WO2018056247A1 - 面光源装置および液晶表示装置 - Google Patents

面光源装置および液晶表示装置 Download PDF

Info

Publication number
WO2018056247A1
WO2018056247A1 PCT/JP2017/033664 JP2017033664W WO2018056247A1 WO 2018056247 A1 WO2018056247 A1 WO 2018056247A1 JP 2017033664 W JP2017033664 W JP 2017033664W WO 2018056247 A1 WO2018056247 A1 WO 2018056247A1
Authority
WO
WIPO (PCT)
Prior art keywords
light guide
guide plate
light
region
prism
Prior art date
Application number
PCT/JP2017/033664
Other languages
English (en)
French (fr)
Inventor
寿史 渡辺
博敏 安永
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Publication of WO2018056247A1 publication Critical patent/WO2018056247A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S2/00Systems of lighting devices, not provided for in main groups F21S4/00 - F21S10/00 or F21S19/00, e.g. of modular construction

Definitions

  • the present invention relates to a surface light source device and a liquid crystal display device, and more particularly to a surface light source device and a liquid crystal display device capable of local dimming.
  • liquid crystal display devices that use direct-type backlight units such as televisions
  • direct-type backlight units such as televisions
  • a technology that realizes high contrast and low power consumption of the displayed image by adjusting the brightness of the backlight light for each area. It is popular.
  • the backlight light spreads to the left and right as the distance from the LED increases. could not be obtained.
  • Patent Document 1 a prism extending linearly is formed on the upper surface of the light guide plate, and LEDs divided into a plurality of groups are arranged on two opposite side surfaces of the light guide plate, and the LEDs of the selected group are turned on.
  • a backlight unit is disclosed.
  • Patent Document 2 discloses the use of a light guide plate in which prisms extending in a straight line are formed on both sides in order to suppress the light traveling in the light guide plate from spreading in a direction parallel to the light incident surface. Yes.
  • Patent Document 3 discloses a backlight unit that performs one-dimensional local dimming by dividing a light guide plate into a plurality of blocks separated from each other by a gap and confining light having luminance adjusted for each block.
  • Patent Document 4 discloses a backlight unit that performs one-dimensional local dimming driving by confining light of adjusted luminance in each area of a light guide plate divided by slits.
  • Japanese Unexamined Patent Publication No. 2011-175965 Japanese Unexamined Patent Publication No. 2011-249060 Japanese Unexamined Patent Application Publication No. 2008-34372 Japanese Unexamined Patent Publication No. 2011-146207
  • the light guide plate described in Patent Document 1 has a problem that incident light tends to spread in a direction parallel to the incident surface, and the light confinement effect is weak.
  • a course changing convex portion is formed on a prism formed on the lower surface. In this case, since the formation position of the convex portion is limited on the prism and cannot be freely formed, there is a problem that the degree of brightness uniformity of the light emitted from the light guide plate is lowered.
  • Patent Documents 3 and 4 have a large effect of confining in the divided areas, one-dimensional local dimming can be effectively performed.
  • it is necessary to provide a thick diffusion plate on the display surface side of the light guide plate in order to hide the bright lines (brightness unevenness) due to light leakage from the side surface facing the gap between the divided areas it is suitable for thinning.
  • assembly and processing are difficult.
  • none of these Patent Documents 1 to 4 disclose or suggest two-dimensional local dimming.
  • an object of the present invention is to provide an edge light type surface light source device and a liquid crystal display device which have a high confinement effect and are suitable for thinning.
  • a first aspect of the present invention is a light guide plate having a pair of main planes facing each other;
  • a surface light source device comprising a plurality of first light emitters arranged along at least one of a pair of side surfaces of the light guide plate facing each other,
  • the light guide plate includes a plurality of divided areas sandwiched by prism regions including a plurality of prisms extending on one main plane of the light guide plate from the one side surface toward the other side surface, and the first light emitter.
  • the plurality of first light emitters are arranged on the one side surface for each of the divided areas.
  • the light guide plate includes the plurality of divided areas sandwiched by prism regions including the plurality of prisms extending on the one main plane from the one side surface to the other side surface,
  • the concavo-convex pattern is formed on the other main plane so as to monotonously increase from the one side surface to the other side surface,
  • the plurality of first light emitters are arranged one by one on the one side surface for each of the divided areas.
  • the prism region is also formed at a position of the other main plane facing the one main plane of the light guide plate.
  • a light emitter lighting circuit for causing the plurality of first light emitters to emit light at a luminance determined based on luminance data given from outside is further provided, and the light emitters are turned on in a state where the plurality of first light emitters are connected in parallel. It is connected to a circuit.
  • the prism in the first aspect of the present invention, includes a V-shaped groove provided in the light guide plate.
  • a sixth aspect of the present invention is the fifth aspect of the present invention,
  • the depth h of the V-shaped groove is included in a range represented by the following equation, where d is the thickness of the light guide plate. 1 ⁇ m ⁇ h ⁇ d / 4
  • the inclination angle of the V-shaped groove with respect to the normal line of the light guide plate is ⁇
  • the inclination angle ⁇ is included in the range represented by the following expression. 30 ° ⁇ ⁇ 60 °
  • the divided area of the light guide plate is divided into two by the concavo-convex pattern formed so that the density increases from the one side surface and the other side surface toward the central portion, respectively.
  • One second light emitter is arranged for each of the divided areas along the other side surface of the light guide plate.
  • a ninth aspect of the present invention is the eighth aspect of the present invention,
  • a light emitter lighting circuit for causing the plurality of first light emitters to emit light at a luminance determined based on luminance data given from the outside, wherein the plurality of first light emitters and the plurality of second light emitters are connected in parallel It is connected to the light emitter lighting circuit in a state where it is connected.
  • the light guide plate is a light guide plate in which a plurality of light guide plates having the pair of main planes facing each other are arranged to overlap each other,
  • the divided areas formed in the plurality of light guide plates each include a plurality of divided areas,
  • the irregularities are formed so that the density increases monotonously from two ends of the plurality of regions that are not adjacent to each other from an end portion close to the one side surface to an end portion close to the other side surface.
  • Each region where the uneven pattern of the plurality of light guide plates is formed is arranged so as not to overlap each other in the stacking direction,
  • the plurality of first light emitters are arranged at least one for each of the divided areas along the one side surface of the light guide plate.
  • the light guide plate is a light guide plate in which a first light guide plate and a second light guide plate having the pair of main planes facing each other are arranged to overlap each other,
  • the first light guide plate and the second light guide plate include a plurality of first divided areas and a plurality of first sandwich areas sandwiched by the prism regions formed on the one main plane from the one side surface toward the other side surface.
  • Each of the second divided areas, The first divided area and the second divided area are each composed of two divided areas, and only from one of the two areas to the central part or from the central part.
  • the concavo-convex pattern in which the density monotonously increases to the other side surface is formed,
  • Each region where the uneven pattern of the first divided area and the second divided area is formed is arranged so as not to overlap each other in the stacking direction,
  • the plurality of first light emitters are arranged for each of the divided areas along the one side surface of the first light guide plate and the second light guide plate.
  • a twelfth aspect of the present invention is the eleventh aspect of the present invention,
  • the prism region formed on one of the first light guide plate and the second light guide plate is formed from the one side surface to the other side surface, and is formed on the other light guide plate.
  • the prism region is formed from the one side surface to the central portion,
  • the concave / convex pattern is not formed in a region where the prism region of the light guide plate in which the prism region is formed from the one side surface to the central portion is not formed.
  • a thirteenth aspect of the present invention is the twelfth aspect of the present invention,
  • the prism region is formed from the one side surface to the central portion, and the depth of the prism constituting the prism region of the other light guide plate is gradually shallower from the one side surface toward the central portion. It is characterized by becoming.
  • a fourteenth aspect of the present invention is the tenth aspect of the present invention.
  • An adhesion preventing means is provided between the adjacent light guide plate and the light guide plate so that the adjacent light guide plate and the main plane of the light guide plate are not in close contact with each other. It is characterized by.
  • a fifteenth aspect of the present invention is the fourteenth aspect of the present invention.
  • the adhesion preventing means is a concavo-convex pattern provided on at least one of the adjacent light guide plates and main surfaces of the light guide plates facing each other.
  • a sixteenth aspect of the present invention is the fourteenth aspect of the present invention.
  • the adhesion prevention means is a sheet that is disposed between the light guide plates disposed adjacent to each other and is subjected to a sticking prevention process.
  • the plurality of light guide plates each include the plurality of divided areas sandwiched between the prism regions formed on the one main plane from the one side surface toward the other side surface, A plurality of second light emitters are further disposed in each of the plurality of divided areas along the other side surface of the plurality of light guide plates;
  • the plurality of divided areas are each composed of four divided areas, and two of the four areas that are not adjacent to each other are closer to the light emitters of the first light emitter and the second light emitter, respectively.
  • the concavo-convex pattern in which the density increases monotonously from the side toward the center is formed,
  • the regions where the uneven patterns of the plurality of divided areas are formed are arranged so as not to overlap each other in the stacking direction.
  • the light guide plate is a light guide plate in which a first light guide plate and a second light guide plate having the pair of main planes facing each other are arranged to overlap each other,
  • the plurality of second light emitters are arranged one by one for each of the divided areas along the other side surface of the first and second light guide plates,
  • Each of the first light guide plate and the second light guide plate includes a plurality of first divided areas and second divided areas,
  • the first divided area and the second divided area each include four divided areas, two areas of the first light guide plate that are not adjacent to each other, and the two areas of the first light guide plate;
  • the concavo-convex pattern in which the density monotonously increases from the closer light emitter side of the first light emitter and the second light emitter toward the central portion. Is formed,
  • the region where the uneven pattern of the first divided area is formed is arranged so as not to overlap the
  • the region where the concave / convex pattern is formed is in contact with the region on both sides, the prism region is not formed, and the region where the concave / convex pattern is formed is in contact with only one side of the region.
  • the prism region is not formed in the vicinity of the boundary with the region where the concavo-convex pattern is formed.
  • the concavo-convex pattern formed in the vicinity of a boundary between a region where the concavo-convex pattern is formed and a region in contact with only one side is formed so as to have a lower density than other regions.
  • a twenty-first aspect of the present invention is a liquid crystal display device including the surface light source device according to any one of the first to twentieth aspects.
  • a plurality of divided areas sandwiched by prism regions extending from one side surface toward the other side surface are formed on one main plane of the light guide plate, and the other main plane has Has a concavo-convex pattern for emitting the light incident on the light guide plate from the first light emitter to the outside. For this reason, the light incident from the first light emitters arranged for each divided area is reflected by the concave / convex pattern for each divided area and is emitted to the outside from one main plane.
  • the surface light source device has a high confinement effect, when local dimming is performed, an image can be displayed with high contrast and power consumption can be suppressed.
  • the concavo-convex pattern changes the path so that the incident light is emitted to the outside, so that the light is more likely to be emitted to the display surface side as the density of the concavo-convex pattern is higher.
  • the amount of light passing through the region closer to the first light emitter increases.
  • the luminance of the light emitted from the divided area is represented by the product of the density of the uneven pattern and the amount of light emitted from the first light emitter. For this reason, by increasing the density of the concavo-convex pattern monotonously from one side surface to the other side surface, the divided areas can emit light with increased brightness uniformity.
  • the prism area at the position of one main plane corresponding to the prism area formed on the other main plane. Therefore, the light emitted from the first light emitter can be concentrated in the divided area. Thereby, when local dimming is performed, an image can be displayed with higher contrast and power consumption can be further suppressed.
  • the plurality of first light emitters are connected to the light emitter lighting circuit in a state of being connected in parallel, by adjusting the voltage applied to each first light emitter.
  • the brightness of light can be adjusted.
  • the inclined surface of the V-shaped groove constituting the prism is a flat surface, the reflectance of light hitting the prism can be increased.
  • the depth of the prism is preferably deeper than 1 ⁇ m and less than 1 ⁇ 4 of the thickness of the light guide plate.
  • the reason why the thickness of the light guide plate is less than 1 ⁇ 4 is that when the prism depth is 1 ⁇ 4 or more of the thickness of the light guide plate 60, the strength of the light guide plate is extremely high when the prism is formed on a thin light guide plate. This is because the light guide plate often warps or cracks.
  • the reason why the depth is deeper than 1 ⁇ m is that the prism must be deeper than at least 1 ⁇ m, which is the wavelength of visible light, in order to reflect visible light.
  • the inclination angle ⁇ of the prism is compatible with both optical merit and ease of mass production of the light guide plate.
  • the concavo-convex pattern formed in the divided area of the light guide plate is formed so that the density increases from one side surface and the other side surface of the light guide plate toward the central portion.
  • light incident from the first light emitter disposed on one side surface of the light guide plate is emitted as light having a high degree of luminance uniformity within the region from one side surface to the central portion, and is disposed on the other side surface.
  • the incident light from the second light emitter is emitted as light having a high degree of brightness uniformity within the region from the other side surface to the central portion. Accordingly, two-dimensional local dimming can be performed, and an image can be displayed with higher contrast and power consumption can be further suppressed.
  • the plurality of first light emitters and the plurality of second light emitters are connected to the light emitter lighting circuit in a state of being connected in parallel.
  • the light emission intensities of the two light emitters can be individually adjusted.
  • the uneven patterns do not overlap each other in the stacking direction.
  • the light guide plate is formed. For this reason, by driving the first light emitters arranged on the respective light guide plates independently, it is possible to cause the divided areas to emit light for each of the divided areas according to the number of the light guide plates. As a result, finer two-dimensional local dimming can be performed, so that a higher-contrast image can be displayed and power consumption can be further reduced.
  • the first light guide plate and the second light guide plate that are arranged in layers are divided into the first divided area and the second divided area, respectively, from one side surface to the central portion, and the other side surface.
  • the uneven pattern is formed so that the density increases from the center to the center.
  • a first light emitter is disposed on one side of each of the first and second light guide plates, and a second light emitter is disposed on the other side.
  • the light emitted from the first light emitter disposed on one side surface is emitted as light with increased brightness uniformity from the region from one side surface to the central portion, and the second light disposed on the other side surface.
  • the light emitted from the illuminant is emitted as high light with a high degree of luminance uniformity from the region from the other side surface to the central portion, so that two-dimensional local dimming can be performed.
  • the prism area and the concave-convex pattern are formed only in the area from one side surface to the central portion of the divided area of either one of the first and second light guide plates. By doing so, most of the light incident on each divided area from the first light emitter is emitted in the region up to the central portion. For this reason, a part of the light traveling to a region farther from the center of the divided area is not reflected by the prism region and becomes stray light, and an image with higher contrast can be displayed.
  • the prism is formed so that the prism gradually becomes smaller from one side surface of the light guide plate toward the central portion. As a result, a portion of the light that has traveled to a region farther from the center of the divided area is less likely to strike the end face of the prism and become stray light, so that the occurrence of uneven brightness can be suppressed.
  • an air layer is formed between adjacent light guide plates, so that they can be prevented from adhering to each other.
  • an adhesion preventing means an uneven pattern is provided on at least one of the main planes of the adjacent light guide plates facing each other. Thereby, since an air layer is formed between adjacent light guide plates, they can be prevented from coming into close contact with each other.
  • an adhesion preventing means a sheet subjected to a sticking prevention process is disposed between adjacent light guide plates. Thereby, since an air layer is formed between adjacent light guide plates, they can be prevented from coming into close contact with each other.
  • each of the divided areas of the plurality of light guide plates is divided into four parts, and an uneven pattern is provided in each region so as not to overlap with each other.
  • a first light emitter and a second light emitter are disposed on the side surfaces, respectively.
  • the obtained effect is also the seventeenth aspect. It is substantially the same as the case.
  • a prism region is not formed in a region in contact with both sides of the region where the concavo-convex pattern is formed, and the region where the concavo-convex pattern is formed and one side of the four regions.
  • No prism region is formed near the boundary with the region where the concave / convex pattern is formed in the region that is in contact with only the region.
  • the concavo-convex pattern formed in the vicinity of the boundary between the region where the concavo-convex pattern is formed and the region in contact with only one side is formed to have a lower density than the other regions.
  • the display device including the surface light source device according to the first to twentieth aspects displays an image with high contrast or performs power consumption when performing local dimming. Can be suppressed.
  • FIG. 1 It is a block diagram which shows the structure of the liquid crystal display device containing the backlight unit which concerns on the 1st Embodiment of this invention. It is a figure which shows the structure of the backlight unit which concerns on 1st Embodiment. It is a figure which shows the positional relationship of each LED and division
  • FIG. 3 is a diagram showing how light travels depending on the width of the prism region of the light guide plate and the thickness of the light guide plate included in the backlight unit shown in FIG. 2, and more specifically, (A) shows that the width of the prism region is guided. It is a figure which shows the course of light when it is narrower than the thickness of an optical plate, (B) is a figure which shows the course of light when the width
  • FIG. 15 is a circuit diagram for controlling light emission intensity of LEDs arranged on two side surfaces of a light guide plate included in the backlight unit shown in FIG. 14. It is a figure which shows the density distribution of the uneven
