WO2018056062A1 - Stretchable capacitor, deformation sensor, displacement sensor, method for sensing respiration state, and sensing wear - Google Patents

Stretchable capacitor, deformation sensor, displacement sensor, method for sensing respiration state, and sensing wear Download PDF

Info

Publication number
WO2018056062A1
WO2018056062A1 PCT/JP2017/032247 JP2017032247W WO2018056062A1 WO 2018056062 A1 WO2018056062 A1 WO 2018056062A1 JP 2017032247 W JP2017032247 W JP 2017032247W WO 2018056062 A1 WO2018056062 A1 WO 2018056062A1
Authority
WO
WIPO (PCT)
Prior art keywords
stretchable
capacitor
dielectric layer
layer
elastic
Prior art date
Application number
PCT/JP2017/032247
Other languages
French (fr)
Japanese (ja)
Inventor
翔太 森本
石丸 園子
義哲 権
Original Assignee
東洋紡株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東洋紡株式会社 filed Critical 東洋紡株式会社
Priority to JP2018540956A priority Critical patent/JP7060847B2/en
Publication of WO2018056062A1 publication Critical patent/WO2018056062A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/14Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage
    • G01D5/24Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying capacitance
    • G01D5/241Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying capacitance by relative movement of capacitor electrodes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B7/00Measuring arrangements characterised by the use of electric or magnetic techniques
    • G01B7/16Measuring arrangements characterised by the use of electric or magnetic techniques for measuring the deformation in a solid, e.g. by resistance strain gauge
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G5/00Capacitors in which the capacitance is varied by mechanical means, e.g. by turning a shaft; Processes of their manufacture
    • H01G5/01Details
    • H01G5/013Dielectrics

