WO2022054487A1 - Stretchable capacitor and wearable sensing system - Google Patents

Stretchable capacitor and wearable sensing system Download PDF

Info

Publication number
WO2022054487A1
WO2022054487A1 PCT/JP2021/029495 JP2021029495W WO2022054487A1 WO 2022054487 A1 WO2022054487 A1 WO 2022054487A1 JP 2021029495 W JP2021029495 W JP 2021029495W WO 2022054487 A1 WO2022054487 A1 WO 2022054487A1
Authority
WO
WIPO (PCT)
Prior art keywords
stretchable
layer
capacitor
elastic
resin
Prior art date
Application number
PCT/JP2021/029495
Other languages
French (fr)
Japanese (ja)
Inventor
雄一郎 表
翔太 森本
達彦 入江
祐輔 清水
郷司 前田
Original Assignee
東洋紡株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東洋紡株式会社 filed Critical 東洋紡株式会社
Priority to JP2022547449A priority Critical patent/JPWO2022054487A1/ja
Publication of WO2022054487A1 publication Critical patent/WO2022054487A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A41WEARING APPAREL
    • A41DOUTERWEAR; PROTECTIVE GARMENTS; ACCESSORIES
    • A41D1/00Garments
    • AHUMAN NECESSITIES
    • A41WEARING APPAREL
    • A41DOUTERWEAR; PROTECTIVE GARMENTS; ACCESSORIES
    • A41D13/00Professional, industrial or sporting protective garments, e.g. surgeons' gowns or garments protecting against blows or punches
    • AHUMAN NECESSITIES
    • A41WEARING APPAREL
    • A41DOUTERWEAR; PROTECTIVE GARMENTS; ACCESSORIES
    • A41D31/00Materials specially adapted for outerwear
    • A41D31/02Layered materials
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/103Detecting, measuring or recording devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
    • A61B5/11Measuring movement of the entire body or parts thereof, e.g. head or hand tremor, mobility of a limb
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04BKNITTING
    • D04B21/00Warp knitting processes for the production of fabrics or articles not dependent on the use of particular machines; Fabrics or articles defined by such processes
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M17/00Producing multi-layer textile fabrics
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B7/00Measuring arrangements characterised by the use of electric or magnetic techniques
    • G01B7/16Measuring arrangements characterised by the use of electric or magnetic techniques for measuring the deformation in a solid, e.g. by resistance strain gauge
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G5/00Capacitors in which the capacitance is varied by mechanical means, e.g. by turning a shaft; Processes of their manufacture