  • FIG. 19 is a diagram illustrating a cross section when the number of light guide plates included in the backlight unit illustrated in FIG. 18 is three. It is a figure which shows the structure of the backlight unit which concerns on the modification of the 3rd Embodiment of this invention. It is a perspective view which shows the shape of the prism formed in the 1st area
  • FIG. 19 is a diagram illustrating a cross section when the number of light guide plates included in the backlight unit illustrated in FIG. 18 is three. It is a figure which shows the structure of the backlight unit which concerns on the modification of the 3rd Embodiment of this invention. It is a perspective view which shows the shape of the prism formed in the 1st area
  • FIG. 5B is a perspective view showing the shape of the prism formed on the light guide plate after improvement. It is a figure which shows the structure of the backlight unit which concerns on the 4th Embodiment of this invention.
  • FIG. 24 is a diagram showing the density of the uneven pattern formed in the first to fourth regions of the two light guide plates included in the backlight unit shown in FIG. 23 and the luminance of the emitted light.
  • FIG. 24 is a diagram showing a light guide plate included in the backlight unit shown in FIG. 23, which shines in a comb shape near the boundary of the region.
  • FIG. 24 is a view showing a light guide plate included in the backlight unit shown in FIG. 23 and that does not shine in a comb-teeth shape near the boundary of the region.
  • FIG. 23 It is the light guide plate contained in the backlight unit shown in FIG. 23, Comprising: It is the top view and sectional drawing which show the structure of one light guide plate which is hard to shine in a comb-tooth shape. It is the top view and sectional drawing which are the light guide plates contained in the backlight unit shown in FIG. 23, and show the structure of the other light guide plate which is hard to shine in a comb-tooth shape. It is a top view which shows the structure of the light-guide plate which is further hard to shine in a comb-tooth shape rather than the light-guide plate shown in FIG.
  • FIG. 6 is a table summarizing the number of divided areas formed on a light guide plate included in a backlight unit according to each of the first to fourth embodiments, the number of light guide plates used, and the frame width of a liquid crystal panel.
  • FIG. 1 is a block diagram showing a configuration of a liquid crystal display device 10 including a backlight unit 70 according to the first embodiment of the present invention.
  • the liquid crystal display device 10 includes a liquid crystal panel 20, a display control circuit 30, a scanning signal line driving circuit 40, a data signal line driving circuit 45, a light source lighting circuit 50, a light guide plate 60, and a light source 65.
  • the light guide plate 60 is disposed on the back side of the liquid crystal panel 20, and the light source 65 includes a plurality of LEDs disposed on one side surface of the light guide plate 60.
  • the light source 65 and the light guide plate 60 are collectively referred to as “backlight unit” or “surface light source device”.
  • Each LED included in the light source 65 may be referred to as a “light emitter” and the light source lighting circuit 50 may be referred to as a “light emitter lighting circuit”.
  • the “surface light source device” includes the “light emitter lighting circuit”. In the case of being provided outside the liquid crystal display device, the “surface light source device” does not include the “light emitting element lighting circuit”.
  • the light guide plate 60 is provided with an optical sheet, a polarizing plate, a reflective sheet, etc., but these are not shown.
  • the liquid crystal panel 20 includes n scanning signal lines G1 to Gn, m data signal lines S1 to Sm, and (m ⁇ n) pixels Pij (m and n: integers of 2 or more, i: an integer of 1 to n, j: an integer of 1 to m).
  • the scanning signal lines G1 to Gn are arranged in parallel to each other, and the data signal lines S1 to Sm are arranged in parallel to each other so as to intersect the scanning signal lines G1 to Gn.
  • a pixel Pij is arranged in the vicinity of the intersection of the i-th scanning signal line Gi and the j-th data signal line Sj.
  • the (m ⁇ n) pixels Pij are arranged in a matrix, with m pixels in the row direction and n pixels in the column direction.
  • the scanning signal line Gi is connected in common to the pixel Pij arranged in the i-th row, and the data signal line Sj is connected in common to the pixel Pij arranged in the j-th column.
  • the display control circuit 30 controls the control signal based on these signals. SC1, control signal SC2, digital image data DV, and luminance data BD are generated.
  • the display control circuit 30 outputs a control signal SC1 to the scanning signal line drive circuit 40, and outputs a control signal SC2 and digital image data DV to the data signal line drive circuit 45. Further, the display control circuit 30 outputs luminance data BD obtained from the image signal DAT to the light source lighting circuit 50 in order to adjust the light emission intensity of each LED to emit light with a desired luminance.
  • the scanning signal line driving circuit 40 sequentially applies high level output signals to the scanning signal lines G1 to Gn one by one based on the control signal SC1. As a result, the scanning signal lines G1 to Gn are sequentially selected one by one, and the pixels Pij for one row are selected at a time.
  • the data signal line drive circuit 45 gives a signal voltage corresponding to the digital image data DV to each of the data signal lines S1 to Sm based on the control signal SC2 and the digital image data DV. As a result, a signal voltage corresponding to the digital image data DV is written into the selected pixel Pij for one row.
  • the light source lighting circuit 50 causes each LED included in the light source 65 to emit light based on the luminance data BD given from the display control circuit 30.
  • the light emitted from the LED enters the light guide plate 60 and travels while being totally reflected in the light guide plate 60, reflected by an uneven pattern (not shown) formed on the back surface of the light guide plate 60, and directed toward the liquid crystal panel 20. Is irradiated. In this way, the liquid crystal display device 10 displays an image on the liquid crystal panel 20.
  • FIG. 2 is a diagram illustrating a configuration of the backlight unit 70 according to the first embodiment.
  • FIG. 2 shows a plan view of the backlight unit 70, a sectional view in the X direction of the backlight unit 70, and a sectional view in the Y direction of the backlight unit 70.
  • the “X direction” refers to the direction from the bottom to the top of the page
  • the “Y direction” refers to the direction from the left to the right of the page.
  • the “X direction” and the “Y direction” represent the same direction as described above in the other drawings of this specification.
  • the backlight unit 70 is an edge light type light source in which a plurality of LEDs 65 c are arranged on one side surface (C surface) of the light guide plate 60.
  • the backlight unit 70 includes a light guide plate 60, a plurality of LEDs 65c, a reflective sheet 92 installed on the back surface of the light guide plate 60, and an optical sheet 91 installed on the display surface side surface of the light guide plate 60.
  • the light plate 60 has a rectangular flat plate shape including main surfaces facing each other.
  • the backlight unit 70 includes a double-sided tape for fixing the light guide plate 60 to the liquid crystal panel 20 and a frame for holding the shape of the light guide plate 60, but these are not shown.
  • the LED 65c constituting the light source 65 is a white LED, but may be a combination of LEDs that emit red, green, and blue light, respectively.
  • one LED 65c is arranged for each divided area 80 where local dimming is performed, but a plurality of LEDs 65c may be arranged in one divided area 80.
  • the LEDs 65c are connected in parallel in order to independently control the light emission intensity of each LED 65c arranged for each divided area 80. A specific connection method will be described later.
  • the plurality of LEDs 65c in the divided area 80 may be connected in series or may be connected in parallel.
  • the reflection sheet 92 is a sheet for reflecting the light leaked from the light guide plate 60 to the back side and returning it to the light guide plate 60 again.
  • the reflection sheet 92 includes a white sheet that diffusely reflects light leaked from the light guide plate 60 and returns it to the light guide plate 60, a mirror sheet that mirror-reflects and returns the light guide plate 60, and the like.
  • the optical sheet 91 is a sheet in which a diffusion sheet, a prism sheet, a polarization reflection sheet, and the like are laminated. Typically, a diffusion sheet / prism sheet / prism sheet / polarization reflection sheet is laminated in order from the light guide plate 60 side. A sheet is used.
  • the two prism sheets are sheets formed such that the extending directions of the prisms are orthogonal to each other.
  • the light guide plate 60 is made of a transparent material such as acrylic, polycarbonate, or glass, and has a thickness of, for example, 0.6 mm.
  • the surface (B surface) on the display surface side of the light guide plate 60 is divided into a plurality of divided areas 80 divided in a direction (X direction) perpendicular to one side surface (C surface) on which the LEDs 65c are arranged.
  • a prism region 85 including a plurality of prisms extending in the X direction is formed between adjacent divided areas 80.
  • the surface of the divided area 80 sandwiched between the prism regions 85 is a flat surface.
  • one LED 65c is arranged for each C surface of each divided area 80, and light emitted from the LED 65c enters the light guide plate 60 from the C surface and is emitted from the divided area 80 to the display surface side as described later. .
  • a concave / convex pattern 81 for extracting light traveling in the light guide plate 60 to the display surface side is formed on the entire rear surface (A surface) of the light guide plate 60.
  • the concavo-convex pattern 81 is configured by a lens shape, a prism shape, a textured shape, or the like, and may be integrally formed with the light guide plate by an injection molding method or the like, or separately formed on a flat light guide plate by an ink jet method or the like. You may do it.
  • the density of the concave / convex pattern 81 is often formed roughly by the LED 65c and densely formed on the side facing the LED 65c. In FIG.
  • the concave / convex pattern 81 is omitted from the A plane of the cross-sectional view in the Y direction, but the concave / convex pattern 81 formed on the entire light guide plate 60 is not shown in the A plane of the cross-sectional view in the X direction. It is shown in the figure.
  • a knurled shape is formed on the C surface of the light guide plate 60 on which the LED 65c is disposed in order to improve the light incident efficiency of the light emitted from the LED 65c.
  • the other side surfaces except the C surface are covered with a frame (not shown) made of white resin.
  • FIG. 3 is a diagram showing a positional relationship between each LED 65c1 to 65c5 and the divided area 80 when five LEDs 65c1 to 65c5 are arranged on the C surface of the light guide plate 60. As shown in FIG. As shown in FIG. 3, one of the five LEDs 65c1 to 65c5 is arranged on each C plane for each divided area 80.
  • FIG. 4 is a circuit diagram for controlling the luminance of the LED 65 c arranged on the light guide plate 60.
  • the five LEDs 65c1 to 65c5 are connected to the light source lighting circuit 50 in a state of being connected in parallel.
  • the light source lighting circuit 50 sets a voltage value to be applied to the corresponding LED based on the luminance data BD given from the display control circuit 30, and applies the set voltage value to the LED.
  • the light source lighting circuit 50 controls the light emission intensities of the LEDs 65c1 to 65c5 arranged in the divided areas 80, respectively, and the controlled light enters the divided areas of the light guide plate.
  • the backlight unit 70 can irradiate the liquid crystal panel with light having different luminance for each divided area formed in the light guide plate 60.
  • FIG. 5 is a diagram illustrating a part of the light guide plate 60. More specifically, FIG. 5A is a part of a cross-sectional view of the light guide plate 60, and FIG. Is part of. Since FIG. 5A is a cross-sectional view, the X direction is a direction from the front of the paper to the back.
  • a prism region 85 including, for example, six prisms 86 is formed on the B surface of the light guide plate 60 so as to extend in the X direction.
  • a region sandwiched between the prism regions 85 on both sides is a divided area 80, and each divided area 80 irradiates light emitted from the LED 65 c toward the liquid crystal panel 20.
  • each divided area 80 emits light with an increased brightness uniformity when performing local dimming.
  • a concave / convex pattern for emitting incident light to the display surface side is formed on the front surface of the light guide plate 60, but the illustration is omitted in FIG. 5 (A).
  • the prism area 85 is formed so that the center in the width direction coincides with the boundary of the divided area 80.
  • the light emitted from the LED 65c is first reflected by one prism 86 constituting the left prism region 85, and the reflected light is further totally reflected by hitting the A surface of the light guide plate 60, and the right prism region.
  • the light enters the 85 prism 86.
  • the light reflected by the prism 86 is returned to the divided area 80. In this way, the light advances inside the divided area 80 while being reflected, and is emitted to the display surface side when reflected by the uneven pattern formed on the A surface.
  • FIG. 6 is a diagram showing how light travels depending on the width L of the prism region 85 and the thickness d of the light guide plate 60. More specifically, FIG. 6A shows that the width L of the prism region 85 is equal to the light guide plate. FIG. 6B is a diagram illustrating the light path when the width L of the prism region 85 is sufficiently wider than the thickness d of the light guide plate 60. It is.
  • the width L of the prism area 85 is smaller than the thickness d of the light guide plate, that is, when L ⁇ d, the light from the divided area 80 toward the prism area 85 is prism-shaped as shown in FIG. There is a case where the player does not hit 86 and falls into the adjacent divided area 80. For this reason, the width L of the prism region 85 is preferably wider than at least the thickness d of the light guide plate 60.
  • the inventor of the present invention examines in detail the relationship between the width L of the prism region 85 and the thickness d of the light guide plate 60 that do not cause the above problems, and the optimum width L of the prism region 85 is expressed by the following equation. It was found that (1) was satisfied. d ⁇ L ⁇ 3d (1)
  • FIG. 7 and 8 are enlarged views showing a cross section of the prism region 85 formed on the B surface of the light guide plate 60.
  • FIG. 7 it is most preferable that the tip of each prism 86 constituting the prism region 85 is formed to be the same height as or lower than the B surface of the light guide plate 60.
  • a part of the prism 86 may be formed to be lower than the B surface.
  • the depth h of the prism 86 formed on the B surface of the light guide plate 60 is preferably sufficiently shallow with respect to the thickness d of the light guide plate 60, and specifically, less than 1 ⁇ 4 of the thickness d of the light guide plate 60. Preferably there is.
  • the prism 86 whose depth h is 1/4 or more of the thickness d of the light guide plate 60 is formed on the light guide plate 60 having a thickness d of 0.6 mm or less, the strength of the light guide plate 60 is extremely reduced. This is because the light guide plate 60 frequently warps or cracks.
  • the depth h of the prism 86 in order to reflect visible light, the depth h of the prism 86 must be sufficiently longer than at least the wavelength of visible light, so the depth h of the prism 86 needs to be at least 1 ⁇ m or more. For this reason, when the thickness d of the light guide plate 60 is thin, the depth h of the prism 86 is preferably in the range represented by the following formula (2). 1 ⁇ m ⁇ h ⁇ d / 4 (2)
  • the thickness of the light guide plate 60 is as thick as 1 mm or more, the strength of the light guide plate 60 does not matter even if the depth h of the prism 86 is 1/4 or more of the thickness d of the light guide plate 60. .
  • the light guide plate 60 having a thickness of 1 mm or more is not used except for a large liquid crystal display device such as a television.
  • the inclination angle ⁇ of the prism (the angle formed between the normal line of the light guide plate and the inclined surface of the prism) is preferably optically small, but ease of mass production of the light guide plate 60 by the injection molding method. Considering the above, it is preferable that the value is large to some extent. According to the detailed examination results of the inventors of the present invention, the inclination angle ⁇ is 30 ° ⁇ ⁇ 60 ° (3) Preferably, 40 ° ⁇ ⁇ 50 ° (4) I found out that
  • the prism 86 is preferably a V-shaped groove having a flat inclined surface.
  • the inclined surface may be somewhat rounded. In this case, it is assumed that the rounded inclined surface is a combination of a plurality of inclined surfaces, and the inclined angle of the inclined surface is an average value of the inclined angles of the plurality of inclined surfaces.
  • FIG. 9 is a diagram showing the density of the concavo-convex pattern formed on the surface A, which is the surface on the back side of the light guide plate 60, and the luminance of the emitted light.
  • the density of the concavo-convex pattern in each divided area 80 is the lowest in the vicinity of the C surface where the LED 65c is attached, and gradually increases with increasing distance from the LED 65c, and the side surface of the divided area facing the LED 65c. It becomes the highest near (D surface). Since the concave / convex pattern 81 changes the course so that incident light is emitted from the display surface side, light is more likely to be emitted to the display surface side as the density of the concave / convex pattern 81 is higher.
  • the emission intensity of the LED 65c increases as the region is closer to the LED 65c.
  • the luminance of the light emitted from the divided area 80 toward the display surface is represented by the product of the density of the concavo-convex pattern and the light emission intensity of the LED 65c. For this reason, as shown in FIG. 9, light having a higher brightness uniformity is emitted from the divided area 80.
  • the B surface of the light guide plate 60 is called “one main plane”, the A surface is called “the other main plane”, the C surface is called “one side surface”, and the D surface is called “the other side surface”.
  • the LED 65c thus formed may be referred to as a “first light emitter”, and the LED 65d disposed on the D surface may be referred to as a “second light emitter”.
  • FIG. 10 is a diagram showing the effect of local dimming when the prism region 85 is formed on the B surface of the light guide plate 60 of this embodiment, and FIG. 11 does not form the prism 86 on the B surface of the light guide plate 60 at all.
  • FIG. 12 is a diagram showing the light spread when the prism 86 is formed on the entire B surface of the light guide plate 60. In order to explain the effect when the prism region 85 is formed on the B surface of the light guide plate 60, a description will be given in comparison with the case shown in FIGS. 11 and 12.
  • each divided area 80 has a high confinement effect. To have. For this reason, most of the light emitted from the LED 65c is emitted from the divided area 80 corresponding to the LED 65c.
  • the backlight unit 70 of the present embodiment can be thinned and can be easily manufactured.
  • FIG. 13 is a cross-sectional view of the light guide plate 60 in which the prism regions 85 are formed on both sides. More specifically, FIG. 13A is a cross section of the light guide plate 60 in which the prism regions 85 are formed on the A and B surfaces. FIG. 13B is an enlarged cross-sectional view of a part of the light guide plate 60 shown in FIG. As shown in FIGS. 13A and 13B, prism regions 85 are formed not only on the B surface of the light guide plate 60 but also on the A surface corresponding to the prism region 85 on the B surface.
  • the light guide plate 60 is described as having a rectangular shape.
  • the shape is not limited to this, and the light guide plate 60 may have a free shape such as a trapezoid, a polygon, a circle, or a semicircle.
  • FIG. 14 is a diagram illustrating a configuration of the backlight unit 70 according to the present embodiment.
  • FIG. 14 shows a plan view of the backlight unit 70, a sectional view in the X direction of the backlight unit 70, and a sectional view in the Y direction of the backlight unit 70. Note that the X direction and the Y direction in FIG. 14 are the same as those shown in FIG.
  • the configuration of the backlight unit 70 of the present embodiment will be described focusing on a configuration different from that of the first embodiment shown in FIG.
  • the light guide plate 60 is divided into a plurality of divided areas 80 by a prism region 85 including a plurality of prisms formed on the B surface of the light guide plate.
  • the LED 65c is attached only to the C surface of each divided area.
  • the LED 65d is arranged not only on the C surface but also on the D surface facing the C surface.
  • FIG. 15 shows the divided area 80 and the respective LEDs 65c1 to 65c5 when five LEDs 65c (LEDs 65c1 to 65c5) are arranged on the C surface of the light guide plate 60 and five LEDs 65d (LEDs 65d1 to 65d5) are arranged on the D surface. It is a figure which shows the positional relationship with 65d1-65d5. As shown in FIG. 15, five LEDs 65c1 to 65c5 are arranged on each C plane for each divided area 80, and five LEDs 65d1 to 65d5 are arranged on each D plane for each divided area 80. Is arranged.
  • FIG. 16 is a circuit diagram for controlling the light emission intensity of the LEDs 65c1 to 65c5 disposed on the C surface of the light guide plate 60 and the LEDs 65d1 to 65d5 disposed on the D surface. As shown in FIG. 16, these ten LEDs 65c1 to 65c5 and 65d1 to 65d5 are connected to the light source lighting circuit 50 in a state of being connected in parallel. Therefore, the light source lighting circuit 50 sets a voltage value to be applied to the corresponding LED based on the luminance data BD of each divided area 80 given from the display control circuit 30, and applies the set voltage value to the LED. To do.
