WO2018058325A1 - 一种信道参数的展示方法、装置及控制终端 - Google Patents

一种信道参数的展示方法、装置及控制终端 Download PDF

Info

Publication number
WO2018058325A1
WO2018058325A1 PCT/CN2016/100430 CN2016100430W WO2018058325A1 WO 2018058325 A1 WO2018058325 A1 WO 2018058325A1 CN 2016100430 W CN2016100430 W CN 2016100430W WO 2018058325 A1 WO2018058325 A1 WO 2018058325A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
channel
control terminal
frequency point
aircraft
Prior art date
Application number
PCT/CN2016/100430
Other languages
English (en)
French (fr)
Inventor
王宇
范伟
王乃博
饶雄斌
陈颖
Original Assignee
深圳市大疆创新科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市大疆创新科技有限公司 filed Critical 深圳市大疆创新科技有限公司
Priority to PCT/CN2016/100430 priority Critical patent/WO2018058325A1/zh
Priority to CN201680017098.9A priority patent/CN107466485B/zh
Publication of WO2018058325A1 publication Critical patent/WO2018058325A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/24TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters
    • H04W52/241TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters taking into account channel quality metrics, e.g. SIR, SNR, CIR, Eb/lo
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/309Measuring or estimating channel quality parameters
    • H04B17/345Interference values
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/382Monitoring; Testing of propagation channels for resource allocation, admission control or handover
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/24TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters
    • H04W52/242TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters taking into account path loss
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/24TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters
    • H04W52/243TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters taking into account interferences
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/28TPC being performed according to specific parameters using user profile, e.g. mobile speed, priority or network state, e.g. standby, idle or non transmission
    • H04W52/283Power depending on the position of the mobile
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria
    • H04W72/541Allocation or scheduling criteria for wireless resources based on quality criteria using the level of interference
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria
    • H04W72/542Allocation or scheduling criteria for wireless resources based on quality criteria using measured or perceived quality