Definitions

  • the present invention is a stretchable capacitor that can detect its own deformation as a change in capacitance, and a garment provided with the stretchable capacitor.
  • the present invention relates to sensing wear capable of substantially non-invasively detecting changes in body shape due to changes in capacitance, that is, movements of limbs, body shape, posture, breathing, mastication, swallowing, pulsation, fetal movement, and the like.
  • Patent Document 1 and Patent Document 2 disclose an elastic capacitor element having a structure in which a dielectric layer made of an elastomer is sandwiched between electrodes, and a displacement amount and a strain amount are detected from a change in capacitance caused by deformation of the capacitor. It is disclosed that it can be used for sensing.
  • Patent Document 3 discloses a method of sensing a joint angle using a bending capacitor whose capacitance changes depending on the bending angle as a sensor.
  • Patent Document 4 discloses sensing wear in which a strain sensor is bonded to a garment fabric using a hot melt adhesive layer.
  • the sensing method using a sensor attached to clothes can reduce the discomfort and discomfort of the wearer compared to the sensing method in which the sensor is directly attached to the body, and it is possible to exercise and live without being aware of the sensor. It has the advantage of being able to monitor a person's more natural condition. On the other hand, there is a difficult point in that sensing is continued under certain conditions due to slippage of clothes. If the area of the sensor element is increased, some deviation can be tolerated. Especially in the detection method using the change in capacitance of the capacitor element that can be expanded and contracted, it is relatively easy to increase the area of the sensor element. In addition, increasing the area also contributes to the improvement of sensor sensitivity.
  • a bonding method using a hot melt adhesive is convenient.
  • the hot melt adhesive invades the garment fabric and forms a composite layer of the fibers of the garment fabric and the hot melt adhesive resin on the adhesive surface and adheres to the adhesive surface. Since this composite layer has a structure similar to that of fiber reinforced plastic, it restricts the degree of freedom of deformation of the garment fabric to be adhered.
  • the sensor element is small, only a part of the garment fabric loses the degree of freedom of deformation, so that a big problem does not occur.
  • the degree of freedom of deformation in a considerable area of the garment fabric is hindered.
  • the sensor Since the purpose of sensing is the movement of limbs and changes in body movement, the sensor is naturally attached to a place where deformation is likely to occur, and the degree of freedom of deformation of the clothing fabric in such a place is hindered. It can be said that the mounting method is such that it falls over.
  • the present invention has been made in view of such circumstances, and an object of the present invention is to easily realize a sensor element having a large area and to attach the cloth to clothes without impairing the degree of freedom of deformation of the cloth. It is the provision of a stretchable capacitor that can be used as a sensor element having an applicable structure, and the provision of sensing wear in which the stretchable capacitor is attached by a method that does not hinder the degree of freedom of deformation of the garment fabric.
  • the present inventors have found a novel structure of a stretchable capacitor that can be sewn to a garment fabric by introducing a cloth structure into a dielectric layer, and the stretchable capacitor having such a structure.
  • a novel structure of a stretchable capacitor that can be sewn to a garment fabric by introducing a cloth structure into a dielectric layer, and the stretchable capacitor having such a structure.
  • the present invention has the following configuration.
  • [1] In an elastic capacitor having a structure in which an elastic dielectric layer is sandwiched between two elastic conductive layers.
  • a stretchable capacitor wherein the stretchable dielectric layer has a stretchable sheet-like cloth and a composite layer containing a fiber and a resin that contribute to adhesion between the conductive layer and the cloth.
  • [2] The stretchable capacitor according to [1], wherein the stretchable sheet-shaped cloth is a knit cloth having a 2-way tricot structure.
  • [3] The stretchable capacitor according to [1] or [2], wherein the stretchable dielectric layer further has a resin layer.
  • [4] In an elastic capacitor having a structure in which an elastic dielectric layer is sandwiched between two elastic conductive layers.
  • a stretchable capacitor wherein the stretchable dielectric layer is composed of a resin layer and a composite layer containing fibers and a resin.
  • a stretchable capacitor wherein the stretchable dielectric layer is a composite layer containing a fiber and a resin.
  • the present invention further preferably has the following configuration.
  • the sensing wear is characterized in that the sensing wear is provided with electrical wiring for connecting a stretchable capacitor and a device for detecting the capacitance of the stretchable capacitor.
  • the stretchable conductive layer constituting the stretchable capacitor includes at least a conductive layer mainly using a metal-based conductive filler and a conductive layer using a carbon-based conductive filler.
  • the sensing wear according to [7] which has a glove shape and is characterized in that the elastic capacitor is arranged at least in one or more parts of each joint of a wrist and a finger.
  • the elastic capacitor of the present invention uses a cloth as a dielectric layer.
  • the cloth is a stretchable sheet-like material, which is a pseudo-planar material obtained by combining threads, and is classified into a woven fabric, a knitted fabric, and a non-woven fabric.
  • it is preferable to use a cloth having a knit structure, and it is preferable to use a cloth having a 2-way tricot structure, but such a cloth can be sewn. It is possible in terms of shape to sew a stretchable capacitor using a conventional stretchable resin sheet as a dielectric layer, that is, to sew it to another material (fabric) with a sewing thread.
  • the dielectric layer includes a fabric which is a fiber structure, it can be attached to a garment fabric by sewing, that is, can be sewn. This does not mean that it can be simply attached, but it means that it can be used as a sensing wear having sufficient practicality as clothes, that is, a load at the time of putting on and taking off and sufficient washing durability.
  • FIG. 1 is a schematic view showing a cross-sectional structure of an example of an embodiment of an elastic capacitor used in the present invention.
  • the conductive layer has a two-layer structure, and most of the conductive layer is covered with a cover insulating layer.
  • the composite layer containing the resin and the fiber exists only in the surface layer of the fabric, and the resin does not penetrate into the central portion (in the thickness direction) of the fabric.
  • FIG. 2 is a schematic view showing a cross-sectional structure of an example of an aspect of the stretchable capacitor used in the present invention. In this example, only the portion of the conductive layer that comes into contact with the snap fastener has a two-layer structure.
  • FIG. 1 is a schematic view showing a cross-sectional structure of an example of an embodiment of an elastic capacitor used in the present invention.
  • the conductive layer has a two-layer structure, and most of the conductive layer is covered with a cover insulating layer.
  • the composite layer containing the resin and the fiber exists only in the surface
  • FIG. 3 is a schematic view showing a cross-sectional structure of an example of an aspect of the stretchable capacitor used in the present invention.
  • the resin penetrates to the center of the fabric, and the thickness of the composite layer containing the resin and the fiber is substantially equal to the thickness of the fabric.
  • FIG. 4 is a schematic view showing a cross-sectional structure of an example of an aspect of the stretchable capacitor used in the present invention.
  • the fabric, the composite layer, and the resin layer (hot melt adhesive layer) for adhering the conductive layer are included, and almost all of the resin contained in the composite layer has penetrated into the fabric.
  • FIG. 5 is a schematic view showing a cross-sectional structure of an example of an aspect of the stretchable capacitor used in the present invention.
  • FIG. 6 is a process diagram showing an outline of the method for manufacturing a stretchable capacitor of the present invention.
  • FIG. 7 is the first half of a process diagram showing details of an example of the method for manufacturing a stretchable capacitor of the present invention.
  • FIG. 8 is the latter half of the process diagram showing the details of an example of the method for manufacturing the stretchable capacitor of the present invention.
  • FIG. 6 is a process diagram showing an outline of a manufacturing method for obtaining the stretchable capacitor of the present invention.
  • a resin layer (hot melt adhesive layer) of a laminate having a layer structure of release paper 400 / elastic conductive layer 200 / resin layer (hot melt adhesive layer) 300 is used as the cloth.
  • the basic form of the stretchable capacitor of the present invention can be obtained by facing (step J), bonding by heating and pressurizing (step K), and peeling off the release paper 400 (step L).
  • step K the resin of the resin layer (hot melt adhesive layer) permeates the fabric to form a stretchable composite layer containing fibers and resin.
  • the composite layer can bond the conductive layer and the cloth. That is, the composite layer contributes to the adhesion between the conductive layer and the fabric.
  • the cloth is a pseudo-planar material obtained by combining threads, and includes a woven fabric, a knit, and a non-woven fabric.
  • a woven fabric As the stretchable cloth, a woven fabric, a knitted fabric (knit), or a non-woven fabric can be used.
  • the woven fabric even if the yarn itself constituting the woven fabric is not stretchable, it can be expanded and contracted by using it in the bias direction. Knitting achieves high elasticity. In the case of a non-woven fabric, it becomes a stretchable cloth when the constituent threads have extensibility.
  • a knitted fabric as the fabric, particularly preferably a tricot knitted fabric, and further preferably a 2-way tricot (also referred to as a double tricot) knit fabric.
  • the yarn constituting the fabric of the present invention it is preferable to use a yarn made of fibers having high heat resistance.
  • fibers animal hair fibers such as acrylonitrile, polyester, polytriacetate, viscose rayon, cotton, silk and wool can be used.
  • heat-resistant fibers such as heat-resistant polyamide, liquid crystal polymer, aromatic polyamide, aromatic polyimide, and polyparaphenylene bisbenzoxazole can be used.
  • the average thickness of the fabric of the present invention is preferably 20 ⁇ m to 1 mm, more preferably 50 ⁇ m to 800 ⁇ m.
  • the basis weight of the fabric is preferably 100 to 300 g / m 2 , more preferably 150 to 250 g / m 2 .
  • the elastic conductive layer of the present invention a composite conductive material containing a conductive filler (conductive particles) and a flexible binder resin (flexible resin) can be used.
  • the elastic conductive layer is preferably used by laminating a first elastic conductive layer mainly using a metal filler and a second elastic conductive layer mainly using a carbon-based filler.
  • the elastic conductive layer may be formed only by the first elastic conductive layer using a metal-based filler. ..
  • the first elastic conductive layer of the present invention is preferably composed mainly of at least a metal filler (metal particles) and a flexible resin having a tensile elastic modulus of 1 MPa or more and 1000 MPa or less.
  • the blending amount of the flexible resin is preferably 7 to 35% by mass, more preferably 9 to 28% by mass, and further preferably 12 to 20% by mass with respect to the total of the metal particles and the flexible resin.
  • the total amount of the metal particles and the flexible resin contained in the first elastic conductive layer is preferably 90% by mass or more, more preferably 95% by mass or more, and further. It is preferably 100% by mass.
  • the first elastic conductive layer can be obtained by kneading and mixing metal particles and a flexible resin and molding them into a sheet shape (film shape).
  • the stretchable conductive layer of the present invention is preferably made into a paste for forming a stretchable conductor by adding a solvent or the like to metal particles and a flexible resin, or is made into a slurry, and then coated and dried to form a sheet (film). It can be processed. Further, it is also possible to give a predetermined shape by printing after making a paste.
  • the conductive particles of the present invention are preferably particles having a specific resistance of 1 ⁇ 10 -1 ⁇ cm or less and having a particle diameter of 100 ⁇ m or less.
  • Examples of the substance having a specific resistance of 1 ⁇ 10 -1 ⁇ cm or less include metals, alloys, carbons, doped semiconductors, and conductive polymers.
  • the conductive particles (metal fillers) preferably used in the present invention are metals such as silver, gold, platinum, palladium, copper, nickel, aluminum, zinc, lead and tin, alloy particles such as brass, bronze, white copper and solder, and silver.
  • Hybrid particles such as coated copper, as well as metal-plated polymer particles, metal-plated glass particles, metal-coated ceramic particles and the like can be used.
  • flake-shaped powder or amorphous agglomerated powder it is preferable to use flake-shaped powder or amorphous agglomerated powder, and it is more preferable to mainly use flake-shaped silver particles or amorphous agglomerated silver powder.
  • used mainly here means that 90% by mass or more of the conductive particles are used.
  • the amorphous agglomerated powder is a three-dimensional aggregate of spherical or amorphous primary particles. Amorphous aggregated powder and flake-shaped powder have a larger specific surface area than spherical powder and the like, and are preferable because they can form a conductive network even with a low filling amount.
  • the particle size of the flake-like powder is not particularly limited, but an average particle size (50% D) measured by a dynamic light scattering method is preferably 0.5 to 20 ⁇ m. More preferably, it is 3 to 12 ⁇ m. If the average particle size exceeds 20 ⁇ m, it becomes difficult to form fine wiring, and clogging may occur in the case of screen printing or the like. If the average particle size is less than 0.5 ⁇ m, the particles cannot be contacted with each other at low filling, and the conductivity may deteriorate.
  • Examples of the flexible resin in the present invention include thermoplastic resins, thermosetting resins, rubbers and the like having a tensile elastic modulus of 1 to 1000 MPa.
  • Urethane resin or rubber is preferable in order to develop the elasticity of the film.
  • rubber include urethane rubber, acrylic rubber, silicone rubber, butadiene rubber, nitrile group-containing rubber such as nitrile rubber and hydride nitrile rubber, isoprene rubber, sulfide rubber, styrene-butadiene rubber, butyl rubber, chlorosulfonated polyethylene rubber, and ethylene.
  • Examples thereof include propylene rubber and vinylidene fluoride copolymer.
  • nitrile group-containing rubber, chloroprene rubber, and chlorosulfonated polyethylene rubber are preferable, and nitrile group-containing rubber is particularly preferable.
  • the range of the elastic modulus more preferable in the present invention is 2 to 480 MPa, more preferably 3 to 240 MPa, still more preferably 4 to 120 MPa.
  • the rubber containing a nitrile group is not particularly limited as long as it is a rubber containing a nitrile group or an elastomer, but nitrile rubber and hydrogenated nitrile rubber are preferable.
  • Nitrile rubber is a copolymer of butadiene and acrylonitrile, and when the amount of bound acrylonitrile is large, the affinity with the metal increases, but the rubber elasticity that contributes to elasticity decreases. Therefore, the amount of bonded acrylonitrile in the acrylonitrile butadiene copolymer rubber is preferably 18 to 50% by mass, particularly preferably 40 to 50% by mass.
  • the blending amount of the flexible resin in the present invention is 7 to 35% by mass, preferably 9 to 28% by mass, more preferably 9 to 28% by mass, based on the total of the conductive particles, preferably the non-conductive particles and the flexible resin to be added. Is 12 to 20% by mass.
  • the non-stretchable specific resistance of the first stretchable conductive layer used in the present invention is preferably 3 ⁇ 10 -3 ⁇ cm or less, more preferably 1 ⁇ 10 -3 ⁇ cm or less, and 3 ⁇ 10 -3 ⁇ cm or less. It is more preferably -4 ⁇ cm or less, and even more preferably 1 ⁇ 10 -4 ⁇ cm or less. If the resistivity exceeds this range, the resistance distribution in the conductive layer becomes remarkable, the time constant of the device becomes large, a problem arises in responsiveness, and high frequency characteristics and pulse responsiveness may deteriorate.
  • the lower limit of resistivity depends on the conductive material used in principle.
  • the second elastic conductive layer of the present invention is mainly composed of a carbon-based conductive filler (carbon-based filler) and the flexible resin.
  • the blending amount of the flexible resin is preferably 7 to 35% by mass, more preferably 9 to 28% by mass, and further preferably 12 to 20% by mass with respect to the total of the carbon-based filler and the flexible resin.
  • the total amount of the metal particles and the flexible resin contained in the second stretchable conductive layer is preferably 90% by mass or more, more preferably 95% by mass or more, and further. It is preferably 100% by mass.
  • the second elastic conductive layer can be obtained by kneading and mixing a carbon-based filler and a flexible resin and molding it into a sheet shape (film shape).
  • carbon-based filler black smoke, Ketjen black, furnace black, carbon nanotube, carbon nanocone, fullerene, etc. can be used.
  • the flexible resin used in combination with the carbon-based filler and other conditions are the same as those of the metal-based filler.
  • the present invention has a structure in which a stretchable dielectric layer is sandwiched between two stretchable conductive layers.
  • the stretchable dielectric layer has a stretchable sheet-like cloth and a composite layer containing fibers and resins that contribute to the adhesion between the conductive layer and the cloth. It is also preferable that the dielectric layer further contains a resin layer.
  • the fabric is preferably an aggregate of entangled fibers, and the gap between the fibers is usually air, but in the composite layer, the resin is mixed in the gap between the fibers. However, it does not prevent the voids from remaining between the fibers.
  • a layer containing resin in a part or all of a cloth (fiber) is called a composite layer, and a layer not containing resin is called a cloth (fiber).
  • the stretchable dielectric layer includes a stretchable sheet-like cloth, and a part or all of the cloth is impregnated with the resin.
  • the resin contained in the composite layer is preferably one that can contribute to adhering the conductive layer and the fabric. Further, it is preferable that the resin layer exists between the cloth and the stretchable conductive layer and can improve the adhesiveness between the cloth (composite layer) and the stretchable conductive layer.
  • the resin and the resin layer contained in the composite layer may be the same or different, but are preferably the same.
  • the parts constituting the two elastic conductive layers may be the same or different, but are preferably the same.
  • the average thickness of the stretchable conductive layer is preferably 10 to 200 ⁇ m, more preferably 20 to 100 ⁇ m.
  • a hot melt adhesive as the resin when the elastic conductive layer is adhered and laminated on the fabric, or when the cover insulating layer is adhered to the elastic conductive layer.
  • a polymer material having a softening temperature of about 50 ° C. to 200 ° C. can be used, and it is preferable that the hot melt adhesive has flexibility having the same degree of elasticity as the dielectric layer. Molecular materials can be used.
  • Such hot melt adhesives include ethylene-based copolymers, styrene-based block copolymers, olefin-based (co) copolymers, and the like, and further use them as a base polymer to impart a crystalline polar group.
  • a liquid plasticizer such as process oil is added, modified polyolefin and its formulation, styrene-based block copolymer and its formulation, acid-modified polypropylene, acid-modified styrene-based block Polymers, blends thereof, styrene-based block copolymers, blends such as ethylene-based polymers, polyester-urethane copolymers and their blends
  • a hot melt sheet obtained by processing a polyester urethane resin, a polyether urethane resin, or the like having a softening temperature of 40 ° C to 120 ° C into a sheet can be preferably used.
  • the hot melt adhesive resin of the present invention is preferably a stretchable insulating polymer having a tensile yield elongation of 70% or more.
  • the average thickness of the resin layer is preferably 10 to 200 ⁇ m, more preferably 20 to 100 ⁇ m.
  • the flexible sheet is a sheet made of a stretchable flexible material having a relatively high heat distortion temperature, and a sheet made of crosslinked polyurethane, crosslinked rubber, silicone rubber sheet, fluororubber sheet, or other crosslinked elastomer can be used.
  • the first release paper was peeled off and removed.
  • a cover insulating layer with a hot-melt adhesive layer which has been subjected to external processing including a window by punching at a predetermined position in advance, is laminated on the elastic conductive layer.
  • both are pressurized and heated to be bonded to obtain an elastic conductor component.
  • the obtained elastic conductor parts are in a form protected by release paper on both sides.
  • the elastic conductive layer is in a state where the surface and the side surface are all covered with the cover insulating layer or the hot melt adhesive layer, and only the window portion previously formed by punching in the cover insulating layer is not insulated.
  • FIGS. 8 (I) to 8 (L) the parts of the stretchable conductive layer are attached to the front and back surfaces of the fabric to obtain the stretchable capacitor of the present invention.
  • the third release paper is peeled off.
  • FIG. 8 (J) two front and back elastic conductive layer parts are arranged with the cloth sandwiched between them, and in FIG. 8 (K), the whole is pressurized and heated to be laminated.
  • FIG. 8 (L) the second release paper left on the front and back is removed to obtain the elastic capacitor of the present invention.
  • FIG. 1 illustrates a cross section of the elastic capacitor obtained in FIG. 8 (L) with a snap fastener 800 functioning as a connector for external connection attached.
  • the stretchable conductive layer is shown in a two-layer structure consisting of a first stretchable conductive layer and a second stretchable conductive layer.
  • the flexible sheet shown in FIGS. 7 and 8 is sandwiched between the third hot melt adhesive layer and the first hot melt adhesive layer, and here, the third hot melt adhesive layer is used.
  • the illustration is omitted because it is considered to be included.
  • the portion where the elastic conductive layers on the front and back faces each other with the cloth sandwiched therein is a substantial capacitor element, and this portion S is the sensing region.
  • the T portion located outside the snap fastener portion in the figure is a sewable region that does not affect the sensing region. Since the fabric exists in the entire region, the elastic capacitor can be sewn on the entire surface, but it is preferable that the woven portion does not enter the sensing region as much as possible from the viewpoint of sensing accuracy and stability.
  • the composite layer containing the resin and the fiber exists only in the surface layer of the fabric, and the resin does not penetrate into the central portion (in the thickness direction) of the fabric. Therefore, what functions as a dielectric layer is a composite layer on the front and back surfaces and a fabric layer that is not impregnated by the resin. It is preferable to use a metal snap fastener, and a stainless steel material is preferable as the material.
  • FIG. 2 is a schematic view showing a cross-sectional structure of another example of the aspect of the stretchable capacitor used in the present invention.
  • most of the stretchable conductive layer is the first stretchable conductive layer, and the second stretchable conductive layer is used only in the portion in contact with the snap fastener.
  • the material of the metal filler used for the first elastic conductive layer and the material of the snap fastener are dissimilar metals, the battery is locally formed when the elastic capacitor comes into contact with a liquid containing electrical material such as sweat. And any metal galvanic corrosion may occur.
  • a conductive coating made of a carbon-based conductive material is used for the contact point with the metal.
  • FIG. 3 is a schematic view showing a cross-sectional structure of another example of the aspect of the stretchable capacitor used in the present invention.
  • the resin of the hot melt adhesive penetrates to the center of the fabric, and the thickness of the composite layer containing the resin and the fiber is substantially equal to the thickness of the fabric. That is, the dielectric layer of the elastic capacitor is virtually all a composite layer, and high dielectric constant liquids such as moisture and sweat or electrolytes are prevented from entering the sensing region between the electrodes. Disturbance is reduced.
  • FIG. 4 is a schematic view showing a cross-sectional structure of another example of the aspect of the stretchable capacitor used in the present invention.
  • the resin hot melt adhesive layer
  • the conductive layer is relatively thin, and almost all of the resin permeates the fabric, and the portion is a composite layer. It shows the state. Since the thickness of the dielectric layer is thin, the capacitance is increased and the measurement sensitivity is increased.
  • the stretchable conductor component in the form in which the cover insulating layer is previously bonded to the stretchable conductor is used.
  • FIG. 5 is a schematic view showing a cross-sectional structure of another example of the aspect of the stretchable capacitor used in the present invention.
  • the cross-sectional structure obtained when the elastic conductive layer is first adhered to the fabric and then the cover insulating layer is adhered is shown.
  • the dielectric layer can be made thinner.
  • the stretchable capacitor of the present invention preferably has a stress of 15 N / cm or less at the time of 20% elongation in the plane direction.
  • the stress during elongation depends on the physical characteristics of the material constituting the stretchable capacitor and the thickness of the detection portion of the stretchable capacitor.
  • the total thickness it is preferable to configure the total thickness to be 700 ⁇ m or less, preferably 450 ⁇ m or less, and more preferably 250 ⁇ m or less.
  • the present invention is a garment for the upper body of the human body, and sensing in which the elastic capacitor is arranged at least at any of the elbow portion, the upper arm circumference, the lower arm circumference, the shoulder portion, the back, the chest circumference, the abdominal circumference, and the flank portion.
  • it is a garment for the lower half of the human body, and is a sensing wear in which the elastic capacitor is arranged at least at any of the knee part, the ankle part, the thigh part, the shin part, the hip joint part, and the waist part. You can also do it.
  • the shape is a glove
  • the sensing wear may be a sensing wear in which the elastic capacitor is arranged at least at one or more of each joint of the wrist and the finger.
  • it is a sock-shaped sensing wear in which the elastic capacitor is arranged at least at one or more of each joint of the ankle and the toe.
  • a belt-shaped sensing wear using an elastic material can also be used.
  • the stretchable capacitor can be sewn and attached to the fabric of the above-exemplified garment. That is, it can be made into sensing wear by sewing.
  • the sewing may be machine-sewn with a sewing machine or hand-sewn.
  • the thread for sewing is not particularly limited, and a sewing thread made of a general insulating material may be used.
  • the sewn portion is only the peripheral portion of the elastic capacitor.
  • the peripheral portion refers to a portion having a width of 8 mm from the outer shape of the elastic capacitor element. In the present invention, it is preferable to sew only the periphery of the elastic capacitor element like an appliqué.
  • the sewing range (the length of the sewn portion) is set to 50% or less, preferably 30% or less of the peripheral length of the expansion / contractor capacitor, thereby reducing the discomfort felt by the wearer with respect to the sensing wear. can do.
  • the lower limit is not particularly limited, but is preferably 3% or more, and more preferably 5% or more.
  • the deformation and strain amount of the sensing area can be read by measuring the capacitance between the conductor layers on the front and back of the elastic capacitor.
  • the elastic capacitor of the present invention can be attached to clothes by sewing, and the clothes to which the elastic capacitor which is a sensing element is attached by sewing appropriately exceeds the fixed areas of both. As a result, the wearer is less likely to feel discomfort or discomfort.
  • the sensing wear of the present invention can sense the posture of the body, the pulse, the heartbeat, the respiration, etc. due to the change in the circumference of the body, and can be further applied to motion capture. Further, the present invention can be applied not only to the human body but also to animals and mechanical devices.

