WO2018056504A1 - 독립형 마이크로그리드의 주파수 제어방법 및 이를 제어하는 에너지 저장장치용 전력변환장치 - Google Patents

독립형 마이크로그리드의 주파수 제어방법 및 이를 제어하는 에너지 저장장치용 전력변환장치 Download PDF

Info

Publication number
WO2018056504A1
WO2018056504A1 PCT/KR2016/013070 KR2016013070W WO2018056504A1 WO 2018056504 A1 WO2018056504 A1 WO 2018056504A1 KR 2016013070 W KR2016013070 W KR 2016013070W WO 2018056504 A1 WO2018056504 A1 WO 2018056504A1
Authority
WO
WIPO (PCT)
Prior art keywords
soc
microgrid
energy storage
frequency
storage device
Prior art date
Application number
PCT/KR2016/013070
Other languages
English (en)
French (fr)
Inventor
이학주
원종남
심준보
채우규
박중성
Original Assignee
한국전력공사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국전력공사 filed Critical 한국전력공사
Priority to US16/327,310 priority Critical patent/US10951033B2/en
Priority to JP2019513054A priority patent/JP6765005B2/ja
Publication of WO2018056504A1 publication Critical patent/WO2018056504A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/28Arrangements for balancing of the load in a network by storage of energy
    • H02J3/32Arrangements for balancing of the load in a network by storage of energy using batteries with converting means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/385Arrangements for measuring battery or accumulator variables
    • G01R31/387Determining ampere-hour charge capacity or SoC
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/382Arrangements for monitoring battery or accumulator variables, e.g. SoC
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/04Programme control other than numerical control, i.e. in sequence controllers or logic controllers
    • G05B19/042Programme control other than numerical control, i.e. in sequence controllers or logic controllers using digital processors
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/20Pc systems
    • G05B2219/26Pc applications
    • G05B2219/2639Energy management, use maximum of cheap power, keep peak load low
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/388Islanding, i.e. disconnection of local power supply from the network
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/10Flexible AC transmission systems [FACTS]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E70/00Other energy conversion or management systems reducing GHG emissions
    • Y02E70/30Systems combining energy storage with energy generation of non-fossil origin
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P80/00Climate change mitigation technologies for sector-wide applications
    • Y02P80/10Efficient use of energy, e.g. using compressed air or pressurized fluid as energy carrier
    • Y02P80/14District level solutions, i.e. local energy networks
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/14Energy storage units