Definitions

  • the present invention relates to the field of UAV communication technologies, and in particular, to the field of channel parameter calculation and UAV user interaction, and particularly to a channel parameter display method, device and control terminal.
  • the communication quality between the aircraft and the control terminal is an important performance indicator, which determines whether the long-distance high-definition picture transmission can be realized, and whether the aircraft can receive remote control commands.
  • the UAV communication system uses more frequency bands and has serious interference. If the user selects a channel with severe interference, or the system automatically jumps to a channel with severe interference, the communication quality between the aircraft and the control terminal will be reduced. This will give the user a poor flight experience, which will reduce the user's viscosity.
  • the embodiment of the present application discloses a method, a device, and a control terminal for displaying channel parameters, which can visually display channel parameters of a communication channel, thereby improving user viscosity.
  • a first aspect of the embodiment of the present disclosure discloses a method for displaying a channel parameter, where the method includes:
  • the method before the acquiring the frequency point set obtained by performing frequency point scanning according to the preset time resolution and the preset frequency resolution, the method further includes:
  • An indication message is sent to the aircraft.
  • the indication information includes information used to instruct the aircraft to start frequency point scanning.
  • the indication information includes information about frequency band selection.
  • the information about the frequency band selection includes at least one of location information acquired by the control terminal, a country code, and allowed band information.
  • the obtaining a frequency point set obtained by performing frequency point scanning according to a preset time resolution and a preset frequency resolution includes:
  • the determining, in the set of frequency points, a communication channel between the control terminal and the aircraft including:
  • a communication channel between the control terminal and the aircraft is determined based on the signal.
  • the determining, according to the signal, a communication channel between the control terminal and the aircraft including:
  • At least one of a start point, an end point, and a channel bandwidth of a frequency band occupied by a communication channel between the control terminal and the aircraft is determined according to the target frequency point.
  • the method further includes:
  • the receiving a signal that selects a target frequency point from the set of frequency points includes:
  • a signal is received from the selected target frequency point of the selectable frequency range.
  • the method further includes:
  • the interference signal power spectral density is shown.
  • the channel parameter includes an equivalent total interference energy value
  • the detecting a channel parameter of the communication channel, and displaying the channel parameter includes:
  • the channel parameter further includes a bottom noise; the displaying the channel parameter further includes:
  • the channel parameter further includes a maximum flight distance
  • the detecting a channel parameter of the communication channel, and displaying the channel parameter further includes:
  • the detecting the channel parameter of the communication channel, and displaying the channel parameter further includes:
  • the reference distance is displayed according to an equivalent total interference energy value corresponding to the reference distance.
  • the reference distance is 1 km and/or 4 km.
  • the method further includes:
  • a second aspect of the embodiment of the present application discloses a channel parameter display device, where the device includes:
  • a first acquiring module configured to acquire a frequency point set obtained by performing frequency point scanning according to a preset time resolution and a preset frequency resolution, where the frequency point set includes at least one frequency point;
  • a first determining module configured to determine, in the set of frequency points, a communication channel between the control terminal and the aircraft
  • a detecting module configured to detect channel parameters of the communication channel
  • a display module for displaying the channel parameters.
  • the device further includes:
  • a sending module configured to send indication information to the aircraft.
  • the device where the indication information sent by the sending module includes information used to indicate that the aircraft starts frequency point scanning.
  • the device where the indication information sent by the sending module includes information about frequency band selection.
  • the device where the information about the frequency band selection in the indication information sent by the sending module includes at least one of location information acquired by the control terminal, a country code, and allowed band information.
  • the device where the first acquiring module acquires a frequency point set obtained by performing frequency point scanning according to a preset time resolution and a preset frequency resolution, includes:
  • the device where the first determining module comprises:
  • a receiving unit configured to receive a signal from the selected target frequency point in the set of frequency points
  • a first determining unit configured to determine, according to the signal, a communication channel between the control terminal and the aircraft.
  • the device where the first determining unit determines, according to the signal, a specific manner of controlling a communication channel between the terminal and the aircraft, includes:
  • a start point and an end point of a frequency band occupied by a communication channel between the control terminal and the aircraft are determined according to the target frequency point.
  • the second determining module is further configured to determine an optional frequency point from the set of frequency points according to the location information. range;
  • the specific manner in which the receiving unit receives a signal that selects a target frequency point from the set of frequency points and sets a channel bandwidth includes:
  • a signal is received from the selected target frequency point of the selectable frequency range.
  • the device further includes:
  • a second acquiring module configured to acquire an interference signal power spectral density of each frequency point in the frequency set in the channel bandwidth
  • the display module is further configured to display the interference signal power spectral density.
  • the detecting module includes:
  • a detecting unit configured to detect a first signal to noise ratio of the control terminal and a second signal to noise ratio of the aircraft during communication using the communication channel;
  • An obtaining unit configured to acquire a propagation extra loss value of the communication channel
  • a calculating unit configured to calculate an interference energy value of the communication channel according to an interference signal power spectral density of the target frequency point
  • a second determining unit configured to determine an equivalent total interference energy value of the communication channel according to the interference energy value, the first signal to noise ratio, the second signal to noise ratio, and the propagation extra loss value;
  • the specific manner in which the display module displays the channel parameters includes:
  • the device wherein the channel parameter further includes a noise floor
  • the specific manner in which the display module displays the channel parameters further includes:
  • the device wherein the channel parameter further includes a maximum flight distance
  • the acquiring unit is further configured to acquire a signal to noise ratio threshold of the control terminal side and a transmission loss of a unit distance, and acquire, according to the location information, a maximum transmit power that is allowed to be used by the current location;
  • the second determining unit is further configured to determine, when the communication is performed by using the communication channel, according to the maximum transmit power, the signal to noise ratio threshold, the transmission loss of the unit distance, and the equivalent total interference energy value.
  • the specific manner in which the display module displays the channel parameters further includes:
  • the acquiring unit is further configured to acquire a signal to noise ratio threshold of the control terminal side and a transmission loss of a unit distance, and acquire, according to the location information, a maximum transmit power that is allowed to be used by the current location;
  • the calculating unit is further configured to calculate a transmission loss of the reference distance according to the transmission loss of the unit distance;
  • the second determining unit is further configured to determine an equivalent total interference energy value corresponding to the reference distance according to the transmission loss of the reference distance, the signal to noise ratio threshold, and the maximum transmit power;
  • the specific manner in which the display module displays the channel parameters further includes:
  • the reference distance is displayed according to an equivalent total interference energy value corresponding to the reference distance.
  • the device wherein the calculating unit is further configured to calculate a transmission loss with a reference distance of 1 km and/or 4 km according to the transmission loss of the unit distance;
  • the second determining unit is further configured to determine an equivalent total interference energy value corresponding to the reference distance according to the transmission loss of the reference distance of 1 km and/or 4 km, the signal to noise ratio threshold, and the maximum transmit power. ;
  • the specific manner in which the display module displays the channel parameters further includes:
  • the reference distance is displayed according to the equivalent total interference energy value corresponding to the reference distance of 1 km and/or 4 km.
  • the device wherein the second determining module is further configured to: when detecting that the flight distance of the aircraft does not reach the maximum flight distance, determine that the flight distance of the aircraft does not reach the maximum The reason for the flight distance;
  • the device also includes:
  • a generating module configured to generate prompt information, where the prompt information includes the reason
  • the display module is further configured to display the prompt information.
  • a third aspect of the embodiment of the present application discloses a control terminal, where the control terminal includes:
  • a communication device configured to acquire a frequency point set obtained by performing frequency point scanning according to a preset time resolution and a preset frequency resolution, where the frequency point set includes at least one frequency point;
  • a processor configured to determine, in the set of frequency points, a communication channel between the control terminal and the aircraft, And detecting channel parameters of the communication channel;
  • the communication device is further configured to send indication information to the aircraft.
  • the indication information sent by the communication device to the aircraft includes start information.
  • the indication information sent by the communication device to the aircraft includes information about frequency band selection.
  • the information about the frequency band selection in the indication information sent by the communication device to the aircraft includes at least one of location information, country code, and allowed band information.
  • the specific manner in which the communication device obtains a frequency point set obtained by performing frequency point scanning according to a preset time resolution and a preset frequency resolution includes:
  • the specific manner in which the processor determines, in the set of frequency points, a communication channel between the control terminal and the aircraft includes:
  • a communication channel between the control terminal and the aircraft is determined based on the signal.
  • the specific manner in which the processor determines, according to the signal, a communication channel between the control terminal and the aircraft includes:
  • a start point and an end point of a frequency band occupied by a communication channel between the control terminal and the aircraft are determined according to the target frequency point.
  • the processor is further configured to determine, according to the location information, the selectable frequency range from the set of frequency points;
  • the specific manner in which the processor receives, by the communication device, a signal that selects a target frequency point from the set of frequency points and sets a channel bandwidth includes:
  • a signal is received by the communication device from a selected target frequency point of the selectable frequency range.
  • the processor is further configured to obtain an interference signal power spectral density of each frequency point in the frequency set in the channel bandwidth;
  • the output device is further configured to output the interference signal power spectral density.
  • the channel parameter includes an equivalent total interference energy value; the processor detects the communication
  • the specific manner of the channel parameters of the channel includes:
  • the specific manner in which the output device outputs the channel parameters includes:
  • the equivalent total interference energy value is output.
  • the channel parameter further includes a bottom noise
  • the specific manner in which the output device outputs the channel parameter further includes:
  • the noise floor is output.
  • the channel parameter further includes a maximum flight distance
  • the processor is further configured to acquire a signal to noise ratio threshold of the control terminal side and a transmission loss per unit distance, and obtain, according to the location information, a maximum transmit power that is allowed to be used by the current location, and according to the maximum transmit power. And a signal to noise ratio threshold, a transmission loss of the unit distance, and the equivalent total interference energy value, determining a maximum flight distance of the aircraft when communicating using the communication channel;
  • the specific manner in which the output device exhibits the channel parameter further includes:
  • the processor is further configured to acquire a signal to noise ratio threshold of the control terminal side and a transmission loss of a unit distance, and obtain, according to the location information, a maximum transmit power that is allowed to be used by the current location, according to the The transmission loss per unit distance is calculated as the transmission loss of the reference distance, and the equivalent total interference energy value corresponding to the reference distance is determined according to the transmission loss of the reference distance, the signal to noise ratio threshold, and the maximum transmission power;
  • the specific manner in which the output device exhibits the channel parameter further includes:
  • the reference distance is displayed according to an equivalent total interference energy value corresponding to the reference distance.
  • the processor is further configured to obtain a signal to noise ratio threshold and a unit of the control terminal side.
  • the transmission loss of the distance, the maximum transmission power allowed for the current location is obtained according to the location information, and the transmission loss of the reference distance of 1 km and/or 4 km is calculated according to the transmission loss of the unit distance, and according to the reference distance of 1 km and / or a transmission loss of 4 km, the signal to noise ratio threshold, the maximum transmission power determining an equivalent total interference energy value corresponding to the reference distance of 1 km and/or 4 km;
  • the specific manner in which the output device exhibits the channel parameter further includes:
  • the reference distance is displayed according to an equivalent total interference energy value corresponding to the reference distance of 1 km and/or 4 km.
  • the processor is further configured to: when detecting that the flight distance of the aircraft does not reach the maximum flight distance, determine that the flight distance of the aircraft does not reach the maximum flight distance, and generate a prompt Information, the indication information including the reason;
  • the output device is further configured to output the prompt information.
  • a display device is further included, and the display device is communicatively coupled to the output device for displaying the channel parameter.
  • the device further includes a display device communicatively coupled to the output device for displaying the interference signal power spectral density.
  • a display device is further included, and the display device is communicatively coupled to the output device for displaying the reference distance.
  • the channel parameter display device acquires a frequency point set obtained by sweeping according to a preset time resolution and a preset frequency resolution, and determines a communication channel between the control terminal and the aircraft in the frequency point set.
  • the channel parameters of the communication channel can be detected and the channel parameters are presented to the user.
  • the user can intuitively display the channel parameters of the currently used communication channel, so that the user can grasp the communication status of the selected channel in real time, thereby improving the user's viscosity.
  • FIG. 1 is a schematic flow chart of a method for displaying channel parameters disclosed in this embodiment
  • FIG. 2 is a schematic flowchart diagram of another method for displaying channel parameters disclosed in this embodiment
  • FIG. 3 is a schematic diagram of an interaction interface of channel parameter display according to the embodiment.
  • FIG. 4 is a schematic structural diagram of a channel parameter display apparatus disclosed in this embodiment.
  • FIG. 5 is a schematic structural diagram of another channel parameter display apparatus disclosed in this embodiment.
  • FIG. 6 is a schematic structural diagram of a control terminal disclosed in this embodiment.
  • the embodiment of the present application discloses a method, a device, and a control terminal for displaying channel parameters, which can visually display channel parameters of a communication channel, thereby improving user viscosity. The details are described below separately.
  • FIG. 1 is a schematic flowchart of a method for displaying channel parameters disclosed in this embodiment.
  • the method shown in FIG. 1 can be applied to a channel parameter display device, and the device can be applied to a control terminal.
  • the control terminal can include, but is not limited to, a remote controller, a video glasses, a smart phone, a tablet computer, and the like.
  • the method may include the following steps:
  • the channel parameter display device may perform frequency point scanning to obtain a frequency point set according to a preset time resolution and frequency resolution, or may perform frequency point scanning by the aircraft according to a preset time resolution and frequency resolution.
  • the frequency points are collected and sent to the channel parameter display device, which is not limited in this embodiment.
  • the frequency point scanning may be performed in the available frequency band, such as the civil frequency band, or the frequency point scanning may be performed in the frequency band selected by the user, so that multiple frequency points are scanned to obtain a frequency point set.
  • the channel parameter display device may display the scanned frequency point set to the user on the interaction interface, and the interaction interface is as shown in FIG. 3 .
  • the channel parameter display device performs time intervals on time components. Frequency point scanning, determining a frequency point every frequency interval on a frequency component, thereby obtaining a frequency point set.
  • the following operations may also be performed:
  • the specific manner in which the channel parameter display device obtains the frequency point set obtained by performing frequency point scanning according to the preset time resolution and the preset frequency resolution may be:
  • each country or region has a frequency band that is allowed to be used
  • the channel parameter display device can determine the current country or region according to the location information, thereby obtaining the allowed frequency band, and then performing frequency on the frequency band.
  • Point scan The obtained frequency band that is allowed to be used may also be transmitted to the aircraft, and the frequency point scanning is performed by the aircraft at the frequency point, which is not limited in this embodiment.
  • the channel parameter display device can automatically select the communication channel in the frequency point set, and can also receive the input of the user, and the communication channel is determined by the user, which is not limited in this embodiment.
  • the specific manner in which the channel parameter display device determines the communication channel between the control terminal and the aircraft in the set of frequency points may be:
  • the specific manner in which the channel parameter display device determines the communication channel between the control terminal and the aircraft according to the signal may be:
  • At least one of a start point, an end point, and a channel bandwidth of a frequency band occupied by a communication channel between the control terminal and the aircraft is determined according to the target frequency point.
  • the user can set the channel bandwidth on the display interface of the channel parameter display device. If a target frequency point is selected in the displayed frequency point set, the channel parameter display device can receive the input of the user. Therefore, the target frequency point is taken as the center frequency point, and the communication channel is determined in combination with the set channel bandwidth.
  • the channel parameter display device can display a frequency band frame, and the user drags the target frequency point as the center. In the dynamic frequency band frame, the frequency band frame extends to the both sides centering on the target frequency point, and the area covered by the frequency band frame when the dragging is stopped is the communication channel determined by the user.
  • the channel bandwidth can be prefabricated, so that channel selection can also be achieved by the user inputting at least one of the start point, the end point, and the channel bandwidth of the frequency band occupied by the communication channel between the control terminal and the aircraft.
  • the channel parameter display device may obtain the location information of the current location, and after displaying the frequency point set, determine the selectable frequency range from the frequency point set according to the location information, and then the channel parameter display device receives the secondary frequency set.
  • the specific way of selecting the target frequency and setting the signal of the channel bandwidth can be:
  • a signal is received that selects a target frequency point and sets a channel bandwidth from a range of selectable frequency points.
  • the transmission power used by the communication channel between the aircraft and the control terminal may not reach the maximum value, in order to avoid this, the channel
  • the parameter display device can determine the sideband power of the region to which the location belongs according to the location information, thereby determining a range of frequency points that the user can select, so as to constrain the behavior of the user to select the frequency point to a certain extent.
  • the channel parameter display device can display all the scanned frequency points, it can set the frequency range that the user can select, so as to avoid the maximum transmission power cannot be achieved when the aircraft communicates with the control terminal (as shown in the figure). The situation happened.
  • the channel parameter may include a bottom noise, a downlink interference energy value, an equivalent total interference energy value, and a maximum distance that the aircraft can fly using the communication channel, which is not limited in this embodiment.
  • the method further includes: sending the indication information to the aircraft.
  • the indication information includes information for instructing the aircraft to start frequency point scanning; and information about frequency band selection, the information about the frequency band selection including at least the position information acquired by the control terminal, the country code, and the allowed frequency band information.
  • the channel parameter display device may display the channel parameter of the channel when the image is transmitted, and may also display the channel parameter of the channel when the uplink command is sent, which is not limited in this embodiment.
  • the channel parameter display device follows a preset time resolution and After the preset frequency resolution is swept, the available frequency point set can be output, and after determining the communication channel between the control terminal and the aircraft in the frequency point set, the channel parameters of the communication channel can be detected, and the channel parameters are displayed. To the user. The channel parameters displayed can be updated in real time. When the user selects the frequency and bandwidth by dragging, the channel parameters are updated.
  • the user can intuitively display the channel parameters of the currently used communication channel, so that the user can grasp the communication status of the selected channel in real time, thereby improving the user's viscosity.
  • FIG. 2 it is a schematic flowchart of another method for displaying channel parameters disclosed in this embodiment. As shown in FIG. 2, the method may include the following steps:
  • the channel parameter display device can scan the interference signal, and estimate the power spectrum value of the interference signal in the channel bandwidth by using a periodogram method, a Blackman-Tukey spectrum analysis method, a Bartlett method, a Welch method, a burg method, and the like. And calculating the power spectral density of the interference signal according to the power spectrum value within the channel bandwidth.
  • the channel parameter display device can display the power spectral density of the interference signal, so that the user can clearly understand which frequency range of the interference signal is weak, and the user can select the communication channel with weak interference signal.
  • the channel parameter display device since the user does not feel too good about the curve of too high speed, it is difficult to express information that is easy for the user to accept. Therefore, when the channel parameter display device exhibits the interference signal power spectral density, it needs to be processed as follows:
  • the frequency domain down resolution combining process of the high frequency resolution spectrum estimation value may be linear value average or dB value average, and the recommended linear average mode.
  • Filtering the signal stationarity in the time direction, and filtering can use a low-pass filter. Specifically, it may be a priority impulse response (FIR) filter, or may be an Infinite Impulse Response (IIR) filter. This embodiment is not limited, and the input of the filter may be a linear value input. It can be a dB value input, and a dB value input is recommended, which is not limited in this embodiment.
  • FIR priority impulse response
  • IIR Infinite Impulse Response
  • the resolution of the high time resolution spectrum is combined, and the implementation process may be a time value averaging of multiple time windows, or a dB average after filtering out strong interference values according to a certain ratio.
  • the above ratio values are related to the operating characteristics of the communication system, such as the strong interference signal that the communication system can combat against a large proportion of duty cycle.