Landscapes

  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Textile Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Pathology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Physiology (AREA)
  • Dentistry (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Biophysics (AREA)
  • General Physics & Mathematics (AREA)
  • Biomedical Technology (AREA)
  • Physical Education & Sports Medicine (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Laminated Bodies (AREA)

Abstract

The present invention provides: a stretchable capacitor which has a structure that is able to be sewed on a clothing fabric; and a wearable sensing system which uses this capacitor. A capacitor which has a layered structure wherein at least a stretchable conductive layer, a stretchable dielectric layer and a stretchable conductive layer are sequentially stacked in this order. The stretchable dielectric layer has a structure which comprises a stretchable sheet-like fabric, and a composite layer that contains a resin and fibers that contribute to bonding of the fabric and the conductive layers. A stretchable capacitor having this structure is able to be sewed on a clothing fabric, and is thus able to increase the degree of freedom in deformation of the fabric in comparison to stretchable capacitors that are surface-bonded with use of a hot melt adhesive or the like, thereby being capable of reducing a feeling of strangeness or discomfort felt by a wearer.

Description

伸縮性コンデンサおよびセンシングウェアElastic capacitors and sensing wear
 本発明は、自らの変形を静電容量変化として検出可能な伸縮性コンデンサ、およびその伸縮性コンデンサを備えた衣服であり、被験者に着用させた状態で、衣服に備えた伸縮性コンデンサの静電容量変化により身体の形状変化、すなわち四肢の運動、体形、姿勢、呼吸、咀嚼、嚥下、脈動、胎動などを実質的に非侵襲にて検出することが可能なセンシングウェアに関する。 The present invention is a stretchable capacitor that can detect its own deformation as a change in capacitance, and a garment provided with the stretchable capacitor. The present invention relates to sensing wear capable of substantially non-invasively detecting changes in body shape due to changes in capacitance, that is, movements of limbs, body shape, posture, breathing, mastication, swallowing, pulsation, fetal movement, and the like.
 光学的に身体の様子や表情の動きを捉えて、データ化し、CGに反映させて仮想空間中で人体モデルなどを動かす手法は、映画などの製作手法として実用化されている。かかる手法には大がかりな装置が必要となる。
 一方で、身体の形状変化、運動状態を検出するために、衣服に様々なセンサを組み込んで計測する試みが行われている。
 特許文献1、特許文献2にはエラストマーからなる誘電層を電極で挟んだ構造の伸縮性のあるコンデンサ素子が開示されており、コンデンサの変形によって生ずる静電容量変化から変位量や歪量を検出するセンシングに使用できることが開示されている。
A method of optically capturing the state of the body and the movement of facial expressions, converting them into data, reflecting them in CG, and moving a human body model or the like in a virtual space has been put into practical use as a production method for movies and the like. Such a method requires a large-scale device.
On the other hand, in order to detect changes in the shape of the body and the state of movement, attempts have been made to incorporate various sensors into clothes for measurement.
Patent Document 1 and Patent Document 2 disclose an elastic capacitor element having a structure in which a dielectric layer made of an elastomer is sandwiched between electrodes, and a displacement amount and a strain amount are detected from a change in capacitance caused by deformation of the capacitor. It is disclosed that it can be used for sensing.
 特許文献3には曲げ角度により静電容量が変化する屈曲コンデンサをセンサとして用いて関節角度をセンシングする方法が開示されている。 特許文献4には歪みセンサを、ホットメルト接着剤層を用いて衣服生地に接着したセンシングウェアが開示されている。 Patent Document 3 discloses a method of sensing a joint angle using a bending capacitor whose capacitance changes depending on the bending angle as a sensor. Patent Document 4 discloses sensing wear in which a strain sensor is bonded to a garment fabric using a hot melt adhesive layer.
特許第4650538号公報Japanese Patent No. 4650538 特開平7-75630号公報Japanese Unexamined Patent Publication No. 7-75630 特許第6257444号公報Japanese Patent No. 62574444 特許第6264825号公報Japanese Patent No. 6264825
 このように歪センサないし変位センサを衣服に装着して、着用者の手足の動きなどを含む姿勢や、あるいはさらに微細な動きである心拍や脈拍、呼吸などを検出する試みは多々なされている。
 衣服に装着したセンサを用いたセンシング手法は、身体に直接センサを取り付けたセンシング方法に比較して着用者の違和感、不快感を低減でき、センサを意識することなく運動や生活ができるため、着用者のより自然な状態をモニタリングできるという利点がある。一方で、衣服のずれにより一定条件でセンシングを続けるという点では困難な点がある。
 センサ素子の面積を大きくすれば、多少のずれは許容できるようになり、特に伸縮変形可能なコンデンサ素子の静電容量変化を用いる検出方法においては、センサ素子面積を大きくすることは比較的容易であり、また面積を大きくすることはセンサ感度の向上にも寄与する。
As described above, many attempts have been made to attach a strain sensor or a displacement sensor to clothing to detect a posture including movements of the wearer's limbs, or even finer movements such as heartbeat, pulse, and respiration.
The sensing method using a sensor attached to clothes can reduce the discomfort and discomfort of the wearer compared to the sensing method in which the sensor is directly attached to the body, and it is possible to exercise and live without being aware of the sensor. It has the advantage of being able to monitor a person's more natural condition. On the other hand, there is a difficult point in that sensing is continued under certain conditions due to slippage of clothes.
If the area of the sensor element is increased, some deviation can be tolerated. Especially in the detection method using the change in capacitance of the capacitor element that can be expanded and contracted, it is relatively easy to increase the area of the sensor element. In addition, increasing the area also contributes to the improvement of sensor sensitivity.
 これらセンサ素子を衣服生地に取り付ける場合には先行特許文献にもみられるように、ホットメルト接着剤を用いる接着方法が手軽である。ホットメルト接着剤は衣服生地に含侵し、接着面に衣服生地の繊維とホットメルト接着剤樹脂との複合層を形成して接着する。この複合層は、繊維強化プラスチックと同様の構造を有するため、被接着物である衣服生地の変形自由度を拘束することになる。
 センサ素子が小さい場合には、衣服生地の一部の変形自由度が失われるだけなので大きな問題は生じない。しかしながら、大面積のセンサ素子を衣服に取り付ければ、衣服生地の相当の領域の変形自由度を阻害することになる。センシングの目的は、手足の動きや体動の変化であるから、センサは、おのずと変形が生じやすい箇所を狙って取り付けることになるわけであり、そのような箇所の衣服生地の変形自由度を阻害してしまうような取付方法では、本末転倒といえる。
When attaching these sensor elements to clothing fabric, as seen in the prior patent documents, a bonding method using a hot melt adhesive is convenient. The hot melt adhesive invades the garment fabric and forms a composite layer of the fibers of the garment fabric and the hot melt adhesive resin on the adhesive surface and adheres to the adhesive surface. Since this composite layer has a structure similar to that of fiber reinforced plastic, it restricts the degree of freedom of deformation of the garment fabric to be adhered.
When the sensor element is small, only a part of the garment fabric loses the degree of freedom of deformation, so that a big problem does not occur. However, if a large-area sensor element is attached to a garment, the degree of freedom of deformation in a considerable area of the garment fabric is hindered. Since the purpose of sensing is the movement of limbs and changes in body movement, the sensor is naturally attached to a place where deformation is likely to occur, and the degree of freedom of deformation of the clothing fabric in such a place is hindered. It can be said that the mounting method is such that it falls over.
 本発明は、このような事情に鑑みてなされたものであり、その目的は、大面積のセンサ素子の実現が容易であり、かつ、衣服生地の変形自由度を阻害せずに衣服への取り付けが可能な方法適用できる構造を有するセンサ素子として使用できる伸縮性コンデンサンの提供であり、その伸縮性コンデンサを衣服生地の変形自由度を阻害しない手法で取り付けたセンシングウェアの提供である。 The present invention has been made in view of such circumstances, and an object of the present invention is to easily realize a sensor element having a large area and to attach the cloth to clothes without impairing the degree of freedom of deformation of the cloth. It is the provision of a stretchable capacitor that can be used as a sensor element having an applicable structure, and the provision of sensing wear in which the stretchable capacitor is attached by a method that does not hinder the degree of freedom of deformation of the garment fabric.
 本発明者らは、上記目的を達成すべく鋭意検討した結果、誘電層に布帛構造を導入することで衣服生地に縫い付け可能な伸縮性コンデンサの新奇な構造を見出し、かかる構造の伸縮性コンデンサを衣服生地に縫い付けることにより、衣服生地の変形自由度の阻害を極力抑えることで、着用違和感が低減されたセンシングウェアを見出し、以下の発明に到達した。 As a result of diligent studies to achieve the above object, the present inventors have found a novel structure of a stretchable capacitor that can be sewn to a garment fabric by introducing a cloth structure into a dielectric layer, and the stretchable capacitor having such a structure. By sewing the fabric on the fabric, we have found sensing wear that reduces the discomfort of wearing by suppressing the inhibition of the degree of freedom of deformation of the fabric as much as possible, and have reached the following invention.
 すなわち本発明は、以下の構成である。
[1] 伸縮性のある誘電層を、伸縮性のある2枚の導電層で挟んだ構成を有する伸縮性コンデンサにおいて、
 前記伸縮性のある誘電層が、伸縮可能なシート状の布帛と、前記導電層と前記布帛の接着に寄与する繊維及び樹脂を含む複合層を有することを特徴とする伸縮性コンデンサ。
[2] 前記伸縮可能なシート状の布帛が2wayトリコット構造を有するニット生地であることを特徴とする[1]に記載の伸縮性コンデンサ。
[3] 前記伸縮性のある誘電層が、さらに樹脂層を有することを特徴とする[1]または[2]に記載の伸縮性コンデンサ。
[4] 伸縮性のある誘電層を、伸縮性のある2枚の導電層で挟んだ構成を有する伸縮性コンデンサにおいて、
 前記伸縮性のある誘電層が、樹脂層と、繊維及び樹脂を含む複合層からなることを特徴とする伸縮性コンデンサ。
[5] 伸縮性のある誘電層を、伸縮性のある2枚の導電層で挟んだ構成を有する伸縮性コンデンサにおいて、
 前記伸縮性のある誘電層が、繊維及び樹脂を含む複合層であることを特徴とする伸縮性コンデンサ。
[6] 前記伸縮性のある導電層の、誘電層とは反対側の面の一部または全部が伸縮性のある絶縁層でカバーされていることを特徴とする[1]~[5]のいずれかに記載の伸縮性コンデンサ。
[7] [1]~[6]のいずれかに記載の伸縮性コンデンサが縫い付けられていることを特徴とするセンシングウェア。
[8] 前記伸縮性コンデンサの縫い付けが、伸縮コンデンサの周囲部のみであることを特徴とする[7]に記載のセンシングウェア。
[9] 前記伸縮性コンデンサの縫い付けが、伸縮コンデンサの周囲長の50%以下であることを特徴とする[7]または[8]に記載のセンシングウェア。
That is, the present invention has the following configuration.
[1] In an elastic capacitor having a structure in which an elastic dielectric layer is sandwiched between two elastic conductive layers.
A stretchable capacitor, wherein the stretchable dielectric layer has a stretchable sheet-like cloth and a composite layer containing a fiber and a resin that contribute to adhesion between the conductive layer and the cloth.
[2] The stretchable capacitor according to [1], wherein the stretchable sheet-shaped cloth is a knit cloth having a 2-way tricot structure.
[3] The stretchable capacitor according to [1] or [2], wherein the stretchable dielectric layer further has a resin layer.
[4] In an elastic capacitor having a structure in which an elastic dielectric layer is sandwiched between two elastic conductive layers.
A stretchable capacitor, wherein the stretchable dielectric layer is composed of a resin layer and a composite layer containing fibers and a resin.
[5] In an elastic capacitor having a structure in which an elastic dielectric layer is sandwiched between two elastic conductive layers.
A stretchable capacitor, wherein the stretchable dielectric layer is a composite layer containing a fiber and a resin.
[6] A. Of [1] to [5], wherein a part or all of the surface of the elastic conductive layer opposite to the dielectric layer is covered with the elastic insulating layer. The elastic capacitor described in either.
[7] Sensing wear characterized in that the elastic capacitor according to any one of [1] to [6] is sewn.
[8] The sensing wear according to [7], wherein the stretchable capacitor is sewn only on the peripheral portion of the stretchable capacitor.
[9] The sensing wear according to [7] or [8], wherein the elastic capacitor is sewn to be 50% or less of the peripheral length of the elastic capacitor.
 本発明は、さらに以下の構成を有することが好ましい。
[10] 前記センシングウェアが、伸縮性コンデンサと伸縮性コンデンサの静電容量を検出するデバイスとを接続するための電気配線を備えた事を特徴とするセンシングウェア。
[11] 前記伸縮性コンデンサを構成する伸縮性導電層の比抵抗が1×10-3Ωcm以下であることを特徴とする[1]に記載の伸縮性コンデンサおよび[7]に記載のセンシングウェア。
[12] 前記伸縮性コンデンサを構成する伸縮性導電層が、少なくとも金属系導電フィラーを主として用いた導電層と、炭素系導電フィラーを用いた導電層を含むことを特徴とする[1]に記載の伸縮性コンデンサおよび[7]に記載のセンシングウェア。
[13] 前記布帛の接着に寄与する繊維及び樹脂を含む複合層を構成する樹脂の軟化温度が50℃以上200℃以下であることを特徴とする[1]に記載の伸縮性コンデンサおよび[7]に記載のセンシングウェア。
[14] 前記布帛の接着に寄与する繊維及び樹脂を含む複合層を構成する樹脂が、引張降伏伸度が70%以上の伸縮性絶縁高分子であることを特徴とする[1]に記載の伸縮性コンデンサおよび[7]に記載のセンシングウェア。
[15] 前記伸縮性コンデンサの面方向への20%伸長時の応力が15N/cm以下であることを特徴とする[1]に記載の伸縮性コンデンサおよび[7]に記載のセンシングウェア。