Definitions

  • the present invention relates to a method of controlling a frequency for power supply operation of a standalone microgrid, and a power converter for an energy storage device for controlling the same.
  • renewable energy power source using solar light, wind power, etc.
  • BESS battery energy storage system
  • the independent microgrid includes a battery, a diesel generator, a solar power source, a wind generator, and the like.
  • the independent microgrid controls the voltage and frequency by using a governor mounted on the diesel generator and an automatic voltage regulator (AVT) mounted on the diesel generator as a main power source to secure power supply reliability.
  • AVT automatic voltage regulator
  • the battery is used to discharge surplus power and then discharge the charged power during peak load or to reduce output fluctuation of renewable energy.
  • the battery is operated in a PQ operation mode that controls the output of the battery, and the PCS (Power Conditioning System) for the battery uses a phased-locked loop (PLL) as shown in FIG.
  • the output current is controlled in synchronization with the grid voltage controlled by the controller.
  • the energy storage device (BESS) that constitutes a stand-alone microgrid is installed with a smaller capacity than a diesel generator.
  • the BESS serves as a supplement to compensate for a sudden change in the output of renewable energy power. If a margin is generated, it is limited to frequency compensation.
  • the conventional stand-alone microgrid has a problem that high fuel costs are generated because of the main power generation using a diesel generator, difficult to store and manage fuel, and low power generation efficiency compared to the land system due to small-scale power generation.
  • the present invention has been made to solve the above-described problems, the present invention is a frequency control method of the stand-alone microgrid to enable stable frequency operation while considering the fuel cost and power generation efficiency of the stand-alone microgrid and the energy storage device for controlling the same It is an object of the present invention to provide a power converter.
  • a frequency control method of a stand-alone microgrid operates an energy storage device of a stand-alone microgrid as a main power source by controlling a battery PCS (Power Conditioning System) of a standalone microgrid in a constant voltage constant frequency (CVCF) mode. Characterized in that.
  • the battery PCS compensates for surplus power and underpower in the microgrid system, and operates the energy storage device as a main power source.
  • the method may further include measuring a state of charge (SOC) of the energy storage device, comparing the SOC measured by the measuring of the SOC with a predetermined reference, and comparing the SOC with a predetermined reference. Controlling the interruption or input of a controllable load in the microgrid.
  • SOC state of charge
  • the system for comparing the SOC measured by the measuring of the SOC with a predetermined reference may include comparing the SOC with a lower reference 1 and comparing the SOC with a lower reference 1 when the SOC is smaller than the lower reference 1.
  • Controlling the interruption or input of the controllable load in the microgrid is characterized by interrupting control of the controllable load.
  • the battery SOC after breaking control of the controllable load, comparing the measured SOC with a lower reference 2 that is smaller than the lower reference 1 and comparing the lower reference 2 with the SOC as the result. If less than the lower criterion 2, it may further comprise the step of controlling the operation of the diesel generator in the microgrid.
  • step of controlling the operation of the diesel generator in the micro-grid after a predetermined time after the operation control of the diesel generator is characterized in that the SOC of the energy storage device is measured again.
  • the SOC is compared with the sub criterion 2
  • the SOC is compared with the sub criterion 1 again.
  • the system for comparing the SOC measured by the measuring of the SOC with a predetermined criterion compares the SOC with an upper criterion 1 and compares the SOC with an upper criterion 1 when the SOC is larger than an upper criterion 1.
  • Controlling the interruption or input of the controllable load in the microgrid is characterized by input control of the controllable load.
  • the method may further include limiting the output of renewable energy power in the microgrid.
  • the SOC of the energy storage device is measured again after a predetermined time after the output limitation of the renewable energy power source by limiting the output of the renewable energy power source in the microgrid.
  • a frequency control method for a stand-alone microgrid which receives a charge / discharge amount of an energy storage device through a control means formed on a battery PCS (Power Conditioning System) of the standalone microgrid, and receives the received energy storage device.
  • the frequency of the microgrid system is controlled according to the amount of charge and discharge of the energy storage device is characterized in that for operating as a main power source of the independent microgrid.
  • the method may further include measuring an SOC after the control of the controllable load or the control of the input of the SOC.
  • the frequency of the microgrid system is controlled according to the amount of charge and discharge.
  • the frequency of the battery PCS is controlled by deriving an equivalent stiffness of the entire system of the microgrid according to the charge / discharge amount input of the energy storage device.
  • a power conversion device for an energy storage device of a stand-alone microgrid by controlling the battery PCS (Power Conditioning System) of the stand-alone microgrid in CVCF (Constant Voltage Constant Frequency) mode of the stand-alone microgrid Allow the energy storage device to run on mains power.
  • PCS Power Conditioning System
  • CVCF Constant Voltage Constant Frequency
  • SOC state of charge
  • control means characterized in that for controlling the frequency of the micro grid system according to the charge and discharge amount of the input energy storage device.
  • the frequency of the battery PCS is controlled by deriving an equivalent stiffness of the entire system of the microgrid according to the charge / discharge amount input of the energy storage device.
  • the BESS using renewable energy is operated as a main power source, and the internal combustion generator is used to assist the frequency and frequency according to the SOC.
  • the voltage By controlling the voltage, it is possible to perform the optimum power control so that the supply and demand match, that is, the surplus power of the microgrid is zero.
  • the operator can automatically or manually control the output frequency of the BESS by the calculated target frequency.
  • FIG. 1 illustrates a power supply configuration of a standalone microgrid.
  • 3 is a CVCF mode controller configuration of the PCS for battery.
  • FIG. 4 illustrates a frequency control method of a standalone microgrid according to the present invention.
  • FIG. 5 illustrates BESS SOC criteria for frequency control of a standalone microgrid of the present invention.
  • FIG. 6 illustrates a relationship between components for implementing the alarm frequency control principle.
  • the standalone microgrid proposed in the present invention is designed to minimize the use of a diesel generator as much as possible and to operate the battery as the main power source.
  • diesel generators are designed to operate only when normal power supply is not possible using energy stored in batteries due to extreme weather or breakdown of renewable energy sources.
  • CVCF Constant Voltage Constant Frequency
  • the CVCF mode controller configuration of the designed battery PCS is shown in FIG.
  • the frequency of the standalone microgrid can be controlled to be constant at the rated frequency (60 Hz).
  • the power stored in the battery can be determined by measuring state-of-charge (SOC).
  • SOC state-of-charge
  • the upper and lower criteria 1 is a relatively safer area than the upper and lower criteria 2, and is a criterion for maximizing the controllable load.
  • Upper and lower criteria 2 are the maximum and minimum values of the safe area to prevent the battery SOC from reaching dangerous values.
  • the battery PCS has a structure for receiving an operation state through communication with a diesel generator and a renewable energy power source and transmitting a control command, and receiving a load state through communication with a controllable load and transmitting a control command.
  • the battery PCS When the operation of the stand-alone microgrid starts, the battery PCS performs control in the CVCF mode and measures the battery SOC value (S10).
  • the battery SOC value is measured (S22). As a result of the measurement, it is determined whether the battery SOC is smaller than the lower standard 2 (S23).
  • the output command for transmitting is sent (S24).
  • the battery SOC is measured to continuously check whether the SOC has a value greater than the lower criterion 2. If the battery SOC is larger than the lower criterion 2 as a result of the determination of S23, the measurement is performed again with the lower criterion 1 by the S20. The comparison will be performed.
  • the battery SOC value is measured (S32) and compared with the upper standard 2 (S33).
  • the battery SOC is larger than the upper standard 2 as a result of the comparison, the battery SOC is in an excessive state so that the output of the renewable energy power source is limited. (S34)
  • the battery SOC is measured and it is continuously checked whether the SOC has a value higher than the upper standard 2. If the battery SOC is smaller than the upper standard 2, the result is measured again and the measured value is compared with the upper standard 1 by S30. The comparison will be performed.
  • the automatic frequency control using the battery PCS has the advantage of constantly controlling the frequency of the standalone microgrid.
  • Automatic frequency control requires communication between the battery PCS and the distributed power supply and controllable load to maintain the SOC of the battery in a stable region. It is most stable to use wired communication using a dedicated line, but if a problem occurs in a communication line or communication equipment, the SOC value of the battery cannot be maintained in a stable area.
  • the present invention proposes a manual frequency control function of the battery PCS.
  • control is provided by providing manual control means (switches, levers, knobs, etc.) for holding the battery SOC in a place easily accessible to the driver such as a battery PCS panel.
  • manual control means switches, levers, knobs, etc.
  • the driver can accurately specify the charge / discharge power of the battery to a specific value to maintain the SOC of the battery, thereby controlling the frequency.
  • the automatic frequency control does not work properly unless the SOC rise does not stop.
  • a manual control means is required in which the driver can manually stop the renewable energy power source and the diesel generator.
  • the driver can accurately input the battery charge / discharge power value to be maintained using the control means, so that the new renewable energy power source and the diesel generator are not re-injected until this is satisfied.
  • the control principle is due to the following characteristics of the power system.
  • ⁇ P G is the amount of change in the power generation amount in the micro-grid, means an increase of ⁇ P is G value is positive, power generation, and means a decrease in G if ⁇ P is negative generation.
  • the frequency of the microgrid system is controlled by the battery PCS, so changing the frequency can indirectly control the output of other power sources in the microgrid system without communication. Therefore, if the equivalent droop coefficient can be accurately obtained, the output of the other power source can be precisely controlled, and thus the battery can be charged.
  • ⁇ P D is a change in the frequency-sensitive load. In general, as the frequency decreases, the load decreases. As the frequency increases, the load increases proportionally.
  • D eq is the equivalent frequency sensitivity coefficient of the load.
  • the driver manually assigns a battery SOC value to a specific value (S40).
  • the equivalent stiffness of the entire system is derived through the system characteristic analysis of the microgrid (S50). This can be obtained from Equation 3, and ⁇ eq can be obtained by adding a small change amount of only a few% of the frequency command value and measuring the change in the charge / discharge amount of the battery at that time. That is, when the SOC value or the charge / discharge power of the battery is determined according to the manual control means of the driver, the frequency command value of the battery PCS may be changed (S60) to achieve a desired purpose.
  • Equation 8 shows a method of associating a frequency manual control result with a controller of a battery PCS.

Abstract

본 발명은 독립형 마이크로그리드의 배터리 PCS(Power Conditioning System)을 CVCF(Constant Voltage Constant Frequency) 모드로 제어함으로써 독립형 마이크로그리드의 에너지저장장치를 주전원으로 운영하는 것을 특징으로 하는 독립형 마이크로그리드의 주파수 제어방법으로서, 본 발명에 의하면, 독립형 마이크로그리드의 연료비 및 발전 효율을 고려하면서 주파수를 안정적으로 운영할 수 있게 한다.