  • Time down sampling which may be the scaled position position extraction value, or the overall average value, or the average value of all values below a certain sorting threshold.
  • interpolation and rendering can be performed by interpolation.
  • the interpolation method may be a Bessel difference or a 3-time spline difference.
  • the aircraft in the process of using the communication channel for communication, can detect the second signal-to-noise ratio of the received signal, and by using SINR_uav, it can also calculate the propagation extra loss value, which is represented by path_loss_offset, and then sends it to The channel parameter display device, the channel parameter display device can acquire the first signal to noise ratio of the received signal on the terminal side, which is represented by SINR_rc.
  • the channel parameter display device may also acquire a signal to noise ratio threshold of the received signal on the aircraft side and a signal to noise ratio threshold of the received signal on the terminal side, which are respectively represented by SINR_th_uav and SINR_th_rc.
  • steps 203 and 204 do not limit the sequence.
  • the channel parameter display device can acquire the target frequency point.
  • the interference signal power spectral density is represented by IPSD, so that the interference energy value of the communication channel can be calculated according to the power spectral density, and the interference energy value is represented by Power_rc.
  • the specific way is: Nf is the center frequency (target frequency point), and BW is the channel bandwidth.
  • the channel parameter display device further calculates the Delta_SINR according to the first signal to noise ratio, the second signal to noise ratio, and the respective signal to noise ratio thresholds:
  • Delta_SINR (SINR_uav–SINR_th_uav)–(SINR_rc–SINR_th_rc)+margin_SINR,
  • the margin_SINR is a preset constant threshold, which may be 5, which is not limited in this embodiment. If the Delta_SINR is greater than 0, the Delta_SINR is assigned a value of 0. If it is less than or equal to 0, the Delta_SINR is its own value.
  • the channel parameter display device can calculate the equivalent total interference energy value of the communication channel according to Delta_SINR, Power_rc, and path_loss_offset, which is represented by Power_total, and the specific calculation manner is:
  • Power_total Power_rc+Delta_SINR+path_loss_offset.
  • the channel parameter display device may also acquire the signal to noise ratio threshold SINR_th_rc on the control terminal side and the transmission loss per unit distance.
  • the unit distance is usually 1 km
  • the transmission loss per unit distance is a basic constant, which is represented by PL 0 .
  • the channel parameter display device also obtains the maximum transmit power allowed to be used at the current location according to the pre-acquired location information of the current location.
  • the maximum transmit power is represented by Tx_Power.
  • the maximum transmit power may also be a result of subtracting the sideband power based on the maximum transmit power.
  • the steps 205 and 206 do not limit the sequence.
  • the channel parameter display device finally calculates, according to the maximum transmit power Tx_Power, the signal-to-noise ratio threshold SINR_th_rc, the transmission loss PL 0 of the unit distance, and the equivalent total interference energy value Power_total, when the communication is performed using the communication channel, the aircraft can The maximum flight distance of the flight.
  • PL d represents the transmission loss of the maximum flight distance d
  • the expression is specifically:
  • d 0 represents the unit distance
  • n represents the path loss index
  • X ⁇ represents the shadow fading
  • the channel parameter display device may display the above two channel parameters on the interaction interface. This makes it easy for the user to intuitively feel the interference energy value of the currently selected communication channel and the maximum distance that the aircraft can fly.
  • the channel parameter display device may also display the noise floor on the control terminal side on the interaction interface.
  • the channel parameter display device may also display a reference distance of the aircraft flight on the interaction interface, and the reference distance may be a unit distance, such as 1 km, or may be other distances, such as 4 km, which is not in this embodiment. Make a limit. Specifically:
  • the channel parameter display device first calculates the transmission loss of the reference distance according to the transmission loss of the unit distance acquired in advance, and determines the reference distance according to the transmission loss PL 0 of the reference distance, the signal-to-noise ratio threshold SINR_th_rc of the control terminal side, and the maximum transmission power Tx_Power.
  • the equivalent total interference energy value is similar to the calculation of the maximum flight distance in step 207, and is not described herein again.
  • the channel parameter display means outputs a reference line of the reference distance in the interactive interface according to the equivalent total interference energy value corresponding to the reference distance.
  • the channel parameter display device can visually measure the maximum flight of the aircraft when communicating using the communication channel according to the equivalent total interference energy value of the communication channel and the equivalent total interference energy value corresponding to the reference distance. distance.
  • FIG. 3 is a schematic diagram of an interaction interface of channel parameter display disclosed in this embodiment.
  • the horizontal axis of the coordinate axis represents a set of frequency points swept out, and the unit is MHz.
  • the left ordinate of the coordinate axis indicates the interference signal strength in dBm/MHz.
  • the curve in the coordinate axis is the power spectral density of each frequency point within the channel bandwidth.
  • the user selected communication channel is 2419.5MHz ⁇ 2429.5MHz.
  • the water level line of the corresponding strip area indicates the equivalent interference energy value of the interference signal received by the communication channel.
  • the right vertical axis of the coordinate axis outputs the reference line of the reference distance, which is 1km and 4km, respectively.
  • the user can select a communication channel in the interaction interface, and after selecting the communication channel, the equivalent total interference energy value of the interference signal of the communication channel is displayed in the interaction interface, which is -96.2 dBm, Compared to the reference line, the equivalent total interference energy value makes it easy to conclude that the maximum flight distance of the aircraft does not exceed 1 km.
  • the channel parameter display device can also display a downlink interference water level line, an uplink equivalent interference water level line, and an occlusion equivalent interference water level line. As shown in FIG. 3, after the user selects the communication channel, the channel parameter display device calculates the equivalent total interference energy value, and the equivalent total interference energy value is compared with the water level line, so that the user can clearly see the communication channel. The situation. For example, when the equivalent total interference energy value exceeds the occlusion equivalent interference water level line, it indicates that the communication channel currently has occlusion.
  • the channel parameter display device interactive interface when the channel parameter display device interactive interface exhibits channel parameters, if it is detected that the flight distance of the aircraft does not reach the maximum flight distance, the reason that the flight distance of the aircraft does not reach the maximum flight distance may be further determined, thereby A prompt message is generated, wherein the indication information includes a reason why the flight distance of the aircraft does not reach the maximum flight distance. Further, the channel parameter display device may display the prompt information on the interactive interface.
  • the channel parameter display device can detect the cause of the deterioration of the communication quality, such as outputting the channel parameter that does not satisfy the threshold condition.
  • the channel parameter display device may further analyze the specific reason for the deterioration of the communication quality according to the channel parameter that does not satisfy the threshold condition, such as the presence of occlusion, the unreasonable user-selected channel, the unreasonable placement of the control terminal antenna, and the presence of the control terminal or the aircraft. Signal interference, etc., so that the above information is output on the interactive interface.
  • the channel parameter display device may also provide a specific adjustment scheme according to the reason that the communication quality is deteriorated, for example, suggesting that the user modify the channel bandwidth to effectively avoid the interference.
  • the channel parameter display device can calculate the power spectral density of each frequency point in the frequency point set at intervals. After the update, the equivalent total interference energy value of the communication channel selected by the user also changes, and therefore, the channel parameter display device updates the channel parameters of the communication channel in real time.
  • the channel parameter display device can display the power spectral density of each frequency point within the channel bandwidth and the equivalent total interference energy value of the currently selected communication channel while displaying the frequency point set.
  • the channel parameter display device displays a rich interactive interface, which is convenient for the user to grasp the interference signal strength of each frequency point and the interference signal strength of the currently used communication channel, and adjust the operation according to the channel parameters displayed in the interaction interface or change the channel quality.
  • the communication channel allows for a better flight experience, which increases user viscosity.
  • FIG. 4 is a schematic structural diagram of a channel parameter display apparatus disclosed in this embodiment. Among them, the device is applied to a control terminal. As shown in FIG. 4, the apparatus may include:
  • the first obtaining module 401 is configured to acquire a frequency point set obtained by performing frequency point scanning according to a preset time resolution and a preset frequency resolution.
  • the first determining module 402 is configured to determine, in the set of frequency points acquired by the first obtaining module 401, a communication channel between the control terminal and the aircraft.
  • the detecting module 403 is configured to detect a channel parameter of the communication channel determined by the first determining module 402.
  • the display module 404 is configured to display the channel parameters detected by the detecting module 403.
  • the display module 404 also displays the set of frequency points.
  • FIG. 5 is a schematic structural diagram of another channel parameter display apparatus disclosed in this embodiment.
  • the channel parameter display device shown in Fig. 5 is optimized based on the channel parameter display device shown in Fig. 4.
  • the apparatus may further include:
  • the sending module 408 is configured to send indication information to the aircraft.
  • the indication information may include information for instructing the aircraft to start frequency point scanning, and may also include information about frequency band selection.
  • the information about the frequency band selection may specifically include at least one of location information acquired by the control terminal, a country code, and permitted band information.
  • the specific manner in which the first obtaining module 401 obtains the frequency point set obtained by performing frequency point scanning according to the preset time resolution and the preset frequency resolution may be:
  • the first determining module 402 may specifically include a receiving unit 4021 and a first determining unit 4022, where:
  • the receiving unit 4021 is configured to receive a signal that selects a target frequency point from the set of frequency points and sets a channel bandwidth.
  • the first determining unit 4022 is configured to determine, according to the signal received by the receiving unit 4021, a communication channel between the control terminal and the aircraft.
  • the device may further include:
  • the second determining module 406 is configured to determine, according to the location information acquired by the second obtaining module 405, the selectable frequency range from the set of frequency points.
  • the specific manner in which the receiving unit 4021 receives the selected target frequency point from the set of frequency points and sets the signal of the channel bandwidth may be:
  • a signal is selected that selects a target frequency point from the selectable frequency range determined by the second determining module 406 and sets a channel bandwidth.
  • the specific determining unit 4022 determines, according to the signal, a specific manner of controlling a communication channel between the terminal and the aircraft:
  • At least one of a start point, an end point, and a channel bandwidth of a frequency band occupied by a communication channel between the control terminal and the aircraft is determined according to the target frequency point.
  • the device may further include:
  • the second obtaining module 405 is configured to obtain an interference signal power spectral density of each frequency point in the frequency bandwidth set acquired by the first obtaining module 401 in a channel bandwidth.
  • the display module 404 is further configured to display the interference signal power spectral density.
  • the channel parameter may include an equivalent total interference energy value
  • the detecting module 403 may specifically include a detecting unit 4031, an obtaining unit 4032, a calculating unit 4033, and a second determining unit 4034, where:
  • the detecting unit 4031 is configured to detect a first signal to noise ratio of the control terminal and a second signal to noise ratio of the aircraft during communication between the aircraft and the control terminal using the communication channel.
  • An obtaining unit 4032 configured to acquire a propagation extra loss value of the communication channel
  • the calculating unit 4033 is configured to perform interference signal work according to the target frequency point acquired by the second obtaining module 407.
  • the rate spectral density calculates the interference energy value of the communication channel.
  • the second determining unit 4034 is configured to determine, according to the interference energy value calculated by the calculating unit 4033, the first signal to noise ratio detected by the detecting unit 4031, the second signal to noise ratio, and the propagation extra loss value acquired by the acquiring unit 4032, Equivalent total interference energy value.
  • the specific manner in which the display module 404 displays the channel parameters may include:
  • the equivalent total interference energy value is displayed.
  • the channel parameter may further include a noise floor.
  • the specific manner in which the display module 404 displays the channel parameter may further include: displaying the noise floor.
  • the channel parameter may also include a maximum flight distance.
  • the obtaining unit 4032 is further configured to acquire a signal to noise ratio threshold of the control terminal side and a transmission loss of the unit distance, and acquire, according to the location information acquired by the second obtaining module 405, a maximum transmit power that is allowed to be used by the current location.
  • the second determining unit 4034 is further configured to determine, according to the maximum transmit power acquired by the obtaining unit 4032, the signal to noise ratio threshold, the transmission loss per unit distance, and the calculated equivalent total interference energy value, when using the communication channel for communication The maximum flight distance of the aircraft.
  • the specific manner in which the display module 404 displays the channel parameter may further include: displaying the maximum flight distance.
  • the acquiring unit 4032 acquires a signal to noise ratio threshold of the control terminal side and a transmission loss of the unit distance, and obtains a maximum transmit power that is allowed to be used according to the location information acquired by the second acquiring module 405, and then calculates
  • the unit 4033 is further configured to calculate a transmission loss of the reference distance according to a transmission loss per unit distance.
  • the second determining unit 4034 is further configured to determine an equivalent total interference energy value corresponding to the reference distance according to the transmission loss of the reference distance, the signal to noise ratio threshold, and the maximum transmit power.
  • the specific manner in which the display module 404 displays the maximum flight distance may further include:
  • the reference distance is displayed according to an equivalent total interference energy value corresponding to the reference distance.
  • the calculating unit 4033 is further configured to calculate a transmission loss with a reference distance of 1 km and/or 4 km according to the transmission loss of the unit distance; and the second determining unit 4034 is further configured to use the reference distance according to the reference distance to be 1 km and/or Or a transmission loss of 4 km, the signal-to-noise ratio threshold, and the maximum transmit power determine an equivalent total interference energy value corresponding to the reference distance; and the specific manner in which the display module 404 displays the channel parameter further includes: according to the reference Equivalent total interference energy value display corresponding to distance of 1km and / or 4km Reference distance.
  • the second determining module 406 is further configured to determine, when the flight distance of the aircraft does not reach the maximum flight distance, the reason that the flight distance of the aircraft does not reach the maximum flight distance.
  • the device can also include:
  • the generating module 407 is configured to generate prompt information, where the indication information includes a reason why the flight distance of the aircraft does not reach the maximum flight distance.
  • the display module 404 is further configured to display the prompt information.
  • the channel parameter display device can display the power spectral density of each frequency point within the channel bandwidth, the currently selected communication channel, etc. while displaying the frequency point set.
  • the channel parameter display device displays a rich interactive interface, which is convenient for the user to grasp the interference signal strength of each frequency point and the interference signal strength of the currently used communication channel, and adjust the operation according to the channel parameters displayed in the interaction interface or change the channel quality.
  • the communication channel allows for a better flight experience, which increases user viscosity.
  • FIG. 6 is a schematic structural diagram of a control terminal disclosed in this embodiment.
  • the control terminal 600 may include at least one processor 601, such as a CPU, a communication device 602, an output device 603, a memory 604, and at least one communication bus 605.
  • the memory 604 may be a high speed RAM memory or may be non-volatile. Non-volatile memory, such as at least one disk storage. Alternatively, the memory 604 may be at least one storage device located remotely from the processor 601. among them:
  • Communication bus 605 is used to implement connection communication between these components.
  • a set of program codes is stored in the memory 604, and the processor 601, the communication device 602, and the output device 603 are used to call the program code stored in the memory 604 to perform the following operations.
  • the communication device 602 is configured to acquire a frequency point set obtained by performing frequency point scanning according to a preset time resolution and a preset frequency resolution, where the frequency point set includes at least one frequency point.
  • the processor 601 is configured to determine, in the set of frequency points, a communication channel between the control terminal and the aircraft, and detect channel parameters of the communication channel.
  • the output device 603 is configured to output the channel parameter.
  • the output device 603 is further configured to output the frequency point set.
  • the communication device 602 is further configured to send the indication information to the aircraft, where the indication information may include information for instructing the aircraft to start frequency point scanning, and may also include information about frequency band selection.
  • the information about the frequency band selection may specifically include at least one of location information acquired by the control terminal, a country code, and permitted band information.
  • the specific manner in which the communication device 602 obtains the frequency point set obtained by performing frequency point scanning according to the preset time resolution and the preset frequency resolution may be:
  • the specific manner in which the processor 601 determines, in the set of frequency points, the communication channel between the control terminal and the aircraft may be:
  • a signal for selecting a target frequency point from the set of frequency points and setting a channel bandwidth is received by the communication device 602, and a communication channel between the control terminal and the aircraft is determined based on the signal.
  • the specific manner in which the processor 601 determines, according to the signal, the communication channel between the control terminal and the aircraft may be:
  • At least one of a start point, an end point, and a channel bandwidth of a frequency band occupied by a communication channel between the control terminal and the aircraft is determined according to the target frequency point.
  • the processor 601 is further configured to determine, according to the location information, the selectable frequency range from the set of frequency points.
  • the specific manner in which the processor 601 receives the signal selected from the set of frequency points and sets the channel bandwidth through the communication device 602 may be:
  • a signal is selected by the communication device 602 to select a target frequency point from the selectable frequency range and to set a channel bandwidth.
  • the processor 601 is further configured to obtain an interference signal power spectral density of each frequency point in the frequency set in the channel bandwidth.
  • the output device 603 is further configured to output the interference signal power spectral density.
  • the channel parameter includes an equivalent total interference energy value; the processor 601 detects the communication channel.
  • the specific method of the channel parameters can be:
  • the density calculates an interference energy value of the communication channel; and determines an equivalent total interference energy value of the communication channel according to the interference energy value, the first signal to noise ratio, the second signal to noise ratio, and the propagation extra loss value.
  • the specific manner in which the output device 603 exhibits the channel parameter may include:
  • the equivalent total interference energy value is output.
  • the channel parameter further includes a bottom noise.
  • the specific manner in which the output device 603 outputs the channel parameter may further include: displaying the noise floor.
  • the channel parameter further includes a maximum flight distance.
  • the processor 601 is further configured to acquire a signal to noise ratio threshold of the control terminal side and a transmission loss per unit distance, and obtain, according to the location information, a maximum transmission that is allowed to be used at the current location. The power, and based on the maximum transmit power, the signal to noise ratio threshold, the transmission loss per unit distance, and the equivalent total interference energy value, determine the maximum flight distance of the aircraft when communicating using the communication channel.
  • the specific manner in which the output device 603 outputs the channel parameter may further include:
  • the maximum flight distance is output.
  • the processor 601 is further configured to acquire a signal to noise ratio threshold of the control terminal side and a transmission loss per unit distance, and obtain, according to the location information, a maximum transmit power that is allowed to be used at the current location, and a transmission loss according to the unit distance. Calculating a transmission loss of the reference distance, and determining an equivalent total interference energy value corresponding to the reference distance according to the transmission loss, the signal-to-noise ratio threshold, and the maximum transmission power of the reference distance.
  • the specific manner in which the output device 603 outputs the channel parameter may further include:
  • the above reference distance may be 1km, 4km, etc., specifically:
  • the processor 601 is further configured to acquire a signal to noise ratio threshold of the control terminal side and a transmission loss per unit distance, and obtain a maximum transmit power that is allowed to be used according to the location information, and calculate a reference according to a transmission loss of the unit distance. a transmission loss of 1 km and/or 4 km, and an equivalent total interference energy value corresponding to the reference distance of 1 km and/or 4 km according to a transmission loss of a reference distance of 1 km and/or 4 km, a signal to noise ratio threshold, and a maximum transmission power;
  • the specific manner in which the output device displays the channel parameters further includes: displaying the reference distance according to an equivalent total interference energy value corresponding to the reference distance of 1 km and/or 4 km.
  • the processor 601 is further configured to: when detecting that the flight distance of the aircraft does not reach the maximum flight distance, determine the reason that the flight distance of the aircraft does not reach the maximum flight distance, and generate prompt information, where the prompt information includes the aircraft The reason why the flight distance did not reach the maximum flight distance.
  • the output device 603 is further configured to output the prompt information.
  • control terminal in an embodiment further includes a display device 606, and the display device is communicably connected to the output device 603, and is configured to display one of the channel parameter, the interference signal power spectral density, and the display the reference distance. Or several.
  • the control terminal can display the power spectral density of each frequency point in the channel bandwidth, the equivalent total interference energy value of the currently selected communication channel, and the aircraft while displaying the frequency point set.
  • the control terminal displays a rich interactive interface, which is convenient for the user to grasp the interference signal strength of each frequency point in real time, and the interference signal strength of the currently used communication channel, adjust the operation according to the channel parameters displayed in the interaction interface or change the communication with better channel quality. Channels, which result in a better flight experience, which increases user viscosity.
  • the modules in the channel parameter display device of the embodiment of the present application may be combined, divided, and deleted according to actual needs.
  • the modules in the embodiments of the present application may be implemented by a general-purpose integrated circuit, such as a CPU (Central Processing Unit), or an ASIC (Application Specific Integrated Circuit).
  • a general-purpose integrated circuit such as a CPU (Central Processing Unit), or an ASIC (Application Specific Integrated Circuit).
  • the storage medium may be a magnetic disk, an optical disk, a read-only memory (ROM), or a random access memory (RAM).