[16] 人体上半身用の衣服であり、少なくとも肘部分、上腕周囲、下腕周囲、肩部分、背面、胸部周囲、腹部周囲、脇腹部分のいずれかの個所に前記伸縮性コンデンサを配置した事を特徴とする[7]に記載のセンシングウェア。
[17] 人体下半身用の衣服であり、少なくとも膝部分、足首部分、大腿部周囲、脛部周囲、股関節部分、腰部分のいずれかの個所に前記伸縮性コンデンサを配置した事を特徴とする[7]に記載のセンシングウェア。
[18] 手袋形状であり、少なくとも手首、手指の各関節の一個所以上のいずれかの部分に前記伸縮性コンデンサを配置した事を特徴とする[7]に記載のセンシングウェア。
[19] 靴下形状であり、少なくとも足首、足指の各関節の一個所以上のいずれかの部分に前記伸縮性コンデンサを配置した事を特徴とする[7]に記載のセンシングウェア。
[20] 伸縮性のある素材を用いたベルト形状であることを特徴とする[7]に記載のセンシングウェア。
The present invention further preferably has the following configuration.
[10] The sensing wear is characterized in that the sensing wear is provided with electrical wiring for connecting a stretchable capacitor and a device for detecting the capacitance of the stretchable capacitor.
[11] The elastic capacitor according to [1] and the sensing wear according to [7], wherein the elastic conductive layer constituting the elastic capacitor has a specific resistance of 1 × 10 -3 Ωcm or less. ..
[12] The stretchable conductive layer constituting the stretchable capacitor includes at least a conductive layer mainly using a metal-based conductive filler and a conductive layer using a carbon-based conductive filler. [1] Elastic capacitor and the sensing wear according to [7].
[13] The elastic capacitor according to [1] and [7], wherein the softening temperature of the resin constituting the composite layer containing the fiber and the resin contributing to the adhesion of the fabric is 50 ° C. or higher and 200 ° C. or lower. ] The sensing wear described in.
[14] The resin according to [1], wherein the resin constituting the composite layer containing the fibers and the resin contributing to the adhesion of the fabric is a stretchable insulating polymer having a tensile yield elongation of 70% or more. The elastic capacitor and the sensing wear according to [7].
[15] The stretchable capacitor according to [1] and the sensing wear according to [7], wherein the stress at 20% elongation in the plane direction of the stretchable capacitor is 15 N / cm or less.
[16] It is a garment for the upper body of the human body, and the elastic condenser is placed at least in any of the elbow part, the upper arm circumference, the lower arm circumference, the shoulder part, the back, the chest circumference, the abdomen circumference, and the flank part. The sensing wear according to [7], which is a feature.
[17] It is a garment for the lower half of the human body, and is characterized in that the elastic capacitor is arranged at least at any of the knee part, the ankle part, the thigh part, the shin part, the hip joint part, and the waist part. The sensing wear according to [7].
[18] The sensing wear according to [7], which has a glove shape and is characterized in that the elastic capacitor is arranged at least in one or more parts of each joint of a wrist and a finger.
[19] The sensing wear according to [7], which has a sock shape and is characterized in that the elastic capacitor is arranged at least at one or more of one or more joints of ankles and toes.
[20] The sensing wear according to [7], which has a belt shape using an elastic material.
 本発明の伸縮性コンデンサは、誘電層に布帛を用いている。ここに布帛とは、伸縮可能なシート状のものであり、糸を組み合わせて得られる疑似平面状の素材であり、織物、編み物(ニット)、不織布に分類される。本発明ではニット構造を有する布帛を使用することが好ましく、さらに2wayトリコット構造を有する布帛を用いることが好ましいが、かかる布帛は、縫製が可能である。従来の伸縮性のある樹脂シートを誘電層に用いた伸縮性コンデンサを縫製すること、すなわち縫い糸で別の素材(生地)に縫い付けることは、形の上では可能である。しかし、そのようにして縫い付けられたシート部材は、変形時に、縫い糸が貫通した穴近傍に大きな変形応力が加わり、容易に破断が生じるため。そのため、着脱時や洗濯時に大きな変形負荷がかかるセンシングウェアにおいては実用的には使用できない。
 しかしながら本発明では、かかる誘電層が繊維構造体である布帛を含むため、縫い付けによる衣服生地への取り付け、すなわち縫製加工が可能となる。これは単に取り付けができることを云うのではなく、衣服として十分な実用性、すなわち着脱時の負荷や十分な洗濯耐久性を有するセンシングウェアとして用いることができることを意味する。
The elastic capacitor of the present invention uses a cloth as a dielectric layer. Here, the cloth is a stretchable sheet-like material, which is a pseudo-planar material obtained by combining threads, and is classified into a woven fabric, a knitted fabric, and a non-woven fabric. In the present invention, it is preferable to use a cloth having a knit structure, and it is preferable to use a cloth having a 2-way tricot structure, but such a cloth can be sewn. It is possible in terms of shape to sew a stretchable capacitor using a conventional stretchable resin sheet as a dielectric layer, that is, to sew it to another material (fabric) with a sewing thread. However, when the sheet member sewn in this way is deformed, a large deformation stress is applied to the vicinity of the hole through which the sewing thread penetrates, and the sheet member is easily broken. Therefore, it cannot be practically used in sensing wear that is subject to a large deformation load when it is attached / detached or washed.
However, in the present invention, since the dielectric layer includes a fabric which is a fiber structure, it can be attached to a garment fabric by sewing, that is, can be sewn. This does not mean that it can be simply attached, but it means that it can be used as a sensing wear having sufficient practicality as clothes, that is, a load at the time of putting on and taking off and sufficient washing durability.
 縫製加工による取り付けが可能であるということは、ホットメルト接着剤による取り付けに比較して、伸縮性コンデンサの衣服取り付け形態のヴァリエーションが豊富になる。すなわちホットメルト接着剤を用いた場合には、プレス加工により全面が衣服生地に接着してしまうわけであるが、縫製であれば、衣服生地に固定する部分を一部エリアに限定することが容易となる。例えば(仮に伸縮性コンデンサが長方形であるとして)長方形の周囲部のみをアップリケ的に縫い付ければ、長方形の中央部はフリーにすることができ、衣服変形の自由度を高めることができる。例えば長方形の短辺のみを縫製すれば自由度はさらに高くなる。極端な例として長方形の角部分のみを固定するような取り付け方も容易である。ホットメルト接着剤を用いた場合でも、同じように取り付け箇所を限定した貼り付けは可能であるが、接着剤をあらかじめ配置するエリアを限定するなどの手間が必要となる。また、貼り付けエリアを限定したとしても、ある程度の面積が必要になるため、事実上「点」での取り付けが可能な縫製に比較すると、衣服生地の拘束度は大きくなり、縫製による取り付けの方が優位である。 The fact that it can be attached by sewing means that there are more variations in the form of attaching elastic capacitors to clothes than when attaching with hot melt adhesive. That is, when a hot melt adhesive is used, the entire surface is adhered to the garment fabric by press working, but in the case of sewing, it is easy to limit the part to be fixed to the garment fabric to a part of the area. It becomes. For example, if only the peripheral part of the rectangle is sewn in an applique manner (assuming that the elastic capacitor is a rectangle), the central part of the rectangle can be made free and the degree of freedom of clothes deformation can be increased. For example, if only the short side of the rectangle is sewn, the degree of freedom is further increased. As an extreme example, it is easy to attach it by fixing only the corners of the rectangle. Even when a hot melt adhesive is used, it is possible to apply the adhesive in a limited area in the same manner, but it is necessary to limit the area in which the adhesive is placed in advance. In addition, even if the pasting area is limited, a certain area is required, so the degree of restraint of the garment fabric is greater than that of sewing that can be attached at "points", and it is better to attach by sewing. Is superior.
図1は、本発明に用いられる伸縮性コンデンサの態様の一例の断面構造を示す概略図である。本例では、導電層が二層構成であり、導電層の大部分がカバー絶縁層で覆われている。樹脂と繊維を含む複合層は布帛の表面層にのみ存在し、布帛の(厚さ方向において)中央部分には樹脂は侵入していない。FIG. 1 is a schematic view showing a cross-sectional structure of an example of an embodiment of an elastic capacitor used in the present invention. In this example, the conductive layer has a two-layer structure, and most of the conductive layer is covered with a cover insulating layer. The composite layer containing the resin and the fiber exists only in the surface layer of the fabric, and the resin does not penetrate into the central portion (in the thickness direction) of the fabric. 図2は、本発明に用いられる伸縮性コンデンサの態様の一例の断面構造を示す概略図である。本例では、導電層のスナップファスナーと接触する部分のみが二層構成になっている。FIG. 2 is a schematic view showing a cross-sectional structure of an example of an aspect of the stretchable capacitor used in the present invention. In this example, only the portion of the conductive layer that comes into contact with the snap fastener has a two-layer structure. 図3は、本発明に用いられる伸縮性コンデンサの態様の一例の断面構造を示す概略図である。本例では、樹脂が布帛の中央部まで浸透し、樹脂と繊維を含む複合層の厚さが事実上布帛の厚さに等しくなっている。FIG. 3 is a schematic view showing a cross-sectional structure of an example of an aspect of the stretchable capacitor used in the present invention. In this example, the resin penetrates to the center of the fabric, and the thickness of the composite layer containing the resin and the fiber is substantially equal to the thickness of the fabric. 図4は、本発明に用いられる伸縮性コンデンサの態様の一例の断面構造を示す概略図である。本例では、布帛、複合層、および導電層を接着するための樹脂層(ホットメルト接着剤層)を含み、複合層に含まれる樹脂のほぼすべてが布帛に浸透している。FIG. 4 is a schematic view showing a cross-sectional structure of an example of an aspect of the stretchable capacitor used in the present invention. In this example, the fabric, the composite layer, and the resin layer (hot melt adhesive layer) for adhering the conductive layer are included, and almost all of the resin contained in the composite layer has penetrated into the fabric. 図5は、本発明に用いられる伸縮性コンデンサの態様の一例の断面構造を示す概略図である。この図では、伸縮性の導電層を先に布帛に接着し、その後にカバー絶縁層を接着した場合に得られる断面構造を示している。FIG. 5 is a schematic view showing a cross-sectional structure of an example of an aspect of the stretchable capacitor used in the present invention. This figure shows a cross-sectional structure obtained when the elastic conductive layer is first adhered to the fabric and then the cover insulating layer is adhered. 図6は、本発明の伸縮性コンデンサの製造方法の概略を示した工程図である。FIG. 6 is a process diagram showing an outline of the method for manufacturing a stretchable capacitor of the present invention. 図7は、本発明の伸縮性コンデンサの製造方法の一例の詳細を示した工程図の前半である。FIG. 7 is the first half of a process diagram showing details of an example of the method for manufacturing a stretchable capacitor of the present invention. 図8は、本発明の伸縮性コンデンサの製造方法の一例の詳細を示した工程図の後半である。FIG. 8 is the latter half of the process diagram showing the details of an example of the method for manufacturing the stretchable capacitor of the present invention.
  以下、本発明の実施の形態について、図面を参照しながら説明する。
 図6は、本発明の伸縮性コンデンサを得るための製造方法の概略を示した工程図である。伸縮可能な布帛100の表裏両面から、層構成が離型紙400/伸縮性導電層200/樹脂層(ホットメルト接着剤層)300である積層体の樹脂層(ホットメルト接着剤層)を布帛に向けて(工程J)、加熱加圧することにより貼り合わせ(工程K)、 離型紙400を剥がすことにより(工程L)、本発明の伸縮性コンデンサの基本形を得ることができる。工程Kにおいて樹脂層(ホットメルト接着剤層)の樹脂が布帛に浸透することにより繊維及び樹脂を含む伸縮可能な複合層が形成される。前記複合層は前記導電層と前記布帛とを接着することができる。すなわち、前記複合層は前記導電層と前記布帛との接着に寄与することとなる。ここに布帛とは、糸を組み合わせて得られる疑似平面状の素材であり、織物、編み物(ニット)、不織布を含むものである。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 6 is a process diagram showing an outline of a manufacturing method for obtaining the stretchable capacitor of the present invention. From both the front and back sides of the stretchable cloth 100, a resin layer (hot melt adhesive layer) of a laminate having a layer structure of release paper 400 / elastic conductive layer 200 / resin layer (hot melt adhesive layer) 300 is used as the cloth. The basic form of the stretchable capacitor of the present invention can be obtained by facing (step J), bonding by heating and pressurizing (step K), and peeling off the release paper 400 (step L). In step K, the resin of the resin layer (hot melt adhesive layer) permeates the fabric to form a stretchable composite layer containing fibers and resin. The composite layer can bond the conductive layer and the cloth. That is, the composite layer contributes to the adhesion between the conductive layer and the fabric. Here, the cloth is a pseudo-planar material obtained by combining threads, and includes a woven fabric, a knit, and a non-woven fabric.
 伸縮可能な布帛としては、織物、編み物(ニット)、不織布を用いることができる。織物については織物を構成する糸自体に伸張性が無い場合でも、バイアス方向に用いることにより伸縮可能となる。編み物(ニット)は高い伸縮性を実現する。不織布の場合には、構成する糸に伸張性がある場合に伸縮可能な布帛となる。
 本発明では布帛として編み物(ニット)生地を使用することが好ましく、特にトリコット編みの生地を使用することが好ましく、さらには2wayトリコット(ダブルトリコットとも呼ばれる)ニット生地の使用が好ましい。