Definitions

  • the present invention relates to a capacitor having an expansion / contraction characteristic, a capacitor whose capacitance changes due to expansion / contraction, a capacitor capable of reading expansion / contraction deformation by a change in capacitance, and a deformation sensor using an expansion / contraction capacitor. Furthermore, the present invention relates to a displacement sensor using capacitance change, and further relates to a method for sensing a breathing state by measuring a circumference change of a human torso. Furthermore, the present invention is a garment including a stretchable capacitor that can detect its own deformation as a change in capacitance, and when the subject is worn, the body changes due to a change in capacitance of the stretchable capacitor provided in the garment. The present invention relates to sensing wear that can detect shape change, that is, limb movement, body shape, posture, breathing, mastication, swallowing, pulsation, fetal movement and the like in a substantially non-invasive manner.
  • an electrostatic capacitance type sensor an object used for a surface pressure distribution sensor, a strain gauge, or the like that detects an uneven shape of a measurement object from a capacitance change between a pair of electrode layers is known.
  • a capacitive sensor sheet used as a surface pressure distribution sensor for example, it has a laminated structure in which an elastomeric dielectric layer is sandwiched between electrodes made of two conductive layers, and a load applied in a direction perpendicular to the surface.
  • a surface pressure distribution sensor that captures the changing thickness of the dielectric layer as a capacitance change is known.
  • Patent Document 1 two sheet-like dielectrics that are elastically deformable in all directions are overlapped with each other with one conductive cloth interposed therebetween, and two conductive cloths are provided on both sides of both sheet-like dielectrics.
  • the two conductive cloths are ground layers and are electrically connected to each other, and each of the two sheet-like dielectrics has a plurality of through holes, and is opened in one sheet-like dielectric.
  • a capacitive pressure sensor in which the position of the through hole formed in the other sheet-shaped dielectric and the through hole formed in the other sheet-shaped dielectric are different from each other.
  • Patent Document 2 discloses a dielectric layer made of a stretchable cloth, a front side coating layer made of an elastomer or a resin and laminated on the front side of the dielectric layer and stretchable integrally with the dielectric layer, and the front side coating.
  • a front side adhesive layer which is interposed between the layer and the dielectric layer and adheres to the front side covering layer and the dielectric layer and can be stretched and contracted integrally with both layers, and is laminated on the back side of the dielectric layer.
  • a backside coating layer that is integrally stretchable with the dielectric layer, and is interposed between the backside coating layer and the dielectric layer, and adheres to the backside coating layer and the dielectric layer to integrally stretch with both layers.
  • the back side electrode formed integrally with the dielectric member and expandable / contractible is opposed to the front and back direction.
  • a capacitance unit comprising: a detection unit formed between the front electrode and the back electrode; and detecting an applied load based on a change in capacitance of the detection unit.
  • a sensor is disclosed.
  • Patent Document 3 includes a dielectric film made of an elastomer and a pair of electrodes disposed via the dielectric film, and is elastically bendable. And a conductive filler composed of a carbon material blended in the elastomer, and can be expanded and contracted according to deformation of the dielectric film, and the pair of electrodes includes the elastomer and the conductive filler A percolation curve representing the relationship between the blending amount of the conductive filler and the electrical resistance of the elastomer composition, the first inflection point at which the electrical resistance decreases and the insulator-conductor transition occurs.
  • a blending amount of the conductive filler (critical volume fraction: ⁇ c) is 25 vol% or less, and at least one surface of the pair of electrodes has a restraining member that restrains elastic deformation of the surface.
  • Each of the capacitance type sensors disclosed in Patent Documents 1 to 3 has a planar laminate structure, and changes in the direction perpendicular to the plane, that is, mainly changes in the thickness of the dielectric layer are capacitances. This type of sensor is perceived as a change in the sensor. These sensors detect pressures or relatively small displacements and cannot be used for the purpose of detecting large deformations.
  • Patent Document 4 includes a dielectric layer made of an elastomer composition, a front-side electrode layer laminated on the surface of the dielectric layer, and a back-side electrode layer laminated on the back surface of the dielectric layer, and the front-side electrode The layer and the back electrode layer are at least partially opposed to each other with the dielectric layer interposed therebetween, and a portion where the front electrode layer and the back electrode layer are opposed to each other with the dielectric layer interposed therebetween is defined as a detection unit.
  • the front electrode layer and the back electrode layer are made of a conductive composition containing carbon nanotubes, and the elastomer composition includes polyether polyol as a polyol component,
  • a capacitive sensor sheet characterized by containing urethane rubber containing isocyanate as an isocyanate component is disclosed, and the capacitive sensor sheet is uniaxial. It has been shown that withstand tension elongation of 100% or more.
  • the invention disclosed in Patent Document 4 is a sensor of a type that measures the deformation in the surface direction using the capacitance change, not the change in the thickness direction.
  • a sensor that is, a deformable capacitor
  • the capacitance type sensor is different from the conventional capacitance type sensor in that large deformation and large displacement can be detected.
  • Patent Document 5 discloses a breathing sensor that measures a breathing motion by wrapping a strain gauge attached to an elastic belt around a chest and measures the sleep posture together with a switch for detecting a sleeping posture. A method for monitoring the condition has been proposed.
  • Patent Document 6 discloses a transducer that is slidably engaged with an at least partially elastic belt and generates an electrical signal representing the magnitude of the force in response to a force applied at least indirectly from the belt. Methods have been proposed for monitoring respiratory status.
  • Patent Document 7 a clothing having a front opening portion with a constant width between the left and right front bodies, and both ends of the belt-like breathing sensor are detachably attached to the left and right front bodies of the clothing.
  • a breathing sensor wearing garment characterized by comprising an adherend is disclosed.
  • Patent Document 8 an air mat is laid under the body of a lying subject, and a heart rate, respiratory rate, snoring, etc. are measured from pressure fluctuations inside the air mat to diagnose sleep apnea syndrome. It is disclosed.
  • Motion capture technology is developing in the video field.
  • Optical motion capture technology is used for special filming of movies.
  • a technique of optically capturing the state of the body and facial expression, converting it into data, and reflecting it in CG to move a human body model or the like in a virtual space has been put to practical use as a production technique for movies and the like.
  • Such a technique requires a large-scale apparatus.
  • Patent Documents 9 and 10 disclose a technique for obtaining a joint angle using a piezoelectric sensor.
  • Patent Document 11 discloses a method for measuring an indirect bending angle using an electromagnetic induction sensor.
  • a sensor is easily affected by an external magnetic field, and information obtained is a time derivative of motion.
  • it is unsuitable for constantly sensing the deformation state of the body.
  • Patent Document 12 discloses a method of sensing a joint angle using a bending capacitor whose capacitance changes according to the bending angle as a sensor.
  • the capacitance change due to the bending angle is small, and it is difficult to ensure the accuracy.
  • Sensing wear needs to be produced according to the body shape of the individual, and even if the subject is the same, if the wearing state of the sensing wear is misaligned, sensing becomes unstable.
  • Japanese Patent No. 4141426 Japanese Patent No. 5486258 Japanese Patent No. 5496446 JP 2015-200592 A Japanese Patent Laid-Open No. 7-75631 JP-A-8-299306 JP 1998-099299 A JP 2000-271103 A Japanese Patent No. 4855373 Japanese Patent No. 4427655 Japanese Patent Laid-Open No. 7-75630 JP2015-217127A
  • a capacitance sensor that detects such a large deformation requires sufficient room for deformation not only in the dielectric, but also in the electrode portion sandwiching the dielectric, and also in the wiring portion depending on the structure. If an elastic polymer material is used as the dielectric, it can sufficiently cope with deformation of about 100%, but there are rare electrodes or wiring materials that can maintain conductivity even when the same degree of deformation is applied.
  • a technique using a conductive composition containing carbon nanotubes has also been proposed, but the conductivity obtained by dispersing the carbon nanotubes is similar to that of a conductive composition using carbon filler, and is a general metal electrode. When compared with, the specific resistance is several thousand to several tens of thousands of times.
  • an electrode formed of a conductive composition containing carbon nanotubes has an electric resistance component in the electrode surface, and thus the capacitor itself needs to be handled in a distributed constant manner. Further, since the resistance component cannot be ignored when measuring the impedance including the capacitance, the linearity of the sensor output is low. In addition, a Schottky barrier is created at the connection surface between the electrode layer containing carbon nanotubes and general metal wiring, resulting in a non-linear response especially when the sensor is driven at a low voltage, limiting the use as a sensor. There was a problem such as coming out.
  • the method of placing a belt-shaped displacement sensor around the body's torso and breathing sensing from the change in circumference of the body has a feeling that the belt-like object restrains the body, so that the subject feels a sense of discomfort and feels natural sleep. It is difficult to obtain.
  • a change in the peripheral length due to respiration may not be transmitted to the peripheral length detector, and accurate monitoring may not be possible.
  • the method of monitoring the breathing state by detecting pressure fluctuations caused by physical changes accompanying breathing and using the entire bed as a pressure sensor array increases the size of the device, resulting in higher costs and a more comfortable sleeping experience. If the futon is made thicker, the detection accuracy decreases.
  • Biological information sensing wear is easy to wear, can be applied to subjects with slightly different body shapes, can be stably sensed even when the wearing state is slightly deviated, and is uncomfortable when worn A natural feeling of wearing is not required.
  • the present invention has been made in view of such circumstances, and its purpose is to have a high elongation rate that can withstand large deformation, excellent reliability when repeatedly deformed, and in measuring the amount of deformation.
  • An object of the present invention is to provide a stretchable capacitor that has no hysteresis, has a wide range, and can obtain an output with good response.
  • the present invention has the following configuration.
  • a capacitor having at least a layer structure in which a stretchable conductor layer, a stretchable dielectric layer, and a stretchable conductor layer are laminated in this order, wherein the stretchable conductor layer is a composition containing metal particles.
  • a non-stretchable specific resistance is 3 ⁇ 10 ⁇ 3 ⁇ cm or less, and a 100% stretched specific resistance is within 100 times that of non-stretched.
  • the stretchable dielectric layer contains an inorganic filler having a relative dielectric constant of 2.5 or more at no load and a relative dielectric constant of 5 or more in a proportion of 10% by mass or less.
  • the elastic capacitor according to [1] which is characterized.
  • the stretchable conductor layer is composed of a stretchable conductor composition containing at least metal particles and a flexible resin having a tensile modulus of elasticity of 1 MPa or more and 1000 MPa or less.
  • the surface direction of the stretchable dielectric layer of the stretchable capacitor according to any one of [1] to [8] is arranged toward the deformation direction of the measurement target, and according to the stretch deformation of the measurement target.
  • a deformation sensor that detects a deformation of a measurement object by detecting a change in capacitance of a changing elastic capacitor.
  • the capacitance change of the stretchable capacitor that changes according to the stretch deformation of the measurement object is mainly caused by the stretch in the thickness direction of the stretchable dielectric layer accompanying the stretch in the surface direction of the stretchable dielectric layer.
  • the deformation sensor according to claim 9, wherein the deformation sensor is a change in capacitance due to expansion and contraction.
  • a displacement sensor comprising at least a belt-shaped base material made of a stretchable material and a stretchable capacitor that can be deformed in accordance with the expansion and contraction of the belt-shaped base material.
  • the stretchable capacitor is a capacitor having a layer structure in which a stretchable conductor layer, a stretchable dielectric layer, and a stretchable conductor layer are laminated in this order, and the specific resistance of the stretchable conductor layer is 1 ⁇ .
  • the stretchable dielectric layer is composed of a stretchable insulating polymer having a tensile yield elongation of 70% or more, according to [11] or [12] Displacement sensor.
  • a portion including the elastic capacitor is 10% or more and 100% or less with respect to the entire length of the belt-like object.
  • a respiration sensor characterized in that the displacement sensor according to any one of [11] to [15] is disposed around the torso of a human body, and a respiratory state is detected by measuring a change in the circumference of the torso. State sensing method.
  • a sensing ware comprising an elastic capacitor, an electric capacitor for connecting the elastic capacitor and a device for detecting the capacitance of the elastic capacitor.
  • the capacitor having a layer structure in which the stretchable capacitor is laminated in the order of a stretchable conductor layer, a stretchable dielectric layer, and a stretchable conductor layer, and the specific resistance of the stretchable conductor layer is 1 ⁇ .
  • Sensing wear according to [17] characterized in that it is 10 ⁇ 3 ⁇ cm or less and the stretchable dielectric layer is made of a stretchable insulating polymer having a tensile yield elongation of 70% or more.
  • a garment for the lower body of the human body characterized in that the stretchable capacitor is disposed at least at any of the knee, ankle, thigh, shin, hip, and waist.
  • the present invention preferably has the following configuration.
  • the elastic capacitor layer of the elastic capacitor described in [31] is arranged so that the surface direction of the elastic dielectric layer is directed toward the deformation direction of the measurement target, and the elastic capacitor changes in accordance with the elastic deformation of the measurement target.
  • a deformation sensor that detects deformation of a measurement object by detecting a change in capacitance.
  • the present invention preferably has the following configuration.
  • the stretchable dielectric layer has a relative dielectric constant in an unloaded state of 3.5 or more and a content of an inorganic filler having a relative dielectric constant of 5 or more is 10% by mass or less.
  • the displacement sensor according to any one of [12] to [15].
  • the stretchable conductor layer is made of a stretchable conductor composition containing at least metal particles and a flexible resin having a tensile elastic modulus of 1 MPa to 1000 MPa, and the amount of the flexible resin is the same as that of the conductive particles.
  • the displacement sensor according to any one of [12] to [15] and [34], which is 7 to 35% by mass with respect to the total of the functional resins.
  • the stretchable capacitor of the present invention Since the stretchable capacitor of the present invention has a high elongation rate in the plane direction, it does not only deform in the thickness direction of the capacitor, but also deforms in the plane direction like a conventionally known capacitance type sensor. It can be suitably used for measuring the amount.
  • the elastic capacitor of the present invention employs a dielectric layer having a good stretch recovery rate, so that the permanent strain after being greatly deformed is small, and residual strain is unlikely to occur even when repeatedly deformed (stretched). It becomes. As a result, the hysteresis between the deformation amount and the output value (capacitance) is small, excellent in responsiveness and responsiveness, and excellent in reliability (long-term reliability) when repeatedly used.
  • the stretchable capacitor of the present invention uses a low-resistance stretchable conductor for the electrode, the durability of the device is high, and even when the device becomes large, the impedance in the device becomes uniform, so a large-area device In this case, a sensor array with uniform sensitivity can be configured. Since the elastic capacitor of the present invention can be made thin, an extremely lightweight sensor can be configured as a result. Furthermore, since the stretchable capacitor of the present invention can keep the stress during stretching low, it has high sensitivity and can reduce the influence on the measurement object. Specifically, even when used for the purpose of detecting deformation of the body surface as a wearable smart device, smart apparel, sensing wear, etc., measurement is possible without giving the subject a sense of incongruity. By using the present invention, it is possible to realize data conversion of movements of subjects (humans, animals, robots, etc.) such as motion capture, which conventionally requires a large-scale device including a television camera, with an extremely small device. Become.
  • the capacitance change of the elastic capacitor that changes according to the elastic deformation in the surface direction of the elastic capacitor is mainly due to the expansion and contraction of the elastic dielectric layer in the surface direction of the elastic dielectric layer. This is a change in capacitance due to a change in the thickness direction.
  • the material used for the stretchable dielectric layer has a high Poisson's ratio.
  • the Poisson's ratio of the stretchable dielectric layer in the present invention is preferably 0.28 or more, more preferably 0.38 or more, and further preferably 0.48 or more. In order to increase the Poisson's ratio, it is better that the inorganic component contained in the stretchable dielectric layer is small.
  • FIG. 1 is a schematic diagram showing a basic configuration of a stretchable capacitor used in the present invention.
  • FIG. 2 is a configuration diagram of a stretchable sheet with a hot melt layer used for producing a stretchable capacitor used in the present invention.
  • FIG. 3 is a schematic diagram showing an example in which a stretchable capacitor is configured by stacking a stretchable sheet on a base material.
  • FIG. 4 is a schematic view showing the configuration of the stretchable capacitor used in the present invention.
  • FIG. 5 is a process schematic diagram in the case of producing the stretchable capacitor used in the present invention by a printing method.
  • FIG. 6 is a schematic diagram for explaining the extension recovery rate of the present invention.
  • FIG. 1 is a schematic diagram showing a basic configuration of a stretchable capacitor used in the present invention.
  • FIG. 2 is a configuration diagram of a stretchable sheet with a hot melt layer used for producing a stretchable capacitor used in the present invention.
  • FIG. 3 is a schematic diagram showing an example in which a stretch
  • FIG. 7 is an example of a result of measuring the chest circumference change due to respiration by the displacement sensor using the elastic capacitor of the present invention.
  • FIG. 8 is a process schematic diagram in the case of producing the stretchable capacitor used in the present invention by a printing transfer method.
  • FIG. 9 is a schematic diagram for explaining the SS curve and the tensile yield elongation.
  • the stretchable capacitor of the present invention has the following basic structure.
  • Stretchable conductor layer surface electrode
  • stretchable dielectric layer It has three layers of stretchable conductor layers (back electrode).
  • an adhesive layer for adhering each layer may be inserted into each basic component layer.
  • an insulating coating layer may be provided outside the stretchable conductor layer that is the outermost layer.
  • the adhesive layer and the coating layer are also required to have sufficient stretch properties.
  • the specific resistance of the stretchable conductor layer in the present invention when not stretched is preferably 3 ⁇ 10 ⁇ 3 ⁇ cm or less, more preferably 1 ⁇ 10 ⁇ 3 ⁇ cm or less, and 3 ⁇ 10 ⁇ 4 ⁇ cm or less. It is preferably 1 ⁇ 10 ⁇ 4 ⁇ cm or less.
  • the lower limit of the specific resistance depends on the conductive material used in principle.
  • the specific resistance at 100% elongation is preferably within 100 times that at non-stretching, more preferably within 50 times, and further preferably within 30 times, 15 It is more preferable that it is within the range. If the specific resistance at 100% elongation exceeds this range, the resistance distribution in the conductive layer becomes noticeable, the time constant of the element increases, causing a problem in response, and high-frequency characteristics and pulse response are reduced. There is.
  • the lower limit of the specific resistance depends on the conductive material used in principle. Note that when the stretchable conductor is deformed, a geometric change accompanying the deformation, that is, a change in resistance value due to a change in length and cross-sectional area in the current direction is excluded. Within the range of the initial specific resistance in the present invention and the specific resistance at the time of expansion, the resistance distribution in the conductive layer can be kept sufficiently small even if a change in the resistance value due to geometric deformation is added. it can. *
  • the stretchable conductor layer in the present invention is composed of at least metal particles and a flexible resin having a tensile elastic modulus of 1 MPa to 1000 MPa.
  • the blending amount of the flexible resin is 7 to 35% by mass with respect to the total of the conductive particles and the flexible resin.
  • the stretchable conductor layer in the present invention can be obtained by kneading and mixing metal particles and a flexible resin and molding the film into a sheet or sheet.
  • the stretchable conductor layer of the present invention is preferably processed into a sheet or film form by coating and drying after adding a solvent to the metal particles and the flexible resin to form a stretchable conductor forming paste or slurry. I can do it.
  • a predetermined shape can also be given by printing after paste-izing.
  • the metal particles in the present invention function as conductive particles.
  • the conductive particles include the metal particles, are made of a substance having a specific resistance of 1 ⁇ 10 ⁇ 1 ⁇ cm or less, and have a particle diameter of 100 ⁇ m or less.
  • Examples of the substance having a specific resistance of 1 ⁇ 10 ⁇ 1 ⁇ cm or less include metals, alloys, carbon, doped semiconductors, conductive polymers, and the like.
  • the conductive particles preferably used in the present invention are metals such as silver, gold, platinum, palladium, copper, nickel, aluminum, zinc, lead and tin, alloy particles such as brass, bronze, white copper and solder, and silver-coated copper. Hybrid particles, metal-plated polymer particles, metal-plated glass particles, metal-coated ceramic particles, and the like can be used.
  • the main use is to use 90% by mass or more of the conductive particles.
  • the amorphous aggregated powder is a three-dimensional aggregate of spherical or irregularly shaped primary particles.
  • Amorphous agglomerated powders and flaky powders are preferable because they have a specific surface area larger than that of spherical powders and the like and can form a conductive nitrate work even with a low filling amount. Since the amorphous agglomerated powder is not in a monodispersed form, the particles are in physical contact with each other, so that it is easy to form a conductive nitrate work.
  • the particle size of the flaky powder is not particularly limited, but those having an average particle size (50% D) measured by a dynamic light scattering method of 0.5 to 20 ⁇ m are preferable. More preferably, it is 3 to 12 ⁇ m. When the average particle diameter exceeds 15 ⁇ m, it becomes difficult to form fine wiring, and clogging occurs in the case of screen printing. When the average particle size is less than 0.5 ⁇ m, it is impossible to make contact between particles at low filling, and the conductivity may deteriorate.
  • the particle size of the amorphous aggregated powder is not particularly limited, but those having an average particle size (50% D) measured by a light scattering method of 1 to 20 ⁇ m are preferable. More preferably, it is 3 to 12 ⁇ m. When the average particle diameter exceeds 20 ⁇ m, the dispersibility is lowered and it becomes difficult to form a paste. When the average particle size is less than 1 ⁇ m, the effect as an agglomerated powder is lost, and good conductivity may not be maintained with low filling.
  • non-conductive particles may be blended in the stretchable conductor layer as necessary.
  • the non-conductive particles in the present invention are particles made of an organic or inorganic insulating substance.
  • the non-conductive particles in the present invention are added for the purpose of improving printing characteristics, stretching properties, and coating surface properties, and are composed of inorganic particles such as silica, titanium oxide, talc, alumina, barium sulfate, and resin materials.
  • a microgel or the like can be used.
  • Examples of the flexible resin in the present invention include a thermoplastic resin, a thermosetting resin, and a rubber having an elastic modulus of 1 to 1000 MPa.
  • urethane resin or rubber is preferable.
  • Rubbers include urethane rubber, acrylic rubber, silicone rubber, butadiene rubber, nitrile group-containing rubber such as nitrile rubber and hydrogenated nitrile rubber, isoprene rubber, sulfurized rubber, styrene-butadiene rubber, butyl rubber, chlorosulfonated polyethylene rubber, ethylene
  • Examples include propylene rubber and vinylidene fluoride copolymer.
  • nitrile group-containing rubber chloroprene rubber, and chlorosulfonated polyethylene rubber are preferable, and nitrile group-containing rubber is particularly preferable.
  • the range of elastic modulus is preferably 2 to 480 MPa, more preferably 3 to 240 MPa, and still more preferably 4 to 120 MPa.
  • the rubber containing a nitrile group is not particularly limited as long as it is a rubber or elastomer containing a nitrile group, but nitrile rubber and hydrogenated nitrile rubber are preferable.
  • Nitrile rubber is a copolymer of butadiene and acrylonitrile. If the amount of bound acrylonitrile is large, the affinity with metal increases, but the rubber elasticity contributing to stretchability decreases conversely. Accordingly, the amount of bound acrylonitrile in the acrylonitrile butadiene copolymer rubber is preferably 18 to 50% by mass, and particularly preferably 40 to 50% by mass.
  • the blending amount of the flexible resin in the present invention is 7 to 35% by mass, preferably 9 to 28% by mass, more preferably based on the total of the conductive particles, preferably the non-conductive particles and the flexible resin to be added. Is 12 to 20% by mass.
  • an epoxy resin can be blended in the stretchable conductor forming paste in the present invention.
  • a preferable epoxy resin in the present invention is a bisphenol A type epoxy resin or a phenol novolac type epoxy resin.
  • an epoxy resin curing agent can be blended.
  • a known amine compound, polyamine compound, or the like may be used as the curing agent.
  • the curing agent is preferably blended in an amount of 5 to 50% by weight, more preferably 10 to 30% by weight, based on the epoxy resin.
  • the blending amount of the epoxy resin and the curing agent is 3 to 40% by mass, preferably 5 to 30% by mass, and more preferably 8 to 24% by mass with respect to the total resin components including the flexible resin.
  • the paste for forming a stretchable conductor in the present invention contains a solvent.
  • the solvent in the present invention is water or an organic solvent. Since the content of the solvent should be appropriately investigated depending on the viscosity required for the paste, it is not particularly limited, but is generally preferably 30 to 80 mass ratio when the total mass of the conductive particles and the flexible resin is 100.
  • the organic solvent used in the present invention preferably has a boiling point of 100 ° C. or higher and lower than 300 ° C., more preferably 130 ° C. or higher and lower than 280 ° C. If the boiling point of the organic solvent is too low, the solvent volatilizes during the paste manufacturing process or use of the paste, and there is a concern that the component ratio of the conductive paste is likely to change. On the other hand, if the boiling point of the organic solvent is too high, the amount of residual solvent in the dry cured coating film increases, and there is a concern that the reliability of the coating film is reduced.
  • organic solvent in the present invention examples include cyclohexanone, toluene, xylene, isophorone, ⁇ -butyrolactone, benzyl alcohol, Exxon Chemical Solvesso 100, 150, 200, propylene glycol monomethyl ether acetate, terpionol, butyl glycol acetate, diamylbenzene.
  • Triamylbenzene, n-dodecanol diethylene glycol, ethylene glycol monoethyl ether acetate, diethylene glycol monoethyl ether acetate, diethylene glycol monobutyl ether acetate, diethylene glycol dibutyl ether, diethylene glycol monoacetate, triethylene glycol diacetate, triethylene glycol, triethylene glycol Monomethylether , Triethylene glycol monoethyl ether, triethylene glycol monobutyl ether, tetraethylene glycol, tetraethylene glycol monobutyl ether, tripropylene glycol, tripropylene glycol monomethyl ether, 2,2,4-trimethyl-1,3-pentanediol monoiso Examples include butyrate.
  • AF Solvent No. 4 (boiling point: 240 to 265 ° C.), No. 5 (boiling point: 275 to 306 ° C.), No. 6 (boiling point: 296 to 317 ° C.) manufactured by Nippon Oil Corporation No. 7, (boiling point: 259-282 ° C.), and No. 0 solvent H (boiling point: 245-265 ° C.), etc., and two or more of them may be included if necessary.
  • Such an organic solvent is appropriately contained so that the stretchable conductor-forming paste has a viscosity suitable for printing or the like.
  • the paste for forming a stretchable conductor in the present invention is a dispersing machine such as conductive particles, barium sulfate particles, stretchable resin, solvent, dissolver, three roll mill, self-revolving mixer, attritor, ball mill, sand mill, etc. Can be obtained by mixing and dispersing.
  • the paste for forming a stretchable conductor in the present invention is provided with known organic and inorganic additives such as imparting printability, color tone adjustment, leveling, antioxidants, ultraviolet absorbers and the like within the scope of the invention. Can be blended.
  • the stretchable dielectric layer is made of a stretchable resin material, that is, a polymer material.
  • the flexible polymer material include elastomers, thermoplastic resins, thermosetting resins, and rubbers having an elastic modulus of 1 to 1000 MPa.
  • urethane resin or rubber is preferable.
  • Rubbers include urethane rubber, acrylic rubber, silicone rubber, butadiene rubber, nitrile group-containing rubber such as nitrile rubber and hydrogenated nitrile rubber, isoprene rubber, sulfurized rubber, styrene-butadiene rubber, butyl rubber, chlorosulfonated polyethylene rubber, ethylene Examples include propylene rubber and vinylidene fluoride copolymer. Among these, nitrile group-containing rubber, chloroprene rubber, and chlorosulfonated polyethylene rubber are preferable, and nitrile group-containing rubber is particularly preferable.
  • the elastic modulus is preferably in the range of 1.2 to 420 MPa, more preferably 1.4 to 210 MPa, and still more preferably 1.5 to 150 MPa.
  • Examples of the flexible polymer material preferably used in the present invention include urethane rubber having polyether polyol or polyester polyol as a polyol component and HDI polyisocyanate as an isocyanate component.
  • the urethane rubber in the present invention is a stretchable dielectric layer that has a high elongation rate and is excellent in reliability when repeatedly deformed because the tensile permanent strain and residual strain are small.
  • polyether polyol in the present invention examples include copolymerization of monomer materials such as polyethylene glycol, polypropylene glycol, polypropylene triol, polypropylene tetraol, polytetramethylene glycol, polytetramethylene triol, and cyclic ether for synthesizing these.
  • monomer materials such as polyethylene glycol, polypropylene glycol, polypropylene triol, polypropylene tetraol, polytetramethylene glycol, polytetramethylene triol, and cyclic ether for synthesizing these.
  • polyalkylene glycols such as copolymers, derivatives obtained by introducing side chains or branched structures, modified products, and mixtures thereof. Of these, polytetramethylene glycol is preferred. The reason is that the mechanical properties are excellent.
  • polyether polyol Commercially available products can also be used as the polyether polyol. Specific examples of commercially available products include PTG-2000SN (Hodogaya Chemical Co., Ltd.), polypropylene glycol, Preminol S3003 (Asahi Glass Co., Ltd.), Pandex GCB-41 (DIC Corporation), and the like.
  • polyester polyol in the present invention aromatic polyester polyol, aromatic / aliphatic copolymer polyester polyol, aliphatic polyester polyol, and alicyclic polyester polyol can be used.
  • polyester polyol in the present invention either a saturated type or an unsaturated type may be used.
  • the HDI polyisocyanate in the present invention is hexamethylene diisocyanate (HDI) or a modified product thereof, and is a compound having a plurality of isocyanate groups in the molecule.
  • HDI hexamethylene diisocyanate
  • the urethane rubber in the present invention may be obtained by reacting a mixture containing a chain extender, a crosslinking agent, a catalyst, a vulcanization accelerator, etc., as necessary, in addition to the polyol component and the isocyanate component. good.
  • a sulfur-free crosslinking agent it is preferable to use a sulfur-free crosslinking agent.
  • the flexible polymer material in the present invention may contain additives such as plasticizers, antioxidants, anti-aging agents, colorants, dielectric fillers, and the like.
  • the average thickness of the dielectric layer in the present invention is 0.3 to 1000 ⁇ m from the viewpoint of improving the detection sensitivity by increasing the capacitance C and improving the followability to the measurement object. In view of sensitivity, the range is preferably 0.3 to 20 ⁇ m, more preferably 0.3 to 8 ⁇ m, and further preferably 0.5 to 6 ⁇ m.
  • the relative dielectric constant of the stretchable dielectric layer in the present invention at no load is 2.5 or more, preferably 2.8 or more, more preferably 3.3 or more, and still more preferably 3.6 or more.
  • the upper limit of the relative dielectric constant is about 7.0, preferably 5.6 or less, more preferably 4.8 or less.
  • the dielectric constant of the stretchable dielectric layer is high, but in general, a polymer material having stretchability often has an alkyl group in the flexible chain component, and a relatively low ratio. It has a dielectric constant.
  • the content of the inorganic filler having a relative dielectric constant of 5 or more in the stretchable dielectric layer is preferably 10% by mass or less.
  • the content of the inorganic filler is preferably 3% or less, more preferably 1% or less, still more preferably 0.3% or less. If the content of the inorganic filler is large, when the stretchable dielectric layer is stretched or compressed, the stress concentration on the stretchable polymer part becomes high, and peeling occurs at the filler and resin interface, forming voids. In some cases, there is a problem in durability.
  • the Poisson's ratio of the stretchable dielectric layer becomes low, the capacitance change during stretching becomes small, and the sensitivity when applied as a sensor is lowered.
  • moisture permeability is preferably from 4000g / m 2 ⁇ 24hr, further preferably less 2500g / m 2 ⁇ 24hr, 1000g / m 2 ⁇ 24hr or less is still preferred.
  • moisture permeability of the stretchable dielectric layer is high, there is a possibility that the capacitance value indicated by the stretchable capacitor changes depending on the dry-wet state.
  • the dielectric breakdown voltage of the stretchable dielectric layer of the present invention is preferably 1.0 kV or higher, more preferably 1.5 kV or higher, still more preferably 2.0 kV or higher.
  • the dielectric breakdown voltage is low, there is a risk that the elastic capacitor will be short-circuited and damaged when a high voltage is applied.
  • the stretchable dielectric layer preferably has hot melt properties.
  • the stretchable conductor layer and the stretchable dielectric layer can be easily laminated by a technique such as hot pressing or roll lamination.
  • a commercially available flexible resin sheet can be used as the stretchable dielectric layer in the present invention.
  • Examples of commercially available flexible resin sheets include a polyurethane film with a hot melt layer manufactured by Nisshinbo Co., Ltd .: Mobilon film MF103F3 (thickness 100 ⁇ m, having a hot melt layer on one side), a polyurethane film manufactured by Nisshinbo Co., Ltd .: Mobilon film MOB100S (thickness) 100 ⁇ m), Osaka Organic Chemical Co., Ltd.
  • a hot melt adhesive may be used when laminating the stretchable conductor layer and the stretchable dielectric layer.
  • a polymer material having a softening temperature of about 30 ° C. to 150 ° C. can be used, and preferably has a flexibility having the same degree of elasticity as the dielectric layer.
  • the provided polymeric material can be used.
  • Such hot melt adhesives include ethylene copolymers, styrene block copolymers, and olefinic (co) polymers that contain crystalline polar groups to provide tackiness using them as a base polymer.
  • Compound materials such as compounds, amorphous poly ⁇ -olefins, tackifying resins, polypropylene waxes, styrene-ethylenepropylene-styrene block copolymer rubbers or styrene-butadiene-styrene block copolymer rubbers, and more Polymer materials obtained by adding a tackifier resin component and / or a liquid plasticizer such as process oil, modified polyolefins and blends thereof, styrenic block copolymers and blends thereof, acid-modified polypropylene, and acid-modified styrene block copolymers Polymers, their blends, Styrene-based block copolymer, blends of such ethylene polymer, and the like can be used polyester urethane copolymers and blends thereof.
  • a hotmelt layer is preferably provided on at least one side of the stretchable dielectric layer, and preferably on both sides of the stretchable dielectric layer. It is preferable to arrange the layers.
  • the hot melt layer can be used as an independent layer or previously laminated on one or both sides of a stretchable conductor layer or a stretchable dielectric layer.
  • a hot melt sheet obtained by processing a polyester urethane resin or a polyether urethane resin having a softening temperature of 40 ° C. to 120 ° C. into a sheet shape can be preferably used.
  • FIG. 1 shows the basic configuration of the stretchable capacitor of the present invention. That is, in the present invention, the stretchable capacitor has a structure in which a stretchable dielectric layer is sandwiched between upper and lower stretchable conductive layers.
  • a method of laminating two sheets can be exemplified. That is, first, as shown in FIG. 2, a laminated sheet in which a stretchable conductor layer, a stretchable dielectric layer, and an adhesive layer are laminated is prepared.
  • the stretchable conductor layer and the stretchable dielectric layer can be laminated by melt extrusion molding or by coating a paste material.
  • a sheet of stretchable conductor layer and a sheet of stretchable dielectric layer can be prepared separately and bonded together with an adhesive layer. In this case, when an insulating adhesive is used as the adhesive layer, the adhesive layer becomes a part of the dielectric layer.
  • the adhesive layer becomes a part of the conductive layer.
  • the adhesive layer preferably has the same stretchability and flexibility as the stretchable conductor layer and the stretchable dielectric layer.
  • As the adhesive layer it is preferable to use an insulating hot-melt polymer material. In the present invention, first, stretchable conductivity is formed on the release sheet, then a stretchable dielectric layer is formed, and a hot melt adhesive sheet is further stacked, sandwiched between the release sheets, and heated and pressurized, Such a laminated sheet can be obtained.
  • the laminated sheet of FIG. 2 is laminated on a stretchable fabric having high elongation using a hot melt layer, and the same laminated sheet is used as an electrode on the laminated sheet.
  • the hot-melt adhesive layer sandwiched between the conductor layers and the stretchable capacitor in which the stretchable dielectric layer acts as a dielectric by shifting it so that it is exposed or cutting it into a predetermined pattern and pasting them together Can be obtained.
  • a stretchable insulating cover layer can also be provided on the outermost conductor layer.
  • an insulating resin similar to the polymer material used for the dielectric layer can be used.
  • Such an insulating resin sheet can also be laminated through a hot melt adhesive layer.
  • FIG. 4 is a schematic view illustrating another embodiment of the stretchable capacitor of the present invention.
  • the electrode of the elastic capacitor is connected to the terminal on the back surface of the base material through a through hole.
  • a through hole a plated through hole used in a general printed wiring board or a through hole connected by a conductive paste or the like can be used.
  • a classic method of electrically connecting the front and back with a metal rivet or the like and fixing with caulking or the like can be applied.
  • a metal snap hook or the like may be used instead of the through-hole as in the case of a metal rivet.
  • an elastic capacitor using a printing method can be exemplified. That is, a stretchable capacitor can be obtained by sequentially printing and laminating each layer in the order of A to F shown in FIG.
  • FIG. 5 illustrates the step of printing directly on the base material sequentially, it is also possible to use a method of printing on a release film or the like in the reverse order and finally transferring to a fabric.
  • a similar measurement method is defined in the JIS L 1096 woven and knitted fabric test method, but not the recovery rate after stretching under a constant load, but the recovery rate when stretched to a certain length.
  • the stretch recovery rate of the stretchable capacitor of the present invention is an evaluation of a portion that functions as a capacitor element, and the electrode portion is omitted. Unless otherwise noted, the elongation recovery rate is evaluated in an environment of 25 ° C. ⁇ 3 ° C.
  • the capacitance direction of the elastic capacitor is arranged so that the surface direction of the elastic dielectric layer of the elastic capacitor described above is directed toward the deformation direction of the measurement object, and changes according to the elastic deformation of the measurement object. By detecting a change, it can be used as a deformation sensor for detecting the deformation of the measurement object.
  • the capacitance change of the elastic capacitor that changes according to the elastic deformation in the surface direction of the elastic capacitor is mainly due to the expansion and contraction of the elastic dielectric layer in the surface direction of the elastic dielectric layer. This is a change in capacitance due to a change in the thickness direction.
  • the material used for the stretchable dielectric layer has a high Poisson's ratio.
  • the Poisson's ratio of the stretchable dielectric layer of the present invention is preferably 0.28 or more, more preferably 0.38 or more, and further preferably 0.48 or more. In order to increase the Poisson's ratio, it is better that the inorganic component contained in the stretchable dielectric layer is small.
  • the plane direction refers to a direction substantially perpendicular to the thickness direction.
  • the XY axis direction is the plane direction
  • the Z axis direction is the thickness direction. Since the stretchable capacitor of the present invention has flexibility, it can be used in a curved state.
  • the surface direction indicates a direction substantially along the curved surface, and does not indicate the XYZ direction of the orthogonal coordinate system fixed rigidly.
  • the surface direction of the elastic dielectric layer of the elastic capacitor described above is laminated with a belt-like material made of an elastic material so that the elastic capacitor also expands and contracts according to the expansion and contraction of the belt-like material.
  • the belt-like material made of a stretchable material in the present invention is not particularly limited in material and structure, and is a belt-like material made of rubber or elastomer, a belt-like material having a knitted structure, or a belt-like material having a woven fabric structure.
  • the belt in the present invention refers to a flat and long structure. The length of the belt varies depending on the object to be measured, but when used for measuring the change in the circumference of the human body, a length range of about 300 mm to 2000 mm is preferable.
  • the width of the belt is 3 mm or more and 150 mm or less, preferably 6 mm or more and 60 mm or less, depending on the handling surface and tactile feel.
  • the thickness of the belt is not particularly limited, but is less than 5 mm, preferably less than 3 mm, more preferably less than 1 mm because the thinner one is less uncomfortable to the body.
  • the stretchable capacitor is preferably laminated so as to have a length of 3 to 100% with respect to the length direction of the belt-like material.
  • a length of 50% or more, preferably 70% or more it becomes possible to provide a sensing unit over the entire circumference of the body when measuring the body circumference, and go to bed. The trouble that the sensing becomes unstable depending on the posture at the time can be avoided.
  • the stretchable capacitor of the present invention has a low stress at the time of extension, even when it is configured in a ring shape having a predetermined circumference, it can sufficiently absorb individual differences in circumference.
  • the elastic capacitor can be installed substantially 100% of the belt-like material.
  • the stress when the displacement sensor of the present invention is stretched by 20% is preferably 20 N or less. Furthermore, in the present invention, the stress when the displacement sensor is stretched by 20% is preferably 12 N or less, more preferably 8 N or less, still more preferably 5 N or less, and even more preferably 3 N or less. When the stress is higher than this, a sense of incongruity increases when worn on the body. In the present invention, the lower limit of the stress when the displacement sensor is extended is 0.5N, preferably 0.8N. If the stress is smaller than this, the fitting of the displacement sensor to the body becomes unsatisfactory, and depending on the posture, the measurement becomes unstable or the sensor position is likely to shift.
  • the sensing wear in the present invention is a clothing or garment for measuring biological information, and is not particularly limited as long as it is a clothing made of a belt-like object such as a belt or a bra and / or a knitted fabric or a nonwoven fabric.
  • Sensing wear forms include shirts, trainers, pants, trousers, tights, or socks, gloves, hats, collars, bangles, upper and lower jumpsuits worn throughout the body, body suits, leotards, and whole body tights. It can take various forms.
  • ⁇ Elastic modulus> The sample to be measured was formed into a sheet shape with an arbitrary thickness in the range of 20 ⁇ m to 200 ⁇ m, and then punched into a dumbbell shape defined by ISO 527-2-1A to obtain a test piece. A tensile test was performed by a method defined in ISO 527-1 to obtain a stress-strain diagram of the resin material, and an elastic modulus was calculated by a conventional method.
  • ⁇ Tensile yield elongation> The sample to be measured was formed into a sheet shape with an arbitrary thickness in the range of 20 ⁇ m to 200 ⁇ m, and then punched into a dumbbell shape defined by ISO 527-2-1A to obtain a test piece. Next, the SS curve was obtained using a tensile tester, the yield point was obtained as shown in FIG. 9, and the elongation at that time was defined as the tensile yield elongation.
  • ⁇ Poisson's ratio> The Poisson's ratio of the stretchable dielectric was determined by a method based on ISO 527-1: 2012.
  • the glass transition temperature was determined by differential scanning calorimetry (DSC) according to a conventional method.
  • Extension recovery rate> The sample to be measured was formed into a sheet shape with an arbitrary thickness in the range of 20 ⁇ m to 200 ⁇ m, and then punched into a dumbbell shape defined by ISO 527-2-1A to obtain a test piece. Next, a mark was placed at a location 33 mm (effective length 66 mm) from the center of the 10 mm wide and 80 mm long portion in the dumbbell-shaped test piece, and the initial distance L0 between the marks was measured accurately.
  • the outside of the marked part is clamped, and the 66 mm mark is stretched to an extension length of 79.2 mm (+13.2 mm, corresponding to an extension degree of 20%), then separated from the clamp, and a predetermined temperature (especially When there was no notice, it put on the fluororesin sheet
  • ⁇ Stretch recovery rate of fabric> The fabric material was punched into a dumbbell shape specified by ISO 527-2-1A to obtain a test piece. In addition, the extending
  • ⁇ Average particle size> The average particle size of the filler was measured using a light scattering type particle size distribution measuring device LB-500 manufactured by Horiba.
  • ⁇ Specific resistivity> When the size of the conductor sheet is sufficient, it is punched into a dumbbell type specified by ISO 527-2-1A, and the dumbbell type test piece is 10 mm wide and 80 mm long as the test piece. Using. When the conductor sheet could be molded, it was heat-compressed into a sheet having a thickness of 200 ⁇ 20 ⁇ m, then punched into a dumbbell shape defined by ISO 527-2-1A, and similarly a test piece was obtained. If the size of the conductor sheet is small and the specified dumbbell shape cannot be obtained, cut out a rectangle with a width and length that can be sampled to make a test piece, and use the measured width, thickness, and length. Converted.
  • Test piece The resistance value [ ⁇ ] of a portion having a width of 10 mm and a length of 80 mm was measured using a milliohm meter manufactured by Agilent Technologies, and the sheet resistance value “ ⁇ ” was multiplied by the aspect ratio (1/8) of the test piece. ⁇ ”.
  • the resistivity [ ⁇ ] was multiplied by the cross-sectional area (width 1 [cm] mm ⁇ thickness [cm]) and divided by the length (8 cm) to obtain the specific resistance [ ⁇ cm].
  • the moisture permeability of the dielectric layer was measured based on the method for testing moisture permeability of the JIS Z 0208 moisture-proof packaging material. In addition, about the printed laminated product, only the dielectric layer was separately printed on the release paper, and evaluation was performed by peeling from the release paper after drying and curing.
  • the dielectric breakdown strength of the dielectric layer was measured with a parallel plate electrode having a diameter of 25 mm by an alternating current test method based on the JIS C 2151: 2006 electrical plastic film test method.
  • the dielectric layer was separately printed on the release paper, and evaluation was performed by peeling from the release paper after drying and curing.
  • Salt water immersion change rate (%) 100 ⁇ capacitance after immersion / capacitance before immersion
  • Example 1 10 parts by mass of nitrile butadiene rubber having a nitrile amount of 40% by mass and a Mooney viscosity of 46, 2 parts by mass of nitrile butadiene rubber having a nitrile amount of 32% by mass and a Mooney viscosity of 38, 30 parts by mass of isophorone, 58.0 parts by mass of fine flaky silver powder having an average particle size of 6 ⁇ m [trade name Ag-XF301, manufactured by Fukuda Metal Foil Powder Industry Co., Ltd.]
  • the obtained paste for forming a stretchable conductive layer was applied and dried into a release PET film using a slit coater to obtain a stretchable conductor sheet having a thickness of 35 ⁇ m.
  • the obtained stretchable conductor sheet was cut into a width of 10 mm and a length of 200 mm, and the specific resistance was determined from the resistance value and thickness in the length direction. As a result, the specific resistance was 1.2 ⁇ 10 ⁇ 4 ⁇ cm.
  • both ends of the stretchable conductor sheet in the length direction are sandwiched between clips of a tensile tester, and the effective length is 160 mm and pulled to 320 mm.
  • the resistance value between both ends, the width of the narrowest part of the test piece, and the thickness was used to calculate the specific resistance at 100% elongation. As a result, the specific resistance at 100% elongation was 58 ⁇ 10 ⁇ 4 ⁇ cm.
  • a paste for forming a stretchable dielectric layer is applied and dried on a release PET film so as to have a thickness of 50 ⁇ m, and the resulting dried sheet is cut into a dumbbell shape and used as a test piece in accordance with ISO 527-1: 2012. Then, the Poisson's ratio of the stretchable dielectric was determined. The result Poisson's ratio was 0.47. Similarly, the Poisson's ratio was measured for a hot-melt urethane sheet having a thickness of 50 ⁇ m. As a result, the Poisson's ratio was 0.45.
  • a stretchable urethane sheet, Mobilon [Nisshinbo Co., Ltd.] is used as a base material, and a three-layer sheet slit to a length of 10 mm and a length of 120 mm so that the configuration of FIG. It was placed and heated and pressed to bond them to obtain a stretchable capacitor.
  • the obtained stretchable capacitor was sandwiched with clips so that a load was applied to the overlapping part of the three-layer sheets, and the stretch recovery rate at 100% stretch of the stretchable capacitor at 25 ° C. was measured. As a result, the extension recovery rate was 100%.
  • a conductive wire was attached to the electrode portions at both ends of the obtained elastic capacitor, and the relationship between the elongation in the length direction of the elastic capacitor and the capacitance at 1 MHz was measured using an LCR high tester manufactured by Hioki Electric Co., Ltd. . Both results showed good correspondence.
  • the relationship between the degree of extension and the capacitance was measured at a repetition rate of 1 cycle / second between 0% and 50%. As a result, no hysteresis was observed, indicating a good response.
  • Example 2 In Example 1, a stretchable capacitor was constituted only by a stretchable conductor layer and a hot-melt adhesive layer without using a stretchable dielectric layer forming paste. That is, in this example, the hot melt adhesive layer functions as a dielectric layer of the capacitor.
  • the evaluation was made in the same manner as in Example 1. As a result, the extension recovery rate at 100% extension was 100%, the relationship between the degree of extension and the capacitance showed a good correspondence of 1: 1, and no hysteresis was observed.
  • Example 3 Using the stretchable sportswear fabric as a base material, the stretchable conductor layer forming paste and the stretchable dielectric layer forming paste obtained in Example 1 were formed into the configuration shown in FIG. 5 using a screen printing method. Print drying was repeated and laminated to obtain an elastic capacitor. The stretchable underlayer, dielectric layer, and insulating cover layer were all composed of a stretchable dielectric layer forming paste. The thickness of each layer obtained by cross-sectional observation is as follows. Elastic substrate about 800 ⁇ m Elastic base layer approx. 70 ⁇ m First elastic conductor layer 18 ⁇ m Stretchable dielectric layer 24 ⁇ m Second stretchable conductor layer 16 ⁇ m Elastic insulation cover layer 23 ⁇ m The evaluation was made in the same manner as in Example 1. As a result, the extension recovery rate at 100% extension was 100%, the relationship between the degree of extension and the capacitance showed a good correspondence of 1: 1, and no hysteresis was observed.
  • a stretchable capacitor having a width of 1 cm and an effective length of 5 cm was produced by the method of Example 1 of the present invention, and was sewn to the chest portion of a compression-type sports shirt. Next, a 25-year-old healthy man was allowed to wear a sports shirt with an elastic capacitor, and the relationship between breathing and capacitance change was determined. The results are shown in FIG. In FIG. 0-30 seconds Normal breathing 30-60 seconds Inhale and stop 60-70 seconds Normal breathing 70-90 seconds Exhale and stop 100-140 seconds Deep breathing. As a result, it was shown that when the stretchable capacitor of the present invention is used as a sensor element for detecting respiration, the respiration state can be monitored well.
  • Example 11 Nitrile amount 40% by weight, Mooney viscosity 46 nitrile butadiene rubber 12 parts by weight, 30 parts by mass of isophorone, 58.0 parts by mass of fine flaky silver powder having an average particle size of 6 ⁇ m [trade name Ag-XF301, manufactured by Fukuda Metal Foil Powder Industry Co., Ltd.]
  • a three roll mill Were uniformly mixed and dispersed with a three roll mill to obtain a stretchable conductive layer forming paste.
  • the obtained paste for forming a stretchable conductive layer was applied to a release PET film using a screen printing method and dried to obtain a stretchable conductor sheet having a thickness of 22 ⁇ m.
  • the obtained stretchable conductor sheet was cut into a width of 10 mm and a length of 200 mm, and the specific resistance was determined from the resistance value and thickness in the length direction. As a result, the specific resistance was 1.0 ⁇ 10 ⁇ 4 ⁇ cm.
  • both ends of the stretchable conductor sheet in the length direction are sandwiched between clips of a tensile tester, and the effective length is 160 mm and pulled to 320 mm. The resistance value of both ends and the width and thickness of the narrowest part of the test piece are determined. Using this, the specific resistance at 100% elongation was calculated. As a result, the specific resistance at 100% elongation was 48 ⁇ 10 ⁇ 4 ⁇ cm. Table 1 shows the evaluation results including other characteristics. Shown in
  • NBR nitrile butadiene rubber
  • Mooney viscosity of 46 30 parts by mass of isophorone was dissolved in 40 parts by mass of isophorone to obtain a stretchable dielectric layer forming paste.
  • the obtained paste for forming a stretchable dielectric layer was applied and dried on a release PET film using a screen printing method to obtain a stretchable conductor sheet having a thickness of 35 ⁇ m.
  • Table 1 shows the evaluation results of the obtained stretchable dielectric layer. Shown in
  • the obtained stretchable capacitor was laminated on a color stretch belt with a length of 900 mm, a width of 24 mm, and a thickness of 1.2 mm using a hot melt adhesive, and crafted so that the circumference could be adjusted with a hook-and-loop fastener.
  • a snap hook was attached to the connector as a connector, and the relationship between the elongation in the length direction of the stretchable capacitor and the capacitance at 1 MHz was measured using an LCR high tester manufactured by Hioki Electric Co., Ltd. Both results showed good correspondence.
  • the relationship between the degree of extension and the capacitance was measured at a repetition rate of 1 cycle / second between 0% and 50%. As a result, no hysteresis was observed, indicating a good response.
  • the obtained displacement sensor was wrapped around the chest of a 25-year-old healthy man in a state of exhaling, and fixed with a hook-and-loop fastener with a tension that did not slip off in a standing position.
  • the relationship between respiration and capacitance change was determined.
  • the results are shown in FIG. In FIG. 0-30 seconds Normal breathing 30-60 seconds Inhale and stop 60-70 seconds Normal breathing 70-90 seconds Exhale and stop 100-140 seconds Deep breathing.
  • the stretchable capacitor of the present invention was used as a sensor element for detecting respiration, the respiration state could be monitored well.
  • the subject did not particularly feel uncomfortable.
  • the obtained displacement sensor was placed in a 300 mm ⁇ 300 mm washing net, and the possibility of breath sensing was confirmed again after the washing durability test.
  • the above results are shown in Table 1. Shown in
  • Example 12 A displacement sensor was manufactured in the same manner as in Example 11 except that urethane resin was used as the stretchable dielectric layer. The evaluation results are shown in Table 1.
  • Example 13 A displacement sensor was manufactured in the same manner as in Example 11 except that natural rubber was used as the stretchable dielectric layer. The evaluation results are shown in Table 1.
  • Example 14 A paste for forming a stretchable conductor was obtained in the same manner as in Example 11 using SBR (styrene-butadiene rubber) as the binder resin. Next, the obtained paste was coated on a release PET film and dried and peeled to obtain a stretchable conductive sheet having a thickness of 56 ⁇ m.
  • SBR styrene-butadiene rubber
  • Example 1 The same paste for forming a stretchable dielectric layer as in Example 1 was coated on a release PET film and peeled after drying to obtain a stretchable dielectric sheet having a thickness of 78 ⁇ m.
  • Table 1 shows the evaluation results of each sheet. Shown in A stretchable dielectric sheet is layered on the stretchable conductor sheet obtained, and the stretchable conductor sheet is further stacked to form a three-layer structure, sandwiched between release PET films, laminated in three layers with a hot press, Obtained.
  • the obtained elastic capacitor was laminated using a foamed rubber belt having a thickness of 3 mm as a belt-like base material to obtain a displacement sensor.
  • the obtained sensor was evaluated in the same manner as in the example. The results are shown in Table 1.
  • Example 15 The stretchable capacitor obtained in Example 14 was similarly wound around the chest of a subject wearing an undershirt, and the respiratory state was evaluated. The results are shown in Table 1.
  • Example 1 The elastic capacitor obtained in Example 14 was laminated on a rubber belt having a thickness of 3 mm to form a displacement sensor. Respiration sensing was attempted with the obtained displacement sensor, but the test was stopped because the subject felt stuffy.
  • Example 2 The displacement sensor obtained in Example 11 was worn by 10 subjects, and the respiratory state at bedtime was sensed for 6 hours. All subjects could wear without any discomfort, and the respiratory condition could be monitored without displacement of the displacement sensor from the chest regardless of the sleeping posture.
  • Example 21 Nitrile amount 40% by weight, Mooney viscosity 46 nitrile butadiene rubber 12 parts by weight, 30 parts by mass of isophorone, 58.0 parts by mass of fine flaky silver powder having an average particle size of 6 ⁇ m [trade name Ag-XF301, manufactured by Fukuda Metal Foil Powder Industry Co., Ltd.]
  • a three roll mill Were uniformly mixed and dispersed with a three roll mill to obtain a stretchable conductive layer forming paste.
  • the obtained paste for forming a stretchable conductive layer was applied to a release PET film using a screen printing method and dried to obtain a stretchable conductor sheet having a thickness of 22 ⁇ m.
  • the obtained stretchable conductor sheet was cut into a width of 10 mm and a length of 200 mm, and the specific resistance was determined from the resistance value and thickness in the length direction. As a result, the specific resistance was 1.0 ⁇ 10 ⁇ 4 ⁇ cm.
  • both ends of the stretchable conductor sheet in the length direction are sandwiched between clips of a tensile tester, and the effective length is 160 mm and pulled to 320 mm. The resistance value of both ends and the width and thickness of the narrowest part of the test piece are determined. Using this, the specific resistance at 100% elongation was calculated. As a result, the specific resistance at 100% elongation was 48 ⁇ 10 ⁇ 4 ⁇ cm. Table 2 shows the evaluation results including other characteristics. Shown in
  • NBR nitrile butadiene rubber
  • Mooney viscosity of 46 30 parts by mass of isophorone
  • the obtained paste for forming a stretchable dielectric layer was applied and dried on a release PET film using a screen printing method to obtain a stretchable conductor sheet having a thickness of 35 ⁇ m.
  • Table 2 shows the evaluation results of the obtained stretchable dielectric layer. Shown in
  • the obtained elastic capacitor was affixed to the inner and outer sides of both elbows of a long-sleeved shirt made of a stretch material using a hot melt adhesive sheet.
  • wiring was sewn with silver-coated threads from both poles of the left and right capacitors to the connector attached to the chest of the long sleeve shirt.
  • a connector and a Hikari Denki LCR high tester were experimentally connected, and the sensing wear was configured so that the change in capacitance at 1 MHz when the elbow was bent could be monitored.
  • the obtained sensing wear was worn by a 25-year-old healthy man and the correspondence between bending of the arm (elbow) and capacitance change was measured.
  • the arrangement of the elastic capacitors was fixed to the outside and the inside of the elbow. However, if the elastic capacitors are arranged so as to surround the elbow by further increasing the number, the largest change among them is shown. If it is programmed to recognize the output of the elastic capacitor as the elbow bending angle, it is considered that the elbow bending angle can be detected properly even when the long-sleeved shirt is worn slightly shifted. Also.
  • the elastic capacitor has a sufficient length, so that it can sufficiently cover some differences in physique (arm length).
  • the obtained sensing wear was placed in a 300 mm ⁇ 300 mm washing net, and after confirming whether or not breathing sensing was possible again after the washing durability test, it was confirmed that the device operated without problems.
  • Example 22 An elastic capacitor having a width of 10 mm and a length of 600 mm was manufactured in the same manner as in Example 21 except that urethane resin was used as the elastic dielectric layer.
  • the evaluation results are shown in Table 2.
  • the obtained stretchable capacitor was affixed around the chest and abdomen of a T-shirt using a stretch material with a hot melt adhesive sheet, and wiring was similarly attached to obtain sensing wear.
  • the obtained sensing wear was worn by a 25-year-old healthy man, and the correspondence between the sleeping state and the change in capacitance was measured. As a result, the subject was able to sleep well without feeling uncomfortable, and was able to monitor the respiratory state during sleep by changing the capacitance. It was suggested that this sensing wear would be useful for detecting sleep apnea syndrome. There was no problem in operation after the washing test.
  • Example 23 A stretchable capacitor was formed on the substrate by a printing method using natural rubber as the stretchable dielectric layer and using a urethane sheet with a hot melt layer instead of a release PET film as the substrate.
  • the stretchable conductor layer was extended so that it could be used as a wiring.
  • the obtained elastic capacitor with the hot melt adhesive sheet along the instep and heel part of the sock longitudinal direction attach a metal snap hook to the end of the wiring with the elastic conductive layer to make a connector, Socks-type sensing wear was obtained. It was possible to monitor the movement of the ankle satisfactorily without hysteresis with the obtained sensing wear. The subject did not complain. There was no problem in operation after the washing test.
  • Example 24 Using SBR (styrene-butadiene rubber) as the binder resin, a paste for forming a stretchable conductor was obtained in the same manner as in the example. Next, the obtained paste was coated on a release PET film and dried and peeled to obtain a stretchable conductive sheet having a thickness of 56 ⁇ m. The same paste for forming a stretchable dielectric layer as in Example 1 was coated on a release PET film and peeled after drying to obtain a stretchable dielectric sheet having a thickness of 78 ⁇ m. Table 2 shows the evaluation results of each sheet.
  • SBR styrene-butadiene rubber
  • a stretchable dielectric sheet is layered on the stretchable conductor sheet obtained, and the stretchable conductor sheet is further stacked to form a three-layer structure, sandwiched between release PET films, laminated in three layers with a hot press, Obtained.
  • the obtained stretchable capacitor is placed on the waist side, buttocks and knees of the tights and attached with a hot-melt adhesive sheet, wired with silver-coated yarn in the same manner as in Example 1, and sensing for checking the operation of the lower body I got wear. Evaluation was performed in the same manner as in Example 1 below. As a result, it was possible to satisfactorily monitor knee bending and stretching with no hysteresis with the obtained sensing wear.
  • Example 2 A stretchable capacitor was obtained in the same manner as in Example 24 except that a crosslinked natural rubber sheet was used as the stretchable dielectric layer. Subsequently, the obtained stretchable capacitor was attached to a long-sleeved shirt in the same manner as in Example 21, and an arm motion monitor test was performed. As a result, it was judged that it was difficult to detect natural movement because the subject felt a great sense of incongruity when bending his arm.
  • the obtained resin had a reduced viscosity (dl / g) of 0.81, a glass transition temperature of ⁇ 20 ° C., a urethane group concentration of 3325 meq / kg, an elastic modulus of 70 MPa, and a breaking elongation of 1180%.
  • ⁇ Example of making conductive paste> First, dissolve the binder resin in half the amount of the solvent specified, add the metal particles, the treating agent and the remaining solvent to the resulting solution, and after premixing, disperse in a three-roll mill. To obtain a stretchable conductive paste.
  • the paste composition is 6.8 parts by mass of binder resin (obtained polyurethane resin) 73.0 parts by mass of metal-based particles Ag01 78.5 parts by mass of barium sulfate 1.3 parts by mass leveling agent 0.4 parts by mass.
  • the metal-based particles Ag01 are SPH02J (conductive particles, silver powder, average particle size: 1 ⁇ m) manufactured by Mitsui Mining & Smelting Co., Ltd.
  • Solvent ECA is diethylene glycol monoethyl ether acetate.
  • Barium sulfate is B-34 (particle size 0.3 ⁇ m) manufactured by Sakai Chemical Industry Co., Ltd.
  • Leveling agent is MK Conk manufactured by Kyoeisha Chemical Co., Ltd.
  • Mobilon film MF103F3 (thickness 100 ⁇ m, having a hot melt layer on one side) is used as a stretchable dielectric layer, and the resulting stretchable conductive paste is 25 ⁇ m thick on both sides It was printed and dried and cured to obtain a stretchable capacitor.
  • Example 32 Nisshinbo Co., Ltd. polyurethane film: Mobilon film MOB100S (thickness: 100 ⁇ m) is used as a stretchable dielectric layer, and the stretchable conductive paste obtained in Example 31 is printed on both sides to a thickness of 25 ⁇ m and dried. Cured to obtain a stretchable capacitor.
  • the obtained elastic capacitor was evaluated in the same manner as in Example 11. The results are shown in Table 3.
  • Example 33 An NS sheet (thickness 40 ⁇ m) made by Nikkan Kogyo Co., Ltd.
  • Example 34 DINGZING polyurethane film: Proveta FS1123 (thickness 50 ⁇ m) as a stretchable dielectric layer, and the stretchable conductive paste obtained in Example 31 is printed on both sides to a thickness of 25 ⁇ m and dried and cured. An elastic capacitor was obtained. The obtained elastic capacitor was evaluated in the same manner as in Example 11. The results are shown in Table 3.
  • the elastic capacitor of the present invention is useful as a sensor element for detecting various displacements and deformations because it exhibits a good correspondence between the elongation in the length direction and the electrostatic capacity.
  • the stretchable capacitor of the present invention is useful as a sensor element for detecting various displacements and deformations because the elongation in the length direction and the capacitance show a good correspondence without hysteresis.
  • the stretchable capacitor of the present invention since the stretchable capacitor of the present invention has a low stress at the time of stretching, it is wrapped in the body as it is or in combination with a belt-like base material having a small stretching stress, and the subject's feeling of strangeness is felt by breathing. It can be measured without giving.
  • the sensing wear using the stretchable capacitor of the present invention has a natural wearing feeling, and can measure the forward and backward movement and state in a non-invasive state.
  • a desktop type LCR high tester was used as a test, but in practice, remote measurement is possible by combining a small measuring instrument and a communication function.
  • the sensing wear of the present invention can detect not only limb movement, body shape, posture, but also breathing, mastication, swallowing, pulsation, fetal movement, etc. It is possible to monitor the body during driving and various work, and it can also be applied to motion capture.
  • the present invention can be applied not only to the human body but also to animals and mechanical devices.