Abstract

一种信道参数的展示方法、装置及控制终端,其中,该方法包括:获取按照预设时间分辨率和预设频率分辨率扫频得到的频点集合,并在该频点集合中确定出控制终端与飞行器之间的通信信道后,可以检测通信信道的信道参数,并展示信道参数给用户。实施本实施例,可以给用户以直观的展示当前使用通信信道的信道参数,便于用户实时掌握所选信道的通信状况,从而能够提高用户粘度。

Description

一种信道参数的展示方法、装置及控制终端
本专利文件披露的内容包含受版权保护的材料。该版权为版权所有人所有。版权所有人不反对任何人复制专利与商标局的官方记录和档案中所存在的该专利文件或者该专利披露。
技术领域
本申请涉及无人机通信技术领域,尤其涉及信道参数计算及无人机用户交互领域,具体涉及一种信道参数的展示方法、装置及控制终端。
背景技术
在无人机通信系统中,飞行器与控制终端之间的通信质量是一个重要的性能指标,其决定着是否能够实现远距离高清晰的图传,飞行器是否能接收到遥控指令等。目前,无人机通信系统使用的频段工作设备较多、干扰严重,如果用户选择了干扰严重的信道,或者系统自动跳转到干扰严重的信道,会降低飞行器与控制终端之间的通信质量,这样会给用户带来较差的飞行体验,从而降低了用户粘度。
发明内容
本申请实施例公开了一种信道参数的展示方法、装置及控制终端,能够直观展示通信信道的信道参数,从而能够提高用户粘度。
本申请实施例第一方面公开了一种信道参数的展示方法,该方法包括:
获取按照预设时间分辨率和预设频率分辨率进行频点扫描得到的频点集合,所述频点集合包括至少一个频点;
在所述频点集合中确定控制终端和飞行器之间的通信信道;
检测所述通信信道的信道参数,并展示所述信道参数。
可选的,所述获取按照预设时间分辨率和预设频率分辨率进行频点扫描得到的频点集合之前,还包括:
向所述飞行器发送指示信息。
可选的,所述指示信息包括用于指示所述飞行器开始频点扫描的信息。
可选的,所述指示信息包括关于频段选择的信息。
可选的,所述关于频段选择的信息包括所述控制终端获取的位置信息、国家码和允许使用频段信息中的至少一种。
可选的,所述获取按照预设时间分辨率和预设频率分辨率进行频点扫描得到的频点集合,包括:
获取所述飞行器按照预设时间分辨率和预设频率分辨率根据所述关于频段选择的信息进行频点扫描得到的频点集合。
可选的,所述在所述频点集合中确定控制终端和飞行器之间的通信信道,包括:
接收从所述频点集合中选定目标频点的信号;
根据所述信号确定控制终端和飞行器之间的通信信道。
可选的,所述根据所述信号确定控制终端和飞行器之间的通信信道,包括:
响应所述信号,根据所述目标频点确定控制终端和飞行器之间的通信信道所占用频带的起点、终点和信道带宽中的至少一种。
可选的,所述获取按照预设时间分辨率和预设频率分辨率进行频点扫描得到的频点集合之后,所述方法还包括:
根据位置信息从所述频点集合中确定可选频点范围;
所述接收从所述频点集合中选定目标频点的信号,包括:
接收从所述可选频点范围中选定目标频点的信号。
可选的,所述方法还包括:
获取所述频点集合中各频点在所述信道带宽内的干扰信号功率谱密度;
展示所述干扰信号功率谱密度。
可选的,所述信道参数包括等效总干扰能量值;所述检测所述通信信道的信道参数,并展示所述信道参数,包括:
在使用所述通信信道进行通信的过程中,检测所述控制终端的第一信噪比和所述飞行器的第二信噪比,并获取所述通信信道的传播额外损失值;
根据所述目标频点的干扰信号功率谱密度计算所述通信信道的干扰能量值;
根据所述干扰能量值、所述第一信噪比、所述第二信噪比以及所述传播额外损失值确定所述通信信道的等效总干扰能量值;
展示所述等效总干扰能量值。
可选的,所述信道参数还包括底噪;所述展示所述信道参数,还包括:
展示所述底噪。
可选的,所述信道参数还包括最大飞行距离;所述检测所述通信信道的信道参数,并展示所述信道参数,还包括:
获取所述控制终端侧的信噪比门限以及单位距离的传输损耗;
根据位置信息获取所述当前所处位置允许使用的最大发射功率;
根据所述最大发射功率、所述信噪比门限、所述单位距离的传输损耗和所述等效总干扰能量值,确定使用所述通信信道进行通信时所述飞行器的最大飞行距离;
展示所述最大飞行距离。
可选的,所述检测所述通信信道的信道参数,并展示所述信道参数,还包括:
获取所述控制终端侧的信噪比门限以及单位距离的传输损耗,并根据位置信息获取所述当前所处位置允许使用的最大发射功率;
根据所述单位距离的传输损耗计算参考距离的传输损耗;
根据所述参考距离的传输损耗、所述信噪比门限、所述最大发射功率确定所述参考距离对应的等效总干扰能量值;
根据所述参考距离对应的等效总干扰能量值展示所述参考距离。
可选的,所述参考距离为1km和/或4km。
可选的,所述方法还包括:
在检测出所述飞行器的飞行距离未达到所述最大飞行距离时,确定所述飞行器的飞行距离未达到所述最大飞行距离的原因,并生成提示信息,所述指示信息包括所述原因;
展示所述提示信息。
本申请实施例第二方面公开了一种信道参数展示装置,该装置包括:
第一获取模块,用于获取按照预设时间分辨率和预设频率分辨率进行频点扫描得到的频点集合,所述频点集合包括至少一个频点;
第一确定模块,用于在所述频点集合中确定控制终端和飞行器之间的通信信道;
检测模块,用于检测所述通信信道的信道参数;
展示模块,用于展示所述信道参数。
可选的,所述装置,还包括:
发送模块,用于向所述飞行器发送指示信息。
可选的,所述装置,其中所述发送模块发送的指示信息包括用于指示所述飞行器开始频点扫描的信息。
可选的,所述装置,其中所述发送模块发送的指示信息包括关于频段选择的信息。
可选的,所述装置,其中所述发送模块发送的指示信息中的关于频段选择的信息包括所述控制终端获取的位置信息、国家码和允许使用频段信息中的至少一种。
可选的,所述的装置,其中所述第一获取模块获取按照预设时间分辨率和预设频率分辨率进行频点扫描得到的频点集合的具体方式包括:
获取所述飞行器按照预设时间分辨率和预设频率分辨率根据所述关于频段选择的信息进行频点扫描得到的频点集合。
可选的,所述装置,其中,所述第一确定模块包括:
接收单元,用于接收从所述频点集合中选定目标频点的信号;
第一确定单元,用于根据所述信号确定控制终端和飞行器之间的通信信道。
可选的,所述装置,其中,第一确定单元根据所述信号确定控制终端和飞行器之间的通信信道的具体方式包括:
响应所述信号,根据所述目标频点确定控制终端和飞行器之间的通信信道所占用频带的起点和终点。
可选的,所述装置,其中,
所述第二确定模块,还用于根据位置信息从所述频点集合中确定可选频点 范围;
所述接收单元接收从所述频点集合中选定目标频点以及设定信道带宽的信号的具体方式包括:
接收从所述可选频点范围中选定目标频点的信号。
可选的,所述装置,其中,还包括:
第二获取模块,用于获取所述频点集合中各频点在所述信道带宽内的干扰信号功率谱密度;
所述展示模块,还用于展示所述干扰信号功率谱密度。
可选的,所述装置,其中,所述信道参数包括等效总干扰能量值;所述检测模块包括:
检测单元,用于在使用所述通信信道进行通信的过程中,检测所述控制终端的第一信噪比和所述飞行器的第二信噪比;
获取单元,用于获取所述通信信道的传播额外损失值;
计算单元,用于根据所述目标频点的干扰信号功率谱密度计算所述通信信道的干扰能量值;
第二确定单元,用于根据所述干扰能量值、所述第一信噪比、所述第二信噪比以及所述传播额外损失值确定所述通信信道的等效总干扰能量值;
所述展示模块展示所述信道参数的具体方式包括:
展示所述等效总干扰能量值。
可选的,所述装置,其中,所述信道参数还包括底噪;
所述展示模块展示所述信道参数的具体方式还包括:
展示所述底噪。
可选的,所述装置,其中,所述信道参数还包括最大飞行距离;
所述获取单元,还用于获取所述控制终端侧的信噪比门限以及单位距离的传输损耗,并根据位置信息获取所述当前所处位置允许使用的最大发射功率;
所述第二确定单元,还用于根据所述最大发射功率、所述信噪比门限、所述单位距离的传输损耗和所述等效总干扰能量值,确定使用所述通信信道进行通信时所述飞行器的最大飞行距离;
所述展示模块展示所述信道参数的具体方式还包括:
展示所述最大飞行距离。
可选的,所述装置,其中,
所述获取单元,还用于获取所述控制终端侧的信噪比门限以及单位距离的传输损耗,并根据位置信息获取所述当前所处位置允许使用的最大发射功率;
所述计算单元,还用于根据所述单位距离的传输损耗计算参考距离的传输损耗;
所述第二确定单元,还用于根据所述参考距离的传输损耗、所述信噪比门限、所述最大发射功率确定所述参考距离对应的等效总干扰能量值;
所述展示模块展示所述信道参数的具体方式还包括:
根据所述参考距离对应的等效总干扰能量值展示所述参考距离。
可选的,所述装置,其中,所述计算单元,还用于根据所述单位距离的传输损耗计算参考距离为1km和/或4km的传输损耗;
所述第二确定单元,还用于根据所述参考距离为1km和/或4km的传输损耗、所述信噪比门限、所述最大发射功率确定所述参考距离对应的等效总干扰能量值;
所述展示模块展示所述信道参数的具体方式还包括:
根据所述参考距离为1km和/或4km对应的等效总干扰能量值展示所述参考距离。
可选的,所述装置,其中,所述第二确定模块,还用于在检测出所述飞行器的飞行距离未达到所述最大飞行距离时,确定所述飞行器的飞行距离未达到所述最大飞行距离的原因;
所述装置还包括:
生成模块,用于生成提示信息,所述提示信息包括所述原因;
所述展示模块,还用于展示所述提示信息。
本申请实施例第三方面公开了一种控制终端,该控制终端包括:
通信装置,用于获取按照预设时间分辨率和预设频率分辨率进行频点扫描得到的频点集合,所述频点集合包括至少一个频点;
处理器,用于在所述频点集合中确定控制终端和飞行器之间的通信信道, 并检测所述通信信道的信道参数;
输出装置,用于输出所述信道参数。
可选的,所述通信装置,还用于向飞行器发送指示信息。
可选的,所述通信装置向飞行器发送的指示信息包括开始信息。
可选的,所述通信装置向飞行器发送的指示信息包括关于频段选择的信息。
可选的,所述通信装置向飞行器发送的指示信息中的关于频段选择的信息包括位置信息、国家码和允许使用频段信息中的至少一种。
可选的,所述通信装置获取按照预设时间分辨率和预设频率分辨率进行频点扫描得到的频点集合的具体方式包括:
获取按照预设时间分辨率和预设频率分辨率根据所述关于频段选择的信息进行频点扫描得到的频点集合。
可选的,所述处理器在所述频点集合中确定控制终端和飞行器之间的通信信道的具体方式包括:
通过所述通信装置接收从所述频点集合中选定目标频点的信号;
根据所述信号确定控制终端和飞行器之间的通信信道。
可选的,所述处理器根据所述信号确定控制终端和飞行器之间的通信信道的具体方式包括:
响应所述信号,根据所述目标频点确定控制终端和飞行器之间的通信信道所占用频带的起点和终点。
可选的,所述处理器,还用于根据位置信息从所述频点集合中确定可选频点范围;
所述处理器通过所述通信装置接收从所述频点集合中选定目标频点以及设定信道带宽的信号的具体方式包括:
通过所述通信装置接收从所述可选频点范围中选定目标频点的信号。
可选的,所述处理器,还用于获取所述频点集合中各频点在所述信道带宽内的干扰信号功率谱密度;
所述输出装置,还用于输出所述干扰信号功率谱密度。
可选的,所述信道参数包括等效总干扰能量值;所述处理器检测所述通信 信道的信道参数的具体方式包括:
在使用所述通信信道进行通信的过程中,检测所述控制终端的第一信噪比和所述飞行器的第二信噪比;
获取所述通信信道的传播额外损失值;
根据所述目标频点的干扰信号功率谱密度计算所述通信信道的干扰能量值;
根据所述干扰能量值、所述第一信噪比、所述第二信噪比以及所述传播额外损失值确定所述通信信道的等效总干扰能量值;
所述输出装置输出所述信道参数的具体方式包括:
输出所述等效总干扰能量值。
可选的,所述信道参数还包括底噪;
所述输出装置输出所述信道参数的具体方式还包括:
输出所述底噪。
可选的,所述信道参数还包括最大飞行距离;
所述处理器,还用于获取所述控制终端侧的信噪比门限以及单位距离的传输损耗,根据位置信息获取所述当前所处位置允许使用的最大发射功率,并根据所述最大发射功率、所述信噪比门限、所述单位距离的传输损耗和所述等效总干扰能量值,确定使用所述通信信道进行通信时所述飞行器的最大飞行距离;
所述输出装置展示所述信道参数的具体方式还包括:
展示所述最大飞行距离。
可选的,所述处理器,还用于获取所述控制终端侧的信噪比门限以及单位距离的传输损耗,根据位置信息获取所述当前所处位置允许使用的最大发射功率,根据所述单位距离的传输损耗计算参考距离的传输损耗,并根据所述参考距离的传输损耗、所述信噪比门限、所述最大发射功率确定所述参考距离对应的等效总干扰能量值;
所述输出装置展示所述信道参数的具体方式还包括:
根据所述参考距离对应的等效总干扰能量值展示所述参考距离。
可选的,所述处理器,还用于获取所述控制终端侧的信噪比门限以及单位 距离的传输损耗,根据位置信息获取所述当前所处位置允许使用的最大发射功率,根据所述单位距离的传输损耗计算参考距离1km和/或4km的传输损耗,并根据所述参考距离1km和/或4km的传输损耗、所述信噪比门限、所述最大发射功率确定所述参考距离1km和/或4km对应的等效总干扰能量值;
所述输出装置展示所述信道参数的具体方式还包括:
根据所述参考距离1km和/或4km对应的等效总干扰能量值展示所述参考距离。
可选的,所述处理器,还用于在检测出所述飞行器的飞行距离未达到所述最大飞行距离时,确定所述飞行器的飞行距离未达到所述最大飞行距离的原因,并生成提示信息,所述指示信息包括所述原因;
所述输出装置,还用于输出所述提示信息。
可选的,还包括显示装置,所述显示装置与所述输出装置通信连接,用于显示所述信道参数。
可选的,还包括显示装置,所述显示装置与所述输出装置通信连接,用于显示所述干扰信号功率谱密度。
可选的,还包括显示装置,所述显示装置与所述输出装置通信连接,用于显示所述参考距离。
本申请实施例中,信道参数展示装置获取按照预设时间分辨率和预设频率分辨率扫频得到的频点集合,并在该频点集合中确定出控制终端与飞行器之间的通信信道后,可以检测通信信道的信道参数,并展示信道参数给用户。实施本实施例,可以给用户以直观的展示当前使用通信信道的信道参数,便于用户实时掌握所选信道的通信状况,从而能够提高用户粘度。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本实施例公开的一种信道参数的展示方法的流程示意图;