 本発明の布帛を構成する糸については、耐熱性の高い繊維からなる糸を使用することが好ましい。好ましく用いられる繊維としては、アクリルニトリル、ポリエステル、ポリトリアセテート、ビスコースレーヨン、木綿、シルク、羊毛などの獣毛繊維を用いることができる。また耐熱性ポリアミド、液晶ポリマー、芳香族ポリアミド、芳香族ポリイミド、ポリパラフェニレンビスベンゾオキサゾールなどの耐熱性繊維を用いることができる。
As the stretchable cloth, a woven fabric, a knitted fabric (knit), or a non-woven fabric can be used. As for the woven fabric, even if the yarn itself constituting the woven fabric is not stretchable, it can be expanded and contracted by using it in the bias direction. Knitting achieves high elasticity. In the case of a non-woven fabric, it becomes a stretchable cloth when the constituent threads have extensibility.
In the present invention, it is preferable to use a knitted fabric as the fabric, particularly preferably a tricot knitted fabric, and further preferably a 2-way tricot (also referred to as a double tricot) knit fabric.
As the yarn constituting the fabric of the present invention, it is preferable to use a yarn made of fibers having high heat resistance. As the fibers preferably used, animal hair fibers such as acrylonitrile, polyester, polytriacetate, viscose rayon, cotton, silk and wool can be used. Further, heat-resistant fibers such as heat-resistant polyamide, liquid crystal polymer, aromatic polyamide, aromatic polyimide, and polyparaphenylene bisbenzoxazole can be used.
 本発明の布帛の平均厚さは20μm~1mmであることが好ましく、より好ましくは50μm~800μmである。布帛の目付は100~300g/mであることが好ましく、より好ましくは150~250g/mであることが好ましい。 The average thickness of the fabric of the present invention is preferably 20 μm to 1 mm, more preferably 50 μm to 800 μm. The basis weight of the fabric is preferably 100 to 300 g / m 2 , more preferably 150 to 250 g / m 2 .
 本発明の伸縮性のある導電層としては、導電フィラー(導電性粒子)と柔軟なバインダ樹脂(柔軟性樹脂)を含有する複合導電素材を用いることができる。伸縮性のある導電層は、主に金属フィラーを用いた第一伸縮性導電層と炭素系フィラーを主に用いた第二伸縮性導電層を積層して用いることが好ましい。なお、伸縮性導電層が確実にカバー絶縁層で覆われて、外気と直接接しない場合には金属系フィラーを用いた第一の伸縮性導電層のみで伸縮性導電層を構成しても良い。 As the elastic conductive layer of the present invention, a composite conductive material containing a conductive filler (conductive particles) and a flexible binder resin (flexible resin) can be used. The elastic conductive layer is preferably used by laminating a first elastic conductive layer mainly using a metal filler and a second elastic conductive layer mainly using a carbon-based filler. When the elastic conductive layer is surely covered with the cover insulating layer and does not come into direct contact with the outside air, the elastic conductive layer may be formed only by the first elastic conductive layer using a metal-based filler. ..
 本発明の第一伸縮性導電層は、少なくとも金属フィラー(金属粒子)と、引張弾性率が1MPa以上1000MPa以下の柔軟性樹脂、から主として構成されるものであることが好ましい。また柔軟性樹脂の配合量は、金属粒子と柔軟性樹脂の合計に対して7~35質量%であることが好ましく、より好ましくは9~28質量%であり、さらに好ましくは12~20質量%である。また、第一伸縮性導電層に含まれる金属粒子と柔軟性樹脂の合計量は、第一伸縮性導電層中90質量%以上であることが好ましく、より好ましくは95質量%以上であり、さらに好ましくは100質量%である。
 第一伸縮性導電層は、金属粒子と柔軟性樹脂を混練混合し、シート状(フィルム状)に成型することにより得ることができる。本発明の伸縮性導電層は、好ましくは金属粒子と柔軟性樹脂に溶剤などを加えて伸縮性導体形成用ペースト化、ないしスラリー化した状態を経て、塗布、乾燥によりシート状(フィルム状)に加工することが出来る。また、ペースト化した後、印刷することにより所定の形状を与えることもできる。
The first elastic conductive layer of the present invention is preferably composed mainly of at least a metal filler (metal particles) and a flexible resin having a tensile elastic modulus of 1 MPa or more and 1000 MPa or less. The blending amount of the flexible resin is preferably 7 to 35% by mass, more preferably 9 to 28% by mass, and further preferably 12 to 20% by mass with respect to the total of the metal particles and the flexible resin. Is. The total amount of the metal particles and the flexible resin contained in the first elastic conductive layer is preferably 90% by mass or more, more preferably 95% by mass or more, and further. It is preferably 100% by mass.
The first elastic conductive layer can be obtained by kneading and mixing metal particles and a flexible resin and molding them into a sheet shape (film shape). The stretchable conductive layer of the present invention is preferably made into a paste for forming a stretchable conductor by adding a solvent or the like to metal particles and a flexible resin, or is made into a slurry, and then coated and dried to form a sheet (film). It can be processed. Further, it is also possible to give a predetermined shape by printing after making a paste.
 本発明の導電性粒子は、比抵抗が1×10-1Ωcm以下の物質からなる、粒子径が100μm以下の粒子であることが好ましい。比抵抗が1×10-1Ωcm以下の物質としては、金属、合金、カーボン、ドーピングされた半導体、導電性高分子などを例示することができる。本発明で好ましく用いられる導電性粒子(金属フィラー)は銀、金、白金、パラジウム、銅、ニッケル、アルミニウム、亜鉛、鉛、錫などの金属、黄銅、青銅、白銅、半田などの合金粒子、銀被覆銅のようなハイブリッド粒、さらには金属メッキした高分子粒子、金属メッキしたガラス粒子、金属被覆したセラミック粒子などを用いることができる。 The conductive particles of the present invention are preferably particles having a specific resistance of 1 × 10 -1 Ωcm or less and having a particle diameter of 100 μm or less. Examples of the substance having a specific resistance of 1 × 10 -1 Ωcm or less include metals, alloys, carbons, doped semiconductors, and conductive polymers. The conductive particles (metal fillers) preferably used in the present invention are metals such as silver, gold, platinum, palladium, copper, nickel, aluminum, zinc, lead and tin, alloy particles such as brass, bronze, white copper and solder, and silver. Hybrid particles such as coated copper, as well as metal-plated polymer particles, metal-plated glass particles, metal-coated ceramic particles and the like can be used.
 本発明ではフレーク状粉または不定形凝集粉を用いることが好ましく、フレーク状銀粒子または不定形凝集銀粉を主体に用いることがより好ましい。なお、ここに主体に用いるとは導電性粒子の90質量%以上用いることである。不定形凝集粉とは球状もしくは不定形状の1次粒子が3次元的に凝集したものである。不定形凝集粉およびフレーク状粉は球状粉などよりも比表面積が大きいことから低充填量でも導電性ネットワークを形成できるので好ましい。不定形凝集粉は単分散の形態ではないので、粒子同士が物理的に接触していることから導電性ネットワークを形成しやすいので、さらに好ましい。
 フレーク状粉の粒子径は特に限定されないが、動的光散乱法により測定した平均粒子径(50%D)が0.5~20μmであるものが好ましい。より好ましくは3~12μmである。平均粒子径が20μmを超えると微細配線の形成が困難になり、スクリーン印刷などの場合は目詰まりが生じることがある。平均粒子径が0.5μm未満の場合、低充填では粒子間で接触できなくなり、導電性が悪化する場合がある。
 不定形凝集粉の粒子径は特に限定されないが、光散乱法により測定した平均粒子径(50%D)が1~20μmであるものが好ましい。より好ましくは3~12μmである。平均粒子径が20μmを超えると分散性が低下してペースト化が困難になることがある。平均粒子径が1μm未満の場合、凝集粉としての効果が失われ、低充填では良導電性を維持できなくなる場合がある。
In the present invention, it is preferable to use flake-shaped powder or amorphous agglomerated powder, and it is more preferable to mainly use flake-shaped silver particles or amorphous agglomerated silver powder. It should be noted that the term "used mainly" here means that 90% by mass or more of the conductive particles are used. The amorphous agglomerated powder is a three-dimensional aggregate of spherical or amorphous primary particles. Amorphous aggregated powder and flake-shaped powder have a larger specific surface area than spherical powder and the like, and are preferable because they can form a conductive network even with a low filling amount. Since the amorphous agglomerated powder is not in the form of monodisperse, it is more preferable because the particles are in physical contact with each other and easily form a conductive network.
The particle size of the flake-like powder is not particularly limited, but an average particle size (50% D) measured by a dynamic light scattering method is preferably 0.5 to 20 μm. More preferably, it is 3 to 12 μm. If the average particle size exceeds 20 μm, it becomes difficult to form fine wiring, and clogging may occur in the case of screen printing or the like. If the average particle size is less than 0.5 μm, the particles cannot be contacted with each other at low filling, and the conductivity may deteriorate.
The particle size of the amorphous agglomerated powder is not particularly limited, but the average particle size (50% D) measured by the light scattering method is preferably 1 to 20 μm. More preferably, it is 3 to 12 μm. If the average particle size exceeds 20 μm, the dispersibility may decrease and it may be difficult to make a paste. If the average particle size is less than 1 μm, the effect as agglomerated powder is lost, and good conductivity may not be maintained with low filling.
 本発明における柔軟性樹脂とは、好ましくは引張弾性率が、1~1000MPaの、熱可塑性樹脂、熱硬化性樹脂、ゴムなどが挙げられる。膜の伸縮性を発現させるためには、ウレタン樹脂ないしゴムが好ましい。ゴムとしては、ウレタンゴム、アクリルゴム、シリコーンゴム、ブタジエンゴム、ニトリルゴムや水素化ニトリルゴムなどのニトリル基含有ゴム、イソプレンゴム、硫化ゴム、スチレン-ブタジエンゴム、ブチルゴム、クロロスルホン化ポリエチレンゴム、エチレンプロピレンゴム、フッ化ビニリデンコポリマーなどが挙げられる。この中でも、ニトリル基含有ゴム、クロロプレンゴム、クロロスルホン化ポリエチレンゴムが好ましく、ニトリル基含有ゴムが特に好ましい。本発明でより好ましい弾性率の範囲は2~480MPaであり、さらに好ましく3~240MPa、なお好ましくは4~120MPaの範囲である。
 ニトリル基を含有するゴムは、ニトリル基を含有するゴムやエラストマーであれば特に限定されないが、ニトリルゴムと水素化ニトリルゴムが好ましい。ニトリルゴムはブタジエンとアクリロニトリルの共重合体であり、結合アクリロニトリル量が多いと金属との親和性が増加するが、伸縮性に寄与するゴム弾性は逆に減少する。従って、アクリロニトリルブタジエン共重合体ゴム中の結合アクリロニトリル量は18~50質量%が好ましく、40~50質量%が特に好ましい。
 本発明における柔軟性樹脂の配合量は、導電粒子と、好ましくは加えられる非導電性粒子と柔軟性樹脂の合計に対して7~35質量%であり、好ましくは9~28質量%、さらに好ましくは12~20質量%である。
Examples of the flexible resin in the present invention include thermoplastic resins, thermosetting resins, rubbers and the like having a tensile elastic modulus of 1 to 1000 MPa. Urethane resin or rubber is preferable in order to develop the elasticity of the film. Examples of rubber include urethane rubber, acrylic rubber, silicone rubber, butadiene rubber, nitrile group-containing rubber such as nitrile rubber and hydride nitrile rubber, isoprene rubber, sulfide rubber, styrene-butadiene rubber, butyl rubber, chlorosulfonated polyethylene rubber, and ethylene. Examples thereof include propylene rubber and vinylidene fluoride copolymer. Among these, nitrile group-containing rubber, chloroprene rubber, and chlorosulfonated polyethylene rubber are preferable, and nitrile group-containing rubber is particularly preferable. The range of the elastic modulus more preferable in the present invention is 2 to 480 MPa, more preferably 3 to 240 MPa, still more preferably 4 to 120 MPa.
The rubber containing a nitrile group is not particularly limited as long as it is a rubber containing a nitrile group or an elastomer, but nitrile rubber and hydrogenated nitrile rubber are preferable. Nitrile rubber is a copolymer of butadiene and acrylonitrile, and when the amount of bound acrylonitrile is large, the affinity with the metal increases, but the rubber elasticity that contributes to elasticity decreases. Therefore, the amount of bonded acrylonitrile in the acrylonitrile butadiene copolymer rubber is preferably 18 to 50% by mass, particularly preferably 40 to 50% by mass.
The blending amount of the flexible resin in the present invention is 7 to 35% by mass, preferably 9 to 28% by mass, more preferably 9 to 28% by mass, based on the total of the conductive particles, preferably the non-conductive particles and the flexible resin to be added. Is 12 to 20% by mass.
 本発明に用いられる第一の伸縮性導電層の非伸張時の比抵抗は3×10-3Ωcm以下であることが好ましく、1×10-3Ωcm以下であることがより好ましく、3×10-4Ωcm以下であることがさらに好ましく、1×10-4Ωcm以下であることがなお好ましい。比抵抗がこの範囲を上回ると、導電層内の抵抗分布が顕著になり、素子の時定数が大きくなり応答性に問題が生じ、高周波特性や、パルス応答性が低下する場合がある。比抵抗の下限は原理的に用いられる導電材料に依存する。 The non-stretchable specific resistance of the first stretchable conductive layer used in the present invention is preferably 3 × 10 -3 Ωcm or less, more preferably 1 × 10 -3 Ωcm or less, and 3 × 10 -3 Ωcm or less. It is more preferably -4 Ωcm or less, and even more preferably 1 × 10 -4 Ωcm or less. If the resistivity exceeds this range, the resistance distribution in the conductive layer becomes remarkable, the time constant of the device becomes large, a problem arises in responsiveness, and high frequency characteristics and pulse responsiveness may deteriorate. The lower limit of resistivity depends on the conductive material used in principle.