  • the light source lighting circuit 50 independently drives the light emission intensity of each LED 65c, 65d arranged on the C surface and the D surface of each divided area 80.
  • the backlight unit 70 can irradiate the liquid crystal panel with light having different luminance for each of the divided areas formed on the light guide plate 60.
  • FIG. 17 is a diagram showing the density distribution of the concavo-convex pattern formed on the A surface of the light guide plate 60 and the luminance of the emitted light.
  • the density of the concavo-convex pattern formed on the A surface of the light guide plate 60 is the smallest in the vicinity of the C surface and the D surface of the light guide plate, and increases monotonously toward the central portion. Maximum. For this reason, most of the light emitted from the LEDs 65c arranged on the C surface is emitted to the display surface side from the C surface to the center when entering the first region of the corresponding divided area 80. To do.
  • the divided area is divided into the first region and the second region in the longitudinal direction (X direction). Dividing into two regions, the luminance of the emitted light can be changed for each region. Thereby, two-dimensional local dimming can be performed.
  • the light emitted from the LED 65c arranged on the C surface of the divided area 80 increases the luminance uniformity between the vicinity of the C surface and the central portion. Is emitted as light.
  • the light emitted from the LED 65d disposed on the D surface is also emitted as light with a high degree of brightness uniformity from the vicinity of the D surface to the central portion.
  • the LEDs 65c and 65d arranged on the C surface and D surface of the light guide plate 60 are driven independently, so that the light incident on the light guide plate 60 is separated by the prism region 85 formed on the B surface.
  • Each of the divided areas 80 is confined, and the density of the uneven pattern 81 formed on the A surface is divided into the first and second regions.
  • the light emitted from the LED 65c arranged on the C surface is emitted from the first region to the display surface side
  • the light emitted from the LED 65d arranged on the D surface is emitted from the second region to the display surface side. Therefore, the backlight unit 70 can perform two-dimensional local dimming. For this reason, it is possible to display a high-contrast image with high contrast and to suppress the power consumption of the backlight unit as compared with the case of the first embodiment.
  • FIG. 18 is a diagram showing a configuration of the backlight unit 70 according to the present embodiment. A description will be given mainly of a configuration different from the case of the first embodiment shown in FIG.
  • two light guide plates 60 and 61 are included, and the light guide plate 60 and the light guide plate 61 are stacked in this order from the liquid crystal panel 20 side.
  • the LED 65 c is disposed on the C surface of the light guide plate 60
  • the LED 66 c is disposed on the C surface of the light guide plate 61.
  • the X direction and the Y direction shown in FIG. 18 are the same as those in the first embodiment shown in FIG.
  • the light guide plate 60 may be referred to as a first light guide plate
  • the light guide plate 61 may be referred to as a second light guide plate.
  • Each divided area 80 of the light guide plate 60 and the light guide plate 61 is divided into two regions by dotted lines extending in the Y direction shown in FIG. 18, and a region close to the LEDs 65c and 65d is called a first region, and a far region is called a second region. .
  • the concave / convex pattern 81 is formed on the A surface of the first region, but the concave / convex pattern 81 is not formed on the A surface of the second region.
  • the uneven pattern 81 is not formed on the A surface of the first region, but the uneven pattern 81 is formed on the B surface of the second region.
  • a prism region 85 is formed at a position of the light guide plate 61 corresponding to the prism region 85 of the light guide plate 60, and the light guide plate 61 is also divided into divided areas 80 by the prism region 85. For this reason, the divided area 80 of the light guide plate 60 and the divided area of the light guide plate 61 overlap in the stacking direction.
  • FIG. 19 is a diagram showing the density distribution of the concavo-convex pattern 81 formed on the A surface of the light guide plate 60 and the light guide plate 61 and the luminance of the emitted light.
  • the density of the concavo-convex pattern monotonously increases from the vicinity of the C surface toward the central portion and becomes the maximum in the central portion, and the density of the concavo-convex pattern 81 in the second region. Becomes “zero”.
  • the light guide plate 60 when the light emitted from the LED 65c arranged on the C surface enters the first region, the light is reflected by the uneven pattern 81 formed on the A surface of the first region while traveling through the light guide plate 60, The light is emitted toward the display surface side. In this case, light with increased brightness uniformity is emitted from the first region to the display surface side. In addition, most of the light emitted from the LED 65c is almost emitted toward the display surface by the central portion, so that almost no light travels to the second region. In addition, the uneven pattern 81 is not formed in the second region. As a result, even a small amount of light that has traveled to the second region travels while repeating total reflection, so that the brightness of light emitted from the second region to the display surface side is zero.
  • the uneven pattern 81 is not formed in the first region of the light guide plate 61, when the light emitted from the LED 66c enters the first region, the light advances to the center while repeating total reflection on the surface of the light guide plate 61. For this reason, the brightness
  • the density of the concavo-convex pattern 81 increases monotonously from the central portion toward the D plane and becomes maximum near the D plane.
  • the light guide plate 61 when the light emitted from the LED 66c arranged on the C surface enters the first region, the light proceeds on the surface of the light guide plate 60 while being totally reflected, and enters the second region. In the second region, light that is reflected by the concave / convex pattern 81 formed so as to increase in density from the central portion toward the D surface and emitted with improved brightness uniformity is emitted to the display surface side.
  • the density of the concave / convex pattern 81 formed on the A surface increases as the distance from the LEDs 65c and 66c increases. Since the emission intensity of the light emitted from the LEDs 65c and 66c decreases as the distance from the LEDs 65c and 66c increases, the brightness of the reflected light is increased by increasing the density of the concavo-convex pattern 81 in order to compensate for it. For this reason, as shown in FIG. 19, the brightness uniformity of the light emitted from the first region of the light guide plate 60 and the brightness uniformity of the light emitted from the second region of the light guide plate 61 are the respective regions. It becomes high within.
  • the light that has entered the light guide plates 60 and 61 travels while being totally reflected at the interface between the light guide plate and the air layer.
  • the two light guide plates 60 and 61 are brought into close contact with each other so that there is no air layer between them, the light traveling in one light guide plate is not totally reflected on the surface but guided to the other. It enters the light plate.
  • the light emitted from the LED 65 c arranged on the light guide plate 60 is incident on the light guide plate 61 without being totally reflected on the surface on the back side of the light guide plate 60, and the second uneven pattern 81 of the light guide plate 61 is formed. The light is emitted from the region to the display surface side.
  • the light emitted from the LEDs 66 c arranged on the light guide plate 61 enters the light guide plate 60 from the first region where the uneven pattern 81 of the light guide plate 60 is formed.
  • the luminance of the backlight light applied to each divided area 80 of the liquid crystal panel 20 cannot be adjusted to a desired value. It becomes difficult to perform the two-dimensional local dimming based on it.
  • the following processing is performed. For example, a minute uneven pattern having a depth of about several ⁇ m is formed on the surfaces of the two light guide plates 60 and 61 that are in contact with each other, or a sticking prevention process is performed between the two light guide plates 60 and 61. Or sandwich a thin sheet. By performing these processes, the two light guide plates 60 and 61 do not adhere to each other.
  • seat in which the sticking prevention process was performed, etc. may be put together and may be called "adhesion prevention means.”
  • the circuit configuration of the backlight unit in the present embodiment is obtained by further adding LEDs 66c1 to 66c5 connected in parallel in the case of the first embodiment shown in FIG. To do.
  • FIG. 20 is a view showing a cross section of the backlight unit 70 when the three light guide plates 60 to 62 are stacked.
  • LEDs 65c to 67c are arranged on the C surfaces of the light guide plates 60 to 62, respectively, and the concave / convex pattern 81 does not overlap each other in the stacking direction when the three light guide plates 60 to 62 are stacked. It is formed on each A side.
  • the divided area 80 can be made to emit light for each of the regions divided into three in the longitudinal direction (X direction). As described above, since the divided area 80 can be divided into the same number of regions as the number of the laminated light guide plates to emit light, finer two-dimensional local dimming can be performed. As a result, a higher-contrast image can be displayed and power consumption can be further reduced.
  • a plurality of light guide plates 60 and 61 are arranged in an overlapping manner, and the LEDs 65c and 66d are respectively attached to the C surface which is one side surface in the longitudinal direction of each divided area of each light guide plate 60 and 61.
  • the LEDs 65c and 66d are driven independently.
  • the divided areas 80 are divided into the same number as the number of the light guide plates 60, 61 stacked. Dimming can be performed.
  • the LEDs 65c and 66c are attached only to the C surface, which is one side surface of the light guide plates 60 and 61.
  • the frame on the other three side surfaces can be narrowed, and the liquid crystal display device can be downsized.
  • FIG. 21 is a diagram showing a configuration of the light guide plate 60 used in the modification of the present embodiment.
  • the light guide plate 60 arranged on the upper side of the backlight unit 70 shown in FIG. 18 is replaced with the light guide plate 60 shown in FIG.
  • a prism region 85 extending along the X direction is formed at the boundary of each divided area 80 on the B surface of the first region of the light guide plate 60, but the prism region is formed in the second region. 85 is not formed at all.
  • corrugated pattern 81 is formed in the A surface of 1st area
  • the prism area 85 and the concave / convex pattern 81 are formed in the first area, most of the light incident on the first area from the LED 65c is emitted from the first area to the display surface side. Even if the small amount of light that has passed through the first region is incident on the second region, the concave / convex pattern 81 is not formed in the second region, so that it is hardly emitted from the second region. Thus, if the uneven
  • FIG. 22 is a perspective view showing the shape of the prism formed in the first region of the light guide plate 61. More specifically, FIG. 22A shows the first region of the light guide plate 60 before improvement shown in FIG. FIG. 22B is a perspective view showing the shape of the prism 86 constituting the prism region 85 of the light guide plate 61 after improvement. FIG. 22B is a perspective view showing the shape of the prism 86 constituting the formed prism region 85. As shown in FIG. 22A, when the prism 86 formed in the first region is interrupted at the boundary with the second region, the light hitting the end face 86a of the prism 86 becomes stray light, causing uneven brightness. . Therefore, as shown in FIG.
  • the prism 86 is formed so that the prism 86 gradually decreases toward the boundary between the first region and the second region. As a result, the light that has passed from the first region to the second region is less likely to be stray light when it strikes the end face 86a of the prism 86, so that uneven brightness can be suppressed.
  • FIG. 23 is a diagram showing a configuration of the backlight unit 70 according to the present embodiment.
  • two light guide plates 60 and 61 are laminated in order from the liquid crystal panel 20 side, and each of the light guide plates 60 and 61 includes a plurality of prism regions 85 formed in the B surface and extending in the X direction. It is divided into the divided areas 80.
  • the LED 65c is disposed on the C surface of the light guide plate 60, and the LED 65d is disposed on the D surface.
  • the light guide plates 60 and 61 are divided into four regions by three dotted lines extending in the Y direction, and are defined as a first region to a fourth region in order from the side closer to the LED 65c.
  • the LED 66c is disposed on the C surface of the light guide plate 61, and the LED 66d is disposed on the D surface.
  • the uneven pattern 81 is formed on the A surfaces of the first and third regions of the light guide plate 60 and the A surfaces of the second and fourth regions of the light guide plate 61.
  • FIG. 24 is a diagram showing the density of the uneven pattern 81 formed in the first region to the fourth region of each light guide plate 60, 61 and the luminance of the emitted light.
  • the density of the concavo-convex pattern 81 is the lowest on the side close to the LED 65c, and increases as the distance increases, and the concavo-convex pattern 81 is formed in the second region. Is not formed.
  • the density of the concavo-convex pattern 81 is the lowest on the side close to the LED 65d, and increases with increasing distance, and the concavo-convex pattern 81 is not formed in the fourth region.
  • the concavo-convex pattern 81 is not formed in the first region of the light guide plate 61. In the second region, the density of the concavo-convex pattern is the lowest on the side close to the LED 66c, and the density increases with increasing distance. Is formed.
  • the concave / convex pattern 81 is not formed in the third region, and in the fourth region, the density of the concave / convex pattern 81 is lowest on the side closer to the LED 66d and higher as the distance increases.
  • the light emitted from the LED 65c disposed on the C surface of the light guide plate 60 is reflected by the concave / convex pattern 81 formed in the first region and emitted to the display surface side.
  • the light emitted from the LED 65d disposed on the D surface passes through the fourth region while being totally reflected, is reflected by the concave / convex pattern 81 formed in the third region, and is emitted from the third region to the display surface side.
  • the light emitted from the LED 66c disposed on the C surface of the light guide plate 61 passes through the first region while being totally reflected, and is emitted from the second region to the display surface side by the uneven pattern 81 formed in the second region. Is done.
  • the light emitted from the LED 66d arranged on the D surface enters the concave / convex pattern 81 formed in the fourth region, and is emitted from the fourth region to the display surface side.
  • the concave / convex pattern 81 is formed so that its density increases as the distance from the LED arranged closest is increased. . For this reason, as described in the second and third embodiments, light with increased brightness uniformity is emitted from each region.
  • the circuit configuration of the backlight unit in this embodiment is the same as that of the third embodiment shown in FIG. 16, except that LEDs 66c1 to 66c5 and 66d1 to 66d5 connected in parallel are added. Illustrations and explanations are omitted.
  • the two light guide plates 60 and 61 are arranged so as to overlap each other, and the LEDs 65c, 65d, 66c, and 66d are arranged on the C surface and the D surface of the light guide plates 60 and 61, respectively.
  • the light guide plates 60 and 61 are each divided into four regions, and an uneven pattern 81 is provided in each region so as not to overlap each other in the stacking direction. Thereby, the two-dimensional local dimming further subdivided compared with the case of other embodiment can be performed. For this reason, it is possible to display a high-quality image by further increasing the contrast and to further suppress the power consumption of the backlight unit.
  • FIG. 25 is a diagram illustrating the light guide plate 61 that shines in a comb-teeth shape near the boundary of the second region.
  • the reason why the light guide plate 61 shines in a comb shape will be described with reference to FIG.
  • the LED 66c disposed on the C surface of the light guide plate 61 is turned on, the light that passes through the first region of the light guide plate 61 and enters the concave / convex pattern 81 formed in the second region is reflected and emitted from the second region. Is done.
  • FIG. 26 is a diagram showing the light guide plate 61 that does not shine in a comb-teeth shape near the boundary of the second region
  • FIG. 27 is a plan view and a cross-sectional view showing the configuration of the light guide plate 61 that does not shine in a comb-teeth shape. It is.
  • the prism region 85 is not formed in the third region, so that it does not shine in a comb shape at the boundary between the second region and the third region.
  • the prism area 85 of the first area also has a function of suppressing the light incident from the LED 66c from spreading.
  • the prism region 85 formed in the first region is not formed only near the boundary with the second region.
  • the light incident from the LED 66c is less likely to spread left and right, and no stray light is formed because no prism region is formed near the boundary with the second region.
  • the light guide plate 61 does not shine in a comb shape at the boundary between the second region and the first region of the light guide plate 61 and the boundary between the second region and the third region. We were able to.
  • FIG. 28 is a plan view and a cross-sectional view showing the configuration of the light guide plate 60 that does not shine in a comb shape.
  • the light guide plate 60 shown in FIG. 28 is the same as the light guide plate 61 shown in FIG. 27, and therefore detailed description is omitted, and only the result is shown.
  • the prism region 85 is not formed in the second region, and the prism region 85 formed in the fourth region is not formed only near the boundary with the second region. Accordingly, the light guide plate 60 can be prevented from shining in a comb shape at the boundary between the third region and the second region of the light guide plate 60 and the boundary between the third region and the fourth region.
  • the prism region 85 is formed up to the boundary with the adjacent region. However, when the region where the uneven pattern 81 is not formed is sandwiched between the regions where the prism region 85 is formed, the prism region 85 is not formed in the region. On the other hand, when the region where the concave / convex pattern 81 is not formed is in contact with the region where the prism region 85 is formed only on one side, the vicinity of the boundary in contact with the region where the concave / convex pattern 81 is formed in the region. A prism region 85 is formed in the excluded region. As a result, as shown in FIG. 26, the backlight unit 70 does not shine in a comb-like shape at the boundary between the regions, so that an image with higher contrast can be displayed.
  • FIG. 29 is a plan view showing the configuration of the light guide plate 61 that further suppresses the comb-like light.
  • the density of the uneven pattern in the second region is lowered.
  • the phenomenon that the light guide plate 61 shines in a comb-like shape is less likely to occur. For this reason, an image with higher contrast can be displayed.
  • FIG. 29 for convenience of explanation, only one region 88 is shown, but the density of the uneven patterns corresponding to all the prism regions 85 near the boundary with the first region is lowered.
  • the density of the uneven patterns in the third regions corresponding to all the prism regions 85 is lowered in the third region near the boundary with the fourth region.
  • FIG. 30 is a table summarizing the number of divisions of the divided area 80, the number of light guide plates to be used, and the frame width of the liquid crystal panel in each of the first to fourth embodiments. In FIG. 30, the result evaluated for every evaluation item about each evaluation item is shown.
  • the divided area 80 is further divided, so that two-dimensional local dimming can be performed. In particular, in the case of the fourth embodiment, more detailed two-dimensional local dimming can be performed. However, since the divided area 80 cannot be further divided in the first embodiment, only one-dimensional local dimming performed for each divided area can be performed.
  • the number of divisions of the divided area 80 is described as 2 or more in the third embodiment, when the number of divisions is an odd number, even if the light emission intensity of the LED is the same, the light is emitted from each region. In view of practicality, even numbers are preferable. In the fourth embodiment, the number is set to 4 or more. However, since the same problem occurs when the number of divisions is odd, an even number is preferable.
  • the number of light guide plates to be used is preferably one sheet rather than two in consideration of thinning. In the case of the first and second embodiments, since the number of light guide plates used is one, the liquid crystal display device can be thinned.
  • the frame Since the frame is wide on the side surface of the light guide plate on which the LEDs are arranged, the area of the liquid crystal panel becomes larger.
  • the side surface of the light guide plate on which the LEDs are arranged is one surface, the number of narrow frame sides is one side, so the number of narrow frame sides in the case of two surfaces is narrower than in the case of two sides. be able to. For this reason, in 1st and 3rd embodiment where the side surface of the light-guide plate which arrange

