terminal device receives the control signaling and the time when the preparation for the information necessary for transmitting the SRS is completed, so that it is less than 4 ms.
  • the terminal device can receive control signaling multiple times in one subframe, thereby improving system flexibility.
  • FIG. 6 shows a network device 400 according to an embodiment of the present invention.
  • the network device 400 includes:
  • the sending module 410 is configured to send control signaling on the first time interval TI, where the control signaling is used to instruct the terminal device to send the SRS.
  • the receiving module 420 is configured to receive the SRS on the target sending period after the sending the control signaling, where the target sending period is the first sending period after the first moment in the at least one sending period, the first The duration of the interval between the time and the start time of the first TI is less than P milliseconds, or the interval between the first time and the symbol used to carry the control signaling in the first TI is less than P milliseconds, 0 ⁇ P ⁇ 4.
  • the network device reduces the terminal device by reducing the interval between the time when the terminal device receives the control signaling and the time when the preparation for the information necessary for transmitting the SRS is completed, so that it is less than 4 ms.
  • the first time belongs to the second TI, and the starting time of the first TI is separated from the starting time of the second TI by L TI, where the L is an integer greater than or equal to 0, where L is a predefined value, or the L is configured by signaling.
  • the first TI includes M symbols
  • the second TI includes N symbols, where 1 ⁇ M ⁇ 7, 1 ⁇ N ⁇ 7, M ⁇ N, and the M and the N are positive integers.
  • the first moment is separated from the start time of the symbol used to carry the control signaling in the first TI by a K symbol, where the K is a positive integer greater than or equal to 1, and the K is A predefined value, or the K is configured by signaling.
  • control signaling is carried on the first symbol of the first TI.
  • the network device 400 may correspond to the network device in the method of the embodiment of the present invention, and each unit in the network device 400, that is, the module and the other operations and/or functions described above are respectively implemented by the network in the method 200.
  • the corresponding process performed by the device is not cumbersome here for the sake of brevity.
  • the network device reduces the terminal device by reducing the interval between the time when the terminal device receives the control signaling and the time when the preparation for the information necessary for transmitting the SRS is completed, so that it is less than 4 ms.
  • the network device can transmit control signaling multiple times in one subframe, thereby improving system flexibility.
  • FIG. 7 shows a terminal device 500 according to an embodiment of the present invention.
  • the terminal device 500 includes:
  • processor 520 connected to the bus 510;
  • a memory 530 connected to the bus 510;
  • transceiver 540 connected to the bus 510;
  • the memory 530 is configured to store instructions, and the processor 520 is configured to execute the instructions stored in the memory 530 to control the transceiver 540 to receive signals or send signals.
  • the transceiver 540 is configured to receive control signaling on the first time interval TI, where the control signaling is used to instruct the terminal device to send the SRS.
  • the processor 520 is further configured to: after receiving the control signaling, determine a target transmission period from the at least one transmission period, where the target transmission period is the first one of the at least one transmission period after the first time
  • the duration of the interval between the first time and the start time of the first TI is less than P milliseconds, or the length of time between the first time and the symbol used to carry the control signaling in the first TI. Less than P milliseconds, 0 ⁇ P ⁇ 4;
  • the transceiver 540 is further configured to send the SRS on the target transmission period determined in the processor 520.
  • the terminal device of the embodiment of the present invention reduces the terminal device by reducing the interval between the time when the terminal device receives the control signaling and the time when the preparation for the information necessary for transmitting the SRS is completed, so that it is less than 4 ms.
  • the first time belongs to the second TI, and the starting time of the first TI is separated from the starting time of the second TI by L TI, where the L is an integer greater than or equal to 0, where L is a predefined value, or the L is configured by signaling.
  • the first TI includes M symbols
  • the second TI includes N symbols, where 1 ⁇ M ⁇ 7, 1 ⁇ N ⁇ 7, M ⁇ N, and the M and the N are positive integers.
  • the terminal device can receive control signaling multiple times in one subframe, thereby improving system flexibility.
  • the first moment is separated from the start time of the symbol used to carry the control signaling in the first TI by a K symbol, where the K is a positive integer greater than or equal to 1, and the K is A predefined value, or the K is configured by signaling.
  • control signaling is carried on the first symbol of the first TI.
  • the processor 520 may be a central processing unit (“CPU"), and the processor 520 may also be other general-purpose processors.
  • DSP digital signal processor
  • ASIC application specific integrated circuit
  • FPGA off-the-shelf programmable gate array
  • the general purpose processor may be a microprocessor or the processor or any conventional processor or the like.
  • the memory 530 can include read only memory and random access memory and provides instructions and data to the processor 520.
  • a portion of the memory 530 may also include a non-volatile random access memory.
  • the memory 530 can also store information of the device type.
  • the bus 510 may include a power bus, a control bus, a status signal bus, and the like in addition to the data bus. However, for clarity of description, various buses are labeled as bus 510 in the figure.
  • each step of the foregoing method may be completed by an integrated logic circuit of hardware in the processor 520 or an instruction in a form of software.
  • the steps of the method disclosed in the embodiments of the present invention may be directly implemented as a hardware processor, or may be performed by a combination of hardware and software modules in the processor.
  • the software module can be located in a conventional storage medium such as random access memory, flash memory, read only memory, programmable read only memory or electrically erasable programmable memory, registers, and the like.
  • the storage medium is located in the memory 530, and the processor 520 reads the information in the memory 530 and performs the steps of the above method in combination with its hardware. To avoid repetition, it will not be described in detail here.
  • the terminal device 500 may correspond to the terminal device in the method of the embodiment of the present invention, and the modules and the other operations and/or functions in the device 500 for transmitting the sounding reference signal are respectively implemented in order to implement the method.
  • the corresponding flow executed by the terminal device in 200 is not cumbersome here for the sake of brevity.
  • the terminal device of the embodiment of the present invention reduces the terminal device by reducing the interval between the time when the terminal device receives the control signaling and the time when the preparation for the information necessary for transmitting the SRS is completed, so that it is less than 4 ms.
  • the terminal device can receive control signaling multiple times in one subframe, thereby improving system flexibility.
  • FIG. 8 shows a network device 600 according to an embodiment of the present invention.
  • the network device 600 includes:
  • processor 620 connected to the bus 610;
  • a memory 630 connected to the bus 610;
  • transceiver 640 connected to the bus 610;
  • the memory 630 is configured to store instructions, and the processor 620 is configured to execute instructions stored in the memory 630 to control the transceiver 640 to receive signals or send signals.
  • the transceiver 640 is configured to send control signaling on the first time interval TI, where the control signaling is used to instruct the terminal device to send the SRS.
  • the transceiver 640 is further configured to: after transmitting the control signaling, receive the SRS on a target sending period, where the target sending period is a first sending period after the first moment in the at least one sending period,
  • the duration of the interval between the first time and the start time of the first TI is less than P milliseconds, or the time interval between the first time and the symbol used to carry the control signaling in the first TI is less than P milliseconds. 0 ⁇ P ⁇ 4.
  • the network device reduces the terminal device by reducing the interval between the time when the terminal device receives the control signaling and the time when the preparation for the information necessary for transmitting the SRS is completed, so that it is less than 4 ms.
  • the first time belongs to the second TI, and the start time of the second TI is separated from the start time of the first TI by L TI, where the L is an integer greater than or equal to 0, where L is a predefined value, or the L is configured by signaling.
  • the first TI includes M symbols
  • the second TI includes N symbols, where 1 ⁇ M ⁇ 7, 1 ⁇ N ⁇ 7, M ⁇ N, and the M and the N are positive integers.
  • the first moment is separated from the start time of the symbol used to carry the control signaling in the first TI by a K symbol, where the K is a positive integer greater than or equal to 1, and the K is A predefined value, or the K is configured by signaling.
  • control signaling is carried on the first symbol of the first TI.
  • the processor 620 may be a central processing unit (“CPU"), and the processor 620 may also be other general-purpose processors, digital signal processors (DSPs). , an application specific integrated circuit (ASIC), an off-the-shelf programmable gate array (FPGA) or other programmable logic device, discrete gate or transistor logic device, discrete hardware component, and the like.
  • the general purpose processor may be a microprocessor or the processor or any conventional processor or the like.
  • the memory 630 can include read only memory and random access memory and provides instructions and data to the processor 620. A portion of the memory 630 may also include a non-volatile random access memory. For example, the memory 630 can also store information of the device type.
  • the bus 610 may include a power bus, a control bus, a status signal bus, and the like in addition to the data bus. However, for clarity of description, various buses are labeled as bus 610 in the figure.
  • each step of the above method may be completed by an integrated logic circuit of hardware in the processor 620 or an instruction in a form of software.
  • the steps of the method disclosed in the embodiments of the present invention may be directly implemented as a hardware processor, or may be performed by a combination of hardware and software modules in the processor.
  • the software module can be located in a conventional storage medium such as random access memory, flash memory, read only memory, programmable read only memory or electrically erasable programmable memory, registers, and the like.
  • the storage medium is located in the memory 630, and the processor 620 reads the information in the memory 630 and completes the steps of the above method in combination with its hardware. To avoid repetition, it will not be described in detail here.
  • the network device 600 may correspond to the network device in the method of the embodiment of the present invention, and the modules and the other operations and/or functions in the device 600 for transmitting the sounding reference signal are respectively implemented in order to implement the method.
  • the corresponding process performed by the network device in 200 is not cumbersome here for the sake of brevity.
  • the network device reduces the terminal device by reducing the interval between the time when the terminal device receives the control signaling and the time when the preparation for the information necessary for transmitting the SRS is completed, so that it is less than 4 ms.
  • sTTI with short transmission time interval it is possible to transmit control signaling multiple times in one subframe, which improves system flexibility.
  • the size of the sequence numbers of the above processes does not mean the order of execution, and the order of execution of each process should be determined by its function and internal logic, and should not be taken to the embodiments of the present invention.
  • the implementation process constitutes any limitation.
  • the disclosed systems, devices, and methods may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division.
  • there may be another division manner for example, multiple units or components may be combined or Can be integrated into another system, or some features can be ignored or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be in an electrical, mechanical or other form.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • each functional unit in each embodiment of the present invention may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the functions may be stored in a computer readable storage medium if implemented in the form of a software functional unit and sold or used as a standalone product.
  • the technical solution of the present invention which is essential or contributes to the prior art, or a part of the technical solution, may be embodied in the form of a software product, which is stored in a storage medium, including
  • the instructions are used to cause a computer device (which may be a personal computer, server, or network side device, etc.) to perform all or part of the steps of the methods described in various embodiments of the present invention.
  • the foregoing storage medium includes: a U disk, a mobile hard disk, a read-only memory (ROM), a random access memory (RAM), a magnetic disk, or an optical disk, and the like. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明提供一种传输探测参考信号的方法、装置和设备,该方法包括:终端设备在第一时间间隔TI上接收控制信令,该控制信令用于指示该终端设备发送该SRS;该终端设备在接收到该控制信令后,从该至少一个发送时段中确定目标发送时段,其中,该目标发送时段为该至少一个发送时段中位于第一时刻之后的首个发送时段,该第一时刻与该第一TI的起始时刻之间间隔的时长小于P毫秒,或该第一时刻与该第一TI中用于承载该控制信令的符号之间间隔的时长小于P毫秒,0<P≤4;该终端设备在该目标发送时段上发送该SRS。从而,减少了终端设备接收控制信令的时刻与完成针对发送SRS所必须的信息的准备工作的时刻之间间隔的时长,有效地减少了系统时延。