图2是本实施例公开的另一种信道参数的展示方法的流程示意图;
图3是本实施例公开的一种信道参数展示的交互界面示意图;
图4是本实施例公开的一种信道参数展示装置的结构示意图;
图5是本实施例公开的另一种信道参数展示装置的结构示意图;
图6是本实施例公开的一种控制终端的结构示意图。
具体实施方式
下面将结合本实施例中的附图,对本实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
本申请实施例公开了一种信道参数的展示方法、装置及控制终端,能够直观展示通信信道的信道参数,从而能够提高用户粘度。以下分别进行详细说明。
请参阅图1,是本实施例公开的一种信道参数的展示方法的流程示意图。其中,图1所示的方法可以应用于信道参数展示装置,该装置可以应用于控制终端,该控制终端可以包括但不限于遥控器,视频眼镜、智能手机、平板电脑等。如图1所示,该方法可以包括以下步骤:
101、获取按照预设时间分辨率和预设频率分辨率进行频点扫描得到的频点集合。
本实施例中,信道参数展示装置可以按照预设的时间分辨率和频率分辨率进行频点扫描得到频点集合,也可以由飞行器按照预设的时间分辨率和频率分辨率进行频点扫描得到频点集合,并发送给信道参数展示装置,本实施例不做限定。
具体的,可以是在可使用频段中进行频点扫描,如民用频段,也可以是在用户选定的频段中进行频点扫描,从而扫描出多个频点,得到频点集合。
进一步的,信道参数展示装置可以在交互界面展示扫描的频点集合给用户,该交互界面如图3所示。
可以理解的是,信道参数展示装置在时间分量上按照一定的时间间隔进行 频点扫描,在频率分量上每间隔一定频率确定一个频点,从而得到频点集合。
作为一种可行的实施方式,信道参数展示装置在获取按照预设时间分辨率和预设频率分辨率进行频点扫描得到的频点集合之前,还可以执行以下操作:
获取当前所处位置的位置信息,并根据该位置信息确定当前所处位置允许使用的频段。
相应的,信道参数展示装置获取按照预设时间分辨率和预设频率分辨率进行频点扫描得到的频点集合的具体方式可以为:
获取按照预设时间分辨率和预设频率分辨率在上述频段上进行频点扫描得到的频点集合。
本实施例中,每个国家或者区域都有允许使用的频段,信道参数展示装置可以依据位置信息确定当前所处的国家或区域,从而可以获取到允许使用的频段,进而在该频段上进行频点扫描。也可以将获取到的允许使用的频段发送给飞行器,由飞行器在该频点上进行频点扫描,本实施例不做限定。
102、在该频点集合中确定控制终端和飞行器之间的通信信道。
本实施例中,信道参数展示装置可以在频点集合中自动选择通信信道,也可以接收用户的输入,由用户确定通信信道,本实施例不做限定。
作为一种可行的实施方式,信道参数展示装置在该频点集合中确定控制终端和飞行器之间的通信信道的具体方式可以为:
接收从频点集合中选定目标频点和设定信道带宽的信号,并根据该信号确定控制终端和飞行器之间的通信信道。
具体的,信道参数展示装置根据该信号确定控制终端和飞行器之间的通信信道的具体方式可以为:
响应该信号,根据目标频点确定控制终端和飞行器之间的通信信道所占用频带的起点、终点和信道带宽中的至少一种。
具体实现中,一种方式是:用户可以在信道参数展示装置的显示界面设定信道带宽,如果在展示的频点集合中选定一目标频点后,信道参数展示装置可以接收到用户的输入,从而会以该目标频点为中心频点,并结合设定的信道带宽来确定通信信道。另一种方式是:用户在展示的频点集合中选定一目标频点后,信道参数展示装置可以展示一频带框,用户以目标频点为中心任意一侧拖 动频带框,频带框会以目标频点为中心向两侧延伸,停止拖动时频带框所覆盖的区域即为用户确定的通信信道。另外,信道带宽可以预制,所以也可以由用户输入控制终端和飞行器之间的通信信道所占用频带的起点、终点和信道带宽中的至少一种,即可实现信道选择。
进一步的,信道参数展示装置可以获取当前所处位置的位置信息,并展示频点集合之后,根据位置信息从频点集合中确定可选频点范围,那么信道参数展示装置接收从频点集合中选定目标频点和设定信道带宽的信号的具体方式可以为:
接收从可选频点范围中选定目标频点和设定信道带宽的信号。
本实施例中,由于法规对边带功率的限制,飞行器与控制终端之间的通信信道(如图传链路)所使用的发射功率有可能不能达到最大值,为了避免这种情况发生,信道参数展示装置可以根据位置信息确定该位置所属的区域的边带功率,从而确定出用户可以选择的频点范围,这样可以在一定程度上约束用户选择频点的行为。
也就是说,信道参数展示装置虽然可以展示所有扫描出的频点,但可以设定用户能选择的频点范围,这样可以避免飞行器与控制终端通信(如图传)时不能达到最大发射功率的情况发生。
103、检测该通信信道的信道参数,并展示该信道参数。
本实施例中,信道参数可以包括该通信信道的底噪、下行干扰能量值、等效总干扰能量值、使用该通信信道飞行器能够飞行的最大距离等,本实施例不做限定。
进一步地,上述获取按照预设时间分辨率和预设频率分辨率进行频点扫描得到的频点集合之前,还包括:向所述飞行器发送指示信息。该指示信息包括用于指示所述飞行器开始频点扫描的信息;还包括关于频段选择的信息,关于频段选择的信息包括所述控制终端获取的位置信息、国家码和允许使用频段信息中的至少一种。
本实施例中,信道参数展示装置可以展示图传时信道的信道参数,也可以展示发送上行指令时信道的信道参数,本实施例不做限定。
可见,在图1所描述的方法中,信道参数展示装置按照预设时间分辨率和 预设频率分辨率扫频后,可以输出可供选择的频点集合,并在频点集合中确定出控制终端与飞行器之间的通信信道后,可以检测通信信道的信道参数,并展示信道参数给用户。展示出来的信道参数可实时更新,用户用拖动的方式选择频点和带宽时,信道参数随之更新。实施本实施例,可以给用户以直观的展示当前使用通信信道的信道参数,便于用户实时掌握所选信道的通信状况,从而能够提高用户粘度。
请参阅图2,是本实施例公开的另一种信道参数的展示方法的流程示意图。如图2所示,该方法可以包括以下步骤:
201、获取按照预设时间分辨率和预设频率分辨率进行频点扫描得到的频点集合,并展示该频点集合。
202、接收从该频点集合中选定目标频点以及设定信道带宽的信号,并根据该信号确定控制终端和飞行器之间的通信信道。
203、获取该频点集合中各频点在该信道带宽内的干扰信号功率谱密度,并展示该干扰信号功率谱密度。
本实施例中,信道参数展示装置可以对干扰信号进行扫描,使用周期图法、Blackman-Tukey频谱分析方法、Bartlett法、Welch法、burg法等估计出信道带宽内的干扰信号的功率谱值,并根据信道带宽内的功率谱值计算出干扰信号的功率谱密度。
进一步的,信道参数展示装置可以展示干扰信号的功率谱密度,这样用户可以清楚的了解哪些频点范围的干扰信号较弱,便于用户选择干扰信号较弱的通信信道。
具体实现中,由于用户对过于高速变化曲线的感受不太好,也难以表示出用户易于接受的信息。因此,信道参数展示装置在展示干扰信号功率谱密度时,需要对其进行以下处理:
A、同时间平面内,高频率分辨率谱估计值的频域降分辨率合并处理,实施过程可以是线性值平均或dB值平均,推荐线性平均方式。
B、时间方向上对信号平稳性进行滤波处理,滤波可以使用低通滤波器, 具体可以是优先脉冲响应(Finite Impulse Response,FIR)滤波器,也可以是无限脉冲响应(Infinite Impulse Response,IIR)滤波器,本实施例不做限定,滤波器的输入可以是线性值输入,也可以是dB值输入,推荐dB值输入,本实施例不做限定。
C、同频点平面内,高时间分辨率谱估计值的将分辨率合并处理,实施过程可以是多个时间窗口进行dB值平均,也可以是按照一定比例滤除强干扰值后的dB平均。上述的比例值与通信系统的工作特性有关,比如通信系统能够对抗多大比例占空比的强干扰信号。
D、时间降采样,可以是排序后的比例位置抽取值,也可以是整体平均值,或是某排序门限以下所有值的平均值。
E、在界面显示的多个离散点为了更美观,可以采用插值的方法连线和渲染。插值的方法可以是Bessel差值或者是3次样条差值等。
204、在使用该通信信道进行通信的过程中,检测控制终端的第一信噪比和飞行器的第二信噪比,并获取该通信信道的传播额外损失值。
本实施例中,在使用该通信信道进行通信的过程中,飞行器可以检测接收信号的第二信噪比,用SINR_uav表示,还可以计算出传播额外损失值,用path_loss_offset表示,从而将其发送给信道参数展示装置,信道参数展示装置可以获取控制终端侧接收信号的第一信噪比,用SINR_rc表示。
本实施例中,信道参数展示装置还可以获取飞行器侧接收信号的信噪比门限以及控制终端侧接收信号的信噪比门限,分别用SINR_th_uav和SINR_th_rc表示。
需要说明的是,步骤203与步骤204不限定先后顺序。
205、根据该目标频点的干扰信号功率谱密度计算该通信信道的干扰能量值,并根据该干扰能量值、第一信噪比、第二信噪比以及传播额外损失值确定该通信信道的等效总干扰能量值。
本实施例中,由于步骤203中已经展示出每个频点的干扰信号功率谱密度,那么用户在选定目标频点作为通信信道的中心频点时,信道参数展示装置可以获取目标频点的干扰信号功率谱密度,用IPSD表示,从而可以根据该功率谱密度计算出该通信信道的干扰能量值,干扰能量值用Power_rc表示。具体方式 为:
Figure PCTCN2016100430-appb-000001
Nf为中心频点(目标频点),BW为信道带宽。
进一步的,信道参数展示装置还会根据第一信噪比、第二信噪比以及各自的信噪比门限计算出Delta_SINR:
Delta_SINR=(SINR_uav–SINR_th_uav)–(SINR_rc–SINR_th_rc)+margin_SINR,
其中,margin_SINR为预设的常数门限,可以为5,本实施例不做限定。如果Delta_SINR大于0,Delta_SINR赋值为0,如果小于或等于0,则Delta_SINR为其本身的值。
因此,信道参数展示装置可以根据Delta_SINR、Power_rc以及path_loss_offset计算出该通信信道的等效总干扰能量值,用Power_total表示,其具体计算方式为:
Power_total=Power_rc+Delta_SINR+path_loss_offset。
206、获取控制终端侧的信噪比门限以及单位距离的传输损耗,根据位置信息获取当前所处位置允许使用的最大发射功率。
本实施例中,信道参数展示装置还可以获取控制终端侧的信噪比门限SINR_th_rc以及单位距离的传输损耗。其中,单位距离通常为1公里,单位距离的传输损耗为基本常数,用PL0表示。
进一步的,由于不同区域或国家允许使用的最大发射功率不同,信道参数展示装置还会根据预先获取的当前所处位置的位置信息获取当前所处位置允许使用的最大发射功率。最大发射功率用Tx_Power表示。
需要说明的是,如果该位置信息所对应的区域或国家有边带功率限制,该最大发射功率还可以是上述最大发射功率的基础上减去边带功率的结果。其中,步骤205与步骤206不限定先后顺序。
207、根据最大发射功率、信噪比门限、单位距离的传输损耗和等效总干扰能量值,确定使用该通信信道进行通信时飞行器的最大飞行距离。
本实施例中,信道参数展示装置最终根据上述最大发射功率Tx_Power、信噪比门限SINR_th_rc、单位距离的传输损耗PL0和等效总干扰能量值 Power_total计算出使用该通信信道进行通信时,飞行器能够飞行的最大飞行距离。
具体的,假设最大飞行距离为d,信道参数展示装置可以根据SINR_th_rc=Tx_Power-PLd-Power_total计算出最大飞行距离d。其中,PLd表示最大飞行距离d的传输损耗,其表达式具体为:
Figure PCTCN2016100430-appb-000002
其中,d0表示单位距离,n表示路径损耗指数,Xσ表示阴影衰落。
208、展示等效总干扰能量值和最大飞行距离。
本实施例中,信道参数展示装置在计算出等效总干扰能量值以及最大飞行距离后,可以在交互界面上展示上述两种信道参数。这样可以便于用户直观感受当前所选通信信道的干扰能量值以及飞行器所能飞行的最大距离。
作为一种可行的实施方式,信道参数展示装置还可以在交互界面上展示控制终端侧的底噪。
作为另一种可行的实施方式,信道参数展示装置还可以在交互界面上展示飞行器飞行的参考距离,该参考距离可以为单位距离,如1km,也可以是其他距离,如4km,本实施例不做限定。具体为:
信道参数展示装置首先根据预先获取的单位距离的传输损耗计算参考距离的传输损耗,并根据参考距离的传输损耗PL0、控制终端侧的信噪比门限SINR_th_rc、最大发射功率Tx_Power确定该参考距离对应的等效总干扰能量值,其具体计算方式与步骤207中计算最大飞行距离相似,本实施例在此不再赘述。信道参数展示装置从而根据参考距离对应的等效总干扰能量值在交互界面中输出该参考距离的参考线。
信道参数展示装置在展示参考距离之后,用户就可以根据通信信道的等效总干扰能量值与参考距离对应的等效总干扰能量值的大小,来目测使用该通信信道进行通信时飞行器的最大飞行距离。
举例来说,请一并参阅图3,图3是本实施例公开的一种信道参数展示的交互界面示意图。如图3所示,坐标轴的横轴表示扫频出的频点集合,单位为MHz。 坐标轴的左纵坐标表示干扰信号强度,单位为dBm/MHz,坐标轴中曲线为每个频点在信道带宽内的功率谱密度,用户选定的通信信道为2419.5MHz~2429.5MHz,该范围内对应的条形区域的水位线表示该通信信道受到的干扰信号的等效干扰能量值。坐标轴的右纵轴输出的是参考距离的参考线,该参考距离分别为1km和4km。在图3所示的交互界面中,用户可以在交互界面选择通信信道,在选择好通信信道后交互界面中会展示该通信信道的干扰信号的等效总干扰能量值,为-96.2dBm,该等效总干扰能量值与参考线相比,很容易得出在该通信信道中,飞行器的最大飞行距离不会超过1km。
进一步的,信道参数展示装置还可以展示下行干扰水位线、上行等效干扰水位线以及遮挡等效干扰水位线。如图3所示,用户选择了通信信道后,信道参数展示装置会计算出等效总干扰能量值,该等效总干扰能量值与水位线进行对比,从而可以让用户很清晰的看出通信信道的状况。例如,当等效总干扰能量值超过遮挡等效干扰水位线时,则表明该通信信道当前存在遮挡。