 本発明の第二の伸縮性導電層は炭素系の導電フィラー(炭素系フィラー)と、前記柔軟性樹脂から主として構成されるものであることが好ましい。柔軟性樹脂の配合量は、炭素系フィラーと柔軟性樹脂の合計に対して7~35質量%であることが好ましく、より好ましくは9~28質量%であり、さらに好ましくは12~20質量%である。また、第二伸縮性導電層に含まれる金属粒子と柔軟性樹脂の合計量は、第二伸縮性導電層中90質量%以上であることが好ましく、より好ましくは95質量%以上であり、さらに好ましくは100質量%である。 第二伸縮性導電層は、炭素系フィラーと柔軟性樹脂を混練混合し、シート状(フィルム状)に成型することにより得ることができる。本発明の伸縮性導電層は、好ましくは炭素系フィラーと柔軟性樹脂に溶剤などを加えて伸縮性導体形成用ペースト化、ないしスラリー化した状態を経て、塗布、乾燥によりシート状(フィルム状)に加工することが出来る。また、ペースト化した後、印刷することにより所定の形状を与えることもできる。 It is preferable that the second elastic conductive layer of the present invention is mainly composed of a carbon-based conductive filler (carbon-based filler) and the flexible resin. The blending amount of the flexible resin is preferably 7 to 35% by mass, more preferably 9 to 28% by mass, and further preferably 12 to 20% by mass with respect to the total of the carbon-based filler and the flexible resin. Is. The total amount of the metal particles and the flexible resin contained in the second stretchable conductive layer is preferably 90% by mass or more, more preferably 95% by mass or more, and further. It is preferably 100% by mass. The second elastic conductive layer can be obtained by kneading and mixing a carbon-based filler and a flexible resin and molding it into a sheet shape (film shape). The stretchable conductive layer of the present invention is preferably in the form of a paste or slurry for forming a stretchable conductor by adding a solvent or the like to a carbon-based filler and a flexible resin, and then applied and dried to form a sheet (film). Can be processed into. Further, it is also possible to give a predetermined shape by printing after making a paste.
 炭素系フィラーとしては黒煙、ケッチェンブラック、ファーネスブラック、カーボンナノチューブ、カーボンナノコーン、フラーレン、などを用いることができる。なお炭素系フィラーと組み合わせて使用される柔軟性樹脂、他の条件などについては金属系フィラーに準じる。 As the carbon-based filler, black smoke, Ketjen black, furnace black, carbon nanotube, carbon nanocone, fullerene, etc. can be used. The flexible resin used in combination with the carbon-based filler and other conditions are the same as those of the metal-based filler.
 本発明では伸縮性のある誘電層を、伸縮性のある2枚の導電層で挟んだ構成を有する。伸縮性のある誘電層は、伸縮可能なシート状の布帛と、前記導電層と前記布帛の接着に寄与する繊維及び樹脂を含む複合層を有する。前記誘電層は、さらに樹脂層を含むことも好ましい。布帛は絡み合った繊維の集合体であることが好ましく、通常、繊維と繊維の間隙は空気であるが、複合層ではこの繊維と繊維の間隙に樹脂が入り込んで混在した状態となっている。ただし、繊維と繊維の間に空隙が残ることを妨げるものではない。布帛(繊維)の一部または全部に樹脂を含有する層を複合層と呼び、樹脂を含有しない層を布帛(繊維)と呼ぶ。前記構成は、伸縮性のある誘電層が、伸縮可能なシート状の布帛を含み、前記布帛の一部または全部に樹脂が含侵しているということもできる。複合層に含まれる樹脂は、導電層と布帛を接着することに寄与できるものであることが好ましい。また、樹脂層は、布帛と伸縮性導電層の間に存在し、布帛(複合層)と伸縮性導電層の接着性を向上できるものであることが好ましい。前記複合層に含まれる樹脂と樹脂層は同じものであっても、異なるものであっても構わないが、同じものであることが好ましい。前記2枚の伸縮性導電層を構成する部品は同じものであっても、異なるものであっても構わないが、同じものであることが好ましい。伸縮性導電層の平均厚さは、10~200μmであることが好ましく、より好ましくは20~100μmである。 The present invention has a structure in which a stretchable dielectric layer is sandwiched between two stretchable conductive layers. The stretchable dielectric layer has a stretchable sheet-like cloth and a composite layer containing fibers and resins that contribute to the adhesion between the conductive layer and the cloth. It is also preferable that the dielectric layer further contains a resin layer. The fabric is preferably an aggregate of entangled fibers, and the gap between the fibers is usually air, but in the composite layer, the resin is mixed in the gap between the fibers. However, it does not prevent the voids from remaining between the fibers. A layer containing resin in a part or all of a cloth (fiber) is called a composite layer, and a layer not containing resin is called a cloth (fiber). In the above configuration, it can be said that the stretchable dielectric layer includes a stretchable sheet-like cloth, and a part or all of the cloth is impregnated with the resin. The resin contained in the composite layer is preferably one that can contribute to adhering the conductive layer and the fabric. Further, it is preferable that the resin layer exists between the cloth and the stretchable conductive layer and can improve the adhesiveness between the cloth (composite layer) and the stretchable conductive layer. The resin and the resin layer contained in the composite layer may be the same or different, but are preferably the same. The parts constituting the two elastic conductive layers may be the same or different, but are preferably the same. The average thickness of the stretchable conductive layer is preferably 10 to 200 μm, more preferably 20 to 100 μm.
 伸縮性導電層を布帛に接着積層する際、あるいはカバー絶縁層を伸縮性導電層に接着する場合に、樹脂として、ホットメルト接着剤を用いることが好ましい。本発明に於けるホットメルト接着剤とは、軟化温度が50℃~200℃程度の高分子材料を使用する事ができ、好ましくは、誘電層と同程度の伸縮性を有する柔軟性を備える高分子材料を使用することができる。
 このようなホットメルト接着剤としては、エチレン系共重合体、スチレン系ブロック共重合体およびオレフィン系(共)重合体など、さらにそれらをベースポリマーとして粘着性を付与するために結晶性極性基含有化合物等を含有する高分子材料、アモルファスポリα-オレフィン、粘着付与樹脂、ポリプロピレン系ワックス等の配合物、スチレン-エチレンプロピレン-スチレンブロック共重合ゴムあるいはスチレン-ブタジエン-スチレンブロック共重合ゴム、さらにこれらに粘着付与樹脂成分、およびまたはプロセスオイルなどの液状可塑剤を添加した高分子材料、変性ポリオレフィンおよびその配合物、スチレン系ブロック共重合体およびその配合物、酸変性ポリプロピレン、酸変性スチレン系ブロック共重合体、それらの配合物、スチレン系ブロック共重合体、エチレン系重合体等の配合物、ポリエステルウレタン共重合体およびその配合物などを用いることができる。
It is preferable to use a hot melt adhesive as the resin when the elastic conductive layer is adhered and laminated on the fabric, or when the cover insulating layer is adhered to the elastic conductive layer. As the hot melt adhesive in the present invention, a polymer material having a softening temperature of about 50 ° C. to 200 ° C. can be used, and it is preferable that the hot melt adhesive has flexibility having the same degree of elasticity as the dielectric layer. Molecular materials can be used.
Such hot melt adhesives include ethylene-based copolymers, styrene-based block copolymers, olefin-based (co) copolymers, and the like, and further use them as a base polymer to impart a crystalline polar group. Polymer materials containing compounds, amorphous poly α-olefins, tackifier resins, polypropylene waxes and other formulations, styrene-ethylene propylene-styrene block copolymer rubber or styrene-butadiene-styrene block copolymer rubber, and these. Adhesive-imparting resin component and / or polymer material to which a liquid plasticizer such as process oil is added, modified polyolefin and its formulation, styrene-based block copolymer and its formulation, acid-modified polypropylene, acid-modified styrene-based block Polymers, blends thereof, styrene-based block copolymers, blends such as ethylene-based polymers, polyester-urethane copolymers and their blends can be used.
 本発明では軟化温度が40℃~120℃のポリエステルウレタン樹脂、ポリエーテルウレタン樹脂などをシート状に加工したホットメルトシートを好ましく用いることができる。本発明のホットメルト接着剤樹脂は、引張降伏伸度が70%以上の伸縮性絶縁高分子であることが好ましい。また、 樹脂層の平均厚さは、10~200μmであることが好ましく、より好ましくは20~100μmである。 In the present invention, a hot melt sheet obtained by processing a polyester urethane resin, a polyether urethane resin, or the like having a softening temperature of 40 ° C to 120 ° C into a sheet can be preferably used. The hot melt adhesive resin of the present invention is preferably a stretchable insulating polymer having a tensile yield elongation of 70% or more. The average thickness of the resin layer is preferably 10 to 200 μm, more preferably 20 to 100 μm.
 図7および図8を用いて、本発明の伸縮性コンデンサを作製する工程について説明する。
 まず図7(A)~(H)までの工程により、伸縮性を有する布帛100に貼り付けるための、伸縮性導電層の部品を製作する。
 図7(A)は第一の離型紙410 である。便宜上「紙」としているが、離型紙としては離型処理を行った紙だけでなく、適宜必要に応じて離型処理を行ったPET、ポリエステル、ポリプロピレン、ポリエチレン、ポリ塩化ビニリデンなどのフィルムを用いてもよい。またシリコーンゴムシート、フッ素樹脂シートなどを用いることもできる。
 図7(B)においては、離型紙上に伸縮性導電層200と、第一のホットメルト接着剤層310を形成する(説明の都合上、上下逆に図示されている)。なお、ここでは簡単のために伸縮性導電層を一層で図示したが、二層に分ける場合にはまず第二の導電層を離型紙上に塗布し、次いで第一の導電層を塗布し、乾燥して導電層とする。
 図7(C)において、必要な形状、サイズにカットする。
 図7(D)において、別途準備されたフレキシブルシート600、第三のホットメルト接着剤層330、第三の離型紙430が積層された積層体のフレキシブルシートと第一のホットメルト層を対向させ、図7(E)において両者を加熱、加圧して貼り合わせる。なおここにフレキシブルシートは、比較的熱変形温度が高い伸長可能な柔軟素材のシートであり、架橋ポリウレタン、架橋ゴム、シリコーンゴムシート、フッ素ゴムシート、その他架橋エラストマーからなるシートを用いることができる。
 図7(F)において第一の離型紙を剥離除去し、
 図7(G)において、あらかじめ所定の位置の打ち抜きによる窓を含めた外形加工を行ったホットメルト接着剤層付きカバー絶縁層を伸縮性導電層に重ね、
 図7(H)において、両者を加圧、加熱して接着し、伸縮性導体部品を得る。
A process of manufacturing the elastic capacitor of the present invention will be described with reference to FIGS. 7 and 8.
First, by the steps of FIGS. 7A to 7H, a part of the elastic conductive layer to be attached to the elastic cloth 100 is manufactured.
FIG. 7A is the first release paper 410. Although it is referred to as "paper" for convenience, not only the release-treated paper but also PET, polyester, polypropylene, polyethylene, polyvinylidene chloride and other films that have been released-treated as necessary are used as the release paper. May be. Further, a silicone rubber sheet, a fluororesin sheet, or the like can also be used.
In FIG. 7B, the elastic conductive layer 200 and the first hot melt adhesive layer 310 are formed on the release paper (shown upside down for convenience of explanation). Although the elastic conductive layer is shown as one layer here for the sake of simplicity, in the case of dividing into two layers, the second conductive layer is first applied on the release paper, and then the first conductive layer is applied. Dry to form a conductive layer.
In FIG. 7 (C), it is cut into a required shape and size.
In FIG. 7D, the flexible sheet of the laminate in which the separately prepared flexible sheet 600, the third hot melt adhesive layer 330, and the third release paper 430 are laminated is opposed to the first hot melt layer. , In FIG. 7 (E), both are heated and pressed to be bonded. Here, the flexible sheet is a sheet made of a stretchable flexible material having a relatively high heat distortion temperature, and a sheet made of crosslinked polyurethane, crosslinked rubber, silicone rubber sheet, fluororubber sheet, or other crosslinked elastomer can be used.
In FIG. 7 (F), the first release paper was peeled off and removed.
In FIG. 7 (G), a cover insulating layer with a hot-melt adhesive layer, which has been subjected to external processing including a window by punching at a predetermined position in advance, is laminated on the elastic conductive layer.
In FIG. 7 (H), both are pressurized and heated to be bonded to obtain an elastic conductor component.
 得られた伸縮性導体部品は、両面が離型紙にて保護された形態となっている。伸縮性導電層は表面ならびに側面が全てカバー絶縁層ないしホットメルト接着剤層で覆われた状態で、唯一、カバー絶縁層にあらかじめ打ち抜きにより形成された窓部分のみが絶縁されていない状態である。 The obtained elastic conductor parts are in a form protected by release paper on both sides. The elastic conductive layer is in a state where the surface and the side surface are all covered with the cover insulating layer or the hot melt adhesive layer, and only the window portion previously formed by punching in the cover insulating layer is not insulated.
 次いで、図8(I)~(L)において、かかる伸縮性導電層の部品が布帛の表裏に貼り付けられ、本発明の伸縮性コンデンサとなる。
 まず図8(I)において、第三の離型紙が剥離される。
次いで、図8(J)において、表裏二枚の伸縮性導電層の部品が布帛を挟んで配置され、図8(K)において、全体が加圧、加熱されてラミネートされる。
 最後に図8(L)に示すように表裏に残されていた第二の離型紙が取り去られ、本発明の伸縮性コンデンサを得る。
Next, in FIGS. 8 (I) to 8 (L), the parts of the stretchable conductive layer are attached to the front and back surfaces of the fabric to obtain the stretchable capacitor of the present invention.
First, in FIG. 8 (I), the third release paper is peeled off.
Next, in FIG. 8 (J), two front and back elastic conductive layer parts are arranged with the cloth sandwiched between them, and in FIG. 8 (K), the whole is pressurized and heated to be laminated.
Finally, as shown in FIG. 8 (L), the second release paper left on the front and back is removed to obtain the elastic capacitor of the present invention.