Description

독립형 마이크로그리드의 주파수 제어방법 및 이를 제어하는 에너지 저장장치용 전력변환장치
본 발명은 독립형 마이크로그리드의 전력 공급 운용을 위한 주파수의 제어방법과 이를 제어하기 위한 에너지 저장장치용 전력변환장치에 관한 것이다.
현재 대부분의 도서 계통에서는 복수의 소형 디젤발전기를 이용하여 전력을 공급하는 형태로 전력공급망이 운영되고 있으나, 연료비나 연료를 저장 및 관리하는 데 많은 비용이 발생하게 된다.
따라서, 태양광, 풍력 등을 이용한 신재생 에너지 전원을 활용하였을 때 충분히 경제성을 확보할 수 있으나, 신재생 에너지 전원은 출력 변동이 커서 배터리 에너지 저장장치(BESS, Battery Energy Storage System)가 필수적이다.
그래서, 독립형 마이크로그리드는 도 1과 같이, 배터리, 디젤발전기, 태양광 전원, 풍력 발전기 등으로 전원이 구성된다.
이러한 독립형 마이크로그리드는 전력공급 신뢰도 확보를 위해 디젤발전기를 주 전원으로 하여 디젤발전기에 탑재되는 조속기(Governor)와 전압조정기(AVT, Automatic Voltage Regulator)를 이용하여 전압과 주파수를 제어한다.
이때, 배터리는 잉여전력을 충전했다가 피크 부하시 충전한 전력을 방전하거나 신재생 에너지의 출력변동을 저감하기 위해 이용한다.
이러한 배터리는 배터리의 출력을 제어하는 PQ운전모드로 운전하게 되고, 배터리용 PCS(Power Conditioning System, 전력변환장치)는 도 2와 같이 위상 추종 회로(PLL, phased-locked loop)를 이용하여 디젤발전기가 제어하는 계통전압에 동기를 맞추어 출력전류를 제어하게 된다.
독립형 마이크로그리드를 구성하는 에너지 저장장치(BESS)는 디젤발전기에 비해 작은 용량으로 설치하게 되는데, 일반적으로 BESS는 신재생에너지 전원의 출력이 급격하게 변동하는 것을 보상하는 보조적인 역할을 수행하며, 출력에 여유가 발생되는 경우 주파수 보상에 제한적으로 이용된다.
이러한 종래의 독립형 마이크로그리드는 신재생에너지의 용량이 크고 출력변동이 크면, 디젤발전기와 BESS 사이에 제어권 이양이 잦게 되어 전원 간의 주파수 동기화 등이 까다로우며 계통에 과도상태 외란이 발생할 수 있다.
또한, 종래의 독립형 마이크로그리드는 디젤발전기를 사용하여 주발전하기 때문에 높은 연료비가 발생되고, 연료의 저장 및 관리가 어려우며, 소규모 발전으로 인해 육지계통에 비해 발전 효율이 낮다는 문제가 있다.
이상의 배경기술에 기재된 사항은 발명의 배경에 대한 이해를 돕기 위한 것으로서, 이 기술이 속하는 분야에서 통상의 지식을 가진 자에게 이미 알려진 종래기술이 아닌 사항을 포함할 수 있다.
본 발명은 상술한 문제점을 해결하고자 안출된 것으로서, 본 발명은 독립형 마이크로그리드의 연료비 및 발전 효율을 고려하면서 주파수를 안정적으로 운영할 수 있게 하는 독립형 마이크로그리드의 주파수 제어방법 및 이를 제어하는 에너지 저장장치용 전력변환장치를 제공하는 데 그 목적이 있다.
본 발명의 일 관점에 의한 독립형 마이크로그리드의 주파수 제어방법은, 독립형 마이크로그리드의 배터리 PCS(Power Conditioning System)을 CVCF(Constant Voltage Constant Frequency) 모드로 제어함으로써 독립형 마이크로그리드의 에너지저장장치를 주전원으로 운영하는 것을 특징으로 한다.
상기 마이크로그리드 계통의 잉여전력과 부족전력을 상기 배터리 PCS가 보상함으로써 상기 에너지저장장치를 주전원으로 운영하는 것을 특징으로 한다.
그리고, 상기 에너지저장장치의 SOC(State of Charge)를 측정하는 단계, 상기 SOC를 측정하는 단계에 의해 측정된 SOC를 기설정된 기준과 비교하는 단계 및 상기 SOC를 기설정된 기준과 비교한 결과에 따라 상기 마이크로그리드 내 제어가능한 부하의 차단 또는 투입을 제어하는 단계를 포함한다.
또한, 상기 SOC를 측정하는 단계에 의해 측정된 SOC를 기설정된 기준과 비교하는 계는 상기 SOC를 하위기준 1과 비교하고, 상기 SOC를 하위기준 1과 비교하여 상기 SOC가 하위기준 1보다 작은 경우, 상기 마이크로그리드 내 제어가능한 부하의 차단 또는 투입을 제어하는 단계는 상기 제어가능한 부하를 차단 제어하는 것을 특징으로 한다.
그리고, 상기 제어가능한 부하를 차단 제어한 후 상기 배터리 SOC를 측정하는 단계, 측정된 상기 SOC가 상기 하위기준 1보다 작은 하위기준 2와 비교하는 단계 및 상기 하위기준 2와 비교한 결과 상기 SOC가 상기 하위기준 2보다 작은 경우, 상기 마이크로그리드 내 디젤발전기를 가동 제어하는 단계를 더 포함할 수 있다.
또한, 상기 마이크로그리드 내 디젤발전기를 가동 제어하는 단계에 의해 상기 디젤발전기의 가동 제어 후 일정 시간 경과 후 다시 상기 에너지저장장치의 SOC를 측정하는 것을 특징으로 한다.
나아가, 상기 SOC가 상기 하위기준 2와 비교한 결과, 상기 SOC가 상기 하위기준 2보다는 클 경우 상기 SOC를 상기 하위기준 1과 다시 비교하는 것을 특징으로 한다.