Abstract

[Problem] To provide a stretchable capacitor that shows a 1:1 relationship between degree of stretching and capacitance and has high sensitivity and no hysteresis, and to apply the same to a respiration sensor or sensing wear. [Solution] Provided is a capacitor having a layered structure in which at least a stretchable conductor layer, a stretchable dielectric layer, and a stretchable conductor layer are stacked in that order, wherein the stretchable capacitor is obtained by using: the stretchable conductor layers that are a composition containing metal particles and that is characterized in that the specific resistance when not stretched is 3 × 10−3 Ωcm or less and the specific resistance when 100% stretched is no greater than 100 times the specific resistance when not stretched; and a stretchable dielectric layer with little inorganic constituents, preferably with a Poisson ratio of at least 0.28. The obtained stretchable capacitor can be attached to a belt, shirt, or the like and is capable of sensing respiration on the basis of changes in a sleeveless garment. Moreover, if the stretchable capacitor is placed in an indirect location or the like of clothing, the motion of the wearer can be read.

Description

伸縮性コンデンサ、変形センサ、変位センサ、呼吸状態のセンシング方法およびセンシングウェアElastic capacitor, deformation sensor, displacement sensor, breathing state sensing method and sensing wear
  本発明は、伸縮特性を有するコンデンサに関し、伸縮により静電容量が変化するコンデンサであり、伸縮変形を静電容量の変化で読み取ることができるコンデンサに関し、さらに伸縮性コンデンサを利用した変形センサに関する。
  さらに本発明は、静電容量変化を用いた変位センサーに関し、さらに人体胴体部の周長変化を測定して呼吸状態をセンシングする方法に関する。
  さらに本発明は、自らの変形を静電容量変化として検出可能な伸縮性コンデンサを備えた衣服であり、被験者に着用させた状態で、衣服に備えた伸縮性コンデンサの静電容量変化により身体の形状変化、すなわち四肢の運動、体形、姿勢、呼吸、咀嚼、嚥下、脈動、胎動などを実質的に非侵襲にて検出することが可能なセンシングウェアに関する。
The present invention relates to a capacitor having an expansion / contraction characteristic, a capacitor whose capacitance changes due to expansion / contraction, a capacitor capable of reading expansion / contraction deformation by a change in capacitance, and a deformation sensor using an expansion / contraction capacitor.
Furthermore, the present invention relates to a displacement sensor using capacitance change, and further relates to a method for sensing a breathing state by measuring a circumference change of a human torso.
Furthermore, the present invention is a garment including a stretchable capacitor that can detect its own deformation as a change in capacitance, and when the subject is worn, the body changes due to a change in capacitance of the stretchable capacitor provided in the garment. The present invention relates to sensing wear that can detect shape change, that is, limb movement, body shape, posture, breathing, mastication, swallowing, pulsation, fetal movement and the like in a substantially non-invasive manner.
  静電容量型センサとして、一対の電極層間の静電容量変化から測定対象物の凸凹形状等を検出する面圧分布センサや歪みゲージ等に用いられる物が知られている。 As an electrostatic capacitance type sensor, an object used for a surface pressure distribution sensor, a strain gauge, or the like that detects an uneven shape of a measurement object from a capacitance change between a pair of electrode layers is known.
  従来、面圧分布センサとして使用する静電容量型センサシートとして、例えば、エラストマー製の誘電層を二枚の導電層からなる電極で挟んだ積層構造を有し、面に垂直方向に加わる荷重により変化する誘電層の厚さを静電容量変化として捉える面圧分布センサが知られている。
 特許文献1には、全方向に弾性変形可能な2枚のシート状誘電体が1枚の導電布を間に挟んで互いに重ね合わされると共に、両シート状誘電体の両面に2枚の導電布が配備され、前記2枚の導電布はグランド層であり、互いに電気的に接続され、前記2枚のシート状誘電体にはそれぞれ複数の貫通孔が形成され、一方のシート状誘電体に開設された貫通孔と他方のシート状誘電体に開設された貫通孔とは、互いに位置が食い違っている静電容量型圧力センサが開示されている。
Conventionally, as a capacitive sensor sheet used as a surface pressure distribution sensor, for example, it has a laminated structure in which an elastomeric dielectric layer is sandwiched between electrodes made of two conductive layers, and a load applied in a direction perpendicular to the surface. A surface pressure distribution sensor that captures the changing thickness of the dielectric layer as a capacitance change is known.
In Patent Document 1, two sheet-like dielectrics that are elastically deformable in all directions are overlapped with each other with one conductive cloth interposed therebetween, and two conductive cloths are provided on both sides of both sheet-like dielectrics. The two conductive cloths are ground layers and are electrically connected to each other, and each of the two sheet-like dielectrics has a plurality of through holes, and is opened in one sheet-like dielectric. There is disclosed a capacitive pressure sensor in which the position of the through hole formed in the other sheet-shaped dielectric and the through hole formed in the other sheet-shaped dielectric are different from each other.
 また、特許文献2には、伸縮性を有する布からなる誘電層と、エラストマーまたは樹脂からなり該誘電層の表側に積層され該誘電層と一体的に伸縮可能な表側被覆層と、該表側被覆層と該誘電層との間に介装され該表側被覆層と該誘電層とを接着し両層と一体的に伸縮可能な表側接着層と、エラストマーまたは樹脂からなり該誘電層の裏側に積層され該誘電層と一体的に伸縮可能な裏側被覆層と、該裏側被覆層と該誘電層との間に介装され該裏側被覆層と該誘電層とを接着し両層と一体的に伸縮可能な裏側接着層と、を有する誘電部材と、該誘電部材の該表側被覆層の表面に形成され該誘電部材と一体的に伸縮可能な表側電極と、該誘電部材の該裏側被覆層の裏面に形成され該誘電部材と一体的に伸縮可能な裏側電極と、表裏方向に対向する該表側電極と該裏側電極との間に形成されている検出部と、を備え、該検出部の静電容量変化に基づいて、加えられた荷重を検出することを特徴とする静電容量型センサが開示されている。 Patent Document 2 discloses a dielectric layer made of a stretchable cloth, a front side coating layer made of an elastomer or a resin and laminated on the front side of the dielectric layer and stretchable integrally with the dielectric layer, and the front side coating. A front side adhesive layer which is interposed between the layer and the dielectric layer and adheres to the front side covering layer and the dielectric layer and can be stretched and contracted integrally with both layers, and is laminated on the back side of the dielectric layer. A backside coating layer that is integrally stretchable with the dielectric layer, and is interposed between the backside coating layer and the dielectric layer, and adheres to the backside coating layer and the dielectric layer to integrally stretch with both layers. A dielectric member having a possible back side adhesive layer, a front side electrode formed on a surface of the front side coating layer of the dielectric member and capable of extending and contracting integrally with the dielectric member, and a back surface of the back side coating layer of the dielectric member The back side electrode formed integrally with the dielectric member and expandable / contractible is opposed to the front and back direction. A capacitance unit comprising: a detection unit formed between the front electrode and the back electrode; and detecting an applied load based on a change in capacitance of the detection unit. A sensor is disclosed.
 さらに特許文献3には、エラストマー製の誘電膜と、該誘電膜を介して配置されている一対の電極と、を備えてなり、弾性的に曲げ変形可能であり、該一対の電極は、エラストマーと、該エラストマー中に配合され炭素材料からなる導電性フィラーと、を有し、該誘電膜の変形に応じて伸縮可能であり、該一対の電極は、該エラストマーと該導電性フィラーとを含むエラストマー組成物からなり、該エラストマー組成物の、該導電性フィラーの配合量と電気抵抗との関係を表すパーコレーションカーブにおいて、電気抵抗が低下して絶縁体-導電体転移が起こる第一変極点の該導電性フィラーの配合量(臨界体積分率:φc)が25vol%以下であり、該一対の電極の少なくとも一方の表面には、該表面の弾性変形を拘束する拘束部材が配置されており、該一対の電極間の静電容量変化に基づいて変形を検出することを特徴とする静電容量型センサ、が開示されている。 Further, Patent Document 3 includes a dielectric film made of an elastomer and a pair of electrodes disposed via the dielectric film, and is elastically bendable. And a conductive filler composed of a carbon material blended in the elastomer, and can be expanded and contracted according to deformation of the dielectric film, and the pair of electrodes includes the elastomer and the conductive filler A percolation curve representing the relationship between the blending amount of the conductive filler and the electrical resistance of the elastomer composition, the first inflection point at which the electrical resistance decreases and the insulator-conductor transition occurs. A blending amount of the conductive filler (critical volume fraction: φc) is 25 vol% or less, and at least one surface of the pair of electrodes has a restraining member that restrains elastic deformation of the surface. Are location, capacitive sensor and detects the deformation based on a change in the electrostatic capacity between the pair of electrodes, it is disclosed.
 これら、特許文献1~3に開示される静電容量型センサは、いずれも、面状の積層体構成を有し、面に垂直方向の変化、すなわち主として誘電層の厚さ変化を静電容量の変化として捉えるタイプのセンサである。これらのセンサは圧力ないし比較的小さな変位を検知するものであり、大変形を検知する目的では使用できない。 Each of the capacitance type sensors disclosed in Patent Documents 1 to 3 has a planar laminate structure, and changes in the direction perpendicular to the plane, that is, mainly changes in the thickness of the dielectric layer are capacitances. This type of sensor is perceived as a change in the sensor. These sensors detect pressures or relatively small displacements and cannot be used for the purpose of detecting large deformations.
 一方、特許文献4には、エラストマー組成物からなる誘電層と、前記誘電層の表面に積層された表側電極層と、前記誘電層の裏面に積層された裏側電極層とを備え、前記表側電極層と前記裏側電極層とは前記誘電層を挟んで少なくとも一部が対向しており、前記表側電極層と前記裏側電極層とが前記誘電層を挟んで対向している部分を検出部とする静電容量型センサシートであって、前記表側電極層及び前記裏側電極層は、カーボンナノチューブを含有する導電性組成物からなり、前記エラストマー組成物は、ポリエーテルポリオールをポリオール成分とし、HDI系ポリイソシアネートをイソシアネート成分とするウレタンゴムを含有することを特徴とする静電容量型センサシート、が開示されており、該静電容量型センサシートは一軸引張りに耐えられる伸長率が100%以上であることが示されている。 On the other hand, Patent Document 4 includes a dielectric layer made of an elastomer composition, a front-side electrode layer laminated on the surface of the dielectric layer, and a back-side electrode layer laminated on the back surface of the dielectric layer, and the front-side electrode The layer and the back electrode layer are at least partially opposed to each other with the dielectric layer interposed therebetween, and a portion where the front electrode layer and the back electrode layer are opposed to each other with the dielectric layer interposed therebetween is defined as a detection unit. In the capacitive sensor sheet, the front electrode layer and the back electrode layer are made of a conductive composition containing carbon nanotubes, and the elastomer composition includes polyether polyol as a polyol component, A capacitive sensor sheet characterized by containing urethane rubber containing isocyanate as an isocyanate component is disclosed, and the capacitive sensor sheet is uniaxial. It has been shown that withstand tension elongation of 100% or more.
 すなわち、特許文献4に開示されている発明は、厚さ方向の変化では無く、面方向の変形を静電容量変化を用いて測定するタイプのセンサである。かかるセンサすなわち変形可能なコンデンサは、従来の厚さ方向変化を読むタイプのセンサの変形度合いが、事実上数%程度であったのに比較して、格段に大きな変形に対応することが可能であり、静電容量型センサとして、大変形、大変位を検知することが出来る点で、従来の静電容量型センサとは一線を画するものであると云える。 That is, the invention disclosed in Patent Document 4 is a sensor of a type that measures the deformation in the surface direction using the capacitance change, not the change in the thickness direction. Such a sensor, that is, a deformable capacitor, can cope with a much larger deformation than a conventional sensor that reads a change in the thickness direction, which is practically about several percent. In addition, it can be said that the capacitance type sensor is different from the conventional capacitance type sensor in that large deformation and large displacement can be detected.
 一方、睡眠時無呼吸症候群の診断目的で、睡眠中の呼吸状態をモニタリングする手法が種々提案されている。
 特許文献5には呼吸運動を検出する手段として、伸縮性のベルトに取り付けたストレンゲージを胸部に巻き付けて測定する呼吸センサが開示されており、睡眠姿勢を検知するためのスイッチと合わせて、呼吸状態をモニタリングする方法が提案されている。
 特許文献6には、少なくとも部分的に弾性を有するベルトに摺動自在に係合され、該ベルトから少なくとも間接的に加えられる力に応じて前記力の大きさを表わす電気信号を発生するトランスデューサを用いて呼吸状態をモニタリングする方法が提案されている。
 特許文献7には、 左右の前身ごろの間が一定幅で離隔して前開き部分を有する胴衣と、この胴衣の左右の前身ごろに帯状の呼吸センサの両先端部を着脱自在に被着する被着部とを備えたことを特徴とする呼吸センサ装着衣が開示されている。
 特許文献8においては、横臥している被験者の身体の下にエアマットを敷き、このエアマット内部の圧力変動から心拍数、呼吸数、いびき等を計測し、睡眠時無呼吸症候群の診断を行なう手法が開示されている。
On the other hand, various methods for monitoring the respiratory state during sleep have been proposed for the purpose of diagnosing sleep apnea syndrome.
Patent Document 5 discloses a breathing sensor that measures a breathing motion by wrapping a strain gauge attached to an elastic belt around a chest and measures the sleep posture together with a switch for detecting a sleeping posture. A method for monitoring the condition has been proposed.
Patent Document 6 discloses a transducer that is slidably engaged with an at least partially elastic belt and generates an electrical signal representing the magnitude of the force in response to a force applied at least indirectly from the belt. Methods have been proposed for monitoring respiratory status.
In Patent Document 7, a clothing having a front opening portion with a constant width between the left and right front bodies, and both ends of the belt-like breathing sensor are detachably attached to the left and right front bodies of the clothing. A breathing sensor wearing garment characterized by comprising an adherend is disclosed.
In Patent Document 8, an air mat is laid under the body of a lying subject, and a heart rate, respiratory rate, snoring, etc. are measured from pressure fluctuations inside the air mat to diagnose sleep apnea syndrome. It is disclosed.
 映像分野ではモーションキャプチャ技術が発展している。映画の特殊撮影などには光学的モーションキャプチャ技術が用いられている。光学的に身体の様子や表情の動きを捉えて、データ化し、CGに反映させて仮想空間中で人体モデルなどを動かす手法は、映画などの製作手法として実用化されている。かかる手法には大がかりな装置が必要となる。
 一方で、身体の形状変化、運動状態を検出するために、衣服に様々なセンサを組み込んで計測する試みが行われている。
 特許文献9、特許文献10には圧電センサを用いて関節角度を求める技術が開示されている。圧電素子の変形には強い力が必要であるために、関節角度の動きが大きい場合には身体が反力を感じてしまい、被験者に不快感を与えると共に、運動自体に制限を加えてしまうために適切なセンシングができない問題がある。
 特許文献11には電磁誘導式センサを用いて間接の曲げ角度を測定する方法が開示されているが、かかるセンサは外部磁界の影響を受けやすいとともに、得られる情報が運動の時間微分になるために、身体の変形状態を定常的にセンシングするには不向きである。
Motion capture technology is developing in the video field. Optical motion capture technology is used for special filming of movies. A technique of optically capturing the state of the body and facial expression, converting it into data, and reflecting it in CG to move a human body model or the like in a virtual space has been put to practical use as a production technique for movies and the like. Such a technique requires a large-scale apparatus.
On the other hand, in order to detect a change in body shape and a state of movement, attempts have been made to incorporate various sensors into clothing for measurement.
Patent Documents 9 and 10 disclose a technique for obtaining a joint angle using a piezoelectric sensor. Since a strong force is required for the deformation of the piezoelectric element, the body feels a reaction force when the movement of the joint angle is large, which causes discomfort to the subject and restricts the exercise itself. There is a problem that proper sensing is not possible.
Patent Document 11 discloses a method for measuring an indirect bending angle using an electromagnetic induction sensor. However, such a sensor is easily affected by an external magnetic field, and information obtained is a time derivative of motion. In addition, it is unsuitable for constantly sensing the deformation state of the body.
 特許文献12には曲げ角度により静電容量が変化する屈曲コンデンサをセンサとして用いて関節角度をセンシングする方法が開示されている。しかしながら曲げ角度による静電容量変化は小さく、精度が確保が難しく、さらにかかるセンシング方法の場合には、センサの取り付け位置を屈曲位置に精度良く合わせる必要があるため、センシングウェアに適用した場合、被験者個人の体形に合わせてセンシングウェアを作製する必要が生じ、また同一被験者であってもセンシングウェアの着用状態がズレた場合にはセンシングが不安定になるなどの問題を有するものであった。 Patent Document 12 discloses a method of sensing a joint angle using a bending capacitor whose capacitance changes according to the bending angle as a sensor. However, the capacitance change due to the bending angle is small, and it is difficult to ensure the accuracy. Further, in the case of such a sensing method, it is necessary to accurately match the sensor mounting position to the bending position. Sensing wear needs to be produced according to the body shape of the individual, and even if the subject is the same, if the wearing state of the sensing wear is misaligned, sensing becomes unstable.
特許第4141426号公報Japanese Patent No. 4141426 特許第5486258号公報Japanese Patent No. 5486258 特許第5496446号公報Japanese Patent No. 5496446 特開2015-200592号公報JP 2015-200592 A 特開平7-75631号公報Japanese Patent Laid-Open No. 7-75631 特開平8-299306号公報JP-A-8-299306 特開1998-099299号公報JP 1998-099299 A 特開2000-271103号公報JP 2000-271103 A 特許第4855373号公報Japanese Patent No. 4855373 特許第4427655号公報Japanese Patent No. 4427655 特開平7-75630号公報Japanese Patent Laid-Open No. 7-75630 特開2015-217127号公報JP2015-217127A
 かかる大変形の検知を行う静電容量センサは、誘電体だけで無く、誘電体を挟む電極部分、さらには構造によっては配線部分にも十分な変形余地が必要となる。誘電体としてエラスチックな高分子材料を用いれば、100%程度の変形にも十分対応可能であるが、同程度の変形を与えた場合でも導電性を維持できる電極ないし配線材料は希である。
  カーボンナノチューブを含有する導電性組成物を用いた技術も提案されているが、カーボンナノチューブ分散により得られる導電性は、カーボンフィラーを用いた導電性組成物と同程度で有り、一般的な金属電極と比較した場合、比抵抗で数千~数万倍の値でとなる。すなわち、カーボンナノチューブを含有する導電性組成物にて形成された電極は、電極面内に電気抵抗成分を有するため、コンデンサ自体を分布定数的に取り扱う必要が生じる。また、静電容量を含むインピーダンスを測定する際に抵抗成分を無視することが出来ないため、センサ出力の直線性が低い。さらにはカーボンナノチューブを含有する電極層と、一般的な金属配線との接続面にショットキー障壁が生じるため、特にセンサを低電圧駆動する場合に非線形応答となってしまい、センサとしての用途に制限が出るなど課題があった。
A capacitance sensor that detects such a large deformation requires sufficient room for deformation not only in the dielectric, but also in the electrode portion sandwiching the dielectric, and also in the wiring portion depending on the structure. If an elastic polymer material is used as the dielectric, it can sufficiently cope with deformation of about 100%, but there are rare electrodes or wiring materials that can maintain conductivity even when the same degree of deformation is applied.
A technique using a conductive composition containing carbon nanotubes has also been proposed, but the conductivity obtained by dispersing the carbon nanotubes is similar to that of a conductive composition using carbon filler, and is a general metal electrode. When compared with, the specific resistance is several thousand to several tens of thousands of times. That is, an electrode formed of a conductive composition containing carbon nanotubes has an electric resistance component in the electrode surface, and thus the capacitor itself needs to be handled in a distributed constant manner. Further, since the resistance component cannot be ignored when measuring the impedance including the capacitance, the linearity of the sensor output is low. In addition, a Schottky barrier is created at the connection surface between the electrode layer containing carbon nanotubes and general metal wiring, resulting in a non-linear response especially when the sensor is driven at a low voltage, limiting the use as a sensor. There was a problem such as coming out.
 身体の胴体周囲にベルト状の変位センサを配置して胴体の周長変化から呼吸センシングする方法は、ベルト状物が身体を拘束する感触があるため、被験者が違和感を強く感じ、自然な睡眠が得られにくい。また、かかるベルト状の変位センサは、姿勢によっては、呼吸による周長変化が周長検知部に伝わらず、正確なモニターができない場合が生じる。
 寝台全体を圧力センサアレイにして、呼吸に伴う身体変化から生じる圧力変動を検出して呼吸状態をモニターする方法では、装置サイズが大きくなるため、高コストになり、また自然な寝心地を実現するために布団を厚くしたりすると検出精度が低下する。
 これらの他、被験者の睡眠時の動画像を解析して呼吸状態をセンシングする方法が知られているが、撮影する方向により呼吸状態の検出が難しくなる場合が多く、さらに被験者に違和感を与えないためには暗い環境にて撮影する必要があり、解析に必要な品位の画像を得ることが困難な場合が多い。
The method of placing a belt-shaped displacement sensor around the body's torso and breathing sensing from the change in circumference of the body has a feeling that the belt-like object restrains the body, so that the subject feels a sense of discomfort and feels natural sleep. It is difficult to obtain. In addition, depending on the posture of such a belt-like displacement sensor, a change in the peripheral length due to respiration may not be transmitted to the peripheral length detector, and accurate monitoring may not be possible.
The method of monitoring the breathing state by detecting pressure fluctuations caused by physical changes accompanying breathing and using the entire bed as a pressure sensor array increases the size of the device, resulting in higher costs and a more comfortable sleeping experience. If the futon is made thicker, the detection accuracy decreases.
In addition to these, methods of sensing the respiratory state by analyzing the moving image of the subject during sleep are known, but it is often difficult to detect the respiratory state depending on the shooting direction, and does not give the subject a sense of incongruity Therefore, it is necessary to take a picture in a dark environment, and it is often difficult to obtain an image of a quality required for analysis.
  これらのセンサを衣服に統合すれば、生体情報のセンシングウェアとして用いることができる。生体情報センシングウェアには、着用が容易で有ること、多少体形が異なる被験者にたいしても適用が可能であること、また着用状態が多少ずれた場合にも安定的にセンシング可能なこと、なおかつ着用時に違和感を与えない自然な着用感が要求される。 If these sensors are integrated into clothing, they can be used as sensing information for biological information. Biological information sensing wear is easy to wear, can be applied to subjects with slightly different body shapes, can be stably sensed even when the wearing state is slightly deviated, and is uncomfortable when worn A natural feeling of wearing is not required.
  本発明は、このような事情に鑑みてなされたものであり、その目的は、大変形にも耐える高い伸長率を有し、繰り返し変形させた際の信頼性にも優れ、変形量の測定においてヒステリシスが無く、広いレンジを有し、応答性の良い出力を得ることが出来る伸縮性コンデンサを提供することにある。 The present invention has been made in view of such circumstances, and its purpose is to have a high elongation rate that can withstand large deformation, excellent reliability when repeatedly deformed, and in measuring the amount of deformation. An object of the present invention is to provide a stretchable capacitor that has no hysteresis, has a wide range, and can obtain an output with good response.
 さらに本発明は、伸縮性コンデンサを用いた低負荷の変位センサを実現し、加えてそのセンサを用いて被験者に違和感を与えない呼吸センシング方法を提供することにある。
 さらに本発明は伸縮性コンデンサをウェアに適用することにより着用者の身体の形状変化、すなわち四肢の運動、体形、姿勢、呼吸、咀嚼、嚥下、脈動、胎動などを検出することが可能なセンシングウェアを提供することを目的とする。
It is another object of the present invention to provide a low-load displacement sensor using a stretchable capacitor and to provide a breathing sensing method that does not cause a subject to feel uncomfortable using the sensor.
Furthermore, the present invention provides sensing wear that can detect a change in the shape of the wearer's body, that is, movement, body shape, posture, breathing, mastication, swallowing, pulsation, fetal movement, etc. of the wearer by applying an elastic capacitor to the wear. The purpose is to provide.
  すなわち本発明は、以下の構成である。
[1] 伸縮性導体層、伸縮性誘電体層、伸縮性導体層の順で積層された層構成を少なくとも有するコンデンサであって、前記伸縮性導体層は金属粒子を含有する組成物であって、非伸張時の比抵抗が3×10-3Ωcm以下であり、かつ100%伸張時の比抵抗が非伸張時の100倍以内であることを特徴とする伸縮性コンデンサ。
[2] 前記伸縮性誘電体層は、無負荷時の比誘電率が2.5以上であり、かつ比誘電率が5以上の無機フィラーを10質量%以下の割合で含有していることを特徴とする[1]記載の伸縮性コンデンサ。
[3] 前記伸縮性導体層は、金属粒子および、引張弾性率が1MPa以上1000MPa以下の柔軟性樹脂を少なくとも含有する伸縮性導体組成物からなり、柔軟性樹脂の配合量が、金属粒子と柔軟性樹脂の合計に対して7~35質量%であることを特徴とする[1]または[2]に記載の伸縮性コンデンサ。
[4] 前記伸縮性誘電体層が、ホットメルト接着性を有することを特徴とする[1]から[3]のいずれかに記載の伸縮性コンデンサ。
[5] 前記伸縮性誘電体層の、透湿度が4000g/m2・24hr以下であることを特徴とする[1]から[4]のいずれかに記載の伸縮性コンデンサ。
[6] 前記伸縮性誘電体層の、絶縁破壊電圧は1.0kV以上であることを特徴とする[1]から[5]のいずれかに記載の伸縮性コンデンサ。
[7] 前記伸縮性誘電体層が、少なくとも片面にホットメルト接着性のある層を有する多層構造であることを特徴とする[1]から[6]のいずれかに記載の伸縮性コンデンサ。
[8] 面方向に100%伸張させた場合の伸張回復率が98%以上であることを特徴とする[1]から[7]のいずれかに記載の伸縮性コンデンサ。
[9] 前記[1]から[8]のいずれかに記載の伸縮性コンデンサの伸縮性誘電体層の面方向を、測定対象の変形方向に向けて配置し、測定対象の伸縮変形に応じて変化する伸縮性コンデンサの静電容量変化を検知することによって、測定対象の変形を検知する変形センサ。
[10] 前記測定対象の伸縮変形に応じて変化する伸縮性コンデンサの静電容量変化が、主として伸縮性誘電体層の面方向への伸縮に伴う、伸縮性誘電体層の厚さ方向への伸縮による静電容量の変化であることを特徴とする請求項9に記載の変形センサ。
That is, the present invention has the following configuration.
[1] A capacitor having at least a layer structure in which a stretchable conductor layer, a stretchable dielectric layer, and a stretchable conductor layer are laminated in this order, wherein the stretchable conductor layer is a composition containing metal particles. A non-stretchable specific resistance is 3 × 10 −3 Ωcm or less, and a 100% stretched specific resistance is within 100 times that of non-stretched.
[2] The stretchable dielectric layer contains an inorganic filler having a relative dielectric constant of 2.5 or more at no load and a relative dielectric constant of 5 or more in a proportion of 10% by mass or less. The elastic capacitor according to [1], which is characterized.
[3] The stretchable conductor layer is composed of a stretchable conductor composition containing at least metal particles and a flexible resin having a tensile modulus of elasticity of 1 MPa or more and 1000 MPa or less. The stretchable capacitor according to [1] or [2], which is 7 to 35% by mass with respect to the total of the functional resins.
[4] The stretchable capacitor according to any one of [1] to [3], wherein the stretchable dielectric layer has hot-melt adhesiveness.
[5] The stretchable capacitor according to any one of [1] to [4], wherein the stretchable dielectric layer has a moisture permeability of 4000 g / m 2 · 24 hr or less.
[6] The stretchable capacitor according to any one of [1] to [5], wherein the stretchable dielectric layer has a dielectric breakdown voltage of 1.0 kV or more.
[7] The stretchable capacitor according to any one of [1] to [6], wherein the stretchable dielectric layer has a multilayer structure having a layer having hot-melt adhesiveness on at least one surface.
[8] The stretchable capacitor according to any one of [1] to [7], wherein a stretch recovery rate when stretched 100% in a plane direction is 98% or more.
[9] The surface direction of the stretchable dielectric layer of the stretchable capacitor according to any one of [1] to [8] is arranged toward the deformation direction of the measurement target, and according to the stretch deformation of the measurement target. A deformation sensor that detects a deformation of a measurement object by detecting a change in capacitance of a changing elastic capacitor.
[10] The capacitance change of the stretchable capacitor that changes according to the stretch deformation of the measurement object is mainly caused by the stretch in the thickness direction of the stretchable dielectric layer accompanying the stretch in the surface direction of the stretchable dielectric layer. The deformation sensor according to claim 9, wherein the deformation sensor is a change in capacitance due to expansion and contraction.
[11] 少なくとも、伸縮性の素材からなるベルト状基材と、ベルト状基材の伸縮に応じて変形可能な伸縮性コンデンサを備えた事を特徴とする変位センサ。
[12] 前記伸縮性コンデンサの変形がコンデンサの誘電体層の面方向への変形である事を特徴とする[11]記載の変位センサ。
[13] 前記伸縮性コンデンサが、伸縮性導体層、伸縮性誘電体層、伸縮性導体層の順で積層された層構成を有するコンデンサであって、前記伸縮性導体層の比抵抗が1×10-3Ωcm以下であり、前記伸縮性誘電体層が、引張降伏伸度が70%以上の伸縮性絶縁高分子により構成されていることを特徴とする[11]または[12]に記載の変位センサ。
[14] 変位センサのベルト長さ方向への20%伸長時の応力が20N以下であることを特徴とする[11]から[13]のいずれかに記載の変位センサ。
[15] 前記ベルト状物の全長に対して、伸縮性コンデンサを備える部分が10%以上100%以下であることを特徴とする[11]から[14]のいずれかに記載の変位センサ。
[16] 前記[11]~[15]のいずれかに記載の変位センサを、人体の胴体周囲に配置し、胴体の周長変化を測定することにより呼吸状態を検知することを特徴とする呼吸状態のセンシング方法。
[11] A displacement sensor comprising at least a belt-shaped base material made of a stretchable material and a stretchable capacitor that can be deformed in accordance with the expansion and contraction of the belt-shaped base material.
[12] The displacement sensor according to [11], wherein the elastic capacitor is deformed in the surface direction of the dielectric layer of the capacitor.
[13] The stretchable capacitor is a capacitor having a layer structure in which a stretchable conductor layer, a stretchable dielectric layer, and a stretchable conductor layer are laminated in this order, and the specific resistance of the stretchable conductor layer is 1 ×. 10 −3 Ωcm or less, and the stretchable dielectric layer is composed of a stretchable insulating polymer having a tensile yield elongation of 70% or more, according to [11] or [12] Displacement sensor.
[14] The displacement sensor according to any one of [11] to [13], wherein the stress at the time of 20% elongation of the displacement sensor in the belt length direction is 20 N or less.
[15] The displacement sensor according to any one of [11] to [14], wherein a portion including the elastic capacitor is 10% or more and 100% or less with respect to the entire length of the belt-like object.
[16] A respiration sensor characterized in that the displacement sensor according to any one of [11] to [15] is disposed around the torso of a human body, and a respiratory state is detected by measuring a change in the circumference of the torso. State sensing method.
  すなわち本発明は、以下の構成である。
[17] 伸縮性コンデンサ、伸縮性コンデンサと伸縮性コンデンサの静電容量を検出するデバイスとを接続するための電気配線を備えた事を特徴とするセンシングウェア。
[18] 前記伸縮性コンデンサが、伸縮性導体層、伸縮性誘電体層、伸縮性導体層の順で積層された層構成を有するコンデンサであって、前記伸縮性導体層の比抵抗が1×10-3Ωcm以下であり、前記伸縮性誘電体層が、引張降伏伸度が70%以上の伸縮性絶縁高分子により構成されていることを特徴とする[17]に記載のセンシングウェア。
[19] 前記伸縮性コンデンサの変形が、ウェアの伸長方向となるように配置されていることを特徴とする[17]または[18]に記載のセンシングウェア。
[20] 前記伸縮性コンデンサの面方向への20%伸長時の応力が15N/cm以下であることを特徴とする[17]から[19]のいずれかに記載のセンシングウェア。
[21] 人体上半身用の衣服であり、少なくとも肘部分、上腕周囲、下腕周囲、肩部分、背面、胸部周囲、腹部周囲、脇腹部分のいずれかの個所に前記伸縮性コンデンサを配置した事を特徴とする[17]から[20]のいずれかに記載のセンシングウェア。
[22] 人体下半身用の衣服であり、少なくとも膝部分、足首部分、大腿部周囲、脛部周囲、股関節部分、腰部分のいずれかの個所に前記伸縮性コンデンサを配置した事を特徴とする[17]から[20]のいずれかに記載のセンシングウェア。
[23] 手袋形状であり、少なくとも手首、手指の各関節の一個所以上のいずれかの部分に前記伸縮性コンデンサを配置した事を特徴とする[17]から[20]のいずれかに記載のセンシングウェア。
[24] 靴下形状であり、少なくとも足首、足指の各関節の一個所以上のいずれかの部分に前記伸縮性コンデンサを配置した事を特徴とする[17]から[20]のいずれかに記載のセンシングウェア。
That is, the present invention has the following configuration.
[17] A sensing ware comprising an elastic capacitor, an electric capacitor for connecting the elastic capacitor and a device for detecting the capacitance of the elastic capacitor.
[18] The capacitor having a layer structure in which the stretchable capacitor is laminated in the order of a stretchable conductor layer, a stretchable dielectric layer, and a stretchable conductor layer, and the specific resistance of the stretchable conductor layer is 1 ×. [10] Sensing wear according to [17], characterized in that it is 10 −3 Ωcm or less and the stretchable dielectric layer is made of a stretchable insulating polymer having a tensile yield elongation of 70% or more.
[19] The sensing ware according to [17] or [18], wherein the elastic capacitor is arranged so that the deformation of the elastic capacitor is in the direction of the wear.
[20] The sensing wear according to any one of [17] to [19], wherein a stress at the time of 20% elongation in the surface direction of the stretchable capacitor is 15 N / cm or less.
[21] It is clothing for the upper body of the human body, and the elastic capacitor is disposed at least in any of the elbow, upper arm, lower arm, shoulder, back, chest, abdomen, and flank The sensing ware according to any one of [17] to [20], which is characterized.
[22] A garment for the lower body of the human body, characterized in that the stretchable capacitor is disposed at least at any of the knee, ankle, thigh, shin, hip, and waist. [17] Sensing wear according to any one of [20].
[23] The configuration according to any one of [17] to [20], wherein the elastic capacitor is disposed in at least one portion of each joint of the wrist and fingers at least in a glove shape. Sensing wear.
[24] The configuration according to any one of [17] to [20], wherein the elastic capacitor is disposed in at least one portion of each joint of the ankle and toe. Sensing wear.
 さらに本発明では、以下の構成を有する事が好ましい。
[31] 前記伸縮性誘電体層のポアソン比が2.8以上である事を特徴とする[1]~[8]のいずれかに記載の伸縮性コンデンサ。
[32] 前記[31]に記載された伸縮性コンデンサの伸縮性誘電体層の面方向を、測定対象の変形方向に向けて配置し、測定対象の伸縮変形に応じて変化する伸縮性コンデンサの静電容量変化を検知することによって、測定対象の変形を検知する変形センサ。
[33] 前記測定対象が衣服の部分的伸縮であることを特長とする前記[9]、[10]、[11]のいずれかに記載の変形センサ。
Further, the present invention preferably has the following configuration.
[31] The stretchable capacitor according to any one of [1] to [8], wherein the stretchable dielectric layer has a Poisson's ratio of 2.8 or more.
[32] The elastic capacitor layer of the elastic capacitor described in [31] is arranged so that the surface direction of the elastic dielectric layer is directed toward the deformation direction of the measurement target, and the elastic capacitor changes in accordance with the elastic deformation of the measurement target. A deformation sensor that detects deformation of a measurement object by detecting a change in capacitance.
[33] The deformation sensor according to any one of [9], [10], and [11], wherein the measurement object is partial expansion and contraction of clothes.
 さらに本発明では、以下の構成を有する事が好ましい。
[34] 前記伸縮性誘電体層の、無負荷時の比誘電率が3.5以上であり、かつ比誘電率が5以上の無機フィラーの含有量が10%質量以下であることを特徴とする[12]~[15]のいずれかに記載の変位センサ。
[35] 前記伸縮性導体層が、少なくとも金属粒子、引張弾性率が1MPa以上1000MPa以下の柔軟性樹脂、を含有する伸縮性導体組成物からなり、柔軟性樹脂の配合量が、導電粒子と柔軟性樹脂の合計に対して7~35質量%であることを特徴とする[12]~[15]、[34]のいずれかに記載の変位センサ。
[36] 前記伸縮性誘電体層が、ホットメルト接着性を有する材料を含む事を特徴とする[12]~[15]、[34]、[35]のいずれかに記載の変位センサ。
[37] 前記伸縮性誘電体層のポアソン比が0.28以上である事を特徴とする[12]~[15]、[34]~[36]のいずれかに記載の変位センサ。
 