Description

一种传输探测参考信号的方法、终端设备和网络设备 技术领域
本发明涉及通信领域,尤其涉及通信领域中传输探测参考信号的方法、终端设备和网络设备。
背景技术
在长期演进(Long Term Evolution,简称“LTE”)系统中,基站需要终端设备发送探测参考信号(sounding reference signal,简称“SRS”),从而使得基站能够根据SRS进行上行信道信息的估计,进而实现对终端设备的正确调度。目前,已知一种非周期SRS的传输技术,即,基站通过控制信令指示终端设备传输SRS,这一特殊的控制信令也称为SRS请求,终端设备在接收到该控制信令后,根据SRS触发准则进行SRS的发送,但是触发准则规定:终端设备发送SRS的子帧至少与检测到SRS请求的子帧相距4个子帧,即,终端设备在接收到该控制信令后,必须在4ms以后才能发送SRS,这样,使得终端设备接收控制信令的时刻与发送SRS的时刻之间间隔的时长超过了4ms,难以满足低时延要求的通信业务。因而,如何降低时延,使得非周期SRS能够进行快速响应和发送,已成为业界亟待解决的问题。
发明内容
本发明提供了一种传输探测参考信号的方法、装置和设备,能够有效地减少终端设备接收控制信令的时刻与发送SRS的时刻之间间隔的时长,从而能够更好地满足低时延要求的通信业务。
第一方面,提供了一种传输探测参考信号SRS的方法,应用于时域上配置有至少一个发送时段的通信系统中,该发送时段为用于传输探测参考信号SRS的时段,该方法包括:终端设备在第一时间间隔TI上接收控制信令,该控制信令用于指示该终端设备发送该SRS;该终端设备在接收到该控制信令后,从该至少一个发送时段中确定目标发送时段,其中,该目标发送时段为该至少一个发送时段中位于第一时刻之后的首个发送时段,该第一时刻与该第一TI的起始时刻之间间隔的时长小于P毫秒,或该第一时刻与该第一TI中用于承载该控制信令的符号之间间隔的时长小于P毫秒,0<P≤4;该 终端设备在该目标发送时段上发送该SRS。
因此,本发明实施例的传输探测参考信号的方法,通过减少终端设备接收控制信令的时刻与完成针对发送SRS所必须的信息的准备工作的时刻之间间隔的时长,使其小于4ms,从而减少了终端设备接收控制信令的时刻与发送SRS的时刻之间间隔的时长,实现了非周期SRS的快速响应和发送,有效地减少了系统时延。
结合第一方面,在第一方面的第一种实现方式中,该第一时刻属于第二TI,该第一TI的起始时刻与该第二TI的起始时刻之间间隔L个TI,其中,该L为大于或等于0的整数,该L为预定义的值,或该L是通过信令配置的。
结合第一方面,在第一方面的第二种实现方式中,该第一TI包括M个符号,该第二TI包括N个符号,其中,1≤M≤7,1≤N≤7,M≤N,该M和该N为正整数。
因而,通过采用sTTI,不仅能更有效地减少系统时延,同时,可以使得终端设备在一个子帧中多次接收控制信令,提高了系统灵活性。
结合第一方面,在第一方面的第三种实现方式中,该第一时刻与该第一TI中用于承载该控制信令的符号的起始时刻之间间隔K个符号,其中,该K为大于或等于1的正整数,该K为预定义的值,或该K是通过信令配置的。
结合第一方面,在第一方面的第四种实现方式中,该控制信令承载于该第一TI的第一个符号上。
第二方面,提供了一种传输探测参考信号SRS的方法,应用于时域上配置有至少一个发送时段的通信系统中,该发送时段为用于传输探测参考信号SRS的时段,该方法包括:网络设备在第一时间间隔TI上发送控制信令,该控制信令用于指示终端设备发送给SRS;该网路设备在发送该控制信令后,在目标发送时段上接收该SRS,其中,该目标发送时段为该至少一个发送时段中位于第一时刻之后的首个发送时段,该第一时刻与该第一TI的起始时刻之间间隔的时长小于P毫秒,或该第一时刻与该第一TI中用于承载该控制信令的符号之间间隔的时长小于P毫秒,0<P≤4。
因此,本发明实施例的传输探测参考信号的方法,通过减少终端设备接收控制信令的时刻与完成针对发送SRS所必须的信息的准备工作的时刻之间间隔的时长,使其小于4ms,从而减少了终端设备接收控制信令的时刻与 发送SRS的时刻之间间隔的时长,实现了非周期SRS的快速响应和发送,有效地减少了系统时延。
结合第二方面,在第二方面的第一种实现方式中,该第一时刻属于第二TI,该第二TI的起始时刻与该第一TI的起始时刻之间间隔L个TI,其中,该L为大于或等于0的整数,该L为预定义的值,或该L是通过信令配置的。
结合第二方面,在第二方面的第二种实现方式中,该第一TI包括M个符号,该第二TI包括N个符号,其中,1≤M≤7,1≤N≤7,M≤N,该M和该N为正整数。
因而,通过采用传输时间较短的短传输时间间隔sTTI,不仅可以更有效地减少系统时延,同时,可以使得网络设备在一个子帧中发送多次控制信令,提高了系统灵活性。
结合第二方面,在第二方面的第三种实现方式中,该第一时刻与该第一TI种用于承载该控制信令的符号的起始时刻之间间隔K个符号,其中,该K为大于或等于1的正整数,该K为预定义的值,或该K是通过信令配置的。结合第二方面,在第二方面的第四种实现方式中,该控制信令承载于该第一TI的第一个符号上。
第三方面,提供了一种终端设备,该终端设备可以执行上述第一方面或第一方面的任意可能的实现方式中的方法。具体地,该终端设备可以包括用于执行上述第一方面或第一方面的任意可能的实现方式中的方法的模块单元。
第四方面,提供了一种网络设备,该网络设备可以执行上述第二方面或第二方面的任意可能的实现方式中的方法。具体地,该网络设备可以包括用于执行上述第二方面或第二方面的任意可能的实现方式中的方法的模块单元。
第五方面,提供了一种终端设备,该终端设备包括:总线、与该总线相连的处理器、与该总线相连的存储器、与该总线相连的收发器,其中,该存储器用于存储指令,该处理器用于执行该存储器存储的指令,以控制收发器接收信号或发送信号,且当该处理器执行该存储器存储的指令时,该执行使得该处理器执行第一方面或第一方面的任意可能的实现方式中的方法。
第六方面,提供了一种网络设备,该网络设备包括:总线、与该总线相 连的处理器、与该总线相连的存储器、与该总线相连的收发器,其中,该存储器用于存储指令,该处理器用于执行该存储器存储的指令,以控制收发器接收信号或发送信号,且当该处理器执行该存储器存储的指令时,该执行使得该处理器执行第二方面或第二方面的任意可能的实现方式中的方法。
第七方面,提供了一种计算机存储介质,该计算机存储介质中存储有程序代码,该程序代码用于指示执行上述第一方面或第一方面的任意可能的实现方式中的方法。
第八方面,提供了一种计算机存储介质,该计算机存储介质中存储有程序代码,该程序代码用于指示执行上述第二方面或第二方面的任意可能的实现方式中的方法。
结合上述各方面的实现方式,在一些实现方式中,该M的取值为下列任一种:2或3,该N的取值为下列任一种:2、3、4或7。
结合上述各方面的实现方式,在一些实现方式中,该信令为高层信令或物理层信令。
附图说明
为了更清楚地说明本发明实施例的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是适用本发明实施例的传输探测参考信号的方法的应用场景。
图2a至2f是适用于本发明实施例的传输探测参考信号的时间间隔结构的示意图。
图3是根据本发明实施例的传输探测参考信号的方法的示意性交互图。
图4a至4d是根据本发明实施例的探测参考信号在时域上的配置方式的示意图。
图5是根据本发明实施例的终端设备的示意性框图。
图6是根据本发明实施例的网络设备的示意性框图。
图7是根据本发明实施例的终端设备的示意性结构图。
图8是根据本发明实施例的网络设备的示意性结构图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
本发明结合网络设备描述了各个实施例,该网络设备可以是与终端设备进行通信的设备,例如,基站或基站控制器等。每个网络设备可以为特定的地理区域提供通信覆盖,并且可以与位于该覆盖区域(小区)内的终端设备(例如UE)进行通信。该网络设备可以是GSM系统或CDMA系统中的基站(Base Transceiver Station,简称“BTS”),也可以是WCDMA系统中的基站(NodeB,简称“NB”),还可以是LTE系统中的演进型基站(Evolutional Node B,简称“eNB”或“eNodeB”),或者是云无线接入网络(Cloud Radio Access Network,简称“CRAN”)中的无线控制器,或者该网络设备可以为未来5G网络中的网络设备或者未来演进的公共陆地移动网络(Public Land Mobile Network,简称“PLMN”)中的网络设备等。
另外,本发明结合终端设备描述了各个实施例,终端设备可以指接入终端、用户设备(User Equipment,简称为“UE”)、用户单元、用户站、移动站、移动台、远方站、远程终端、移动终端、用户终端、终端、无线通信设备、用户代理或用户装置。接入终端可以是蜂窝电话、无绳电话、会话启动协议(Session Initiation Protocol,简称为“SIP”)电话、无线本地环路(Wireless Local Loop,简称为“WLL”)站、个人数字处理(Personal Digital Assistant,简称为“PDA”)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备、物联网中的终端设备、虚拟现实设备、未来5G网络中的终端设备或者未来演进的公共陆地移动网络(Public Land Mobile Network,简称为“PLMN”)中的终端设备等。
可选地,该网络设备可以是基站,该终端设备可以是用户设备。
本发明实施例提供的传输探测参考信号的方法和装置,可以应用于终端设备或网络设备,该终端设备或网络设备包括硬件层、运行在硬件层之上的操作系统层,以及运行在操作系统层上的应用层。该硬件层包括中央处理器(Central Processing Unit,CPU)、内存管理单元(MMU,Memory Management Unit)和内存(也称为主存)等硬件。该操作系统可以是任意一种或多种通 过进程(Process)实现业务处理的计算机操作系统,例如,Linux操作系统、Unix操作系统、Android操作系统、iOS操作系统或windows操作系统等。该应用层包含浏览器、通讯录、文字处理软件、即时通信软件等应用。并且,在本发明实施例中,传输探测参考信号的方法的执行主体的具体结构,本发明并未特别限定,只要能够通过运行记录有本发明实施例的传输信号的方法的代码的程序,以根据本发明实施例的传输信号的方法进行通信即可,例如,本发明实施例的传输反馈信息的方法的执行主体可以是终端设备或网络设备,或者,是终端设备或网络设备中能够调用程序并执行程序的功能模块。
此外,本发明的各个方面或特征可以实现成方法、装置或使用标准编程和/或工程技术的制品。本申请中使用的术语“制品”涵盖可从任何计算机可读器件、载体或介质访问的计算机程序。例如,计算机可读介质可以包括,但不限于:磁存储器件(例如,硬盘、软盘或磁带等),光盘(例如,压缩盘(Compact Disc,CD)、数字通用盘(Digital Versatile Disc,DVD)等),智能卡和闪存器件(例如,可擦写可编程只读存储器(Erasable Programmable Read-Only Memory,EPROM)、卡、棒或钥匙驱动器等)。另外,本文描述的各种存储介质可代表用于存储信息的一个或多个设备和/或其它机器可读介质。术语“机器可读介质”可包括但不限于,无线信道和能够存储、包含和/或承载指令和/或数据的各种其它介质。
应理解,本发明实施例的技术方案可以应用于LTE或LTE-A系统,作为示例而非限定,任何通过调度进行数据传输的无线通信系统都适用于本发明实施例。为了更好地理解本发明,以LTE系统为例对本发明实施例进行说明。
应理解,在LTE系统中,每个无线帧由10个子帧组成,每个子帧的长度为1ms,子帧编号为0~9。子帧n-a为子帧n之前的第a个子帧,即子帧n-a为从子帧n开始往前数的第a个子帧。例如,若n=4,a=2,则子帧n-a是子帧n所在无线帧中的子帧2。又如,若n=0,a=2,则子帧n-a是子帧n所在无线帧的上一无线帧中的子帧8。子帧n+a为子帧n之后的第a个子帧,即子帧n+a为从子帧n开始往后数的第a个子帧。例如,若n=4,a=3,则子帧n+a是子帧n所在无线帧中的子帧7。又如,若n=8,a=2,则子帧n+a是子帧n所在无线帧的下一无线帧中的子帧0。