作为又一种可行的实施方式,信道参数展示装置交互界面展示信道参数的同时,如果检测出飞行器的飞行距离未达到最大飞行距离,可以进一步确定飞行器的飞行距离未达到最大飞行距离的原因,从而生成提示信息,其中,该指示信息包括了飞行器的飞行距离未达到最大飞行距离的原因。进一步的,信道参数展示装置可以在交互界面展示该提示信息。
具体实现中,飞行器的飞行距离未达到最大飞行距离则表明当前的通信信道的通信质量较差,信道参数展示装置可以检测通信质量变差的原因,如输出不满足阈值条件的信道参数。
进一步的,信道参数展示装置还可以根据不满足阈值条件的信道参数分析出通信质量变差的具体原因,如存在遮挡,用户自选信道不合理,控制终端天线摆放不合理,控制终端或飞行器存在信号干扰等,从而将上述信息在交互界面输出。
此外,信道参数展示装置还可以根据上述通信质量变差的原因给出具体的调整方案,如建议用户将信道带宽修改为多少能有效避开干扰。
需要说明的是,由于环境因素的影响,干扰信号的强度会经常变化,信道参数展示装置可以每间隔一段时间就会对频点集合中各个频点的功率谱密度 进行更新,用户所选通信信道的等效总干扰能量值也会随之变化,因此,信道参数展示装置会实时更新通信信道的信道参数。
可见,在图2所描述的方法中,信道参数展示装置在展示频点集合的同时,可以展示各频点在信道带宽内的功率谱密度、当前所选通信信道的等效总干扰能量值、飞行器的最大飞行距离、飞行距离未达到最大飞行距离的原因等。信道参数展示装置展示丰富的交互界面,便于用户实时掌握各频点的干扰信号强度,以及当前所使用的通信信道的干扰信号强度,根据交互界面中展示的信道参数调整操作或者变更信道质量较好的通信信道,从而能够得到更好的飞行体验,这样可以提高用户粘度。
请参阅图4,是本实施例公开的一种信道参数展示装置的结构示意图。其中,该装置应用于控制终端。如图4所示,该装置可以包括:
第一获取模块401,用于获取按照预设时间分辨率和预设频率分辨率进行频点扫描得到的频点集合。
第一确定模块402,用于在第一获取模块401获取的频点集合中确定控制终端和飞行器之间的通信信道。
检测模块403,用于检测第一确定模块402确定出的通信信道的信道参数。
展示模块404,用于展示检测模块403检测出的信道参数。
可选的,展示模块404,还展示该频点集合。
请一并参阅图5,是本实施公开的另一种信道参数展示装置的结构示意图。图5所示的信道参数展示装置是在图4所示的信道参数展示装置的基础上优化得到的。如图5所示,该装置还可以包括:
发送模块408,用于向飞行器发送指示信息。其中,该指示信息可以包括用于指示飞行器开始频点扫描的信息,也可以包括关于频段选择的信息。
关于频段选择的信息具体可以包括控制终端获取的位置信息、国家码和允许使用频段信息中的至少一种。
第一获取模块401获取按照预设时间分辨率和预设频率分辨率进行频点扫描得到的频点集合的具体方式可以为:
获取飞行器按照预设时间分辨率和预设频率分辨率根据关于频段选择的 信息进行频点扫描得到的频点集合。
可选的,第一确定模块402具体可以包括接收单元4021和第一确定单元4022,其中:
接收单元4021,用于接收从频点集合中选定目标频点以及设定信道带宽的信号。
第一确定单元4022,用于根据接收单元4021接收的信号确定控制终端和飞行器之间的通信信道。
可选的,该装置还可以包括:
第二确定模块406,用于根据第二获取模块405获取的位置信息从频点集合中确定可选频点范围。
上述接收单元4021接收从频点集合中选定目标频点以及设定信道带宽的信号的具体方式可以为:
接收从第二确定模块406确定的可选频点范围中选定目标频点以及设定信道带宽的信号。
可选的,第一确定单元4022根据该信号确定控制终端和飞行器之间的通信信道的具体方式可以为:
响应该信号,根据目标频点确定控制终端和飞行器之间的通信信道所占用频带的起点、终点和信道带宽中的至少一种。
可选的,该装置还可以包括:
第二获取模块405,用于获取第一获取模块401获取的频点集合中各频点在信道带宽内的干扰信号功率谱密度。
展示模块404,还用于展示该干扰信号功率谱密度。
可选的,信道参数可以包括等效总干扰能量值,那么检测模块403具体可以包括检测单元4031、获取单元4032、计算单元4033以及第二确定单元4034,其中:
检测单元4031,用于在飞行器与控制终端使用该通信信道进行通信的过程中,检测控制终端的第一信噪比和飞行器的第二信噪比。
获取单元4032,用于获取该通信信道的传播额外损失值;
计算单元4033,用于根据第二获取模块407获取的目标频点的干扰信号功 率谱密度计算该通信信道的干扰能量值。
第二确定单元4034,用于根据计算单元4033计算的干扰能量值、检测单元4031检测出的第一信噪比、第二信噪比以及获取单元4032获取的传播额外损失值确定该通信信道的等效总干扰能量值。
进一步的,展示模块404展示该信道参数的具体方式可以包括:
展示该等效总干扰能量值。
可选的,该信道参数还可以包括底噪,展示模块404展示该信道参数的具体方式还可以包括:展示该底噪。
可选的,该信道参数还可以包括最大飞行距离。获取单元4032,还用于获取控制终端侧的信噪比门限以及单位距离的传输损耗,并根据第二获取模块405获取的位置信息获取所述当前所处位置允许使用的最大发射功率。
第二确定单元4034,还用于根据获取单元4032获取的最大发射功率、所述信噪比门限、单位距离的传输损耗和计算出的等效总干扰能量值,确定使用该通信信道进行通信时飞行器的最大飞行距离。
进一步的,展示模块404展示该信道参数的具体方式还可以包括:展示该最大飞行距离。
可选的,获取单元4032获取控制终端侧的信噪比门限以及单位距离的传输损耗,并根据第二获取模块405获取的位置信息获取所述当前所处位置允许使用的最大发射功率后,计算单元4033,还用于根据单位距离的传输损耗计算参考距离的传输损耗。
第二确定单元4034,还用于根据参考距离的传输损耗、信噪比门限、最大发射功率确定该参考距离对应的等效总干扰能量值。
那么,展示模块404展示所述最大飞行距离的具体方式还可以包括:
根据该参考距离对应的等效总干扰能量值展示该参考距离。
具体来说,计算单元4033,还用于根据所述单位距离的传输损耗计算参考距离为1km和/或4km的传输损耗;第二确定单元4034,还用于根据所述参考距离为1km和/或4km的传输损耗、所述信噪比门限、所述最大发射功率确定所述参考距离对应的等效总干扰能量值;展示模块404展示所述信道参数的具体方式还包括:根据所述参考距离为1km和/或4km对应的等效总干扰能量值展示所 述参考距离。
可选的,第二确定模块406,还用于在检测出飞行器的飞行距离未达到最大飞行距离时,确定飞行器的飞行距离未达到最大飞行距离的原因。
该装置还可以包括:
生成模块407,用于生成提示信息,其中,该指示信息包括飞行器的飞行距离未达到最大飞行距离的原因。
进一步的,展示模块404,还用于展示该提示信息。
可见,在图4和图5所描述的信道参数展示装置中,信道参数展示装置在展示频点集合的同时,可以展示各频点在信道带宽内的功率谱密度、当前所选通信信道的等效总干扰能量值、飞行器的最大飞行距离、飞行距离未达到最大飞行距离的原因等。信道参数展示装置展示丰富的交互界面,便于用户实时掌握各频点的干扰信号强度,以及当前所使用的通信信道的干扰信号强度,根据交互界面中展示的信道参数调整操作或者变更信道质量较好的通信信道,从而能够得到更好的飞行体验,这样可以提高用户粘度。
请参阅图6,图6是本实施例公开的一种控制终端的结构示意图。如图6所示,该控制终端600可以包括:至少一个处理器601,如CPU,通信装置602,输出装置603、存储器604以及至少一个通信总线605,存储器604可以是高速RAM存储器,也可以是非易失性存储器(non-volatile memory),如至少一个磁盘存储器,可选的,存储器604还可以是至少一个位于远离前述处理器601的存储装置。其中:
通信总线605用于实现这些组件之间的连接通信。
存储器604中存储一组程序代码,处理器601、通信装置602、输出装置603用于调用存储器604中存储的程序代码执行以下操作。
通信装置602,用于获取按照预设时间分辨率和预设频率分辨率进行频点扫描得到的频点集合,其中,该频点集合包括至少一个频点。
处理器601,用于在该频点集合中确定控制终端和飞行器之间的通信信道,并检测该通信信道的信道参数。
输出装置603,用于输出该信道参数。
可选的,输出装置603,还用于输出该频点集合。
可选的,通信装置602,还用于向飞行器发送指示信息,其中,该指示信息可以包括用于指示飞行器开始频点扫描的信息,也可以包括关于频段选择的信息。
关于频段选择的信息具体可以包括控制终端获取的位置信息、国家码和允许使用频段信息中的至少一种。
可选的,通信装置602获取按照预设时间分辨率和预设频率分辨率进行频点扫描得到的频点集合的具体方式可以为:
获取飞行器按照预设时间分辨率和预设频率分辨率根据关于频段选择的信息进行频点扫描得到的频点集合。
可选的,处理器601在频点集合中确定控制终端和飞行器之间的通信信道的具体方式可以为:
通过通信装置602接收从频点集合中选定目标频点以及设定信道带宽的信号,并根据该信号确定控制终端和飞行器之间的通信信道。
可选的,处理器601根据该信号确定控制终端和飞行器之间的通信信道的具体方式可以为:
响应该信号,根据目标频点确定控制终端和飞行器之间的通信信道所占用频带的起点、终点和信道带宽中的至少一种。
可选的,处理器601,还用于根据该位置信息从频点集合中确定可选频点范围。
处理器601通过通信装置602接收从频点集合中选定目标频点以及设定信道带宽的信号的具体方式可以为:
通过通信装置602接收从该可选频点范围中选定目标频点以及设定信道带宽的信号。
可选的,处理器601,还用于获取频点集合中各频点在信道带宽内的干扰信号功率谱密度。
输出装置603,还用于输出该干扰信号功率谱密度。
可选的,该信道参数包括等效总干扰能量值;处理器601检测该通信信道 的信道参数的具体方式可以为:
在使用该通信信道进行通信的过程中,检测控制终端的第一信噪比和飞行器的第二信噪比,获取该通信信道的传播额外损失值,并根据该目标频点的干扰信号功率谱密度计算该通信信道的干扰能量值;根据该干扰能量值、第一信噪比、第二信噪比以及传播额外损失值确定该通信信道的等效总干扰能量值。
进一步的,输出装置603展示该信道参数的具体方式可以包括:
输出该等效总干扰能量值。
可选的,信道参数还包括底噪;输出装置603输出该信道参数的具体方式还可以包括:展示该底噪。
可选的,该信道参数还包括最大飞行距离;处理器601,还用于获取控制终端侧的信噪比门限以及单位距离的传输损耗,根据该位置信息获取当前所处位置允许使用的最大发射功率,并根据最大发射功率、信噪比门限、单位距离的传输损耗和等效总干扰能量值,确定使用该通信信道进行通信时飞行器的最大飞行距离。
进一步的,输出装置603输出该信道参数的具体方式还可以包括:
输出该最大飞行距离。
可选的,处理器601,还用于获取控制终端侧的信噪比门限以及单位距离的传输损耗,根据该位置信息获取当前所处位置允许使用的最大发射功率,根据该单位距离的传输损耗计算参考距离的传输损耗,并根据该参考距离的传输损耗、信噪比门限、最大发射功率确定该参考距离对应的等效总干扰能量值。
输出装置603输出该信道参数的具体方式还可以包括:
根据该参考距离对应的等效总干扰能量值输出该参考距离。
上述参考距离可以为1km、4km等,具体来说:
处理器601,还用于获取所述控制终端侧的信噪比门限以及单位距离的传输损耗,根据位置信息获取所述当前所处位置允许使用的最大发射功率,根据单位距离的传输损耗计算参考距离1km和/或4km的传输损耗,并根据参考距离1km和/或4km的传输损耗、信噪比门限、最大发射功率确定所述参考距离1km和/或4km对应的等效总干扰能量值;输出装置展示信道参数的具体方式还包括:根据参考距离1km和/或4km对应的等效总干扰能量值展示该参考距离。
可选的,处理器601,还用于在检测出飞行器的飞行距离未达到最大飞行距离时,确定飞行器的飞行距离未达到最大飞行距离的原因,并生成提示信息,其中,该提示信息包括飞行器的飞行距离未达到最大飞行距离的原因。
进一步的,输出装置603,还用于输出该提示信息。
进一步的,一实施例中的控制终端,还包括显示装置606,该显示装置与输出装置603通信连接,用于显示所述信道参数、干扰信号功率谱密度、显示所述参考距离中的一种或几种。
可见,在图6所描述的控制终端中,控制终端在展示频点集合的同时,可以展示各频点在信道带宽内的功率谱密度、当前所选通信信道的等效总干扰能量值、飞行器的最大飞行距离、飞行距离未达到最大飞行距离的原因等。控制终端展示丰富的交互界面,便于用户实时掌握各频点的干扰信号强度,以及当前所使用的通信信道的干扰信号强度,根据交互界面中展示的信道参数调整操作或者变更信道质量较好的通信信道,从而能够得到更好的飞行体验,这样可以提高用户粘度。
需要说明的是,在上述实施例中,对各个实施例的描述都各有侧重,某个实施例中没有详细描述的部分,可以参见其他实施例的相关描述。其次,本领域技术人员也应该知悉,说明书中所描述的实施例均属于优选实施例,所涉及的动作和模块并不一定是本申请所必须的。
本申请实施例方法中的步骤可以根据实际需要进行顺序调整、合并和删减。
本申请实施例信道参数展示装置中的模块可以根据实际需要进行合并、划分和删减。
本申请实施例中所述模块,可以通过通用集成电路,例如CPU(Central Processing Unit,中央处理器),或通过ASIC(Application Specific Integrated Circuit,专用集成电路)来实现。
本领域普通技术人员可以理解实现上述实施例方法中的全部或部分流程,是可以通过计算机程序来指令相关的硬件来完成,所述的程序可存储于计算机可读取存储介质中,该程序在执行时,可包括如上述各方法的实施例的流程。 其中,所述的存储介质可为磁碟、光盘、只读存储记忆体(Read-Only Memory,ROM)或随机存储记忆体(Random Access Memory,RAM)等。
以上对本申请实施例公开的一种信道参数的展示方法、装置及控制终端进行了详细介绍,本文中应用了具体实例对本申请的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本申请及其核心思想;同时,对于本领域的一般技术人员,依据本申请的思想,在具体实施方式及应用范围上均会有改变之处,综上所述,本说明书内容不应理解为对本申请的限制。