 図1は、図8(L)にて得られた伸縮性コンデンサに、外部接続のためのコネクタとして機能するスナップファスナー800を取り付けた状態の断面を図示している。なお、図7、図8では省略していたが、この図では伸縮性導電層が、第一伸縮性導電層と第二伸縮性導電層の二層構成で図示されている。また逆に図7、図8では図示していたフレキシブルシートは第三のホットメルト接着剤層と第一のホットメルト接着剤層に挟まれており、ここでは第三のホットメルト接着剤層に含まれるとみなして図示を省略している。ここに布帛を挟んで、表裏の伸縮性導電層が対向している部分が、実質的なコンデンサ素子となっており、この部分Sがセンシング領域となる。また、図においてスナップファスナー部の外側に位置するT部分が、センシング領域に影響しない縫製可能な領域となる。布帛は全領域に存在するため、該伸縮性コンデンサは、全面縫製可能ではあるが、センシングの精度、安定性などの点から、縫製部なるべくセンシング領域に入らないほうが好ましい。 図1においては、樹脂と繊維を含む複合層は布帛の表面層にのみ存在し、布帛の(厚さ方向において)中央部分には樹脂は侵入していない。したがって誘電層として機能するのは、表裏の複合層と、樹脂が含侵していない布帛層となる。 スナップファスナーは金属製の物を用いることが好ましく、素材としてはステンレス鋼製が好ましい。 FIG. 1 illustrates a cross section of the elastic capacitor obtained in FIG. 8 (L) with a snap fastener 800 functioning as a connector for external connection attached. Although omitted in FIGS. 7 and 8, in this figure, the stretchable conductive layer is shown in a two-layer structure consisting of a first stretchable conductive layer and a second stretchable conductive layer. On the contrary, the flexible sheet shown in FIGS. 7 and 8 is sandwiched between the third hot melt adhesive layer and the first hot melt adhesive layer, and here, the third hot melt adhesive layer is used. The illustration is omitted because it is considered to be included. The portion where the elastic conductive layers on the front and back faces each other with the cloth sandwiched therein is a substantial capacitor element, and this portion S is the sensing region. Further, the T portion located outside the snap fastener portion in the figure is a sewable region that does not affect the sensing region. Since the fabric exists in the entire region, the elastic capacitor can be sewn on the entire surface, but it is preferable that the woven portion does not enter the sensing region as much as possible from the viewpoint of sensing accuracy and stability. In FIG. 1, the composite layer containing the resin and the fiber exists only in the surface layer of the fabric, and the resin does not penetrate into the central portion (in the thickness direction) of the fabric. Therefore, what functions as a dielectric layer is a composite layer on the front and back surfaces and a fabric layer that is not impregnated by the resin. It is preferable to use a metal snap fastener, and a stainless steel material is preferable as the material.
 図2は、本発明に用いられる伸縮性コンデンサの態様の別の一例の断面構造を示す概略図である。この例では、伸縮性導電層の大部分は第一の伸縮性導電層であり、スナップファスナーと接する部分のみに第二の伸縮性導電層が使われている。第一の伸縮性導電層に用いられる金属フィラーの材質と、スナップファスナーの材質が異種金属である場合に、伸縮性コンデンサに汗などの電化質を含んだ液体が接すると局所的に電池が形成されてしまい、いずれかの金属雄電気腐食が生じる場合がある。これを防止する際に、炭素系導電材料からなる導電被膜を金属との接点に用いるのである。 FIG. 2 is a schematic view showing a cross-sectional structure of another example of the aspect of the stretchable capacitor used in the present invention. In this example, most of the stretchable conductive layer is the first stretchable conductive layer, and the second stretchable conductive layer is used only in the portion in contact with the snap fastener. When the material of the metal filler used for the first elastic conductive layer and the material of the snap fastener are dissimilar metals, the battery is locally formed when the elastic capacitor comes into contact with a liquid containing electrical material such as sweat. And any metal galvanic corrosion may occur. In order to prevent this, a conductive coating made of a carbon-based conductive material is used for the contact point with the metal.
 図3は、本発明に用いられる伸縮性コンデンサの態様の別の一例の断面構造を示す概略図である。本例では、ホットメルト接着剤の樹脂が布帛の中央部まで浸透し、樹脂と繊維を含む複合層の厚さが事実上布帛の厚さに等しくなっている。すなわち、伸縮性コンデンサの誘電層が事実上すべて複合層になっている状態であり、電極間のセンシング領域に水分、汗などの高誘電率液体、ないし、電解質の侵入が防止されるので、測定の外乱が低減される。 FIG. 3 is a schematic view showing a cross-sectional structure of another example of the aspect of the stretchable capacitor used in the present invention. In this example, the resin of the hot melt adhesive penetrates to the center of the fabric, and the thickness of the composite layer containing the resin and the fiber is substantially equal to the thickness of the fabric. That is, the dielectric layer of the elastic capacitor is virtually all a composite layer, and high dielectric constant liquids such as moisture and sweat or electrolytes are prevented from entering the sensing region between the electrodes. Disturbance is reduced.
 図4は、本発明に用いられる伸縮性コンデンサの態様の別の一例の断面構造を示す概略図である。本例では、布帛と導電層を接着するための樹脂(ホットメルト接着剤層)が比較的薄い場合であり、樹脂のほぼすべてが布帛に浸透しており、当該部分が複合層になっている状態を示している。誘電層の厚さが薄くなっているため、静電容量は増加し、測定感度は高くなる。
 以上はいずれも図7、図8で説明したように、カバー絶縁層をあらかじめ伸縮性導体に接着した形態の伸縮性導体部品を用いた場合となる。
FIG. 4 is a schematic view showing a cross-sectional structure of another example of the aspect of the stretchable capacitor used in the present invention. In this example, the resin (hot melt adhesive layer) for adhering the fabric and the conductive layer is relatively thin, and almost all of the resin permeates the fabric, and the portion is a composite layer. It shows the state. Since the thickness of the dielectric layer is thin, the capacitance is increased and the measurement sensitivity is increased.
As described in FIGS. 7 and 8, the above is the case where the stretchable conductor component in the form in which the cover insulating layer is previously bonded to the stretchable conductor is used.
 図5は、本発明に用いられる伸縮性コンデンサの態様の別の一例の断面構造を示す概略図である。ここでは図5に示すように、布帛に伸縮性の導電層を先に接着し、その後にカバー絶縁層を接着した場合に得られる断面構造を示している。 図1~図4の構造に比較すると、フレキシブルシートが不要であるため、誘電層を薄くすることができる。 FIG. 5 is a schematic view showing a cross-sectional structure of another example of the aspect of the stretchable capacitor used in the present invention. Here, as shown in FIG. 5, the cross-sectional structure obtained when the elastic conductive layer is first adhered to the fabric and then the cover insulating layer is adhered is shown. Compared to the structures of FIGS. 1 to 4, since a flexible sheet is not required, the dielectric layer can be made thinner.
 本発明において、伸縮性コンデンサの面方向への伸縮変形に応じて変化する伸縮性コンデンサの静電容量変化は、主として伸縮性誘電層の面方向への伸縮に伴う、伸縮性誘電層の厚さ方向への変化による静電容量の変化である。かかる特性を発現させるためには伸縮性誘電層に用いる材料のポアソン比が高い方が好ましい。本発明の伸縮性誘電層のポアソン比は0.28以上である事が好ましく、0.38以上である事がなお好ましく、0.48以上である事がさらに好ましい。ポアソン比を高めるには伸縮性誘電層に配合される無機成分が少ない方が良い。 In the present invention, the change in capacitance of the elastic capacitor that changes according to the expansion and contraction deformation of the elastic capacitor in the surface direction is mainly due to the expansion and contraction of the elastic dielectric layer in the surface direction, and the thickness of the elastic dielectric layer. It is a change in capacitance due to a change in direction. In order to exhibit such characteristics, it is preferable that the Poisson's ratio of the material used for the elastic dielectric layer is high. The Poisson's ratio of the stretchable dielectric layer of the present invention is preferably 0.28 or more, more preferably 0.38 or more, and even more preferably 0.48 or more. In order to increase the Poisson's ratio, it is better that the amount of inorganic components blended in the elastic dielectric layer is small.
 本発明の伸縮性コンデンサは、面方向への20%伸長時の応力が15N/cm以下であることが好ましい。伸長時応力は伸縮性コンデンサを構成する材料の物性および、伸縮性コンデンサの検出部の厚さに依存する。特に先に述べた条件を満たした樹脂及び布帛を用いる場合においては、全体の厚さを700μm以下、好ましくは450μm以下、なお好ましくは250μm以下となるように構成することが好ましい。 The stretchable capacitor of the present invention preferably has a stress of 15 N / cm or less at the time of 20% elongation in the plane direction. The stress during elongation depends on the physical characteristics of the material constituting the stretchable capacitor and the thickness of the detection portion of the stretchable capacitor. In particular, when a resin and a fabric satisfying the above-mentioned conditions are used, it is preferable to configure the total thickness to be 700 μm or less, preferably 450 μm or less, and more preferably 250 μm or less.
 本発明では、人体上半身用の衣服であり、少なくとも肘部分、上腕周囲、下腕周囲、肩部分、背面、胸部周囲、腹部周囲、脇腹部分のいずれかの個所に前記伸縮性コンデンサを配置したセンシングウェアとすることができる。
 本発明では、人体下半身用の衣服であり、少なくとも膝部分、足首部分、大腿部周囲、脛部周囲、股関節部分、腰部分のいずれかの個所に前記伸縮性コンデンサを配置したセンシングウェアとすることもできる。
 本発明では手袋形状であり、少なくとも手首、手指の各関節の一個所以上のいずれかの部分に前記伸縮性コンデンサを配置したセンシングウェアとすることもできる。
 本発明では、靴下形状であり、少なくとも足首、足指の各関節の一個所以上のいずれかの部分に前記伸縮性コンデンサを配置したセンシングウェアとすることもできる。
 本発明では伸縮性のある素材を用いたベルト形状のセンシングウェアとすることもできる。
In the present invention, it is a garment for the upper body of the human body, and sensing in which the elastic capacitor is arranged at least at any of the elbow portion, the upper arm circumference, the lower arm circumference, the shoulder portion, the back, the chest circumference, the abdominal circumference, and the flank portion. Can be wear.
In the present invention, it is a garment for the lower half of the human body, and is a sensing wear in which the elastic capacitor is arranged at least at any of the knee part, the ankle part, the thigh part, the shin part, the hip joint part, and the waist part. You can also do it.
In the present invention, the shape is a glove, and the sensing wear may be a sensing wear in which the elastic capacitor is arranged at least at one or more of each joint of the wrist and the finger.
In the present invention, it is a sock-shaped sensing wear in which the elastic capacitor is arranged at least at one or more of each joint of the ankle and the toe.
In the present invention, a belt-shaped sensing wear using an elastic material can also be used.
 本発明では、伸縮性コンデンサは、上記例示した衣服の生地に縫製で取り付けることができる。すなわち縫い付けることでセンシングウェアとすることができる。縫い付けはミシンによる機械縫いでも手縫いでも構わない、縫い付けるための糸は特に限定されず、一般的な絶縁素材からなるミシン糸を用いれば良い。
 縫い付け部は、伸縮性コンデンサの周辺部のみとすることが好ましい。周辺部とは、伸縮性コンデンサ素子の外形から8mmの幅の部分を云う。本発明ではアップリケの様に伸縮性コンデンサ素子の周囲のみを縫い付けることが好ましい。またさらに好ましくは、縫い付ける範囲(縫い付け部の長さ)を、伸縮コンデンサの周囲長の50%以下、好ましくは30%以下とすることで、センシングウェアに対して着用者が感じる違和感を低減することができる。下限は特に限定されないが、3%以上であることが好ましく、5%以上であることがより好ましい。
 本発明では伸縮性コンデンサの表裏の導体層間の静電容量を測定することで、センシングエリアの変形、歪量を読み取ることができる。
In the present invention, the stretchable capacitor can be sewn and attached to the fabric of the above-exemplified garment. That is, it can be made into sensing wear by sewing. The sewing may be machine-sewn with a sewing machine or hand-sewn. The thread for sewing is not particularly limited, and a sewing thread made of a general insulating material may be used.
It is preferable that the sewn portion is only the peripheral portion of the elastic capacitor. The peripheral portion refers to a portion having a width of 8 mm from the outer shape of the elastic capacitor element. In the present invention, it is preferable to sew only the periphery of the elastic capacitor element like an appliqué. Further, more preferably, the sewing range (the length of the sewn portion) is set to 50% or less, preferably 30% or less of the peripheral length of the expansion / contractor capacitor, thereby reducing the discomfort felt by the wearer with respect to the sensing wear. can do. The lower limit is not particularly limited, but is preferably 3% or more, and more preferably 5% or more.
In the present invention, the deformation and strain amount of the sensing area can be read by measuring the capacitance between the conductor layers on the front and back of the elastic capacitor.
 以上、示してきたように、本発明の伸縮性コンデンサは縫製による衣服への取り付けが可能であり、縫製によりセンシング素子である伸縮性コンデンサを取り付けられた衣服は、両者の固定エリアを適宜超することで、着用者が違和感や不快感を感じにくくなる。
 本発明のセンシングウェアは、身体の姿勢や、体周囲長変化による脈拍、心拍、呼吸などのセンシングを行うことができ、さらには、モーションキャプチャにも応用可能である。さらに本発明は人体のみならず、動物、機械装置にも適用が可能である。
As described above, the elastic capacitor of the present invention can be attached to clothes by sewing, and the clothes to which the elastic capacitor which is a sensing element is attached by sewing appropriately exceeds the fixed areas of both. As a result, the wearer is less likely to feel discomfort or discomfort.
The sensing wear of the present invention can sense the posture of the body, the pulse, the heartbeat, the respiration, etc. due to the change in the circumference of the body, and can be further applied to motion capture. Further, the present invention can be applied not only to the human body but also to animals and mechanical devices.
100:伸縮可能なシート状の布帛
150:複合層
151:第一樹脂層(第一ホットメルト接着剤層)と布帛との複合層
152:第二樹脂層(第二ホットメルト接着剤層)と布帛との複合層
200:伸縮性導電層
210:第一伸縮性導電層
220:第二伸縮性導電層
300:樹脂層(ホットメルト接着剤層)
310:第一樹脂層(第一ホットメルト接着剤層)
320:第二樹脂層(第二ホットメルト接着剤層)
330:第三樹脂層(第三ホットメルト接着剤層)
400:離型紙
410:第一離型紙
420:第二離型紙
430:第三離型紙
500:カバー絶縁層
600:フレキシブルシート
800:スナップファスナー
S:センシング領域
T:縫製可能領域
 