应理解,上行符号称为单载波频分多址(single carrier-frequency division  multiple access,简称“SC-FDMA”)符号,下行符号称为正交频分多址(Orthogonal Frequency Division Multiple Access,简称“OFDMA”)符号。需要说明的是,若后续技术引入OFDMA的上行多址方式,上行符号也可以称为OFDMA符号。在本发明实施例中,上行符号和下行符号都统称为符号,也可以是其它类型的通信的符号,本发明实施例对此不作任何限定。
应理解,每个slot包括的符号的个数与子帧中的循环前缀(cyclic prefix,简称“CP”)的长度有关。若CP为常规CP,则每个slot包括7个符号,每个子帧包括14个符号,即,每个子帧由序号为#0,#1,#2,#3,#4,#5,#6,#7,#8,#9,#10,#11,#12,#13的符号组成;若CP为扩展CP,每个slot包括6个符号,每个子帧包括12个符号,即,每个子帧由序号为#0,#1,#2,#3,#4,#5,#6,#7,#8,#9,#10,#11的符号组成。
还应理解,现有的LTE系统中,各种物理信道都是按照1ms的传输时间间隔(Transmission Time Interval,简称“TTI”)长度设计的,即一个TTI长度等于一个子帧或1ms。
需要说明的是,虽然TTI长度为1ms,但是数据传输占用的时域资源可以小于1ms。例如,一个下行子帧中的前1、2、3或4个符号可以用于传输PDCCH,因此,TTI长度为1ms的下行数据传输占用的时域资源可以小于1ms。又例如,一个上行子帧中的最后1个符号可以用于传输SRS,因此,TTI长度为1ms的上行数据传输占用的时域资源也可以小于1ms。
在无线通信系统中,时延是影响用户体验的重要因素之一。不断出现的新业务,例如与车联网相关的业务等对时延提出越来越高的要求。因此,对于现有的LTE系统,基于TTI为一个子帧的传输机制已经无法满足低时延业务的需求。因而,基于sTTI的传输机制应运而生,能够有效地减少组包和解调编制码的时间,进而达到减少物理层空口时延的目的。
如上所述,sTTI传输是指TTI小于1个子帧或TTI小于1ms的传输。例如,sTTI长度为1个、2个、3个、4个、5个、6个、7个符号长度中的一种;或者,sTTI长度是上述多种符号长度中至少2种不同符号长度的组合,例如,1ms内包括4个sTTI,长度分别为4个符号长度、3个符号长度、4个符号长度、3个符号长度,又例如,长度分别是3个符号长度、4个符号长度、3个符号长度、4个符号长度或其它组合。系统中可能存在多种sTTI的情况,例如,系统支持7个符号的sTTI长度和0.25ms的sTTI长度在1ms 内传输。
图1示出了本发明实施例的传输探测参考信号的方法的应用场景。如图1所示,该应用场景中包括网络设备110、处于网络设备110覆盖范围内并与网络设备110进行通信的终端设备121和终端设备122。其中,网络设备110和终端设备121均为支持sTTI传输的设备,终端设备122为支持1msTTI传输的设备。网络设备110可以分别使用sTTI或现有技术中的1ms TTI和终端设备121进行通信,网络设备110也可以使用现有技术中的1ms TTI和终端设备122进行通信。
需要说明的是,考虑到后向兼容性,系统中可能同时存在1ms TTI传输和sTTI传输的情况;同时,本发明实施例不仅可以应用于TTI传输,也可以应用于sTTI传输。因而,为了方便描述本发明实施例,将TTI和sTTI统称为时间间隔(Time Interval,简称“TI”),即下文描述采用TI对本发明实施例进行详细说明。
为了便于理解本发明,下面,针对本发明实施例的各种TI结构进行详细说明。如图2所示,描述的是适用于本发明实施例的传输探测参考信号的TI结构的示意图。
TI结构1
如图2a所示,LTE系统中的1msTTI,即TI长度为1ms,记为:TI0包括符号{#0,#1,#2,#3,#4,#5,#6,#7,#8,#9,#10,#11,#12,#13}。
TI结构2
如图2b所示,将1ms划分为7个TI,即每个TI长度为2个符号长度,如图所示:TI0包括符号{#0,#1},TI1包括符号{#2,#3},TI2包括符号{#4,#5,#6},TI3包括符号{#7,#8},TI4包括符号{#9,#10},TI5包括符号{#11,#12,#13}。
TI结构3
如图2c所示,将1ms划分为4个TI,即TI长度分别为3个符号长度、4个符号长度、3个符号长度和4个符号长度,记为:TI0包括符号{#0,#1、#2},TI1包括符号{#3,#4、#5、#6},TI2包括符号{#7,#8,#9},TI3包括符号{#10,#11,#12,#13}。
TI结构4
如图2d所示,将1ms划分为4个TI,即TI长度分别为4个符号长度, 记为:TI0包括符号{#0,#1、#2,#3},TI1包括符号{#3,#4、#5、#6},TI2包括符号{#7,#8,#9,#10},TI3包括符号{#10,#11,#12,#13}。TI结构5与TI结构2和TI结构3不同的是,此种TI结构中存在重复使用的符号,出现这种TI结构的原因是:对于某些特殊信息,可以在同一时间发送,并且信息间互不干扰,例如,梳齿正交或者码正交的解调参考信号。
上述TI结构都是基于子帧中的常规CP设置的,下面描述基于子帧中的扩展CP设置的TI结构。
TI结构5
如图2e所示,将1ms划分为6个TI,即每个TI长度为2个符号长度,记为:TI0包括符号{#0,#1},TI1包括符号{#2,#3},TI2包括符号{#4,#5},TI3包括符号{#6,#7},TI4包括符号{#8,#9},TI5包括符号{#10,#11}。
TI结构6
如图2f所示,将1ms划分为4个TI,即每个TI长度为3个符号长度,记为:TI0包括符号{#0,#1,#2},TI1包括符号{#3,#4,#5},TI2包括符号{#6,#7,#8},TI3包括符号{#9,#10,#11}。
需要说明的是,若每个子帧中包含x个TI,则TI编号为0~(x-1),TI s-a为TI s之前的第a个TI,即TI s-a为从TI s开始往前数的第a个TI。例如,若s=4,a=2,x=6,则TI s-a是TI s所在子帧中的TI 2。又如,若s=0,a=2,x=6,则TI s-a是子帧n所在子帧的上一子帧中的TI 4。TI s+a为TI s之后的第a个TI,即TI s+a为从TI s开始往后数的第a个TI。例如,若s=1,a=3,x=6,则TI s+a是TI s所在子帧中的TI 4。又如,若s=5,a=2,x=6,则TI s+a是TI n所在子帧的下一子帧中的TI 1。
应理解,作为示例而非限定,系统中基于子帧划分的任何形式的TI结构都可以应用于本发明实施例中,本发明并不限于此。
本发明实施例应用于时域上配置有至少一个发送时段的通信系统中,该发送时段为用于传输探测参考信号SRS的时段。
具体地说,在本发明实施例中,针对于非周期SRS的传输,每个发送时段可以为至少一个符号对应的时长,即终端设备在该至少一个符号上发送SRS,也可以为该至少一个符号所在的TI。
需要说明的是,发送时段可以由网络设备通过高层信令为终端设备配置,这样,终端设备只能在该发送时段上发送SRS,其他时段不可以发送SRS。
可选地,该多个发送时段中的每个发送时段位于可以发送SRS的TI最后一个符号上。
应理解,每个发送时段可以由网络设备周期性地进行配置,例如,目前的现有技术中,网络设备可以配置一个周期为5个子帧,每个周期中的第2号子帧用于发送SRS,且终端设备不可以在其他子帧上发送SRS;每个发送时段也可以由网络设备固定配置,即,终端设备必须在某个用于发送SRS的子帧中进行SRS的发送。
可选地,终端设备可以在用于发送SRS的子帧中的最后一个符号上发送SRS,作为示例而非限定,终端设备也可以在用于发送SRS的子帧中的其他符号上发送SRS。
应理解,在下文描述的实施例中,“第一”、“第二”仅仅为了区分不同的对象,例如,为了区分不同TI,不应对本发明实施例的保护范围构成任何限定。
为了更好地对本发明实施例进行详细说明,图3从设备交互的角度示出了本发明实施例的传输探测参考信号的方法和示意性交互图,交互的对象可以是网络设备和终端设备。
该方法包括:
在S210,网络设备在第一时间间隔TI上发送控制信令,该控制信令用于指示终端设备发送该SRS。
需要说明的是,网络设备在对终端设备进行上行数据传输的调度前,需要对上行信道信息进行估计,基于此,需要终端设备向网络设备发送SRS,从而使得网络设备可以及时获得调度必需的信道信息。因而,对于非周期SRS的传输网络设备需要向终端设备发送控制信令,该控制信令用于告知终端设备,终端设备需要向网络设备发送SRS。
从而,在S210中,终端设备可以在该TI#1(即,第一TI的一例)上接收该控制信令,进而对SRS进行配置,使得终端设备可以正确发送SRS。
在S220中,该终端设备在接收到该控制信令后,从该至少一个发送时段中确定目标发送时段,其中,该目标发送时段为该至少一个发送时段中位于第一时刻之后的首个发送时段,该第一时刻与该第一TI的起始时刻之间间隔的时长小于P毫秒,或该第一时刻与该第一TI中用于承载该控制信令的符号之间间隔的时长小于P毫秒,0<P≤4;
应理解,该P值可以由网络设备根据该终端设备对该控制信令的解调能力以及上下行切换能力等因素确定。
如上所述,终端设备在接收并正确解调该控制信令后,需要进行SRS的发送。需要说明的是,终端设备发送SRS之前,需要准备发送SRS所必需的信息,例如,终端设备生成SRS序列,计算发送SRS所在的频域等信息,直到将所有信息准备完毕,就可以发送SRS。因而,在本发明实施例中,时刻#1(即,第一时刻的一例)可以为终端设备完成发送SRS所必需的信息的时刻,作为示例而非限定,时刻#1也可以为终端设备完成发送SRS所必需的信息的时刻与首个发送时段之间的任意时刻。
在现有技术中,SRS触发准则规定:终端设备发送SRS的子帧至少与检测到SRS请求的子帧相距4个子帧,即,终端设备接收控制信令的时刻所在的TI的结束时刻与完成针对发送SRS所必需的信息的准备工作的时刻所在的TI的结束时刻之间间隔的时长为4ms,即,若终端设备在子帧n上接收控制信令,则在子帧n+4上需要完成针对发送SRS所必需的信息的准备工作,从而,使得终端设备只能在4ms之后才能发送SRS,对于传统TTI传输的系统不能满足低时延的要求,对于sTTI传输的系统来说,这种定时机制更是不能满足低时延要求。
因而,为了满足系统低时延的要求,本发明实施例的传输探测参考信号的方法,通过减少终端设备接收控制信令的时刻与完成针对发送SRS所必须的信息的准备工作的时刻之间间隔的时长,使其小于4ms,从而减少了终端设备接收控制信令的时刻与发送SRS的时刻之间间隔的时长,实现了非周期SRS的快速响应和发送,有效地减少了系统时延。
在本发明实施例中,可以采用两种方式表示终端设备接收控制信令的时刻与完成针对发送SRS所必需的信息的准备工作的时刻之间间隔的时长,下面,针对于上述两种表示时长的方式分别进行详细说明。
方式1
采用TI表示终端设备接收控制信令的时刻与完成针对发送SRS所必需的信息的准备工作的时刻之间间隔的时长:
该第一时刻与该第一TI的起始时刻之间间隔的时长小于P毫秒,0<P≤4;
可选地,该第一时刻属于第二TI,该第一TI的起始时刻与第二TI之间 间隔L个TI,其中,该L为大于或等于0的整数,该L为预定义的值,或该L是通过信令配置的。
应理解,时刻#1与TI#1的起始时刻之间间隔的时长小于4毫秒,时刻#1属于TI#2,TI#1的起始时刻与TI#2的起始时刻之间间隔L个TI:若时刻#1为TI#2的起始时刻,则该L个TI对应的时长等于时刻#1与TI#1的起始时刻之间间隔的时长;若时刻#1位于TI#2的起始时刻之后的时刻,则该L个TI对应的时长小于时刻#1与TI#1的起始时刻之间间隔的时长。
可选地,该信令可以是高层信令,也可以是物理层信令。即该L是由网络设备通过高层信令发送给终端设备的,该L也可以是由网络设备通过物理层信令发送给终端设备的,例如,该L由网络设备通过下行控制信息(Downlink Control Information,简称“DCI”)发送给终端设备。该L可以根据终端设备的切换能力等发生变化。作为示例而非限定,终端设备也可以通过其他方式获取L,本发明并不限于此,例如,网络设备通过广播方式通知终端设备。