그리고, 상기 SOC를 측정하는 단계에 의해 측정된 SOC를 기설정된 기준과 비교하는 계는 상기 SOC를 상위기준 1과 비교하고, 상기 SOC를 상위기준 1과 비교하여 상기 SOC가 상위기준 1보다 큰 경우, 상기 마이크로그리드 내 제어가능한 부하의 차단 또는 투입을 제어하는 단계는 상기 제어가능한 부하를 투입 제어하는 것을 특징으로 한다.
더 나아가, 상기 제어가능한 부하를 투입 제어한 후 상기 배터리 SOC를 측정하는 단계, 측정된 상기 SOC가 상기 상위기준 1보다 큰 상위기준 2와 비교하는 단계 및 상기 상위기준 2와 비교한 결과 상기 SOC가 상기 상위기준 2보다 큰 경우, 상기 마이크로그리드 내 신재생에너지 전원의 출력을 제한하는 단계를 더 포함할 수 있다.
그리고, 상기 마이크로그리드 내 신재생에너지 전원의 출력을 제한하는 단계에 의해 상기 신재생에너지 전원의 출력 제한 후 일정 시간 경과 후 다시 상기 에너지저장장치의 SOC를 측정하는 것을 특징으로 한다.
상기 SOC가 상기 상위기준 2와 비교한 결과, 상기 SOC가 상기 상위기준 2보다는 작을 경우 상기 SOC를 상기 상위기준 1과 다시 비교하는 것을 특징으로 한다.
본 발명의 다른 일 관점에 의한 독립형 마이크로그리드의 주파수 제어방법은, 독립형 마이크로그리드의 배터리 PCS(Power Conditioning System)에 형성된 제어수단을 통해 에너지저장장치의 충방전량을 입력받고, 상기 입력받은 에너지저장장치의 충방전량에 따라 상기 마이크로그리드 계통의 주파수가 제어됨으로써 상기 에너지저장장치를 상기 독립형 마이크로그리드의 주전원으로 운영하는 것을 특징으로 한다.
그리고, 상기 배터리 PCS(Power Conditioning System)을 CVCF(Constant Voltage Constant Frequency) 모드로 제어하는 단계, 상기 에너지저장장치의 SOC(State of Charge)를 측정하는 단계, 상기 SOC를 측정하는 단계에 의해 측정된 SOC를 기설정된 기준과 비교하는 단계 및 상기 SOC를 기설정된 기준과 비교한 결과에 따라 상기 마이크로그리드 내 제어가능한 부하의 차단 또는 투입을 제어하는 단계를 포함포함한다.
또한, 상기 제어가능한 부하의 차단 또는 투입 제어 이후 SOC를 측정하는 단계를 더 포함하고, 상기 제어가능한 부하의 차단 또는 투입 제어 이후 측정된 SOC가 상기 기설정된 기준을 벗어나는 경우 상기 입력받은 에너지저장장치의 충방전량에 따라 상기 마이크로그리드 계통의 주파수가 제어되는 것을 특징으로 한다.
나아가, 상기 에너지저장장치의 충방전량 입력에 따라서 상기 마이크로그리드의 계통 전체의 등가 강인도(stiffness)를 도출함으로써 상기 배터리 PCS의 주파수를 제어하는 것을 특징으로 한다.
다음으로, 본 발명의 일 관점에 의한 독립형 마이크로그리드의 에너지 저장장치용 전력변환장치는, 독립형 마이크로그리드의 배터리 PCS(Power Conditioning System)을 CVCF(Constant Voltage Constant Frequency) 모드로 제어함으로써 독립형 마이크로그리드의 에너지저장장치가 주전원으로 운영될 수 있게 한다.
상기 에너지저장장치의 SOC(State of Charge)를 측정하고, 측정된 SOC를 기설정된 기준과 비교하여 비교 결과에 의해 상기 마이크로그리드 내 제어가능한 부하의 차단 또는 투입을 제어하는 것을 특징으로 한다.
그리고, 제어수단에 의해 상기 에너지저장장치의 충방전량의 입력이 가능하여, 상기 입력받은 에너지저장장치의 충방전량에 따라 상기 마이크로그리드 계통의 주파수를 제어하는 것을 특징으로 한다.
나아가, 상기 에너지저장장치의 충방전량 입력에 따라서 상기 마이크로그리드의 계통 전체의 등가 강인도(stiffness)를 도출함으로써 상기 배터리 PCS의 주파수를 제어하는 것을 특징으로 한다.
본 발명에 의한 독립형 마이크로그리드의 주파수 제어방법 및 이를 제어하는 에너지 저장장치용 전력변환장치에 의하면, 신재생에너지를 이용한 BESS를 주 전원으로 동작시키고, 내연발전기를 보조적으로 이용하여 SOC에 따라 주파수 및 전압을 제어함으로써 수급 및 공급이 일치 즉, 마이크로그리드의 잉여전력이 영점이 되도록 최적의 전력 제어를 할 수 있다.
이때, BESS의 SOC가 기준 설정범위를 유지하게 되므로 BESS의 충방전 횟수가 줄어 BESS 수명도 연장될 수 있다.
또한, 내연발전기의 사용을 줄일 수 있어 내연발전기 사용에 따른 연료비를 줄이면서, 신재생에너지를 주전원으로 이용함으로써 비용을 최소화시킬 수 있다.
그리고, 디젤발전기의 드룹(Droop) 특성을 이용하여 출력주파수의 강하 목표주파수를 산출하여 제공함으로써, 운영자가 산출된 목표주파수만큼 BESS의 출력주파수를 자동 또는 수동으로 제어할 수가 있다.
도 1은 독립형 마이크로그리드의 전원 구성을 도시한 것이다.
도 2는 배터리용 PCS에 적용되는 위상 추종 회로이다.
도 3은 배터리용 PCS의 CVCF 모드 제어기 구성이다.
도 4는 본 발명에 의한 독립형 마이크로그리드의 주파수 제어방법을 도시한 것이다.
도 5는 본 발명의 독립형 마이크로그리드의 주파수 제어를 위한 BESS SOC 기준을 도시한 것이다.
도 6은 자종 주파수 제어원리를 구현하기 위한 구성 간 관계를 도시한 것이다.
도 7은 주파수 조정에 관한 방법을 도시한 것이다.