 
100: Stretchable sheet-like cloth 150: Composite layer 151: Composite layer of first resin layer (first hot melt adhesive layer) and cloth 152: Second resin layer (second hot melt adhesive layer) Composite layer 200 with fabric: Elastic conductive layer 210: First elastic conductive layer 220: Second elastic conductive layer 300: Resin layer (hot melt adhesive layer)
310: First resin layer (first hot melt adhesive layer)
320: Second resin layer (second hot melt adhesive layer)
330: Third resin layer (third hot melt adhesive layer)
400: Release paper 410: First release paper 420: Second release paper 430: Third release paper 500: Cover insulating layer 600: Flexible sheet 800: Snap fastener S: Sensing area T: Sewingable area

Claims (9)

  1.  伸縮性のある誘電層を、伸縮性のある2枚の導電層で挟んだ構成を有する伸縮性コンデンサにおいて、
     前記伸縮性のある誘電層は布帛及び複合層を含み、前記布帛及び複合層は伸縮可能であり、前記複合層は繊維および樹脂を含み、前記複合層が前記導電層と前記布帛との接着に寄与することを特徴とする伸縮性コンデンサ。
    In an elastic capacitor having a structure in which an elastic dielectric layer is sandwiched between two elastic conductive layers.
    The stretchable dielectric layer includes a fabric and a composite layer, the fabric and the composite layer are stretchable, the composite layer contains fibers and a resin, and the composite layer adheres to the conductive layer and the fabric. A stretchable capacitor characterized by contributing.
  2.  前記伸縮可能なシート状の布帛が2wayトリコット構造を有するニット生地であることを特徴とする請求項1に記載の伸縮性コンデンサ。 The stretchable capacitor according to claim 1, wherein the stretchable sheet-shaped cloth is a knit cloth having a 2-way tricot structure.
  3.  前記伸縮性のある誘電層が、さらに樹脂層を有することを特徴とする請求項1または2に記載の伸縮性コンデンサ。 The stretchable capacitor according to claim 1 or 2, wherein the stretchable dielectric layer further has a resin layer.
  4.  伸縮性のある誘電層を、伸縮性のある2枚の導電層で挟んだ構成を有する伸縮性コンデンサにおいて、
     前記伸縮性のある誘電層は樹脂層及び複合層を含み、前記樹脂層及び複合層は伸縮可能であり、前記複合層は繊維及び樹脂を含み、前記樹脂層及び複合層が前記導電層と前記誘電層との接着に寄与することを特徴とする伸縮性コンデンサ。
    In an elastic capacitor having a structure in which an elastic dielectric layer is sandwiched between two elastic conductive layers.
    The elastic dielectric layer includes a resin layer and a composite layer, the resin layer and the composite layer are stretchable, the composite layer contains fibers and a resin, and the resin layer and the composite layer are the conductive layer and the above. A stretchable capacitor characterized by contributing to adhesion to the dielectric layer.
  5.  伸縮性のある誘電層を、伸縮性のある2枚の導電層で挟んだ構成を有する伸縮性コンデンサにおいて、
     前記伸縮性のある誘電層は複合層であり、前記複合層は繊維及び樹脂を含み、前記複合層が前記導電層と前記誘電層との接着に寄与することを特徴とする伸縮性コンデンサ。
    In an elastic capacitor having a structure in which an elastic dielectric layer is sandwiched between two elastic conductive layers.
    The elastic capacitor is a stretchable capacitor, wherein the stretchable dielectric layer is a composite layer, the composite layer contains fibers and a resin, and the composite layer contributes to adhesion between the conductive layer and the dielectric layer.
  6.  前記伸縮性のある導電層の、誘電層とは反対側の面の一部または全部が伸縮性のある絶縁層でカバーされていることを特徴とする請求項1~5のいずれかに記載の伸縮性コンデンサ。 The invention according to any one of claims 1 to 5, wherein a part or all of the surface of the elastic conductive layer opposite to the dielectric layer is covered with the elastic insulating layer. Elastic capacitor.
  7.  請求項1~6のいずれかに記載の伸縮性コンデンサが縫い付けられていることを特徴とするセンシングウェア。 Sensing wear characterized in that the elastic capacitor according to any one of claims 1 to 6 is sewn.
  8.  前記伸縮性コンデンサの縫い付け部が、伸縮コンデンサの周囲部のみであることを特徴とする請求項7に記載のセンシングウェア。 The sensing wear according to claim 7, wherein the sewn portion of the stretchable capacitor is only the peripheral portion of the stretchable capacitor.
  9.  前記伸縮性コンデンサの縫い付け部の長さが、伸縮コンデンサの周囲長の50%以下であることを特徴とする請求項7または8に記載のセンシングウェア。 The sensing wear according to claim 7 or 8, wherein the length of the sewn portion of the stretchable capacitor is 50% or less of the peripheral length of the stretchable capacitor.
PCT/JP2021/029495 2020-09-14 2021-08-10 Stretchable capacitor and wearable sensing system WO2022054487A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022547449A JPWO2022054487A1 (en) 2020-09-14 2021-08-10

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020153932 2020-09-14
JP2020-153932 2020-09-14

Publications (1)

Publication Number Publication Date
WO2022054487A1 true WO2022054487A1 (en) 2022-03-17

Family

ID=80632564

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/029495 WO2022054487A1 (en) 2020-09-14 2021-08-10 Stretchable capacitor and wearable sensing system

Country Status (2)

Country Link
JP (1) JPWO2022054487A1 (en)
WO (1) WO2022054487A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014204323A1 (en) * 2013-06-17 2014-12-24 Stretchsense Limited Stretchable fabric sensors
WO2018037855A1 (en) * 2016-08-25 2018-03-01 グンゼ株式会社 Wearable device for detection of human body motion and human body motion monitoring device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014204323A1 (en) * 2013-06-17 2014-12-24 Stretchsense Limited Stretchable fabric sensors
WO2018037855A1 (en) * 2016-08-25 2018-03-01 グンゼ株式会社 Wearable device for detection of human body motion and human body motion monitoring device

Also Published As

Publication number Publication date
JPWO2022054487A1 (en) 2022-03-17

Similar Documents

Publication Publication Date Title
US9808196B2 (en) Sensors
JP6335891B2 (en) Electronic textile assembly
JP7222348B2 (en) Clothes for biological information measurement
JP7060847B2 (en) Elastic capacitors, deformation sensors, displacement sensors, respiratory state sensing methods and sensing wear
JP7352839B2 (en) Clothes-type electronic equipment and its manufacturing method
WO2018173749A1 (en) Conductive composite sheet
JP2019092544A (en) Clothing for biological information measurement
JPWO2019044649A1 (en) Bio-contact electrodes and clothing for measuring biological information
JP2019068901A (en) Bioelectrode and garment having the same
CN114340479A (en) Wearing article for measuring physiological information of cattle
WO2022054487A1 (en) Stretchable capacitor and wearable sensing system
WO2021186890A1 (en) Garment
WO2022054488A1 (en) Elastic capacitor and sensing wear
JP2019180862A (en) Glove type apparatus for subject biological information measurement, manufacturing method thereof, and biological information measurement method
JP7172164B2 (en) Device with electrodes
JP2019123965A (en) clothing
JP2019050936A (en) Wearable implement
JP2019050935A (en) Wearable implement
KR102346390B1 (en) Clothing for measuring biometric information
WO2018012142A1 (en) Biosignal detector
WO2023013300A1 (en) Biological information measurement member, and biological information measurement clothing
WO2023013299A1 (en) Biological information measurement member, and biological information measurement clothing
CN113677269A (en) Garment
JP2023104812A (en) Lower wear
JP2019129938A (en) Sensor sheet, and clothing with sensor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21866447

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022547449

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21866447

Country of ref document: EP

Kind code of ref document: A1