终端设备可以根据L的值确定自己需要在与当前TI(即,TI#1)的起始时刻间隔L个TI后的TI#2内完成完成针对发送SRS所必需的信息的准备工作,进而可以进行SRS的发送,因而,也可以说TI#2是用来确定目标发送时段的。
应理解,TI#2为上行TI,当时刻#1属于TI#2时,关于目标发送时段的确定有两种情况(即,情况1和情况2),下面针对上述两种情况进行说明。
情况1
TI#2中包括发送时段:
若终端设备在发送时段之前完成针对发送SRS所必需的信息的准备工作,即时刻#1位于发送时段之前,则该目标发送时段为TI#2中的发送时段;
若终端设备在发送时段上或发送时段之后完成针对发送SRS所必需的信息的准备工作,即时刻#1位于发送时段上或位于发送时段之后,则该目标发送时段不属于TI#2,TI#2之后的首个发送时段为目标发送时段。
情况2
TI#2不包括发送时段:
终端设备在TI#2内任何时刻完成针对发送SRS所必需的信息的准备工作,目标发送时段都为TI#2之后的首个发送时段。
需要说明的是,可以将TI#2视为一种指示信息,该指示信息用于指示终端设备发送SRS,具体内容如上所述,用于指示终端设备可以在TI#2以及TI#2之后的上行TI上发送SRS,那么,对于终端设备来说,需要在TI#2的结束时刻之前完成针对发送SRS所必需的信息的准备工作,进而可以进行SRS的发送。
应理解,TI#1包括M个符号,TI#2包括N个符号,其中,1≤M≤14,1≤N≤14,该M和该N为正整数。
针对于sTTI传输,可选地,1≤M≤7,1≤N≤7;考虑到终端设备与网络设备的发射能力,可选地,M≤N。
为了更好地阐述本发明实施例,下面将结合附图对本发明实施例进行详细说明。
首先,以M=7,N=7,即TI#1包括7个符号,TI#2包括7个符号为例对本发明实施例进行说明。
如图4a所示,控制信令承载于子帧n的TI0的第一个符号上,高层信令为终端设备配置,终端设备可以在子帧n+2的TI1的最后一个符号上发送SRS。
若L为4,则终端设备需要在与子帧n的TI0的起始时刻间隔4个TI后的第1个TI上完成针对发送SRS所必需的信息的准备工作,即对应于子帧n+2的TI0,由于子帧n+2的TI0并不是发送SRS的TI,因而终端设备不可以发送SRS,只能在子帧n+2的TI1上发送SRS。
若L为5,则终端设备需要在与子帧n的TI0的起始时刻间隔5个TI后的第1个TI上完成针对发送SRS所必需的信息的准备工作,即对应于子帧n+2的TI1:若时刻#1所属的符号在子帧n+2的TI1的最后一个符号则终端设备可以在子帧n+2的TI1上发送SRS;若时刻#1所属的符号为子帧n+2的TI1的最后一个符号则终端设备只能在子帧n+2的TI1之后的用于发送SRS的TI上发送SRS。
需要说明的是,为了方便描述,将用于配置终端设备接收控制信令的时刻与完成针对发送SRS所必需的信息的准备工作的时刻之间间隔的时长的方法记为预备定时方案。
在本发明实施例中,TI#1和TI#2可以按照图2a至图2f中任一种TI结构进行配置。
可选地,M的取值为下列任一种:2或3,N的取值为下列任一种:2、3、4或7。
作为示例而非限定,以TI#1包括2个符号或3个符号,TI#2包括3个符号或4个符号为例,对本发明实施例的发送SRS的预备定时方案进行说明。
TI#1和TI#2的TI结构如图4b所示,高层信令为终端设备配置,使得终端设备可以在子帧n+1的最后一个符号上发送SRS,L为8。
应理解,由于子帧n与子帧n+1的TI结构不同,即上行TI与下行TI的结构不同,所以,该L个TI可以为L个上行TI,也可以为L个下行TI。下面,以该L个TI为L个下行TI为例,对本发明实施例进行详细说明。
下列,针对图4b的TI结构,列举6种预备预备定时方案。
预备定时方案1
控制信令承载于子帧n的下行TI0上,即TI#1为子帧n的下行TI0,终端设备需要在与子帧n的下行TI0的起始时刻间隔8个下行TI后的第1个下行TI上完成针对发送SRS所必需的信息的准备工作,对于下行来说,与子帧n的上行TI0的起始时刻间隔8个下行TI后的第1个下行TI为子帧n+1的下行TI2,对于上行TI来说,对应于子帧n+1的上行TI1;由于子帧n+1的上行TI1并不是发送SRS的TI,因而终端设备不可以在子帧n+1的上行TI1上发送SRS,只能在子帧n+1的上行TI3上发送SRS。
即,预备定时方案1为:TI#1为子帧n的下行TI0,TI#2为子帧n+1的上行TI1,目标发送时段为子帧n+1的上行TI3。
在本发明实施例中,由于TI#1是下行TI,TI#2是上行TI,两者的TI结构不相同,因而需要确定与TI#1的起始时刻间隔L个下行TI后的上行TI的标号,即TI#2。
针对于确定与TI#1的起始时刻间隔L个下行TI后的上行TI的标号,以预备定时方案1为例进行说明。TI#1为子帧n的下行TI0,对于下行TI来说,与下行TI0的起始时刻之间间隔8个下行TI后的第1个下行TI为子帧n+1的下行TI2,其最后一个符号对应于子帧n+1的上行TI1的第4个符号上,则确定与TI#1的起始时刻之间间隔8个下行TI后的上行TI为子帧n+1的上行TI1。
即,确定与TI#1的起始时刻之间间隔L个下行TI后的上行TI时,将与TI#1的起始时刻间隔L个下行TI后的第1个下行TI的最后一个符号对 应的子帧的上行TI确定为TI#2。
预备定时方案2
控制信令承载于子帧n的下行TI1上,即TI#1为子帧n的下行TI1,终端设备需要在与子帧n的TI1的起始时刻间隔8个下行TI后的第1个下行TI上完成针对发送SRS所必需的准备工作,对于下行来说,与子帧n的下行TI1的起始时刻间隔8个下行TI后的第1个TI为子帧n+1的下行TI3,对于上行TI来说,对应于子帧n+1的上行TI2;由于子帧n+1的上行TI2并不是发送SRS的TI,因而终端设备不可以在子帧n+1的上行TI2上发送SRS,只能在子帧n+1的上行TI3上发送SRS。
即,预备定时方案2为:TI#1为子帧n的下行TI1,TI#2为子帧n+1的上行TI2,目标发送时段为子帧n+1的上行TI3。
同理,确定与TI#1的起始时刻之间间隔8个下行TI后的上行TI时,将与TI#1的起始时刻间隔8个下行TI后的第1个下行TI的最后一个符号对应的子帧的上行TI确定为TI#2。即,与TI#1的起始时刻间隔8个下行TI后的第1个下行TI的最后一个符号(即,符号8)对应于子帧n+1的上行TI2的第2个符号。具体确定方法和过程同预备定时方案1,这里为了避免赘述,不再进行重复描述。
预备定时方案3
控制信令承载于子帧n的下行TI2上,即TI#1为子帧n的下行TI2,终端设备需要在与子帧n的下行TI2的起始时刻间隔8个下行TI后的第1个TI上完成针对发送SRS所必需的信息的准备工作,对于下行来说,与子帧n的下行TI2的起始时刻间隔8个下行TI后的第1个TI为子帧n+1的下行TI4,对于上行TI来说,对应于子帧n+1的上行TI3;需要注意的是,由于子帧n+1的上行TI3是发送SRS的TI,且发送SRS的符号位于子帧n+1的上行TI3的最后一个符号上,与TI#1的起始时刻间隔8个下行TI后的第1个下行TI的最后一个符号(即,符号10)对应于子帧n+1的上行TI3的第1个符号,时域上位于发送SRS的符号之前,因而,目标发送时段为子帧n+1的上行TI3。
即,预备定时方案3为:TI#1为子帧n的下行TI2,TI#2为子帧n+1的上行TI3,目标发送时段为子帧n+1的下行TI3。
同理,确定与TI#1的起始时刻之间间隔8个下行TI后的上行TI时, 将与TI#1的起始时刻间隔8个下行TI后的第1个下行TI的最后一个符号对应的子帧的上行TI确定为TI#2。即,与TI#1的起始时刻间隔8个下行TI后的第1个下行TI的最后一个符号(即,符号10)对应于子帧n+1的上行TI3的第1个符号。具体确定方法和过程同预备定时方案1,这里为了避免赘述,不再进行重复描述。
预备定时方案4
控制信令承载于子帧n的下行TI3上,即TI#1为子帧n的下行TI3,终端设备需要在与子帧n的下行TI3的起始时刻间隔8个下行TI后的第1个TI上完成针对发送SRS的准备工作,对于下行来说,与子帧n的下行TI3的起始时刻间隔8个下行TI后的第1个TI为子帧n+1的下行TI5,对于上行TI来说,对应于子帧n+1的上行TI3;需要注意的是,由于子帧n+1的上行TI3中的最后一个符号用于发送SRS,与TI#1的起始时刻间隔8个下行TI后的第1个下行TI的最后一个符号(即,符号13)对应于子帧n+1的上行TI3的最后一个符号,与发送SRS的符号重叠,因而,只能将子帧n+1之后的首个发送时段确定为目标发送时段,由于篇幅有限,图中并未画出。
即,预备定时方案4为:TI#1为子帧n的下行TI3,TI#2为子帧n+1的上行TI3,目标发送时段为子帧n+1之后的首个发送时段。
同理,确定与TI#1的起始时刻之间间隔8个下行TI后的上行TI时,将与TI#1的起始时刻间隔8个下行TI后的第1个下行TI的最后一个符号对应的子帧的上行TI确定为TI#2。即,与TI#1的起始时刻间隔8个下行TI后的第1个下行TI的最后一个符号(即,符号13)对应于子帧n+1的上行TI3的第4个符号。具体确定方法和过程同预备定时方案1,这里为了避免赘述,不再进行重复描述。
预备定时方案5
控制信令承载于子帧n的下行TI4上,即TI#1为子帧n的下行TI4,终端设备必须在与子帧n的下行TI4的起始时刻间隔8个下行TI后的第1个TI上完成针对发送SRS所必需的信息的准备工作,对于下行来说,与子帧n的下行TI4的起始时刻间隔8个下行TI后的第1个TI为子帧n+2的下行TI0,对于上行TI来说,对应于子帧n+2的上行TI0;由于子帧n+2的上行TI0并不是发送SRS的TI,因而终端设备不可以在子帧n+2的上行TI0上发送SRS,只能在子帧n+2的TI0之后的首个发送时段上发送SRS,由于篇幅有 限,图中并未画出。
即,预备定时方案5为:TI#1为子帧n的下行TI4,TI#2为子帧n+2的上行TI0,目标发送时段为子帧n+2的上行TI0之后的首个发送时段。
同理,确定与TI#1的起始时刻之间间隔8个下行TI后的上行TI时,将与TI#1的起始时刻间隔8个下行TI后的第1个下行TI的最后一个符号对应的子帧的上行TI确定为TI#2。即,与TI#1的起始时刻间隔8个下行TI后的第1个下行TI的最后一个符号(即,符号1)对应于子帧n+2的上行TI0的第2个符号。具体确定方法和过程同预备定时方案1,这里为了避免赘述,不再进行重复描述。
预备定时方案6
控制信令承载于子帧n的下行TI5上,即TI#1为子帧n的下行TI5,终端设备需要在与子帧n的下行TI5的起始时刻间隔8个下行TI后的第1个TI上完成针对发送SRS所必需的信息的准备工作,对于下行来说,与子帧n的TI5的起始时刻间隔8个下行TI后的第1个TI为子帧n+2的下行TI1,对于上行TI来说,对应于子帧n+2的上行TI1;由于子帧n+2的上行TI1并不是发送SRS的TI,因而终端设备不可以在子帧n+2的上行TI1上发送SRS,只能在子帧n+2的TI1之后的首个发送时段上发送SRS,由于篇幅有限,图中并未画出。
即,预备定时方案6为:TI#1为子帧n的下行TI5,TI#2为子帧n+2的上行TI1,目标发送时段为子帧n+2的上行TI1之后的首个发送时段。同理,确定与TI#1的起始时刻之间间隔8个下行TI后的上行TI时,将与TI#1的起始时刻间隔8个下行TI后的第1个下行TI的最后一个符号对应的子帧的上行TI确定为TI#2。即,与TI#1的起始时刻间隔8个下行TI后的第1个下行TI的最后一个符号(即,符号3)对应于子帧n+2的上行TI1的第1个符号。具体确定方法和过程同预备定时方案1,这里为了避免赘述,不再进行重复描述。
应理解,上述6种预备定时方案仅为示意性说明,本发明并不限于此,上行TI与下行TI的TI结构、承载控制信令的符号、高层信令配置的发送时段以及L的值的不同,都会生成很多预备定时方案,具体确定预备定时方案的方法和过程同上述,因而,图4b中的SRS配置方式不应该对本发明构成限定。
上述以该L个TI为L个下行TI为例对本发明实施例进行详细说明,为了避免赘述,下面以该L个TI为L个下行TI为例,对本发明实施例进行简单说明。
同上,L=8,TI#1包括2个符号或3个符号,TI#2包括3个符号或4个符号。