Further, the present invention preferably has the following configuration.
[34] The stretchable dielectric layer has a relative dielectric constant in an unloaded state of 3.5 or more and a content of an inorganic filler having a relative dielectric constant of 5 or more is 10% by mass or less. The displacement sensor according to any one of [12] to [15].
[35] The stretchable conductor layer is made of a stretchable conductor composition containing at least metal particles and a flexible resin having a tensile elastic modulus of 1 MPa to 1000 MPa, and the amount of the flexible resin is the same as that of the conductive particles. The displacement sensor according to any one of [12] to [15] and [34], which is 7 to 35% by mass with respect to the total of the functional resins.
[36] The displacement sensor according to any one of [12] to [15], [34], and [35], wherein the stretchable dielectric layer includes a material having hot-melt adhesiveness.
[37] The displacement sensor according to any one of [12] to [15] and [34] to [36], wherein the stretchable dielectric layer has a Poisson's ratio of 0.28 or more.
  本発明の伸縮性コンデンサは、平面方向に高い伸長率を有するため、従来知られていた静電容量型のセンサのように、コンデンサの厚さ方向の変形のみならず、平面方向への変形歪み量の測定に好適に使用することができる。 また、本発明の伸縮性コンデンサは、伸張回復率の良い誘電層を採用することにより、大きく変形させた後の永久ひずみが小さく、かつ繰り返し変形(伸縮)させても残留ひずみが発生しにくい構成となる。その結果、変形量と出力値(静電容量)との間のヒステリシスが小さく、応答性、対応性に優れ、繰り返し使用した際の信頼性(長期信頼性)に優れるものとなる。 Since the stretchable capacitor of the present invention has a high elongation rate in the plane direction, it does not only deform in the thickness direction of the capacitor, but also deforms in the plane direction like a conventionally known capacitance type sensor. It can be suitably used for measuring the amount. In addition, the elastic capacitor of the present invention employs a dielectric layer having a good stretch recovery rate, so that the permanent strain after being greatly deformed is small, and residual strain is unlikely to occur even when repeatedly deformed (stretched). It becomes. As a result, the hysteresis between the deformation amount and the output value (capacitance) is small, excellent in responsiveness and responsiveness, and excellent in reliability (long-term reliability) when repeatedly used.
 本発明の伸縮性コンデンサは低抵抗の伸縮性導体を電極に用いるために素子の耐久性が高く、また、素子が大型になった場合でも、素子内のインピーダンスが均一となるため、大面積素子においても均一な感度のセンサアレイを構成できる。
 本発明の伸縮性コンデンサは、厚さを薄くすることが出来るため、結果として極軽量のセンサを構成することができる。さらに本発明の伸縮性コンデンサは伸張時の応力を低く抑えることが可能であるため、高感度で、なおかつ、測定対象に与える影響を小さくすることができる。具体的にはウェアラブルスマートデバイス、スマートアパレル、センシングウェアなどとして体表面の変形などを検知する目的で使用する場合にも、被験者に違和感を与えずに測定が可能となる。本発明を用いれば、従来はテレビカメラを含む大がかりな装置を必要としたモーションキャプチャのような被検体(人間、動物、ロボットなど)の動きのデータ化を、極めて小規模な装置で実現可能となる。
Since the stretchable capacitor of the present invention uses a low-resistance stretchable conductor for the electrode, the durability of the device is high, and even when the device becomes large, the impedance in the device becomes uniform, so a large-area device In this case, a sensor array with uniform sensitivity can be configured.
Since the elastic capacitor of the present invention can be made thin, an extremely lightweight sensor can be configured as a result. Furthermore, since the stretchable capacitor of the present invention can keep the stress during stretching low, it has high sensitivity and can reduce the influence on the measurement object. Specifically, even when used for the purpose of detecting deformation of the body surface as a wearable smart device, smart apparel, sensing wear, etc., measurement is possible without giving the subject a sense of incongruity. By using the present invention, it is possible to realize data conversion of movements of subjects (humans, animals, robots, etc.) such as motion capture, which conventionally requires a large-scale device including a television camera, with an extremely small device. Become.
 本発明において、伸縮性コンデンサの面方向への伸縮変形に応じて変化する伸縮性コンデンサの静電容量変化は、主として伸縮性誘電体層の面方向への伸縮に伴う、伸縮性誘電体層の厚さ方向への変化による静電容量の変化である。かかる特性を発現させるためには伸縮性誘電体層に用いる材料のポアソン比が高い方が好ましい。本発明における伸縮性誘電体層のポアソン比は0.28以上である事が好ましく、0.38以上である事がなお好ましく、0.48以上である事がさらに好ましい。ポアソン比を高めるには伸縮性誘電体層に配合される無機成分が少ない方が良い。
 
