WO2018056700A1 - 반응과 분석을 포함한 단일 진단칩의 고감도 신속진단방법 - Google Patents

반응과 분석을 포함한 단일 진단칩의 고감도 신속진단방법 Download PDF

Info

Publication number
WO2018056700A1
WO2018056700A1 PCT/KR2017/010348 KR2017010348W WO2018056700A1 WO 2018056700 A1 WO2018056700 A1 WO 2018056700A1 KR 2017010348 W KR2017010348 W KR 2017010348W WO 2018056700 A1 WO2018056700 A1 WO 2018056700A1
Authority
WO
WIPO (PCT)
Prior art keywords
detection
substance
storage unit
biological
sol
Prior art date
Application number
PCT/KR2017/010348
Other languages
English (en)
French (fr)
Inventor
김소연
송환문
Original Assignee
피씨엘 (주)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 피씨엘 (주) filed Critical 피씨엘 (주)
Priority claimed from KR1020170121426A external-priority patent/KR102236276B1/ko
Publication of WO2018056700A1 publication Critical patent/WO2018056700A1/ko

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/536Immunoassay; Biospecific binding assay; Materials therefor with immune complex formed in liquid phase
    • G01N33/537Immunoassay; Biospecific binding assay; Materials therefor with immune complex formed in liquid phase with separation of immune complex from unbound antigen or antibody
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/543Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals

Definitions

  • the present invention is a method for detecting a detection target material using a diagnostic chip including a reaction and analysis, specifically, a diagnostic including a detection unit including a biological detection material that interacts with the detection target and a sol-gel spot is fixed.
  • the present invention relates to a chip and a method of detecting a target material or a sample based on the same.
  • POCT point of care testing
  • Enzyme assay immunoassay, chemical colorimetric assay, electrochemical assay, fluorescence labeling and measurement, or chemiluminescent labeling for POCT analysis And various techniques such as measurement.
  • Influenza is acute respiratory virus infection in winter, affecting about 10% of the population each year, and is often classified as a serious disease due to complications of pneumonia or worsening of underlying diseases in elderly, infants and chronic patients.
  • Seasonal influenza is a pandemic variation of antigens of influenza virus, whereas pandemic influenza, which occurs every 10-40 years, is caused by antigen-to-mutation, which affects 30-50% of the population.
  • Socio-economic damage is enormous.
  • Rapid antibody test based on the antigen antibody response that is most used for influenza virus detection has a relatively short time and easy advantages, but has the disadvantage of low sensitivity and accuracy.
  • the real-time PCR method used to confirm influenza diagnosis is recognized as the most effective technique for the diagnosis of infectious disease through high sensitivity and accuracy, but the field test is rare because the test time is relatively long and requires referral to a specialized institution. It is impossible.
  • due to the high cost of testing it is very difficult to apply as a large-scale initial countermeasure in case of pandemic of infectious disease.
  • sol-gel micro array fabrication technology in one reaction unit enables multiplexers to implement multiplex technology by independently fixing multiple markers in the same space, thereby establishing a platform for multiple diagnosis technology.
  • the sol-gel-based sensitization / high specificity of the sol-gel based diagnostic chip for fixing a sol-gel spot containing a biological detection material that interacts with the detection target material which is not conventionally well or plate-based, is used.
  • Analytical performance and multi-diagnostic platform technology and on-site diagnostics-based fast and accurate results enable improved analysis accuracy, as well as integrated reagent storage and waste storage, resulting in contamination of samples and reagents used, It was confirmed that the problem caused by misuse can be solved, the present invention was completed.
  • the present invention is to provide a method for detecting a detection target material using a diagnostic chip.
  • the present invention provides a method for detecting a detection target material using a diagnostic chip that is integrally included in the following configuration, comprising: a container mounting portion containing a sample containing a detection target material; A detection unit to which a sol-gel spot including a biological detection material interacting with the detection target material is fixed; A reaction reagent storage unit including a biological marker for the biological detection material to confirm whether the detection target material reacts with the biological detection material; A washing solution storage unit including a washing solution for removing a substance that has not reacted with the detection target substance; A waste storage unit for removing residual substances or unreacted substances after the reaction from the detection unit; And a sample including a hole on which a transport means in the form of a pipette tip is mounted, and a sample including a detection target material included in the container mounting portion, in contact with a biological detection material interacting with the detection target material of the detection unit. It provides a method comprising imaging.
  • the present invention also provides a method for analyzing a substance to be detected using a diagnostic chip comprising the following steps: inserting a container containing a sample containing a substance to be detected in the diagnostic chip into a container mounting portion, and pipette tip mounting a tip-shaped conveying means in the hole; Inhaling a sample containing the substance to be detected by a transport means and injecting the sol-gel spot including the biological detection substance to interact with the substance to be fixed to a fixed part; Suctioning the remaining substance after the reaction by the detection unit and discharging it to the waste storage unit; Washing the unreacted material in the detection unit by injecting the cleaning solution into the detection unit in a cleaning solution storage unit including a cleaning solution for removing a substance that has not reacted with the detection target material; Sucking the unreacted material and discharging it to a waste storage unit; And imaging the reaction result of the detection unit.
  • Figure 1 shows a front view of the diagnostic chip.
  • reaction reagent storage unit of the diagnostic chip is a detailed view of the reaction reagent storage unit of the diagnostic chip.
  • FIG. 4 is a detailed view of the cleaning solution storage unit of the diagnostic chip.
  • 5 is a detailed view of the waste storage unit of the diagnostic chip.
  • Figure 6 is a detailed view of the hole in which the carrying means of the diagnostic chip is mounted.
  • FIG. 7 is a detailed view of the container mounting portion of the diagnostic chip.
  • FIG. 8 is a schematic diagram of a diagnostic device used to implement the method according to the present invention.
  • 11 and 12 show diagnostic results by the method according to the invention.
  • FIG. 13 and FIG. 14 show fluorescence intensity and fluorescence image results of a three-dimensional Sol-gel antibody immobilization assay in which Sol-gel was three-dimensional antibody-immobilized.
  • 15 is a result showing a fluorescence image of a negative sample sample tested.
  • Figure 16 shows the results of analyzing the fluorescence data for testing a negative sample sample.
  • FIG. 17 shows the results of fluorescence images of positive sample samples tested against Influenza A.
  • Figure 18 shows the results of analyzing the fluorescence data tested for Influenza A positive sample samples.
  • FIG. 19 shows fluorescence images of positive sample samples tested against Influenza B.
  • Figure 20 shows the results of analyzing the fluorescence data tested for Influenza B positive sample samples.
  • Figure 21 is a block diagram of a three-dimensional sol-gel antibody immobilization chip for detecting tumor markers.
  • Figure 22 shows a tumor marker antigen sample response fluorescence image.
  • 23 to 26 show fluorescence intensity distributions according to tumor marker antigen concentrations.
  • the present invention provides a method for detecting a substance to be detected using a diagnostic chip including the following components integrally, comprising: a container mounting portion containing a sample containing a substance to be detected; A detection unit to which a sol-gel spot including a biological detection material interacting with the detection target material is fixed; A reaction reagent storage unit including a biological marker for the biological detection material to confirm whether the detection target material reacts with the biological detection material; A washing solution storage unit including a washing solution for removing a substance that has not reacted with the detection target substance; A waste storage unit for removing residual substances or unreacted substances after the reaction from the detection unit; And a sample including a hole on which a transport means in the form of a pipette tip is mounted, and a sample including a detection target material included in the container mounting portion, in contact with a biological detection material interacting with the detection target material of the detection unit. It relates to a method comprising imaging.
  • the method according to the present invention is composed of an optimum rapid reaction step (overcoming reagent and reaction step quantitative error error, optimization of measurement part reaction and equipment interworking speed design, etc.), so that more than 90% of sensitivity can be realized compared to the existing, and used in the present invention.
  • the diagnostic chip can distinguish between the reagent storage unit and the waste storage unit according to each reaction step, thereby solving the problems caused by contamination and misuse of the samples and reagents used.
  • the substance to be detected may be a biomaterial, for example, a nucleic acid, a peptide, a protein, a small molecule, a virus or a cell.
  • the biological material may be derived from body fluids.
  • the body fluid may be, for example, feces, urine, tears, saliva, external secretions of the skin, external secretions of the respiratory tract, external secretions of the intestinal tract, external secretions of the digestive tract, plasma, serum, blood, spinal fluid, lymph, body fluids, tissues, tissues Homogenates, parts of tissues, cells, cell extracts, or in vitro cell culture.
  • the virus can be, for example, an influenza virus.
  • specific antibodies against influenza subtypes A and B may be immobilized on a dedicated diagnostic chip by a sol-gel immobilization technique, and specific diagnostic possibilities of the samples for each subtype may be confirmed.
  • the complicated process part of the existing test method can be shortened to an automated measurement process from sampling to obtaining the result value by using a dedicated diagnostic chip in the form of a Lab on a chip, so that the presence of influenza virus can be easily measured. .
  • POCT storage and field inspection
  • the container containing the sample can be inserted from the outside in a form detachable from the diagnostic chip.
  • the container containing the sample may be mounted to the diagnostic chip by mechanical, adhesive, or other means in the hole included in the diagnostic chip.
  • the sample can be stored or processed freely from the spatial and / or temporal constraints caused by storing the sample integrally with other reagents.
  • the form of the container may be, for example, a bottle, a tub, a tube or an ampoule, and there is no limitation in the material thereof, for example, using plastic, glass, paper, foil, wax in part or in whole of the container. Can be prepared.
  • the biological detection material that interacts with the detection target material may be, for example, a protein or nucleic acid and / or oligonucleotide.
  • the protein may be, for example, an antibody or fragment thereof that specifically binds to a substance to be detected.
  • the detection of the detection target material may be performed by an immunoassay (immunoassay) method by the antigen-antibody reaction.
  • the immunoassay can be performed according to various quantitative or qualitative immunoassay protocols.
  • the immunoassay format includes radioimmunoassay, radioimmunoprecipitation, immunoprecipitation, immunohistochemical staining, ELISA (enzyme-linked immunosorbant assay), capture-ELISA, sandwich analysis, flow cytometry, immunofluorescence staining and immunoadhesion. Include, but are not limited to, chemical tablets.
  • the method comprising: reacting a sample comprising the substance to be detected with a primary biological detection substance that interacts with the substance to be detected; And reacting a second biological detection material that binds to the first biological detection material that has interacted with the detection material.
  • the detection material that interacts with the detection material is an antibody
  • the primary biological detection material may specifically bind to the detection material, and the antibody specifically binding to the antibody specifically binding to the detection material.
  • the reaction can be carried out with a secondary biological detection material.
  • the nucleic acid and / or oligonucleotide may be, for example, an aptamer.
  • the aptamer means a nucleic acid and / or oligonucleotide molecule having a binding activity to a predetermined target molecule, and may bind to the target molecule and inhibit the activity.
  • the aptamers may be RNA, DNA, modified oligonucleotides or mixtures thereof.
  • the aptamers may also be in linear or cyclic form.
  • the length of the aptamer is not particularly limited and may usually be about 15 to about 200 nucleotides.
  • the biological marker for the biological detection material may be, for example, radioisotopes, fluorescent dyes, dyes, proteins, antibodies or aptamers labeled with a luminescent material, but is not limited thereto.
  • Reaction result imaging included in the method of the present invention may be performed by measuring and analyzing fluorescence, radiation dose, luminescence intensity, etc., which are represented by biological markers.
  • the sol-gel spot is for fixing a biological detection material that interacts with the detection target material.
  • the sol-gel spot may be fixed while gelling the sol solution and may be fixed so as not to drop when reacting with a sample containing the detection target material.
  • the size of the sol-gel spot may be, for example, 100-1000 ⁇ m, specifically 200-400 ⁇ m, and more specifically 250-350 ⁇ m. If the size of the sol-gel spot is too small within the desired range, there is a problem of desorption of the sol-gel spot, and if the size of the sol-gel spot is large, there is a problem of forming a uniform porous structure.
  • the sol-gel spot may be arranged in the form of a micro array such that at least one sol-gel spot has at least one row in one direction in the detector.
  • the diagnostic chip 100 includes a detection unit 110, a reagent and / or waste storage unit 120, and a sample and transportation unit storage unit 130.
  • the diagnostic chip 100 according to the present invention includes a detection unit 110, a reagent and / or waste storage unit 120, and a sample and transportation means storage unit 130, about horizontal (91.0 mm) ⁇ vertical (25 mm) ⁇ It may have a size of height (12.5 mm).
  • the sample and carrier storage 130 is comprised of a hole 131 on which a carrier in the form of a pipette tip is mounted and a container mount 132 containing a sample containing a substance to be detected.