如图4c所示,控制信令承载于子帧n的下行TI1上,即TI#1为子帧n的下行TI1,终端设备需要在与子帧n的下行TI1的起始时刻间隔8个上行TI后的第1个上行TI上完成针对发送SRS所必需的信息的准备工作,即对应于子帧n+2的上行TI0。由于子帧n+2的上行TI0并不是发送SRS的TI,因而终端设备不可以在子帧n+2的上行TI0上发送SRS,只能在子帧n+2的上行TI3上发送SRS。
同理,由于TI#1是下行TI,TI#2是上行TI,两者的TI结构不相同,因而需要确定与TI#1的起始时刻间隔L个上行TI后的上行TI的标号,即TI#2。
具体确定过程:TI#1为子帧n的下行TI1,控制信令承载于下行TI1上的第1个符号,即子帧n的第3个符号,将子帧n的第3个符号映射于上行TI,则相当于终端设备侧的子帧n第3个符号,即对应于终端设备侧的子帧n的上行TI0的第3个符号,则与子帧n的下行TI1的起始时刻间隔8个上行TI的第1个上行TI为子帧n+2的上行TI0,即确定子帧n+2的上行TI0为TI#2。即,确定与子帧n的下行TI1的起始时刻间隔8个上行TI的第1个上行TI时,将子帧n以上行TI结构进行划分,同时,将子帧n的下行TI1中承载控制信令的符号映射于以上行TI结构进行划分的子帧n的上行TI上,将以上行TI结构进行划分的与子帧n的上行TI的起始时刻间隔L个上行TI的上行TI确定为TI#2。
同理,在图4c中,以该L个TI为L个上行TI确定预备定时的方案也有6种,与以该L个TI为L个下行TI I为例的实施例的6种方式相同,同时,确定与TI#1的起始时刻间隔L个上行TI的上行TI与图4c中SRS配置方式的方法和过程相同,这里为了避免赘述,不再重复描述。
方式2
该第一时刻与该第一TI中用于承载该控制信令的符号之间间隔的时长小于P毫秒,0<P≤4;
可选地,该第一时刻与该第一TI中用于承载该控制信令的符号的起始时刻之间间隔K个符号,其中,该K为大于或等于1的正整数,该K为预定义的值,或该K是通过信令配置的。
可选地,该信令可以是高层信令,也可以是物理层信令。即该K是由网络设备通过高层信令发送给终端设备的,该K也可以是由网络设备通过物理层信令发送给终端设备的,例如,该K由网络设备通过DCI发送给终端设备。该K可以根据终端设备的切换能力等发生变化。作为示例而非限定,终端设备也可以通过其他方式获取K,本发明并不限于此,例如,网络设备通过广播方式通知终端设备。
当时刻#1属于上行TI时,为了区别于上述TI#2,将时刻#1所属的上行TI记为TI#3,同理,关于目标发送时段的确定有两种情况(即,情况1和情况2),下面针对上述两种情况进行说明。
情况1
TI#3中包括发送时段:
若终端设备在发送时段之前完成针对发送SRS所必需的信息的准备工作,即时刻#1位于发送时段之前,则该目标发送时段为TI#3中的发送时段;
若终端设备在发送时段上或发送时段之后完成针对发送SRS所必需的信息的准备工作,即时刻#1位于发送时段上或位于发送时段之后,则该目标发送时段不属于TI#3,TI#3之后的首个发送时段为目标发送时段。
情况2
TI#3不包括发送时段:
终端设备在TI#3内任何时刻完成针对发送SRS所必需的信息的准备工作,目标发送时段为TI#3之后的首个发送时段。
需要说明的是,可以将时刻#1视为一种指示信息,用于指示终端设备可以在时刻#1以及时刻#1之后的符号上发送SRS,那么,对于终端设备来说,需要在时刻#1之前或时刻#1上完成针对发送SRS所必需的信息的准备工作,进而可以进行SRS的发送。
应理解,TI#1包括M个符号,TI#3包括N个符号,其中,1≤M≤14,1≤N≤14,该M和该N为正整数。
针对于sTTI传输,可选地,1≤M≤7,1≤N≤7;考虑到终端设备与网络设备的发射能力,可选地,M≤N。
可选地,M的取值为下列任一种:2或3,N的取值为下列任一种:2、3、4或7。
作为示例而非限定,以TI#1包括2个符号或3个符号和TI#3包括3个符号或4个符号为例,对本发明实施例的发送SRS的预备定时方案进行说明。
TI#1与TI#3的TI结构如图4d所示,高层信令为终端设备配置,使得终端设备可以在子帧n+1的最后一个符号上发送SRS,K为16。
下列,针对图4d的TI结构,列举6种预备预备定时方案。
预备定时方案1
控制信令承载于子帧n的第1个符号上,记为符号0,即子帧n的下行TI0的第1个符号上,终端设备需要在与符号0的起始时刻之间间隔16个符号后的第1个符号上完成针对发送SRS所必需的信息的准备工作,即对应于子帧n+1的第3个符号,对于下行TI来说,该第3个符号属于子帧n+1的下行TI1,对于上行TI来说,该第3个符号属于子帧n+1的上行TI0,也即对应于子帧n+1的上行TI0的第3个符号上;由于子帧n+1的上行TI0并不是发送SRS的TI,因而终端设备不可以发送SRS,只能在子帧n+1的上行TI3上发送SRS。
即,预备定时方案1为:TI#1为子帧n的下行TI0,对于上行TI来说,与TI#1中承载控制信令的符号的起始时刻之间间隔16个符号后的第1个符号为子帧n+1的上行TI0的第3个符号,TI#3为子帧n+1的上行TI0,目标发送时段为子帧n+1的上行TI3。
预备定时方案2
控制信令承载于子帧n的第3个符号上,记为符号2,即子帧n的下行TI1的第1个符号上,终端设备需要在与符号2的起始时刻之间间隔16个符号后的第1个符号上完成针对发送SRS所必需的信息的准备工作,即对应于子帧n+1的第5个符号,对于下行TI来说,该第5个符号属于子帧n+1的下行TI2,对于上行TI来说,该第5个符号属于子帧n+1的上行TI1,也即对应于子帧n+1的上行TI1的第2个符号上;由于子帧n+1的上行TI1并不是发送SRS的TI,因而终端设备不可以发送SRS,只能在子帧n+1的上行TI3上发送SRS。
即,预备定时方案2为:TI#1为子帧n的下行TI1,对于上行TI来说,与TI#1中承载控制信令的符号之间间隔16个符号后的第1个符号为子帧 n+1的上行TI1的第2个符号,TI#3为子帧n+1的上行TI1,目标发送时段为子帧n+1的上行TI3。
预备定时方案3
控制信令承载于子帧n的第5个符号上,记为符号4,即子帧n的下行TI2的第1个符号上,终端设备需要在与符号4的起始时刻之间间隔16个符号后的第1个符号上完成针对发送SRS所必需的信息的准备工作,即对应于子帧n+1的第7个符号,对于下行TI来说,该第7个符号属于子帧n+1的下行TI2,对于上行TI来说,该第7个符号属于子帧n+1的上行TI1,也即对应于子帧n+1的上行TI1的第4个符号上;由于子帧n+1的上行TI1并不是发送SRS的TI,因而终端设备不可以发送SRS,只能在子帧n+1的上行TI3上发送SRS。
即,预备定时方案3为:TI#1为子帧n的下行TI2,对于上行TI来说,与TI#1中承载控制信令的符号之间间隔16个符号后的第1个符号为子帧n+1的上行TI1的第4个符号,TI#3为子帧n+1的上行TI1,目标发送时段为子帧n+1的上行TI3。
预备定时方案4
控制信令承载于子帧n的第8个符号上,记为符号7,即子帧n的下行TI3的第1个符号上,终端设备需要在与符号7的起始时刻之间间隔16个符号后的第1个符号上完成针对发送SRS所必需的信息的准备工作,即对应于子帧n+1的第10个符号,对于下行TI来说,该第10个符号属于子帧n+1的下行TI4,对于上行TI来说,该第10个符号属于子帧n+1的上行TI2,也即对应于子帧n+1的上行TI2的第3个符号上;由于子帧n+1的上行TI2并不是发送SRS的TI,因而终端设备不可以发送SRS,只能在子帧n+1的上行TI3上发送SRS。
即,预备定时方案4为:TI#1为子帧n的下行TI3,对于上行TI来说,与TI#1中承载控制信令的符号之间间隔16个符号后的第1个符号为子帧n+1的上行TI2的第3个符号,TI#3为子帧n+1的上行TI2,目标发送时段为子帧n+1的TI3。
预备定时方案5
控制信令承载于子帧n的第10个符号上,记为符号9,即子帧n的下行TI4的第1个符号上,终端设备需要在与符号9的起始时刻之间间隔16个符 号后的第1个符号上完成针对发送SRS所必需的信息的准备工作,即对应于子帧n+1的第12个符号,对于下行TI来说,该第12个符号属于子帧n+1的下行TI5,对于上行TI来说,该第12个符号属于子帧n+1的上行TI3,也即对应于子帧n+1的上行TI3的第2个符号上;由于子帧n+1的上行TI3是发送SRS的TI,且发送SRS的符号位于子帧n+1的上行TI3的最后一个符号上,与承载控制信令的符号的起始时刻间隔16个符号之后的第1个符号对应于子帧n+1的上行TI3的第2个符号上,时域上位于发送SRS的符号之前,因而,目标发送时段为子帧n+1的TI3。
即,预备定时方案5为:TI#1为子帧n的下行TI4,对于上行TI来说,与TI#1中承载控制信令的符号之间间隔16个符号后的第1个符号为子帧n+1的上行TI3的第2个符号,TI#3为子帧n+1的上行TI3,目标发送时段为子帧n+1的TI3。
预备定时方案6
控制信令承载于子帧n的第12个符号上,记为符号11,即子帧n的下行TI5的第1个符号上,终端设备需要在与符号11的起始时刻之间间隔16个符号后的第1个符号上完成针对发送SRS所必需的信息的准备工作,即对应于子帧n+1的第14个符号,对于下行TI来说,该第14个符号属于子帧n+1的下行TI5,对于上行TI来说,该第14个符号属于子帧n+1的上行TI3,也即对应于子帧n+1的上行TI3的第4个符号上;需要注意的是,由于子帧n+1的TI3中的最后一个符号用于发送SRS,与承载控制信令的符号(即,符号11)的起始时刻间隔16个符号后的第1个符号对应于子帧n+1的上行TI3的最后一个符号,与发送SRS的符号重叠,因而,只能将子帧n+1之后的首个发送时段确定为目标发送时段,由于篇幅有限,图中并未画出。
即,预备定时方案6为:TI#1为子帧n的下行TI5,对于上行TI来说,与TI#1中承载控制信令的符号之间间隔16个符号后的第1个符号为子帧n+1的上行TI3的第4个符号,TI#3为子帧n+1的上行TI3,目标发送时段为子帧n+1之后的首个发送时段。
应理解,上述6种预备定时方案仅为示意性说明,本发明并不限于此,上行TI与下行TI的TI结构、承载控制信令的符号、高层信令配置的发送SRS的符号以及K值的不同,都会生成很多预备定时方案,具体确定预备定时方案的方法和过程同上述,因而,图4d中的SRS配置方式不应该对本发 明构成限定。
在S230中,该终端设备在该目标发送时段上发送该SRS。
从而,该网络设备可以在该目标发送时段上接收该SRS。
因而,由上述可知,通过采用传输时间较短的sTTI,不仅能更有效地减少系统时延,同时,可以使得网络设备在一个子帧中发送多次控制信令,提高了系统灵活性。
因此,本发明实施例的传输探测参考信号的方法,通过减少终端设备接收控制信令的时刻与完成针对发送SRS所必须的信息的准备工作的时刻之间间隔的时长,使其小于4ms,从而减少了终端设备接收控制信令的时刻与发送SRS的时刻之间间隔的时长,实现了非周期SRS的快速响应和发送,有效地减少了系统时延,这对于时延性要求较高的sTTI传输,显得尤为重要;同时,通过采用传输时间间隔较短的sTTI,能够实现在一个子帧中多次发送控制信令,提高了系统灵活性。
以上,结合图1至图4详细描述了根据本发明实施例的传输探测参考信号的方法,下面,结合图5至图8分别描述了本发明实施例的终端设备和网络设备,方法实施例所描述的技术特征同样适用于以下终端设备和网络设备的实施例。
图5示出了本发明实施例的终端设备300,该终端设备300包括:
接收模块310,用于在第一时间间隔TI上接收控制信令,该控制信令用于指示该终端设备发送该SRS;
确定模块320,用于在接收到该该控制信令后,从该至少一个发送时段中确定目标发送时段,其中,该目标发送时段为该至少一个发送时段中位于第一时刻之后的首个发送时段,该第一时刻与该第一TI的起始时刻之间间隔的时长小于P毫秒,或该第一时刻与该第一TI的起始时刻之间间隔的时长小于P毫秒,0<P≤4;
发送模块330,用于在该确定模块320中确定的该目标发送时段上发送该SRS。
因此,本发明实施例的终端设备,通过减少终端设备接收控制信令的时刻与完成针对发送SRS所必须的信息的准备工作的时刻之间间隔的时长,使其小于4ms,从而减少了终端设备接收控制信令的时刻与发送SRS的时刻之间间隔的时长,实现了非周期SRS的快速响应和发送,有效地减少了系统时 延。