In the present invention, the capacitance change of the elastic capacitor that changes according to the elastic deformation in the surface direction of the elastic capacitor is mainly due to the expansion and contraction of the elastic dielectric layer in the surface direction of the elastic dielectric layer. This is a change in capacitance due to a change in the thickness direction. In order to exhibit such characteristics, it is preferable that the material used for the stretchable dielectric layer has a high Poisson's ratio. The Poisson's ratio of the stretchable dielectric layer in the present invention is preferably 0.28 or more, more preferably 0.38 or more, and further preferably 0.48 or more. In order to increase the Poisson's ratio, it is better that the inorganic component contained in the stretchable dielectric layer is small.
図1は、本発明に用いられる伸縮性コンデンサの基本構成を示す概略図である。FIG. 1 is a schematic diagram showing a basic configuration of a stretchable capacitor used in the present invention. 図2は、本発明に用いられる伸縮性コンデンサを作製する場合に用いるホットメルト層付きの伸縮性シートの構成図である。FIG. 2 is a configuration diagram of a stretchable sheet with a hot melt layer used for producing a stretchable capacitor used in the present invention. 図3は、基材に伸縮性シートを重ね貼りすることにより伸縮性コンデンサを構成した一例を示す概略図である。FIG. 3 is a schematic diagram showing an example in which a stretchable capacitor is configured by stacking a stretchable sheet on a base material. 図4は、本発明に用いられる伸縮性コンデンサの構成を示す概略図である。FIG. 4 is a schematic view showing the configuration of the stretchable capacitor used in the present invention. 図5は、本発明に用いられる伸縮性コンデンサを印刷法を用いて作製する場合の工程概略図である。FIG. 5 is a process schematic diagram in the case of producing the stretchable capacitor used in the present invention by a printing method. 図6は、本発明の伸張回復率を説明する概略図である。FIG. 6 is a schematic diagram for explaining the extension recovery rate of the present invention. 図7は、本発明の伸縮性コンデンサを用いた変位センサーにより、呼吸による胸囲変化を測定した結果の一例である。FIG. 7 is an example of a result of measuring the chest circumference change due to respiration by the displacement sensor using the elastic capacitor of the present invention. 図8は、本発明に用いられる伸縮性コンデンサを印刷転写法によって作製する場合の工程概略図である。FIG. 8 is a process schematic diagram in the case of producing the stretchable capacitor used in the present invention by a printing transfer method. 図9は、S-Sカーブならびに引張降伏伸度を説明する概略図である。FIG. 9 is a schematic diagram for explaining the SS curve and the tensile yield elongation.
  以下、本発明の実施の形態について、図面を参照しながら説明する。図1に示すように本発明の伸縮性コンデンサは、基本構成として1.伸縮性導体層(表面電極)、2.伸縮性誘電体層、3.伸縮性導体層(背面電極)の3層を有する。実際の構成においては、各層を接着するための接着層が各基本構成層に挿入される場合がある。さらに最外層になる伸縮性導体層の外側に絶縁性の被覆層が設けられる場合がある。本発明の目的から自明であるように、接着層、被覆層についても十分な伸縮特性が要求される。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. As shown in FIG. 1, the stretchable capacitor of the present invention has the following basic structure. 1. Stretchable conductor layer (surface electrode) 2. stretchable dielectric layer; It has three layers of stretchable conductor layers (back electrode). In an actual configuration, an adhesive layer for adhering each layer may be inserted into each basic component layer. Furthermore, an insulating coating layer may be provided outside the stretchable conductor layer that is the outermost layer. As is obvious from the object of the present invention, the adhesive layer and the coating layer are also required to have sufficient stretch properties.
 本発明における伸縮性導体層の非伸張時の比抵抗は3×10-3Ωcm以下で有ることが好ましく、1×10-3Ωcm以下であることが好ましく、3×10-4Ωcm以下であることが好ましく、1×10-4Ωcm以下であることが、なお好ましい。比抵抗がこの範囲を上回ると、導電層内の抵抗分布が顕著になり、素子の時定数が大きくなり応答性に問題が生じ、高周波特性や、パルス応答性が低下する場合がある。比抵抗の下限は原理的に用いられる導電材料に依存する。 The specific resistance of the stretchable conductor layer in the present invention when not stretched is preferably 3 × 10 −3 Ωcm or less, more preferably 1 × 10 −3 Ωcm or less, and 3 × 10 −4 Ωcm or less. It is preferably 1 × 10 −4 Ωcm or less. When the specific resistance exceeds this range, the resistance distribution in the conductive layer becomes remarkable, the time constant of the element becomes large, causing a problem in response, and the high frequency characteristics and pulse response may be deteriorated. The lower limit of the specific resistance depends on the conductive material used in principle.
 本発明における伸縮性導体層は100%伸張時の比抵抗が非伸張時の100倍以内であることが好ましく、さらに50倍以内である事が好ましく、さらに30倍以内である事が好ましく、15倍以内である事がさらに好ましい。100%伸張時の比抵抗がこの範囲を上回ると、導電層内の抵抗分布が顕著になり、素子の時定数が大きくなり応答性に問題が生じ、高周波特性や、パルス応答性が低下する場合がある。比抵抗の下限は原理的に用いられる導電材料に依存する。なお、伸縮性導体を変形させた場合には、変形に伴う幾何学的な変化、すなわち、電流方向についての長さ、断面積の変化による抵抗値の変化は除外する。本発明における初期の比抵抗、並びに伸張時の比抵抗の範囲であれば、幾何学的変形による抵抗値の変化を加えても、十分に導電層内の抵抗分布を実効的に小さく保つことができる。   In the stretchable conductor layer of the present invention, the specific resistance at 100% elongation is preferably within 100 times that at non-stretching, more preferably within 50 times, and further preferably within 30 times, 15 It is more preferable that it is within the range. If the specific resistance at 100% elongation exceeds this range, the resistance distribution in the conductive layer becomes noticeable, the time constant of the element increases, causing a problem in response, and high-frequency characteristics and pulse response are reduced. There is. The lower limit of the specific resistance depends on the conductive material used in principle. Note that when the stretchable conductor is deformed, a geometric change accompanying the deformation, that is, a change in resistance value due to a change in length and cross-sectional area in the current direction is excluded. Within the range of the initial specific resistance in the present invention and the specific resistance at the time of expansion, the resistance distribution in the conductive layer can be kept sufficiently small even if a change in the resistance value due to geometric deformation is added. it can. *
 本発明における伸縮性導体層は、少なくとも金属粒子、引張弾性率が1MPa以上1000MPa以下の柔軟性樹脂、から構成される。また柔軟性樹脂の配合量は、導電粒子と柔軟性樹脂の合計に対して7~35質量%である。
 本発明における伸縮性導体層は、金属粒子と柔軟性樹脂を混練混合し、フィルム状ないしシート状に成型することにより得ることができる。本発明の伸縮性導体層は、好ましくは金属粒子と柔軟性樹脂に溶剤などを加えて伸縮性導体形成用ペースト化、ないしスラリー化した状態を経て、塗布、乾燥によりシート状ないしフィルム状に加工することが出来る。また、ペースト化した後、印刷することにより所定の形状を与えることもできる。
The stretchable conductor layer in the present invention is composed of at least metal particles and a flexible resin having a tensile elastic modulus of 1 MPa to 1000 MPa. The blending amount of the flexible resin is 7 to 35% by mass with respect to the total of the conductive particles and the flexible resin.
The stretchable conductor layer in the present invention can be obtained by kneading and mixing metal particles and a flexible resin and molding the film into a sheet or sheet. The stretchable conductor layer of the present invention is preferably processed into a sheet or film form by coating and drying after adding a solvent to the metal particles and the flexible resin to form a stretchable conductor forming paste or slurry. I can do it. Moreover, a predetermined shape can also be given by printing after paste-izing.
 本発明における金属粒子は導電性粒子として機能する。なお本発明においては導電性粒子は該金属粒子を含み、比抵抗が1×10-1Ωcm以下の物質からなり、粒子径が100μm以下の粒子である。比抵抗が1×10-1Ωcm以下の物質としては、金属、合金、カーボン、ドーピングされた半導体、導電性高分子などを例示することができる。本発明で好ましく用いられる導電性粒子は銀、金、白金、パラジウム、銅、ニッケル、アルミニウム、亜鉛、鉛、錫などの金属、黄銅、青銅、白銅、半田などの合金粒子、銀被覆銅のようなハイブリッド粒、さらには金属メッキした高分子粒子、金属メッキしたガラス粒子、金属被覆したセラミック粒子などを用いることができる。 The metal particles in the present invention function as conductive particles. In the present invention, the conductive particles include the metal particles, are made of a substance having a specific resistance of 1 × 10 −1 Ωcm or less, and have a particle diameter of 100 μm or less. Examples of the substance having a specific resistance of 1 × 10 −1 Ωcm or less include metals, alloys, carbon, doped semiconductors, conductive polymers, and the like. The conductive particles preferably used in the present invention are metals such as silver, gold, platinum, palladium, copper, nickel, aluminum, zinc, lead and tin, alloy particles such as brass, bronze, white copper and solder, and silver-coated copper. Hybrid particles, metal-plated polymer particles, metal-plated glass particles, metal-coated ceramic particles, and the like can be used.
 本発明では金属粒子として、フレーク状銀粒子ないし不定形凝集銀粉を主体に用いることが好ましい。なお、ここに主体に用いるとは導電性粒子の90質量%以上用いることである。不定形凝集粉とは球状もしくは不定形状の1次粒子が3次元的に凝集したものである。不定形凝集粉およびフレーク状粉は球状粉などよりも比表面積が大きいことから低充填量でも導電性ネートワークを形成できるので好ましい。不定形凝集粉は単分散の形態ではないので、粒子同士が物理的に接触していることから導電性ネートワークを形成しやすいので、さらに好ましい。 In the present invention, it is preferable to mainly use flaky silver particles or amorphous aggregated silver powder as metal particles. Here, the main use is to use 90% by mass or more of the conductive particles. The amorphous aggregated powder is a three-dimensional aggregate of spherical or irregularly shaped primary particles. Amorphous agglomerated powders and flaky powders are preferable because they have a specific surface area larger than that of spherical powders and the like and can form a conductive nitrate work even with a low filling amount. Since the amorphous agglomerated powder is not in a monodispersed form, the particles are in physical contact with each other, so that it is easy to form a conductive nitrate work.
 フレーク状粉の粒子径は特に限定されないが、動的光散乱法により測定した平均粒子径(50%D)が0.5~20μmであるものが好ましい。より好ましくは3~12μmである。平均粒子径が15μmを超えると微細配線の形成が困難になり、スクリーン印刷などの場合は目詰まりが生じる。平均粒子径が0.5μm未満の場合、低充填では粒子間で接触できなくなり、導電性が悪化する場合がある。 The particle size of the flaky powder is not particularly limited, but those having an average particle size (50% D) measured by a dynamic light scattering method of 0.5 to 20 μm are preferable. More preferably, it is 3 to 12 μm. When the average particle diameter exceeds 15 μm, it becomes difficult to form fine wiring, and clogging occurs in the case of screen printing. When the average particle size is less than 0.5 μm, it is impossible to make contact between particles at low filling, and the conductivity may deteriorate.
 不定形凝集粉の粒子径は特に限定されないが、光散乱法により測定した平均粒子径(50%D)が1~20μmであるものが好ましい。より好ましくは3~12μmである。平均粒子径が20μmを超えると分散性が低下してペースト化が困難になる。平均粒子径が1μm未満の場合、凝集粉としての効果が失われ、低充填では良導電性を維持できなくなる場合がある。 The particle size of the amorphous aggregated powder is not particularly limited, but those having an average particle size (50% D) measured by a light scattering method of 1 to 20 μm are preferable. More preferably, it is 3 to 12 μm. When the average particle diameter exceeds 20 μm, the dispersibility is lowered and it becomes difficult to form a paste. When the average particle size is less than 1 μm, the effect as an agglomerated powder is lost, and good conductivity may not be maintained with low filling.
 本発明では必要に応じて伸縮性導体層に非導電性粒子を配合しても良い。本発明における非導電性粒子とは、有機ないし無機の絶縁性物質からなる粒子である。本発明における非導電性粒子は印刷特性の改善、伸縮特性の改善、塗膜表面性の改善を目的に添加され、シリカ、酸化チタン、タルク、アルミナ、硫酸バリウム等の無機粒子、樹脂材料からなるマイクロゲル等を利用できる。 In the present invention, non-conductive particles may be blended in the stretchable conductor layer as necessary. The non-conductive particles in the present invention are particles made of an organic or inorganic insulating substance. The non-conductive particles in the present invention are added for the purpose of improving printing characteristics, stretching properties, and coating surface properties, and are composed of inorganic particles such as silica, titanium oxide, talc, alumina, barium sulfate, and resin materials. A microgel or the like can be used.
 本発明における柔軟性樹脂とは、弾性率が、1~1000MPaの、熱可塑性樹脂、熱硬化性樹脂、ゴムなどが挙げられる。膜の伸縮性を発現させるためには、ウレタン樹脂ないしゴムが好ましい。ゴムとしては、ウレタンゴム、アクリルゴム、シリコーンゴム、ブタジエンゴム、ニトリルゴムや水素化ニトリルゴムなどのニトリル基含有ゴム、イソプレンゴム、硫化ゴム、スチレン-ブタジエンゴム、ブチルゴム、クロロスルホン化ポリエチレンゴム、エチレンプロピレンゴム、フッ化ビニリデンコポリマーなどが挙げられる。この中でも、ニトリル基含有ゴム、クロロプレンゴム、クロロスルホン化ポリエチレンゴムが好ましく、ニトリル基含有ゴムが特に好ましい。本発明で好ましい弾性率の範囲は2~480MPaであり、さらに好ましく3~240MPa、なお好ましくは4~120MPaの範囲である。 Examples of the flexible resin in the present invention include a thermoplastic resin, a thermosetting resin, and a rubber having an elastic modulus of 1 to 1000 MPa. In order to exhibit the stretchability of the film, urethane resin or rubber is preferable. Rubbers include urethane rubber, acrylic rubber, silicone rubber, butadiene rubber, nitrile group-containing rubber such as nitrile rubber and hydrogenated nitrile rubber, isoprene rubber, sulfurized rubber, styrene-butadiene rubber, butyl rubber, chlorosulfonated polyethylene rubber, ethylene Examples include propylene rubber and vinylidene fluoride copolymer. Among these, nitrile group-containing rubber, chloroprene rubber, and chlorosulfonated polyethylene rubber are preferable, and nitrile group-containing rubber is particularly preferable. In the present invention, the range of elastic modulus is preferably 2 to 480 MPa, more preferably 3 to 240 MPa, and still more preferably 4 to 120 MPa.
 ニトリル基を含有するゴムは、ニトリル基を含有するゴムやエラストマーであれば特に限定されないが、ニトリルゴムと水素化ニトリルゴムが好ましい。ニトリルゴムはブタジエンとアクリロニトリルの共重合体であり、結合アクリロニトリル量が多いと金属との親和性が増加するが、伸縮性に寄与するゴム弾性は逆に減少する。従って、アクリロニトリルブタジエン共重合体ゴム中の結合アクリロニトリル量は18~50質量%が好ましく、40~50質量%が特に好ましい。 The rubber containing a nitrile group is not particularly limited as long as it is a rubber or elastomer containing a nitrile group, but nitrile rubber and hydrogenated nitrile rubber are preferable. Nitrile rubber is a copolymer of butadiene and acrylonitrile. If the amount of bound acrylonitrile is large, the affinity with metal increases, but the rubber elasticity contributing to stretchability decreases conversely. Accordingly, the amount of bound acrylonitrile in the acrylonitrile butadiene copolymer rubber is preferably 18 to 50% by mass, and particularly preferably 40 to 50% by mass.
 本発明における柔軟性樹脂の配合量は、導電粒子と、好ましくは加えられる非導電性粒子と柔軟性樹脂の合計に対して7~35質量%であり、好ましくは9~28質量%、さらに好ましくは12~20質量%である。 The blending amount of the flexible resin in the present invention is 7 to 35% by mass, preferably 9 to 28% by mass, more preferably based on the total of the conductive particles, preferably the non-conductive particles and the flexible resin to be added. Is 12 to 20% by mass.
 また、本発明における伸縮性導体形成用ペーストにはエポキシ樹脂を配合できる。本発明で好ましいエポキシ樹脂はビスフェノールA型エポキシ樹脂ないしはフェノールノボラック型エポキシ樹脂である。エポキシ樹脂を配合する場合、エポキシ樹脂の硬化剤を配合できる。硬化剤としては公知のアミン化合物、ポリアミン化合物などを用いればよい。硬化剤はエポキシ樹脂に対して5~50質量%配合することが好ましく、10~30質量%がさらに好ましい。またエポキシ樹脂と硬化剤の配合量は、柔軟性樹脂を含めた全樹脂成分に対して3~40質量%、好ましくは5~30質量%、さらに好ましくは8~24質量%である。 Also, an epoxy resin can be blended in the stretchable conductor forming paste in the present invention. A preferable epoxy resin in the present invention is a bisphenol A type epoxy resin or a phenol novolac type epoxy resin. When blending an epoxy resin, an epoxy resin curing agent can be blended. A known amine compound, polyamine compound, or the like may be used as the curing agent. The curing agent is preferably blended in an amount of 5 to 50% by weight, more preferably 10 to 30% by weight, based on the epoxy resin. The blending amount of the epoxy resin and the curing agent is 3 to 40% by mass, preferably 5 to 30% by mass, and more preferably 8 to 24% by mass with respect to the total resin components including the flexible resin.
 本発明における伸縮性導体形成用ペーストは、溶剤を含有する。本発明における溶剤は、水または有機溶剤である。溶剤の含有量は、ペーストに求められる粘性によって適宜調査されるべきであるため、特に限定はされないが、概ね導電性粒子と柔軟性樹脂の合計質量を100した場合に30~80質量比が好ましい
本発明に使用される有機溶剤は、沸点が100℃以上、300℃未満であることが好ましく、より好ましくは沸点が130℃以上、280℃未満である。有機溶剤の沸点が低すぎると、ペースト製造工程やペースト使用に際に溶剤が揮発し、導電性ペーストを構成する成分比が変化しやすい懸念がある。一方で、有機溶剤の沸点が高すぎると、乾燥硬化塗膜中の残溶剤量が多くなり、塗膜の信頼性低下を引き起こす懸念がある。
The paste for forming a stretchable conductor in the present invention contains a solvent. The solvent in the present invention is water or an organic solvent. Since the content of the solvent should be appropriately investigated depending on the viscosity required for the paste, it is not particularly limited, but is generally preferably 30 to 80 mass ratio when the total mass of the conductive particles and the flexible resin is 100. The organic solvent used in the present invention preferably has a boiling point of 100 ° C. or higher and lower than 300 ° C., more preferably 130 ° C. or higher and lower than 280 ° C. If the boiling point of the organic solvent is too low, the solvent volatilizes during the paste manufacturing process or use of the paste, and there is a concern that the component ratio of the conductive paste is likely to change. On the other hand, if the boiling point of the organic solvent is too high, the amount of residual solvent in the dry cured coating film increases, and there is a concern that the reliability of the coating film is reduced.
 本発明における有機溶剤としては、シクロヘキサノン、トルエン、キシレン、イソホロン、γ-ブチロラクトン、ベンジルアルコール、エクソン化学製のソルベッソ100,150,200、プロピレングリコールモノメチルエーテルアセテート、ターピオネール、ブチルグリコールアセテート、ジアミルベンゼン、トリアミルベンゼン、n-ドデカノール、ジエチレングリコール、エチレングリコールモノエチルエーテルアセテート、ジエチレングリコールモノエチルエーテルアセテート、ジエチレングリコールモノブチルエーテルアセテート、ジエチレングリコールジブチルエーテル、ジエチレングリコールモノアセテート、トリエチレングリコールジアセテート、トリエチレングリコール、トリエチレングリコールモノメチルエーテル、トリエチレングリコールモノエチルエーテル、トリエチレングリコールモノブチルエーテル、テトラエチレングリコール、テトラエチレングリコールモノブチルエーテル、トリプロピレングリコール、トリプロピレングリコールモノメチルエーテル、2,2,4-トリメチル-1,3-ペンタンジオールモノイソブチレートなどが挙げられる。また、石油系炭化水素類としては、新日本石油社製のAFソルベント4号(沸点:240~265℃)、5号(沸点:275~306℃)、6号(沸点:296~317℃)、7号(沸点:259~282℃)、および0号ソルベントH(沸点:245~265℃)なども挙げられ、必要に応じてそれらの2種以上が含まれてもよい。このような有機溶剤は、伸縮性導体形成用ペーストが印刷などに適した粘度となるように適宜含有される。 Examples of the organic solvent in the present invention include cyclohexanone, toluene, xylene, isophorone, γ-butyrolactone, benzyl alcohol, Exxon Chemical Solvesso 100, 150, 200, propylene glycol monomethyl ether acetate, terpionol, butyl glycol acetate, diamylbenzene. , Triamylbenzene, n-dodecanol, diethylene glycol, ethylene glycol monoethyl ether acetate, diethylene glycol monoethyl ether acetate, diethylene glycol monobutyl ether acetate, diethylene glycol dibutyl ether, diethylene glycol monoacetate, triethylene glycol diacetate, triethylene glycol, triethylene glycol Monomethylether , Triethylene glycol monoethyl ether, triethylene glycol monobutyl ether, tetraethylene glycol, tetraethylene glycol monobutyl ether, tripropylene glycol, tripropylene glycol monomethyl ether, 2,2,4-trimethyl-1,3-pentanediol monoiso Examples include butyrate. As petroleum-based hydrocarbons, AF Solvent No. 4 (boiling point: 240 to 265 ° C.), No. 5 (boiling point: 275 to 306 ° C.), No. 6 (boiling point: 296 to 317 ° C.) manufactured by Nippon Oil Corporation No. 7, (boiling point: 259-282 ° C.), and No. 0 solvent H (boiling point: 245-265 ° C.), etc., and two or more of them may be included if necessary. Such an organic solvent is appropriately contained so that the stretchable conductor-forming paste has a viscosity suitable for printing or the like.
本発明における伸縮性導体形成用ペーストは、材料である導電性粒子、硫酸バリウム粒子、伸縮性樹脂、溶剤をディゾルバー、三本ロールミル、自公転型混合機、アトライター、ボールミル、サンドミルなどの分散機により混合分散することにより得ることができる。 The paste for forming a stretchable conductor in the present invention is a dispersing machine such as conductive particles, barium sulfate particles, stretchable resin, solvent, dissolver, three roll mill, self-revolving mixer, attritor, ball mill, sand mill, etc. Can be obtained by mixing and dispersing.
 本発明における伸縮性導体形成用ペーストには、発明の内容を損なわない範囲で、印刷適性の付与、色調の調整、レベリング、酸化防止剤、紫外線吸収剤などの公知の有機、無機の添加剤を配合することができる。 The paste for forming a stretchable conductor in the present invention is provided with known organic and inorganic additives such as imparting printability, color tone adjustment, leveling, antioxidants, ultraviolet absorbers and the like within the scope of the invention. Can be blended.
 本発明における 伸縮性誘電体層は、伸縮性を有する樹脂材料すなわち高分子材料からなる。柔軟性を有する高分子材料としては、弾性率が、1~1000MPaの、エラストマー、熱可塑性樹脂、熱硬化性樹脂、ゴムなどが挙げられる。膜の伸縮性を発現させるためには、ウレタン樹脂ないしゴムが好ましい。ゴムとしては、ウレタンゴム、アクリルゴム、シリコーンゴム、ブタジエンゴム、ニトリルゴムや水素化ニトリルゴムなどのニトリル基含有ゴム、イソプレンゴム、硫化ゴム、スチレン-ブタジエンゴム、ブチルゴム、クロロスルホン化ポリエチレンゴム、エチレンプロピレンゴム、フッ化ビニリデンコポリマーなどが挙げられる。この中でも、ニトリル基含有ゴム、クロロプレンゴム、クロロスルホン化ポリエチレンゴムが好ましく、ニトリル基含有ゴムが特に好ましい。本発明で好ましい弾性率の範囲は1.2~420MPaであり、さらに好ましく1.4~210MPa、なお好ましくは1.5~150MPaの範囲である。 In the present invention, the stretchable dielectric layer is made of a stretchable resin material, that is, a polymer material. Examples of the flexible polymer material include elastomers, thermoplastic resins, thermosetting resins, and rubbers having an elastic modulus of 1 to 1000 MPa. In order to exhibit the stretchability of the film, urethane resin or rubber is preferable. Rubbers include urethane rubber, acrylic rubber, silicone rubber, butadiene rubber, nitrile group-containing rubber such as nitrile rubber and hydrogenated nitrile rubber, isoprene rubber, sulfurized rubber, styrene-butadiene rubber, butyl rubber, chlorosulfonated polyethylene rubber, ethylene Examples include propylene rubber and vinylidene fluoride copolymer. Among these, nitrile group-containing rubber, chloroprene rubber, and chlorosulfonated polyethylene rubber are preferable, and nitrile group-containing rubber is particularly preferable. In the present invention, the elastic modulus is preferably in the range of 1.2 to 420 MPa, more preferably 1.4 to 210 MPa, and still more preferably 1.5 to 150 MPa.
 本発明において好ましく用いられる柔軟性を有する高分子材料として、ポリエーテルポリオール、またはポリエステルポリオールをポリオール成分とし、HDI系ポリイソシアネートをイソシアネート成分とするウレタンゴムを例示することができる。
  本発明におけるウレタンゴムは、高い伸長率を有し、かつ、引張永久ひずみ及び残留ひずみが小さいため繰り返し変形させた際の信頼性に優れる伸縮性誘電体層となる。
Examples of the flexible polymer material preferably used in the present invention include urethane rubber having polyether polyol or polyester polyol as a polyol component and HDI polyisocyanate as an isocyanate component.
The urethane rubber in the present invention is a stretchable dielectric layer that has a high elongation rate and is excellent in reliability when repeatedly deformed because the tensile permanent strain and residual strain are small.
  本発明におけるポリエーテルポリオールとしては、例えば、ポリエチレングリコール、ポリプロピレングリコール、ポリプロピレントリオール、ポリプロピレンテトラオール、ポリテトラメチレングリコール、ポリテトラメチレントリオール、これらを合成するための環状エーテル等のモノマー材料を共重合させて得た共重合体等のポリアルキレングリコール、これらに側鎖を導入したり分岐構造を導入したりした誘導体、変性体、さらにはこれらの混合物等が挙げられる。これらのなかでは、ポリテトラメチレングリコールが好ましい。その理由は、機械的特性が優れるためである。 Examples of the polyether polyol in the present invention include copolymerization of monomer materials such as polyethylene glycol, polypropylene glycol, polypropylene triol, polypropylene tetraol, polytetramethylene glycol, polytetramethylene triol, and cyclic ether for synthesizing these. Examples thereof include polyalkylene glycols such as copolymers, derivatives obtained by introducing side chains or branched structures, modified products, and mixtures thereof. Of these, polytetramethylene glycol is preferred. The reason is that the mechanical properties are excellent.
  上記ポリエーテルポリオールとしては、市販品を使用することもできる。市販品の具体例としては、例えば、PTG-2000SN(保土谷化学工業社製)、ポリプロピレングリコール、プレミノールS3003(旭硝子社製)、パンデックスGCB-41(DIC社製)等が挙げられる。 Commercially available products can also be used as the polyether polyol. Specific examples of commercially available products include PTG-2000SN (Hodogaya Chemical Co., Ltd.), polypropylene glycol, Preminol S3003 (Asahi Glass Co., Ltd.), Pandex GCB-41 (DIC Corporation), and the like.
 本発明におけるポリエステルポリオールとしては芳香族計ポリエステルポリオール、芳香族/脂肪族共重合ポリエステルポリオール、脂肪族ポリエステルポリオール、脂環族ポリエステルポリオールを用いることができる。本発明におけるポリエステルポリオールとしては、飽和型、不飽和型、いずれを用いてもかまわない。 As the polyester polyol in the present invention, aromatic polyester polyol, aromatic / aliphatic copolymer polyester polyol, aliphatic polyester polyol, and alicyclic polyester polyol can be used. As the polyester polyol in the present invention, either a saturated type or an unsaturated type may be used.
 本発明におけるHDI系ポリイソシアネートは、ヘキサメチレンジイソシアネート(HDI)又はその変性体であり、分子内に複数のイソシアネート基を有する化合物である。 The HDI polyisocyanate in the present invention is hexamethylene diisocyanate (HDI) or a modified product thereof, and is a compound having a plurality of isocyanate groups in the molecule.
  本発明におけるウレタンゴムは、上記ポリオール成分及び上記イソシアネート成分以外に、更に必要に応じて、鎖延長剤、架橋剤、触媒、加硫促進剤等を含有する混合物を反応させて得られたものでも良い。本発明では硫黄不含型の架橋剤の使用が好ましい。また、本発明における柔軟性を有する高分子材料には可塑剤、酸化防止剤、老化防止剤、着色剤等の添加剤、誘電フィラー等を含有してもよい。
 本発明における誘電体層の平均厚さは、静電容量Cを大きくして検出感度の向上を図る観点、及び、測定対象物への追従性の向上を図る観点から、0.3~1000μmであることが好ましく、感度の点からは0.3~20μmの範囲が好ましく、さらに0.3~8μmが好ましく、さらに0.5~6μmの範囲が好ましい。
The urethane rubber in the present invention may be obtained by reacting a mixture containing a chain extender, a crosslinking agent, a catalyst, a vulcanization accelerator, etc., as necessary, in addition to the polyol component and the isocyanate component. good. In the present invention, it is preferable to use a sulfur-free crosslinking agent. The flexible polymer material in the present invention may contain additives such as plasticizers, antioxidants, anti-aging agents, colorants, dielectric fillers, and the like.
The average thickness of the dielectric layer in the present invention is 0.3 to 1000 μm from the viewpoint of improving the detection sensitivity by increasing the capacitance C and improving the followability to the measurement object. In view of sensitivity, the range is preferably 0.3 to 20 μm, more preferably 0.3 to 8 μm, and further preferably 0.5 to 6 μm.
 本発明における伸縮性誘電体層の、無負荷時の比誘電率は2.5以上であり、2.8以上が好ましく、3.3以上がさらに好ましく、3.6以上がなお好ましい。比誘電率の上限は7。0程度で有り、好ましくは5.6以下、さらに好ましくは4.8以下である。本発明の目的からして、伸縮性誘電体層の比誘電率は高い方が好ましいが、一般に伸縮性を有する高分子材料は、柔軟鎖成分にアルキル基を有する事が多く、比較的低い比誘電率を有している。本発明では分子鎖に極性基を導入することにより比誘電率を高めることが好ましい、ニトリル基、ケトン基、エステル基、ハロゲン置換基、水酸基、カルボキシル基、ニトロ基などは、高分子の比誘電率を高めるために有効な官能基である。 The relative dielectric constant of the stretchable dielectric layer in the present invention at no load is 2.5 or more, preferably 2.8 or more, more preferably 3.3 or more, and still more preferably 3.6 or more. The upper limit of the relative dielectric constant is about 7.0, preferably 5.6 or less, more preferably 4.8 or less. For the purpose of the present invention, it is preferable that the dielectric constant of the stretchable dielectric layer is high, but in general, a polymer material having stretchability often has an alkyl group in the flexible chain component, and a relatively low ratio. It has a dielectric constant. In the present invention, it is preferable to increase the relative dielectric constant by introducing a polar group into the molecular chain. A nitrile group, a ketone group, an ester group, a halogen substituent, a hydroxyl group, a carboxyl group, a nitro group, etc. It is an effective functional group for increasing the rate.
 高い比誘電率を有するフィラー、好ましくはチタン酸塩などの無機フィラーを添加することにより誘電体層の比誘電率を高めることが可能である。しかしながら、本発明では、当該伸縮性誘電体層における、比誘電率が5以上の無機フィラーの含有量は10%質量以下であることが好ましい。無機フィラーの含有率は3%以下が好ましく1%以下がなお好ましく0.3%以下がなお好ましい。無機フィラーの含有量が多いと、伸縮性誘電体層が伸張、ないし圧縮された際に、伸縮性高分子部分への応力集中度合いが高くなり、フィラーと樹脂界面に剥離が生じてボイドが形成される等、耐久性に問題が生じる場合がある。
 また、伸縮性誘電体層に含まれる無機フィラーが多いと、伸縮性誘電体層のポアソン比が低くなり、伸張時の静電容量変化が小さくなり、センサーとして応用した場合の感度が低下する。
It is possible to increase the dielectric constant of the dielectric layer by adding a filler having a high dielectric constant, preferably an inorganic filler such as titanate. However, in the present invention, the content of the inorganic filler having a relative dielectric constant of 5 or more in the stretchable dielectric layer is preferably 10% by mass or less. The content of the inorganic filler is preferably 3% or less, more preferably 1% or less, still more preferably 0.3% or less. If the content of the inorganic filler is large, when the stretchable dielectric layer is stretched or compressed, the stress concentration on the stretchable polymer part becomes high, and peeling occurs at the filler and resin interface, forming voids. In some cases, there is a problem in durability.
Moreover, when there are many inorganic fillers contained in a stretchable dielectric layer, the Poisson's ratio of the stretchable dielectric layer becomes low, the capacitance change during stretching becomes small, and the sensitivity when applied as a sensor is lowered.
 本発明の伸縮性誘電体層の、透湿度は4000g/m・24hr以下が好ましく、2500g/m・24hr以下がさらに好ましく、1000g/m・24hr以下がなお好ましい。伸縮性誘電層の透湿度が高い場合、乾燥-湿潤状態によって伸縮性コンデンサが示す静電容量値が変化するという問題を生じる可能性がある。 Stretch dielectric layer of the present invention, moisture permeability is preferably from 4000g / m 2 · 24hr, further preferably less 2500g / m 2 · 24hr, 1000g / m 2 · 24hr or less is still preferred. When the moisture permeability of the stretchable dielectric layer is high, there is a possibility that the capacitance value indicated by the stretchable capacitor changes depending on the dry-wet state.
 本発明の伸縮性誘電体層の、絶縁破壊電圧は1.0kV以上が好ましく、1.5kV以上がさらに好ましく、2.0kV以上がなお好ましい。絶縁破壊電圧が低い場合、伸縮性コンデンサに高電圧がかかった際に短絡し、故障してしまう恐れがある。 The dielectric breakdown voltage of the stretchable dielectric layer of the present invention is preferably 1.0 kV or higher, more preferably 1.5 kV or higher, still more preferably 2.0 kV or higher. When the dielectric breakdown voltage is low, there is a risk that the elastic capacitor will be short-circuited and damaged when a high voltage is applied.
 本発明では、伸縮性誘電体層がホットメルト性を有することが好ましい。伸縮性誘電体層がホットメルト性を有する場合には、伸縮性導体層と伸縮性誘電体層をホットプレス、ロールラミネートなどの手法で簡単に積層することができる。
 