도 8은 주파수 수동제어에 의한 PCS 제어기와의 연계를 도시한 것이다.
본 발명과 본 발명의 동작상의 이점 및 본 발명의 실시에 의하여 달성되는 목적을 충분히 이해하기 위해서는 본 발명의 바람직한 실시 예를 예시하는 첨부 도면 및 첨부 도면에 기재된 내용을 참조하여야만 한다.
본 발명의 바람직한 실시 예를 설명함에 있어서, 본 발명의 요지를 불필요하게 흐릴 수 있는 공지의 기술이나 반복적인 설명은 그 설명을 줄이거나 생략하기로 한다.
본 발명에서 제안하는 독립형 마이크로그리드는 가능한 한 디젤발전기의 사용을 최소화하고 배터리가 주 전원으로 동작하도록 설계된다.
이론적으로는 디젤발전기는 기상 이변이나 신재생에너지 전원의 고장 등으로 배터리에 저장되어 있는 에너지를 이용하여 정상적인 전력공급이 불가능한 경우에만 동작하도록 설계된다.
이 경우 배터리의 동작은 계통의 전압과 주파수를 일정하게 제어하는 CVCF(Constant Voltage Constant Frequency) 모드라고 정의하며, PLL을 이용하지 않고 내부적으로 위상을 생성하여 출력 전압의 파형을 스스로 만드는 제어를 수행한다.
설계된 배터리 PCS의 CVCF 모드 제어기 구성은 도 3과 같다.
따라서, 배터리에 충전된 전력이 안정하게 유지되는 경우에는 독립형 마이크로그리드의 주파수를 정격 주파수(60Hz)로 일정하게 제어할 수 있다.
이는 마이크로그리드 계통의 잉여전력과 부족전력을 배터리 PCS가 순시적으로 보상함으로써 구현이 가능하다.
배터리에 저장되어 있는 전력은 SOC(State-of-Charge)를 측정함으로써 판단이 가능하다.
즉, SOC의 값에 따라서 배터리 PCS의 독립형 마이크로그리드의 자동주파수 제어를 수행하며 제어동작은 도 4와 같다.
도 4의 상위기준과 하위기준은 도 5에 나타낸 바와 같다. 도시와 같이, 상, 하위기준 1은 상, 하위기준 2보다 비교적 안전한 영역으로 제어가능 부하를 최대한 활용하기 위한 기준이 된다.
상, 하위기준 2는 배터리 SOC가 위험한 값에 도달하지 않도록 하는 안전영역의 최대, 최소값이 된다.
상위기준으로는 80~90% 값을 하위기준으로는 20~30% 값을 사용하는 것이 바람직하다.
도 6은 자동 주파수 제어원리를 구현하기 위하여 배터리 PCS와 다른 기기들 사이의 통신연결을 도시한 것이다. 즉, 배터리 PCS는 디젤발전기 및 신재생에너지 전원과 통신을 통해 운전상태를 전송받고 제어명령을 전송하며, 제어가능한 부하와의 통신을 통해 부하상태를 전송받고 제어명령을 전송하는 구조이다.
독립형 마이크로그리드의 운전이 시작되면 배터리 PCS는 CVCF 모드로 제어를 수행하게 되고, 배터리 SOC 값을 측정한다(S10).
측정된 배터리 SOC 값이 하위기준 1보다 작은지를 판단하여(S20), 하위기준 1보다 작으면 최대한 SOC의 상태를 유지시켜 주파수의 변동이 최소화될 수 있게 하기 위해 우선, 제어가능 부하를 차단한다(S21).
제어가능 부하의 차단 후 배터리 SOC 값을 측정하고(S22), 측정결과 배터리 SOC가 하위기준 2보다 작은지를 판단하고(S23), 하위기준 2보다 작은 경우에는 위험영역에 해당하는 바 디젤발전기를 가동시키기 위한 출력 지령을 전송하게 된다(S24).
지령 전송 후 배터리 SOC를 측정하여 SOC가 하위기준 2보다 큰 값을 가지는 지를 계속해서 체크하게 되며, S23의 판단 결과, 배터리 SOC가 하위기준 2보다는 큰 경우 다시 측정 후 S20에 의해 하위기준 1과의 비교를 수행하게 된다.
반면, S20의 결과, 배터리 SOC가 하위기준1보다는 큰 경우에는 배터리 SOC 값을 상위기준 1과 비교하게 된다(S30).
비교 결과, 상위기준 1보다 큰 경우에는 배터리를 주 전원으로 안정적인 제어가 가능하므로 제어가능 부하를 투입하도록 제어한다(S31).
그리고, 배터리 SOC 값을 측정하여(S32), 상위기준 2와 비교를 하며(S33), 비교 결과 배터리 SOC가 상위기준 2보다 큰 경우에는 배터리 SOC가 과다한 상태이므로 신재생에너지 전원의 출력을 제한시키게 된다(S34).
출력 제한 후 배터리 SOC를 측정하여 SOC가 상위기준 2보다 큰 값을 가지는 지를 계속해서 체크하게 되며, S33의 판단 결과, 배터리 SOC가 상위기준 2보다는 작은 경우 다시 측정 후 S30에 의해 상위기준 1과의 비교를 수행하게 된다.
이상과 같이 배터리 PCS를 이용한 자동 주파수 제어는 독립형 마이크로그리드의 주파수를 항상 일정하게 제어할 수 있는 장점을 가진다. 자동 주파수 제어를 위해서는 배터리의 SOC를 안정된 영역에서 유지하기 위하여 배터리 PCS와 분산전원 및 제어가능 부하 사이의 통신이 필요하다. 통신은 전용선을 이용한 유선통신을 이용하는 것이 가장 안정적이지만 통신 선로나 통신 장비에 문제가 발생하여 지속될 경우에는 배터리의 SOC 값을 안정된 영역에서 유지할 수 없는 문제가 생긴다.
이와 같은 경우를 대비하여 본 발명에서는 배터리 PCS의 수동 주파수 제어기능을 제안한다.
즉, 배터리 PCS 패널 등 운전자가 쉽게 접근할 수 있는 곳에 배터리 SOC를 유지하기 위한 수동 제어수단(스위치, 레버, 노브 등)을 제공하는 것에 의해 제어 가능하게 한다.