可选地,该第一时刻属于第二TI,该第一TI的起始时刻与该第二TI的起始时刻之间间隔L个TI,其中,该L为大于或等于0的整数,该L为预定义的值,或该L是通过信令配置的。
可选地,该第一TI包括M个符号,该第二TI包括N个符号,其中,1≤M≤7,1≤N≤7,M≤N,该M和该N为正整数。
因而,通过采用传输时间较短的sTTI,不仅可以更有效地减少系统时延,同时,可以使得终端设备在一个子帧中多次接收控制信令,提高了系统灵活性。
可选地,该第一时刻与该第一TI中用于承载该控制信令的符号的起始时刻之间间隔K个符号,其中,该K为大于或等于1的正整数,该K为预定义的值,或该K是通过信令配置的。
可选地,该控制信令承载于该第一TI的第一个符号上。
根据本发明实施例的终端设备300可对应于本发明实施例的方法中的网络设备,且该终端设备300中的各单元即模块和上述其他操作和/或功能分别为了实现方法200中由终端设备执行的相应流程,为了简洁,此处不再累赘。
因此,本发明实施例的终端设备,通过减少终端设备接收控制信令的时刻与完成针对发送SRS所必须的信息的准备工作的时刻之间间隔的时长,使其小于4ms,从而减少了终端设备接收控制信令的时刻与发送SRS的时刻之间间隔的时长,实现了非周期SRS的快速响应和发送,有效地减少了系统时延,这对于时延性要求较高的sTTI传输,显得尤为重要;同时,通过采用传输时间间隔较短的sTTI,能够使得终端设备在一个子帧中多次接收控制信令,提高了系统灵活性。
图6示出了本发明实施例的网络设备400,该网络设备400包括:
发送模块410,用于在第一时间间隔TI上发送控制信令,该控制信令用于指示终端设备发送该SRS;
接收模块420,用于在发送该控制信令后,在目标发送时段上接收该SRS,其中,该目标发送时段为该至少一个发送时段中位于第一时刻之后的首个发送时段,该第一时刻与该第一TI的起始时刻之间间隔的时长小于P毫秒,或该第一时刻与该第一TI中用于承载该控制信令的符号之间间隔的时长小于P毫秒,0<P≤4。
因此,本发明实施例的网络设备,通过减少终端设备接收控制信令的时刻与完成针对发送SRS所必须的信息的准备工作的时刻之间间隔的时长,使其小于4ms,从而减少了终端设备接收控制信令的时刻与发送SRS的时刻之间间隔的时长,实现了非周期SRS的快速响应和发送,有效地减少了系统时延。
可选地,该第一时刻属于第二TI,该第一TI的起始时刻与该第二TI的起始时刻之间间隔L个TI,其中,该L为大于或等于0的整数,该L为预定义的值,或该L是通过信令配置的。
可选地,该第一TI包括M个符号,该第二TI包括N个符号,其中,1≤M≤7,1≤N≤7,M≤N,该M和该N为正整数。
因而,通过采用传输时间较短的sTTI,不仅可以更有效地减少系统时延,同时,可以使得网络设备在一个子帧中发送多次控制信令,提高了系统灵活性。
可选地,该第一时刻与该第一TI中用于承载该控制信令的符号的起始时刻之间间隔K个符号,其中,该K为大于或等于1的正整数,该K为预定义的值,或该K是通过信令配置的。
可选地,该控制信令承载于该第一TI的第一个符号上。
根据本发明实施例的网络设备400可对应于本发明实施例的方法中的网络设备,且该网络设备400中的各单元即模块和上述其他操作和/或功能分别为了实现方法200中由网络设备执行的相应流程,为了简洁,此处不再累赘。
因此,本发明实施例的网络设备,通过减少终端设备接收控制信令的时刻与完成针对发送SRS所必须的信息的准备工作的时刻之间间隔的时长,使其小于4ms,从而减少了终端设备接收控制信令的时刻与发送SRS的时刻之间间隔的时长,实现了非周期SRS的快速响应和发送,有效地减少了系统时延,这对于时延性要求较高的sTTI传输,显得尤为重要;同时,通过采用传输时间间隔较短的sTTI,能够使得网络设备在一个子帧中多次发送控制信令,提高了系统灵活性。
图7示出了本发明实施例的终端设备500,该终端设备500包括:
总线510;
与该总线510相连的处理器520;
与该总线510相连的存储器530;
与该总线510相连的收发器540;
其中,该存储器530用于存储指令,该处理器520用于执行该存储器530存储的指令,以控制该收发器540接收信号或发送信号。
其中,该收发器540,用于在第一时间间隔TI上接收控制信令,该控制信令用于指示终端设备发送该SRS;
该处理器520,还用于在接收到该控制信令后,从该至少一个发送时段中确定目标发送时段,其中,该目标发送时段为该至少一个发送时段中位于第一时刻之后的首个发送时段,该第一时刻与该第一TI的起始时刻之间间隔的时长小于P毫秒,或该第一时刻与该第一TI中用于承载该控制信令的符号之间间隔的时长小于P毫秒,0<P≤4;
该收发器540,还用于在该处理器520中确定的该目标发送时段上发送该SRS。
因此,本发明实施例的终端设备,通过减少终端设备接收控制信令的时刻与完成针对发送SRS所必须的信息的准备工作的时刻之间间隔的时长,使其小于4ms,从而减少了终端设备接收控制信令的时刻与发送SRS的时刻之间间隔的时长,实现了非周期SRS的快速响应和发送,有效地减少了系统时延。
可选地,该第一时刻属于第二TI,该第一TI的起始时刻与该第二TI的起始时刻之间间隔L个TI,其中,该L为大于或等于0的整数,该L为预定义的值,或该L是通过信令配置的。
可选地,该第一TI包括M个符号,该第二TI包括N个符号,其中,1≤M≤7,1≤N≤7,M≤N,该M和该N为正整数。
因而,通过采用传输时间较短的sTTI,不仅能更有效地减少系统时延,同时,可以使得终端设备在一个子帧中多次接收控制信令,提高了系统灵活性。
可选地,该第一时刻与该第一TI中用于承载该控制信令的符号的起始时刻之间间隔K个符号,其中,该K为大于或等于1的正整数,该K为预定义的值,或该K是通过信令配置的。
可选地,该控制信令承载于该第一TI的第一个符号上。
应理解,在本发明实施例中,该处理器520可以是中央处理单元(Central Processing Unit,简称为“CPU”),该处理器520还可以是其他通用处理器、 数字信号处理器(DSP)、专用集成电路(ASIC)、现成可编程门阵列(FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
该存储器530可以包括只读存储器和随机存取存储器,并向处理器520提供指令和数据。存储器530的一部分还可以包括非易失性随机存取存储器。例如,存储器530还可以存储设备类型的信息。
该总线510除包括数据总线之外,还可以包括电源总线、控制总线和状态信号总线等。但是为了清楚说明起见,在图中将各种总线都标为总线510。
在实现过程中,上述方法的各步骤可以通过处理器520中的硬件的集成逻辑电路或者软件形式的指令完成。结合本发明实施例所公开的方法的步骤可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器530,处理器520读取存储器530中的信息,结合其硬件完成上述方法的步骤。为避免重复,这里不再详细描述。
根据本发明实施例的终端设备500可对应于本发明实施例的方法中的终端设备,且该传输探测参考信号的设备500中的各单元即模块和上述其他操作和/或功能分别为了实现方法200中由终端设备执行的相应流程,为了简洁,此处不再累赘。
因此,本发明实施例的终端设备,通过减少终端设备接收控制信令的时刻与完成针对发送SRS所必须的信息的准备工作的时刻之间间隔的时长,使其小于4ms,从而减少了终端设备接收控制信令的时刻与发送SRS的时刻之间间隔的时长,实现了非周期SRS的快速响应和发送,有效地减少了系统时延,这对于时延性要求较高的sTTI传输,显得尤为重要;同时,通过采用传输时间间隔较短的sTTI,能够使得终端设备在一个子帧中多次接收控制信令,提高了系统灵活性。
图8示出了本发明实施例的网络设备600,该网络设备600包括:
总线610;
与该总线610相连的处理器620;
与该总线610相连的存储器630;
与该总线610相连的收发器640;
其中,该存储器630用于存储指令,该处理器620用于执行该存储器630存储的指令,以控制该收发器640接收信号或发送信号。
其中,该收发器640,用于在第一时间间隔TI上发送控制信令,该控制信令用于指示终端设备发送该SRS;
该收发器640,还用于在发送该控制信令后,在目标发送时段上接收该SRS,其中,该目标发送时段为该至少一个发送时段中位于第一时刻之后的首个发送时段,该第一时刻与该第一TI的起始时刻之间间隔的时长小于P毫秒,或该第一时刻与该第一TI中用于承载该控制信令的符号之间间隔的时长小于P毫秒,0<P≤4。
因此,本发明实施例的网络设备,通过减少终端设备接收控制信令的时刻与完成针对发送SRS所必须的信息的准备工作的时刻之间间隔的时长,使其小于4ms,从而减少了终端设备接收控制信令的时刻与发送SRS的时刻之间间隔的时长,实现了非周期SRS的快速响应和发送,有效地减少了系统时延。
可选地,该第一时刻属于第二TI,该第二TI的起始时刻与该第一TI的起始时刻之间间隔L个TI,其中,该L为大于或等于0的整数,该L为预定义的值,或该L是通过信令配置的。
可选地,该第一TI包括M个符号,该第二TI包括N个符号,其中,1≤M≤7,1≤N≤7,M≤N,该M和该N为正整数。
因而,通过采用传输时间较短的短传输时间间隔sTTI,不仅可以更有效地减少系统时延,同时,可以使得网络设备在一个子帧中发送多次控制信令,提高了系统灵活性。
可选地,该第一时刻与该第一TI中用于承载该控制信令的符号的起始时刻之间间隔K个符号,其中,该K为大于或等于1的正整数,该K为预定义的值,或该K是通过信令配置的。
可选地,该控制信令承载于该第一TI的第一个符号上。
应理解,在本发明实施例中,该处理器620可以是中央处理单元(Central Processing Unit,简称为“CPU”),该处理器620还可以是其他通用处理器、数字信号处理器(DSP)、专用集成电路(ASIC)、现成可编程门阵列(FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
该存储器630可以包括只读存储器和随机存取存储器,并向处理器620提供指令和数据。存储器630的一部分还可以包括非易失性随机存取存储器。例如,存储器630还可以存储设备类型的信息。
该总线610除包括数据总线之外,还可以包括电源总线、控制总线和状态信号总线等。但是为了清楚说明起见,在图中将各种总线都标为总线610。
在实现过程中,上述方法的各步骤可以通过处理器620中的硬件的集成逻辑电路或者软件形式的指令完成。结合本发明实施例所公开的方法的步骤可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器630,处理器620读取存储器630中的信息,结合其硬件完成上述方法的步骤。为避免重复,这里不再详细描述。
根据本发明实施例的网络设备600可对应于本发明实施例的方法中的网络设备,且该传输探测参考信号的设备600中的各单元即模块和上述其他操作和/或功能分别为了实现方法200中由网络设备执行的相应流程,为了简洁,此处不再累赘。
因此,本发明实施例的网络设备,通过减少终端设备接收控制信令的时刻与完成针对发送SRS所必须的信息的准备工作的时刻之间间隔的时长,使其小于4ms,从而减少了终端设备接收控制信令的时刻与发送SRS的时刻之间间隔的时长,实现了非周期SRS的快速响应和发送,有效地减少了系统时延,这对于时延性要求较高的sTTI传输,显得尤为重要;同时,通过采用传输时间间隔较短的sTTI,能够实现在一个子帧中多次发送控制信令,提高了系统灵活性。
应理解,在本发明的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本发明实施例的实施过程构成任何限定。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本发明的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本发明各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本发明的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络侧设备等)执行本发明各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应以所述权利要求的保护范围为准。