In the present invention, the stretchable dielectric layer preferably has hot melt properties. When the stretchable dielectric layer has hot melt properties, the stretchable conductor layer and the stretchable dielectric layer can be easily laminated by a technique such as hot pressing or roll lamination.
 本発明における伸縮性誘電体層として、市販の柔軟な樹脂シートを利用することができる。市販の柔軟な樹脂シートとしては例えば、日清紡社製ホットメルト層付きポリウレタンフィルム:モビロンフィルムMF103F3(厚さ100μm、片面にホットメルト層を有する)、日清紡社製ポリウレタンフィルム:モビロンフィルムMOB100S(厚さ100μm)、大阪有機化学社製の柔軟アクリル樹脂フィルムSuave-08(厚さ300μm)、ニッカン工業社製 NSシート(厚さ40μm)、DINGZING社製ポリウレタンフィルム:Provecta FS1123(厚さ50μm)などを例示できる。 A commercially available flexible resin sheet can be used as the stretchable dielectric layer in the present invention. Examples of commercially available flexible resin sheets include a polyurethane film with a hot melt layer manufactured by Nisshinbo Co., Ltd .: Mobilon film MF103F3 (thickness 100 μm, having a hot melt layer on one side), a polyurethane film manufactured by Nisshinbo Co., Ltd .: Mobilon film MOB100S (thickness) 100 μm), Osaka Organic Chemical Co., Ltd. flexible acrylic resin film Suave-08 (thickness 300 μm), Nikkan Kogyo NS sheet (thickness 40 μm), DINGZING polyurethane film: Proveta FS1123 (thickness 50 μm), etc. It can be illustrated.
 本発明では伸縮性導体層、伸縮性誘電体層を積層する際にホットメルト接着材を用いても良い。本発明に於けるホットメルト系接着材とは、軟化温度が30℃~150℃程度の高分子材料を使用する事ができ、好ましくは、誘電体層と同程度の伸縮性を有する柔軟性を備える高分子材料を使用することができる。このようなホットメルト接着剤としては、エチレン系共重合体、スチレン系ブロック共重合体およびオレフィン系(共)重合体など、さらにそれらをベースポリマーとして粘着性を付与するために結晶性極性基含有化合物等を含有する高分子材料、アモルファスポリα-オレフィン、粘着付与樹脂、ポリプロピレン系ワックス等の配合物、スチレン-エチレンプロピレン-スチレンブロック共重合ゴムあるいはスチレン-ブタジエン-スチレンブロック共重合ゴム、さらにこれらに粘着付与樹脂成分、およびまたはプロセスオイルなどの液状可塑剤を添加した高分子材料、変性ポリオレフィンおよびその配合物、スチレン系ブロック共重合体およびその配合物、酸変性ポリプロピレン、酸変性スチレン系ブロック共重合体、それらの配合物、スチレン系ブロック共重合体、エチレン系重合体等の配合物、ポリエステルウレタン共重合体およびその配合物などを用いることができる。
 ホットメルト接着剤を用いて伸縮性導体層と伸縮性誘電体層を積層する場合には、少なくとも伸縮性誘電体層の片面にホットメルト層を、好ましくは伸縮性誘電体層の両面にホットメルト層を配することが好ましい。ホットメルト層は独立層として、あるいは、あらかじめ伸縮性導体層、または伸縮性誘電体層の片面または両面にラミネートして用いる事ができる。
In the present invention, a hot melt adhesive may be used when laminating the stretchable conductor layer and the stretchable dielectric layer. As the hot-melt adhesive in the present invention, a polymer material having a softening temperature of about 30 ° C. to 150 ° C. can be used, and preferably has a flexibility having the same degree of elasticity as the dielectric layer. The provided polymeric material can be used. Such hot melt adhesives include ethylene copolymers, styrene block copolymers, and olefinic (co) polymers that contain crystalline polar groups to provide tackiness using them as a base polymer. Compound materials such as compounds, amorphous poly α-olefins, tackifying resins, polypropylene waxes, styrene-ethylenepropylene-styrene block copolymer rubbers or styrene-butadiene-styrene block copolymer rubbers, and more Polymer materials obtained by adding a tackifier resin component and / or a liquid plasticizer such as process oil, modified polyolefins and blends thereof, styrenic block copolymers and blends thereof, acid-modified polypropylene, and acid-modified styrene block copolymers Polymers, their blends, Styrene-based block copolymer, blends of such ethylene polymer, and the like can be used polyester urethane copolymers and blends thereof.
When a stretchable conductor layer and a stretchable dielectric layer are laminated using a hot melt adhesive, a hotmelt layer is preferably provided on at least one side of the stretchable dielectric layer, and preferably on both sides of the stretchable dielectric layer. It is preferable to arrange the layers. The hot melt layer can be used as an independent layer or previously laminated on one or both sides of a stretchable conductor layer or a stretchable dielectric layer.
 本発明では軟化温度が40℃~120℃のポリエステルウレタン樹脂、ポリエーテルウレタン樹脂などをシート状に加工したホットメルトシートを好ましく用いることができる。 In the present invention, a hot melt sheet obtained by processing a polyester urethane resin or a polyether urethane resin having a softening temperature of 40 ° C. to 120 ° C. into a sheet shape can be preferably used.
  以下、本発明の伸縮性コンデンサを図によって説明する。図1は本発明の伸縮性コンデンサの基本構成である。すなわち本発明において伸縮性コンデンサは伸縮性誘電体層を上下の伸縮性導電層により挟んだ構造を有する。 Hereinafter, the stretchable capacitor of the present invention will be described with reference to the drawings. FIG. 1 shows the basic configuration of the stretchable capacitor of the present invention. That is, in the present invention, the stretchable capacitor has a structure in which a stretchable dielectric layer is sandwiched between upper and lower stretchable conductive layers.
 本発明において、かかる伸縮性コンデンサを実現する手段として、二枚のシートを重ね貼りする方法を例示できる。すなわち、まず図2に示すように、伸縮性導体層、伸縮性誘電体層、接着材層が積層された積層シートを調整する。伸縮性導体層と伸縮性誘電体層は、それぞれを溶融押出成型して積層するか、ないしはペースト化した材料をコーティングして重ねることができる。伸縮性導体層のシートと、伸縮性誘電体層のシートを別々に準備し、接着材層にて貼り合わせることもできる。この場合、接着材層として絶縁性の接着材を用いた場合には接着材層は誘電体層の一部となる。また導電性を有する接着材層を用いた場合には接着材層が導電層の一部となる。接着材層は、伸縮性導体層、伸縮性誘電体層と同程度の伸縮性、柔軟性を有することが好ましい。
 接着材層としては絶縁性のホットメルト型の高分子材料を用いることが好ましい。本発明では、離型シート上にまず伸縮性導電性を形成し、次いで伸縮性誘電体層を形成し、さらにホットメルト接着材シートを重ね、離型シートで挟んで、加熱加圧することにより、かかる積層シートを得ることができる。
In the present invention, as a means for realizing such a stretchable capacitor, a method of laminating two sheets can be exemplified. That is, first, as shown in FIG. 2, a laminated sheet in which a stretchable conductor layer, a stretchable dielectric layer, and an adhesive layer are laminated is prepared. The stretchable conductor layer and the stretchable dielectric layer can be laminated by melt extrusion molding or by coating a paste material. A sheet of stretchable conductor layer and a sheet of stretchable dielectric layer can be prepared separately and bonded together with an adhesive layer. In this case, when an insulating adhesive is used as the adhesive layer, the adhesive layer becomes a part of the dielectric layer. Further, when an adhesive layer having conductivity is used, the adhesive layer becomes a part of the conductive layer. The adhesive layer preferably has the same stretchability and flexibility as the stretchable conductor layer and the stretchable dielectric layer.
As the adhesive layer, it is preferable to use an insulating hot-melt polymer material. In the present invention, first, stretchable conductivity is formed on the release sheet, then a stretchable dielectric layer is formed, and a hot melt adhesive sheet is further stacked, sandwiched between the release sheets, and heated and pressurized, Such a laminated sheet can be obtained.
 続いて、図3に示すように、高い伸度を有する伸縮性の布帛に、図2の積層シートを、ホットメルト層を用いてラミネートし、さらにその上に、同じ積層シートを電極として用いる部分が、露出するようにずらす、ないし所定のパターンにくりぬいて、重ねて貼り合わせることにより、導体層に挟まれたホットメルト接着材層と、伸縮性誘電体層が誘電体として作用する伸縮性コンデンサを得ることができる。最表面の導体層の上にさらに伸縮性の絶縁カバー層を設ける事もできる。絶縁カバー層としては、誘電体層に用いた高分子材料と同様の絶縁性樹脂等を用いることができる。かかる絶縁性樹脂シートをホットメルト接着層を介してラミネートすることもできる。 Subsequently, as shown in FIG. 3, the laminated sheet of FIG. 2 is laminated on a stretchable fabric having high elongation using a hot melt layer, and the same laminated sheet is used as an electrode on the laminated sheet. However, the hot-melt adhesive layer sandwiched between the conductor layers and the stretchable capacitor in which the stretchable dielectric layer acts as a dielectric by shifting it so that it is exposed or cutting it into a predetermined pattern and pasting them together Can be obtained. A stretchable insulating cover layer can also be provided on the outermost conductor layer. As the insulating cover layer, an insulating resin similar to the polymer material used for the dielectric layer can be used. Such an insulating resin sheet can also be laminated through a hot melt adhesive layer.
 図4.は本発明の伸縮性コンデンサの別の態様を例示した概略図である。伸縮性コンデンサの電極はスルーホールを介して、基材の裏面の端子に接続されている。スルーホールは一般的なプリント配線板にて用いられるメッキスルーホール、ないしは導電ペースト等により接続されたスルーホールを用いることができる。また金属リベットなどにより表裏を電気的に接続してをカシメ等により固定する古典的な手法を適用することができる。本発明の伸縮性コンデンサを衣服に適用する場合には、金属リベットと同様に金属製のスナップホックなどをスルーホール代わりに用いても良い。 Figure 4. FIG. 4 is a schematic view illustrating another embodiment of the stretchable capacitor of the present invention. The electrode of the elastic capacitor is connected to the terminal on the back surface of the base material through a through hole. As the through hole, a plated through hole used in a general printed wiring board or a through hole connected by a conductive paste or the like can be used. Further, a classic method of electrically connecting the front and back with a metal rivet or the like and fixing with caulking or the like can be applied. When the stretchable capacitor of the present invention is applied to clothes, a metal snap hook or the like may be used instead of the through-hole as in the case of a metal rivet.
 本発明の、別の態様として印刷法を用いた伸縮性コンデンサを例示することができる。すなわち、図5に示されるA~Fの順に、順次各層を印刷積層してゆくことにより、伸縮性コンデンサを得ることができる。図5では基材に順次、直接印刷する工程を例示したが、離型フィルムなどに、順序を逆にして印刷し、最後に布帛に転写する方法を用いることもできる。 As another aspect of the present invention, an elastic capacitor using a printing method can be exemplified. That is, a stretchable capacitor can be obtained by sequentially printing and laminating each layer in the order of A to F shown in FIG. Although FIG. 5 illustrates the step of printing directly on the base material sequentially, it is also possible to use a method of printing on a release film or the like in the reverse order and finally transferring to a fabric.
本発明における伸張回復率とは、図6に示す如く伸縮性コンデンサを懸垂し、荷重を加えて伸張させ、荷重を除去して収縮させる作用を加えた際に、初期長さをL0、20%ないし所定%伸張させた際の長さをL1、伸張荷重を除去した際の長さをL2とした場合に、
(数1)
伸張回復率=((L1-L2)/(L1-L0))×100    [%]
(数2)
残留歪み率=((L2-L0)/L0)×100        [%]
L0 初期長さ
L3 伸び=L1-L0
L4 回復長さ=L1-L2      
L5 残留歪み=L2-L0      
と、定義する。類似の測定法がJIS L 1096 織物および編物の生地試験法に定めてられているが、一定荷重負荷による伸張後の回復率では無くでは、一定長さまで伸張させた場合の回復率である点が異なる。実使用において伸縮性導体層に加わる負荷は、荷重とは無関係に、所定の長さまで繰り返し伸張される場合が多いため、一定荷重負荷法による伸張回復率では実用性能を表現することができない。本発明の伸縮性コンデンサの伸張回復率は、コンデンサ素子として機能する部分の評価であって、電極部分は省かれる。断らない限り伸張回復率は25℃±3℃の環境下にて評価される。
The stretch recovery rate in the present invention means that the initial length is L0, 20% when an elastic capacitor is suspended, stretched by applying a load, and contracted by removing the load as shown in FIG. Or when the length when stretched by a predetermined percentage is L1, and the length when the stretch load is removed is L2,
(Equation 1)
Elongation recovery rate = ((L1-L2) / (L1-L0)) × 100 [%]
(Equation 2)
Residual strain rate = ((L2-L0) / L0) × 100 [%]
L0 Initial length L3 Elongation = L1-L0
L4 recovery length = L1-L2
L5 Residual strain = L2-L0
And define. A similar measurement method is defined in the JIS L 1096 woven and knitted fabric test method, but not the recovery rate after stretching under a constant load, but the recovery rate when stretched to a certain length. Different. In actual use, the load applied to the stretchable conductor layer is often repeatedly stretched to a predetermined length regardless of the load, so that the practical performance cannot be expressed by the stretch recovery rate by the constant load method. The stretch recovery rate of the stretchable capacitor of the present invention is an evaluation of a portion that functions as a capacitor element, and the electrode portion is omitted. Unless otherwise noted, the elongation recovery rate is evaluated in an environment of 25 ° C. ± 3 ° C.
 本発明では、以上、説明した伸縮性コンデンサの伸縮性誘電体層の面方向を、測定対象の変形方向に向けて配置し、測定対象の伸縮変形に応じて変化する伸縮性コンデンサの静電容量変化を検知することによって、測定対象の変形を検知する変形センサとして用いることができる。 In the present invention, the capacitance direction of the elastic capacitor is arranged so that the surface direction of the elastic dielectric layer of the elastic capacitor described above is directed toward the deformation direction of the measurement object, and changes according to the elastic deformation of the measurement object. By detecting a change, it can be used as a deformation sensor for detecting the deformation of the measurement object.
 本発明において、伸縮性コンデンサの面方向への伸縮変形に応じて変化する伸縮性コンデンサの静電容量変化は、主として伸縮性誘電体層の面方向への伸縮に伴う、伸縮性誘電体層の厚さ方向への変化による静電容量の変化である。かかる特性を発言させるためには伸縮性誘電体層に用いる材料のポアソン比が高い方が好ましい。本発明の伸縮性誘電体層のポアソン比は0.28以上である事が好ましく、0.38以上である事がなお好ましく、0.48以上である事がさらに好ましい。ポアソン比を高めるには伸縮性誘電体層に配合される無機成分が少ない方が良い。
 なお、ここに面方向とは厚さ方向に対して概略垂直の方向を指す。直交座標系においては、一般にX-Y軸方向を面方向とし、Z軸方向を厚さ方向とする。本発明の伸縮性コンデンサはフレキシビリティを有するため、湾曲した状態で用いる事も出来る。この場合、面方向とは湾曲した面に概略沿った方向を示し、硬直的に固定された直交座標系のX-Y-Z方向を示すものでは無い。
In the present invention, the capacitance change of the elastic capacitor that changes according to the elastic deformation in the surface direction of the elastic capacitor is mainly due to the expansion and contraction of the elastic dielectric layer in the surface direction of the elastic dielectric layer. This is a change in capacitance due to a change in the thickness direction. In order to express such characteristics, it is preferable that the material used for the stretchable dielectric layer has a high Poisson's ratio. The Poisson's ratio of the stretchable dielectric layer of the present invention is preferably 0.28 or more, more preferably 0.38 or more, and further preferably 0.48 or more. In order to increase the Poisson's ratio, it is better that the inorganic component contained in the stretchable dielectric layer is small.
Here, the plane direction refers to a direction substantially perpendicular to the thickness direction. In the orthogonal coordinate system, generally, the XY axis direction is the plane direction, and the Z axis direction is the thickness direction. Since the stretchable capacitor of the present invention has flexibility, it can be used in a curved state. In this case, the surface direction indicates a direction substantially along the curved surface, and does not indicate the XYZ direction of the orthogonal coordinate system fixed rigidly.
 本発明では、以上、説明した伸縮性コンデンサの伸縮性誘電体層の面方向を、伸縮可能な素材からなるベルト状物と積層し、ベルト状物の伸縮に応じて伸縮性コンデンサも伸縮するように配置する事により、ベルト状物の伸びを伸縮性コンデンサの静電容量変化から読み取るものである。 In the present invention, the surface direction of the elastic dielectric layer of the elastic capacitor described above is laminated with a belt-like material made of an elastic material so that the elastic capacitor also expands and contracts according to the expansion and contraction of the belt-like material. By arranging in, the elongation of the belt-like material is read from the change in the capacitance of the elastic capacitor.
 なお、本発明における伸縮可能な素材からなるベルト状物とは、特に素材、構造は限定されず、ゴム、エラストマーからなるベルト状物、ニット構造を有するベルト状物、織布構造を有するベルト状物、組紐構造を有するベルト状物、切り紙構造を有するベルト状物、螺旋構造を有するベルト状物、金属バネを併用したベルト構造物、などを示す。
 本発明におけるベルトとは、扁平長尺の構造物を云う。ベルトの長さは、被測定対象物によって異なるが、人体の周長変化の測定に用いる場合には300mm以上2000mm以下程度の長さ範囲が好ましい。ベルトの幅はハンドリング面と、触感上の制限により3mm以上150mm以下、好ましくは6mm以上60mm以下である。ベルトの厚さは特に制限されないが、薄い方が身体への違和感が小さいため5mm以下、好ましくは3mm以下、なお好ましくは1mm以下である。
The belt-like material made of a stretchable material in the present invention is not particularly limited in material and structure, and is a belt-like material made of rubber or elastomer, a belt-like material having a knitted structure, or a belt-like material having a woven fabric structure. A belt-like object having a braid structure, a belt-like object having a cut paper structure, a belt-like object having a spiral structure, and a belt structure using a metal spring together.
The belt in the present invention refers to a flat and long structure. The length of the belt varies depending on the object to be measured, but when used for measuring the change in the circumference of the human body, a length range of about 300 mm to 2000 mm is preferable. The width of the belt is 3 mm or more and 150 mm or less, preferably 6 mm or more and 60 mm or less, depending on the handling surface and tactile feel. The thickness of the belt is not particularly limited, but is less than 5 mm, preferably less than 3 mm, more preferably less than 1 mm because the thinner one is less uncomfortable to the body.
 本発明において、伸縮性コンデンサは、ベルト状物の長さ方向に対し、3~100%の長さとなるように積層することが好ましい。特に50%以上、好ましくは70%以上の長さに渡って積層することにより、身体周長の測定を行う際に、実質上身体の全周に渡ってセンシング部を設けることが可能となり、就寝時の姿勢などによってセンシングが不安定になるトラブルを回避することができる。
 実使用に当たっては、身体に装着するための長さ調整部、一周したベルトをリング状に結合するバックル部などをベルトに設ける事が好ましい。本発明の伸縮性コンデンサは、伸張時応力が低いために、所定周長のリング形状で構成した場合でも、周長の個人差を十分吸収できる。この場合には実質上ベルト状物の100%長に伸縮性コンデンサを設置可能となる。
In the present invention, the stretchable capacitor is preferably laminated so as to have a length of 3 to 100% with respect to the length direction of the belt-like material. In particular, by laminating over a length of 50% or more, preferably 70% or more, it becomes possible to provide a sensing unit over the entire circumference of the body when measuring the body circumference, and go to bed. The trouble that the sensing becomes unstable depending on the posture at the time can be avoided.
In actual use, it is preferable to provide the belt with a length adjusting portion for mounting on the body, a buckle portion for connecting the belt that has made one round in a ring shape, and the like. Since the stretchable capacitor of the present invention has a low stress at the time of extension, even when it is configured in a ring shape having a predetermined circumference, it can sufficiently absorb individual differences in circumference. In this case, the elastic capacitor can be installed substantially 100% of the belt-like material.
 本発明の変位センサを20%伸張した際の応力は20N以下である事が好ましい。さらに本発明では、変位センサの20%伸張した際の応力が12N以下である事が好ましく、さらに8N以下が好ましく、5N以下がなお好ましく、3N以下が、なおさらに好ましい。応力がこれ以上であると、身体に着用した際に違和感が大きくなる。
 また、本発明における、変位センサを伸張した際の応力の下限は0.5N、好ましくは0.8Nである。応力がこれより小さいと、変位センサの身体へのフィッティングが甘くなり、姿勢によっては測定が不安定になったり、センサ位置がズレるなどの問題が生じやすくなる。
The stress when the displacement sensor of the present invention is stretched by 20% is preferably 20 N or less. Furthermore, in the present invention, the stress when the displacement sensor is stretched by 20% is preferably 12 N or less, more preferably 8 N or less, still more preferably 5 N or less, and even more preferably 3 N or less. When the stress is higher than this, a sense of incongruity increases when worn on the body.
In the present invention, the lower limit of the stress when the displacement sensor is extended is 0.5N, preferably 0.8N. If the stress is smaller than this, the fitting of the displacement sensor to the body becomes unsatisfactory, and depending on the posture, the measurement becomes unstable or the sensor position is likely to shift.
 本発明におけるセンシングウェアは、生体情報計測用衣服ないし衣類であり、ベルト、ブラジャーのような帯状の物、および/または、編織物、不織布からなる被服であれば特に制限されるものではない。センシングウェアの形態としては上半身に着用するシャツ、トレーナー、下半身に着用するパンツ、ズボン、タイツ、あるいは靴下、手袋、帽子、襟巻き、腕輪、全身に着用する上下ツナギ、ボディスーツ、レオタード、全身タイツなど様々な形態をとることができる。 The sensing wear in the present invention is a clothing or garment for measuring biological information, and is not particularly limited as long as it is a clothing made of a belt-like object such as a belt or a bra and / or a knitted fabric or a nonwoven fabric. Sensing wear forms include shirts, trainers, pants, trousers, tights, or socks, gloves, hats, collars, bangles, upper and lower jumpsuits worn throughout the body, body suits, leotards, and whole body tights. It can take various forms.
  以下、実施例によって本発明をさらに具体的に説明するが、本発明は以下の実施例に限定されるものではない。なお実施例の数値は以下に示す方法で測定された。 Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited to the following examples. In addition, the numerical value of the Example was measured by the method shown below.
<ニトリル量>
 得られた樹脂材料をNMR分析して得られた組成比から、モノマーの質量比による質量%に換算した。
<Nitrile amount>
From the composition ratio obtained by NMR analysis of the obtained resin material, it was converted to mass% based on the mass ratio of the monomers.
<ムーニー粘度>
 島津製作所製 SMV-300RT「ムーニービスコメータ」を用いて測定した。
<Mooney viscosity>
This was measured using an SMV-300RT “Mooney Viscometer” manufactured by Shimadzu Corporation.
<弾性率>
 被測定試料を厚さ20μmから200μmの範囲の任意の厚さにてシート状に成形し、次いでISO 527-2-1Aにて規定されるダンベル型に打ち抜き、試験片とした。
ISO 527-1に規定された方法で引っ張り試験を行って、樹脂材料の応力-歪み線図を求め、常法により弾性率を算出した。
<Elastic modulus>
The sample to be measured was formed into a sheet shape with an arbitrary thickness in the range of 20 μm to 200 μm, and then punched into a dumbbell shape defined by ISO 527-2-1A to obtain a test piece.
A tensile test was performed by a method defined in ISO 527-1 to obtain a stress-strain diagram of the resin material, and an elastic modulus was calculated by a conventional method.
<引張降伏伸度>
 被測定試料を厚さ20μmから200μmの範囲の任意の厚さにてシート状に成形し、次いでISO 527-2-1Aにて規定されるダンベル型に打ち抜き、試験片とした。ついで、引っ張り試験器を用いてS-Sカーブを求め、図9のように降伏点を求め、その際の伸度を引張降伏伸度とした。
<ポアソン比>
ISO527-1:2012準拠の方法にて、伸縮性誘電体のポアソン比を求めた。
<Tensile yield elongation>
The sample to be measured was formed into a sheet shape with an arbitrary thickness in the range of 20 μm to 200 μm, and then punched into a dumbbell shape defined by ISO 527-2-1A to obtain a test piece. Next, the SS curve was obtained using a tensile tester, the yield point was obtained as shown in FIG. 9, and the elongation at that time was defined as the tensile yield elongation.
<Poisson's ratio>
The Poisson's ratio of the stretchable dielectric was determined by a method based on ISO 527-1: 2012.
<ガラス転移温度>
ガラス転移温度は常法に従い示差走査熱量分析(DSC)により求めた。
<Glass transition temperature>
The glass transition temperature was determined by differential scanning calorimetry (DSC) according to a conventional method.
<分子量>
 バインダー樹脂材料の試料をTHF(テトラヒドロフラン)中に、溶液中の樹脂の濃度が0.4質量%となるよう添加して室温で1時間撹拌後、24時間放置した。次いで得られた樹脂溶液をTHFで4倍に希釈した後、0.45μmのフィルターを通過させ、そのろ液につき、GPCを用いて数平均分子量、重量平均分子量、分散比(Mw/Mn)を求めた。
<Molecular weight>
A sample of the binder resin material was added to THF (tetrahydrofuran) so that the concentration of the resin in the solution was 0.4 mass%, stirred at room temperature for 1 hour, and then allowed to stand for 24 hours. Next, the resulting resin solution was diluted 4 times with THF, and then passed through a 0.45 μm filter. The filtrate was subjected to GPC to obtain a number average molecular weight, a weight average molecular weight, and a dispersion ratio (Mw / Mn). Asked.
<伸張回復率>
 被測定試料を厚さ20μmから200μmの範囲の任意の厚さにてシート状に成形し、次いでISO 527-2-1Aにて規定されるダンベル型に打ち抜き、試験片とした。
 ついで、ダンベル型試験片中の幅10mm、長さ80mmの部分の中央からそれぞれ33mmの個所(有効長66mm)に印を付け、印間の初期距離L0を正確に測長した。次いで印を付けた個所の外側をクランプで挟み、66mmである印間を伸張長さ79.2mm(+13.2mm、伸張度20%に相当)まで伸ばした後にクランプから離し、所定の温度(特に断りの無い場合は25℃)にて水平方向に保持したフッ素樹脂シートの上に置き、印間の伸張後距離L2を測定し、以下の式に従って伸張回復率を求めた。
 初期長さ L0=66.0mm
 伸張長さ L1=79.2mm
 伸張後の長さ L2=実測
 伸び   L3=L1-L0=13.2mm
 回復長さ L4=L1-L2
伸張回復率=((L1-L2)/(L1-L0))×100    [%]
<Extension recovery rate>
The sample to be measured was formed into a sheet shape with an arbitrary thickness in the range of 20 μm to 200 μm, and then punched into a dumbbell shape defined by ISO 527-2-1A to obtain a test piece.
Next, a mark was placed at a location 33 mm (effective length 66 mm) from the center of the 10 mm wide and 80 mm long portion in the dumbbell-shaped test piece, and the initial distance L0 between the marks was measured accurately. Next, the outside of the marked part is clamped, and the 66 mm mark is stretched to an extension length of 79.2 mm (+13.2 mm, corresponding to an extension degree of 20%), then separated from the clamp, and a predetermined temperature (especially When there was no notice, it put on the fluororesin sheet | seat hold | maintained horizontally at 25 degreeC), measured the distance L2 after the expansion | extension between marks, and calculated | required the expansion | restoration recovery rate according to the following formula | equation.
Initial length L0 = 66.0mm
Extension length L1 = 79.2mm
Length after extension L2 = Measured Elongation L3 = L1-L0 = 13.2 mm
Recovery length L4 = L1-L2
Elongation recovery rate = ((L1-L2) / (L1-L0)) × 100 [%]
<布帛の伸張回復率>
 布帛材料をISO 527-2-1Aにて規定されるダンベル型に打ち抜き、試験片とした。なお、布帛の伸長方向をダンベルの長さ方向とした。
 次いで、樹脂の伸張回復率の測定と同様にダンベル型試験片中の幅10mm、長さ80mmの部分の中央からそれぞれ33mmの個所(有効長66mm)に印を付け、伸張長さを99mm(+33mm、伸張度50%に相当)まで伸ばした以外は、樹脂の伸張回復率と同様に操作して伸張回復率を求めた。
<Stretch recovery rate of fabric>
The fabric material was punched into a dumbbell shape specified by ISO 527-2-1A to obtain a test piece. In addition, the extending | stretching direction of the fabric was made into the length direction of a dumbbell.
Next, as in the measurement of the stretch recovery rate of the resin, marks are placed at 33 mm positions (effective length 66 mm) from the center of the 10 mm width and 80 mm length in the dumbbell-shaped test piece, and the stretch length is 99 mm (+33 mm). The elongation recovery rate was determined by operating in the same manner as the resin stretch recovery rate except that the elongation was extended to 50%.
<布帛の耐熱性>
JIS L1013:2010 化学繊維フィラメント糸試験方法 8.19.2 にて求められる熱収縮温度をもって、布帛の耐熱性とした。
<Heat resistance of fabric>
The heat shrinkage temperature obtained by JIS L1013: 2010 chemical fiber filament yarn test method 8.19.2 was defined as the heat resistance of the fabric.
<平均粒子径>
フィラーの平均粒子径は、堀場製作所製の光散乱式粒径分布測定装置LB-500を用いて測定した。
<Average particle size>
The average particle size of the filler was measured using a light scattering type particle size distribution measuring device LB-500 manufactured by Horiba.
<比抵抗率>
 導体シートの大きさが十分にある場合には、ISO 527-2-1Aにて規定されるダンベル型に打ち抜き、ダンベル型試験片の中央部にある幅10mm、長さ80mmの部分を試験片として用いた。導体シートの成型が可能な場合には厚さ200±20μmのシート状に加熱圧縮成形し、次いでISO 527-2-1Aにて規定されるダンベル型に打ち抜き、同様に試験片とした。導体シートの大きさが小さく、規定されたダンベル形状を得られない場合には、採取可能な幅および長さの矩形を切り取り、試験片とし、測定を行った幅、厚さ、長さを用いて換算した。
 試験片:幅10mm、長さ80mmの部分の抵抗値[Ω]を、アジレントテクノロージ社製ミリオームメーターを用いて測定し、試験片の縦横比(1/8)を乗じてシート抵抗値「Ω□」を求めた。
 また、抵抗値[Ω]に断面積(幅1[cm]mm×厚さ[cm])を乗じ、長さ(8cm)にて除して、比抵抗[Ωcm]を求めた。
<Specific resistivity>
When the size of the conductor sheet is sufficient, it is punched into a dumbbell type specified by ISO 527-2-1A, and the dumbbell type test piece is 10 mm wide and 80 mm long as the test piece. Using. When the conductor sheet could be molded, it was heat-compressed into a sheet having a thickness of 200 ± 20 μm, then punched into a dumbbell shape defined by ISO 527-2-1A, and similarly a test piece was obtained. If the size of the conductor sheet is small and the specified dumbbell shape cannot be obtained, cut out a rectangle with a width and length that can be sampled to make a test piece, and use the measured width, thickness, and length. Converted.
Test piece: The resistance value [Ω] of a portion having a width of 10 mm and a length of 80 mm was measured using a milliohm meter manufactured by Agilent Technologies, and the sheet resistance value “Ω” was multiplied by the aspect ratio (1/8) of the test piece. □ ”.
The resistivity [Ω] was multiplied by the cross-sectional area (width 1 [cm] mm × thickness [cm]) and divided by the length (8 cm) to obtain the specific resistance [Ωcm].
<洗濯耐久性>
JIS L 0217繊維製品の取扱いに関する表示記号及び表示方法に規定されている105法により30サイクルの洗濯試験を行った。
洗液:中性洗剤0.5%溶液
水流:弱
浴比:1:60
洗濯ネット 有り
洗濯サイクル
  洗い 30℃5分
  すすぎ 30℃2分 を2回
本サイクルを1サイクルとして、30回くりかえし。
試験後のセンサにて再度動作確認を行った。
<Washing durability>
A 30-cycle washing test was conducted by the 105 method defined in the indication symbols and indication methods for handling JIS L 0217 textiles.
Washing solution: neutral detergent 0.5% solution water flow: weak bath ratio: 1:60
Laundry net available Laundry cycle Washing 30 ° C 5 minutes Rinse 30 ° C 2 minutes 2 times This cycle is 1 cycle, repeated 30 times.
The operation was confirmed again with the sensor after the test.
<透湿度>
 誘電体層の透湿度は、JIS Z 0208 防湿包装材料の透過湿度試験方法に基づいて測定した。なお印刷積層品については、別途誘電層のみを離型紙に上に印刷し、乾燥硬化後に離型紙から剥離して評価を行った。
<Moisture permeability>
The moisture permeability of the dielectric layer was measured based on the method for testing moisture permeability of the JIS Z 0208 moisture-proof packaging material. In addition, about the printed laminated product, only the dielectric layer was separately printed on the release paper, and evaluation was performed by peeling from the release paper after drying and curing.
<絶縁破壊電圧>
 誘電体層の絶縁破壊強度は、JIS C 2151:2006 電気用プラスチックフィルム試験方法に基づき交流試験法にて、直径25mmの平行平板電極により実施した。なお印刷積層品については、別途誘電層のみを離型紙に上に印刷し、乾燥硬化後に離型紙から剥離して評価を行った。
<Dielectric breakdown voltage>
The dielectric breakdown strength of the dielectric layer was measured with a parallel plate electrode having a diameter of 25 mm by an alternating current test method based on the JIS C 2151: 2006 electrical plastic film test method. In addition, about the printed laminated product, only the dielectric layer was separately printed on the release paper, and evaluation was performed by peeling from the release paper after drying and curing.
<塩水浸漬変化率>
 伸縮性コンデンサを生理食塩水に1時間、25℃にて浸漬し、LCRメーターによる浸漬前後の静電容量値の変化率を、以下の式にて求めた。
 塩水浸漬変化率(%)=100×浸漬後の静電容量/浸漬前の静電容量
<Salt water immersion change rate>
The stretchable capacitor was immersed in physiological saline at 25 ° C. for 1 hour, and the change rate of the capacitance value before and after immersion by the LCR meter was determined by the following formula.
Salt water immersion change rate (%) = 100 × capacitance after immersion / capacitance before immersion
[実施例1]
 ニトリル量40質量%、ムーニー粘度46のニトリルブタジエンゴム10質量部、
 ニトリル量32質量%、ムーニー粘度38のニトリルブタジエンゴム 2質量部、
 イソホロン30質量部、
 平均粒子径6μmの微細フレーク状銀粉[福田金属箔粉工業社製 商品名Ag-XF301]58.0質量部、
 を均一に混合し、三本ロールミルにて分散することにより伸縮性導電層形成用ペーストを得た。
 得られた伸縮性導電層形成用ペーストを離型PETフィルム状にスリットコーターを用いて、塗布乾燥し、厚さ35μmの伸縮性導体シートを得た。
[Example 1]
10 parts by mass of nitrile butadiene rubber having a nitrile amount of 40% by mass and a Mooney viscosity of 46,
2 parts by mass of nitrile butadiene rubber having a nitrile amount of 32% by mass and a Mooney viscosity of 38,
30 parts by mass of isophorone,
58.0 parts by mass of fine flaky silver powder having an average particle size of 6 μm [trade name Ag-XF301, manufactured by Fukuda Metal Foil Powder Industry Co., Ltd.]
Were uniformly mixed and dispersed with a three roll mill to obtain a stretchable conductive layer forming paste.
The obtained paste for forming a stretchable conductive layer was applied and dried into a release PET film using a slit coater to obtain a stretchable conductor sheet having a thickness of 35 μm.
 得られた伸縮性導体シートを10mm幅、200mm長にカットし、長さ方向の抵抗値と厚さから比抵抗を求めた。結果、比抵抗は1.2×10-4Ωcmであった。
 ついで、伸縮性導体シートの長さ方向の両端を引っ張り試験器のクリップに挟み、有効長を160mmとして320mmまで引っ張り、両端間の抵抗値と、試験片の最狭部の幅、および、厚さを用いて100%伸張時の比抵抗を算出した。結果、100%伸張時の比抵抗は58×10-4Ωcmであった。
The obtained stretchable conductor sheet was cut into a width of 10 mm and a length of 200 mm, and the specific resistance was determined from the resistance value and thickness in the length direction. As a result, the specific resistance was 1.2 × 10 −4 Ωcm.
Next, both ends of the stretchable conductor sheet in the length direction are sandwiched between clips of a tensile tester, and the effective length is 160 mm and pulled to 320 mm. The resistance value between both ends, the width of the narrowest part of the test piece, and the thickness Was used to calculate the specific resistance at 100% elongation. As a result, the specific resistance at 100% elongation was 58 × 10 −4 Ωcm.
 ニトリル量40質量%、ムーニー粘度46のニトリルブタジエンゴム30質量部を、
 イソホロン40質量部、に溶解させ、伸縮性誘電体層形成用ペーストを得た。得られた伸縮性誘電体層形成用ペーストを、先に得られた伸縮性導体シートの上に乾燥厚さが30μmとなるように塗布乾燥し、伸縮性誘電体/伸縮性導体シートを得た。さらに伸縮性誘電体層に、厚さ50μmのホットメルト型ウレタンシートを積層し、ホットメルト接着層/伸縮性誘電体/伸縮性導体からなる3層シートを得た。
30 parts by mass of a nitrile butadiene rubber having a nitrile amount of 40% by mass and a Mooney viscosity of 46,
It was dissolved in 40 parts by mass of isophorone to obtain a stretchable dielectric layer forming paste. The obtained stretchable dielectric layer forming paste was applied and dried on the previously obtained stretchable conductor sheet so as to have a dry thickness of 30 μm to obtain a stretchable dielectric / stretchable conductor sheet. . Further, a hot-melt urethane sheet having a thickness of 50 μm was laminated on the stretchable dielectric layer to obtain a three-layer sheet comprising a hot-melt adhesive layer / stretchable dielectric / stretchable conductor.
 伸縮性誘電体層形成用ペーストを、離型PETフィルム上に厚さが50μmとなるように塗布乾燥し、得られた乾燥シートをダンベル型にくりぬき、試験片として
ISO527-1:2012準拠の方法にて、伸縮性誘電体のポアソン比を求めた。結果ポアソン比は0.47であった。同様に厚さ50μmのホットメルト型ウレタンシートについてもポアソン比を測定した。結果、ポアソン比は0.45であった。
A paste for forming a stretchable dielectric layer is applied and dried on a release PET film so as to have a thickness of 50 μm, and the resulting dried sheet is cut into a dumbbell shape and used as a test piece in accordance with ISO 527-1: 2012. Then, the Poisson's ratio of the stretchable dielectric was determined. The result Poisson's ratio was 0.47. Similarly, the Poisson's ratio was measured for a hot-melt urethane sheet having a thickness of 50 μm. As a result, the Poisson's ratio was 0.45.
 伸縮性のウレタンシート、モビロン[日清紡株式会社製]を基材とし、図3の構成となるように、幅10mm、長さ120mmにスリットした3層シートを、長さ方向に100mmが重なり合うように配置して、加熱加圧して貼り合わせ、伸縮性コンデンサを得た。
得られた伸縮性コンデンサの、3層シートが重なり合っている部分に荷重が加わるようにクリップで挟み、伸縮性コンデンサの25℃における100%伸張時の伸張回復率を測定した。結果、伸張回復率は100%であった。
 得られた伸縮性コンデンサの両端の電極部にクリップで導線を取り付け、日置電機社製LCRハイテスターを用いて、伸縮性コンデンサの長さ方向の伸びと1MHzにおける静電容量との関係を測定した。結果両者は良い対応を示した。伸張度0%~50%の間で、1サイクル/秒の繰り返し周期にて伸張度と静電容量の関係を測定した。結果、ヒステリシスは観察されず、良い対応を示した。
A stretchable urethane sheet, Mobilon [Nisshinbo Co., Ltd.] is used as a base material, and a three-layer sheet slit to a length of 10 mm and a length of 120 mm so that the configuration of FIG. It was placed and heated and pressed to bond them to obtain a stretchable capacitor.
The obtained stretchable capacitor was sandwiched with clips so that a load was applied to the overlapping part of the three-layer sheets, and the stretch recovery rate at 100% stretch of the stretchable capacitor at 25 ° C. was measured. As a result, the extension recovery rate was 100%.
A conductive wire was attached to the electrode portions at both ends of the obtained elastic capacitor, and the relationship between the elongation in the length direction of the elastic capacitor and the capacitance at 1 MHz was measured using an LCR high tester manufactured by Hioki Electric Co., Ltd. . Both results showed good correspondence. The relationship between the degree of extension and the capacitance was measured at a repetition rate of 1 cycle / second between 0% and 50%. As a result, no hysteresis was observed, indicating a good response.
[実施例2]
 実施例1において、伸縮性誘電体層形成用ペーストを用いずに、伸縮性導体層とホットメルト接着材層のみで伸縮性コンデンサを構成した。すなわち、本例においてはホットメルト接着材層がコンデンサの誘電体層として機能する。
 以下、実施例1と同様に評価した。結果、100%伸張時の伸張回復率は100%、であり伸張度と静電容量の関係は1:1の良い対応を示し、ヒステリシスも認められなかった。
[Example 2]
In Example 1, a stretchable capacitor was constituted only by a stretchable conductor layer and a hot-melt adhesive layer without using a stretchable dielectric layer forming paste. That is, in this example, the hot melt adhesive layer functions as a dielectric layer of the capacitor.
The evaluation was made in the same manner as in Example 1. As a result, the extension recovery rate at 100% extension was 100%, the relationship between the degree of extension and the capacitance showed a good correspondence of 1: 1, and no hysteresis was observed.
[実施例3]
 伸縮性のスポーツウェア用生地を基材として、実施例1にて得られた伸縮性導体層形成用ペースト、伸縮性誘電体層形成用ペーストを、スクリーン印刷法を用いて、図5の構成に印刷乾燥を繰り返して積層し、伸縮性コンデンサを得た。なお伸縮性の下地層、誘電体層、絶縁カバー層はいずれも、伸縮性誘電体層形成用ペーストによって構成した。各層の、断面観察によって得られた厚さは以下の通りである。
 伸縮性基材  約800μm
 伸縮性下地層 約70μm
 第1の伸縮性導体層 18μm
 伸縮性誘電体層   24μm 
 第2の伸縮性導体層 16μm
 伸縮性絶縁カバー層 23μm
 以下、実施例1と同様に評価した。結果、100%伸張時の伸張回復率は100%、であり伸張度と静電容量の関係は1:1の良い対応を示し、ヒステリシスも認められなかった。
[Example 3]
Using the stretchable sportswear fabric as a base material, the stretchable conductor layer forming paste and the stretchable dielectric layer forming paste obtained in Example 1 were formed into the configuration shown in FIG. 5 using a screen printing method. Print drying was repeated and laminated to obtain an elastic capacitor. The stretchable underlayer, dielectric layer, and insulating cover layer were all composed of a stretchable dielectric layer forming paste. The thickness of each layer obtained by cross-sectional observation is as follows.
Elastic substrate about 800μm
Elastic base layer approx. 70μm
First elastic conductor layer 18μm
Stretchable dielectric layer 24μm
Second stretchable conductor layer 16 μm
Elastic insulation cover layer 23μm
The evaluation was made in the same manner as in Example 1. As a result, the extension recovery rate at 100% extension was 100%, the relationship between the degree of extension and the capacitance showed a good correspondence of 1: 1, and no hysteresis was observed.
[応用実施例1]
 本発明の実施例1の手法で、幅1cm、有効長さ5cmの伸縮性コンデンサを作製し、コンプレッションタイプのスポーツシャツの胸部分に縫い付けた。次いで25才の健康な男性に伸縮性コンデンサを取り付けたスポーツシャツを着用させ、呼吸と、静電容量変化の関係を求めた。結果を図7に示す。
 図7において、
    0~ 30秒 普通に呼吸
   30~ 60秒 息を吸って止める
   60~ 70秒 普通に呼吸
   70~ 90秒 息を吐いて止める
  100~140秒 深呼吸
である。結果、本発明の伸縮性コンデンサを呼吸検知のためのセンサー素子として用いた場合、良好に呼吸状態をモニターできることが示された。
[Application Example 1]
A stretchable capacitor having a width of 1 cm and an effective length of 5 cm was produced by the method of Example 1 of the present invention, and was sewn to the chest portion of a compression-type sports shirt. Next, a 25-year-old healthy man was allowed to wear a sports shirt with an elastic capacitor, and the relationship between breathing and capacitance change was determined. The results are shown in FIG.
In FIG.
0-30 seconds Normal breathing 30-60 seconds Inhale and stop 60-70 seconds Normal breathing 70-90 seconds Exhale and stop 100-140 seconds Deep breathing. As a result, it was shown that when the stretchable capacitor of the present invention is used as a sensor element for detecting respiration, the respiration state can be monitored well.
[実施例11]
 ニトリル量40質量%、ムーニー粘度46のニトリルブタジエンゴム12質量部、
 イソホロン30質量部、
 平均粒子径6μmの微細フレーク状銀粉[福田金属箔粉工業社製 商品名Ag-XF301]58.0質量部、
 を均一に混合し、三本ロールミルにて分散することにより伸縮性導電層形成用ペーストを得た。
 得られた伸縮性導電層形成用ペーストを離型PETフィルム状にスクリーン印刷法を用いて、塗布乾燥し、厚さ22μmの伸縮性導体シートを得た。
[Example 11]
Nitrile amount 40% by weight, Mooney viscosity 46 nitrile butadiene rubber 12 parts by weight,
30 parts by mass of isophorone,
58.0 parts by mass of fine flaky silver powder having an average particle size of 6 μm [trade name Ag-XF301, manufactured by Fukuda Metal Foil Powder Industry Co., Ltd.]
Were uniformly mixed and dispersed with a three roll mill to obtain a stretchable conductive layer forming paste.
The obtained paste for forming a stretchable conductive layer was applied to a release PET film using a screen printing method and dried to obtain a stretchable conductor sheet having a thickness of 22 μm.
 得られた伸縮性導体シートを10mm幅、200mm長にカットし、長さ方向の抵抗値と厚さから比抵抗を求めた。結果、比抵抗は1.0×10-4Ωcmであった。
 ついで、伸縮性導体シートの長さ方向の両端を引っ張り試験器のクリップに挟み、有効長を160mmとして320mmまで引っ張り、両端の抵抗値と、試験片の最狭部の幅、および、厚さを用いて100%伸張時の比抵抗を算出した。結果、100%伸張時の比抵抗は48×10-4Ωcmであった。その他の特性を含め、評価結果を表1.に示す
The obtained stretchable conductor sheet was cut into a width of 10 mm and a length of 200 mm, and the specific resistance was determined from the resistance value and thickness in the length direction. As a result, the specific resistance was 1.0 × 10 −4 Ωcm.
Next, both ends of the stretchable conductor sheet in the length direction are sandwiched between clips of a tensile tester, and the effective length is 160 mm and pulled to 320 mm. The resistance value of both ends and the width and thickness of the narrowest part of the test piece are determined. Using this, the specific resistance at 100% elongation was calculated. As a result, the specific resistance at 100% elongation was 48 × 10 −4 Ωcm. Table 1 shows the evaluation results including other characteristics. Shown in
 ニトリル量40質量%、ムーニー粘度46のNBR(ニトリルブタジエンゴム)30質量部を、イソホロン40質量部、に溶解させ、伸縮性誘電体層形成用ペーストを得た。得られた伸縮性誘電体層形成用ペーストを、離型PETフィルム状にスクリーン印刷法を用いて、塗布乾燥し、厚さ35μmの伸縮性導体シートを得た。得られた伸縮性誘電体層の評価結果を表1.に示す 30 parts by mass of NBR (nitrile butadiene rubber) having a nitrile amount of 40% by mass and a Mooney viscosity of 46 was dissolved in 40 parts by mass of isophorone to obtain a stretchable dielectric layer forming paste. The obtained paste for forming a stretchable dielectric layer was applied and dried on a release PET film using a screen printing method to obtain a stretchable conductor sheet having a thickness of 35 μm. Table 1 shows the evaluation results of the obtained stretchable dielectric layer. Shown in
 離型PETフィルム上、先に得られた伸縮性導体形成用ペースト、伸縮性誘電体形成用ペースト、さらに伸縮性導体形成用ペーストの順で、スクリーン印刷法を用いて印刷、乾燥硬化を繰り返し、幅10mm、長さ700mmの積層構造を有する伸縮性コンデンサを得た。得られた伸縮性コンデンサを離型PETフィルムから剥がし、伸縮回復率と20%伸張応力を評価した。結果を表1に示す。 On the release PET film, in the order of the stretchable conductor-forming paste, the stretchable dielectric-forming paste, and the stretchable conductor-forming paste obtained earlier, printing and drying / curing are repeated using the screen printing method, An elastic capacitor having a laminated structure with a width of 10 mm and a length of 700 mm was obtained. The obtained stretchable capacitor was peeled off from the release PET film, and stretch recovery rate and 20% stretch stress were evaluated. The results are shown in Table 1.
 得られた伸縮性コンデンサを長さ900mm、幅24mm、厚さ1.2mmのカラーストレッチベルトにホットメルト接着材を用いて積層し、面ファスナーにて周長調整が出来るように細工し、電極部にスナップホックを取り付けてコネクタとし、日置電機社製LCRハイテスターを用いて、伸縮性コンデンサの長さ方向の伸びと1MHzにおける静電容量との関係を測定した。結果両者は良い対応を示した。伸張度0%~50%の間で、1サイクル/秒の繰り返し周期にて伸張度と静電容量の関係を測定した。結果、ヒステリシスは観察されず、良い対応を示した。
 次いで得られた変位センサを25才の健康な男性の胸部に、息を吐いた状態で巻き付け、立位にてずり落ちない程度のテンションをかけて面ファスナーで固定した。その状態で呼吸と、静電容量変化の関係を求めた。結果を図7に示す。
 図7において、
    0~ 30秒 普通に呼吸
   30~ 60秒 息を吸って止める
   60~ 70秒 普通に呼吸
   70~ 90秒 息を吐いて止める
  100~140秒 深呼吸
である。結果、本発明の伸縮性コンデンサを呼吸検知のためのセンサ素子として用いた場合、良好に呼吸状態をモニターできることが示された。また測定中、被験者は、特に違和感を感じなかった。
The obtained stretchable capacitor was laminated on a color stretch belt with a length of 900 mm, a width of 24 mm, and a thickness of 1.2 mm using a hot melt adhesive, and crafted so that the circumference could be adjusted with a hook-and-loop fastener. A snap hook was attached to the connector as a connector, and the relationship between the elongation in the length direction of the stretchable capacitor and the capacitance at 1 MHz was measured using an LCR high tester manufactured by Hioki Electric Co., Ltd. Both results showed good correspondence. The relationship between the degree of extension and the capacitance was measured at a repetition rate of 1 cycle / second between 0% and 50%. As a result, no hysteresis was observed, indicating a good response.
Next, the obtained displacement sensor was wrapped around the chest of a 25-year-old healthy man in a state of exhaling, and fixed with a hook-and-loop fastener with a tension that did not slip off in a standing position. In this state, the relationship between respiration and capacitance change was determined. The results are shown in FIG.
In FIG.
0-30 seconds Normal breathing 30-60 seconds Inhale and stop 60-70 seconds Normal breathing 70-90 seconds Exhale and stop 100-140 seconds Deep breathing. As a result, it was shown that when the stretchable capacitor of the present invention was used as a sensor element for detecting respiration, the respiration state could be monitored well. In addition, during the measurement, the subject did not particularly feel uncomfortable.
 得られた変位センサを300mm×300mmの洗濯ネットに収め、洗濯耐久性試験後に再び、呼吸センシングの可否を確認した。
 以上の結果を表1.に示す。
The obtained displacement sensor was placed in a 300 mm × 300 mm washing net, and the possibility of breath sensing was confirmed again after the washing durability test.
The above results are shown in Table 1. Shown in
[実施例12]
 伸縮性誘電体層としてウレタン樹脂を用いた以外は実施例11と同様に操作し変位センサを製作した。評価結果を表1に示す。
[実施例13]
 伸縮性誘電体層として天然ゴムを用いた以外は実施例11と同様に操作し変位センサを製作した。評価結果を表1に示す。
[実施例14]
 バインダ樹脂にSBR(スチレン-ブタジエンゴム)を用いて、実施例11と同様に操作して伸縮性導体形成用ペーストを得た。次いで得られたペーストを離型PETフィルムにコーティングして乾燥後に剥離し、厚さ56μmの伸縮性導電シートを得た。
 実施例1と同じ伸縮性誘電体層形成用ペーストを離型PETフィルムにコーティングして乾燥後に剥離し、厚さ78μmの伸縮性誘電体シートを得た。各々のシートの評価結果を表1.に示す。
 得られた伸縮性導体シートに伸縮性誘電体シートを重ね、さらに伸縮性導体シートを重ねて3層構成とし、離型PETフィルムで挟み、ホットプレスにて三層をラミネートし、伸縮性コンデンサを得た。
 得られた伸縮性コンデンサを厚さ3mmの発泡ゴムベルトをベルト状基材に用いてラミネートし、変位センサとした。得られたセンサを実施例と同様に評価した。結果を表1に示す。被験者は、やや着用時にきつさを訴えたが、試験中に慣れたとのことで、試験中に違和感は訴えなかった。
[実施例15]
 実施例14にて得られた伸縮性コンデンサを、アンダーシャツを着用した被験者の胸部に同様に巻き付け、呼吸状態を評価した。結果を表1に示す。
[比較例1]
 実施例14にて得られた伸縮性コンデンサを厚さ3mmのゴムベルトにラミネートし変位センサとした。得られた変位センサにて呼吸センシングを試みたが、被験者が息苦しさを感じるとのことで試験を中止した。
[Example 12]
A displacement sensor was manufactured in the same manner as in Example 11 except that urethane resin was used as the stretchable dielectric layer. The evaluation results are shown in Table 1.
[Example 13]
A displacement sensor was manufactured in the same manner as in Example 11 except that natural rubber was used as the stretchable dielectric layer. The evaluation results are shown in Table 1.
[Example 14]
A paste for forming a stretchable conductor was obtained in the same manner as in Example 11 using SBR (styrene-butadiene rubber) as the binder resin. Next, the obtained paste was coated on a release PET film and dried and peeled to obtain a stretchable conductive sheet having a thickness of 56 μm.
The same paste for forming a stretchable dielectric layer as in Example 1 was coated on a release PET film and peeled after drying to obtain a stretchable dielectric sheet having a thickness of 78 μm. Table 1 shows the evaluation results of each sheet. Shown in
A stretchable dielectric sheet is layered on the stretchable conductor sheet obtained, and the stretchable conductor sheet is further stacked to form a three-layer structure, sandwiched between release PET films, laminated in three layers with a hot press, Obtained.
The obtained elastic capacitor was laminated using a foamed rubber belt having a thickness of 3 mm as a belt-like base material to obtain a displacement sensor. The obtained sensor was evaluated in the same manner as in the example. The results are shown in Table 1. The test subject complained of tightness when wearing it, but he was accustomed to the test, and did not complain during the test.
[Example 15]
The stretchable capacitor obtained in Example 14 was similarly wound around the chest of a subject wearing an undershirt, and the respiratory state was evaluated. The results are shown in Table 1.
[Comparative Example 1]
The elastic capacitor obtained in Example 14 was laminated on a rubber belt having a thickness of 3 mm to form a displacement sensor. Respiration sensing was attempted with the obtained displacement sensor, but the test was stopped because the subject felt stuffy.
Figure JPOXMLDOC01-appb-T000001
 