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Planar Illumination Modules (AREA)

Abstract

高い閉じ込め効果を有し、薄型化に適したエッジライト型の面光源装置および液晶表示装置を提供する。 導光板(60)に形成された各分割エリア(80)の境界に、複数のプリズム(86)からなるプリズム領域(85)が設けられている。これにより、各分割エリア(80)は高い閉じ込め効果を有するようになるので、LED(65c)から出射された光の大部分は、当該LED(65c)に対応する分割エリア(80)から出射される。このため、バックライトユニット(70)を用いて1次元のローカルディミングを行ったときに、画像を高コントラストで表示したり、液晶表示装置(10)の消費電力を抑制したりすることが可能になる。

Description

面光源装置および液晶表示装置
 本発明は、面光源装置および液晶表示装置に関し、特に、ローカルディミングが可能な面光源装置および液晶表示装置に関する。
 テレビなどの直下型バックライトユニットを使用する液晶表示装置では、バックライト光の輝度をエリア毎に調整することによって、表示画像の高コントラスト化や低消費電力化を実現する技術(ローカルディミング)が普及している。
 一方、携帯端末のディスプレイとして使用される液晶表示装置では、薄型化のために、導光板を使用するエッジライト型バックライトユニットが実用化されている。このような携帯端末でも表示画像の高コントラスト化や低消費電力化を実現するために、ローカルディミングが望まれている。このため、導光板の端部に配置されたLED(Light Emitting Device:発光ダイオード)の発光強度を調整して、バックライト光の輝度を表示画像に合わせて調整する1次元のローカルディミングの開発が進められている。
 しかし、従来のエッジライト型バックライトユニットによって実現される1次元のローカルディミングは、LEDから離れるにしたがってバックライト光が左右に大きく広がるために、LEDから遠く離れた領域ではローカルディミングの効果が十分に得られなかった。
 そこで、LEDから遠く離れた領域でもバックライト光が左右に大きく広がらないようにするために、以下のような技術が提案されている。特許文献1には、導光板の上面に直線状に延びるプリズムを形成するとともに、導光板の対向する2つの側面に複数のグループに分けられたLEDを配置し、選択されたグループのLEDを点灯させるバックライトユニットが開示されている。特許文献2には、導光板内を進行する光が入光面に平行な方向に広がることを抑制するために、直線上に延びるプリズムが両面に形成された導光板を用いることが開示されている。
 また、特許文献3には、導光板を間隙によって互いに分離された複数のブロックに分け、ブロック毎に調整された輝度の光を閉じ込めることによって、1次元のローカルディミングを行うバックライトユニットが開示されている。特許文献4には、スリットによって分割された導光板の各エリアに、調整された輝度の光を閉じ込めることによって1次元のローカルディミング駆動を行うバックライトユニットが開示されている。
日本の特開2011-175965号公報 日本の特開2011-249060号公報 日本の特開2008-34372号公報 日本の特開2011-146207号公報
 しかし、特許文献1に記載された導光板には、入射した光が入射面に平行な方向に拡がりやすく、光の閉じ込め効果が弱いという問題がある。特許文献2に記載された導光板では、下面に形成されたプリズム上に進路変更用の凸部が形成されている。この場合、凸部の形成位置がプリズム上に限定され、自由に形成することができないので、導光板から出射される光の輝度の均整度が低くなるという問題がある。
 また、特許文献3および4に記載された導光板は、分割されたエリアに閉じ込める効果が大きいため、1次元のローカルディミングを効果的に行うことができる。しかし、分割されたエリア間の間隙に面する側面からの光漏れによる輝線(輝度むら)を隠すため、導光板の表示面側の表面に厚い拡散板を設ける必要があるので薄型化に適しておらず、また組み立てや加工が難しいという問題がある。さらに、これらの特許文献1~4はいずれも、2次元のローカルディミングについては開示も示唆もしていない。
 そこで、本発明は、高い閉じ込め効果を有し、薄型化に適したエッジライト型の面光源装置および液晶表示装置を提供することを目的とする。
 本発明の第1の局面は、互いに対向する一対の主平面を有する導光板と、
 前記導光板の互いに対向する一対の側面のうちの少なくとも一方の側面に沿って配置された複数の第1発光体とを備える面光源装置であって、
 前記導光板は、前記一方の側面から他方の側面に向かって前記導光板の一方の主平面上に延びる複数のプリズムからなるプリズム領域によって挟まれた複数の分割エリアと、前記第1発光体から前記導光板内に入射した光を外部に出射するために他方の主平面に形成された凹凸パターンとを含み、
 前記複数の第1発光体は、前記分割エリア毎に前記一方の側面に少なくとも1個ずつ配置されていることを特徴とする。
 本発明の第2の局面は、本発明の第1の局面において、
 前記導光板は、前記一方の側面から前記他方の側面まで前記一方の主平面上に延びる前記複数のプリズムからなるプリズム領域によって挟まれた前記複数の分割エリアを含み、
 前記凹凸パターンは、前記一方の側面から前記他方の側面まで単調に増加するように前記他方の主平面に形成され、
 前記複数の第1発光体は、前記分割エリア毎に前記一方の側面に1個ずつ配置されていることを特徴とする。
 本発明の第3の局面は、本発明の第2の局面において、
 前記プリズム領域は、前記導光板の前記一方の主平面と対向する前記他方の主平面の位置にも形成されていることを特徴する。
 本発明の第4の局面は、本発明の第1の局面において、
 外部から与えられた輝度データに基づいて求めた輝度で前記複数の第1発光体を発光させる発光体点灯回路をさらに備え、前記複数の第1発光体は並列接続された状態で前記発光体点灯回路に接続されていることを特徴とする。
 本発明の第5の局面は、本発明の第1の局面において、
 前記プリズムは、前記導光板に設けられたV字型の溝からなることを特徴とする。
 本発明の第6の局面は、本発明の第5の局面において、
 前記V字型の溝の深さhは、前記導光板の厚みをdとしたとき、前記溝の深さhは次式で表される範囲に含まれることを特徴とする。
          1μm<h<d/4
 本発明の第7の局面は、本発明の第5の局面において、
 前記V字型の溝の前記導光板の法線に対する傾斜角をθとしたとき、前記傾斜角θは次式で表される範囲に含まれることを特徴とする。
          30°<θ<60°
 本発明の第8の局面は、本発明の第1の局面において、
 前記導光板の前記分割エリアは、前記一方の側面および前記他方の側面から中央部に向かってそれぞれ密度が高くなるように形成された前記凹凸パターンによって2分割され、
 第2発光体は、前記導光板の前記他方の側面に沿って前記分割エリア毎に1個ずつ配置されていることを特徴とする。
 本発明の第9の局面は、本発明の第8の局面において、
 外部から与えられた輝度データに基づいて求めた輝度で前記複数の第1発光体を発光させる発光体点灯回路をさらに備え、前記複数の第1発光体および前記複数の第2発光体は並列接続された状態で前記発光体点灯回路に接続されていることを特徴とする。
 本発明の第10の局面は、本発明の第1の局面において、
 前記導光板は、互いに対向する前記一対の主平面を有する複数の導光板を重ねて配置した導光板であり、
 前記複数の導光板に形成された前記分割エリアは、分割された複数の領域をそれぞれ含み、
 前記導光板毎に、前記複数の領域のうち互いに隣接していない2つの領域に、前記一方の側面に近い端部から前記他方の側面に近い端部まで密度が単調に増加するように前記凹凸パターンを形成し、
 前記複数の導光板の前記凹凸パターンが形成された各領域は積層方向において互いに重ならないように配置され、
 前記複数の第1発光体は、前記導光板の前記一方の側面に沿って前記分割エリア毎に少なくとも1個ずつ配置されていることを特徴とする。
 本発明の第11の局面は、本発明の第10の局面において、
 前記導光板は、互いに対向する前記一対の主平面を有する第1導光板と第2導光板とを重ねて配置した導光板であり、
 前記第1導光板および前記第2導光板は、前記一方の側面から前記他方の側面に向かって前記一方の主平面上に形成された前記プリズム領域によって挟まれた複数の第1分割エリアおよび複数の第2分割エリアをそれぞれ含み、
 前記第1分割エリアおよび前記第2分割エリアはそれぞれ分割された2つの領域からなり、前記2つの領域のうちのいずれか一方の領域だけに、前記一方の側面から中央部まで、または中央部から前記他方の側面まで密度が単調に増加する前記凹凸パターンが形成され、
 前記第1分割エリアおよび前記第2分割エリアの前記凹凸パターンが形成された各領域は積層方向において互いに重ならないように配置され、
 前記複数の第1発光体は、前記第1導光板および前記第2導光板の前記一方の側面に沿って前記分割エリア毎に1個ずつ配置されていることを特徴とする。
 本発明の第12の局面は、本発明の第11の局面において、
 前記第1導光板および前記第2導光板のうちのいずれか一方の導光板に形成された前記プリズム領域は前記一方の側面から前記他方の側面まで形成され、他方の導光板に形成された前記プリズム領域は前記一方の側面から前記中央部まで形成されており、
 前記プリズム領域が前記一方の側面から前記中央部まで形成されている前記導光板の前記プリズム領域が形成されていない領域には、前記凹凸パターンは形成されていないことを特徴とする。
 本発明の第13の局面は、本発明の第12の局面において、
 前記プリズム領域が前記一方の側面から前記中央部まで形成されている前記他方の導光板の前記プリズム領域を構成する前記プリズムの深さは、前記一方の側面から前記中央部に向かって徐々に浅くなることを特徴とする。
 本発明の第14の局面は、本発明の第10の局面において、
 前記複数の導光板のうち隣接して配置される導光板と導光板の主平面とが密着しないように、前記隣接して配置される導光板と導光板との間に密着防止手段が設けられていることを特徴とする。
 本発明の第15の局面は、本発明の第14の局面において、
 前記密着防止手段は、前記隣接して配置される導光板と導光板の互いに対向する主平面の少なくともいずれか一方に設けた凹凸パターンであることを特徴とする。
 本発明の第16の局面は、本発明の第14の局面において、
 前記密着防止手段は、前記隣接して配置される導光板と導光板との間に配置された、貼り付き防止処理が施されたシートであることを特徴とする。
 本発明の第17の局面は、本発明の第1の局面において、
 前記複数の導光板は、前記一方の側面から前記他方の側面に向かって前記一方の主平面に形成された前記プリズム領域によって挟まれた前記複数の分割エリアをそれぞれ含み、
 複数の第2発光体が前記複数の導光板の前記他方の側面に沿って前記複数の分割エリアのそれぞれに少なくとも1個ずつさらに配置され、
 前記複数の分割エリアはそれぞれ分割された4つの領域からなり、前記4つの領域のうち互いに隣接していない2つの領域は、それぞれ前記第1発光体および前記第2発光体のうちより近い発光体の側から中央部に向かって密度が単調に増加する前記凹凸パターンが形成されており、
 前記複数の分割エリアの前記凹凸パターンが形成された領域は積層方向において互いに重ならないように配置されていることを特徴とする。
 本発明の第18の局面は、本発明の第17の局面において、
 前記導光板は、互いに対向する前記一対の主平面を有する第1導光板と第2導光板とを重ねて配置した導光板であり、
 前記複数の第2発光体が前記第1および第2導光板の前記他方の側面に沿って前記分割エリア毎に1個ずつ配置され、
 前記第1導光板および前記第2導光板はそれぞれ複数の第1分割エリアおよび第2分割エリアを含み、
 前記第1分割エリアおよび前記第2分割エリアはそれぞれ分割された4つの領域を含み、前記第1導光板の互いに隣接していない2つの領域、および、前記第1導光板の前記2つの領域と積層方向において重ならない前記第2導光板の2つの領域は、前記第1発光体および前記第2発光体のうちより近い発光体の側から中央部に向かって密度が単調に増加する前記凹凸パターンが形成されており、
 前記第1分割エリアの前記凹凸パターンが形成された領域は、前記第2分割エリアの前記凹凸パターンが形成された領域と積層方向において重ならないように配置されていることを特徴とする。
 本発明の第19の局面は、本発明の第17の局面において、
 前記4つの領域のうち、前記凹凸パターンが形成された領域と両側で接する領域には、前記プリズム領域が形成されておらず、前記凹凸パターンが形成された領域と片側だけ接する領域には、前記凹凸パターンが形成された領域との境界付近で前記プリズム領域が形成されていないことを特徴とする。
 本発明の第20の局面は、本発明の第19の局面において、
 前記凹凸パターンが形成された領域と片側だけ接する領域の境界付近に形成された前記凹凸パターンは、他の領域よりも密度が低くなるように形成されていることを特徴とする。
 本発明の第21の局面は、第1から第20のいずれかの局面に係る面光源装置を備えた液晶表示装置である。
 本発明の第1の局面によれば、導光板の一方の主平面に、一方の側面から他方の側面に向かって延びるプリズム領域によって挟まれた複数の分割エリアが形成され、他方の主平面には第1発光体から導光板内に入射した光を外部に出射するために凹凸パターンが形成されている。このため、分割エリア毎に配置された第1発光体から入射した光は、分割エリア毎に凹凸パターンによって反射され一方の主平面から外部に出射される。これにより、面光源装置は高い閉じ込め効果を有するので、ローカルディミングを行ったときに、画像を高コントラストで表示したり、消費電力を抑制したりすることが可能になる。
 本発明の第2の局面によれば、凹凸パターンは、入射した光が外部に出射されるように進路を変更するので、凹凸パターンの密度が高い領域ほど光は表示面側に出射されやすい。一方、第1発光体に近い領域ほど通過する光の光量が多くなる。分割エリアから出射される光の輝度は凹凸パターンの密度と第1発光体が発する光の光量との積で表される。このため、凹凸パターンの密度を一方の側面から他方の側面まで単調に増加させることによって、分割エリアは輝度の均整度を高めた光を出射することができる
 本発明の第3の局面によれば、他方の主平面に形成されたプリズム領域に対応する一方の主平面の位置にもプリズム領域を形成することによって、分割エリア内により多くの光を閉じ込めることが可能になるので、第1発光体が発する光を分割エリアにより集中させることができる。これにより、ローカルディミングを行ったときに、画像をより高いコントラストで表示したり、消費電力をより抑制したりすることができる。
 本発明の第4の局面によれば、複数の第1発光体は並列に接続された状態で発光体点灯回路に接続されているので、第1発光体毎に印加する電圧を調整することにより、光の輝度を調整することができる。
 本発明の第5の局面によれば、プリズムを構成するV字型の溝の傾斜面は平面であるので、プリズムに当たった光の反射率を高くすることができる。
 本発明の第6の局面によれば、プリズムの深さは、1μmよりも深く、導光板の厚さの1/4未満であることが好ましい。導光板の厚さの1/4未満としたのは、プリズムの深さが導光板60の厚みの1/4以上になると、薄い導光板にプリズムを形成した場合に、導光板の強度が極端に低下し、導光板が反ったり割れたりすることが多発するようになるからである。また、1μmよりも深いとしたのは、プリズムが可視光を反射するためには、少なくとも可視光の波長である1μmよりも深くなければならないからである。
 本発明の第7の局面によれば、プリズムの傾斜角θは、光学的なメリットと導光板の量産しやすさの両方を両立するためである。
 本発明の第8の局面によれば、導光板の分割エリアに形成された凹凸パターンを、導光板の一方の側面および他方の側面から中央部に向かって密度が高くなるように形成する。これにより、導光板の一方の側面に配置された第1発光体から入射した光は、一方の側面から中央部までの領域内で輝度の均整度の高い光として出射され、他方の側面に配置された第2発光体から入射した光は、他方の側面から中央部までの領域内で輝度の均整度の高い光として出射される。これにより、2次元のローカルディミングを行うことができ、画像をより高いコントラストで表示したり、消費電力をより抑制したりすることができる。
 本発明の第9の局面によれば、複数の第1発光体および複数の第2発光体は並列接続された状態で発光体点灯回路に接続されているので、各第1発光体および各第2発光体の発光強度をそれぞれ個別に調整することができる。
 本発明の第10の局面によれば、各導光板の一方の側面に第1発光体を配置し、各導光板を重ねて配置したときに、凹凸パターンは積層方向において互いに重ならないようにそれぞれの導光板に形成されている。このため、各導光板に配置された第1発光体をそれぞれ独立に駆動することによって、分割エリアを導光板の枚数に応じて分割された領域毎に発光させることができる。これにより、より細かな2次元のローカルディミングを行うことができるので、より高コントラストの画像表示が可能になると共に、消費電力をより低減することが可能になる。