Claims (20)

  1. 一种传输探测参考信号SRS的方法,其特征在于,应用于时域上配置有至少一个发送时段的通信系统中,所述发送时段为用于传输探测参考信号SRS的时段,所述方法包括:
    终端设备在第一时间间隔TI上接收控制信令,所述控制信令用于指示所述终端设备发送所述SRS;
    所述终端设备在接收到所述控制信令后,从所述至少一个发送时段中确定目标发送时段,其中,所述目标发送时段为所述至少一个发送时段中位于第一时刻之后的首个发送时段,所述第一时刻与所述第一TI的起始时刻之间间隔的时长小于P毫秒,或所述第一时刻与所述第一TI中用于承载所述控制信令的符号之间间隔的时长小于P毫秒,0<P≤4;
    所述终端设备在所述目标发送时段上发送所述SRS。
  2. 根据权利要求1所述的方法,其特征在于,所述第一时刻属于第二TI,所述第一TI的起始时刻与所述第二TI的起始时刻之间间隔L个TI,其中,所述L为大于或等于0的整数,所述L为预定义的值,或所述L是通过信令配置的。
  3. 根据权利要求2所述的方法,其特征在于,所述第一TI包括M个符号,所述第二TI包括N个符号,其中,1≤M≤7,1≤N≤7,M≤N,所述M和所述N为正整数。
  4. 根据权利要求1所述的方法,其特征在于,所述第一时刻与所述第一TI中用于承载所述控制信令的符号的起始时刻之间间隔K个符号,其中,所述K为大于或等于1的正整数,所述K为预定义的值,或所述K是通过信令配置的。
  5. 根据权利要求1至4中任一项所述的方法,其特征在于,所述控制信令承载于所述第一TI的第一个符号上。
  6. 一种传输探测参考信号SRS的方法,其特征在于,应用于时域上配置有至少一个发送时段的通信系统中,所述发送时段为用于传输探测参考信号SRS的时段,所述方法包括:
    网络设备在第一时间间隔TI上发送控制信令,所述控制信令用于指示终端设备发送所述SRS;
    所述网络设备在发送所述控制信令后,在目标发送时段上接收所述SRS, 其中,所述目标发送时段为所述至少一个发送时段中位于第一时刻之后的首个发送时段,所述第一时刻与所述第一TI的起始时刻之间间隔的时长小于P毫秒,或所述第一时刻与所述第一TI中用于承载所述控制信令的符号之间间隔的时长小于P毫秒,0<P≤4。
  7. 根据权利要求6所述的方法,其特征在于,所述第一时刻属于第二TI,所述第二TI的起始时刻与所述第一TI的起始时刻之间间隔L个TI,其中,所述L为大于或等于0的整数,所述L为预定义的值,或所述L是通过信令配置的。
  8. 根据权利要求7所述的方法,其特征在于,所述第一TI包括M个符号,所述第二TI包括N个符号,其中,1≤M≤7,1≤N≤7,M≤N,所述M和所述N为正整数。
  9. 根据权利要求6所述的方法,其特征在于,所述第一时刻与所述第一TI中用于承载所述控制信令的符号的起始时刻之间间隔K个符号,其中,所述K为大于或等于0的正整数,所述K为预定义的值,或所述K是通过信令配置的。
  10. 根据权利要求6至9中任一项所述的方法,其特征在于,所述控制信令承载于所述第一TI的第一个符号上。
  11. 一种终端设备,其特征在于,应用于时域上配置有至少一个发送时段的通信系统中,所述发送时段为用于传输探测参考信号SRS的时段,所述终端设备包括:
    接收模块,用于在第一时间间隔TI上接收控制信令,所述控制信令用于指示所述终端设备发送所述SRS;
    确定模块,用于在接收到所述控制信令后,从所述至少一个发送时段中确定目标发送时段,其中,所述目标发送时段为所述至少一个发送时段中位于第一时刻之后的首个发送时段,所述第一时刻与所述第一TI的起始时刻之间间隔的时长小于P毫秒,或所述第一时刻与所述第一TI中用于承载所述控制信令的符号之间间隔的时长小于P毫秒,0<P≤4;
    发送模块,用于在所述确定模块中确定的目标发送时段上发送所述SRS。
  12. 根据权利要求11所述的终端设备,其特征在于,所述第一时刻属于第二TI,所述第一TI的起始时刻与所述第二TI的起始时刻之间间隔L个TI,其中,所述L为大于或等于0的整数,所述L为预定义的值,或所述L 是通过信令配置的。
  13. 根据权利要求12所述的终端设备,其特征在于,所述第一TI包括M个符号,所述第二TI包括N个符号,其中,1≤M≤7,1≤N≤7,M≤N,所述M和所述N为正整数。
  14. 根据权利要求11所述的终端设备,其特征在于,所述第一时刻与所述第一TI中用于承载所述控制信令的符号的起始时刻之间间隔K个符号,其中,所述K为大于或等于1的正整数,所述K为预定义的值,或所述K是通过信令配置的。
  15. 根据权利要求11至14中任一项所述的终端设备,其特征在于,所述控制信令承载于所述第一TI的第一个符号上。
  16. 一种传输探测参考信号的网络设备,其特征在于,应用于时域上配置有至少一个发送时段的通信系统中,所述发送时段为用于传输探测参考信号SRS的时段,所述网络设备包括:
    发送模块,用于在第一时间间隔TI上发送控制信令,所述控制信令用于指示终端设备发送所述SRS;
    接收模块,用于在发送所述控制信令后,在目标发送时段上接收所述SRS,其中,所述目标发送时段为所述至少一个发送时段中位于第一时刻之后的首个发送时段,所述第一时刻与所述第一TI的起始时刻之间间隔的时长小于P毫秒,或所述第一时刻与所述第一TI中用于承载所述控制信令的符号之间间隔的时长小于P毫秒,0<P≤4。
  17. 根据权利要求16所述的网络设备,其特征在于,所述第一时刻属于第二TI,所述第二TI的起始时刻与所述第一TI的起始时刻之间间隔L个TI,其中,所述L为大于或等于0的整数,所述L为预定义的值,或所述L是通过信令配置的。
  18. 根据权利要求17所述的网络设备,其特征在于,所述第一TI包括M个符号,所述第二TI包括N个符号,其中,1≤M≤7,1≤N≤7,M≤N,所述M和所述N为正整数。
  19. 根据权利要求16所述的网络设备,其特征在于,所述第一时刻与所述第一TI中用于承载所述控制信令的符号的起始时刻之间间隔K个符号,其中,所述K为大于或等于1的正整数,所述K为预定义的值,或所述K是通过信令配置的。
  20. 根据权利要求16至19中任一项所述的网络设备,其特征在于,所述控制信令承载于所述第一TI的第一个符号上。
PCT/CN2016/100678 2016-09-28 2016-09-28 一种传输探测参考信号的方法、终端设备和网络设备 WO2018058389A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201680088952.0A CN109644446A (zh) 2016-09-28 2016-09-28 一种传输探测参考信号的方法、终端设备和网络设备
PCT/CN2016/100678 WO2018058389A1 (zh) 2016-09-28 2016-09-28 一种传输探测参考信号的方法、终端设备和网络设备
EP16917143.6A EP3500001A4 (en) 2016-09-28 2016-09-28 SOUND REFERENCE SIGNAL TRANSMISSION, DEVICE AND NETWORK DEVICE
US16/366,759 US20190222390A1 (en) 2016-09-28 2019-03-27 Method and Network Device For Transmitting Sounding Reference Signal, and Terminal Device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/100678 WO2018058389A1 (zh) 2016-09-28 2016-09-28 一种传输探测参考信号的方法、终端设备和网络设备