Figure JPOXMLDOC01-appb-T000001
 
[応用実施例2]
 実施例11にて得られた変位センサを被験者10人に着用させ、就寝時の呼吸状態を6時間センシングした。いずれの被験者も違和感無く着用でき、就寝中の姿勢にかかわらず胸部から変位センサがズレることもなく、呼吸状態のモニターが可能であった。
[Application Example 2]
The displacement sensor obtained in Example 11 was worn by 10 subjects, and the respiratory state at bedtime was sensed for 6 hours. All subjects could wear without any discomfort, and the respiratory condition could be monitored without displacement of the displacement sensor from the chest regardless of the sleeping posture.
[実施例21]
 ニトリル量40質量%、ムーニー粘度46のニトリルブタジエンゴム12質量部、
 イソホロン30質量部、
 平均粒子径6μmの微細フレーク状銀粉[福田金属箔粉工業社製 商品名Ag-XF301]58.0質量部、
 を均一に混合し、三本ロールミルにて分散することにより伸縮性導電層形成用ペーストを得た。得られた伸縮性導電層形成用ペーストを離型PETフィルム状にスクリーン印刷法を用いて、塗布乾燥し、厚さ22μmの伸縮性導体シートを得た。
[Example 21]
Nitrile amount 40% by weight, Mooney viscosity 46 nitrile butadiene rubber 12 parts by weight,
30 parts by mass of isophorone,
58.0 parts by mass of fine flaky silver powder having an average particle size of 6 μm [trade name Ag-XF301, manufactured by Fukuda Metal Foil Powder Industry Co., Ltd.]
Were uniformly mixed and dispersed with a three roll mill to obtain a stretchable conductive layer forming paste. The obtained paste for forming a stretchable conductive layer was applied to a release PET film using a screen printing method and dried to obtain a stretchable conductor sheet having a thickness of 22 μm.
 得られた伸縮性導体シートを10mm幅、200mm長にカットし、長さ方向の抵抗値と厚さから比抵抗を求めた。結果、比抵抗は1.0×10-4Ωcmであった。
 ついで、伸縮性導体シートの長さ方向の両端を引っ張り試験器のクリップに挟み、有効長を160mmとして320mmまで引っ張り、両端の抵抗値と、試験片の最狭部の幅、および、厚さを用いて100%伸張時の比抵抗を算出した。結果、100%伸張時の比抵抗は48×10-4Ωcmであった。その他の特性を含め、評価結果を表2.に示す
The obtained stretchable conductor sheet was cut into a width of 10 mm and a length of 200 mm, and the specific resistance was determined from the resistance value and thickness in the length direction. As a result, the specific resistance was 1.0 × 10 −4 Ωcm.
Next, both ends of the stretchable conductor sheet in the length direction are sandwiched between clips of a tensile tester, and the effective length is 160 mm and pulled to 320 mm. The resistance value of both ends and the width and thickness of the narrowest part of the test piece are determined. Using this, the specific resistance at 100% elongation was calculated. As a result, the specific resistance at 100% elongation was 48 × 10 −4 Ωcm. Table 2 shows the evaluation results including other characteristics. Shown in
 ニトリル量40質量%、ムーニー粘度46のNBR(ニトリルブタジエンゴム)30質量部を、イソホロン40質量部、に溶解させ、伸縮性誘電体層形成用ペーストCC1を得た。得られた伸縮性誘電体層形成用ペーストを、離型PETフィルム状にスクリーン印刷法を用いて、塗布乾燥し、厚さ35μmの伸縮性導体シートを得た。得られた伸縮性誘電体層の評価結果を表2.に示す 30 parts by mass of NBR (nitrile butadiene rubber) having a nitrile amount of 40% by mass and a Mooney viscosity of 46 were dissolved in 40 parts by mass of isophorone to obtain a paste CC1 for forming a stretchable dielectric layer. The obtained paste for forming a stretchable dielectric layer was applied and dried on a release PET film using a screen printing method to obtain a stretchable conductor sheet having a thickness of 35 μm. Table 2 shows the evaluation results of the obtained stretchable dielectric layer. Shown in
 離型PETフィルム上、先に得られた伸縮性導体形成用ペースト、伸縮性誘電体形成用ペースト、さらに伸縮性導体形成用ペーストの順で、スクリーン印刷法を用いて印刷、乾燥硬化を繰り返し、幅10mm、長さ200mmの積層構造を有する伸縮性コンデンサを得た。得られた伸縮性コンデンサを離型PETフィルムから剥がし、伸縮回復率と20%伸張応力を評価した。結果を表2に示す。
 さらに伸縮性コンデンサの両極に導電性接着材にて銀被覆糸を接続し、配線を引き出して日置電機社製LCRハイテスターと結線し、各伸縮性コンデンサの伸張度と1MHzにおける静電容量との関係を測定した。結果両者は良い対応を示した。伸張度0%~50%の間で、1サイクル/秒の繰り返し周期にて伸張度と静電容量の関係を測定した。結果、ヒステリシスは観察されず、良い対応を示した。
On the release PET film, in the order of the stretchable conductor-forming paste, the stretchable dielectric-forming paste, and the stretchable conductor-forming paste obtained earlier, printing and drying / curing are repeated using the screen printing method, An elastic capacitor having a laminated structure with a width of 10 mm and a length of 200 mm was obtained. The obtained stretchable capacitor was peeled off from the release PET film, and stretch recovery rate and 20% stretch stress were evaluated. The results are shown in Table 2.
In addition, silver-coated yarn is connected to both electrodes of the elastic capacitor with conductive adhesive, and the wiring is drawn out and connected to an LCR high tester manufactured by Hioki Electric Co., Ltd. The expansion degree of each elastic capacitor and the capacitance at 1 MHz The relationship was measured. Both results showed good correspondence. The relationship between the degree of extension and the capacitance was measured at a repetition rate of 1 cycle / second between 0% and 50%. As a result, no hysteresis was observed, indicating a good response.
 得られた伸縮性コンデンサをストレッチ素材からなる長袖シャツの両肘の内側と外側にそれぞれホットメルト接着シートを用いて貼り付けた。次いで左右のコンデンサのそれぞれ両極から長袖シャツの胸部分に取り付けたコネクタまで銀被覆糸にて配線を縫い付けた。本実施例では試験的にコネクタと日置電機社製LCRハイテスターを結線し、肘を曲げた際の1MHzにおける静電容量変化をモニターできるようにしてセンシングウェアを構成した。
 得られたセンシングウェアを25才の健康な男性に着用させ腕(肘)の曲げと静電容量変化の対応を測定した。結果、被験者は特に違和感を感じることなく運動を行い、肘の外側に配置された伸縮性コンデンサの静電容量と肘の曲げ角度がヒステリシス無く、良い相関を示すデータを得ることができた。
 本実施例では、伸縮性コンデンサの配置を肘の外側と内側の二本に留めたが、さらに本数を増やして肘を取り囲むように伸縮性コンデンサを配置すれば、その中の最も大きな変化を示す伸縮性コンデンサの出力を肘の曲げ角度と認識するようにプログラムすれば、長袖シャツを多少ずらして着用した場合にも適切に肘の曲げ角度を検出可能になると考えられる。また。伸縮性コンデンサは十分な長さを有するために、多少の体格(腕の長さ)の違いは十分カバーできることも示唆された。
 得られたセンシングウェアを300mm×300mmの洗濯ネットに収め、洗濯耐久性試験後に再び、呼吸センシングの可否を確認した結果、問題無く動作することが確認された。
The obtained elastic capacitor was affixed to the inner and outer sides of both elbows of a long-sleeved shirt made of a stretch material using a hot melt adhesive sheet. Next, wiring was sewn with silver-coated threads from both poles of the left and right capacitors to the connector attached to the chest of the long sleeve shirt. In this example, a connector and a Hikari Denki LCR high tester were experimentally connected, and the sensing wear was configured so that the change in capacitance at 1 MHz when the elbow was bent could be monitored.
The obtained sensing wear was worn by a 25-year-old healthy man and the correspondence between bending of the arm (elbow) and capacitance change was measured. As a result, the subject exercised without feeling a sense of incongruity, and the capacitance of the elastic capacitor placed on the outside of the elbow and the bending angle of the elbow were free from hysteresis, and data showing a good correlation could be obtained.
In this example, the arrangement of the elastic capacitors was fixed to the outside and the inside of the elbow. However, if the elastic capacitors are arranged so as to surround the elbow by further increasing the number, the largest change among them is shown. If it is programmed to recognize the output of the elastic capacitor as the elbow bending angle, it is considered that the elbow bending angle can be detected properly even when the long-sleeved shirt is worn slightly shifted. Also. It was also suggested that the elastic capacitor has a sufficient length, so that it can sufficiently cover some differences in physique (arm length).
The obtained sensing wear was placed in a 300 mm × 300 mm washing net, and after confirming whether or not breathing sensing was possible again after the washing durability test, it was confirmed that the device operated without problems.
[実施例22]
 伸縮性誘電体層としてウレタン樹脂を用いた以外は実施例21と同様に操作し、幅10mm、長さ600mmの伸縮性コンデンサを製作した。評価結果を表2に示す。
 得られた伸縮性コンデンサを、ストレッチ素材を用いたTシャツの胸部周囲と腹部周囲にホットメルト接着シートにて貼り付け、同様に配線を付設してセンシングウェアを得た。
 得られたセンシングウェアを25才の健康な男性に着用させ就寝時の呼吸状態と静電容量変化の対応を測定した。結果、被験者は特に違和感を感じることなく熟睡し、睡眠中御呼吸状態を静電容量変化にてモニタリングすることが可能であった。本センシングウェアは睡眠時無呼吸症候群の検知などに有用であろう事が示唆された。また洗濯試験後も動作に問題は無かった。
[Example 22]
An elastic capacitor having a width of 10 mm and a length of 600 mm was manufactured in the same manner as in Example 21 except that urethane resin was used as the elastic dielectric layer. The evaluation results are shown in Table 2.
The obtained stretchable capacitor was affixed around the chest and abdomen of a T-shirt using a stretch material with a hot melt adhesive sheet, and wiring was similarly attached to obtain sensing wear.
The obtained sensing wear was worn by a 25-year-old healthy man, and the correspondence between the sleeping state and the change in capacitance was measured. As a result, the subject was able to sleep well without feeling uncomfortable, and was able to monitor the respiratory state during sleep by changing the capacitance. It was suggested that this sensing wear would be useful for detecting sleep apnea syndrome. There was no problem in operation after the washing test.
[実施例23]
 伸縮性誘電体層として天然ゴムを用い、離型PETフィルムではなく、ホットメルト層付きウレタンシートを基材に用いて、基材上に印刷法により伸縮性コンデンサを形成した。本実施例では、伸縮性導体層を延長して配線として使用できるように配置した。得られた伸縮性コンデンサを靴下長手方向の甲部分と、かかと部分に沿うようにホットメルト接着シートで貼り付け、伸縮性導電層による配線の端部に金属製のスナップホックを取り付けてコネクタとし、靴下型のセンシングウェアを得た。
 得られたセンシングウェアにて足首の動きをヒステリシス無く、良好にモニタリングすることが可能であった。被験者は違和感を訴えなかった。また洗濯試験後も動作に問題は無かった。
[Example 23]
A stretchable capacitor was formed on the substrate by a printing method using natural rubber as the stretchable dielectric layer and using a urethane sheet with a hot melt layer instead of a release PET film as the substrate. In this example, the stretchable conductor layer was extended so that it could be used as a wiring. Paste the obtained elastic capacitor with the hot melt adhesive sheet along the instep and heel part of the sock longitudinal direction, attach a metal snap hook to the end of the wiring with the elastic conductive layer to make a connector, Socks-type sensing wear was obtained.
It was possible to monitor the movement of the ankle satisfactorily without hysteresis with the obtained sensing wear. The subject did not complain. There was no problem in operation after the washing test.
[実施例24]
 バインダ樹脂にSBR(スチレン-ブタジエンゴム)を用いて、実施例と同様に操作して伸縮性導体形成用ペーストを得た。次いで得られたペーストを離型PETフィルムにコーティングして乾燥後に剥離し、厚さ56μmの伸縮性導電シートを得た。
 実施例1と同じ伸縮性誘電体層形成用ペーストを離型PETフィルムにコーティングして乾燥後に剥離し、厚さ78μmの伸縮性誘電体シートを得た。各々のシートの評価結果を表2.に示す。
 得られた伸縮性導体シートに伸縮性誘電体シートを重ね、さらに伸縮性導体シートを重ねて3層構成とし、離型PETフィルムで挟み、ホットプレスにて三層をラミネートし、伸縮性コンデンサを得た。
 得られた伸縮性コンデンサをタイツの腰横部分、臀部、膝部に配置してホットメルト接着シートで貼り付け、実施例1と同様に銀被覆糸にて配線し、下半身の動作確認用のセンシングウェアを得た。以下実施例1と同様に評価した。結果、得られたセンシングウェアにて膝の屈伸、腰の曲げ伸ばしをヒステリシス無く、良好にモニタリングすることが可能であった。被験者は違和感を訴えず、また洗濯試験後も動作に問題は無かった。
[比較例2]
 実施例24において伸縮性誘電体層として架橋天然ゴムシートを用いた以外は同様に操作して伸縮性コンデンサを得た。
 次いで得られた伸縮性コンデンサを実施例21と同様に長袖シャツに貼り付け、腕の運動モニター試験を実施した。結果、被験者は腕を曲げる際に大きな違和感を感じるということで、自然な動作の検出は困難であると判断した。
[Example 24]
Using SBR (styrene-butadiene rubber) as the binder resin, a paste for forming a stretchable conductor was obtained in the same manner as in the example. Next, the obtained paste was coated on a release PET film and dried and peeled to obtain a stretchable conductive sheet having a thickness of 56 μm.
The same paste for forming a stretchable dielectric layer as in Example 1 was coated on a release PET film and peeled after drying to obtain a stretchable dielectric sheet having a thickness of 78 μm. Table 2 shows the evaluation results of each sheet. Shown in
A stretchable dielectric sheet is layered on the stretchable conductor sheet obtained, and the stretchable conductor sheet is further stacked to form a three-layer structure, sandwiched between release PET films, laminated in three layers with a hot press, Obtained.
The obtained stretchable capacitor is placed on the waist side, buttocks and knees of the tights and attached with a hot-melt adhesive sheet, wired with silver-coated yarn in the same manner as in Example 1, and sensing for checking the operation of the lower body I got wear. Evaluation was performed in the same manner as in Example 1 below. As a result, it was possible to satisfactorily monitor knee bending and stretching with no hysteresis with the obtained sensing wear. The subject did not complain, and there was no problem in operation after the laundry test.
[Comparative Example 2]
A stretchable capacitor was obtained in the same manner as in Example 24 except that a crosslinked natural rubber sheet was used as the stretchable dielectric layer.
Subsequently, the obtained stretchable capacitor was attached to a long-sleeved shirt in the same manner as in Example 21, and an arm motion monitor test was performed. As a result, it was judged that it was difficult to detect natural movement because the subject felt a great sense of incongruity when bending his arm.
Figure JPOXMLDOC01-appb-T000002
 