이와 같이 제어수단을 통해 운전자가 배터리의 SOC를 유지하기 위해 배터리의 충방전 전력을 특정한 값으로 정확하게 지정할 수 있고, 이에 의해 주파수가 제어되는 것이다.
이러한 수동 제어의 원리는 SOC가 상승할 때와 하강할 때로 나누어서 생각할 수 있다.
만약, 배터리의 SOC가 지속적으로 증가하여 상위기준 2를 초과하는 경우에도 SOC 상승이 멈추지 않는다면 자동 주파수 제어가 제대로 동작하지 않음을 의미한다. 이 경우에는 운전자가 직접 수동으로 신재생에너지 전원과 디젤발전기를 정지시킬 수 있는 수동 제어수단을 요한다.
이때, 운전자는 유지하고자 하는 배터리 충방전 전력값을 제어수단을 이용하여 정확하게 입력할 수 있으며, 이를 만족할 때까지 신재생에너지 전원과 디젤발전기는 재투입되지 않도록 한다.
만약, 배터리의 SOC가 지속적으로 하강하여 하위기준 2보다 작아진 후에도 SOC가 지속적으로 하강한다면 이 또한 자동 주파수 제어가 제대로 동작하지 않음을 의미한다. 이와 같은 경우에도 운전자가 제어수단을 이용하여 직접 수동으로 SOC를 제어할 수 있도록 한다.
제어 원리는 전력계통의 다음과 같은 특성에 기인한다.
전력계통의 주파수를 낮추면, 1) 드룹제어를 하는 디젤발전기의 출력이 증가하고 2) 부하의 주파수 민감도에 따라 부하가 줄어든다.
1)의 과정을 수식으로 표현하면 수학식 1과 같다.
[수학식 1]
Figure PCTKR2016013070-appb-I000001
여기서, ΔPG는 마이크로그리드 내의 발전량의 변화량으로, ΔPG값이 양수이면 발전량의 증가를 의미하며 ΔPG 값이 음수이면 발전량의 감소를 의미한다.
Δf 주파수 변동량으로 양수이면 주파수 상승, 음수이면 주파수 감소를 의미하고, Req는 운전상태에서의 등가 드룹계수를 의미한다.
마이크로그리드 계통의 주파수는 배터리 PCS에 의해 제어되므로 주파수를 변동하면 통신이 없이도 마이크로그리드 계통 내의 다른 전원들의 출력을 간접적으로 제어할 수 있다. 따라서, 등가 드룹계수를 정확히 구할 수 있다면 다른 전원의 출력을 정확하게 제어할 수 있으며 이를 통해 배터리를 충전할 수 있게 된다.
2)의 과정을 수식으로 표현하면 수학식 2와 같다.
[수학식 2]
Figure PCTKR2016013070-appb-I000002
ΔPD는 주파수 민감부하의 변동량으로 일반적으로 주파수가 줄어들면 부하의 크기도 줄어들며 주파수가 상승하면 부하의 크기도 비례적으로 상승한다.
Deq는 부하의 등가 주파수 민감도 계수이다.
1)과 2)의 과정을 함께 나타내면 주파수 변동량에 대한 배터리 충방전량은 수학식 3 및 수학식 4와 같이 나타낼 수 있다.
[수학식 3]
Figure PCTKR2016013070-appb-I000003
[수학식 4]
Figure PCTKR2016013070-appb-I000004
이상의 과정을 도식화한 것이 도 7과 같다.
운전자가 수동으로 배터리 SOC 값을 특정한 값으로 지정한다(S40).
수동제어를 한다는 것은 통신을 통한 다른 전원의 제어를 신뢰할 수 없는 상황을 의미하므로 현 계통에 디젤발전기가 몇 대가 제대로 전력을 공급하고 있는지를 통신을 통해서 확인할 수 없다. 즉, Req 값 등에 대한 정보가 주어지지 않는다.
따라서, 마이크로그리드의 계통 특성분석을 통해 계통 전체의 등가 강인도(stiffness)를 도출한다(S50). 이는 수학식 3을 통하여 구할 수 있는데 주파수 지령값의 수 %에 불과한 미소한 변화량을 추가하여 그 때의 배터리의 충방전량의 변화를 측정하면 βeq를 구할 수가 있다. 즉, 배터리의 SOC 값 또는 충방전 전력이 운전자의 수동 제어수단에 따라 결정되면 배터리 PCS의 주파수 지령값을 변화시켜(S60) 원하는 목적을 이룰 수가 있다.
배터리 PCS의 주파수 제어명령을 조정함에 따라 마이크로그리드 계통 전체의 주파수가 변동되는 문제가 있으나, 배터리의 물리적인 고장을 사전에 막는 것이 중요하며, 주파수 변동량을 일정한 범위에서 안정적으로 관리한다면 전력계통에 미치는 영향을 최소화할 수 있다.
도 8은 주파수 수동 제어 결과를 배터리 PCS의 제어기와 연계하는 방법을 나타낸다. 이때 운전자가 설정한 충방전 전력 ΔPref와 주파수 제어명령 변동량 Δω(=Δf)는 수학식 3으로부터 다음 수학식 5와 같이 구할 수 있다.
[수학식 5]
Figure PCTKR2016013070-appb-I000005
이상과 같은 본 발명은 예시된 도면을 참조하여 설명되었지만, 기재된 실시 예에 한정되는 것이 아니고, 본 발명의 사상 및 범위를 벗어나지 않고 다양하게 수정 및 변형될 수 있음은 이 기술의 분야에서 통상의 지식을 가진 자에게 자명하다. 따라서 그러한 수정 예 또는 변형 예들은 본 발명의 특허청구범위에 속한다 하여야 할 것이며, 본 발명의 권리범위는 첨부된 특허청구범위에 기초하여 해석되어야 할 것이다.
* 부호의 설명
S10 : 배터리 SOC 측정
S20 : SOC와 하위기준 1 비교
S21 : 제어가능 부하 차단
S22 : 배터리 SOC 측정
S23 : SOC와 하위기준 2 비교
S24 : 디젤발전기 가동 출력 지령 전송
S30 : SOC와 상위기준 1 비교
S31 : 제어가능 부하 투입
S32 : 배터리 SOC 측정
S33 : SOC와 상위기준 2 비교
S34 : 신재생에너지 전원 출력 제어