 本発明の第11の局面によれば、重ねて配置された第1導光板と第2導光板の第1分割エリアと第2分割エリアに、それぞれ一方の側面から中央部まで、および他方の側面から中央部まで密度が増加するように凹凸パターンが形成されている。また、第1および第2導光板の一方の側面に第1発光体がそれぞれ配置され、他方の側面に第2発光体がそれぞれ配置されている。これにより、一方の側面に配置された第1発光体が発した光は一方の側面から中央部までの領域から輝度の均整度を高めた光として出射され、他方の側面に配置された第2発光体が発した光は他方の側面から中央部までの領域から輝度の均整度を高めた高い光として出射されるようになるので、2次元のローカルディミングを行うことができる。
 本発明の第12の局面によれば、第1および第2導光板のうちのいずれかの導光板の分割エリアのうち、一方の側面から中央部までに領域のみにプリズム領域と凹凸パターンを形成することによって、第1発光体から各分割エリアに入射した光の大部分は中央部までの領域において出射される。このため、分割エリアの中央部よりも遠い領域に進行した一部の光がプリズム領域で反射されて迷光になることがなくなり、より高いコントラストの画像を表示することが可能になる。
 本発明の第13の局面によれば、プリズムが導光板の一方の側面から中央部に向かって徐々に小さくなるように、プリズムを形成する。これにより、分割エリアの中央部よりも遠い領域に進行した一部の光がプリズムの端面に当たって迷光になることが少なくなるので、輝度むらの発生を抑制することができる。
 本発明の第14の局面によれば、隣接する導光板の間に密着防止手段を設けることにより、隣接する導光板の間に空気層が形成されるので、それらが密着するのを防止することができる。
 本発明の第15の局面によれば、密着防止手段として、隣接する導光板の互いに対向する主平面の少なくともいずれかに凹凸パターンを設ける。これにより、隣接する導光板の間に空気層が形成されるので、それらが密着するのを防止することができる。
 本発明の第16の局面によれば、密着防止手段として、隣接する導光板の間に、貼り付き防止処理が施されたシートを配置する。これにより、隣接する導光板の間に空気層が形成されるので、それらが密着するのを防止することができる。
 本発明の第17の局面によれば、複数の導光板の各分割エリアをそれぞれ4分割し、互いに重ならないようにして各領域に凹凸パターンを設けるとともに、各導光板の一方の側面および他方の側面にそれぞれ第1発光体および第2発光体を配置する。これにより、さらに細分化された2次元のローカルディミングを行うことができる。このため、より一層高コントラスト化による高画質の画像を表示したり、バックライトユニットの消費電力をより一層抑制したりすることができる。
 本発明の第18の局面によれば、上記第17の局面において、複数の導光板を第1および第2導光板に限定した場合について規定しているので、得られる効果も第17の局面の場合と実質的に同じである。
 本発明の第19の局面によれば、4つの領域のうち、凹凸パターンが形成された領域と両側で接する領域には、プリズム領域が形成されておらず、凹凸パターンが形成された領域と片側だけ接する領域には、凹凸パターンが形成された領域との境界付近でプリズム領域が形成されていない。これにより、ローカルディミングを行う際に導光板が櫛歯状に光る現象の発生を抑制することができる。
 本発明の第20の局面によれば、凹凸パターンが形成された領域と片側だけ接する領域の境界付近に形成された前記凹凸パターンは、他の領域よりも密度が低くなるように形成されている。これにより、ローカルディミングを行う際に導光板が櫛歯状に光る現象の発生をさらに抑制することができる。
 本発明の第21の局面によれば、上記第1~第20の局面に係る面光源装置を備えた表示装置は、ローカルディミングを行ったときに、画像を高コントラストで表示したり、消費電力を抑制したりすることが可能になる。
本発明の第1の実施形態に係るバックライトユニットを含む液晶表示装置の構成を示すブロック図である。 第1の実施形態に係るバックライトユニットの構成を示す図である。 図2に示すバックライトユニットに含まれる導光板の側面にLEDを配置したときの各LEDと分割エリアとの位置関係を示す図である。 図2に示すバックライトユニットに含まれる導光板の側面に配置されたLEDの輝度を制御するための回路図である。 図2に示すバックライトユニットに含まれる導光板の一部を示す図であり、より詳しくは、(A)は導光板の断面図の一部であり、(B)は導光板の平面図の一部である。 図2に示すバックライトユニットに含まれる導光板のプリズム領域の幅と導光板の厚みとによって決まる光の進み方を示す図であり、より詳しくは、(A)は、プリズム領域の幅が導光板の厚みよりも狭い場合の光の進路を示す図であり、(B)は、プリズム領域の幅が導光板の厚みよりも十分厚い場合の光の進路を示す図である。 図2に示すバックライトユニットに含まれる導光板の表示面側の表面に形成されたプリズム領域の断面の一例を示す拡大図である。 図2に示すバックライトユニットに含まれる導光板の表示面側の表面に形成されたプリズム領域の断面の他の例を示す拡大図である。 図2に示すバックライトユニットに含まれる導光板の背面側の表面に形成された凹凸パターンの密度と出射光の輝度を示す図である。 図2に示すバックライトユニットに含まれる導光板の表示面側の表面にプリズム領域を形成した場合のローカルディミングの効果を示す図である。 図2に示すバックライトユニットに含まれる導光板の表示面側の表面にプリズムを形成しなかった場合の光の広がりを示す図である。 図2に示すバックライトユニットに含まれる導光板の表示面側の表面全体にプリズムを形成した場合の光の拡がりを示す図である。 第1の実施形態の変形例に係るバックライトユニットに含まれる導光板の両面にプリズム領域が形成された液晶パネルの断面図であり、より詳しくは、(A)は両面にプリズム領域が形成された導光板を光学シートと反射シートによって挟んだ液晶パネルの断面を示す図であり、(B)は(A)に示す導光板の一部を拡大した断面図である。 本発明の第2の実施形態に係るバックライトユニットの構成を示す図である。 図14に示すバックライトユニットに含まれる導光板の対向する2つの側面にLEDをそれぞれ配置したときの分割エリアと各LEDとの位置関係を示す図である。 図14に示すバックライトユニットに含まれる導光板の2つの側面に配置されたLEDの発光強度を制御するための回路図である。 図14に示すバックライトユニットに含まれる導光板の背面側の表面に形成された凹凸パターンの密度分布と出射光の輝度を示す図である。 本発明の第3の実施形態に係るバックライトユニットの構成を示す図である。 図18に示すバックライトユニットに含まれる2枚の導光板の表示面側の表面に形成された凹凸パターンの密度分布と出射光の輝度を示す図である。 図18に示すバックライトユニットに含まれる導光板の枚数を3枚にしたときの断面を示す図である。 本発明の第3の実施形態の変形例に係るバックライトユニットの構成を示す図である。 図21に示すバックライトユニットに含まれる導光板の第1領域に形成されたプリズムの形状を示す斜視図であり、より詳しくは、(A)は改良前の導光板の第1領域に形成されたプリズムの形状を示す斜視図であり、(B)は改良後の導光板に形成されたプリズムの形状を示す斜視図である。 本発明の第4の実施形態に係るバックライトユニットの構成を示す図である。 図23に示すバックライトユニットに含まれる2枚の導光板の第1領域~第4領域に形成された凹凸パターンの密度と出射光の輝度を示す図である。 図23に示すバックライトユニットに含まれる導光板であって、領域の境界付近で櫛歯状に光る導光板を示す図である。 図23に示すバックライトユニットに含まれる導光板であって、領域の境界付近で櫛歯状に光らない導光板を示す図である。 図23に示すバックライトユニットに含まれる導光板であって、櫛歯状に光りにくい一方の導光板の構成を示す平面図および断面図である。 図23に示すバックライトユニットに含まれる導光板であって、櫛歯状に光りにくい他方の導光板の構成を示す平面図および断面図である。 図27に示す導光板よりも、さらに櫛歯状に光りにくい導光板の構成を示す平面図である。 第1~第4の各実施形態に係るバックライトユニットに含まれる導光板に形成された分割エリアの分割数、使用する導光板の枚数、液晶パネルの額縁幅をまとめた図である。
<1.第1の実施形態>
<1.1 表示装置の構成と動作>
 図1は、本発明の第1の実施形態に係るバックライトユニット70を含む液晶表示装置10の構成を示すブロック図である。図1に示すように、液晶表示装置10は、液晶パネル20、表示制御回路30、走査信号線駆動回路40、データ信号線駆動回路45、光源点灯回路50、導光板60および光源65を含む。導光板60は液晶パネル20の背面側に配置され、光源65は、導光板60の一方の側面に配置された複数のLEDからなる。光源65と導光板60とをまとめて「バックライトユニット」または「面光源装置」と呼ぶ。なお、光源65に含まれる各LEDを「発光体」と呼び、光源点灯回路50を「発光体点灯回路」と呼ぶ場合がある。また、図1に示す液晶表示装置10のように、液晶表示装置内に光源点灯回路50を含む場合には、「面光源装置」は「発光体点灯回路」を含むが、光源点灯回路50が液晶表示装置の外部に設けられている場合には、「面光源装置」は「発光体点灯回路」を含まない。また、導光板60には、光学シート、偏光板、反射シートなどが設置されているが、これらの図示は省略する。
 液晶パネル20は、n本の走査信号線G1~Gn、m本のデータ信号線S1~Sm、および、(m×n)個の画素Pijを含んでいる(mおよびn:2以上の整数、i:1以上n以下の整数、j:1以上m以下の整数)。走査信号線G1~Gnは互いに平行に配置され、データ信号線S1~Smは走査信号線G1~Gnと交差するように互いに平行に配置されている。i番目の走査信号線Giとj番目のデータ信号線Sjの交点近傍には、画素Pijが配置されている。このように(m×n)個の画素Pijは、行方向にm個ずつ、列方向にn個ずつ、マトリクス状に配置されている。走査信号線Giはi行目に配置された画素Pijに共通して接続され、データ信号線Sjはj列目に配置された画素Pijに共通して接続されている。
 液晶表示装置10の外部から、表示制御回路30に、水平同期信号HSYNC、垂直同期信号VSYNCなどの制御信号と画像信号DATが供給されると、表示制御回路30は、これらの信号に基づき制御信号SC1、制御信号SC2、デジタル画像データDV、輝度データBDを生成する。表示制御回路30は、走査信号線駆動回路40に対して制御信号SC1を出力し、データ信号線駆動回路45に対して制御信号SC2とデジタル画像データDVを出力する。また、表示制御回路30は、各LEDの発光強度を調整して所望の輝度で発光させるために、画像信号DATから求めた輝度データBDを光源点灯回路50に出力する。
 走査信号線駆動回路40は、制御信号SC1に基づき、ハイレベルの出力信号を1つずつ順に走査信号線G1~Gnに与える。これにより、走査信号線G1~Gnが1本ずつ順に選択され、1行分の画素Pijが一括して選択される。データ信号線駆動回路45は、制御信号SC2とデジタル画像データDVに基づき、各データ信号線S1~Smに対してデジタル画像データDVに応じた信号電圧を与える。その結果、選択された1行分の画素Pijにデジタル画像データDVに応じた信号電圧が書き込まれる。
 光源点灯回路50は、表示制御回路30から与えられた輝度データBDに基づいて光源65に含まれる各LEDを発光させる。LEDが発する光は導光板60に入射して導光板60内を全反射しながら進み、導光板60の背面側の表面に形成された凹凸パターン(図示しない)によって反射され、液晶パネル20に向かって照射される。このようにして、液晶表示装置10は液晶パネル20に画像を表示する。
<1.2 バックライトユニットの構成>
 図2は、第1の実施形態に係るバックライトユニット70の構成を示す図である。図2には、バックライトユニット70の平面図、バックライトユニット70のX方向の断面図、およびバックライトユニット70のY方向の断面図が示されている。なお、図2において、「X方向」とは紙面の下から上に向かう方向をいい、「Y方向」とは紙面の左から右に向かう方向をいう。この「X方向」および「Y方向」は、本明細書の他の図面でも上記の場合と同じ方向を表す。
 図2に示すように、バックライトユニット70は、複数のLED65cが導光板60の一方の側面(C面)に配置されたエッジライト型の光源である。バックライトユニット70は、導光板60、複数のLED65c、導光板60の背面側の表面に設置された反射シート92、導光板60の表示面側の表面に設置された光学シート91を含み、導光板60は対向する主平面を含む矩形平板状である。なお、バックライトユニット70は、導光板60を液晶パネル20に固定するための両面テープ、導光板60の形状を保持するためのフレームなども含むが、それらは図示されていない。
 本実施形態では、光源65を構成するLED65cは白色LEDとするが、赤色、緑色、青色の光をそれぞれ発するLEDを組みあわせたものであっても良い。また、ローカルディミングを行う分割エリア80毎に1個のLED65cが配置されているが、1つの分割エリア80に複数のLED65cを配置してもよい。本実施形態では、分割エリア80毎に配置される各LED65cの発光強度を独立に制御するため、LED65cは並列に接続されている。具体的な接続方法については後述する。また、1つの分割エリア80に複数のLED65cが配置されている場合、当該分割エリア80の複数のLED65cは直列に接続されていても良く、あるいは、並列に接続されていても良い。
 反射シート92は導光板60から背面側に漏れた光を反射して再び導光板60に戻すためのシートである。反射シート92には、導光板60から漏れた光を乱反射して導光板60に戻す白色シートや、鏡面反射して導光板60に戻す鏡面シートなどが含まれる。光学シート91は、拡散シート、プリズムシート、偏光反射シートなどが積層されたシートであり、典型的には、導光板60側から順に拡散シート/プリズムシート/プリズムシート/偏光反射シートが積層されたシートが使用される。ここで、上記2枚のプリズムシートは、プリズムの延びる方向が互いに直交するように形成されたシートである。導光板60は、アクリル、ポリカーボネート、ガラスなどの透明材料からなり、厚みは例えば0.6mmである。
 導光板60の表示面側の表面(B面)は、LED65cが配置された一方の側面(C面)に対して垂直な方向(X方向)に分割された複数の分割エリア80に分けられ、隣接ずる分割エリア80の間にはX方向に延びる複数のプリズムからなるプリズム領域85が形成されている。プリズム領域85に挟まれた分割エリア80の表面は平面になっている。また、各分割エリア80のC面毎にLED65cが1個ずつ配置され、LED65cが発する光は後述するようにC面から導光板60内に入射し、分割エリア80から表示面側に出射される。
 導光板60の背面側の表面(A面)全体に、導光板60内を進行する光を表示面側に取り出すための凹凸パターン81が形成されている。この凹凸パターン81は、レンズ形状、プリズム形状、シボ形状などによって構成されており、射出成形法などにより導光板と一体的成形されても良く、あるいはインクジェット法などにより平坦な導光板上に別途形成しても良い。一般に、輝度の均整度を高めるためには、凹凸パターン81の密度をLED65cで粗に形成し、LED65cと対向する側で密に形成することが多い。なお、図2のY方向の断面図のA面では、凹凸パターン81の図示は省略されているが、X方向の断面図のA面では、導光板60の全体に形成された凹凸パターン81が図示されている。
 LED65cが配置された導光板60のC面には、LED65cが発する光の入光効率を向上させるためにローレット形状が形成されていることが好ましい。ローレット形状を形成することによって、C面の法線方向から入射する光だけでなく、C面の法線方向に対して大きな角度をなす方向から入射する光も導光板内に効率よく入光するので、LED65cが発する光を有効に活用することができる。
 C面を除く他の側面は、白色樹脂からなるフレーム(図示しない)で覆われている。これにより、導光板60の側面から出射された光は、フレームによって反射されて導光板60内に戻されるので、光の利用効率が向上し、表示面側に出射される光の輝度を多くすることができる。
 図3は、導光板60のC面に5個のLED65c1~65c5を配置したときの各LED65c1~65c5と分割エリア80の位置関係を示す図である。図3に示すように、5個のLED65c1~65c5は分割エリア80毎にそれぞれのC面に1個ずつ配置されている。
 図4は、導光板60に配置されたLED65cの輝度を制御するための回路図である。図4に示すように、5個のLED65c1~65c5は並列接続された状態で光源点灯回路50に接続されている。このため、光源点灯回路50は、表示制御回路30から与えられた輝度データBDに基づいて対応するLEDに印加すべき電圧値を設定し、設定した電圧値を当該LEDに印加する。これにより、光源点灯回路50は、各分割エリア80に配置されたLED65c1~65c5の各発光強度をそれぞれ制御し、制御された光が導光板の分割エリアに入射する。その結果、バックライトユニット70は、導光板60に形成された分割エリア毎に輝度の異なる光を液晶パネルに照射することができる。