Figure JPOXMLDOC01-appb-T000002
 
[実施例31]
<樹脂製造例1>
ポリウレタン樹脂組成物(A)の合成
1Lの4つ口フラスコにODX-2044(DIC製ポリエステルジオール)100部、鎖延長剤として1、6-ヘキサンジオール(宇部興産製)30部をジエチレングリコールモノエチルエーテルアセテート98部に入れ、マントルヒーターにセットした。攪拌シールをつけた攪拌棒、還流冷却器、温度検出器、玉栓をフラスコにセットして50℃で30分攪拌して溶解した。T-100(東ソー製、イソシアネート)を53部、触媒としてジブチル錫ジラウレート0.1部を添加した。反応熱による温度上昇が落ち着いたところで90℃に昇温して4時間反応することによりポリウレタン樹脂組成物(A)を得た。得られた樹脂の還元粘度(dl/g)は0.81、    ガラス転移温度は-20℃、ウレタン基濃度は3325m当量/kg、弾性率は70MPa、破断伸度は1180%であった。
[Example 31]
<Resin production example 1>
Synthesis of polyurethane resin composition (A) In a 1 L four-necked flask, 100 parts of ODX-2044 (DIC polyester diol), 30 parts of 1,6-hexanediol (manufactured by Ube Industries) as a chain extender, diethylene glycol monoethyl ether It was put in 98 parts of acetate and set in a mantle heater. A stir bar with a stirring seal, a reflux condenser, a temperature detector, and a ball stopper were set in the flask and dissolved by stirring at 50 ° C. for 30 minutes. 53 parts of T-100 (produced by Tosoh Corporation, isocyanate) and 0.1 part of dibutyltin dilaurate as a catalyst were added. When the temperature rise due to the reaction heat settled, the temperature was raised to 90 ° C. and reacted for 4 hours to obtain a polyurethane resin composition (A). The obtained resin had a reduced viscosity (dl / g) of 0.81, a glass transition temperature of −20 ° C., a urethane group concentration of 3325 meq / kg, an elastic modulus of 70 MPa, and a breaking elongation of 1180%.
<導電性ペーストの作製例>
 まず、所定の溶剤量の半分量の溶剤にバインダー樹脂を溶解し、得られた溶液に金属系粒子、処理剤、残りの溶剤を添加して予備混合の後、三本ロールミルにて分散することによりペースト化し伸縮性導電ペーストを得た。ペースト組成は
  バインダー樹脂(得られたポリウレタン樹脂)   6.8質量部
  金属系粒子Ag01              73.0質量部
  溶剤                     18.5質量部
  硫酸バリウム                  1.3質量部
  レベリング剤                  0.4質量部
である。ここに、金属系粒子Ag01は、三 井金属鉱業社製のSPH02J(導電性粒子、銀粉末、平均粒子径:1μm)である。
溶剤:ECAは、ジエチレングリコールモノエチルエーテルアセテートである。   
添加剤:硫酸バリウムは堺化学工業株式会社製B-34(粒径0.3μm)である。
添加剤:レべリング剤は、 共栄社化学株式会社製MKコンクである。
 日清紡社製ホットメルト層付きポリウレタンフィルム:モビロンフィルムMF103F3(厚さ100μm、片面にホットメルト層を有する)を伸縮性誘電体層とし、その両面に、得られた伸縮性導電ペーストを厚さ25μmに成るように印刷し乾燥硬化し伸縮性コンデンサを得た。得られた伸縮性コンデンサを実施例11と同様に評価した。結果を表3に示す。
[実施例32]
 日清紡社製ポリウレタンフィルム:モビロンフィルムMOB100S(厚さ100μm)を伸縮性誘電体層とし、その両面に、実施例31にて得られた伸縮性導電ペーストを厚さ25μmになるように印刷し乾燥硬化し伸縮性コンデンサを得た。得られた伸縮性コンデンサを実施例11と同様に評価した。結果を表3に示す。
[実施例33]
ニッカン工業社製 NSシート(厚さ40μm)を伸縮性誘電体層とし、その両面に、実施例31にて得られた伸縮性導電ペーストを厚さ25μmになるように印刷し乾燥硬化し伸縮性コンデンサを得た。得られた伸縮性コンデンサを実施例11と同様に評価した。結果を表3に示す。
[実施例34]
DINGZING社製ポリウレタンフィルム:Provecta FS1123(厚さ50μm)を伸縮性誘電体層とし、その両面に、実施例31にて得られた伸縮性導電ペーストを厚さ25μmになるように印刷し乾燥硬化し伸縮性コンデンサを得た。得られた伸縮性コンデンサを実施例11と同様に評価した。結果を表3に示す。
<Example of making conductive paste>
First, dissolve the binder resin in half the amount of the solvent specified, add the metal particles, the treating agent and the remaining solvent to the resulting solution, and after premixing, disperse in a three-roll mill. To obtain a stretchable conductive paste. The paste composition is 6.8 parts by mass of binder resin (obtained polyurethane resin) 73.0 parts by mass of metal-based particles Ag01 78.5 parts by mass of barium sulfate 1.3 parts by mass leveling agent 0.4 parts by mass. Here, the metal-based particles Ag01 are SPH02J (conductive particles, silver powder, average particle size: 1 μm) manufactured by Mitsui Mining & Smelting Co., Ltd.
Solvent: ECA is diethylene glycol monoethyl ether acetate.
Additive: Barium sulfate is B-34 (particle size 0.3 μm) manufactured by Sakai Chemical Industry Co., Ltd.
Additive: Leveling agent is MK Conk manufactured by Kyoeisha Chemical Co., Ltd.
Polyurethane film with hot melt layer manufactured by Nisshinbo Co., Ltd .: Mobilon film MF103F3 (thickness 100 μm, having a hot melt layer on one side) is used as a stretchable dielectric layer, and the resulting stretchable conductive paste is 25 μm thick on both sides It was printed and dried and cured to obtain a stretchable capacitor. The obtained elastic capacitor was evaluated in the same manner as in Example 11. The results are shown in Table 3.
[Example 32]
Nisshinbo Co., Ltd. polyurethane film: Mobilon film MOB100S (thickness: 100 μm) is used as a stretchable dielectric layer, and the stretchable conductive paste obtained in Example 31 is printed on both sides to a thickness of 25 μm and dried. Cured to obtain a stretchable capacitor. The obtained elastic capacitor was evaluated in the same manner as in Example 11. The results are shown in Table 3.
[Example 33]
An NS sheet (thickness 40 μm) made by Nikkan Kogyo Co., Ltd. is used as a stretchable dielectric layer, and the stretchable conductive paste obtained in Example 31 is printed on both sides to a thickness of 25 μm, dried and cured, and stretchable. A capacitor was obtained. The obtained elastic capacitor was evaluated in the same manner as in Example 11. The results are shown in Table 3.
[Example 34]
DINGZING polyurethane film: Proveta FS1123 (thickness 50 μm) as a stretchable dielectric layer, and the stretchable conductive paste obtained in Example 31 is printed on both sides to a thickness of 25 μm and dried and cured. An elastic capacitor was obtained. The obtained elastic capacitor was evaluated in the same manner as in Example 11. The results are shown in Table 3.
Figure JPOXMLDOC01-appb-T000003
 
 
Figure JPOXMLDOC01-appb-T000003
 
 
産業上の利用分野Industrial application fields
 以上、示してきたように、本発明の伸縮性コンデンサは、長さ方向の伸度と静電容量が良い対応を示すため、様々な変位、変形を検知するセンサー素子として有用である。また、本発明の伸縮性コンデンサは、長さ方向の伸度と静電容量がヒステリシス無く良い対応を示すため、様々な変位、変形を検知するセンサ素子として有用である。さらに本発明の伸縮性コンデンサは、伸張時の応力が小さいため、そのままで、あるいは伸張応力の小さいベルト状基材と組み合わせて、身体に巻き付けて呼吸による身体の周長変化を、被験者に違和感を与えずに測定可能である。さらに本発明の伸縮性コンデンサを用いたセンシングウェアは、自然な着用感であり、進退の動作、状態を非侵襲な状態で計測可能である。なお本実施例では試験的に、デスクトップ型のLCRハイテスターを用いたが、実用においては、小型の計測器と通信機能を組み合わせて、遠隔測定が可能となる。本発明のセンシングウェアは四肢の運動、体形、姿勢、のみならず、呼吸、咀嚼、嚥下、脈動、胎動などを検出することも可能であり、就寝中の動作のモニター、あるいは自動車や機械装置の運転中、各種作業中の身体モニターが可能であり、モーションキャプチャにも応用可能である。さらに本発明は人体のみならず、動物、機械装置にも適用が可能である。 As described above, the elastic capacitor of the present invention is useful as a sensor element for detecting various displacements and deformations because it exhibits a good correspondence between the elongation in the length direction and the electrostatic capacity. The stretchable capacitor of the present invention is useful as a sensor element for detecting various displacements and deformations because the elongation in the length direction and the capacitance show a good correspondence without hysteresis. Furthermore, since the stretchable capacitor of the present invention has a low stress at the time of stretching, it is wrapped in the body as it is or in combination with a belt-like base material having a small stretching stress, and the subject's feeling of strangeness is felt by breathing. It can be measured without giving. Furthermore, the sensing wear using the stretchable capacitor of the present invention has a natural wearing feeling, and can measure the forward and backward movement and state in a non-invasive state. In this embodiment, a desktop type LCR high tester was used as a test, but in practice, remote measurement is possible by combining a small measuring instrument and a communication function. The sensing wear of the present invention can detect not only limb movement, body shape, posture, but also breathing, mastication, swallowing, pulsation, fetal movement, etc. It is possible to monitor the body during driving and various work, and it can also be applied to motion capture. Furthermore, the present invention can be applied not only to the human body but also to animals and mechanical devices.
1.伸縮性導体層(表面電極)
2.伸縮性誘電体層
3.伸縮性導体層(背面電極)
4.伸縮性導体
5.伸縮性誘電体
6.ホットメルト接着層
7.基材
11.伸縮性基材
12.伸縮性下地層
13.第1の伸縮性導体層
14.伸縮性誘電体層
15.第2の伸縮性導体層
16.伸縮性絶縁カバー層
17.裏面電極
18.スルーホール
19.仮基材
 
 
 
 
 
1. Elastic conductor layer (surface electrode)
2. 2. Stretchable dielectric layer Elastic conductor layer (back electrode)
4). Elastic conductor 5. Stretchable dielectric material6. 6. Hot melt adhesive layer Base material 11. Elastic substrate 12. Elastic base layer 13. First stretchable conductor layer 14. Stretchable dielectric layer 15. Second stretchable conductor layer 16. Elastic insulating cover layer 17. Back electrode 18. Through hole 19. Temporary substrate



Claims (24)

  1.  伸縮性導体層、伸縮性誘電体層、伸縮性導体層の順で積層された層構成を少なくとも有するコンデンサであって、前記伸縮性導体層は金属粒子を含有する組成物であって、非伸張時の比抵抗が3×10-3Ωcm以下であり、かつ100%伸張時の比抵抗が非伸張時の100倍以内であることを特徴とする伸縮性コンデンサ。 A capacitor having at least a layer structure in which a stretchable conductor layer, a stretchable dielectric layer, and a stretchable conductor layer are laminated in this order, wherein the stretchable conductor layer is a composition containing metal particles and is non-stretchable A stretchable capacitor characterized in that the specific resistance at the time is 3 × 10 −3 Ωcm or less and the specific resistance at 100% elongation is within 100 times that at non-extension.
  2.  前記伸縮性誘電体層は、無負荷時の比誘電率が2.5以上であり、かつ比誘電率が5以上の無機フィラーを10質量%以下の割合で含有していることを特徴とする請求項1記載の伸縮性コンデンサ。 The stretchable dielectric layer contains an inorganic filler having a relative dielectric constant of 2.5 or more at no load and a relative dielectric constant of 5 or more in a proportion of 10% by mass or less. The stretchable capacitor according to claim 1.
  3.  前記伸縮性導体層は、金属粒子および、引張弾性率が1MPa以上1000MPa以下の柔軟性樹脂を少なくとも含有する伸縮性導体組成物からなり、柔軟性樹脂の配合量が、金属粒子と柔軟性樹脂の合計に対して7~35質量%であることを特徴とする請求項1または2に記載の伸縮性コンデンサ。 The stretchable conductor layer is composed of a stretchable conductor composition containing at least metal particles and a flexible resin having a tensile modulus of elasticity of 1 MPa or more and 1000 MPa or less. The stretchable capacitor according to claim 1 or 2, wherein the content is 7 to 35 mass% with respect to the total.
  4.  前記伸縮性誘電体層が、ホットメルト接着性を有することを特徴とする請求項1から3のいずれかに記載の伸縮性コンデンサ。 The stretchable capacitor according to any one of claims 1 to 3, wherein the stretchable dielectric layer has hot-melt adhesiveness.
  5.  前記伸縮性誘電体層の、透湿度が4000g/m2・24hr以下であることを特徴とする請求項1から4のいずれかに記載の伸縮性コンデンサ。 The stretchable capacitor according to any one of claims 1 to 4, wherein the stretchable dielectric layer has a moisture permeability of 4000 g / m2 · 24 hr or less.
  6.  前記伸縮性誘電体層の、絶縁破壊電圧は1.0kV以上であることを特徴とする請求項1から5のいずれかに記載の伸縮性コンデンサ。 6. The elastic capacitor according to claim 1, wherein the elastic dielectric layer has a dielectric breakdown voltage of 1.0 kV or more.
  7.  前記伸縮性誘電体層が、少なくとも片面にホットメルト接着性のある層を有する多層構造であることを特徴とする請求項1から6のいずれかに記載の伸縮性コンデンサ。 The stretchable capacitor according to any one of claims 1 to 6, wherein the stretchable dielectric layer has a multilayer structure having a layer having a hot-melt adhesive property on at least one surface.
  8.  面方向に100%伸張させた場合の伸張回復率が98%以上であることを特徴とする請求項1から7のいずれかに記載の伸縮性コンデンサ。 The stretchable capacitor according to any one of claims 1 to 7, wherein a stretch recovery rate when stretched 100% in a plane direction is 98% or more.
  9.  請求項1から8のいずれかに記載の伸縮性コンデンサの伸縮性誘電体層の面方向を、測定対象の変形方向に向けて配置し、測定対象の伸縮変形に応じて変化する伸縮性コンデンサの静電容量変化を検知することによって、測定対象の変形を検知する変形センサ。 A surface of the stretchable dielectric layer of the stretchable capacitor according to any one of claims 1 to 8 is arranged so as to face a deformation direction of the measurement target, and the stretchable capacitor changes according to the stretch deformation of the measurement target. A deformation sensor that detects deformation of a measurement object by detecting a change in capacitance.
  10.  前記測定対象の伸縮変形に応じて変化する伸縮性コンデンサの静電容量変化が、主として伸縮性誘電体層の面方向への伸縮に伴う、伸縮性誘電体層の厚さ方向への伸縮による静電容量の変化であることを特徴とする請求項9に記載の変形センサ。 The capacitance change of the stretchable capacitor that changes in accordance with the stretch deformation of the measurement object is mainly caused by the stretch in the thickness direction of the stretchable dielectric layer accompanying the stretch in the surface direction of the stretchable dielectric layer. The deformation sensor according to claim 9, wherein the deformation sensor is a change in electric capacity.
  11.  少なくとも、伸縮性の素材からなるベルト状基材と、ベルト状基材の伸縮に応じて変形可能な伸縮性コンデンサを備えた事を特徴とする変位センサ。 A displacement sensor characterized by comprising at least a belt-like base material made of a stretchable material and a stretchable capacitor that can be deformed according to the expansion and contraction of the belt-like base material.
  12.  前記伸縮性コンデンサの変形がコンデンサの誘電体層の面方向への変形である事を特徴とする請求項11記載の変位センサ。 12. The displacement sensor according to claim 11, wherein the deformation of the elastic capacitor is a deformation in a surface direction of the dielectric layer of the capacitor.
  13.  前記伸縮性コンデンサが、伸縮性導体層、伸縮性誘電体層、伸縮性導体層の順で積層された層構成を有するコンデンサであって、前記伸縮性導体層の比抵抗が1×10-3Ωcm以下であり、前記伸縮性誘電体層が、引張降伏伸度が70%以上の伸縮性絶縁高分子により構成されていることを特徴とする請求項11または12に記載の変位センサ。 The stretchable capacitor is a capacitor having a layer structure in which a stretchable conductor layer, a stretchable dielectric layer, and a stretchable conductor layer are laminated in this order, and the specific resistance of the stretchable conductor layer is 1 × 10 −3. The displacement sensor according to claim 11 or 12, wherein the stretchable dielectric layer is made of a stretchable insulating polymer having a tensile yield elongation of 70% or more.
  14.  変位センサのベルト長さ方向への20%伸長時の応力が20N以下であることを特徴とする請求項11から13のいずれかに記載の変位センサ。 The displacement sensor according to any one of claims 11 to 13, wherein a stress at the time of 20% elongation in the belt length direction of the displacement sensor is 20 N or less.
  15.  前記ベルト状物の全長に対して、伸縮性コンデンサを備える部分が10%以上100%以下であることを特徴とする請求項11から14のいずれかに記載の変位センサ。 The displacement sensor according to any one of claims 11 to 14, wherein a portion including the elastic capacitor is 10% or more and 100% or less with respect to the entire length of the belt-like object.
  16.  請求項11~15のいずれかに記載の変位センサを、人体の胴体周囲に配置し、胴体の周長変化を測定することにより呼吸状態を検知することを特徴とする呼吸状態のセンシング方法。 A respiratory state sensing method, wherein the displacement sensor according to any one of claims 11 to 15 is arranged around a human torso and a respiratory state is detected by measuring a change in circumference of the torso.
  17.  伸縮性コンデンサ、伸縮性コンデンサと伸縮性コンデンサの静電容量を検出するデバイスとを接続するための電気配線を備えた事を特徴とするセンシングウェア。 Sensing ware characterized by the provision of electrical wiring for connecting stretchable capacitors, stretchable capacitors, and devices that detect the capacitance of stretchable capacitors.
  18.  前記伸縮性コンデンサが、伸縮性導体層、伸縮性誘電体層、伸縮性導体層の順で積層された層構成を有するコンデンサであって、前記伸縮性導体層の比抵抗が1×10-3Ωcm以下であり、前記伸縮性誘電体層が、引張降伏伸度が70%以上の伸縮性絶縁高分子により構成されていることを特徴とする請求項17に記載のセンシングウェア。 The stretchable capacitor is a capacitor having a layer structure in which a stretchable conductor layer, a stretchable dielectric layer, and a stretchable conductor layer are laminated in this order, and the specific resistance of the stretchable conductor layer is 1 × 10 −3. 18. The sensing wear according to claim 17, wherein the stretchable dielectric layer is made of a stretchable insulating polymer having a tensile yield elongation of 70% or more.
  19.  前記伸縮性コンデンサの変形が、ウェアの伸長方向となるように配置されていることを特徴とする請求項17または18に記載のセンシングウェア。 The sensing ware according to claim 17 or 18, wherein the elastic capacitor is arranged so that the deformation of the elastic capacitor is in the direction of the wear.
  20.  前記伸縮性コンデンサの面方向への20%伸長時の応力が15N/cm以下であることを特徴とする請求項17から19のいずれかに記載のセンシングウェア。 The sensing wear according to any one of claims 17 to 19, wherein a stress at the time of 20% elongation in the surface direction of the elastic capacitor is 15 N / cm or less.
  21.  人体上半身用の衣服であり、少なくとも肘部分、上腕周囲、下腕周囲、肩部分、背面、胸部周囲、腹部周囲、脇腹部分のいずれかの個所に前記伸縮性コンデンサを配置した事を特徴とする請求項17から20のいずれかに記載のセンシングウェア。 It is a clothing for the upper body of the human body, characterized in that the elastic capacitor is disposed at least at any of the elbow, upper arm, lower arm, shoulder, back, chest, abdomen, and flank. The sensing wear according to any one of claims 17 to 20.
  22.  人体下半身用の衣服であり、少なくとも膝部分、足首部分、大腿部周囲、脛部周囲、股関節部分、腰部分のいずれかの個所に前記伸縮性コンデンサを配置した事を特徴とする請求項17から20のいずれかに記載のセンシングウェア。 18. The garment for the lower body of the human body, wherein the stretchable capacitor is disposed at least at any one of a knee part, an ankle part, a thigh circumference, a shin circumference, a hip joint part, and a waist part. To Sensingware according to any one of 20.
  23.  手袋形状であり、少なくとも手首、手指の各関節の一個所以上のいずれかの部分に前記伸縮性コンデンサを配置した事を特徴とする請求項17から20のいずれかに記載のセンシングウェア。 The sensing wear according to any one of claims 17 to 20, wherein the sensing wear is a glove shape, and the stretchable capacitor is disposed at least in one portion of each joint of the wrist and fingers.
  24.  靴下形状であり、少なくとも足首、足指の各関節の一個所以上のいずれかの部分に前記伸縮性コンデンサを配置した事を特徴とする請求項17から20のいずれかに記載のセンシングウェア。
     
     
     
     
     
     
    The sensing ware according to any one of claims 17 to 20, wherein the sensing ware has a sock shape, and the stretchable capacitor is disposed at least in one portion of each joint of the ankle and toe.





PCT/JP2017/032247 2016-09-21 2017-09-07 Stretchable capacitor, deformation sensor, displacement sensor, method for sensing respiration state, and sensing wear WO2018056062A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018540956A JP7060847B2 (en) 2016-09-21 2017-09-07 Elastic capacitors, deformation sensors, displacement sensors, respiratory state sensing methods and sensing wear

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2016-184134 2016-09-21
JP2016184134 2016-09-21
JP2016-220285 2016-11-11
JP2016220285 2016-11-11
JP2016222172 2016-11-15
JP2016-222172 2016-11-15

Publications (1)

Publication Number Publication Date
WO2018056062A1 true WO2018056062A1 (en) 2018-03-29

Family

ID=61690346

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/032247 WO2018056062A1 (en) 2016-09-21 2017-09-07 Stretchable capacitor, deformation sensor, displacement sensor, method for sensing respiration state, and sensing wear

Country Status (3)

Country Link
JP (1) JP7060847B2 (en)
TW (1) TWI799389B (en)
WO (1) WO2018056062A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020009224A1 (en) * 2018-07-06 2020-01-09 グンゼ株式会社 Tension sensor and manufacturing method therefor
TWI683326B (en) * 2018-09-21 2020-01-21 矽品精密工業股份有限公司 Line circuit capacitance structure
WO2021017841A1 (en) * 2019-07-18 2021-02-04 宁波韧和科技有限公司 Capacitive elastic strain sensor, and preparation method and use therefor
WO2021255972A1 (en) * 2020-06-16 2021-12-23 東洋紡株式会社 Stretchable capacitor
RU2798748C1 (en) * 2021-12-30 2023-06-26 Федеральное государственное бюджетное образовательное учреждение высшего образования "Петрозаводский государственный университет" Capacitive bending strain sensor

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011002256A (en) * 2009-06-16 2011-01-06 Hyper Drive Corp Sensor using field reactive polymer
JP2011501990A (en) * 2007-10-18 2011-01-20 ラハミム・シェイク Apnea detector and system
JP2016153729A (en) * 2015-02-20 2016-08-25 住友理工株式会社 Deformation amount measuring structure

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3855950B2 (en) 2003-03-19 2006-12-13 株式会社デンソー Capacitive humidity sensor
WO2014080470A1 (en) * 2012-11-21 2014-05-30 東海ゴム工業株式会社 Flexible conductive member and transducer using same
US10588569B2 (en) * 2015-01-14 2020-03-17 Toyobo Co., Ltd. Conductive fabric
CN105448537B (en) * 2015-12-09 2017-10-27 华东理工大学 Stretchable gel of modified polyolefine elastomer and application thereof

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011501990A (en) * 2007-10-18 2011-01-20 ラハミム・シェイク Apnea detector and system
JP2011002256A (en) * 2009-06-16 2011-01-06 Hyper Drive Corp Sensor using field reactive polymer
JP2016153729A (en) * 2015-02-20 2016-08-25 住友理工株式会社 Deformation amount measuring structure

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020009224A1 (en) * 2018-07-06 2020-01-09 グンゼ株式会社 Tension sensor and manufacturing method therefor
JP2020008418A (en) * 2018-07-06 2020-01-16 グンゼ株式会社 Tension sensor and manufacturing method therefor
TWI683326B (en) * 2018-09-21 2020-01-21 矽品精密工業股份有限公司 Line circuit capacitance structure
WO2021017841A1 (en) * 2019-07-18 2021-02-04 宁波韧和科技有限公司 Capacitive elastic strain sensor, and preparation method and use therefor
WO2021255972A1 (en) * 2020-06-16 2021-12-23 東洋紡株式会社 Stretchable capacitor
JP2021196340A (en) * 2020-06-16 2021-12-27 東洋紡株式会社 Elastic capacitor
JP2021196286A (en) * 2020-06-16 2021-12-27 東洋紡株式会社 Elastic capacitor
JP2021196339A (en) * 2020-06-16 2021-12-27 東洋紡株式会社 Elastic capacitor
JP7047956B2 (en) 2020-06-16 2022-04-05 東洋紡株式会社 Elastic capacitor
JP7047957B2 (en) 2020-06-16 2022-04-05 東洋紡株式会社 Elastic capacitor
RU2798748C1 (en) * 2021-12-30 2023-06-26 Федеральное государственное бюджетное образовательное учреждение высшего образования "Петрозаводский государственный университет" Capacitive bending strain sensor

Also Published As

Publication number Publication date
TWI799389B (en) 2023-04-21
TW201814749A (en) 2018-04-16
JPWO2018056062A1 (en) 2019-12-26
JP7060847B2 (en) 2022-04-27

Similar Documents

Publication Publication Date Title
JP6624328B2 (en) Method for manufacturing elastic electrode sheet, method for manufacturing elastic composite electrode sheet, method for manufacturing biological information measurement interface
TWI712370B (en) Clothing-type electronic equipment and manufacturing method of clothing-type electronic equipment
CN110031145B (en) Sensing device
WO2018056062A1 (en) Stretchable capacitor, deformation sensor, displacement sensor, method for sensing respiration state, and sensing wear
WO2017122639A1 (en) Elastic conductor composition, paste for forming elastic conductor, clothing having wires made from elastic conductor composition, and method for producing same
JP6874382B2 (en) Body measurement equipment and body size measurement method, clothing selection system, custom-made clothing design system
CN112284239A (en) Method of using electrostatic capacitance type sensor chip
JP7047957B2 (en) Elastic capacitor
WO2020138477A2 (en) Conductive paste for forming stretchable conductor, stretchable conductor layer, method for producing stretchable conductor layer, stretchable electrical wiring structure, and biometric information measuring device
JP2018086227A (en) Wearable electronic device
JP2018054590A (en) Elastic capacitor and deformation sensor
JP2017144239A (en) Wearable electronic device
JP6996214B2 (en) Wearable biometric information measuring device and biometric information measuring method
JP2021088802A (en) Anthropometric instrument and body size measuring method, clothes selection system and custom-made clothes design system
JP2021088801A (en) Anthropometric instrument and body size measuring method, clothes selection system and custom-made clothes design system
JP7215430B2 (en) Clothing for measuring biological information and elastic laminate sheet
JP7306519B2 (en) elastic capacitor
WO2023013299A1 (en) Biological information measurement member, and biological information measurement clothing
WO2022054487A1 (en) Stretchable capacitor and wearable sensing system
WO2023013300A1 (en) Biological information measurement member, and biological information measurement clothing
JP2023104812A (en) Lower wear

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17852839

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018540956

Country of ref document: JP

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 17852839

Country of ref document: EP

Kind code of ref document: A1