Claims (19)

  1. 독립형 마이크로그리드의 배터리 PCS(Power Conditioning System)을 CVCF(Constant Voltage Constant Frequency) 모드로 제어함으로써 독립형 마이크로그리드의 에너지저장장치를 주전원으로 운영하는 것을 특징으로 하는,
    독립형 마이크로그리드의 주파수 제어방법.
  2. 청구항 1에 있어서,
    상기 마이크로그리드 계통의 잉여전력과 부족전력을 상기 배터리 PCS가 보상함으로써 상기 에너지저장장치를 주전원으로 운영하는 것을 특징으로 하는,
    독립형 마이크로그리드의 주파수 제어방법.
  3. 청구항 2에 있어서,
    상기 에너지저장장치의 SOC(State of Charge)를 측정하는 단계;
    상기 SOC를 측정하는 단계에 의해 측정된 SOC를 기설정된 기준과 비교하는 단계; 및
    상기 SOC를 기설정된 기준과 비교한 결과에 따라 상기 마이크로그리드 내 제어가능한 부하의 차단 또는 투입을 제어하는 단계를 포함하는,
    독립형 마이크로그리드의 주파수 제어방법.
  4. 청구항 3에 있어서,
    상기 SOC를 측정하는 단계에 의해 측정된 SOC를 기설정된 기준과 비교하는 계는 상기 SOC를 하위기준 1과 비교하고,
    상기 SOC를 하위기준 1과 비교하여 상기 SOC가 하위기준 1보다 작은 경우, 상기 마이크로그리드 내 제어가능한 부하의 차단 또는 투입을 제어하는 단계는 상기 제어가능한 부하를 차단 제어하는 것을 특징으로 하는,
    독립형 마이크로그리드의 주파수 제어방법.
  5. 청구항 4에 있어서,
    상기 제어가능한 부하를 차단 제어한 후 상기 배터리 SOC를 측정하는 단계;
    측정된 상기 SOC가 상기 하위기준 1보다 작은 하위기준 2와 비교하는 단계; 및
    상기 하위기준 2와 비교한 결과 상기 SOC가 상기 하위기준 2보다 작은 경우, 상기 마이크로그리드 내 디젤발전기를 가동 제어하는 단계를 더 포함하는,
    독립형 마이크로그리드의 주파수 제어방법.
  6. 청구항 5에 있어서,
    상기 마이크로그리드 내 디젤발전기를 가동 제어하는 단계에 의해 상기 디젤발전기의 가동 제어 후 일정 시간 경과 후 다시 상기 에너지저장장치의 SOC를 측정하는 것을 특징으로 하는,
    독립형 마이크로그리드의 주파수 제어방법.
  7. 청구항 5에 있어서,
    상기 SOC가 상기 하위기준 2와 비교한 결과, 상기 SOC가 상기 하위기준 2보다는 클 경우 상기 SOC를 상기 하위기준 1과 다시 비교하는 것을 특징으로 하는,
    독립형 마이크로그리드의 주파수 제어방법.
  8. 청구항 3에 있어서,
    상기 SOC를 측정하는 단계에 의해 측정된 SOC를 기설정된 기준과 비교하는 계는 상기 SOC를 상위기준 1과 비교하고,
    상기 SOC를 상위기준 1과 비교하여 상기 SOC가 상위기준 1보다 큰 경우, 상기 마이크로그리드 내 제어가능한 부하의 차단 또는 투입을 제어하는 단계는 상기 제어가능한 부하를 투입 제어하는 것을 특징으로 하는,
    독립형 마이크로그리드의 주파수 제어방법.
  9. 청구항 8에 있어서,
    상기 제어가능한 부하를 투입 제어한 후 상기 배터리 SOC를 측정하는 단계;
    측정된 상기 SOC가 상기 상위기준 1보다 큰 상위기준 2와 비교하는 단계; 및
    상기 상위기준 2와 비교한 결과 상기 SOC가 상기 상위기준 2보다 큰 경우, 상기 마이크로그리드 내 신재생에너지 전원의 출력을 제한하는 단계를 더 포함하는,
    독립형 마이크로그리드의 주파수 제어방법.
  10. 청구항 9에 있어서,
    상기 마이크로그리드 내 신재생에너지 전원의 출력을 제한하는 단계에 의해 상기 신재생에너지 전원의 출력 제한 후 일정 시간 경과 후 다시 상기 에너지저장장치의 SOC를 측정하는 것을 특징으로 하는,
    독립형 마이크로그리드의 주파수 제어방법.
  11. 청구항 9에 있어서,
    상기 SOC가 상기 상위기준 2와 비교한 결과, 상기 SOC가 상기 상위기준 2보다는 작을 경우 상기 SOC를 상기 상위기준 1과 다시 비교하는 것을 특징으로 하는,
    독립형 마이크로그리드의 주파수 제어방법.
  12. 독립형 마이크로그리드의 배터리 PCS(Power Conditioning System)에 형성된 제어수단을 통해 에너지저장장치의 충방전량을 입력받고, 상기 입력받은 에너지저장장치의 충방전량에 따라 상기 마이크로그리드 계통의 주파수가 제어됨으로써 상기 에너지저장장치를 상기 독립형 마이크로그리드의 주전원으로 운영하는 것을 특징으로 하는,
    독립형 마이크로그리드의 주파수 제어방법.
  13. 청구항 12에 있어서,
    상기 배터리 PCS(Power Conditioning System)을 CVCF(Constant Voltage Constant Frequency) 모드로 제어하는 단계;
    상기 에너지저장장치의 SOC(State of Charge)를 측정하는 단계;
    상기 SOC를 측정하는 단계에 의해 측정된 SOC를 기설정된 기준과 비교하는 단계; 및
    상기 SOC를 기설정된 기준과 비교한 결과에 따라 상기 마이크로그리드 내 제어가능한 부하의 차단 또는 투입을 제어하는 단계를 포함하는,
    독립형 마이크로그리드의 주파수 제어방법.
  14. 청구항 13에 있어서,
    상기 제어가능한 부하의 차단 또는 투입 제어 이후 SOC를 측정하는 단계를 더 포함하고,
    상기 제어가능한 부하의 차단 또는 투입 제어 이후 측정된 SOC가 상기 기설정된 기준을 벗어나는 경우 상기 입력받은 에너지저장장치의 충방전량에 따라 상기 마이크로그리드 계통의 주파수가 제어되는 것을 특징으로 하는,
    독립형 마이크로그리드의 주파수 제어방법.
  15. 청구항 14에 있어서,
    상기 에너지저장장치의 충방전량 입력에 따라서 상기 마이크로그리드의 계통 전체의 등가 강인도(stiffness)를 도출함으로써 상기 배터리 PCS의 주파수를 제어하는 것을 특징으로 하는,
    독립형 마이크로그리드의 주파수 제어방법.
  16. 독립형 마이크로그리드의 배터리 PCS(Power Conditioning System)을 CVCF(Constant Voltage Constant Frequency) 모드로 제어함으로써 독립형 마이크로그리드의 에너지저장장치가 주전원으로 운영될 수 있게 하는,
    독립형 마이크로그리드의 에너지 저장장치용 전력변환장치.
  17. 청구항 16에 있어서,
    상기 에너지저장장치의 SOC(State of Charge)를 측정하고, 측정된 SOC를 기설정된 기준과 비교하여 비교 결과에 의해 상기 마이크로그리드 내 제어가능한 부하의 차단 또는 투입을 제어하는 것을 특징으로 하는,
    독립형 마이크로그리드의 에너지 저장장치용 전력변환장치.
  18. 청구항 17에 있어서,
    제어수단에 의해 상기 에너지저장장치의 충방전량의 입력이 가능하여, 상기 입력받은 에너지저장장치의 충방전량에 따라 상기 마이크로그리드 계통의 주파수를 제어하는 것을 특징으로 하는,
    독립형 마이크로그리드의 에너지 저장장치용 전력변환장치.
  19. 청구항 18에 있어서,
    상기 에너지저장장치의 충방전량 입력에 따라서 상기 마이크로그리드의 계통 전체의 등가 강인도(stiffness)를 도출함으로써 상기 배터리 PCS의 주파수를 제어하는 것을 특징으로 하는,
    독립형 마이크로그리드의 에너지 저장장치용 전력변환장치.
PCT/KR2016/013070 2016-09-20 2016-11-14 독립형 마이크로그리드의 주파수 제어방법 및 이를 제어하는 에너지 저장장치용 전력변환장치 WO2018056504A1 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US16/327,310 US10951033B2 (en) 2016-09-20 2016-11-14 Method for controlling frequency of stand-alone microgrid and power converter for energy storage device for controlling same
JP2019513054A JP6765005B2 (ja) 2016-09-20 2016-11-14 独立型マイクログリッドの周波数制御方法およびそれを制御するエネルギー貯蔵装置用電力変換装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020160120112A KR20180031455A (ko) 2016-09-20 2016-09-20 독립형 마이크로그리드의 주파수 제어방법 및 이를 제어하는 에너지 저장장치용 전력변환장치
KR10-2016-0120112 2016-09-20