 図5は、導光板60の一部を示す図であり、より詳しくは、図5(A)は導光板60の断面図の一部であり、図5(B)は導光板60の平面図の一部である。なお、図5(A)は断面図であるので、そのX方向は紙面の手前から奥に向かう方向になる。
 図5(A)および図5(B)に示すように、導光板60のB面には、例えば6つのプリズム86からなるプリズム領域85がX方向に延びるように形成されている。両側をプリズム領域85で挟まれた領域は分割エリア80になり、各分割エリア80はLED65cが発した光を液晶パネル20に向かって照射する。これにより、各分割エリア80は、ローカルディミングを行うときにはそれぞれ輝度の均整度を高めた光を出射する。また、導光板60のA面には、入射した光を表示面側に出射する凹凸パターンが前面に形成されているが、図5(A)では図示を省略する。なお、プリズム領域85は、その幅方向の中心が分割エリア80の境界と一致するように形成されている。
 図5では、LED65cから出射された光は、まず左側のプリズム領域85を構成する1つのプリズム86に当たって反射され、反射された光はさらに導光板60のA面に当たって全反射され、右側のプリズム領域85のプリズム86に入射する。プリズム86に当たって反射された光は分割エリア80に戻される。このようにして分割エリア80内を反射しながら進み、A面に形成された凹凸パターンによって反射されると表示面側に出射される。
 図6は、プリズム領域85の幅Lと導光板60の厚みdとによって決まる光の進み方を示す図であり、より詳しくは、図6(A)は、プリズム領域85の幅Lが導光板60の厚みdよりも狭い場合の光の進路を示す図であり、図6(B)は、プリズム領域85の幅Lが導光板60の厚みdよりも十分広い場合の光の進路を示す図である。
 プリズム領域85の幅Lが導光板の厚みdよりも狭い場合、すなわち、L<dの場合には、図6(A)に示すように、分割エリア80からプリズム領域85に向かった光がプリズム86に当たらず、隣の分割エリア80に抜けてしまう場合がある。このため、プリズム領域85の幅Lは、少なくとも導光板60の厚みdよりも広いことが好ましい。
 一方、プリズム領域85の幅Lが導光板60の厚みdよりも十分広い場合、すなわち、L>>dの場合には、図6(B)に示すように、同一のプリズム領域85内で反射を繰り返しながら、隣の分割エリア80に抜ける場合がある。そこで、本発明の発明者は、上記のような問題が生じないプリズム領域85の幅Lと導光板60の厚みdとの関係について詳細に検討し、最適なプリズム領域85の幅Lは次式(1)を満たす場合であることを見出した。
           d<L<3d … (1)
 図7および図8は、導光板60のB面に形成されたプリズム領域85の断面を示す拡大図である。図7に示すように、プリズム領域85を構成する各プリズム86の先端は導光板60のB面と同じ高さまたはそれよりも低くなるように形成されていることが最も好ましい。しかし、図8に示すように、プリズム86の一部がB面よりも低くなるように形成されていても良い。このように、プリズム86の少なくとも一部がB面よりも低くなるように形成されていれば、光は導光板60内を進行しているときにB面よりも低いプリズム86の一部によって反射されることにより再び分割エリア80内に戻され、分割エリア80内に閉じ込められやすくなる。
 また、導光板60のB面に形成されるプリズム86の深さhは導光板60の厚みdに対して十分浅いことが好ましく、具体的には導光板60の厚みdの1/4未満であることが好ましい。深さhが導光板60の厚みdの1/4以上となるプリズム86を、厚みdが0.6mm以下と比較的薄い導光板60に形成した場合、導光板60の強度が極端に低下し、導光板60が反ったり割れたりすることが多発するようになるからである。
 また、可視光を反射するためには、プリズム86の深さhは少なくとも可視光の波長よりも十分長くなければならないので、プリズム86の深さhは少なくとも1μm以上であることが必要である。このため、導光板60の厚みdが薄い場合、プリズム86の深さhは次式(2)に示す範囲であることが好ましい。
           1μm<h<d/4 … (2)
 なお、導光板60の厚みが1mm以上と厚い場合には、プリズム86の深さhが導光板60の厚みdの1/4以上であっても導光板60の強度が問題になることはない。しかし、液晶パネル20の薄型化の進展に伴い、厚みが1mm以上の導光板60はテレビなどの大型の液晶表示装置を除いて使用されなくなっている。
 また、プリズムの傾斜角θ(導光板の法線とプリズムの傾斜面とのなす角度)は、光学的には小さい方が好ましいが、導光板60を射出成形法によって量産する際のしやすさを考慮すると、ある程度大きい方が好ましい。本発明の発明者の詳細な検討結果によると、傾斜角θは、
           30°<θ<60° … (3)
であることが好ましく、より好ましくは
           40°<θ<50° … (4)
であることがわかった。
 また、プリズム86に当たった光の反射率を高めるため、プリズム86は傾斜面が平面となるV字型の溝であることが好ましい。しかし、プリズム86を射出成形法によって製造する際に傾斜面が多少丸みを帯びる場合がある。この場合、丸みを帯びた傾斜面は複数の傾斜面の組合せであると考え、傾斜面の傾斜角は複数の傾斜面の傾斜角の平均値であるとする。
 図9は、導光板60の背面側の表面であるA面に形成された凹凸パターンの密度と出射光の輝度を示す図である。図9に示すように、各分割エリア80の凹凸パターンの密度はLED65cが取り付けられたC面付近で最も低く、LED65cから遠くなるのに伴って徐々に高くなり、LED65cと対向する分割エリアの側面(D面)付近で最も高くなる。凹凸パターン81は、入射した光が表示面側から出射されるように進路を変更するので、凹凸パターン81の密度が高い領域ほど光は表示面側に出射されやすい。一方、LED65cに近い領域ほどLED65cの発光強度が大きくなる。分割エリア80から表示面側に出射される光の輝度は凹凸パターンの密度とLED65cの発光強度との積で表される。このため、図9に示すように、分割エリア80からは輝度の均整度を高めた光が出射される。
 なお、導光板60のB面を「一方の主平面」、A面を「他方の主平面」、C面を「一方の側面」、D面を「他方の側面」と呼び、C面に配置されたLED65cを「第1発光体」、D面に配置されたLED65dを「第2発光体」と呼ぶ場合がある。
<1.3 効果>
 図10は、本実施形態の導光板60のB面にプリズム領域85を形成した場合のローカルディミングの効果を示す図であり、図11は導光板60のB面にプリズム86を全く形成しなかった場合の光の拡がりを示す図であり、図12は導光板60のB面全体にプリズム86を形成した場合の光の拡がりを示す図である。導光板60のB面にプリズム領域85を形成した場合の効果を説明するために、図11および図12に示す場合と比較して説明する。
 図11に示すように、導光板60のB面にプリズム86を設けなかった場合、光は、隣接する分割エリア80にまで大きく拡がり、ローカルディミングの効果はほとんど期待できない。図12に示すように、導光板60のB面全体にプリズム86を設けた場合、光の広がりは図11の場合と比べて小さくなったが、閉じ込め効果は不十分である。
 これに対し、図10に示すように、本実施形態によれば、各分割エリア80の境界に複数のプリズム86からなるプリズム領域85が設けられているので、各分割エリア80は高い閉じ込め効果を有するようになる。このため、LED65cから出射された光の大部分は、当該LED65cに対応する分割エリア80から出射される。これにより、バックライトユニット70を用いて1次元のローカルディミングを行ったときに、画像を高コントラストで表示したり、液晶表示装置10の消費電力を抑制したりすることが可能になる。さらに、本実施形態のバックライトユニット70は薄型化が可能であり、製造も容易である。
<1.4 変形例>
 図13は、両面にプリズム領域85が形成された導光板60の断面図であり、より詳しくは、図13(A)はA面およびB面にプリズム領域85が形成された導光板60の断面を示す図であり、図13(B)は図13(A)に示す導光板60の一部を拡大した断面図である。図13(A)および図13(B)に示すように、導光板60のB面だけでなく、B面のプリズム領域85に対応するA面の位置にもプリズム領域85を形成する。この場合、プリズム領域85をB面だけに形成した場合と比べて、分割エリア80内により多くの光を閉じ込めることが可能になるので、LED65cが発する光を当該LED65cに対応する分割エリア80により集中させることができる。これにより、ローカルディミングを行ったときに、画像をより高いコントラストで表示したり、液晶表示装置の消費電力をより抑制したりすることが可能になる。なお、導光板60のA面には、プリズム領域85だけでなく、光を取り出すための凹凸パターン81も形成する必要があるので、図13(B)に示すように、両者が重ならないようにする必要がある。
 また、上記実施形態では、導光板60の形状は矩形であるとして説明したが、これに限定されず、台形、多角形、円形、半円形など自由な形状であっても良い。
<2.第2の実施形態>
 本発明の第2の実施形態に係るバックライトユニット70を含む液晶表示装置の構成および動作は、図1に示す第1の実施形態に係る液晶表示装置10の構成および効果と同じであるので、その構成を示す図および説明を省略する。
<2.1 バックライトユニットの構成>
 図14は、本実施形態に係るバックライトユニット70の構成を示す図である。図14には、バックライトユニット70の平面図、バックライトユニット70のX方向の断面図、およびバックライトユニット70のY方向の断面図が示されている。なお、図14のX方向およびY方向は、図1に示す場合と同じであるので、それらの説明を省略する。
 本実施形態のバックライトユニット70の構成について、図2に示す第1の実施形態の場合と異なる構成を中心に説明する。導光板60は、第1の実施形態の場合と同様に、導光板のB面に形成された複数のプリズムからなるプリズム領域85によって複数の分割エリア80に分割されている。第1の実施形態では、LED65cは各分割エリアのC面のみに取り付けられていたが、本実施形態ではC面だけでなく、さらにC面と対向するD面にLED65dが配置されている。
 図15は、導光板60のC面に5個のLED65c(LED65c1~65c5)を配置し、D面に5個のLED65d(LED65d1~65d5)を配置したときの分割エリア80と各LED65c1~65c5、65d1~65d5との位置関係を示す図である。図15に示すように、5個のLED65c1~65c5は分割エリア80毎にそれぞれのC面に1個ずつ配置され、5個のLED65d1~65d5は分割エリア80毎にそれぞれのD面に1個ずつ配置されている。
 図16は、導光板60のC面に配置されたLED65c1~65c5と、D面に配置されたLED65d1~65d5の発光強度を制御するための回路図である。図16に示すように、これら10個のLED65c1~65c5、65d1~65d5は並列接続された状態で光源点灯回路50に接続されている。このため、光源点灯回路50は、表示制御回路30から与えられた各分割エリア80の輝度データBDに基づいて対応するLEDに印加すべき電圧値を設定し、設定した電圧値を当該LEDに印加する。これにより、光源点灯回路50は、各分割エリア80のC面およびD面に配置された各LED65c、65dの発光強度を独立して駆動する。その結果、バックライトユニット70は、導光板60に形成された分割エリアの領域毎に輝度の異なる光を液晶パネルに照射することができる。
 図17は、導光板60のA面に形成された凹凸パターンの密度分布と出射光の輝度を示す図である。図17に示すように、導光板60のA面に形成されている凹凸パターンの密度は、導光板のC面およびD面付近で最も小さく、中央部に向かって単調に増加し、中央付近で最大となる。このため、C面に配置されたLED65cから出射された光は、対応する分割エリア80の第1領域に入射するとC面から中央までの間にその大部分が表示面側に出射されるようにする。同様に、D面に配置されたLED65dから出射された光は、対応する分割エリア80の第2領域に入射するとD面から中央までの間にその大部分が表示面側に出射される。このように、各分割エリア80の対向するC面およびD面に配置されたLED65c、65dをそれぞれ独立して駆動することによって、分割エリアをその長手方向(X方向)に第1領域と第2領域に2分割し、領域毎に出射する光の輝度を変えることができる。これにより、2次元のローカルディミングを行うことができる。
 さらに、凹凸パターン81の密度を上記のように変化させることによって、分割エリア80のC面に配置されたLED65cから出射される光はC面付近から中央部までの間で輝度の均整度を高めた光として出射される。同様に、D面に配置されたLED65dから出射される光もD面付近から中央部までの間で輝度の均整度を高めた光として出射される。
<2.2 効果>
 本実施形態によれば、導光板60のC面とD面に配置されたLED65c、65dを独立して駆動することにより導光板60に入射した光をB面に形成されたプリズム領域85によって区切られた各分割エリア80に閉じ込めるとともに、A面に形成された凹凸パターン81の密度を第1および第2領域に分けて形成する。これにより、C面に配置されたLED65cが発した光は第1領域から表示面側に出射され、D面に配置されたLED65dが発した光は第2領域から表示面側に出射されるようになるので、バックライトユニット70は2次元のローカルディミングを行うことができる。このため、第1の実施形態の場合よりも、高コントラスト化された高画質の画像を表示したり、バックライトユニットの消費電力を抑制したりすることができる。
<3.第3の実施形態>
 本発明の第3の実施形態に係るバックライトユニット70を含む液晶表示装置の構成および動作は、図1に示す第1の実施形態の場合と同じであるので、その構成を示す図および説明を省略する。
 図18は、本実施形態に係るバックライトユニット70の構成を示す図である。図18に示す第1の実施形態の場合と異なる構成を中心に説明する。図18に示すように、本実施形態では、2枚の導光板60、61を含み、液晶パネル20側から導光板60、導光板61の順に積層されている。LED65cは導光板60のC面に、LED66cは導光板61のC面にそれぞれ配置されている。なお、図18に示すX方向およびY方向は、図1に示す第1の実施形態の場合と同じであるので、その説明を省略する。また、2枚の導光板60、61のうち、導光板60を第1導光板といい、導光板61を第2導光板と呼ぶ場合がある。
 導光板60および導光板61の各分割エリア80は、図18に示すY方向に延びる点線によって2つの領域に分割され、LED65c、65dに近い領域を第1領域、遠い領域を第2領域と呼ぶ。導光板60では、第1領域のA面に凹凸パターン81が形成されているが、第2領域のA面には凹凸パターン81は形成されていない。一方、導光板61では、第1領域のA面には凹凸パターン81は形成されていないが、第2領域のB面に凹凸パターン81が形成されている。また、導光板60だけでなく、導光板60のプリズム領域85に対応する導光板61の位置にもプリズム領域85が形成され、導光板61もプリズム領域85によって分割エリア80に分割されている。このため、導光板60の分割エリア80と導光板61の分割エリアは積層方向に重なっている。
 図19は、導光板60および導光板61のA面に形成された凹凸パターン81の密度分布と出射光の輝度を示す図である。図19に示すように、導光板60の第1領域ではC面付近から中央部に向かって凹凸パターンの密度が単調に増加して中央部で最大になり、第2領域では凹凸パターン81の密度は“ゼロ”になる。このため、導光板60では、C面に配置されたLED65cが発する光は第1領域に入射すると、導光板60内を進みながら第1領域のA面に形成された凹凸パターン81によって反射され、表示面側に向かって出射される。この場合、第1領域から表示面側に輝度の均整度を高めた光が出射される。また、LED65cが発する光の大部分は中央部までにほとんど表示面側に出射されてしまうので、第2領域に進む光はほとんどなくなる。また、第2領域には凹凸パターン81は形成されていない。これにより、第2領域に進んだわずかな光も全反射を繰り返しながら進むので、第2領域から表示面側に出射される光の輝度はゼロである。
 一方、導光板61の第1領域では凹凸パターン81は形成されていないので、LED66cが発する光は第1領域に入射すると、導光板61の表面で全反射を繰り返しながら中央部に進む。このため、第1領域に入射した光のうち第1領域から表示面側に出射される光の輝度はゼロである。しかし、中央部からD面に向かって凹凸パターン81の密度が単調に増加してD面付近で最大になる。このため、導光板61では、C面に配置されたLED66cから出射された光が第1領域に入射すると、導光板60の表面で全反射しながら進み、第2領域に入る。第2領域では、中央部からD面に向かって密度が増加するように形成された凹凸パターン81によって反射され、輝度の均整度を高めた光が表示面側に出射される。