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/366,759 Continuation US20190222390A1 (en) 2016-09-28 2019-03-27 Method and Network Device For Transmitting Sounding Reference Signal, and Terminal Device

Publications (1)

Publication Number Publication Date
WO2018058389A1 true WO2018058389A1 (zh) 2018-04-05

Family

ID=61763032

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/100678 WO2018058389A1 (zh) 2016-09-28 2016-09-28 一种传输探测参考信号的方法、终端设备和网络设备

Country Status (4)

Country Link
US (1) US20190222390A1 (zh)
EP (1) EP3500001A4 (zh)
CN (1) CN109644446A (zh)
WO (1) WO2018058389A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021163900A1 (zh) * 2020-02-18 2021-08-26 华为技术有限公司 一种参考信号传输方法及相关设备

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10721756B2 (en) 2017-02-13 2020-07-21 Qualcomm Incorporated Repetition-based uplink for low latency communications in a new radio wireless communication system
US10554448B2 (en) * 2017-08-10 2020-02-04 Qualcomm Incorporated Dynamic scheduling of data patterns for shortened transmission time intervals

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102457368A (zh) * 2010-11-08 2012-05-16 华为技术有限公司 信道检测方法、基站和用户设备
CN102754508A (zh) * 2010-02-15 2012-10-24 株式会社Ntt都科摩 参考信号发送方法、移动台装置以及基站装置
US20160269158A1 (en) * 2015-03-14 2016-09-15 Qualcomm Incorporated Reciprocal channel sounding reference signal allocation and configuration

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102104973B (zh) * 2010-05-31 2013-09-25 电信科学技术研究院 非周期srs的传输方法和设备
CN106537821B (zh) * 2014-07-11 2019-07-26 Lg 电子株式会社 在无线通信系统中报告关于未授权带的信道状态信息的方法及其设备

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102754508A (zh) * 2010-02-15 2012-10-24 株式会社Ntt都科摩 参考信号发送方法、移动台装置以及基站装置
CN102457368A (zh) * 2010-11-08 2012-05-16 华为技术有限公司 信道检测方法、基站和用户设备
US20160269158A1 (en) * 2015-03-14 2016-09-15 Qualcomm Incorporated Reciprocal channel sounding reference signal allocation and configuration

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
MITSUBISHI ELECTRIC: "UL Sounding RS Control Signaling for Closed Loop Antenna Selection", 3GPP RAN1#52 R1-080803, 15 February 2008 (2008-02-15), XP050109286 *
See also references of EP3500001A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021163900A1 (zh) * 2020-02-18 2021-08-26 华为技术有限公司 一种参考信号传输方法及相关设备

Also Published As

Publication number Publication date
EP3500001A1 (en) 2019-06-19
EP3500001A4 (en) 2019-08-07
CN109644446A (zh) 2019-04-16
US20190222390A1 (en) 2019-07-18

Similar Documents

Publication Publication Date Title
CN109997405B (zh) 用于执行随机接入信道进程的方法及其用户设备
US10952207B2 (en) Method for transmitting data, terminal device and network device
US11985635B2 (en) Wireless communication method, system, network device, and user equipment for improving transmission performance
CN106851822B (zh) 传输方法和用户终端
US20220006602A1 (en) Discontinuous Reception for Carrier Aggregation
RU2749896C1 (ru) Способ и устройство для передачи данных
TWI754052B (zh) 傳輸信號的方法、網絡設備和終端設備
EP3687245A1 (en) Information transmission method and device
WO2017194003A1 (zh) 一种数据传输方法、网络设备及用户设备
WO2019080014A1 (zh) 用于切换带宽部分的方法和终端设备
WO2021114060A1 (zh) 通信方法及相关装置、设备
US10270576B2 (en) Information transmission method, user equipment, and base station
WO2020057495A1 (zh) 数据传输方法及通信装置
WO2021027551A9 (zh) 一种通信方法及装置
JP2021516892A (ja) 物理上り共有チャネルの伝送方法及び端末デバイス
JP7515536B2 (ja) データ伝送方法、端末デバイス及びネットワークデバイス
WO2018126833A1 (zh) 无线通信的方法和设备
JP2023511894A (ja) Pdcch監視をスキップするように指示するための方法及び装置
WO2018058389A1 (zh) 一种传输探测参考信号的方法、终端设备和网络设备
WO2020164367A1 (zh) 一种配置参数的方法和设备
AU2016432636B2 (en) Information transmission method, network apparatus, and terminal apparatus
US11991684B2 (en) Data transmission method and apparatus
RU2735386C1 (ru) Способ связи, терминальное устройство и устройство сетевого доступа
WO2019051791A1 (zh) 传输数据的方法和设备
WO2018202084A1 (zh) 无线通信的方法和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16917143

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016917143

Country of ref document: EP

Effective date: 20190312

NENP Non-entry into the national phase

Ref country code: DE