Claims (51)

  1. 一种信道参数的展示方法,其特征在于,包括:
    获取按照预设时间分辨率和预设频率分辨率进行频点扫描得到的频点集合,所述频点集合包括至少一个频点;
    在所述频点集合中确定控制终端和飞行器之间的通信信道;
    检测所述通信信道的信道参数,并展示所述信道参数。
  2. 根据权利要求1所述的方法,其特征在于,所述获取按照预设时间分辨率和预设频率分辨率进行频点扫描得到的频点集合之前,还包括:
    向所述飞行器发送指示信息。
  3. 根据权利要求2所述的方法,其特征在于,所述指示信息包括用于指示所述飞行器开始频点扫描的信息。
  4. 根据权利要求2所述的方法,其特征在于,所述指示信息包括关于频段选择的信息。
  5. 根据权利要求4所述的方法,其特征在于,所述关于频段选择的信息包括所述控制终端获取的位置信息、国家码和允许使用频段信息中的至少一种。
  6. 根据权利要求4所述的方法,其特征在于,
    所述获取按照预设时间分辨率和预设频率分辨率进行频点扫描得到的频点集合,包括:
    获取所述飞行器按照预设时间分辨率和预设频率分辨率根据所述关于频段选择的信息进行频点扫描得到的频点集合。
  7. 根据权利要求6所述的方法,其特征在于,所述在所述频点集合中确定控制终端和飞行器之间的通信信道,包括:
    接收从所述频点集合中选定目标频点的信号;
    根据所述信号确定控制终端和飞行器之间的通信信道。
  8. 根据权利要求7所述的方法,其特征在于,所述根据所述信号确定控制终端和飞行器之间的通信信道,包括:
    响应所述信号,根据所述目标频点确定控制终端和飞行器之间的通信信道所占用频带的起点、终点和信道带宽中的至少一种。
  9. 根据权利要求7所述的方法,其特征在于,所述获取按照预设时间分辨率和预设频率分辨率进行频点扫描得到的频点集合之后,所述方法还包括:
    根据位置信息从所述频点集合中确定可选频点范围;
    所述接收从所述频点集合中选定目标频点的信号,包括:
    接收从所述可选频点范围中选定目标频点的信号。
  10. 根据权利要求6~7任一项所述的方法,其特征在于,所述方法还包括:
    获取所述频点集合中各频点在所述信道带宽内的干扰信号功率谱密度;
    展示所述干扰信号功率谱密度。
  11. 根据权利要求10所述的方法,其特征在于,所述信道参数包括等效总干扰能量值;所述检测所述通信信道的信道参数,并展示所述信道参数,包括:
    在使用所述通信信道进行通信的过程中,检测所述控制终端的第一信噪比和所述飞行器的第二信噪比,并获取所述通信信道的传播额外损失值;
    根据所述目标频点的干扰信号功率谱密度计算所述通信信道的干扰能量值;
    根据所述干扰能量值、所述第一信噪比、所述第二信噪比以及所述传播额外损失值确定所述通信信道的等效总干扰能量值;
    展示所述等效总干扰能量值。
  12. 根据权利要求11所述的方法,其特征在于,所述信道参数还包括底噪;所述展示所述信道参数,还包括:
    展示所述底噪。
  13. 根据权利要求11所述的方法,其特征在于,所述信道参数还包括最大飞行距离;所述检测所述通信信道的信道参数,并展示所述信道参数,还包括:
    获取所述控制终端侧的信噪比门限以及单位距离的传输损耗;
    根据位置信息获取所述当前所处位置允许使用的最大发射功率;
    根据所述最大发射功率、所述信噪比门限、所述单位距离的传输损耗和所述等效总干扰能量值,确定使用所述通信信道进行通信时所述飞行器的最大飞行距离;
    展示所述最大飞行距离。
  14. 根据权利要求11所述的方法,其特征在于,所述检测所述通信信道的信道参数,并展示所述信道参数,还包括:
    获取所述控制终端侧的信噪比门限以及单位距离的传输损耗,并根据位置信息获取所述当前所处位置允许使用的最大发射功率;
    根据所述单位距离的传输损耗计算参考距离的传输损耗;
    根据所述参考距离的传输损耗、所述信噪比门限、所述最大发射功率确定所述参考距离对应的等效总干扰能量值;
    根据所述参考距离对应的等效总干扰能量值展示所述参考距离。
  15. 根据权利要求14所述的方法,其特征在于,所述参考距离为1km和/或4km。
  16. 根据权利要求13所述的方法,其特征在于,所述方法还包括:
    在检测出所述飞行器的飞行距离未达到所述最大飞行距离时,确定所述飞行器的飞行距离未达到所述最大飞行距离的原因,并生成提示信息,所述指示信息包括所述原因;
    展示所述提示信息。
  17. 一种信道参数展示装置,其特征在于,包括:
    第一获取模块,用于获取按照预设时间分辨率和预设频率分辨率进行频点扫描得到的频点集合,所述频点集合包括至少一个频点;
    第一确定模块,用于在所述频点集合中确定控制终端和飞行器之间的通信信道;
    检测模块,用于检测所述通信信道的信道参数;
    展示模块,用于展示所述信道参数。
  18. 根据权利要求17所述的信道参数展示装置,其特征在于,还包括:
    发送模块,用于向所述飞行器发送指示信息。
  19. 根据权利要求18所述的信道参数展示装置,其特征在于,所述发送模块发送的指示信息包括用于指示所述飞行器开始频点扫描的信息。
  20. 根据权利要求18所述的信道参数展示装置,其特征在于,所述发送模块发送的指示信息包括关于频段选择的信息。
  21. 根据权利要求20所述的信道参数展示装置,其特征在于,所述发送模块发送的指示信息中的关于频段选择的信息包括所述控制终端获取的位置信息、国家码和允许使用频段信息中的至少一种。
  22. 根据权利要求20所述的装置,其特征在于,
    所述第一获取模块获取按照预设时间分辨率和预设频率分辨率进行频点扫描得到的频点集合的具体方式包括:
    获取所述飞行器按照预设时间分辨率和预设频率分辨率根据所述关于频段选择的信息进行频点扫描得到的频点集合。
  23. 根据权利要求22所述的装置,其特征在于,所述第一确定模块包括:
    接收单元,用于接收从所述频点集合中选定目标频点的信号;
    第一确定单元,用于根据所述信号确定控制终端和飞行器之间的通信信道。
  24. 根据权利要求23所述的装置,其特征在于,第一确定单元根据所述信号确定控制终端和飞行器之间的通信信道的具体方式包括:
    响应所述信号,根据所述目标频点确定控制终端和飞行器之间的通信信道所占用频带的起点、终点和信道带宽中的至少一种。
  25. 根据权利要求23所述的装置,其特征在于,所述装置还包括:
    第二确定模块,用于根据位置信息从所述频点集合中确定可选频点范围;
    所述接收单元接收从所述频点集合中选定目标频点以及设定信道带宽的信号的具体方式包括:
    接收从所述可选频点范围中选定目标频点的信号。
  26. 根据权利要求22~23任一项所述的装置,其特征在于,所述装置还包括:
    第二获取模块,用于获取所述频点集合中各频点在所述信道带宽内的干扰信号功率谱密度;
    所述展示模块,还用于展示所述干扰信号功率谱密度。
  27. 根据权利要求26所述的装置,其特征在于,所述信道参数包括等效总干扰能量值;所述检测模块包括:
    检测单元,用于在使用所述通信信道进行通信的过程中,检测所述控制终端的第一信噪比和所述飞行器的第二信噪比;
    获取单元,用于获取所述通信信道的传播额外损失值;
    计算单元,用于根据所述目标频点的干扰信号功率谱密度计算所述通信信道的干扰能量值;
    第二确定单元,用于根据所述干扰能量值、所述第一信噪比、所述第二信噪比以及所述传播额外损失值确定所述通信信道的等效总干扰能量值;
    所述展示模块展示所述信道参数的具体方式包括:
    展示所述等效总干扰能量值。
  28. 根据权利要求27所述的装置,其特征在于,所述信道参数还包括底噪;
    所述展示模块展示所述信道参数的具体方式还包括:
    展示所述底噪。
  29. 根据权利要求27所述的装置,其特征在于,所述信道参数还包括最大飞行距离;
    所述获取单元,还用于获取所述控制终端侧的信噪比门限以及单位距离的传输损耗,并根据位置信息获取所述当前所处位置允许使用的最大发射功率;
    所述第二确定单元,还用于根据所述最大发射功率、所述信噪比门限、所述单位距离的传输损耗和所述等效总干扰能量值,确定使用所述通信信道进行通信时所述飞行器的最大飞行距离;
    所述展示模块展示所述信道参数的具体方式还包括:
    展示所述最大飞行距离。
  30. 根据权利要求27所述的装置,其特征在于,
    所述获取单元,还用于获取所述控制终端侧的信噪比门限以及单位距离的传输损耗,并根据位置信息获取所述当前所处位置允许使用的最大发射功率;
    所述计算单元,还用于根据所述单位距离的传输损耗计算参考距离的传输损耗;
    所述第二确定单元,还用于根据所述参考距离的传输损耗、所述信噪比门限、所述最大发射功率确定所述参考距离对应的等效总干扰能量值;
    所述展示模块展示所述信道参数的具体方式还包括:
    根据所述参考距离对应的等效总干扰能量值展示所述参考距离。
  31. 根据权利要求30所述的装置,其特征在于,
    所述计算单元,还用于根据所述单位距离的传输损耗计算参考距离为1km 和/或4km的传输损耗;
    所述第二确定单元,还用于根据所述参考距离为1km和/或4km的传输损耗、所述信噪比门限、所述最大发射功率确定所述参考距离对应的等效总干扰能量值;
    所述展示模块展示所述信道参数的具体方式还包括:
    根据所述参考距离为1km和/或4km对应的等效总干扰能量值展示所述参考距离。
  32. 根据权利要求29所述的装置,其特征在于,
    所述第二确定模块,还用于在检测出所述飞行器的飞行距离未达到所述最大飞行距离时,确定所述飞行器的飞行距离未达到所述最大飞行距离的原因;
    所述装置还包括:
    生成模块,用于生成提示信息,所述提示信息包括所述原因;
    所述展示模块,还用于展示所述提示信息。
  33. 一种控制终端,其特征在于,包括:
    通信装置,用于获取按照预设时间分辨率和预设频率分辨率进行频点扫描得到的频点集合,所述频点集合包括至少一个频点;
    处理器,用于在所述频点集合中确定控制终端和飞行器之间的通信信道,并检测所述通信信道的信道参数;
    输出装置,用于输出所述信道参数。
  34. 根据权利要求33所述的控制终端,其特征在于,所述通信装置,还用于向飞行器发送指示信息。
  35. 根据权利要求34所述的控制终端,其特征在于,所述通信装置向飞行器发送的指示信息包括用于指示所述飞行器开始频点扫描的信息。
  36. 根据权利要求34所述的控制终端,其特征在于,所述通信装置向飞行 器发送的指示信息包括关于频段选择的信息。
  37. 根据权利要求36所述的控制终端,其特征在于,所述通信装置向飞行器发送的指示信息中的关于频段选择的信息包括位置信息、国家码和允许使用频段信息中的至少一种。
  38. 根据权利要求36所述的控制终端,其特征在于,
    所述通信装置获取按照预设时间分辨率和预设频率分辨率进行频点扫描得到的频点集合的具体方式包括:
    获取所述飞行器按照预设时间分辨率和预设频率分辨率根据所述关于频段选择的信息进行频点扫描得到的频点集合。
  39. 根据权利要求38所述的控制终端,其特征在于,所述处理器在所述频点集合中确定控制终端和飞行器之间的通信信道的具体方式包括:
    通过所述通信装置接收从所述频点集合中选定目标频点的信号;
    根据所述信号确定控制终端和飞行器之间的通信信道。
  40. 根据权利要求39所述的控制终端,其特征在于,所述处理器根据所述信号确定控制终端和飞行器之间的通信信道的具体方式包括:
    响应所述信号,根据所述目标频点确定控制终端和飞行器之间的通信信道所占用频带的起点、终点和信道带宽中的至少一种。
  41. 根据权利要求39所述的控制终端,其特征在于,
    所述处理器,还用于根据位置信息从所述频点集合中确定可选频点范围;
    所述处理器通过所述通信装置接收从所述频点集合中选定目标频点以及设定信道带宽的信号的具体方式包括:
    通过所述通信装置接收从所述可选频点范围中选定目标频点的信号。
  42. 根据权利要求38~39任一项所述的控制终端,其特征在于,
    所述处理器,还用于获取所述频点集合中各频点在所述信道带宽内的干扰信号功率谱密度;
    所述输出装置,还用于输出所述干扰信号功率谱密度。
  43. 根据权利要求42所述的控制终端,其特征在于,所述信道参数包括等效总干扰能量值;所述处理器检测所述通信信道的信道参数的具体方式包括:
    在使用所述通信信道进行通信的过程中,检测所述控制终端的第一信噪比和所述飞行器的第二信噪比;
    获取所述通信信道的传播额外损失值;
    根据所述目标频点的干扰信号功率谱密度计算所述通信信道的干扰能量值;
    根据所述干扰能量值、所述第一信噪比、所述第二信噪比以及所述传播额外损失值确定所述通信信道的等效总干扰能量值;
    所述输出装置输出所述信道参数的具体方式包括:
    输出所述等效总干扰能量值。
  44. 根据权利要求43所述的控制终端,其特征在于,所述信道参数还包括底噪;
    所述输出装置输出所述信道参数的具体方式还包括:
    输出所述底噪。
  45. 根据权利要求43所述的控制终端,其特征在于,所述信道参数还包括最大飞行距离;
    所述处理器,还用于获取所述控制终端侧的信噪比门限以及单位距离的传输损耗,根据位置信息获取所述当前所处位置允许使用的最大发射功率,并根据所述最大发射功率、所述信噪比门限、所述单位距离的传输损耗和所述等效总干扰能量值,确定使用所述通信信道进行通信时所述飞行器的最大飞行距离;
    所述输出装置展示所述信道参数的具体方式还包括:
    展示所述最大飞行距离。
  46. 根据权利要求43所述的控制终端,其特征在于,
    所述处理器,还用于获取所述控制终端侧的信噪比门限以及单位距离的传输损耗,根据位置信息获取所述当前所处位置允许使用的最大发射功率,根据所述单位距离的传输损耗计算参考距离的传输损耗,并根据所述参考距离的传输损耗、所述信噪比门限、所述最大发射功率确定所述参考距离对应的等效总干扰能量值;
    所述输出装置展示所述信道参数的具体方式还包括:
    根据所述参考距离对应的等效总干扰能量值展示所述参考距离。
  47. 根据权利要求46所述的控制终端,其特征在于,
    所述处理器,还用于获取所述控制终端侧的信噪比门限以及单位距离的传输损耗,根据位置信息获取所述当前所处位置允许使用的最大发射功率,根据所述单位距离的传输损耗计算参考距离1km和/或4km的传输损耗,并根据所述参考距离1km和/或4km的传输损耗、所述信噪比门限、所述最大发射功率确定所述参考距离1km和/或4km对应的等效总干扰能量值;
    所述输出装置展示所述信道参数的具体方式还包括:
    根据所述参考距离1km和/或4km对应的等效总干扰能量值展示所述参考距离。
  48. 根据权利要求45所述的控制终端,其特征在于,
    所述处理器,还用于在检测出所述飞行器的飞行距离未达到所述最大飞行距离时,确定所述飞行器的飞行距离未达到所述最大飞行距离的原因,并生成提示信息,所述提示信息包括所述原因;
    所述输出装置,还用于输出所述提示信息。
  49. 根据权利要求33所述的控制终端,其特征在于,还包括显示装置,所述显示装置与所述输出装置通信连接,用于显示所述信道参数。
  50. 根据权利要求42所述的控制终端,其特征在于,还包括显示装置,所述显示装置与所述输出装置通信连接,用于显示所述干扰信号功率谱密度。
  51. 根据权利要求46所述的控制终端,其特征在于,还包括显示装置,所述显示装置与所述输出装置通信连接,用于显示所述参考距离。
PCT/CN2016/100430 2016-09-27 2016-09-27 一种信道参数的展示方法、装置及控制终端 WO2018058325A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2016/100430 WO2018058325A1 (zh) 2016-09-27 2016-09-27 一种信道参数的展示方法、装置及控制终端
CN201680017098.9A CN107466485B (zh) 2016-09-27 2016-09-27 一种信道参数的展示方法、装置及控制终端