Publications (1)

Publication Number Publication Date
WO2018056504A1 true WO2018056504A1 (ko) 2018-03-29

Family

ID=61690873

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/013070 WO2018056504A1 (ko) 2016-09-20 2016-11-14 독립형 마이크로그리드의 주파수 제어방법 및 이를 제어하는 에너지 저장장치용 전력변환장치

Country Status (4)

Country Link
US (1) US10951033B2 (ko)
JP (1) JP6765005B2 (ko)
KR (1) KR20180031455A (ko)
WO (1) WO2018056504A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108551174A (zh) * 2018-04-20 2018-09-18 南京南瑞继保电气有限公司 一种广义下垂控制方法

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7010287B2 (ja) * 2017-05-11 2022-01-26 株式会社村田製作所 電力制御装置及び電力制御方法
JP6977167B2 (ja) * 2017-11-28 2021-12-08 エルエス、エレクトリック、カンパニー、リミテッドLs Electric Co., Ltd. エネルギー貯蔵システム
US10658845B2 (en) * 2017-12-11 2020-05-19 Ge Energy Power Conversion Technology Limited Method and system for droop control of power systems
KR102582338B1 (ko) * 2018-06-20 2023-09-26 한국전자기술연구원 독립형 마이크로그리드 운용 시스템
CN108958046A (zh) * 2018-06-27 2018-12-07 深圳市欧瑞博科技有限公司 一种家居控制系统及其控制方法
KR102264862B1 (ko) * 2019-07-23 2021-06-14 인제대학교 산학협력단 에너지 저장장치의 관성제어를 위한 장치 및 방법
DE102019133566A1 (de) * 2019-12-09 2021-06-10 Rwe Renewables Gmbh Verfahren sowie Stabilisierungsregler zum Betreiben eines Inselnetzes
CN112003303B (zh) * 2020-08-25 2021-06-25 北京朗信智能科技有限公司 基于电池储能系统的电网频率控制装置及方法
KR102631022B1 (ko) * 2021-09-10 2024-01-31 한국전력공사 독립계통에서의 하이브리드 발전소 운영 방법
WO2023157162A1 (ja) 2022-02-17 2023-08-24 東芝三菱電機産業システム株式会社 自立系統向け電源システム
KR102549305B1 (ko) * 2022-04-12 2023-06-30 리얼테크(주) 마이크로그리드 시스템 및 그 제어 방법
KR102594004B1 (ko) * 2022-12-06 2023-10-26 주식회사 그리드위즈 마이크로그리드 시스템

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014197955A (ja) * 2013-03-29 2014-10-16 株式会社Nttファシリティーズ 給電システム及び給電方法
KR20150019821A (ko) * 2013-08-16 2015-02-25 유한회사 엔텍코리아 소형 에너지 저장 및 분산 제어 시스템
JP2016001967A (ja) * 2014-06-12 2016-01-07 株式会社デンソー 電力供給システム
JP2016039685A (ja) * 2014-08-07 2016-03-22 三菱重工業株式会社 制御装置、それを備えた蓄電システム、及びその制御方法並びに制御プログラム
KR20160081216A (ko) * 2014-12-31 2016-07-08 한국전력공사 독립형 마이크로그리드 시스템

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AP3916A (en) * 2009-03-12 2016-11-30 Vpec Inc Autonomous distributed AC power system.
CA2862904C (en) * 2011-02-01 2020-07-28 S&C Electric Company Distributed energy storage system and method of distributing energy
JP2012249500A (ja) 2011-05-31 2012-12-13 Nec Corp 電力系統管理システム及び電力系統の管理方法
KR101545060B1 (ko) 2013-11-26 2015-08-17 정유철 Ess 분산제어 기반의 스마트그리드 통합 전력제어시스템
JP6379567B2 (ja) 2014-03-26 2018-08-29 シンフォニアテクノロジー株式会社 需要家電力マネジメントシステム

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014197955A (ja) * 2013-03-29 2014-10-16 株式会社Nttファシリティーズ 給電システム及び給電方法
KR20150019821A (ko) * 2013-08-16 2015-02-25 유한회사 엔텍코리아 소형 에너지 저장 및 분산 제어 시스템
JP2016001967A (ja) * 2014-06-12 2016-01-07 株式会社デンソー 電力供給システム
JP2016039685A (ja) * 2014-08-07 2016-03-22 三菱重工業株式会社 制御装置、それを備えた蓄電システム、及びその制御方法並びに制御プログラム
KR20160081216A (ko) * 2014-12-31 2016-07-08 한국전력공사 독립형 마이크로그리드 시스템

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108551174A (zh) * 2018-04-20 2018-09-18 南京南瑞继保电气有限公司 一种广义下垂控制方法
CN108551174B (zh) * 2018-04-20 2022-03-29 南京南瑞继保电气有限公司 一种广义下垂控制方法

Also Published As

Publication number Publication date
JP6765005B2 (ja) 2020-10-07
JP2019527024A (ja) 2019-09-19
KR20180031455A (ko) 2018-03-28
US20190181643A1 (en) 2019-06-13
US10951033B2 (en) 2021-03-16

Similar Documents

Publication Publication Date Title
WO2018056504A1 (ko) 독립형 마이크로그리드의 주파수 제어방법 및 이를 제어하는 에너지 저장장치용 전력변환장치
WO2012043919A1 (en) Power conversion system for energy storage system and controlling method of the same
WO2017043751A1 (ko) 독립형 마이크로그리드 자율제어 시스템 및 방법
WO2012033254A1 (en) Energy storage system and controlling method of the same
WO2017116087A2 (ko) 배터리 관리 장치 및 배터리 에너지 저장 시스템
WO2018212404A1 (ko) 하이브리드 에너지 저장 시스템
WO2018074651A1 (ko) 마이크로그리드용 에너지 저장 장치에 대한 운영 장치 및 방법
WO2019143023A1 (ko) 계통 전압 안정화 시스템
WO2013005875A1 (ko) 마이크로그리드용 에너지 저장장치의 협조제어 시스템 및 방법
WO2018026096A1 (ko) 배터리 팩 및 이를 포함하는 에너지 저장 시스템
WO2019031686A1 (ko) 에너지 저장 시스템
KR20200082293A (ko) 리튬이온배터리와 슈퍼커패시터를 이용한 에너지 저장 시스템 및 이의 출력 안정화 방법
WO2019231061A1 (ko) 태양광 연계 에너지 저장 시스템용 dc-dc 컨버터 및 그 제어방법
WO2019107806A1 (ko) 계층형 전력 제어 시스템
WO2019107802A1 (ko) 에너지 저장 시스템
WO2013032147A1 (en) Data transmitting method, data transmitting apparatus, and energy storage system including the same
WO2018230831A1 (ko) 에너지 저장 시스템
WO2019059489A1 (ko) 마이크로그리드 시스템
WO2015102398A1 (ko) 풍력 발전기용 에너지 저장 시스템 및 방법
WO2018135716A1 (ko) 에너지 저장 장치 및 이를 포함하는 에너지 저장 시스템
WO2012128413A1 (ko) 스마트 led 조명과 하이브리드 발전 시스템 및 그 시스템의 전력 제어 방법, 스마트 led 조명과 하이브리드 발전 장치 및 그 장치의 구동 방법
WO2022196846A1 (ko) 에너지저장시스템 계층형 관리시스템
WO2019235657A1 (en) Solar energy storage system divided into daytime and night mode, and its operation method and battery replacement method thereof
WO2022114464A1 (ko) 직류/직류 컨버터 및 이의 제어 방법
WO2019107801A1 (ko) 에너지 저장 시스템

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16916877

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019513054

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16916877

Country of ref document: EP

Kind code of ref document: A1