 このように、いずれの導光板60、61においても、A面に形成されている凹凸パターン81の密度を、LED65c、66cから離れるにつれて大きくするのは以下の理由による。LED65c、66cから出射される光の発光強度は、LED65c、66cから離れるのにしたがって少なくなるので、それを補うために凹凸パターン81の密度を大きくすることによって反射される光の輝度を高くする。このため、図19に示すように、導光板60の第1領域から出射される光の輝度の均整度、および導光板61の第2領域から出射される光の輝度の均整度はそれぞれの領域内において高くなる。
 また、導光板60、61内に入射した光は、それぞれ導光板と空気層との界面で全反射しながら進む。しかし、2枚の導光板60、61が密着することによって、それらの間に存在した空気層がなくなれば、一方の導光板内を進む光は、その表面で全反射されることなく他方の導光板に入射するようになる。例えば、導光板60に配置されたLED65cが発する光は、導光板60の背面側の表面で全反射されることなく導光板61に入射し、導光板61の凹凸パターン81が形成された第2領域から表示面側に出射される。同様に、導光板61に配置されたLED66cが発する光は、導光板60の凹凸パターン81が形成された第1領域から導光板60に入射するようになる。これらの場合、LED65c、66cが発する発光強度を調整しても、液晶パネル20の各分割エリア80に照射するバックライト光の輝度を所望の値に調整することができなくなるので、輝度データBDに基づく2次元のローカルディミングを行うことが難しくなる。
 そこで、導光板60と導光板61との間に空気層を設けて密着しないようにするため、以下のような処理が行われている。例えば、2枚の導光板60、61の互いに接する表面に、数μm程度の深さの微小凹凸パターンを形成したり、2枚の導光板60、61の間に貼り付き防止処理が施された薄いシートを挟んだりする。これらの処理を施すことによって、2枚の導光板60、61は密着しなくなる。なお、微小凹凸パターンや貼り付き防止処理が施された薄いシートなどをまとめて、「密着防止手段」と呼ぶ場合がある。
 本実施形態におけるバックライトユニットの回路構成は、図4に示す第1の実施形態の場合において、さらに並列接続されたLED66c1~66c5を追加したものであるため、その構成を示す図および説明を省略する。
 なお、上記説明では、積層される導光板の枚数は2枚であるとして説明したが、3枚またはそれ以上の導光板を積層しても良い。例えば、3枚の導光板60~62を積層する場合について説明する。図20は、3枚の導光板60~62を重ねて配置したときのバックライトユニット70の断面を示す図である。図20に示すように、導光板60~62の各C面にそれぞれLED65c~67cが配置され、凹凸パターン81は3枚の導光板60~62を積層したときに積層方向に互いに重ならないようにそれぞれのA面に形成されている。このため、各導光板60~62に配置されたLED65c~67cをそれぞれ独立に駆動することによって、分割エリア80をその長手方向(X方向)に3分割された領域毎に発光させることができる。このように、分割エリア80を、積層された導光板の枚数と同じ数の領域に分割して発光させることができるので、より細かな2次元のローカルディミングを行うことができる。これにより、より高コントラストの画像表示が可能になると共に、消費電力をより低減することが可能になる。
<3.1 効果>
 本実施形態によれば、複数の導光板60、61を重ねて配置し、各導光板60、61の各分割エリアの長手方向の一方の側面であるC面にLED65c、66dをそれぞれ取り付け、各LED65c、66dを独立して駆動する。さらに、各導光板60、61のA面に凹凸パターン81が積層方向において互いに重ならないように形成することにより、各分割エリア80を重ねた導光板60、61の枚数と同じ数に分割したローカルディミングを行うことができる。これにより、第2の実施形態の場合と同様に、高コントラスト化による高画質の画像を表示したり、バックライトユニットの消費電力を抑制したりすることができる。また、LED65c、66cは導光板60、61の1つの側面であるC面だけに取り付けられる。これにより、他の3つの側面の額縁を狭くすることができるので、液晶表示装置の小型化が可能になる。詳しい説明は省略するが、導光板60~63を3枚重ねた場合も上記と同様の効果が得られる。
<3.2 変形例>
 図21は、本実施形態の変形例において使用する導光板60の構成を示す図である。本変形例では、図18に示すバックライトユニット70の上側に配置された導光板60を、図21に示す導光板60に置き換える。図21に示すように、導光板60の第1領域のB面には、各分割エリア80の境界にX方向に沿って延びるプリズム領域85が形成されているが、第2領域にはプリズム領域85は全く形成されていない。また、第1領域のA面には凹凸パターン81が形成されているが、第2領域のA面には凹凸パターン81は全く形成されていない。
 このように、プリズム領域85と凹凸パターン81を第1領域のみに形成することによって、LED65cから第1領域に入射した光の大部分は第1領域から表示面側に出射される。第1領域を抜けたわずかな光は、第2領域に入射しても第2領域には凹凸パターン81が形成されていないので、第2領域から出射されることはほとんどない。このように、第2領域に凹凸パターン81が形成されていなければ、第2領域におけるプリズム領域85の有無は光の出射に無関係となる。このため、第2領域においてプリズム領域85を形成しないことにより、導光板60内の光がプリズム領域85で反射されて迷光になることを防ぐことができる。これにより、より高いコントラストの画像を表示することが可能になる。
 図22は、導光板61の第1領域に形成されたプリズムの形状を示す斜視図であり、より詳しくは、図22(A)は図21に示す改良前の導光板60の第1領域に形成されたプリズム領域85を構成するプリズム86の形状を示す斜視図であり、図22(B)は改良後の導光板61のプリズム領域85を構成するプリズム86の形状を示す斜視図である。図22(A)に示すように、第1領域に形成されたプリズム86が第2領域との境界で途切れると、プリズム86の端面86aに当たった光が迷光になり、輝度むらの原因になる。そこで、図21(B)に示すように、プリズム86が第1領域と第2領域との境界に向かって徐々に小さくなるように、プリズム86を形成する。これにより、第1領域から第2領域に抜けた光がプリズム86の端面86aに当たって迷光になることが少なくなるので、輝度むらの発生を抑制することができる。
<4.第4の実施形態>
 本発明の第4の実施形態に係るバックライトユニット70を含む液晶表示装置の構成および動作は、図1に示す第1の実施形態の場合と同じであるので、その構成を示す図および説明を省略する。
 図23は、本実施形態に係るバックライトユニット70の構成を示す図である。図23に示すように、2枚の導光板60、61を液晶パネル20側から順に積層し、各導光板60、61は、それらのB面に形成されたX方向に延びるプリズム領域85によって複数の分割エリア80に分割されている。導光板60のC面にはLED65cが配置され、D面にはLED65dが配置されている。導光板60、61はY方向に延びる3本の点線によって、4つの領域に分割され、LED65cに近い側から順に第1領域から第4領域とする。導光板61のC面にはLED66cが配置され、D面にはLED66dが配置されている。凹凸パターン81は、導光板60の第1および第3領域のA面と、導光板61の第2および第4領域のA面に形成されている。
 図24は、各導光板60、61の第1領域~第4領域に形成された凹凸パターン81の密度と出射光の輝度を示す図である。図24に示すように、導光板60の第1領域では、凹凸パターン81の密度は、LED65cに近い側で最も低く、遠くなるにしたがって高くなるように形成され、第2領域には凹凸パターン81は形成されていない。第3領域では、凹凸パターン81の密度は、LED65dに近い側で最も低く、遠くなるにしたがって高くなるように形成され、第4領域には凹凸パターン81は形成されていない。
 一方、導光板61の第1領域には凹凸パターン81は形成されておらず、第2領域では、凹凸パターンの密度は、LED66cに近い側で最も低く、遠くなるにしたがって密度が高くなるように形成されている。第3領域には凹凸パターン81は形成されておらず、第4領域では、凹凸パターン81の密度は、LED66dに近い側で最も低く、遠くなるにしたがって高くなるように形成されている。
 この場合、導光板60のC面に配置されたLED65cが発する光は、第1領域に形成された凹凸パターン81によって反射されて表示面側に出射される。一方、D面に配置されたLED65dが発する光は、第4領域を全反射しながら通過し、第3領域に形成された凹凸パターン81によって反射され、第3領域から表示面側に出射される。
 同様に、導光板61のC面に配置されたLED66cが発する光は、第1領域を全反射しながら通過し、第2領域に形成された凹凸パターン81によって第2領域から表示面側に出射される。一方、D面に配置されたLED66dが発する光は、第4領域に形成された凹凸パターン81に入射し、第4領域から表示面側に出射される。このように、いずれの導光板60、61においても、凹凸パターン81が形成された領域では、最も近くに配置されたLEDから遠ざかるにしたがってその密度が高くなるように凹凸パターン81が形成されている。このため、第2および第3の実施形態でも説明したように、各領域から輝度の均整度を高めた光が出射される。
 なお、本実施形態におけるバックライトユニットの回路構成は、図16に示す第3の実施形態の場合において、さらに並列接続されたLED66c1~66c5、66d1~66d5を追加したものであるため、その構成を示す図および説明を省略する。
<4.1 効果>
 本実施形態によれば、2枚の導光板60、61を重ねて配置し、各導光板60、61のC面およびD面にそれぞれLED65c、65d、66c、66dを配置してそれらを独立して駆動するとともに、導光板60、61をそれぞれ4つの領域に分け、積層方向において互いに重ならないようにして各領域に凹凸パターン81を設ける。これにより、他の実施形態の場合よりもさらに細分化された2次元のローカルディミングを行うことができる。このため、より一層高コントラスト化による高画質の画像を表示したり、バックライトユニットの消費電力をより一層抑制したりすることができる。
<4.2 変形例>
 上記第4の実施形態において説明したバックライトユニット70の場合、次のような問題点がある。図25は、第2領域の境界付近で櫛歯状に光る導光板61を示す図である。図23を参照して、導光板61が櫛歯状に光る原因を説明する。導光板61のC面に配置されたLED66cを点灯させたとき、導光板61の第1領域を抜けて第2領域に形成された凹凸パターン81に入射した光が反射されて第2領域から出射される。このとき、第2領域に形成された凹凸パターンのうち、第1および第3領域との境界付近に形成された凹凸パターン81によって散乱された光が、第1領域および第3領域に形成されたプリズム領域85のプリズム86に当たって迷光となり、導光板61から出射される。この迷光となった光が原因となって、導光板61が第2領域の両側の境界付近で櫛歯状に光る原因になる。
 そこで、櫛歯状に光らないようにした導光板61の構成を以下に説明する。図26は、第2領域の境界付近で櫛歯状に光らない導光板61を示す図であり、図27は櫛歯状に光らないようにした導光板61の構成を示す平面図および断面図である。図27に示すように、第3領域にプリズム領域85を形成しないことによって、第2領域と第3領域の境界で櫛歯状に光らせないようにする。しかし、第1領域のプリズム領域85はLED66cから入射する光が広がることを抑制する機能も有している。このため、第1領域に形成するプリズム領域85は、第2領域との境界付近のみ形成しないようにする。これにより、第1領域では、LED66cから入射した光が左右に広がりにくくなるとともに、第2領域との境界付近にはプリズム領域が形成されていないので、迷光がなくなる。その結果、図26に示すように、導光板61の第2領域と第1領域との境界、および、第2領域と第3領域との境界で導光板61が櫛歯状に光らないようにすることができた。
 導光板61が櫛歯状に光らないようにするための構成を説明したが、図23に示す導光板60でも同様である。図28は、櫛歯状に光らないようにした導光板60の構成を示す平面図および断面図である。図28に示す導光板60の場合も、図27に示す導光板61の場合と同様であるので、詳しい説明は省略し、結果だけを示す。導光板60では、第2領域にはプリズム領域85を形成せず、第4領域に形成するプリズム領域85は、第2領域との境界付近のみ形成しないようにする。これにより、導光板60の第3領域と第2領域との境界、および、第3領域と第4領域との境界で導光板60が櫛歯状に光らないようにすることができる。
 上記説明から、導光板61が櫛歯状に光ることを防ぐため、以下のようにすれば良いことがわかる。凹凸パターン81が形成されている領域では、隣接する領域との境界までプリズム領域85を形成する。しかし、凹凸パターン81が形成されていない領域が、プリズム領域85が形成された領域によって挟まれている場合には、当該領域にプリズム領域85を形成しない。一方、凹凸パターン81が形成されていない領域が、プリズム領域85が形成された領域と片側だけ接している場合には、当該領域のうち、凹凸パターン81が形成されている領域と接する境界付近を除く領域にプリズム領域85を形成する。これにより、図26に示すように、バックライトユニット70は領域の境界で櫛歯状に光らなくなるので、よりコントラストの高い画像を表示することができる。
 図29は、櫛歯状に光ることをさらに抑制する導光板61の構成を示す平面図である。図29の点線で囲んだ領域88では、プリズム領域85および凹凸パターン(図示しない)が形成された第2領域のうち、境界付近にプリズム領域が形成されていない第1領域との境界付近において、第2領域の凹凸パターンの密度を低くする。これにより、凹凸パターンによって散乱されることによって発生する迷光がさらに少なくなるので、導光板61が櫛歯状に光る現象はより発生しにくくなる。このため、さらにコントラストの高い画像を表示することができる。なお、図29では、説明の便宜上、領域88は1箇所のみ記載されているが、第1領域との境界付近のすべてのプリズム領域85に対応する凹凸パターンの密度を低くする。
 導光板60の場合も同様に、第4領域との境界付近の第3領域において、すべてのプリズム領域85に対応する第3領域の凹凸パターンの密度を低くする。
<5.まとめ>
 図30は、第1~第4の各実施形態について、分割エリア80の分割数、使用する導光板の枚数、液晶パネルの額縁幅をまとめた図である。図30では、各評価項目について、実施形態毎に評価した結果を示す。
 図30に示すように、分割エリア80の分割数は、多いほど2次元ローカルディミングを細かく行うことができるので、高コントラスト化による画像の高画質化と低消費電力化に優れている。第2~第4の各実施形態では分割エリア80をさらに分割するので、2次元のローカルディミングを行うことができる。特に、第4の実施形態の場合には、より細分化された2次元のローカルディミングを行うことができる。しかし、第1の実施形態では分割エリア80をさらに分割することができないので、分割エリア毎に行う1次元のローカルディミングしか行うことができない。なお、分割エリア80の分割数は、第3の実施形態では2以上であると記載しているが、分割数が奇数の場合、LEDの発光強度が同一であっても、各領域から出射される光の輝度が強くなったり、弱くなったりするので、実用性を考慮すると偶数の方が好ましい。また、第4の実施形態では4以上としているが、分割数が奇数の場合に同様の問題が生じるので、偶数の方が好ましい。
 使用する導光板の枚数は、薄型化を考慮すると2枚の場合よりも1枚の場合の方が好ましい。第1および第2の実施形態の場合、使用する導光板の枚数は1枚であるため、液晶表示装置の薄型化が可能になる。
 LEDを配置した導光板の側面では額縁が広くなるので、液晶パネルの面積がより大きくなる。LEDを配置する導光板の側面が1面の場合には狭額縁辺数は1辺になるので、2面の場合の狭額縁辺数は2辺の場合よりも、液晶パネルを狭額縁化することができる。このため、LEDを配置する導光板の側面がC面だけである第1および第3実施形態では、第2および第4実施形態の場合に比べて、液晶パネルの狭額縁化を図ることができる。
 本願は、2016年9月20日に出願された「面光源装置および液晶表示装置」という名称の日本の特願2016-182774号に基づく優先権を主張する出願であり、この出願の内容は引用することによって本願の中に含まれる。
  10 … 液晶表示装置
  20 … 液晶パネル
  50 … 光源点灯回路(発光体点灯回路)
  60 … 導光板(第1導光板)
  61 … 導光板(第2導光板)
  65 … 光源
  65c~67c … LED(第1発光体)
  65d~66d … LED(第2発光体)
  70 … バックライトユニット(面光源装置)
  80 … 分割エリア
  81 … 凹凸パターン
  85 … プリズム領域
  86 … プリズム