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/100430 WO2018058325A1 (zh) 2016-09-27 2016-09-27 一种信道参数的展示方法、装置及控制终端

Publications (1)

Publication Number Publication Date
WO2018058325A1 true WO2018058325A1 (zh) 2018-04-05

Family

ID=60545128

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/100430 WO2018058325A1 (zh) 2016-09-27 2016-09-27 一种信道参数的展示方法、装置及控制终端

Country Status (2)

Country Link
CN (1) CN107466485B (zh)
WO (1) WO2018058325A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112261617A (zh) * 2020-10-20 2021-01-22 星河互联网络(深圳)有限公司 一种基于北斗定位的船舶自适应无线组网通信方法
CN114609956A (zh) * 2022-05-12 2022-06-10 山东北溟科技有限公司 一种基于多级中断的声信标激活方法及系统

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110011716A (zh) * 2018-01-04 2019-07-12 杭州海康机器人技术有限公司 一种地面站
WO2021012181A1 (zh) * 2019-07-23 2021-01-28 深圳市大疆创新科技有限公司 遥控可移动平台控制方法、设备及计算机可读存储介质
CN112230286B (zh) * 2020-09-30 2022-05-13 山东大学 降低隧道无线地震仪噪声的方法及系统
CN112965060A (zh) * 2021-02-19 2021-06-15 加特兰微电子科技(上海)有限公司 生命特征参数的检测方法、装置和检测体征点的方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090164638A1 (en) * 2007-12-24 2009-06-25 Electronics And Telecommunications Research Institute System and method for uplink resource allocation in mobile internet
CN103490842A (zh) * 2013-09-26 2014-01-01 深圳市大疆创新科技有限公司 数据传输系统及方法
CN105371842A (zh) * 2015-11-26 2016-03-02 陈昊 一种无人飞行器预警定位装置及其预警定位方法
CN105933081A (zh) * 2016-03-29 2016-09-07 天津航天中为数据系统科技有限公司 一种无人机数据链测试装置

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120252371A1 (en) * 2011-03-29 2012-10-04 Linear Hertz Inc. Method, system and apparatus for remote interference monitoring and analysis
US9986574B2 (en) * 2014-04-18 2018-05-29 Qualcomm Incorporated Channel selection metrics in shared spectrum

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090164638A1 (en) * 2007-12-24 2009-06-25 Electronics And Telecommunications Research Institute System and method for uplink resource allocation in mobile internet
CN103490842A (zh) * 2013-09-26 2014-01-01 深圳市大疆创新科技有限公司 数据传输系统及方法
CN105371842A (zh) * 2015-11-26 2016-03-02 陈昊 一种无人飞行器预警定位装置及其预警定位方法
CN105933081A (zh) * 2016-03-29 2016-09-07 天津航天中为数据系统科技有限公司 一种无人机数据链测试装置

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112261617A (zh) * 2020-10-20 2021-01-22 星河互联网络(深圳)有限公司 一种基于北斗定位的船舶自适应无线组网通信方法
CN112261617B (zh) * 2020-10-20 2024-01-30 星河互联网络(深圳)有限公司 一种基于北斗定位的船舶自适应无线组网通信方法
CN114609956A (zh) * 2022-05-12 2022-06-10 山东北溟科技有限公司 一种基于多级中断的声信标激活方法及系统
CN114609956B (zh) * 2022-05-12 2022-08-30 山东北溟科技有限公司 一种基于多级中断的声信标激活方法及系统

Also Published As

Publication number Publication date
CN107466485A (zh) 2017-12-12
CN107466485B (zh) 2020-05-22

Similar Documents

Publication Publication Date Title
WO2018058325A1 (zh) 一种信道参数的展示方法、装置及控制终端
CN107690823B (zh) 一种通信质量检测方法、装置及设备
JP6225256B2 (ja) 画像処理システム及びコンピュータ読み取り可能な記録媒体
US8736708B2 (en) Information processing apparatus allowing remote operation of an image capturing apparatus and control method therefor
EP3729365B1 (en) Improved inverse tone mapping method and corresponding device
US11219820B2 (en) Control method for virtual controlled object, apparatus, storage medium, and electronic apparatus
WO2020233462A1 (zh) 一种无人车的通信方法和无人车
CN104301714A (zh) 一种检测电视设备频道切换响应时间的方法及装置
KR101596757B1 (ko) 차량용 텔레매틱스 장치 및 그 제어방법
US20110051616A1 (en) Wireless terminal device, wireless communication system, and method of notifying communication status level
CN106899620A (zh) 一种数据共享系统
CN110519854B (zh) 一种上行频选调度方法、装置、电子设备及存储介质
CN106878651A (zh) 一种基于无人机的三维视频通信方法、通信设备和无人机
US6064445A (en) Automatic picture size control method for semiwide-screen television receiver
US11144780B2 (en) Adaptive image processing
CN106488082A (zh) 确定补偿参数、对视频信号进行补偿处理的方法及装置
CN108769526B (zh) 一种图像调整方法、装置、设备及存储介质
CN104519396B (zh) 一种网络连接方法及电视机
US20220279054A1 (en) Compensating for interruptions in a wireless connection
US20180359393A1 (en) Image reception terminal, image communication system, image reception method, and recording medium
TWI440339B (zh) 接收器以及調整接收器之可調式等化器之強度的方法
CN111064864A (zh) 设置畸变校正参数的方法、装置和内窥镜系统
CN112469099B (zh) 联网控制方法、联网控制装置、电子设备和存储介质
US20220393775A1 (en) A measuring device and a measurement method for determining a total radiated power
CN112385253B (zh) 网络状态显示方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16917085

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16917085

Country of ref document: EP

Kind code of ref document: A1