  • the container fixed to the container mount 132 may be, for example, a bottle, a tub, a tube, or an ampoule that is detachable from the diagnostic chip.
  • Each pipette tip and container may be included for each diagnostic chip, and a tag, for example, a barcode or a QR code, may be displayed on the sample to distinguish a plurality of samples.
  • the handle 133 may be attached to one side for convenience of use of the diagnostic chip 100 user.
  • the detector 110 is fixed with a sol-gel spot including a detection target material, for example, a nucleic acid, a peptide, a protein, a low molecular material, a virus or a biological detection material that interacts with a cell, for example, an antigen, an antibody, or an aptamer.
  • a detection target material for example, a nucleic acid, a peptide, a protein, a low molecular material, a virus or a biological detection material that interacts with a cell, for example, an antigen, an antibody, or an aptamer.
  • the sol-gel spot may for example have a size of 100-1000 ⁇ m, specifically 200-400 ⁇ m, more specifically 250-350 ⁇ m.
  • One or more sol-gel spots in the detector 110 may be arranged in one direction, and may be disposed in a microarray form to have at least one or more rows.
  • Such sol-gel spots can fix various biological detection substances, for example, one or more or two or more biological detection substances that interact with various detection substances, thereby enabling the diagnosis of disease multiple times at one time.
  • the reagent and / or waste storage unit 120 may include a reaction reagent storage unit 121 including a biomarker for the biological detection material, and a reaction material that does not react with the detection material to determine whether the detection material reacts with the biological detection material. It consists of a washing solution storage unit 122 including a washing solution for removing substances and a waste storage unit 123 for removing residual or unreacted substances after the reaction in the detection unit. 3 to 5, the reaction reagent storage unit 121, the washing solution storage unit 122, and the waste storage unit 123 are illustrated in detail.
  • the biological markers included in the reaction reagent storage 121 may be, for example, an antibody or aptamer labeled with a radioisotope, fluorescent dye, dye, protein, or luminescent material capable of detecting a biological detection material.
  • the solution for cleaning a material that has not reacted with the detection target material included in the cleaning solution storage unit 122 may be, for example, a solution containing a small amount of a surfactant, a protease, or an ionic salt.
  • the waste storage unit 123 for removing the residual material or the unreacted material after the reaction from the detection unit may be, for example, a pad type for absorbing the residual material or the unreacted material after the reaction from the detection unit.
  • the waste storage unit 123 is not particularly limited as long as it is a porous material capable of absorbing the remaining material or the unreacted material after the reaction, but may be, for example, a sponge, a nonwoven fabric, a cloth, or a cotton.
  • a sticker is attached to the detection unit 110, and the reaction reagent storage unit 121, the washing solution storage unit 122, and the waste storage unit 123 may be sealed by sealing the cover member.
  • the single diagnostic chip 100 integrally included in accordance with the present invention is PVdF (polyvinylidene fluoride), nylon (nylon), nitrocellulose (nitrocellulose), PU (polyurethane), PC (polycarbonate), PS (polystyrene), PLA (polylatic) acid), polyacrylonitrile (PAN), polylactic-co-glycolic acid (PLGA), polyethyleneimine (PEI), polypropyleneimine (PPI), polymethyl methacrylate (PMMA), polyvinylcholride (PVC), polyvinylacetate (PVAc), and polystyrene divinylbenzene
  • One or more plastics selected from the group consisting of a polystylene divinylbenzene copolymer may be used as a material. Specifically, the plastics injected with polystyrene and / or polymethyl methacrylate may be used. It can be included as a material.
  • the present invention relates to a method for analyzing a substance to be detected using a diagnostic chip comprising the following steps: inserting a container containing a sample containing a substance to be detected among the diagnostic chips into a container mounting portion, and a pipette tip mounting a conveying means in the form of a pipe tip to the hole; Inhaling a sample containing the substance to be detected by a transport means and injecting the sol-gel spot including the biological detection substance to interact with the substance to be fixed to a fixed part; Suctioning the remaining substance after the reaction by the detection unit and discharging it to the waste storage unit; Washing the unreacted material in the detection unit by injecting the cleaning solution into the detection unit in a cleaning solution storage unit including a cleaning solution for removing a substance that has not reacted with the detection target material; Sucking the unreacted material and discharging it to a waste storage unit; And imaging the reaction result of the detection unit.
  • a container containing a sample containing a substance to be detected for example, a tube is inserted into the container mount 132 and a transport means in the form of a pipet tip is mounted in the hole 131. Raise the mounting cover of the analysis device after preheating is completed and mount the diagnostic chip 100.
  • the diagnostic chip 100 is mounted on the diagnostic device, and further includes a driving part, a syringe pump, and an optical portion as shown in FIG. 8.
  • the driving unit automatically recognizes the diagnostic chip and moves the X-axis to the device reaction unit equipped with a constant temperature system, and has a system for operating a liquid handler (Y-axis) driving module and a designated position.
  • the same error rate can be precisely designed to 0.1mm.
  • a controlled shaking function of several hundreds to thousands of rpm is added, and finally, the optical unit and the structure are measured at a precise position. By channelizing these structures, up to four diagnostic chips can be linked at the same time.
  • the syringe pump operates in conjunction with the moving X-axis of the diagnostic chip 100 and injects and ejects samples of each stage at a designated position. It adds the function of automatically detaching and attaching the consumable tip, and adds the function of punching the storage foil to the diagnosis chip 100 by the calculated pressure result value to minimize the volume by fusing the multifunction of the operating equipment. have.
  • the suction-ejection of the sample, the main function can recognize the specific position fixed by the touch sensor and adjust the exact volume amount.
  • the margin of error of inhalation and discharge can be controlled to a very small amount of 1 microliter.
  • the optical unit senses the optical image after moving to the optical module unit when the fluorescent reaction is completed at the sol-gel immobilization spot of the diagnostic chip measuring unit.
  • a spatial algorithm between the reaction spots from the reference spot may be applied, and a pixel-based computational system of the reaction spot may be included.
  • the light emitting unit may be configured as a high sensitivity LED, and the light receiving unit may be configured as a high resolution CCD module.
  • the fluorescence wavelength filter used may be configured and mounted at 550 to 680 nm. High sensitivity can be detected by optimizing the light wave guide between the diagnostic window and the LED-CCD. In order to prevent the resultant distortion caused by the temperature variation risk of the LED light, it is possible to maintain the constant temperature system around the measuring unit.
  • the step may proceed by pressing the start button of the analyzer and moving into the reaction chamber while recognizing the barcode tagged on the sample of the diagnostic chip.
  • the pouch sealed with the cover member by punching is opened to open the reaction reagent storage unit 121, the washing solution storage unit 122, and the waste storage unit 123.
  • the pipette tip is fixed to the hole 131, the pipette tip is moved to inhale the sample contained in the container fixed to the container mounting part 132, injected into the detection unit 110, and stirred so that the reaction proceeds. do.
  • a biological marker for the biological detection material of the reaction reagent storage unit 121 is sucked and injected into the detection unit 110, and stirred to allow the reaction to proceed.
  • the remaining material is sucked out and discharged to the waste storage unit 123, and as a washing solution for removing the substances that did not react with the detection target material included in the cleaning solution storage unit 122
  • the unreacted material of the detection unit 110 is sucked and discharged to the waste storage unit 123.
  • the process of washing with washing solution may be repeated three times to remove unreacted material.
  • the reaction result in the detection unit 110 is as shown in FIG. According to FIG. 2, the selective primary immune response of the biological detection material fixed to the sol-gel spot of the detection unit 110 and the detection target material in the sample proceeds, and the biological detection material checks whether the biological detection material reacts. A biological marker and a selective secondary immune response to the detection agent can proceed.
  • reaction chip 100 having completed the reaction is moved to the optical unit, and the data is processed by calculation of a standard signal (Raw Signal) value and the barcode value and device code value measured from the diagnostic chip 100, and the data on the display Send the.
  • standard signal Raw Signal
  • the diagnostic chip 100 is automatically separated from the tray, and the diagnostic chip 100 in which the reaction is completed is removed.
  • the purpose of this study is to investigate the results of analytical specificity and sensitivity performance by using a sol-gel spot sensor and a dedicated assay equipment assay.
  • Using domestic Zeptomatrix influenza panel (8: Influenza A positive: 7 / Influenza B positive: 5 positive) international influenza panel (immersed panel for 10-15 minutes in sample injection section of strip) The test was conducted through a diagnostic chip sol-gel spot diagnosis method according to the invention.
  • FIGS. 9 and 10 Diagnostic imaging results through domestic Rapid products are shown in FIGS. 9 and 10, respectively. In contrast, the results of the method according to the invention are shown in FIGS. 11 and 12, respectively.
  • Three-dimensional fixation is a three-dimensional fixation of biological detection materials such as proteins and antibodies in a porous sol-gel matrix to expose the site or site to be reacted to the pore portion to allow biochemical reactions at various locations.
  • a surface treatment (polyelectrolyte polymer) was carried out to surface-immobilize the antibody in two dimensions, and a three-dimensional antibody immobilization method was performed by a sol-gel technique to induce a reaction with the influenza antigen.
  • the signal results of the antigen antibody response were analyzed.
  • Influenza sol-gel diagnostic chips were used to compare sensitivity / specificity performance for clinical sample tests. Based on the clinical sample (negative sample: 200ea / positive sample A / B each 50ea) supplied from Korea University Guro Hospital (Professor Chae Seung-seung), influenza is detected and diagnosed within 30 minutes using influenza Sol-gel diagnostic chip and dedicated equipment. It was. (Korea University Guro Hospital Disease Diagnosis Reference Equipment: Measurement by Bio-RAD CFX96 TM Real-time PCR System using Seegene's Anyplex TM II RV16 Detection kit)
  • FIG. 15 Fluorescence images of negative sample samples tested are shown in FIG. 15, and FIG. 16 shows the results of analyzing fluorescence data.
  • the detection specificity for Influenza A is shown in Table 7
  • the detection specificity for Influenza B is shown in Table 8 below.
  • FIG. 17 A fluorescence image of the positive sample sample tested for Influenza A is shown in FIG. 17, and FIG. 18 shows the result of analyzing the fluorescence data.
  • FIG. 19 A fluorescence image of the positive sample sample tested against Influenza B is shown in FIG. 19, and FIG. 20 shows the result of analyzing the fluorescence data.
  • Tumor markers of liver cancer, lung cancer, pancreatic cancer, biliary tract cancer, and prostate cancer were prepared using a protein immunodiagnostic sensor fixed in the form of a single sol-gel microspot. Table 11 shows the distribution of normal reference values and organ involvement by tumor markers.
  • Tumor marker detection three-dimensional sol-gel diagnostic chip is configured as shown in FIG. Tumor marker detection method proceeded in the same manner as the influenza test method and immobilized the sol-gel spot on one diagnostic chip to detect multiple tumor markers at once.
  • Tumor marker material sold commercially (Meridian Tumor Marker protein, Lot information CA19-9: 10D11915 / AFP: 3G19214 / CEA: 5H21615 / PSA: 8B04915) was diluted to a certain concentration in normal samples (CA19-9: 30U / ml, AFP: 10 ng / ml, CEA: 5 ng / ml, PSA: 5 ng / ml)
  • the sol-gel diagnostic chip and the sample reaction fluorescence image are shown in FIG. 22. There is no mutual nonspecific reaction and sufficient fluorescence intensity can be detected even at the threshold concentration range.
  • the fluorescence intensity distributions of the tumor marker antigen concentrations are as shown in FIGS. 23 to 26. As the antigen concentration increases, the fluorescence intensity can be linearly confirmed and the fluorescence intensity can be reconstructed into the clinical markers of tumor markers.
  • the analysis process is integrated in a straight line including a sol-gel immobilization detection unit, a reagent storage unit and a waste storage unit.
  • the on-site diagnostic chip together with the test equipment, it can reduce the diagnostic time according to the analysis progress with the quick and simple operation, including the higher analytical performance than the existing structure, and the structure function to quantitatively store the samples, reagents and / or reactants. As a result, cross-contamination between them can be prevented, thereby increasing analysis accuracy.

Abstract

본 발명은 반응과 분석을 포함한 진단칩을 이용하여 검출 대상 물질을 검출하는 방법으로, 구체적으로는 검출 대상 물질과 상호작용하는 생물학적 검출 물질을 포함하고 졸-겔 스팟이 고정된 검출부를 포함하는 진단칩과 이를 기반으로 검출 대상 물질을 검출하는 방법 또는 시료를 분석하는 방법에 관한 것이다.

Description

반응과 분석을 포함한 단일 진단칩의 고감도 신속진단방법
본 발명은 반응과 분석을 포함한 진단칩을 이용하여 검출 대상 물질을 검출하는 방법으로, 구체적으로는 검출 대상 물질과 상호작용하는 생물학적 검출 물질을 포함하고 졸-겔 스팟이 고정된 검출부를 포함하는 진단칩과 이를 기반으로 검출 대상 물질을 검출하는 방법 또는 시료를 분석하는 방법에 관한 것이다.
임상 검사 분야에서 포인트·오브·케어·테스팅 (이하, POCT 라고도 한다) 분야가 주목받고 있다. 검체로부터 검출 대상 물질을 분리한 후 간편한 장치를 통해 POCT 분석함으로써, 검체를 채취하고 나서 검사 결과가 얻어지기까지의 시간을 단축할 수 있고, 간단하게 측정할 수 있다는 이점이 있다.
POCT 분석에 효소 분석(enzyme assay), 면역분석(immunoassay), 화학 비색 분석(chemical colorimetric assay), 전기화학적 분석(electrochemical assay), 형광 표지(fluorescence labeling) 및 측정, 또는 화학발광 표지 (chemiluminescent labeling) 및 측정 등의 다양한 기술이 사용되고 있다.
종전 생화학적 방법을 이용한 체외 진단 형태는 고가의 분석 장비가 필요하고 대형병원 및 검사실 위주의 시약으로 개발되어 왔다. 이에 따라 진단 의약품의 소비 형태는 종합병원과 검사실 등 일부에 편중 되어 있고 고가의 분석 장비와 병행되어야 하기 때문에 국내 기업에는 많은 위험 요소로 작용하여 대부분 수입에 의존한 시장이 형성되었다. 1980년대 이후 현장형 진단 키트인 포인트·오브·케어·테스팅 (POCT)의 개념이 탄생하였고, 이러한 현장형 진단키트는 이후 임신 진단, 약물남용진단, 감염성 진단, 암 진단, 심장질환 등에 폭 넓게 응용되면서 1990년 이후 진단 시장의 성장을 주도하였다. 전 세계적인 체외 진단 치료법을 이용하는 인구가 증가하는 추세에 있고 POCT의 도입과 함께 저렴해 지는 체외 진단 검사비용으로 인해 보다 많은 사람들이 체외 진단에 관심을 보이고 있다. 체외 진단 중 면역화학적 진단의 시장규모는 2009년 140억불 규모에서 연평균 5.4% 성장률로 성장하여 2016년에는 200억불 이상 매출 규모를 형성할 것으로 전망하고 있다.
한편, 인플루엔자는 겨울철에 유행하는 급성 호흡기바이러스 감염으로 매년 인구의 약 10%가 감염되며 노인, 영유아 및 만성 질환 환자에서 폐렴의 합병 또는 기저질환의 악화로 종종 심각한 질환으로 분류된다. 매년 유행하는 계절 인플루엔자는 인플루엔자 바이러스의 항원의 소 변이에 의한 것인 반면 10-40년 주기로 발생되는 대유행 인플루엔자는 항원 대 변이에 의한 것으로 세계적 유행을 특징으로 인구의 30-50%가 감염되므로 인명 및 사회 경제적 피해가 막대하다.
이러한 인플루엔자 바이러스 검출에 가장 많이 이용되는 항원항체 반응 기반의 신속항원검사법(Rapid test)은 비교적 적은 시간이 소요되고 간편한 장점이 있지만, 감도와 정확도가 낮은 단점이 있다. 인플루엔자의 확진 검사 시에 사용되는 Real-Time PCR 방법은 높은 감도와 정확도를 통해 감염성 질환의 진단에 가장 효과적인 기술로 인정받고 있지만, 검사 시간이 비교적 길고 전문기관에 의뢰가 필요하기 때문에 현장 검사가 거의 불가능한 실정이다. 또한 검사 비용이 높은 수준으로 감염성 질환의 대유행 시에 대규모의 초기 대응 수단으로 적용이 매우 어려운 측면이 있다.
따라서, 비교적 작은 규모의 현장 적용이 가능한 POCT 개념의 제품개발이 필요하며, 또한 높은 감도와 정확도를 가지는 기술 개발 마련이 필요한 실정이다.
이러한 기술적 배경하에서, 본 출원의 발명자들은 3차원 고정화 졸겔 기반의 고민감도 기술을 제시하였다. 이 기술은 다공성 3차원 구조의 졸겔구조를 기반으로 다양한 바이오 마커를 대량으로 고정화 할 수 있는 기술로 기존바이오센서 대비 고민감 검출시스템 구축할 수 있으며 마이크로 어레이 제작기술 융합에 의한 소형화 진단칩 기반기술 제공 구현하고 기존 Rapid kit의 낮은 민감도/특이도 성능과 분자진단의 검출시간 제약성을 3차원 졸겔 바이오 융합기술 개발로 극복할 수 있었다. 또한 하나의 반응부에 졸겔 마이크로 어레이 제작기술로 다중마커를 독립적으로 같은 공간에 고정함으로써 멀티플렉스 (multiplex) 기술 구현이 가능하여 다중진단기술의 플랫폼 기반을 구축할 수 있었다.
따라서 종래 사용되던 웰 또는 플레이트 기반이 아닌, 검출 대상 물질과 상호작용하는 생물학적 검출 물질을 포함하는 졸-겔 스팟이 고정된 시료 분석용 진단칩을 통해 졸-겔 기반의 고민감도/고특이도의 분석적 성능 및 다중진단 플랫폼 기술과 현장진단 기반의 신속하고 정확한 결과를 수득할 수 있게 됨으로써, 분석의 정확도 개선은 물론, 일체형의 시약 보관부 및 폐기물 보관부를 포함함으로써, 사용되는 시료 및 시약의 오염, 오사용으로 인한 문제를 해결할 수 있음을 확인하고, 본 발명을 완성하였다.
발명의 요약
상기와 같은 문제를 해결하기 위하여, 본 발명은 진단칩을 이용하여 검출 대상 물질을 검출하는 방법을 제공하는 것이다.
상기 목적을 달성하기 위하여, 본 발명은 다음의 구성이 일체형으로 포함된 진단칩을 이용하여 검출 대상 물질을 검출하는 방법으로, 검출 대상 물질을 포함하는 샘플이 함유된 용기 장착부; 검출 대상 물질과 상호작용하는 생물학적 검출 물질을 포함하는 졸-겔 스팟이 고정된 검출부; 검출 대상 물질과 생물학적 검출 물질의 반응 여부 확인을 위해, 생물학적 검출 물질에 대한 생물학적 표지자를 포함하는 반응 시약 보관부; 검출 대상 물질과 반응하지 않은 물질을 제거하기 위한 세척 용액을 포함하는 세척 용액 보관부; 검출부에서 반응 후의 잔존 물질 또는 미반응 물질을 제거하는 폐기물 보관부; 및 피펫 팁 (pipet tip) 형태의 운반 수단이 장착된 홀, 상기 용기 장착부에 포함된 검출 대상 물질을 포함하는 샘플을 상기 검출부의 검출 대상 물질과 상호작용하는 생물학적 검출 물질과 접촉시키고, 반응 결과를 이미징하는 것을 포함하는 방법을 제공한다.
본 발명은 또한, 다음의 단계를 포함하는 진단칩을 이용한 검출 대상 물질의 분석방법을 제공한다: 진단칩 중 검출 대상 물질을 포함하는 샘플이 함유된 용기를 용기 장착부에 삽입하고, 피펫 팁 (pipet tip) 형태의 운반 수단을 홀에 장착시키는 단계; 상기 검출 대상 물질을 포함하는 샘플을 운반 수단으로 흡입하여, 검출 대상 물질과 상호작용하는 생물학적 검출 물질을 포함하는 졸-겔 스팟이 고정된 검출부에 주입하는 단계; 상기 검출부에서 반응 후의 잔존 물질을 흡입하여, 폐기물 보관부에 배출하는 단계; 상기 검출 대상 물질과 반응하지 않은 물질을 제거하기 위한 세척 용액을 포함하는 세척 용액 보관부에서 세척 용액을 검출부로 주입하여 상기 검출부 중 미반응 물질을 세척하는 단계; 상기 미반응 물질을 흡입하여, 폐기물 보관부에 배출하는 단계; 및 상기 검출부의 반응 결과를 이미징하는 단계.
도 1은 진단칩의 전면도를 나타낸 것이다.
도 2는 진단칩 중 검출부에 대한 세부도 및 3차원 졸-겔 스팟에 대한 반응모식도이다
도 3은 진단칩 중 반응 시약 보관부에 대한 세부도이다.
도 4는 진단칩 중 세척 용액 보관부에 대한 세부도이다.
도 5는 진단칩 중 폐기물 보관부에 대한 세부도이다.
도 6은 진단칩 중 운반 수단이 장착된 홀에 대한 세부도이다.
도 7은 진단칩 중 용기 장착부에 대한 세부도이다.
도 8은 본 발명에 따른 방법 구현에 사용되는 진단기기에 대한 모식도이다.
도 9및 도 10은 종래 국내 Rapid 제품(S사)을 통한 진단 이미징 결과를 나타낸 것이다.
도 11 및 도 12는 본 발명에 따른 방법에 의한 진단 결과를 나타낸 것이다.
도 13 및 도 14는 Sol-gel을 3차원적 항체 고정한 3차원 솔젤 항체고정화 어세이에 대한 형광 세기 및 형광 이미지 결과를 각각 나타낸 것이다.
도 15는 음성 검체 샘플을 테스트한 형광이미지를 나타낸 결과이다.
도 16은 음성 검체 샘플을 테스트한 형광 데이터를 분석한 결과를 나타낸 것이다.
도 17은 양성 검체 샘플을 Influenza A에 대하여 테스트한 형광이미지를 나타낸 결과이다.
도 18은 양성 검체 샘플을 Influenza A에 대하여 테스트한 형광 데이터를 분석한 결과를 나타낸 것이다.
도 19는 양성 검체 샘플을 Influenza B에 대하여 테스트한 형광이미지를 나타낸 것이다.
도 20은 양성 검체 샘플을 Influenza B에 대하여 테스트한 형광 데이터를 분석한 결과를 나타낸 것이다.
도 21은 종양표지자 검출용 3차원 졸-겔 항체 고정화 칩에 대한 구성도이다.
도 22는 종양표지자 항원 검체 반응 형광이미지를 나타낸 것이다.
도 23 내지 도 26은 종양표지자 항원 농도별로 형광세기 분포도를 나타낸 것이다.
발명의 상세한 설명 및 바람직한 구현예
다른 식으로 정의되지 않는 한, 본 명세서에서 사용된 모든 기술적 및 과학적 용어들은 본 발명이 속하는 기술분야에서 숙련된 전문가에 의해서 통상적으로 이해되는 것과 동일한 의미를 갖는다. 일반적으로, 본 명세서에서 사용된 명명법은 본 기술분야에서 잘 알려져 있고 통상적으로 사용되는 것이다.
일 관점에서, 본 발명은 다음의 구성이 일체형으로 포함된 진단칩을 이용하여 검출 대상 물질을 검출하는 방법으로, 검출 대상 물질을 포함하는 샘플이 함유된 용기 장착부; 검출 대상 물질과 상호작용하는 생물학적 검출 물질을 포함하는 졸-겔 스팟이 고정된 검출부; 검출 대상 물질과 생물학적 검출 물질의 반응 여부 확인을 위해, 생물학적 검출 물질에 대한 생물학적 표지자를 포함하는 반응 시약 보관부; 검출 대상 물질과 반응하지 않은 물질을 제거하기 위한 세척 용액을 포함하는 세척 용액 보관부; 검출부에서 반응 후의 잔존 물질 또는 미반응 물질을 제거하는 폐기물 보관부; 및 피펫 팁 (pipet tip) 형태의 운반 수단이 장착된 홀, 상기 용기 장착부에 포함된 검출 대상 물질을 포함하는 샘플을 상기 검출부의 검출 대상 물질과 상호작용하는 생물학적 검출 물질과 접촉시키고, 반응 결과를 이미징하는 것을 포함하는 방법에 관한 것이다.
본 발명에 따른 방법은 최적 신속화 반응 단계로 구성 (시약 및 반응단계 정량오차 오류 극복, 측정부 반응 최적화 및 장비 연동 신속화 설계 등)되어, 기존 대비 민감도를 90% 이상의 구현할 수 있으며, 본 발명에 사용된 진단칩은 각 반응 스텝에 맞춰 시약 보관부 및 폐기물 보관부를 구분함으로써, 사용되는 시료 및 시약의 오염, 오사용으로 인한 문제를 해결할 수 있다.
하나의 실시예에서, 상기 검출 대상 물질은 생체 물질일 수 있으며, 예를 들어 예를 들어, 핵산, 펩타이드, 단백질, 저분자 물질, 바이러스 또는 세포일 수 있다. 상기 생체 물질은 체액으로부터 유래될 수 있다. 상기 체액은 예를 들어 분변, 소변, 눈물, 타액, 피부의 외부 분비물, 호흡관의 외부 분비물, 장관의 외부 분비물, 소화관의 외부 분비물, 혈장, 혈청, 혈액, 척수액, 림프액, 체액, 조직, 조직 균질물, 조직의 부분, 세포, 세포 추출물, 또는 체외 세포 배양물일 수 있다.
상기 바이러스는 예를 들어, 인플루엔자 바이러스일 수 있다. 본 발명의 일 실시예에 따르면, 인플루엔자 아형 A와 B에 대한 특이적인 항체를 솔젤 고정화 기술로 전용 진단칩에 고정하고 각 아형에 대한 검체에서 특이적인 진단 가능성을 확인할 수 있다. 기존 검사방법의 복잡한 프로세스 부분을 Lab on a chip 형태의 전용 진단칩을 사용하여 검체 채취부터 결과값 산출이 얻어지기까지의 자동화 측정과정으로 단축할 수 있으므로, 인플루엔자 바이러스 존재 여부를 간편하게 측정할 수 있다. 또한, 소형화된 진단칩 구성으로 보관의 용이성 및 현장검사(POCT) 시스템에 적용 가능하다는 이점이 있다.
상기 샘플이 함유된 용기는 진단칩과 분리 가능한 형태로 외부에서 끼워넣을 수 있다. 상기 샘플이 함유된 용기는 진단칩에 포함된 홀에 기계적, 접착성, 또는 기타 수단에 의해 진단칩에 장착될 수 있다. 이러한 용기를 사용함으로써, 다른 시약들과 함께 일체형으로 샘플을 보관하여 발생되는 공간적 및/또는 시간적 제약에서 자유롭게 샘플을 보관 또는 처리할 수 있게 된다.
상기 용기의 형태는 예를 들어, 병, 통(tub), 튜브 또는 앰플일 수 있고, 그 재질에는 제한이 없으며, 예를 들어 용기 부분적으로 또는 전체적으로 플라스틱, 유리, 종이, 호일, 왁스를 사용하여 제조될 수 있다.
상기 검출 대상 물질과 상호작용하는 생물학적 검출 물질은 예를 들어, 단백질, 또는 핵산 및/또는 올리고뉴클레오타이드일 수 있다. 상기 단백질은 예를 들어 검출 대상 물질에 특이적으로 결합하는 항체 또는 이의 단편일 수 있다. 이 때, 검출 대상 물질의 검출은 항원-항체 반응에 의한 면역분석(immunoassay) 방식으로 수행될 수 있다.
상기 면역분석은 다양한 정량적 또는 정성적 면역분석 프로토콜에 따라 실시될 수 있다. 상기 면역분석 포맷은 방사능면역분석, 방사능면역침전, 면역침전, 면역조직화학염색, ELISA (enzyme-linked immunosorbant assay), 캡처-ELISA, 샌드위치 분석, 유세포 분석 (flow cytometry), 면역형광염색 및 면역친화성 정제를 포함하지만, 이에 한정되는 것은 아니다.
하나의 실시예에서, 상기 검출 대상 물질을 포함하는 샘플과 검출 대상 물질과 상호작용하는 1차 생물학적 검출 물질을 반응시키는 단계; 및 상기 검출 대상 물질과 상호작용이 이루어진 1차 생물학적 검출 물질에 결합하는 2차 생물학적 검출 물질을 반응시키는 단계를 포함할 수 있다. 상기 검출 대상 물질과 상호작용하는 검출 물질이 항체인 경우, 1차 생물학적 검출 물질은 검출 대상 물질에 특이적으로 결합할 수 있고, 검출 대상 물질에 특이적으로 결합한 항체에 특이적으로 결합하는 항체를 2차 생물학적 검출 물질로 하여 반응이 수행될 수 있다.
상기 핵산 및/또는 올리고뉴클레오타이드는 예를 들어 앱타머 (aptamer)일 수 있다. 상기 앱타머는 소정의 표적 분자에 대한 결합 활성을 갖는 핵산 및/또는 올리고뉴클레오타이드 분자를 의미하며, 표적 분자에 결합하여 활성을 저해할 수 있다. 상기 앱타머는 RNA, DNA, 수식(modified) 올리고뉴클레오타이드 또는 이들의 혼합물일 수 있다. 상기 앱타머는 또한, 직쇄상 또는 환상의 형태일 수 있다. 상기 앱타머의 길이는 특별히 한정되지 않고, 통상 약 15∼약 200 뉴클레오타이드일 수 있다.
이 때, 상기 생물학적 검출 물질에 대한 생물학적 표지자는 예를 들어, 방사성 동위원소, 형광염료, 염료, 단백질, 또는 발광성 물질로 표지된 항체 또는 앱타머일 수 있으나, 이에 한정되는 것은 아니다. 본 발명의 방법에 포함된 반응 결과 이미징은 생물학적 표지자가 나타내는 형광, 방사선량, 발광 강도 등을 측정 및 분석하여 수행될 수 있다.
상기 졸-겔 스팟은 검출 대상 물질과 상호작용하는 생물학적 검출 물질을 고정하기 위한 것으로, 졸 용액이 겔화되면서 고정될 수 있고 검출 대상 물질이 포함된 시료와 반응시 스팟이 떨어지지 않도록 고정될 수 있다.
상기 졸-겔 스팟의 크기는 예를 들어, 100-1000μm, 구체적으로 200-400μm일 수 있고, 더욱 구체적으로 250-350μm일 수 있다. 목적하는 범위 내에서 졸-겔 스팟의 크기가 너무 작으면 졸-겔 스팟의 탈착의 문제가 있고, 졸-겔 스팟의 크기가 크면 균일한 다공성 구조체 형성의 문제가 있다.
상기 졸-겔 스팟은 검출부에서 일 방향으로 하나 이상의 졸-겔 스팟이 적어도 하나의 열을 가지도록 마이크로 어레이 형태로 배치될 수 있다. 이를 통해 다양한 검출 대상 물질과 상호작용하는 다양한 생물학적 검출 물질을 고정할 수 있으므로, 한 번에 다중으로 질병 진단할 수 있게 된다.
이하에서, 본 발명에 따른 진단칩의 도면을 통해 상세하게 설명한다. 동일한 구성요소들에 대해서는 비록 다른 도면상에 표시되더라도 가능한 한 동일한 부호를 가진다.
도 1을 참조하면, 본 발명에 따른 진단칩 (100)은 검출부 (110), 시약 및/또는 폐기물 보관부 (120), 샘플 및 운반수단 보관부 (130)로 구성된다. 본 발명에 따른 진단칩 (100)는 검출부 (110), 시약 및/또는 폐기물 보관부 (120), 샘플 및 운반수단 보관부 (130)를 포함하여 약 가로 (91.0mm) × 세로 (25mm) ×높이 (12.5mm)의 크기를 가질 수 있다.
샘플 및 운반수단 보관부 (130)는 피펫 팁 (pipet tip) 형태의 운반 수단이 장착된 홀 (131) 및 검출 대상 물질을 포함하는 샘플이 함유된 용기 장착부 (132)로 구성된다. 용기 장착부 (132)에 고정되는 용기는 예를 들어, 진단칩와 분리 가능한 병, 통(tub), 튜브 또는 앰플일 수 있다. 진단칩 별로 개별 피펫 팁과 용기가 포함되며, 복수의 샘플을 구별하기 위해 샘플에 태그 예를 들어, 바코드 또는 QR 코드 등을 표시할 수 있다.
경우에 따라서, 진단칩 (100) 사용자의 사용편의를 위해 일 측면에 손잡이 (133)가 부착될 수 있다.
검출부 (110)에는 검출 대상 물질 예를 들어, 핵산, 펩타이드, 단백질, 저분자 물질, 바이러스 또는 세포 상호작용하는 생물학적 검출 물질 예를 들어, 항원, 항체 또는 앱타머를 포함하는 졸-겔 스팟이 고정되어 있고, 졸-겔 스팟은 예를 들어 100-1000μm, 구체적으로 200-400μm의 크기, 더욱 구체적으로 250-350 μm의 크기를 가질 수 있다.
검출부 (110)에서 졸-겔 스팟은 하나 이상이 일 방향으로 배열되어 있으며, 적어도 하나 이상의 열을 가지도록 마이크로 어레이 형태로 배치될 수 있다. 이러한 졸-겔 스팟을 통해, 다양한 검출 대상 물질과 상호작용하는 다양한 생물학적 검출 물질 예를 들어, 하나 이상 또는 둘 이상의 생물학적 검출 물질을 고정할 수 있으므로, 한 번에 다중으로 질병 진단할 수 있게 된다.
시약 및/또는 폐기물 보관부 (120)는 검출 대상 물질과 생물학적 검출 물질의 반응 여부 확인을 위해, 생물학적 검출 물질에 대한 생물학적 표지자를 포함하는 반응 시약 보관부 (121), 검출 대상 물질과 반응하지 않은 물질을 제거하기 위한 세척 용액을 포함하는 세척 용액 보관부 (122) 및 검출부에서 반응 후의 잔존 물질 또는 미반응 물질을 제거하는 폐기물 보관부 (123)로 구성된다. 도 3 내지 도 5 각각에 반응 시약 보관부 (121), 세척 용액 보관부 (122) 및 폐기물 보관부 (123)가 구체적으로 도시되어 있다.
반응 시약 보관부 (121)에 포함된 생물학적 표지자는 예를 들어, 생물학적 검출 물질을 탐지할 수 있는 방사성 동위원소, 형광염료, 염료, 단백질, 또는 발광성 물질로 표지된 항체 또는 앱타머일 수 있다.
세척 용액 보관부 (122)에 포함된 검출 대상 물질과 반응하지 않은 물질을 세척하기 위한 용액은 예를 들어 계면활성제, 제단백제 또는 이온화염물질을 소량 포함하는 용액 일 수 있다. 검출부에서 반응 후의 잔존 물질 또는 미반응 물질을 제거하는 폐기물 보관부 (123)는 예를 들어, 검출부에서 반응 후의 잔존 물질 또는 미반응 물질을 흡수하는 패드 형태일 수 있다. 폐기물 보관부 (123)는 반응 후의 잔존 물질 또는 미반응 물질을 흡수할 수 있는 다공성 재료라면 특별히 제한되지 않으나, 예를 들어, 스폰지, 부직포, 천, 또는 솜 일 수 있다. 폐기물 보관부 (123)에서 폐기물을 처리함으로써 반응 후의 잔존 물질 또는 미반응 물질이 시약과 혼입됨으로써 발생하는 오염에 의해 검사 결과의 정확도가 저하되는 문제를 해결할 수 있다.
경우에 따라서, 검출부 (110)에는 스티커가 부착되고, 반응 시약 보관부 (121), 세척 용액 보관부 (122) 및 폐기물 보관부 (123)는 커버 부재를 실링하여 밀봉될 수 있다.
본 발명에 따른 일체형으로 포함된 단일 진단칩 (100)은 PVdF(polyvinylidene fluoride), 나일론(nylon), 니트로셀룰로오스(nitrocellulose), PU(polyurethane), PC(polycarbonate), PS(polystyrene), PLA(polylatic acid), PAN(polyacrylonitrile), PLGA,(polylactic-co-glycolic acid), PEI(polyethyleneimine), PPI(polypropyleneimine), PMMA (Polymethyl methacrylate), PVC (polyvinylcholride), PVAc(polyvinylacetate), 및 폴리스티렌 디비닐벤젠 공중합체(Polystylene divinylbenzene copolymer)로 구성된 군에서 선택된 1종 이상으로 사출된 플라스틱을 재질로 포함할 수 있으며, 구체적으로 폴리스타이렌(Polystyrene) 및/또는 폴리메틸 메타크릴레이트 (Polymethyl methacrylate)로 사출된 플라스틱을 재질로 포함할 수 있다.
다른 관점에서, 본 발명은 다음의 단계를 포함하는 진단칩을 이용한 검출 대상 물질의 분석방법에 관한 것이다: 진단칩 중 검출 대상 물질을 포함하는 샘플이 함유된 용기를 용기 장착부에 삽입하고, 피펫 팁 (pipet tip) 형태의 운반 수단을 홀에 장착시키는 단계; 상기 검출 대상 물질을 포함하는 샘플을 운반 수단으로 흡입하여, 검출 대상 물질과 상호작용하는 생물학적 검출 물질을 포함하는 졸-겔 스팟이 고정된 검출부에 주입하는 단계; 상기 검출부에서 반응 후의 잔존 물질을 흡입하여, 폐기물 보관부에 배출하는 단계; 상기 검출 대상 물질과 반응하지 않은 물질을 제거하기 위한 세척 용액을 포함하는 세척 용액 보관부에서 세척 용액을 검출부로 주입하여 상기 검출부 중 미반응 물질을 세척하는 단계; 상기 미반응 물질을 흡입하여, 폐기물 보관부에 배출하는 단계; 및 상기 검출부의 반응 결과를 이미징하는 단계에 관한 것이다.
구체적 분석방법은 다음과 같다.
1. 분석 준비
검출 대상 물질을 포함하는 샘플이 함유된 용기 예를 들어, 튜브를 용기 장착부 (132)에 삽입하고, 피펫 팁 (pipet tip) 형태의 운반 수단을 홀 (131)에 장착시킨다. 예열이 완료된 분석장치의 장착 커버를 올리고 진단칩 (100)을 장착시킨다. 진단칩 (100)은 진단기기에 장착되는데, 도 8에 나타낸 바와 같이 구동부 (driving part), 시린지 펌프 (Syringe pump) 및 광학부 (Optical portion)를 추가로 포함한다.
상기 구동부는 진단칩을 자동적으로 인식하여 항온시스템으로 갖춰진 기기반응부로 X축 이동시키고 리퀴드 핸들러 (Liquid handler) Y축 구동모듈과 지정된 위치로 작동하는 시스템을 가진다. 동 대한 오차율은 0.1mm로 정밀하게 설계될 수 있다. 진단칩 (100) 측정부의 졸-겔 반응 증폭을 위해 수백~수천 rpm의 컨트롤된 쉐이킹 기능이 추가되며 최종적으로 광학부와 정밀한 위치에서 측정되는 구조로 구성된다. 이러한 구조를 채널화 하여 최대 4개의 진단칩을 동시에 연동할 수 있다.
상기 시린지 펌프는 진단칩(100)의 이동 X축과 연동하여 작동되며 지정된 위치에서 각 단계의 샘플들을 주입-배출한다. 소모성 팁을 자동으로 탈- 부착하는 기능을 추가하며 진단칩(100)에 보관용기 호일을 연산된 압력 결과값 의해 펀칭을 할 수 있는 기능을 추가하여 작동장비의 다기능을 융합시켜 부피를 최소화할 수 있다. 주 기능인 샘플의 흡입-배출은 터치센서에 의해 고정된 특정위치를 인식하여 정확한 부피양을 조절할 수 있다. 흡입 배출의 오차범위를 1마이크로 리터로 극소량 컨트롤 가능할 수 있다.
상기 광학부는 진단칩 측정부의 졸-젤 고정화 스팟에서 형광적인 반응이 완료되면 광학모듈부로 이동 후 광학적 이미지를 센싱한다. 정확한 스팟의 위치를 인지하기 위해 참조 스팟 (Reference spot)으로부터 반응 스팟간의 공간적 알고리즘을 적용하며 반응 스팟의 픽셀 (pixel) 단위의 연산시스템을 포함할 수 있다. 발광부는 고감도 LED로 구성하며 수광부는 고해상도 (High resolution) CCD 모듈로 구성될 수 있다. 사용되는 형광파장 필터는 550~680nm에서 구성되어 장착될 수 있다. 진단칩의 측정창과 LED-CCD간의 광파 가이드 (Light wave guide)를 최적화함으로써 고감도로 센싱할 수 있다. LED 광의 온도변이위험성에 의한 결과값 왜곡현상을 방지하기 위해 측정부 주위를 항온시스템으로 유지할 수 있다.
2. 분석 진행
분석장치의 시작 버튼을 누르고, 진단칩의 샘플에 태그된 바코드를 인식하면서 반응 챔버 내로 이동하면서 단계가 진행될 수 있다. 펀칭으로 커버 부재로 실링되어 밀봉된 파우치를 오픈하여 반응 시약 보관부 (121), 세척 용액 보관부 (122) 및 폐기물 보관부 (123)가 개구되도록 한다.
홀 (131)에 피펫 팁 (pipet tip)을 고정시키고, 피펫 팁을 이동시켜 용기 장착부 (132)에 고정되는 용기에 함유된 샘플을 흡입하여 검출부 (110)에 주입하고, 교반하여 반응이 진행되도록 한다. 반응 시약 보관부 (121)의 생물학적 검출 물질에 대한 생물학적 표지자를 흡입하여 검출부 (110)에 주입하고, 교반하여 반응이 진행되도록 한다.
반응이 완료된 검출부 (110)의 반응 후 잔존 물질을 흡입하여 폐기물 보관부 (123)에 배출하고, 세척 용액 보관부 (122)에 포함된 검출 대상 물질과 반응하지 않은 물질을 제거하기 위한 세척 용액으로 검출부 (110)의 미반응 물질을 흡입하여 폐기물 보관부 (123)에 배출한다. 경우에 따라서, 반응하지 않은 물질을 제거하기 위해 세척 용액으로 세척하는 과정은 3회 반복될 수 있다.
검출부 (110)에서의 반응 결과는 도 2에 나타낸 바와 같다. 도 2에 따르면, 검출부 (110)의 졸-겔 스팟에 고정된 생물학적 검출 물질과 샘플 중 검출 대상 물질의 선택적 1차 면역 반응이 진행되고, 검출 대상 물질과 생물학적 검출 물질의 반응 여부 확인을 위해 생물학적 검출 물질에 대한 생물학적 표지자와 선택적 2차 면역 반응이 진행될 수 있다.
이후, 반응이 완료된 진단칩 (100)은 광학부로 이동시키고, 표준 시그널 (Raw Signal) 값과 진단칩 (100)으로부터 측정된 바코드값 및 기기 코드값의 연산에 의해 데이터를 처리하고, 디스플레이에 데이터를 송출시킨다.
이후, 진단칩 (100)은 자동으로 트레이에서 분리되고, 반응이 완료된 진단칩 (100)은 제거된다.
이하, 실시예를 통하여 본 발명을 더욱 상세히 설명하고자 한다. 이들 실시예는 오로지 본 발명을 예시하기 위한 것으로서, 본 발명의 범위가 이들 실시예에 의해 제한되는 것으로 해석되지 않는 것은 당업계에서 통상의 지식을 가진 자에 있어서 자명할 것이다.
실시예 1. 인플루엔자 기존 Rapid 제품과 진단칩 졸-겔 스팟센서의 반응 결과 비교
기존 제품 Rapid 대비 졸-겔 스팟센서 제작과 전용 분석 장비 어세이에 의한 분석적 특이도 및 민감도 성능 차이에 대한 결과를 규명하고자 한다. 국제 influenza 패널인 Zeptomatrix influenza panel (음성: 8개/ Influenza A 양성: 7개/ Influenza B 양성: 5개)을 이용하여 국내 Rapid 제품 (패널을 스트립의 샘플 주입부에 10~15분간 담금) 및 본 발명에 따른 진단칩 졸-젤 스팟 진단방법을 통해 테스트를 진행하였다.
국내 Rapid 제품을 통한 진단 이미징 결과를 도 9 및 도 10에 각각 나타내었다. 이에 반해, 본 발명에 따른 방법에 의한 결과를 도 11 및 도 12에 각각 나타내었다.
구체적으로, 표 1에 따른 임상적 민감도 특이도 측정 기준에 따라 측정하였다.
Test Disease Total
Present Not present
Positive True positive (TP) False positive (FP) TP+FP
Negative False negative (FN) True negative (TN) FN+TN
Total TP+FN FP+TN n
민감도 : TP/TP+FN, 특이도 : TN/FP+TN
양성 예측도 : TP/TP+FP, 음성 예측도 : TN/TN+FN
위양성율 : FP/FP+TN = 1-특이도, 위음성율 : FN/TP+FN = 1-민감도
그 결과, 표 2 및 표 3에 따르면, Influenza A에 대한 민감도는 본 발명에 따른 방법이 7/7 = 100%, 특이도 : 13/13 = 100%으로 민감도 및 특이도가 모두 100% (표 2)인데 반해, 공지의 Rapid kit는 민감도 : 3/7 = 43%, 특이도 : 13/13 = 100% (표 3)로 낮아, 본 발명에 따른 방법이 우수한 민감도를 나타냄을 알 수 있다.
Test Disease Total
Present Not present
Positive 7 0 7
Negative 0 13 13
Total 7 13 20
Test Disease Total
Present Not present
Positive 3 0 3
Negative 4 13 17
Total 7 13 20
표 4 및 표 5에 따르면, Influenza B에 대한 민감도는 본 발명에 따른 방법이 5/5 = 100%, 특이도: 15/15 = 100%으로 민감도 및 특이도가 모두 100% (표 4)인데 반해, 공지의 Rapid kit는 민감도 : 3/5 = 60%, 특이도 : 13/13 = 100% (표 5)로 낮아, 본 발명에 따른 방법이 우수한 민감도를 나타냄을 알 수 있다.
Test Disease Total
Present Not present
Positive 5 0 5
Negative 0 15 15
Total 5 15 20
Test Disease Total
Present Not present
Positive 3 0 3
Negative 2 15 17
Total 5 15 20
실시예 2. 인플루엔자 2차원 항체 표면 고정화칩과 3차원 졸-젤 항체 고정화 진단 센서의 반응 결과 비교
표면 처리된 기판 위에 2차원으로 고정화된 항체와 본 발명에 따른 방법 중 검출부의 졸-겔에 의해 항체가 3차원적으로 고정화된 칩과의 인플루엔자 항원 어세이에 따른 성능을 평가하였다.
3차원적 고정은 다공성의 졸-겔 매트릭스에 단백질 및 항체와 같은 생물학적 검출 물질을 3차원 고정함으로써 반응하고자 하는 부위나 위치를 공극 부분에 노출시켜 다양한 위치에서 생화학적 반응이 이루어지도록 하는 것이다.
표면에 항체와의 고정화를 위하여 표면 처리(polyelectrolyte polymer)를 진행하여 2차원적으로 항체를 표면 고정화하고, 졸-젤 기법으로 3차원적 항체 고정화 방법을 진행하여 인플루엔자 항원과의 반응을 유도하였다. 이에 따른 항원 항체반응에 신호적 결과를 분석하였다.
인플루엔자항원농도(TCID50/ml) 0 10 100 1000 10000
2차원 표면 항체고정화 0.018 0.066 0.082 0.109 0.111
3차원 Sol-gel 항체고정화 0.018 0.193 0.337 0.604 0.978
표 6, 도 13 및 14에 따르면, 졸-겔 기법의 3차원적 항체 고정화한 본 발명으로 항체-항원반응 형광세기가 농도별 4배~ 9배로 민감도가 높음을 확인할 수 있다.
실시예 3: 인플루엔자 졸-겔 진단 센서를 이용한 임상 샘플 테스트 결과
인플루엔자 졸-겔 진단 칩을 이용하여 임상샘플 테스트에 대한 민감도/특이도 성능을 비교하였다. 고려대학교 구로병원 (임채승 교수)로부터 공급받은 임상샘플(음성검체: 200ea/ 양성검체 A/B 각 50ea)을 바탕으로 인플루엔자 Sol-gel 진단 칩 및 전용장비를 이용하여 인플루엔자를 30분 이내에 검출하고 진단하였다. (고려대학교 구로병원 질병진단 기준장비: Seegene사 Anyplex™ II RV16 Detection kit를 이용한 Bio-RAD사 CFX96™ Real-time PCR System으로 측정)
음성 검체 샘플을 테스트한 형광이미지를 도 15에 나타내었고, 도 16은 형광 데이터를 분석한 결과를 나타낸다. 이와 관련하여 Influenza A에 대한 검출 특이도는 다음 표 7, Influenza B에 대한 검출 특이도는 다음 표 8과 같다.
Influenza A에 대한 검출 특이도
Test Disease Total
Present Not present
Positive 0 2 2
Negative 0 198 198
Total 0 200 200
Influenza B에 대한 검출 특이도
Test Disease Total
Present Not present
Positive 0 2 2
Negative 0 198 198
Total 0 200 200
양성 검체 샘플을 Influenza A에 대하여 테스트한 형광이미지를 도 17에 나타내었고, 도 18은 형광 데이터를 분석한 결과를 나타낸다. 이와 관련하여 Influenza A에 대한 검출 특이도는 다음 표 9와 같다. 표 9에 따르면, 민감도는48/50 = 96%이다.
Influenza A에 대한 민감도 분석
Test Disease Total
Present Not present
Positive 48 0 48
Negative 2 0 2
Total 50 0 50
양성 검체 샘플을 Influenza B에 대하여 테스트한 형광이미지를 도 19에 나타내었고, 도 20은 형광 데이터를 분석한 결과를 나타낸다. 이와 관련하여 Influenza B에 대한 검출 특이도는 다음 표 10과 같다. 표 10에 따르면, 민감도는49/50 = 98%이다.
Influenza B에 대한 민감도 분석
Test Disease Total
Present Not present
Positive 49 0 49
Negative 1 0 1
Total 50 0 50
실시예4: 졸-겔 진단 센서를 이용한 종양표지자 검사 (확대 응용 실시예)
간암, 폐암, 췌장암, 담도암, 전립선암의 종양 표지자 (tumor marker)들을 하나의 졸-겔 마이크로 스팟 형태로 각각 고정한 단백질 면역 진단 센서로 제작하였다. 종양 표지자별 정상 참고치 및 신체기관 관여 분포는 표 11과 같다.
검사항목 정상참고치 참고
소화기암 (CA19-9) 0-27 U/ml 담도, 췌장
알파피토프로테인 (AFP) 0-7 ng/ml
암태아성 항원 (CEA) 0-4.3 ng/ml 기관지, 폐, 소화기
전립선특이항원 (PSA) 0-3 ng/ml 전립선
종양표지자 검출용 3차원 졸-겔 진단칩은 도 21에서와 같이 구성된다. 종양표지자 검출방법은 상기 인플루엔자 검사법과 동일하게 진행하였으며 한번에 다중의 종양표지자 검출할 수 있도록 졸-겔 스팟을 한 진단칩에 고정화한다.
상용화로 판매되는 종양표지자 물질을 (Meridian사 Tumor Marker protein, Lot 정보 CA19-9: 10D11915/ AFP: 3G19214/ CEA: 5H21615/ PSA: 8B04915) 정상 검체에 일정농도로 희석하여(CA19-9: 30U/ml, AFP: 10ng/ml, CEA: 5ng/ml, PSA: 5ng/ml) 졸-겔 진단칩과 검체 반응 형광이미지는 도 22에 나타낸 바와 같다. 상호 비특이적 반응은 없으며 경계값 농도구간에서도 충분한 형광세기 검출이 가능하다.
이를 바탕으로 종양표지자 항원 농도별 형광세기 분포도는 도 23 내지 도 26에서와 같다. 항원 농도의 증가에 따라 형광세기가 선형적인 증가추세를 확인 할 수 있고 해당 형광학적 세기를 종양표지자의 임상학적 농도결과값으로 재구성할 수는 기반을 가진다.
본 발명에 따르면, 종전의 고민감도/고특이도 성능의 다중진단 플랫폼으로 제시된 졸-겔 기반기술을 바탕으로 분석 과정이 일체형으로 구성된 졸-겔 고정화 검출부와 시약 보관부 및 폐기물 보관부를 포함한 직선상의 현장진단용 진단칩을 검사 장비와 함께 사용하여, 기존대비 높은 분석적 성능을 포함, 신속하고 간단한 동작만으로 분석진행에 따른 진단 시간의 단축성능, 시료와 시약 및/또는 반응물질의 정량 보관이 가능한 구조기능, 이들 사이의 교차오염을 방지할 수 있게 됨으로써, 분석 정확도를 높일 수 있다.
이상으로 본 발명의 내용의 특정한 부분을 상세히 기술하였는바, 당업계의 통상의 지식을 가진 자에게 있어서, 이러한 구체적 기술은 단지 바람직한 실시양태일 뿐이며, 이에 의해 본 발명의 범위가 제한되는 것이 아닌 점은 명백할 것이다. 따라서, 본 발명의 실질적인 범위는 첨부된 청구항들과 그것들의 등가물에 의하여 정의된다고 할 것이다.

Claims (15)

  1. 다음의 구성이 일체형으로 포함된 단일 진단칩을 이용하여 검출 대상 물질을 검출하는 방법으로,
    검출 대상 물질을 포함하는 샘플이 함유된 용기 장착부;
    검출 대상 물질과 상호작용하는 생물학적 검출 물질을 포함하는 졸-겔 스팟이 고정된 검출부;
    검출 대상 물질과 생물학적 검출 물질의 반응 여부 확인을 위해, 생물학적 검출 물질에 대한 생물학적 표지자를 포함하는 반응 시약 보관부;
    검출 대상 물질과 반응하지 않은 물질을 제거하기 위한 세척 용액을 포함하는 세척 용액 보관부;
    검출부에서 반응 후의 잔존 물질 또는 미반응 물질을 제거하는 폐기물 보관부; 및
    피펫 팁 (pipet tip) 형태의 운반 수단이 장착된 홀,
    상기 용기 장착부에 포함된 검출 대상 물질을 포함하는 샘플을 상기 검출부의 검출 대상 물질과 상호작용하는 생물학적 검출 물질과 접촉시키고, 반응 결과를 이미징하는 것을 포함하는 방법.
  2. 제1항에 있어서, 상기 검출 대상 물질은 생체 물질인 것을 특징으로 하는 방법.
  3. 제 1 항에 있어서, 상기 샘플이 함유된 용기는 진단칩과 분리 가능한 병, 통(tub), 튜브 또는 앰플인 것을 특징으로 하는 방법.
  4. 제 1 항에 있어서, 상기 검출 대상 물질은 핵산, 펩타이드, 단백질, 저분자 물질, 바이러스 또는 세포인 것을 특징으로 하는 방법.
  5. 제4항에 있어서, 상기 바이러스는 인플루엔자 바이러스인 것을 특징으로 하는 방법.
  6. 제 1 항에 있어서, 상기 검출 대상 물질과 상호작용하는 생물학적 검출 물질은 항원, 항체 또는 앱타머인 것을 특징으로 하는 방법.
  7. 제 1 항에 있어서, 상기 졸-겔 스팟은 100-1000μm의 크기를 가지는 것을 특징으로 하는 방법.
  8. 제 1 항에 있어서, 상기 졸-겔 스팟은 하나 이상의 생물학적 검출 물질을 포함하는 것을 특징으로 하는 방법.
  9. 제 1 항에 있어서, 상기 검출부는 일 방향으로 하나 이상의 졸-겔 스팟이 적어도 하나의 열을 가지도록 마이크로 어레이 형태로 배치된 것을 특징으로 하는 방법.
  10. 제 1 항에 있어서, 상기 생물학적 표지자는 생물학적 검출 물질을 탐지할 수 있는 방사성 동위원소, 형광염료, 염료, 단백질, 또는 발광성 물질로 표지된 항체 또는 앱타머인 것을 특징으로 하는 방법.
  11. 제 1 항에 있어서, 상기 폐기물 보관부는 검출부에서 반응 후의 잔존 물질 또는 미반응 물질을 흡수하는 패드인 것을 특징으로 하는 방법.
  12. 제 1 항에 있어서, 상기 반응 시약 보관부, 세척 용액 보관부 및 폐기물 보관부는 커버 부재를 실링하여 밀봉된 것을 특징으로 하는 방법.
  13. 제1항에 있어서,
    상기 검출 대상 물질을 포함하는 샘플과 검출 대상 물질과 상호작용하는 1차 생물학적 검출 물질을 반응시키는 단계; 및
    상기 검출 대상 물질과 상호작용이 이루어진 1차 생물학적 검출 물질에 결합하는 2차 생물학적 검출 물질을 반응시키는 단계를 포함하는 것을 특징으로 하는 방법.
  14. 제 1항에 있어서, 상기 일체형으로 포함된 단일 진단칩은 폴리스타이렌(Polystyrene) 또는 폴리메틸 메타크릴레이트 (Polymethyl methacrylate)로 사출된 플라스틱을 재질로 하는 것을 특징으로 하는 방법.
  15. 다음의 단계를 포함하는 진단칩을 이용한 검출 대상 물질의 분석방법:
    진단칩 중 검출 대상 물질을 포함하는 샘플이 함유된 용기를 용기 장착부에 삽입하고, 피펫 팁 (pipet tip) 형태의 운반 수단을 홀에 장착시키는 단계;
    상기 검출 대상 물질을 포함하는 샘플을 운반 수단으로 흡입하여, 검출 대상 물질과 상호작용하는 생물학적 검출 물질을 포함하는 졸-겔 스팟이 고정된 검출부에 주입하는 단계;
    상기 검출부에서 반응 후의 잔존 물질을 흡입하여, 폐기물 보관부에 배출하는 단계;
    상기 검출 대상 물질과 반응하지 않은 물질을 제거하기 위한 세척 용액을 포함하는 세척 용액 보관부에서 세척 용액을 검출부로 주입하여 상기 검출부 중 미반응 물질을 세척하는 단계;
    상기 미반응 물질을 흡입하여, 폐기물 보관부에 배출하는 단계; 및
    상기 검출부의 반응 결과를 이미징하는 단계.
PCT/KR2017/010348 2016-09-20 2017-09-20 반응과 분석을 포함한 단일 진단칩의 고감도 신속진단방법 WO2018056700A1 (ko)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2016-0120099 2016-09-20
KR20160120099 2016-09-20
KR10-2017-0121426 2017-09-20
KR1020170121426A KR102236276B1 (ko) 2016-09-20 2017-09-20 반응과 분석을 포함한 단일 진단칩의 고감도 신속진단방법

Publications (1)

Publication Number Publication Date
WO2018056700A1 true WO2018056700A1 (ko) 2018-03-29

Family

ID=61690580

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/010348 WO2018056700A1 (ko) 2016-09-20 2017-09-20 반응과 분석을 포함한 단일 진단칩의 고감도 신속진단방법

Country Status (1)

Country Link
WO (1) WO2018056700A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110208534A (zh) * 2019-05-27 2019-09-06 上海理工大学 自吸式多种肿瘤标志物多样品检测芯片

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004048603A2 (en) * 2002-11-25 2004-06-10 University Of Warwick Coatings
KR100749939B1 (ko) * 2006-08-09 2007-08-16 대한민국 검출항체 자동주입장치
US20110189388A1 (en) * 2006-07-05 2011-08-04 Valtion Teknillinen Tutkimuskeskus Biosensor
US20120028811A1 (en) * 2008-08-15 2012-02-02 Dongguk University Device for rapid identification of nucleic acids for binding to specific chemical targets
KR20130135112A (ko) * 2012-05-30 2013-12-10 나노바이오시스 주식회사 다-채널 하향 액체 주입 장치, 이를 포함하는 핵산 추출 장치, 및 이를 이용한 핵산 추출 방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004048603A2 (en) * 2002-11-25 2004-06-10 University Of Warwick Coatings
US20110189388A1 (en) * 2006-07-05 2011-08-04 Valtion Teknillinen Tutkimuskeskus Biosensor
KR100749939B1 (ko) * 2006-08-09 2007-08-16 대한민국 검출항체 자동주입장치
US20120028811A1 (en) * 2008-08-15 2012-02-02 Dongguk University Device for rapid identification of nucleic acids for binding to specific chemical targets
KR20130135112A (ko) * 2012-05-30 2013-12-10 나노바이오시스 주식회사 다-채널 하향 액체 주입 장치, 이를 포함하는 핵산 추출 장치, 및 이를 이용한 핵산 추출 방법

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SAKAMOTO, H. ET AL.: "A Novel Optical Biosensing System Using Mach-Zehnder-Type Optical Waveguide for Influenza Virus Detection", APPLIED BIOCHEMISTRY AND BIOTECHNOLOGY, vol. 178, 24 October 2015 (2015-10-24), pages 687 - 694, XP035641973 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110208534A (zh) * 2019-05-27 2019-09-06 上海理工大学 自吸式多种肿瘤标志物多样品检测芯片

Similar Documents

Publication Publication Date Title
KR102236276B1 (ko) 반응과 분석을 포함한 단일 진단칩의 고감도 신속진단방법
JP2731613B2 (ja) 酵素免疫測定用カートリツジ、それを用いた測定方法及び測定装置
JP3521144B2 (ja) 自動連続ランダム・アクセス分析システムおよびその構成要素
CN1161611C (zh) 生物传感器
JP2016517529A (ja) アレルギー及び自己免疫疾患に関する診断分析を行うための自動化された免疫分析計システム
CN102147409B (zh) 一种测定抗核小体抗体IgG的方法及试剂装置
GB1565401A (en) Viewing housing for a diagnostic reagent holder and method
US20220357320A1 (en) Two-layer microfluidic chip with magnetic bead luminescence and detection system
CN106226540A (zh) 全自动蛋白质芯片分析仪
JP2023085456A (ja) 標的の検出
US8741218B2 (en) Automatic analyzer
WO2018056700A1 (ko) 반응과 분석을 포함한 단일 진단칩의 고감도 신속진단방법
CN103512851A (zh) 用于侦测有兴趣的标的物的感测器及其使用方法
CN110398590B (zh) 传感芯片及应用
WO2013147388A1 (ko) Cmos 이미지 센서의 픽셀 분석을 이용한 고감도 바이오센서
WO2020038235A1 (zh) 基于平面波导技术的高通量生物、化学、环境检测系统和方法
US10782288B2 (en) Multi-unit for conducting biochemical test and immunological test and testing method thereof
US20180355402A1 (en) Diagnostic strip for determining the amount of sarcosine, creatinine and hydrogen peroxide in a biological or environmental sample
GB2521885A (en) An immunoassay detection device
KR20210067690A (ko) 오리 간염 바이러스 및 오리 장염 바이러스의 고감도 시분할형광을 이용한 동시 검사방법
CN103185795B (zh) 一种检测eb病毒抗体的试剂装置及其方法
CN115605752A (zh) 快速细胞内测定
CN212904930U (zh) 一种用于免疫层析法检测的设备和检测试条
CN212904935U (zh) 用于免疫层析法检测的设备和检测试条
KR102576448B1 (ko) 생체 물질 자동 검사 시스템

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17853414

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17853414

Country of ref document: EP

Kind code of ref document: A1