Claims (21)

  1.  互いに対向する一対の主平面を有する導光板と、
     前記導光板の互いに対向する一対の側面のうちの少なくとも一方の側面に沿って配置された複数の第1発光体とを備える面光源装置であって、
     前記導光板は、前記一方の側面から他方の側面に向かって前記導光板の一方の主平面上に延びる複数のプリズムからなるプリズム領域によって挟まれた複数の分割エリアと、前記第1発光体から前記導光板内に入射した光を外部に出射するために他方の主平面に形成された凹凸パターンとを含み、
     前記複数の第1発光体は、前記分割エリア毎に前記一方の側面に少なくとも1個ずつ配置されていることを特徴とする、面光源装置。
  2.  前記導光板は、前記一方の側面から前記他方の側面まで前記一方の主平面上に延びる前記複数のプリズムからなるプリズム領域によって挟まれた前記複数の分割エリアを含み、
     前記凹凸パターンは、前記一方の側面から前記他方の側面まで単調に増加するように前記他方の主平面に形成され、
     前記複数の第1発光体は、前記分割エリア毎に前記一方の側面に1個ずつ配置されていることを特徴とする、請求項1に記載の面光源装置。
  3.  前記プリズム領域は、前記導光板の前記一方の主平面と対向する前記他方の主平面の位置にも形成されていることを特徴する、請求項2に記載の面光源装置。
  4.  外部から与えられた輝度データに基づいて求めた輝度で前記複数の第1発光体を発光させる発光体点灯回路をさらに備え、前記複数の第1発光体は並列接続された状態で前記発光体点灯回路に接続されていることを特徴とする、請求項1に記載の面光源装置。
  5.  前記プリズムは、前記導光板に設けられたV字型の溝からなることを特徴とする、請求項1に記載の面光源装置。
  6.  前記V字型の溝の深さhは、前記導光板の厚みをdとしたとき、前記溝の深さhは次式で表される範囲に含まれることを特徴とする、請求項5に記載の面光源装置。
              1μm<h<d/4
  7.  前記V字型の溝の前記導光板の法線に対する傾斜角をθとしたとき、前記傾斜角θは次式で表される範囲に含まれることを特徴とする、請求項5に記載の面光源装置。
              30°<θ<60°
  8.  前記導光板の前記分割エリアは、前記一方の側面および前記他方の側面から中央部に向かってそれぞれ密度が高くなるように形成された前記凹凸パターンによって2分割され、
     第2発光体は、前記導光板の前記他方の側面に沿って前記分割エリア毎に1個ずつ配置されていることを特徴とする、請求項1に記載の面光源装置。
  9.  外部から与えられた輝度データに基づいて求めた輝度で前記複数の第1発光体を発光させる発光体点灯回路をさらに備え、前記複数の第1発光体および前記複数の第2発光体は並列接続された状態で前記発光体点灯回路に接続されていることを特徴とする、請求項8に記載の面光源装置。
  10.  前記導光板は、互いに対向する前記一対の主平面を有する複数の導光板を重ねて配置した導光板であり、
     前記複数の導光板に形成された前記分割エリアは、分割された複数の領域をそれぞれ含み、
     前記導光板毎に、前記複数の領域のうち互いに隣接していない2つの領域に、前記一方の側面に近い端部から前記他方の側面に近い端部まで密度が単調に増加するように前記凹凸パターンを形成し、
     前記複数の導光板の前記凹凸パターンが形成された各領域は積層方向において互いに重ならないように配置され、
     前記複数の第1発光体は、前記導光板の前記一方の側面に沿って前記分割エリア毎に少なくとも1個ずつ配置されていることを特徴とする、請求項1に記載の面光源装置。
  11.  前記導光板は、互いに対向する前記一対の主平面を有する第1導光板と第2導光板とを重ねて配置した導光板であり、
     前記第1導光板および前記第2導光板は、前記一方の側面から前記他方の側面に向かって前記一方の主平面上に形成された前記プリズム領域によって挟まれた複数の第1分割エリアおよび複数の第2分割エリアをそれぞれ含み、
     前記第1分割エリアおよび前記第2分割エリアはそれぞれ分割された2つの領域からなり、前記2つの領域のうちのいずれか一方の領域だけに、前記一方の側面から中央部まで、または中央部から前記他方の側面まで密度が単調に増加する前記凹凸パターンが形成され、
     前記第1分割エリアおよび前記第2分割エリアの前記凹凸パターンが形成された各領域は積層方向において互いに重ならないように配置され、
     前記複数の第1発光体は、前記第1導光板および前記第2導光板の前記一方の側面に沿って前記分割エリア毎に1個ずつ配置されていることを特徴とする、請求項10に記載の面光源装置。
  12.  前記第1導光板および前記第2導光板のうちのいずれか一方の導光板に形成された前記プリズム領域は前記一方の側面から前記他方の側面まで形成され、他方の導光板に形成された前記プリズム領域は前記一方の側面から前記中央部まで形成されており、
     前記プリズム領域が前記一方の側面から前記中央部まで形成されている前記導光板の前記プリズム領域が形成されていない領域には、前記凹凸パターンは形成されていないことを特徴とする、請求項11に記載の面光源装置。
  13.  前記プリズム領域が前記一方の側面から前記中央部まで形成されている前記他方の導光板の前記プリズム領域を構成する前記プリズムの深さは、前記一方の側面から前記中央部に向かって徐々に浅くなることを特徴とする、請求項12に記載の面光源装置。
  14.  前記複数の導光板のうち隣接して配置される導光板と導光板の主平面とが密着しないように、前記隣接して配置される導光板と導光板との間に密着防止手段が設けられていることを特徴とする、請求項10に記載の面光源装置。
  15.  前記密着防止手段は、前記隣接して配置される導光板と導光板の互いに対向する主平面の少なくともいずれか一方に設けた凹凸パターンであることを特徴とする、請求項14に記載の面光源装置。
  16.  前記密着防止手段は、前記隣接して配置される導光板と導光板との間に配置された、貼り付き防止処理が施されたシートであることを特徴とする、請求項14に記載の面光源装置。
  17.  前記複数の導光板は、前記一方の側面から前記他方の側面に向かって前記一方の主平面に形成された前記プリズム領域によって挟まれた前記複数の分割エリアをそれぞれ含み、
     複数の第2発光体が前記複数の導光板の前記他方の側面に沿って前記複数の分割エリアのそれぞれに少なくとも1個ずつさらに配置され、
     前記複数の分割エリアはそれぞれ分割された4つの領域からなり、前記4つの領域のうち互いに隣接していない2つの領域は、それぞれ前記第1発光体および前記第2発光体のうちより近い発光体の側から中央部に向かって密度が単調に増加する前記凹凸パターンが形成されており、
     前記複数の分割エリアの前記凹凸パターンが形成された領域は積層方向において互いに重ならないように配置されていることを特徴とする、請求項1に記載の面光源装置。
  18.  前記導光板は、互いに対向する前記一対の主平面を有する第1導光板と第2導光板とを重ねて配置した導光板であり、
     前記複数の第2発光体が前記第1および第2導光板の前記他方の側面に沿って前記分割エリア毎に1個ずつ配置され、
     前記第1導光板および前記第2導光板はそれぞれ複数の第1分割エリアおよび第2分割エリアを含み、
     前記第1分割エリアおよび前記第2分割エリアはそれぞれ分割された4つの領域を含み、前記第1導光板の互いに隣接していない2つの領域、および、前記第1導光板の前記2つの領域と積層方向において重ならない前記第2導光板の2つの領域は、前記第1発光体および前記第2発光体のうちより近い発光体の側から中央部に向かって密度が単調に増加する前記凹凸パターンが形成されており、
     前記第1分割エリアの前記凹凸パターンが形成された領域は、前記第2分割エリアの前記凹凸パターンが形成された領域と積層方向に重ならないように配置されていることを特徴とする、請求項17に記載の面光源装置。
  19.  前記4つの領域のうち、前記凹凸パターンが形成された領域と両側で接する領域には、前記プリズム領域が形成されておらず、前記凹凸パターンが形成された領域と片側だけ接する領域には、前記凹凸パターンが形成された領域との境界付近で前記プリズム領域が形成されていないことを特徴とする、請求項17に記載の面光源装置。
  20.  前記凹凸パターンが形成された領域と片側だけ接する領域の境界付近に形成された前記凹凸パターンは、他の領域よりも密度が低くなるように形成されていることを特徴とする、請求項19に記載の面光源装置。
  21.  請求項1から20のいずれか1項に記載の面光源装置を備えた、液晶表示装置。
PCT/JP2017/033664 2016-09-20 2017-09-19 面光源装置および液晶表示装置 WO2018056247A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-182774 2016-09-20
JP2016182774 2016-09-20

Publications (1)

Publication Number Publication Date
WO2018056247A1 true WO2018056247A1 (ja) 2018-03-29

Family

ID=61689995

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/033664 WO2018056247A1 (ja) 2016-09-20 2017-09-19 面光源装置および液晶表示装置

Country Status (1)

Country Link
WO (1) WO2018056247A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009176593A (ja) * 2008-01-25 2009-08-06 Seiko Instruments Inc 照明装置及びこれを用いた表示装置
WO2011093173A1 (ja) * 2010-01-29 2011-08-04 日本ゼオン株式会社 導光体、照明装置及び液晶表示装置
JP2012015111A (ja) * 2010-07-05 2012-01-19 Samsung Electronics Co Ltd バックライトユニット
JP2012069461A (ja) * 2010-09-27 2012-04-05 Harison Toshiba Lighting Corp バックライト装置および液晶表示装置
JP2014038695A (ja) * 2010-10-20 2014-02-27 Sony Corp 照明装置および表示装置
JP2015103351A (ja) * 2013-11-22 2015-06-04 日東光学株式会社 導光板、照明装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009176593A (ja) * 2008-01-25 2009-08-06 Seiko Instruments Inc 照明装置及びこれを用いた表示装置
WO2011093173A1 (ja) * 2010-01-29 2011-08-04 日本ゼオン株式会社 導光体、照明装置及び液晶表示装置
JP2012015111A (ja) * 2010-07-05 2012-01-19 Samsung Electronics Co Ltd バックライトユニット
JP2012069461A (ja) * 2010-09-27 2012-04-05 Harison Toshiba Lighting Corp バックライト装置および液晶表示装置
JP2014038695A (ja) * 2010-10-20 2014-02-27 Sony Corp 照明装置および表示装置
JP2015103351A (ja) * 2013-11-22 2015-06-04 日東光学株式会社 導光板、照明装置

Similar Documents

Publication Publication Date Title
US8240906B2 (en) Backlight unit of liquid crystal display
US8120726B2 (en) Surface light source device and display
JP4996433B2 (ja) 面状照明装置
JP4125016B2 (ja) 照明装置及び液晶表示装置
US8373647B2 (en) Surface light source device and display device
TWI490565B (zh) 導光板及應用其之背光模組
US20120236403A1 (en) Microreplicated film for autostereoscopic displays
KR20190092391A (ko) 형광 멀티빔 요소를 채용한 멀티뷰 백라이팅
KR20120005765A (ko) 백라이트 유닛 및 이를 구비하는 디스플레이장치
JP5469552B2 (ja) 液晶表示装置
US9690034B2 (en) Illumination device and display device
JP4338540B2 (ja) 面状光源装置およびこれを用いた表示装置
JP2014085666A (ja) 視野角制御が可能なバックライトユニットを備えた液晶表示装置
US20120163019A1 (en) Light guide plate, surface light source device, and transmission image display device
WO2018056248A1 (ja) 面光源装置および液晶表示装置
JP2018511148A (ja) 出力の指向性制御を有する表示装置、およびこのような表示装置用のバックライトおよび光指向方法
KR20200062394A (ko) 광학 구조체 및 표시 장치
KR100817768B1 (ko) 광학시트 및 이를 구비한 액정표시장치
KR102257200B1 (ko) 프리즘시트 및 이를 구비한 액정표시장치
KR100784021B1 (ko) 액정 표시 장치의 백라이트 유니트
TW201314314A (zh) 導光板、面光源裝置及透過型圖像顯示裝置
CN111624815B (zh) 一种背光模组及显示装置
KR102652314B1 (ko) 백라이트 유닛 및 이를 포함하는 표시장치
JP2007200736A (ja) 照明装置、電気光学装置及び電子機器
TW201629551A (zh) 具有方向性控制輸出之顯示裝置,及該顯示裝置的背光

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17853019

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17853019

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP