WO2022054488A1 - Elastic capacitor and sensing wear - Google Patents

Elastic capacitor and sensing wear Download PDF

Info

Publication number
WO2022054488A1
WO2022054488A1 PCT/JP2021/029496 JP2021029496W WO2022054488A1 WO 2022054488 A1 WO2022054488 A1 WO 2022054488A1 JP 2021029496 W JP2021029496 W JP 2021029496W WO 2022054488 A1 WO2022054488 A1 WO 2022054488A1
Authority
WO
WIPO (PCT)
Prior art keywords
elastic
capacitor
layer
conductive
stretchable
Prior art date
Application number
PCT/JP2021/029496
Other languages
French (fr)
Japanese (ja)
Inventor
雄一郎 表
翔太 森本
達彦 入江
祐輔 清水
郷司 前田
Original Assignee
東洋紡株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東洋紡株式会社 filed Critical 東洋紡株式会社
Priority to JP2022547450A priority Critical patent/JPWO2022054488A1/ja
Publication of WO2022054488A1 publication Critical patent/WO2022054488A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A41WEARING APPAREL
    • A41DOUTERWEAR; PROTECTIVE GARMENTS; ACCESSORIES
    • A41D1/00Garments
    • AHUMAN NECESSITIES
    • A41WEARING APPAREL
    • A41DOUTERWEAR; PROTECTIVE GARMENTS; ACCESSORIES
    • A41D13/00Professional, industrial or sporting protective garments, e.g. surgeons' gowns or garments protecting against blows or punches
    • AHUMAN NECESSITIES
    • A41WEARING APPAREL
    • A41DOUTERWEAR; PROTECTIVE GARMENTS; ACCESSORIES
    • A41D31/00Materials specially adapted for outerwear
    • A41D31/02Layered materials
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/103Detecting, measuring or recording devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
    • A61B5/11Measuring movement of the entire body or parts thereof, e.g. head or hand tremor, mobility of a limb
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04BKNITTING
    • D04B21/00Warp knitting processes for the production of fabrics or articles not dependent on the use of particular machines; Fabrics or articles defined by such processes
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M17/00Producing multi-layer textile fabrics
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B7/00Measuring arrangements characterised by the use of electric or magnetic techniques
    • G01B7/16Measuring arrangements characterised by the use of electric or magnetic techniques for measuring the deformation in a solid, e.g. by resistance strain gauge
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G5/00Capacitors in which the capacitance is varied by mechanical means, e.g. by turning a shaft; Processes of their manufacture

Definitions

  • the present invention is a stretchable capacitor that can detect its own deformation as a change in capacitance, and a garment provided with the stretchable capacitor.
  • the present invention relates to sensing wear capable of substantially non-invasively detecting changes in body shape due to changes in capacitance, that is, movements of limbs, body shape, posture, breathing, mastication, swallowing, pulsation, fetal movement, and the like.
  • Patent Document 1 and Patent Document 2 disclose an elastic capacitor element having a structure in which a dielectric layer made of an elastomer is sandwiched between electrodes, and a displacement amount and a strain amount are detected from a change in capacitance caused by deformation of the capacitor. It is disclosed that it can be used for sensing.
  • Patent Document 3 discloses a method of sensing a joint angle using a bending capacitor whose capacitance changes depending on the bending angle as a sensor.
  • Patent Document 4 discloses sensing wear in which a strain sensor is bonded to a garment fabric using a hot melt adhesive layer.
  • the sensing method using a sensor attached to clothes can reduce the discomfort and discomfort of the wearer compared to the sensing method in which the sensor is directly attached to the body, and it is possible to exercise and live without being aware of the sensor. It has the advantage of being able to monitor a person's more natural condition. On the other hand, there is a difficult point in that sensing is continued under certain conditions due to slippage of clothes. If the area of the sensor element is increased, some deviation can be tolerated. Especially in the detection method using the change in capacitance of the capacitor element that can be expanded and contracted, it is relatively easy to increase the area of the sensor element. In addition, increasing the area also contributes to the improvement of sensor sensitivity.
  • an adhesive method using a hot melt adhesive is convenient.
  • the hot melt adhesive invades the garment fabric and forms a composite layer of the fibers of the garment fabric and the hot melt adhesive resin on the adhesive surface and adheres to the adhesive surface. Since this composite layer has a structure similar to that of fiber reinforced plastic, it restricts the degree of freedom of deformation of the garment fabric to be adhered.
  • the sensor element is small, only a part of the garment fabric loses the degree of freedom of deformation, so that a big problem does not occur.
  • the degree of freedom of deformation in a considerable area of the garment fabric is hindered.
  • the sensor Since the purpose of sensing is the movement of limbs and changes in body movement, the sensor is naturally attached to a place where deformation is likely to occur, and the degree of freedom of deformation of the clothing fabric in such a place is hindered. It can be said that the mounting method is such that it falls over.
  • the present invention has been made in view of such circumstances, and an object of the present invention is to easily realize a sensor element having a large area and to attach the cloth to clothes without impairing the degree of freedom of deformation of the cloth. It is the provision of a stretchable capacitor that can be used as a sensor element having an applicable structure, and the provision of sensing wear in which the stretchable capacitor is attached by a method that does not hinder the degree of freedom of deformation of the garment fabric.
  • the present inventors have found a novel structure of a stretchable capacitor that can be sewn to a garment fabric by introducing a cloth structure into a dielectric layer, and the stretchable capacitor having such a structure.
  • a novel structure of a stretchable capacitor that can be sewn to a garment fabric by introducing a cloth structure into a dielectric layer, and the stretchable capacitor having such a structure.
  • the present invention has the following configuration.
  • [1] In an elastic capacitor having a structure in which an elastic dielectric layer is sandwiched between two elastic conductive layers.
  • the stretchable conductive layer has a stretchable sheet-like fabric and a composite layer containing a conductive fiber and a resin that contributes to adhesion between the stretchable dielectric layer and the conductive layer. Sex capacitor.
  • [2] The stretchable capacitor according to [1], wherein the stretchable sheet-shaped cloth is a knit cloth having a 2-way tricot structure.
  • [3] The stretchable capacitor according to [1] or [2], wherein the stretchable dielectric layer further has a resin layer.
  • [4] In an elastic capacitor having a structure in which an elastic dielectric layer is sandwiched between two elastic conductive layers.
  • a stretchable capacitor characterized in that the stretchable conductive layer is composed of a resin layer and a composite layer containing conductive fibers and a resin.
  • a stretchable capacitor characterized in that the stretchable conductive layer is a composite layer containing a conductive fiber and a resin.
  • Sensing wear characterized in that the elastic capacitor according to any one of [1] to [6] is sewn.
  • the present invention further preferably has the following configuration.
  • the sensing wear is characterized in that the sensing wear is provided with electrical wiring for connecting a stretchable capacitor and a device for detecting the capacitance of the stretchable capacitor.
  • the elastic capacitor according to [1] and the sensing wear according to [7] wherein the elastic conductive layer constituting the elastic capacitor has a sheet resistance of 3 ⁇ / ⁇ or less.
  • the elastic capacitor according to [1] and the sensing wear according to [7] wherein the conductive fiber contained in the elastic conductive layer is a non-conductive fiber coated with metal.
  • the softening temperature of the resin constituting the composite layer containing the conductive fiber and the resin that contributes to the adhesion between the elastic dielectric layer and the conductive layer is 50 ° C. or higher and 200 ° C. or lower [1]. ]
  • the resin constituting the composite layer containing the conductive fiber and the resin that contributes to the adhesion between the elastic dielectric layer and the conductive layer is an elastic insulating polymer having a tensile yield elongation of 70% or more.
  • the sensing wear according to [7] which has a glove shape and is characterized in that the elastic capacitor is arranged at least at one or more of one or more joints of wrists and fingers.
  • the stretchable capacitor of the present invention uses a cloth containing conductive fibers in a part of the conductive layer (hereinafter, may be abbreviated as "conductive cloth”).
  • the cloth is a stretchable sheet-like material, which is a pseudo-planar material obtained by combining threads, and is classified into a woven fabric, a knitted fabric, and a non-woven fabric.
  • it is preferable to use a cloth having a knit structure, and it is preferable to use a cloth having a 2-way tricot structure, but such a cloth can be sewn.
  • the conductive layer includes a fabric which is a fiber structure, it can be attached to a garment fabric by sewing, that is, can be sewn. This does not mean that it can be simply attached, but it means that it can be used as a sensing wear having sufficient practicality as clothes, that is, a load at the time of putting on and taking off and sufficient washing durability.
  • FIG. 1 is a schematic view showing a cross-sectional structure of an example of an embodiment of an elastic capacitor used in the present invention.
  • most of the conductive layer is covered with a cover insulating layer, and a metal snap fastener is attached as a connector for making electrical contact with the capacitor.
  • About half of the conductive cloth is embedded in the hot melt adhesive layer, and the embedded portion is a composite layer containing conductive fibers and resin.
  • FIG. 2 is a schematic view showing a cross-sectional structure of an example of an aspect of the stretchable capacitor used in the present invention. This example is an embodiment in which the conductive layer (conductive fabric) is thicker than the hot melt adhesive layer.
  • FIG. 3 is a schematic view showing a cross-sectional structure of an example of an aspect of the stretchable capacitor used in the present invention.
  • the conductive layer conductive cloth
  • FIG. 4 is a schematic view showing a cross-sectional structure in which the relationship between the conductive cloth and the resin in the conductive layer of FIG. 1 is enlarged.
  • FIG. 5 is a schematic view showing a cross-sectional structure in which the relationship between the conductive cloth and the resin in the conductive layer of FIG. 2 is enlarged.
  • FIG. 6 is a schematic view showing a cross-sectional structure in which the relationship between the conductive cloth and the resin in the conductive layer of FIG. 3 is enlarged.
  • FIG. 7 is a process diagram showing an outline of an example of the method for manufacturing a stretchable capacitor of the present invention.
  • FIG. 7 is a process diagram showing an outline of a manufacturing method for obtaining the stretchable capacitor of the present invention.
  • step (A) the main members for creating the core portion of the stretchable capacitor of the present invention are illustrated.
  • the hot melt adhesive layer 300 is arranged on both the front and back surfaces of the stretchable dielectric layer (flexible sheet) 600.
  • This flexible sheet portion is the main portion of the dielectric layer of the capacitor.
  • a dielectric layer (conductive fabric) 700 is arranged on the outside of the hot melt adhesives on the front and back surfaces, and a release paper 400 is arranged on the outside thereof.
  • Step (B) illustrates a state in which the above members are overlapped with each other.
  • step (C) a state in which pressurization and heating are performed from both sides by a press or the like is shown.
  • the hot-melt adhesive layer is softened by heating, the conductive fabric is buried in the hot-melt adhesive layer by pressure, and the buried portion becomes a stretchable composite layer containing conductive fibers and resin.
  • the composite layer can bond the dielectric layer (flexible sheet) and the conductive layer. That is, the composite layer contributes to the adhesion between the conductive layer and the fabric.
  • the core portion of the elastic capacitor of the present invention can be obtained.
  • an insulating cover layer or the like that protects the conductive layers on the front and back is provided.
  • the dielectric layer (flexible sheet) 600 is a sheet made of a flexible material that is flexible and at the same time has a relatively high thermal deformation temperature and is expandable. From crosslinked polyurethane, crosslinked rubber, silicone rubber sheet, fluororubber sheet, and other crosslinked elastomers. Sheet can be used.
  • the thickness of the flexible sheet preferably in the present invention is 3 ⁇ m or more, more preferably 12 ⁇ m or more, still more preferably 24 ⁇ m or more.
  • the upper limit of the thickness of the flexible sheet is 500 ⁇ m, preferably 210 ⁇ m or less, and more preferably 105 ⁇ m or less.
  • a stretchable woven fabric, a knit, or a non-woven fabric can be used as the cloth structure of the conductive cloth 700.
  • the cloth is a pseudo-planar material obtained by combining threads, and includes a woven fabric, a knit, and a non-woven fabric.
  • the woven fabric even if the yarn itself constituting the woven fabric is not stretchable, it can be expanded and contracted by using it in the bias direction. Knitting achieves high elasticity. In the case of a non-woven fabric, it becomes a stretchable cloth when the constituent threads have extensibility.
  • a knitted fabric as the fabric, particularly preferably to use a tricot knitted fabric, and further preferably to use a 2-way tricot (also referred to as double tricot) fabric.
  • the conductive cloth of the present invention (hereinafter, also referred to as a conductive cloth) may be composed of only conductive threads, or may be a cloth using a combination of conductive threads and non-conductive threads.
  • a conductive yarn monofilament of conductive fiber, multifilament of conductive fiber, spun yarn of conductive fiber, span yarn containing conductive fiber and non-conductive fiber, mixed wire thread of conductive fiber and non-conductive fiber, etc. may be used. can.
  • a metal-coated non-conductive fiber can be used. More specifically, fibers obtained by coating non-conductive fibers such as nylon, polyester and acrylic fibers with metals such as silver, copper, gold, nickel and chromium can be used.
  • a coating method a wet plating method such as electroless plating or electrolytic plating, a dry plating method such as thin film deposition or sputtering, or a combination of both can be used.
  • a method in which a nickel-chromium alloy is thinly coated by a method such as sputtering and then thickly plated with copper, silver, nickel, gold or the like by electroplating or the like can be preferably used.
  • fibers using a carbon-based material as a conductive material can be used.
  • carbon-based material carbon nanotubes, carbon nanocorns, fullerene, graphene, etc. can be used.
  • These carbon-based conductive materials are mixed with fiber materials such as polyester, polyamide, polyacrylamide, etc. and spun.
  • a method of coating the surface of non-conductive fibers as in the case of metal coating, and a core-sheath fiber method consisting of a core containing a large amount of carbon-based material and a sheath composed of a resin layer having relatively high insulation. can do.
  • a conductive polymer material can be used as the conductive material.
  • the conductive polymer material is not particularly limited as long as it is a polymer exhibiting conductivity, and is, for example, an acetylene system or a complex 5-membered ring system (as a monmer, pyrrole, 3-methylpyrrole, 3-methylpyrrole, 3-.
  • 3-alkylpyrroles such as ethylpyrrole and 3-dodecylpyrrole; 3,4-dialkylpyrroles such as 3,4-dimethylpyrrole and 3-methyl-4-dodecylpyrrole; N such as N-methylpyrrole and N-dodecylpyrrole.
  • N-alkyl-3-alkylpyrrole such as N-methyl-3-methylpyrrole and N-ethyl-3-dodecylpyrrole
  • thiophene a pyrrole-based polymer obtained by polymerizing 3-carboxypyrrole and the like.
  • System polymers, isotianaften-based polymers, etc.), phenylene-based, aniline-based conductive polymers, copolymers thereof, ionic liquids, and the like can be mentioned.
  • a dopant has an effect on its conductivity, and the dopant used here includes halide ions such as chloride ion and bromide ion, perchlorite ion, tetrafluoroborate ion, and hexafluoric acid ion.
  • halide ions such as chloride ion and bromide ion, perchlorite ion, tetrafluoroborate ion, and hexafluoric acid ion.
  • Phosphate-based ions such as hydride ion, sulfate ion, nitrate ion, thiocyanate ion, silicate ion hexafluoride, phosphate ion, phenylphosphate ion, phosphate ion hexafluoride, trifluoroacetate ion, tosylate ion, ethylbenzene Alkyl benzene sulfonic acid ion such as sulfonic acid ion and dodecylbenzene sulfonic acid ion, alkyl sulfonic acid ion such as methyl sulfonic acid ion and ethyl sulfonic acid ion, polyacrylic acid ion, polyvinyl sulfonic acid ion, polystyrene sulfonic acid ion, poly (2) -At least one kind of high molecular weight
  • the amount of the dopant added is not particularly limited as long as it has an effect on conductivity.
  • the conductive polymer polypyrrole, PEDOT (poly 3,4-ethylenedioxythiophene) / poly 4-styrene sulfonate (PSS), polyaniline, polyparaphenylene vinylene (PPV) and the like are easily resinified. It is preferably used as a conductive resin.
  • PEDOT / PSS Shin-Etsu Polymer Co., Ltd., SEP LYGIDA (registered trademark) obtained by doping PEDOT, a thiophene-based conductive polymer, with poly4-styrene sulfonate PSS is particularly suitable from the viewpoint of safety and processability.
  • the conductive polymer material may be applied to a method of mixing with a resin and spinning in the same manner as a carbon-based material, or may be applied to a method of coating non-conductive fibers. A method of impregnating ultrafine fibers with a conductive polymer is also a preferred embodiment.
  • a thin metal wire can be used as the conductive thread or the conductive fiber.
  • fine metal wire in addition to gold and silver having high ductility, fine wire made of stainless steel can be preferably used.
  • non-conductive yarn when the conductive yarn and the non-conductive yarn are mixed and used in the present invention, it is preferable to use a yarn made of fibers having relatively high heat resistance.
  • fibers animal hair fibers such as acrylonitrile, polyester, polytriacetate, viscose rayon, cotton, silk and wool can be used.
  • heat-resistant fibers such as heat-resistant polyamide, liquid crystal polymer, aromatic polyamide, aromatic polyimide, and polyparaphenylene bisbenzoxazole can be used.
  • a hot melt adhesive when the conductive cloth is adhered and laminated on the dielectric layer (flexible sheet), or when the cover insulating layer is adhered to the conductive cloth or the elastic conductor layer.
  • a polymer material having a softening temperature of about 50 ° C. to 200 ° C. can be used, and a polymer having flexibility having the same degree of elasticity as a flexible sheet is preferable. Materials can be used.
  • Such hot melt adhesives include ethylene-based copolymers, styrene-based block copolymers, olefin-based (co) copolymers, and the like, and further use them as a base polymer to impart a crystalline polar group.
  • a liquid plasticizer such as process oil is added, modified polyolefin and its formulation, styrene-based block copolymer and its formulation, acid-modified polypropylene, acid-modified styrene-based block Polymers, blends thereof, styrene-based block copolymers, blends such as ethylene-based polymers, polyester-urethane copolymers and their blends
  • a hot melt sheet obtained by processing a polyester urethane resin, a polyether urethane resin, or the like having a softening temperature of 40 ° C to 120 ° C into a sheet can be preferably used.
  • the hot melt adhesive resin of the present invention is preferably a stretchable insulating polymer having a tensile yield elongation of 70% or more.
  • FIG. 1 illustrates a cross section of the elastic capacitor obtained in FIG. 7 (D) with an insulating cover layer and a snap fastener 800 functioning as a connector for external connection attached.
  • the portion where the elastic conductive layers on the front and back face each other with the dielectric layer (flexible sheet) sandwiched therein is a substantial capacitor element, and this portion S is the sensing region.
  • the T portion located outside the snap fastener portion in FIG. 1 is a sewable region that does not affect the sensing region. That is, the portion where the conductive cloth is present is the sewable area.
  • the portion of the elastic capacitor including the conductive cloth can be sewn on the entire surface, but it is preferable that the sewn portion does not enter the sensing region as much as possible from the viewpoint of sensing accuracy and stability.
  • the snap fastener is preferably made of metal, and the material is preferably stainless steel.
  • the first hot melt adhesive layer is a hot melt adhesive layer arranged between the conductive cloth and the flexible sheet, and the second hot melt adhesive layer is arranged between the cover insulating layer and the conductive layer. It is preferable that it is a thing.
  • FIGS. 1 to 3 show morphological changes that can be taken by the present invention depending on the thickness of the hot melt adhesive layer and the conductive cloth, the heating and pressurizing temperature conditions, the pressurizing and heating time, and the like.
  • 4 to 6 are schematic views showing an enlarged cross-sectional structure of the conductive cloth and the resin of FIGS. 1 to 3, respectively.
  • the conductive cloth layer is shown in the cross-sectional structure of the plain weave cloth in FIGS. 4 to 6 for convenience, the woven structure or knitted structure of the cloth cloth of the present invention is not limited to this figure. ..
  • the change in capacitance of the elastic capacitor that changes according to the expansion and contraction deformation of the elastic capacitor in the surface direction is mainly due to the expansion and contraction of the elastic dielectric layer in the surface direction, and the thickness of the elastic dielectric layer. It is a change in capacitance due to a change in direction.
  • the Poisson's ratio of the material used for the elastic dielectric layer is high.
  • the Poisson's ratio of the stretchable dielectric layer of the present invention is preferably 0.28 or more, more preferably 0.38 or more, and even more preferably 0.48 or more. In order to increase the Poisson's ratio, it is better that the amount of inorganic components blended in the elastic dielectric layer is small.
  • the stretchable capacitor of the present invention preferably has a stress of 15 N / cm or less at the time of 20% elongation in the plane direction.
  • the stress during elongation depends on the physical characteristics of the material constituting the stretchable capacitor and the thickness of the detection portion of the stretchable capacitor.
  • the total thickness it is preferable to configure the total thickness to be 700 ⁇ m or less, preferably 450 ⁇ m or less, and more preferably 250 ⁇ m or less.
  • the present invention is a garment for the upper body of the human body, and sensing in which the elastic capacitor is arranged at least at any of the elbow portion, the upper arm circumference, the lower arm circumference, the shoulder portion, the back, the chest circumference, the abdominal circumference, and the flank portion.
  • it is a garment for the lower half of the human body, and is a sensing wear in which the elastic capacitor is arranged at least at any of the knee part, the ankle part, the thigh part, the shin part, the hip joint part, and the waist part. You can also do it.
  • the shape is a glove
  • the sensing wear may be a sensing wear in which the elastic capacitor is arranged at least at one or more of each joint of the wrist and the finger.
  • it is a sock-shaped sensing wear in which the elastic capacitor is arranged at least at one or more of each joint of the ankle and the toe.
  • a belt-shaped sensing wear using an elastic material can also be used.
  • the stretchable capacitor can be sewn and attached to the fabric of the above-exemplified garment. That is, it can be made into sensing wear by sewing.
  • the sewing may be machine-sewn with a sewing machine or hand-sewn.
  • the thread for sewing is not particularly limited, and a sewing thread made of a general insulating material may be used. It is preferable that the sewing is performed only on the peripheral portion of the elastic capacitor.
  • the peripheral portion refers to a portion having a width of 8 mm from the outer shape of the elastic capacitor element. In the present invention, it is preferable to sew only the periphery of the elastic capacitor element like an appliqué.
  • the sewing range (the length of the sewn portion) is set to 50% or less, preferably 30% or less of the peripheral length of the elastic capacitor, so that the wearer feels uncomfortable with the sensing wear. Can be reduced.
  • the lower limit is not particularly limited, but is preferably 3% or more, and more preferably 5% or more.
  • the deformation and strain amount of the sensing area can be read by measuring the capacitance between the conductor layers on the front and back of the elastic capacitor.
  • the elastic capacitor of the present invention can be attached to clothes by sewing, and the clothes to which the elastic capacitor which is a sensing element is attached by sewing appropriately exceeds the fixed areas of both. As a result, the wearer is less likely to feel discomfort or discomfort.
  • the sensing wear of the present invention can sense the posture of the body, the pulse, the heartbeat, the respiration, etc. due to the change in the circumference of the body, and can be further applied to motion capture. Further, the present invention can be applied not only to the human body but also to animals and mechanical devices.
  • Hot melt adhesive layer 310 First hot melt adhesive layer 320; Second hot melt adhesive layer 400: Release paper 500: Cover insulation layer 600: Dielectric layer (flexible sheet) 700: Conductive layer (conductive fabric) 750: Conductive layer (composite layer of conductive fiber and resin) 800: Snap fastener S: Sensing area T: Sewn area

Landscapes

  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Textile Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Molecular Biology (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Physiology (AREA)
  • Biophysics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Dentistry (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Physics & Mathematics (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Physical Education & Sports Medicine (AREA)
  • Measurement And Recording Of Electrical Phenomena And Electrical Characteristics Of The Living Body (AREA)

Abstract

Provided are: an elastic capacitor having a structure capable of being sewn to a clothing fabric; and a sensing wear using said capacitor. This elastic capacitor has a configuration in which an elastic dielectric layer is sandwiched by two elastic electrically-conductive layers, the elastic capacitor being characterized in that: the elastic electrically-conductive layers each have a sheet-like fabric that can be stretched, and a composite layer including a resin and electrically-conductive fibers contributing to bonding of the elastic dielectric layer and electrically-conductive layers. The elastic capacitor having said structure can be sewn to a clothing fabric, and thus, can have a higher degree of freedom in deformation of the fabric as compared with an elastic capacitor that is face-bonded using a hot-melt adhesive or the like, thereby reducing a wearer's sense of discomfort and feeling of physical disorder.

Description

伸縮性コンデンサおよびセンシングウェアElastic capacitors and sensing wear
  本発明は、自らの変形を静電容量変化として検出可能な伸縮性コンデンサ、およびその伸縮性コンデンサを備えた衣服であり、被験者に着用させた状態で、衣服に備えた伸縮性コンデンサの静電容量変化により身体の形状変化、すなわち四肢の運動、体形、姿勢、呼吸、咀嚼、嚥下、脈動、胎動などを実質的に非侵襲にて検出することが可能なセンシングウェアに関する。 The present invention is a stretchable capacitor that can detect its own deformation as a change in capacitance, and a garment provided with the stretchable capacitor. The present invention relates to sensing wear capable of substantially non-invasively detecting changes in body shape due to changes in capacitance, that is, movements of limbs, body shape, posture, breathing, mastication, swallowing, pulsation, fetal movement, and the like.
 光学的に身体の様子や表情の動きを捉えて、データ化し、CGに反映させて仮想空間中で人体モデルなどを動かす手法は、映画などの製作手法として実用化されている。かかる手法には大がかりな装置が必要となる。
 一方で、身体の形状変化、運動状態を検出するために、衣服に様々なセンサを組み込んで計測する試みが行われている。
 特許文献1、特許文献2にはエラストマーからなる誘電層を電極で挟んだ構造の伸縮性のあるコンデンサ素子が開示されており、コンデンサの変形によって生ずる静電容量変化から変位量や歪量を検出するセンシングに使用できることが開示されている。
A method of optically capturing the state of the body and the movement of facial expressions, converting them into data, reflecting them in CG, and moving a human body model or the like in a virtual space has been put into practical use as a production method for movies and the like. Such a method requires a large-scale device.
On the other hand, in order to detect changes in the shape of the body and the state of movement, attempts have been made to incorporate various sensors into clothes for measurement.
Patent Document 1 and Patent Document 2 disclose an elastic capacitor element having a structure in which a dielectric layer made of an elastomer is sandwiched between electrodes, and a displacement amount and a strain amount are detected from a change in capacitance caused by deformation of the capacitor. It is disclosed that it can be used for sensing.
 特許文献3には曲げ角度により静電容量が変化する屈曲コンデンサをセンサとして用いて関節角度をセンシングする方法が開示されている。 特許文献4には歪みセンサを、ホットメルト接着剤層を用いて衣服生地に接着したセンシングウェアが開示されている。 Patent Document 3 discloses a method of sensing a joint angle using a bending capacitor whose capacitance changes depending on the bending angle as a sensor. Patent Document 4 discloses sensing wear in which a strain sensor is bonded to a garment fabric using a hot melt adhesive layer.
特許第4650538号公報Japanese Patent No. 4650538 特開平7-75630号公報Japanese Unexamined Patent Publication No. 7-75630 特許第6257444号公報Japanese Patent No. 62574444 特許第6264825号公報Japanese Patent No. 6264825
 このように歪センサないし変位センサを衣服に装着して、着用者の手足の動きなどを含む姿勢や、あるいはさらに微細な動きである心拍や脈拍、呼吸などを検出する試みは多々なされている。
 衣服に装着したセンサを用いたセンシング手法は、身体に直接センサを取り付けたセンシング方法に比較して着用者の違和感、不快感を低減でき、センサを意識することなく運動や生活ができるため、着用者のより自然な状態をモニタリングできるという利点がある。一方で、衣服のずれにより一定条件でセンシングを続けるという点では困難な点がある。
 センサ素子の面積を大きくすれば、多少のずれは許容できるようになり、特に伸縮変形可能なコンデンサ素子の静電容量変化を用いる検出方法においては、センサ素子面積を大きくすることは比較的容易であり、また面積を大きくすることはセンサ感度の向上にも寄与する。
As described above, many attempts have been made to attach a strain sensor or a displacement sensor to clothing to detect a posture including movements of the wearer's limbs, or even finer movements such as heartbeat, pulse, and respiration.
The sensing method using a sensor attached to clothes can reduce the discomfort and discomfort of the wearer compared to the sensing method in which the sensor is directly attached to the body, and it is possible to exercise and live without being aware of the sensor. It has the advantage of being able to monitor a person's more natural condition. On the other hand, there is a difficult point in that sensing is continued under certain conditions due to slippage of clothes.
If the area of the sensor element is increased, some deviation can be tolerated. Especially in the detection method using the change in capacitance of the capacitor element that can be expanded and contracted, it is relatively easy to increase the area of the sensor element. In addition, increasing the area also contributes to the improvement of sensor sensitivity.
 これらセンサ素子を衣服生地の取り付ける場合には先行特許文献にもみられるように、ホットメルト接着剤を用いる接着方法が手軽である。ホットメルト接着剤は衣服生地に含侵し、接着面に衣服生地の繊維とホットメルト接着剤樹脂との複合層を形成して接着する。この複合層は、繊維強化プラスチックと同様の構造を有するため、被接着物である衣服生地の変形自由度を拘束することになる。
 センサ素子が小さい場合には、衣服生地の一部の変形自由度が失われるだけなので大きな問題は生じない。しかしながら、大面積のセンサ素子を衣服に取り付ければ、衣服生地の相当の領域の変形自由度を阻害することになる。センシングの目的は、手足の動きや体動の変化であるから、センサは、おのずと変形が生じやすい箇所を狙って取り付けることになるわけであり、そのような箇所の衣服生地の変形自由度を阻害してしまうような取付方法では、本末転倒といえる。
When attaching these sensor elements to clothing fabric, as seen in the prior patent documents, an adhesive method using a hot melt adhesive is convenient. The hot melt adhesive invades the garment fabric and forms a composite layer of the fibers of the garment fabric and the hot melt adhesive resin on the adhesive surface and adheres to the adhesive surface. Since this composite layer has a structure similar to that of fiber reinforced plastic, it restricts the degree of freedom of deformation of the garment fabric to be adhered.
When the sensor element is small, only a part of the garment fabric loses the degree of freedom of deformation, so that a big problem does not occur. However, if a large-area sensor element is attached to a garment, the degree of freedom of deformation in a considerable area of the garment fabric is hindered. Since the purpose of sensing is the movement of limbs and changes in body movement, the sensor is naturally attached to a place where deformation is likely to occur, and the degree of freedom of deformation of the clothing fabric in such a place is hindered. It can be said that the mounting method is such that it falls over.
 本発明は、このような事情に鑑みてなされたものであり、その目的は、大面積のセンサ素子の実現が容易であり、かつ、衣服生地の変形自由度を阻害せずに衣服への取り付けが可能な方法適用できる構造を有するセンサ素子として使用できる伸縮性コンデンサンの提供であり、その伸縮性コンデンサを衣服生地の変形自由度を阻害しない手法で取り付けたセンシングウェアの提供である。 The present invention has been made in view of such circumstances, and an object of the present invention is to easily realize a sensor element having a large area and to attach the cloth to clothes without impairing the degree of freedom of deformation of the cloth. It is the provision of a stretchable capacitor that can be used as a sensor element having an applicable structure, and the provision of sensing wear in which the stretchable capacitor is attached by a method that does not hinder the degree of freedom of deformation of the garment fabric.
 本発明者らは、上記目的を達成すべく鋭意検討した結果、誘電層に布帛構造を導入することで衣服生地に縫い付け可能な伸縮性コンデンサの新奇な構造を見出し、かかる構造の伸縮性コンデンサを衣服生地に縫い付けることにより、衣服生地の変形自由度の阻害を極力抑えることで、着用違和感が低減されたセンシングウェアを見出し、以下の発明に到達した。 As a result of diligent studies to achieve the above object, the present inventors have found a novel structure of a stretchable capacitor that can be sewn to a garment fabric by introducing a cloth structure into a dielectric layer, and the stretchable capacitor having such a structure. By sewing the fabric on the fabric, we have found sensing wear that reduces the discomfort of wearing by suppressing the inhibition of the degree of freedom of deformation of the fabric as much as possible, and have reached the following invention.
  すなわち本発明は、以下の構成である。
[1] 伸縮性のある誘電層を、伸縮性のある2枚の導電層で挟んだ構成を有する伸縮性コンデンサにおいて、
 前記伸縮性のある導電層が、伸縮可能なシート状の布帛と、前記伸縮性のある誘電層と導電層との接着に寄与する導電繊維と樹脂を含む複合層を有することを特徴とする伸縮性コンデンサ。
[2] 前記伸縮可能なシート状の布帛が2wayトリコット構造を有するニット生地であることを特徴とする[1]に記載の伸縮性コンデンサ。
[3] 前記伸縮性のある誘電層が、さらに樹脂層を有することを特徴とする[1]または[2]に記載の伸縮性コンデンサ。
[4] 伸縮性のある誘電層を、伸縮性のある2枚の導電層で挟んだ構成を有する伸縮性コンデンサにおいて、
 伸縮性のある導電層が、樹脂層と、導電繊維および樹脂を含む複合層からなることを特徴とする伸縮性コンデンサ。
[5] 伸縮性のある誘電層を、伸縮性のある2枚の導電層で挟んだ構成を有する伸縮性コンデンサにおいて、
 伸縮性のある導電層が、導電繊維および樹脂を含む複合層であることを特徴とする伸縮性コンデンサ。
[6] 前記伸縮性のある導電層の、誘電層とは反対側の面の一部または全部が伸縮性のある絶縁層でカバーされていることを特徴とする[1]~[5]のいずれかに記載の伸縮性コンデンサ。
[7] [1]~[6]のいずれかに記載の伸縮性コンデンサが縫い付けられていることを特徴とするセンシングウェア。
[8] 前記伸縮性コンデンサの縫い付けが、伸縮コンデンサの周囲部のみであることを特徴とする[7]に記載のセンシングウェア。
[9] 前記伸縮性コンデンサの縫い付けが、伸縮コンデンサの周囲長の50%以下であることを特徴とする[7]または[8]に記載のセンシングウェア。
That is, the present invention has the following configuration.
[1] In an elastic capacitor having a structure in which an elastic dielectric layer is sandwiched between two elastic conductive layers.
The stretchable conductive layer has a stretchable sheet-like fabric and a composite layer containing a conductive fiber and a resin that contributes to adhesion between the stretchable dielectric layer and the conductive layer. Sex capacitor.
[2] The stretchable capacitor according to [1], wherein the stretchable sheet-shaped cloth is a knit cloth having a 2-way tricot structure.
[3] The stretchable capacitor according to [1] or [2], wherein the stretchable dielectric layer further has a resin layer.
[4] In an elastic capacitor having a structure in which an elastic dielectric layer is sandwiched between two elastic conductive layers.
A stretchable capacitor characterized in that the stretchable conductive layer is composed of a resin layer and a composite layer containing conductive fibers and a resin.
[5] In an elastic capacitor having a structure in which an elastic dielectric layer is sandwiched between two elastic conductive layers.
A stretchable capacitor characterized in that the stretchable conductive layer is a composite layer containing a conductive fiber and a resin.
[6] A. Of [1] to [5], wherein a part or all of the surface of the elastic conductive layer opposite to the dielectric layer is covered with the elastic insulating layer. The elastic capacitor described in either.
[7] Sensing wear characterized in that the elastic capacitor according to any one of [1] to [6] is sewn.
[8] The sensing wear according to [7], wherein the stretchable capacitor is sewn only on the peripheral portion of the stretchable capacitor.
[9] The sensing wear according to [7] or [8], wherein the elastic capacitor is sewn to be 50% or less of the peripheral length of the elastic capacitor.
 本発明は、さらに以下の構成を有することが好ましい。
[10] 前記センシングウェアが、伸縮性コンデンサと伸縮性コンデンサの静電容量を検出するデバイスとを接続するための電気配線を備えた事を特徴とするセンシングウェア。
[11] 前記伸縮性コンデンサを構成する伸縮性導電層のシート抵抗が3Ω/以下であることを特徴とする[1]に記載の伸縮性コンデンサおよび[7]に記載のセンシングウェア。
[12] 前記伸縮性導電層に含まれる導電繊維が金属被覆された非導電繊維であることを特徴とする[1]に記載の伸縮性コンデンサおよび[7]に記載のセンシングウェア。
[13] 前記伸縮性導電層に含まれる導電繊維に用いられている導電素材が炭素系材料であることを特徴とする[1]に記載の伸縮性コンデンサおよび[7]に記載のセンシングウェア。
[14] 前記伸縮性導電層に含まれる導電繊維に用いられている導電素材が導電性高分子材料であることを特徴とする前記[1]に記載の伸縮性コンデンサおよび[7]に記載のセンシングウェア。
[15] 前記伸縮性導電層に含まれる導電繊維が金属細線を含むことを特徴とする[1]に記載の伸縮性コンデンサおよび[7]に記載のセンシングウェア。
[16] 前記伸縮性のある誘電層と導電層との接着に寄与する導電繊維及び樹脂を含む複合層を構成する樹脂の軟化温度が50℃以上200℃以下であることを特徴とする[1]に記載の伸縮性コンデンサおよび[7]に記載のセンシングウェア。
[17] 前記伸縮性のある誘電層と導電層との接着に寄与する導電繊維及び樹脂を含む複合層を構成する樹脂が、引張降伏伸度が70%以上の伸縮性絶縁高分子であることを特徴とする[1]に記載の伸縮性コンデンサおよび[7]に記載のセンシングウェア。
[18] 前記伸縮性コンデンサの面方向への20%伸長時の応力が15N/cm以下であることを特徴とする[1]に記載の伸縮性コンデンサおよび[7]に記載のセンシングウェア。
[19] 人体上半身用の衣服であり、少なくとも肘部分、上腕周囲、下腕周囲、肩部分、背面、胸部周囲、腹部周囲、脇腹部分のいずれかの個所に前記伸縮性コンデンサを配置した事を特徴とする[7]に記載のセンシングウェア。
[20] 人体下半身用の衣服であり、少なくとも膝部分、足首部分、大腿部周囲、脛部周囲、股関節部分、腰部分のいずれかの個所に前記伸縮性コンデンサを配置した事を特徴とする[7]に記載のセンシングウェア。
[21] 手袋形状であり、少なくとも手首、手指の各関節の一個所以上のいずれかの部分に前記伸縮性コンデンサを配置した事を特徴とする[7]に記載のセンシングウェア。
[22] 靴下形状であり、少なくとも足首、足指の各関節の一個所以上のいずれかの部分に前記伸縮性コンデンサを配置した事を特徴とする[7]に記載のセンシングウェア。
[23] 伸縮性のある素材を用いたベルト形状であることを特徴とする[7]に記載のセンシングウェア。
The present invention further preferably has the following configuration.
[10] The sensing wear is characterized in that the sensing wear is provided with electrical wiring for connecting a stretchable capacitor and a device for detecting the capacitance of the stretchable capacitor.
[11] The elastic capacitor according to [1] and the sensing wear according to [7], wherein the elastic conductive layer constituting the elastic capacitor has a sheet resistance of 3 Ω / or less.
[12] The elastic capacitor according to [1] and the sensing wear according to [7], wherein the conductive fiber contained in the elastic conductive layer is a non-conductive fiber coated with metal.
[13] The elastic capacitor according to [1] and the sensing wear according to [7], wherein the conductive material used for the conductive fiber contained in the elastic conductive layer is a carbon-based material.
[14] The elastic capacitor according to the above [1] and the elastic capacitor according to the above [7], wherein the conductive material used for the conductive fiber contained in the elastic conductive layer is a conductive polymer material. Sensing wear.
[15] The elastic capacitor according to [1] and the sensing wear according to [7], wherein the conductive fiber contained in the elastic conductive layer contains a thin metal wire.
[16] The softening temperature of the resin constituting the composite layer containing the conductive fiber and the resin that contributes to the adhesion between the elastic dielectric layer and the conductive layer is 50 ° C. or higher and 200 ° C. or lower [1]. ] The elastic capacitor according to [7] and the sensing wear according to [7].
[17] The resin constituting the composite layer containing the conductive fiber and the resin that contributes to the adhesion between the elastic dielectric layer and the conductive layer is an elastic insulating polymer having a tensile yield elongation of 70% or more. The elastic capacitor according to [1] and the sensing wear according to [7].
[18] The stretchable capacitor according to [1] and the sensing wear according to [7], wherein the stress at 20% elongation in the plane direction of the stretchable capacitor is 15 N / cm or less.
[19] It is a garment for the upper body of the human body, and the elastic condenser is placed at least in any of the elbow part, the upper arm circumference, the lower arm circumference, the shoulder part, the back, the chest circumference, the abdomen circumference, and the flank part. The sensing wear according to [7], which is a feature.
[20] It is a garment for the lower half of the human body, and is characterized in that the elastic capacitor is arranged at least at any of the knee part, the ankle part, the thigh part, the shin part, the hip joint part, and the waist part. The sensing wear according to [7].
[21] The sensing wear according to [7], which has a glove shape and is characterized in that the elastic capacitor is arranged at least at one or more of one or more joints of wrists and fingers.
[22] The sensing wear according to [7], which has a sock shape and is characterized in that the elastic capacitor is arranged at least in one or more of one or more joints of ankles and toes.
[23] The sensing wear according to [7], which has a belt shape using an elastic material.
 本発明の伸縮性コンデンサは、導電層の一部に導電繊維を含む布帛(以下「導電布」と略記する場合がある)を用いている。ここに布帛とは、伸縮可能なシート状のものであり、糸を組み合わせて得られる疑似平面状の素材であり、織物、編み物(ニット)、不織布に分類される。本発明ではニット構造を有する布帛を使用することが好ましく、さらに2wayトリコット構造を有する布帛を用いることが好ましいが、かかる布帛は、縫製が可能である。従来の伸縮性のある樹脂シートを誘電層に用いた伸縮性コンデンサを縫製すること、すなわち縫い糸で別の素材(生地)に縫い付けることは、形の上では可能である。しかし、その世にして縫い付けられたシート部材は、変形時に、縫い糸が貫通した穴近傍に大きな変形応力が加わり、容易に破断が生じるため。そのため、着脱時や洗濯時に大きな変形負荷がかかるセンシングウェアにおいては実用的には使用できない。
 しかしながら本発明では、かかる導電層が繊維構造体である布帛を含むため、縫い付けによる衣服生地への取り付け、すなわち縫製加工が可能となる。これは単に取り付けができることを云うのではなく、衣服として十分な実用性、すなわち着脱時の負荷や十分な洗濯耐久性を有するセンシングウェアとして用いることができることを意味する。
The stretchable capacitor of the present invention uses a cloth containing conductive fibers in a part of the conductive layer (hereinafter, may be abbreviated as "conductive cloth"). Here, the cloth is a stretchable sheet-like material, which is a pseudo-planar material obtained by combining threads, and is classified into a woven fabric, a knitted fabric, and a non-woven fabric. In the present invention, it is preferable to use a cloth having a knit structure, and it is preferable to use a cloth having a 2-way tricot structure, but such a cloth can be sewn. It is possible in terms of shape to sew a stretchable capacitor using a conventional stretchable resin sheet as a dielectric layer, that is, to sew it to another material (fabric) with a sewing thread. However, when the sheet member sewn in the world is deformed, a large deformation stress is applied to the vicinity of the hole through which the sewing thread penetrates, and the sheet member is easily broken. Therefore, it cannot be practically used in sensing wear that is subject to a large deformation load when it is attached / detached or washed.
However, in the present invention, since the conductive layer includes a fabric which is a fiber structure, it can be attached to a garment fabric by sewing, that is, can be sewn. This does not mean that it can be simply attached, but it means that it can be used as a sensing wear having sufficient practicality as clothes, that is, a load at the time of putting on and taking off and sufficient washing durability.
 縫製加工による取り付けが可能であるということは、ホットメルト接着剤による取り付けに比較して、伸縮性コンデンサの衣服取り付け形態のヴァリエーションが豊富になる。すなわちホットメルト接着剤を用いた場合には、プレス加工により全面が衣服生地に接着してしまうわけであるが、縫製であれば、衣服生地に固定する部分を一部エリアに限定することが容易となる。例えば(仮に伸縮性コンデンサが長方形であるとして)長方形の周囲部のみをアップリケ的に縫い付ければ、長方形の中央部はフリーにすることができ、衣服変形の自由度を高めることができる。例えば長方形の短辺のみを縫製すれば自由度はさらに高くなる。極端な例として長方形の角部分のみを固定するような取り付け方も容易である。ホットメルト接着剤を用いた場合でも、同じように取り付け箇所を限定した貼り付けは可能であるが、接着剤をあらかじめ配置するエリアを限定するなどの手間が必要となる。また、貼り付けエリアを限定したとしても、ある程度の面積が必要になるため、事実上「点」での取り付けが可能な縫製に比較すると、衣服生地の拘束度は大きくなり、縫製に夜取り付けの方が優位である。 The fact that it can be attached by sewing means that there are more variations in the form of attaching elastic capacitors to clothes than when attaching with hot melt adhesive. That is, when a hot melt adhesive is used, the entire surface is adhered to the garment fabric by press working, but in the case of sewing, it is easy to limit the part to be fixed to the garment fabric to a part of the area. It becomes. For example, if only the peripheral part of the rectangle is sewn in an applique manner (assuming that the elastic capacitor is a rectangle), the central part of the rectangle can be made free and the degree of freedom of clothes deformation can be increased. For example, if only the short side of the rectangle is sewn, the degree of freedom is further increased. As an extreme example, it is easy to attach it by fixing only the corners of the rectangle. Even when a hot melt adhesive is used, it is possible to apply the adhesive in a limited area in the same manner, but it is necessary to limit the area in which the adhesive is placed in advance. In addition, even if the pasting area is limited, a certain area is required, so the degree of restraint of the garment fabric is greater than that of sewing that can be attached at "points", and it is attached at night for sewing. Is superior.
図1は、本発明に用いられる伸縮性コンデンサの態様の一例の断面構造を示す概略図である。本例では、導電層の大部分がカバー絶縁層で覆われており、コンデンサとの電気的コンタクトを取りためのコネクタとして金属製のスナップファスナーが取り付けられている。導電布の半分程度がホットメルト接着剤層に埋め込まれており、埋め込まれた部分が導電繊維と樹脂を含む複合層となっている。FIG. 1 is a schematic view showing a cross-sectional structure of an example of an embodiment of an elastic capacitor used in the present invention. In this example, most of the conductive layer is covered with a cover insulating layer, and a metal snap fastener is attached as a connector for making electrical contact with the capacitor. About half of the conductive cloth is embedded in the hot melt adhesive layer, and the embedded portion is a composite layer containing conductive fibers and resin. 図2は、本発明に用いられる伸縮性コンデンサの態様の一例の断面構造を示す概略図である。本例は、導電層(導電性布帛)がホットメルト接着剤層より厚い場合の態様となる。FIG. 2 is a schematic view showing a cross-sectional structure of an example of an aspect of the stretchable capacitor used in the present invention. This example is an embodiment in which the conductive layer (conductive fabric) is thicker than the hot melt adhesive layer. 図3は、本発明に用いられる伸縮性コンデンサの態様の一例の断面構造を示す概略図である。本例では、導電層(導電性布帛)がほぼすべてホットメルト接着剤層に埋没した場合の態様をしめしている。FIG. 3 is a schematic view showing a cross-sectional structure of an example of an aspect of the stretchable capacitor used in the present invention. In this example, almost all of the conductive layer (conductive cloth) is embedded in the hot melt adhesive layer. 図4は、図1の導電層における導電性布帛と樹脂との関係を拡大した断面構造を示す概略図である。FIG. 4 is a schematic view showing a cross-sectional structure in which the relationship between the conductive cloth and the resin in the conductive layer of FIG. 1 is enlarged. 図5は、図2の導電層における導電性布帛と樹脂との関係を拡大した断面構造を示す概略図である。FIG. 5 is a schematic view showing a cross-sectional structure in which the relationship between the conductive cloth and the resin in the conductive layer of FIG. 2 is enlarged. 図6は、図3の導電層における導電性布帛と樹脂との関係を拡大した断面構造を示す概略図である。FIG. 6 is a schematic view showing a cross-sectional structure in which the relationship between the conductive cloth and the resin in the conductive layer of FIG. 3 is enlarged. 図7は、本発明の伸縮性コンデンサの製造方法の一例の概略を示した工程図である。FIG. 7 is a process diagram showing an outline of an example of the method for manufacturing a stretchable capacitor of the present invention.
 以下、本発明の実施の形態について、図面を参照しながら説明する。
 図7は、本発明の伸縮性コンデンサを得るための製造方法の概略を示した工程図である。工程(A)では本発明の伸縮性コンデンサの基幹部分を作成するための主要部材が図示されている。伸縮可能な誘電層(フレキシブルシート)600の表裏両面にホットメルト接着剤層300が配置されている。このフレキシブルシート部分がコンデンサの誘電層の主たる部分となる。表裏のホットメルト接着剤の外側に誘電層(導電性布帛)700が配置され、さらにその外側に離型紙400が配置されている。
 工程(B)は、以上の部材が重ねあわされた状態を図示している。
 工程(C)では、両面からプレスなどにより加圧と加熱が行われた状態を図示している。加熱によりホットメルト接着剤層が軟化し、加圧により導電性布帛がホットメルト接着剤層に埋没し、埋没した部分が導電繊維と樹脂を含む伸縮可能な複合層となる。前記複合層は前記誘電層(フレキシブルシート)と導電層とを接着することができる。すなわち、前記複合層は前記導電層と前記布帛との接着に寄与することとなる。
 工程(D)にて表裏の離型紙を剥がすと、本発明の伸縮性コンデンサの基幹部分を得ることができる。実際には、表裏の
導電層を保護する絶縁カバー層などが設けられる。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 7 is a process diagram showing an outline of a manufacturing method for obtaining the stretchable capacitor of the present invention. In step (A), the main members for creating the core portion of the stretchable capacitor of the present invention are illustrated. The hot melt adhesive layer 300 is arranged on both the front and back surfaces of the stretchable dielectric layer (flexible sheet) 600. This flexible sheet portion is the main portion of the dielectric layer of the capacitor. A dielectric layer (conductive fabric) 700 is arranged on the outside of the hot melt adhesives on the front and back surfaces, and a release paper 400 is arranged on the outside thereof.
Step (B) illustrates a state in which the above members are overlapped with each other.
In step (C), a state in which pressurization and heating are performed from both sides by a press or the like is shown. The hot-melt adhesive layer is softened by heating, the conductive fabric is buried in the hot-melt adhesive layer by pressure, and the buried portion becomes a stretchable composite layer containing conductive fibers and resin. The composite layer can bond the dielectric layer (flexible sheet) and the conductive layer. That is, the composite layer contributes to the adhesion between the conductive layer and the fabric.
By peeling off the release papers on the front and back in the step (D), the core portion of the elastic capacitor of the present invention can be obtained. In reality, an insulating cover layer or the like that protects the conductive layers on the front and back is provided.
 誘電層(フレキシブルシート)600としては、柔軟であると同時に比較的熱変形温度が高い伸長可能な柔軟素材のシートであり、架橋ポリウレタン、架橋ゴム、シリコーンゴムシート、フッ素ゴムシート、その他架橋エラストマーからなるシートを用いることができる。本発明で好ましいフレキシブルシートの厚さは3μm以上であり、さらに好ましくは12μm以上であり、なおさらに好ましくは24μm以上である。フレキシブルシートの厚さの上限は500μmであり、好ましくは210μm以下であり、さらに好ましくは105μm以下である。フレキシブルシートの厚さを所定の範囲とすることで、伸縮性コンデンサの十分な機械強度と、センサーとして扱いやすい静電容量を得ることができる。 The dielectric layer (flexible sheet) 600 is a sheet made of a flexible material that is flexible and at the same time has a relatively high thermal deformation temperature and is expandable. From crosslinked polyurethane, crosslinked rubber, silicone rubber sheet, fluororubber sheet, and other crosslinked elastomers. Sheet can be used. The thickness of the flexible sheet preferably in the present invention is 3 μm or more, more preferably 12 μm or more, still more preferably 24 μm or more. The upper limit of the thickness of the flexible sheet is 500 μm, preferably 210 μm or less, and more preferably 105 μm or less. By setting the thickness of the flexible sheet within a predetermined range, it is possible to obtain sufficient mechanical strength of the elastic capacitor and a capacitance that is easy to handle as a sensor.
 導電性布帛700の布構造としては、伸縮可能な織物、編み物(ニット)、不織布を用いることができる。ここに布帛とは、糸を組み合わせて得られる疑似平面状の素材であり、織物、編み物(ニット)、不織布を含むものである。織物については織物を構成する糸自体に伸張性が無い場合でも、バイアス方向に用いることにより伸縮可能となる。編み物(ニット)は高い伸縮性を実現する。不織布の場合には、構成する糸に伸張性がある場合に伸縮可能な布帛となる。
 本発明では布帛として編み物(ニット)生地を使用することが好ましく、特にトリコット編みの生地を使用することがより好ましく、さらには2wayトリコット(ダブルトリコットとも呼ばれる)生地の使用が好ましい。
 本発明の導電性布帛(以下、導電布ともいう)は、導電糸のみで構成されても良いし、導電糸と非導電糸を組み合わせて用いた布でも良い。導電糸は導電性繊維のモノフィラメント、導電性繊維のマルチフィラメント、導電性繊維のスパンヤーン、導電性繊維と非導電性繊維を含むスパンヤーン、導電性繊維と非導電性繊維の混線糸などを用いることができる。
As the cloth structure of the conductive cloth 700, a stretchable woven fabric, a knit, or a non-woven fabric can be used. Here, the cloth is a pseudo-planar material obtained by combining threads, and includes a woven fabric, a knit, and a non-woven fabric. As for the woven fabric, even if the yarn itself constituting the woven fabric is not stretchable, it can be expanded and contracted by using it in the bias direction. Knitting achieves high elasticity. In the case of a non-woven fabric, it becomes a stretchable cloth when the constituent threads have extensibility.
In the present invention, it is preferable to use a knitted fabric as the fabric, particularly preferably to use a tricot knitted fabric, and further preferably to use a 2-way tricot (also referred to as double tricot) fabric.
The conductive cloth of the present invention (hereinafter, also referred to as a conductive cloth) may be composed of only conductive threads, or may be a cloth using a combination of conductive threads and non-conductive threads. As the conductive yarn, monofilament of conductive fiber, multifilament of conductive fiber, spun yarn of conductive fiber, span yarn containing conductive fiber and non-conductive fiber, mixed wire thread of conductive fiber and non-conductive fiber, etc. may be used. can.
 本発明の導電繊維として、金属被覆された非導電繊維を用いることができる。より詳しくは、ナイロン、ポリエステル、アクリル繊維などの非導電性繊維に銀、銅、金、ニッケル、クロムなどの金属を被覆した繊維を用いることができる。被覆する方法としては無電解メッキ、電解メッキなどの湿式のメッキ法、蒸着、スパッタリングなどの乾式メッキ法、両者の組み合わせなどの方法を用いることができる。ニッケルクロム合金をスパッタリングなどの手法で薄く被覆し、その後に電気メッキなどで、銅、銀、ニッケル、金などを厚付けメッキする方法を好ましく用いることができる。 As the conductive fiber of the present invention, a metal-coated non-conductive fiber can be used. More specifically, fibers obtained by coating non-conductive fibers such as nylon, polyester and acrylic fibers with metals such as silver, copper, gold, nickel and chromium can be used. As a coating method, a wet plating method such as electroless plating or electrolytic plating, a dry plating method such as thin film deposition or sputtering, or a combination of both can be used. A method in which a nickel-chromium alloy is thinly coated by a method such as sputtering and then thickly plated with copper, silver, nickel, gold or the like by electroplating or the like can be preferably used.
 本発明では炭素系材料を導電性素材として用いた繊維を用いることができる。炭素系材料としては、カーボンナノチューブ、カーボンナノコーン、フラーレン、グラフェンなどを用いることができる、これら炭素系導電材料は、繊維素材であるポリエステル、ポリアミド、ポリアクリルアミドなどに混合して紡糸する原着法、金属被覆と同様に非導電繊維表面に被覆する方法、炭素系素材を多く含む芯部と比較的絶縁性の高い樹脂層からなる鞘部からなる芯鞘繊維法などの手法により導電性繊維とすることができる。 In the present invention, fibers using a carbon-based material as a conductive material can be used. As the carbon-based material, carbon nanotubes, carbon nanocorns, fullerene, graphene, etc. can be used. These carbon-based conductive materials are mixed with fiber materials such as polyester, polyamide, polyacrylamide, etc. and spun. , A method of coating the surface of non-conductive fibers as in the case of metal coating, and a core-sheath fiber method consisting of a core containing a large amount of carbon-based material and a sheath composed of a resin layer having relatively high insulation. can do.
 本発明では、導電性素材として導電性高分子材料を用いることができる。導電性高分子材料としては導電性を示す高分子であれば特に制限されることはないが、例えば、アセチレン系、複素5員環系(モンマーとして、ピロールの他、3-メチルピロール、3-エチルピロール、3-ドデシルピロールなどの3-アルキルピロール;3,4-ジメチルピロール、3-メチル-4-ドデシルピロールなどの3,4-ジアルキルピロール;N-メチルピロール、N-ドデシルピロールなどのN-アルキルピロール;N-メチル-3-メチルピロール、N-エチル-3-ドデシルピロールなどのN-アルキル-3-アルキルピロール;3-カルボキシピロールなどを重合して得られたピロール系高分子、チオフェン系高分子、イソチアナフテン系高分子など)、フェニレン系、アニリン系の各導電性高分子やこれらの共重合体、イオン液体などが挙げられる。
 さらに導電性高分子において、その導電性にドーパントが効果をもたらすが、ここで用いられるドーパントとしては、塩化物イオン、臭化物イオンなどのハロゲン化物イオン、過塩素酸イオン、テトラフルオロ硼酸イオン、六フッ化ヒ酸イオン、硫酸イオン、硝酸イオン、チオシアン酸イオン、六フッ化ケイ酸イオン、燐酸イオン、フェニル燐酸イオン、六フッ化燐酸イオンなどの燐酸系イオン、トリフルオロ酢酸イオン、トシレートイオン、エチルベンゼンスルホン酸イオン、ドデシルベンゼンスルホン酸イオンなどのアルキルベンゼンスルホン酸イオン、メチルスルホン酸イオン、エチルスルホン酸イオンなどのアルキルスルホン酸イオン、ポリアクリル酸イオン、ポリビニルスルホン酸イオン、ポリスチレンスルホン酸イオン、ポリ(2-アクリルアミド-2-メチルプロパンスルホン酸)イオンなどの高分子イオンのうち、少なくとも一種のイオンが使用される。ドーパントの添加量は、導電性に効果を与える量であれば特に制限はされるものではない。導電性高分子としては、ポリピロール、PEDOT(ポリ3,4-エチレンジオキシチオフェン)/ポリ4-スチレンサルフォネート(PSS)、ポリアニリン、およびポリパラフェニレンビニレン(PPV)などが樹脂化させやすく、導電性樹脂として好ましく用いられる。特に、チオフェン系導電性高分子のPEDOTにポリ4-スチレンサルフォネートPSSをドープしたPEDOT/PSS(信越ポリマー社、SEP LYGIDA(登録商標))が安全性、加工性の観点から特に好適である。
 かかる導電性高分子材料は、炭素系材料と同様に樹脂に混合して紡糸する方法に適用してもよく、また非導電繊維を被覆する方法に適用しても良い。極微細な繊維に導電性高分子を含侵させる方法も好ましい態様である。
In the present invention, a conductive polymer material can be used as the conductive material. The conductive polymer material is not particularly limited as long as it is a polymer exhibiting conductivity, and is, for example, an acetylene system or a complex 5-membered ring system (as a monmer, pyrrole, 3-methylpyrrole, 3-methylpyrrole, 3-. 3-alkylpyrroles such as ethylpyrrole and 3-dodecylpyrrole; 3,4-dialkylpyrroles such as 3,4-dimethylpyrrole and 3-methyl-4-dodecylpyrrole; N such as N-methylpyrrole and N-dodecylpyrrole. -Alkylpyrrole; N-alkyl-3-alkylpyrrole such as N-methyl-3-methylpyrrole and N-ethyl-3-dodecylpyrrole; thiophene, a pyrrole-based polymer obtained by polymerizing 3-carboxypyrrole and the like. (System polymers, isotianaften-based polymers, etc.), phenylene-based, aniline-based conductive polymers, copolymers thereof, ionic liquids, and the like can be mentioned.
Further, in a conductive polymer, a dopant has an effect on its conductivity, and the dopant used here includes halide ions such as chloride ion and bromide ion, perchlorite ion, tetrafluoroborate ion, and hexafluoric acid ion. Phosphate-based ions such as hydride ion, sulfate ion, nitrate ion, thiocyanate ion, silicate ion hexafluoride, phosphate ion, phenylphosphate ion, phosphate ion hexafluoride, trifluoroacetate ion, tosylate ion, ethylbenzene Alkyl benzene sulfonic acid ion such as sulfonic acid ion and dodecylbenzene sulfonic acid ion, alkyl sulfonic acid ion such as methyl sulfonic acid ion and ethyl sulfonic acid ion, polyacrylic acid ion, polyvinyl sulfonic acid ion, polystyrene sulfonic acid ion, poly (2) -At least one kind of high molecular weight ion such as acrylamide-2-methylpropanesulfonic acid) ion is used. The amount of the dopant added is not particularly limited as long as it has an effect on conductivity. As the conductive polymer, polypyrrole, PEDOT (poly 3,4-ethylenedioxythiophene) / poly 4-styrene sulfonate (PSS), polyaniline, polyparaphenylene vinylene (PPV) and the like are easily resinified. It is preferably used as a conductive resin. In particular, PEDOT / PSS (Shin-Etsu Polymer Co., Ltd., SEP LYGIDA (registered trademark)) obtained by doping PEDOT, a thiophene-based conductive polymer, with poly4-styrene sulfonate PSS is particularly suitable from the viewpoint of safety and processability. ..
The conductive polymer material may be applied to a method of mixing with a resin and spinning in the same manner as a carbon-based material, or may be applied to a method of coating non-conductive fibers. A method of impregnating ultrafine fibers with a conductive polymer is also a preferred embodiment.
 本発明では導電糸ないし導電繊維として金属細線を用いることができる。金属細線としては延性に富む金、銀などのほか、ステンレス鋼の微細線を好ましく用いることが可能である。 In the present invention, a thin metal wire can be used as the conductive thread or the conductive fiber. As the fine metal wire, in addition to gold and silver having high ductility, fine wire made of stainless steel can be preferably used.
 本発明で導電糸と非導電糸を混線して用いる場合の非導電糸としては、比較的耐熱性の高い繊維からなる糸を使用することが好ましい。好ましく用いられる繊維としては、アクリルニトリル、ポリエステル、ポリトリアセテート、ビスコースレーヨン、木綿、シルク、羊毛などの獣毛繊維を用いることができる。また耐熱性ポリアミド、液晶ポリマー、芳香族ポリアミド、芳香族ポリイミド、ポリパラフェニレンビスベンゾオキサゾールなどの耐熱性繊維を用いることができる。 As the non-conductive yarn when the conductive yarn and the non-conductive yarn are mixed and used in the present invention, it is preferable to use a yarn made of fibers having relatively high heat resistance. As the fibers preferably used, animal hair fibers such as acrylonitrile, polyester, polytriacetate, viscose rayon, cotton, silk and wool can be used. Further, heat-resistant fibers such as heat-resistant polyamide, liquid crystal polymer, aromatic polyamide, aromatic polyimide, and polyparaphenylene bisbenzoxazole can be used.
 本発明では導電布を誘電層(フレキシブルシート)に接着積層する際、あるいはカバー絶縁層を導電布ないし伸縮性導体層に接着する場合に、ホットメルト接着剤を用いることが好ましい。本発明におけるホットメルト系接着剤とは、軟化温度が50℃~200℃程度の高分子材料を使用する事ができ、好ましくは、フレキシブルシートと同程度の伸縮性を有する柔軟性を備える高分子材料を使用することができる。
 このようなホットメルト接着剤としては、エチレン系共重合体、スチレン系ブロック共重合体およびオレフィン系(共)重合体など、さらにそれらをベースポリマーとして粘着性を付与するために結晶性極性基含有化合物等を含有する高分子材料、アモルファスポリα-オレフィン、粘着付与樹脂、ポリプロピレン系ワックス等の配合物、スチレン-エチレンプロピレン-スチレンブロック共重合ゴムあるいはスチレン-ブタジエン-スチレンブロック共重合ゴム、さらにこれらに粘着付与樹脂成分、およびまたはプロセスオイルなどの液状可塑剤を添加した高分子材料、変性ポリオレフィンおよびその配合物、スチレン系ブロック共重合体およびその配合物、酸変性ポリプロピレン、酸変性スチレン系ブロック共重合体、それらの配合物、スチレン系ブロック共重合体、エチレン系重合体等の配合物、ポリエステルウレタン共重合体およびその配合物などを用いることができる。
In the present invention, it is preferable to use a hot melt adhesive when the conductive cloth is adhered and laminated on the dielectric layer (flexible sheet), or when the cover insulating layer is adhered to the conductive cloth or the elastic conductor layer. As the hot melt adhesive in the present invention, a polymer material having a softening temperature of about 50 ° C. to 200 ° C. can be used, and a polymer having flexibility having the same degree of elasticity as a flexible sheet is preferable. Materials can be used.
Such hot melt adhesives include ethylene-based copolymers, styrene-based block copolymers, olefin-based (co) copolymers, and the like, and further use them as a base polymer to impart a crystalline polar group. Polymer materials containing compounds, amorphous poly α-olefins, tackifier resins, polypropylene waxes and other formulations, styrene-ethylene propylene-styrene block copolymer rubber or styrene-butadiene-styrene block copolymer rubber, and these. Adhesive-imparting resin component and / or polymer material to which a liquid plasticizer such as process oil is added, modified polyolefin and its formulation, styrene-based block copolymer and its formulation, acid-modified polypropylene, acid-modified styrene-based block Polymers, blends thereof, styrene-based block copolymers, blends such as ethylene-based polymers, polyester-urethane copolymers and their blends can be used.
 本発明では軟化温度が40℃~120℃のポリエステルウレタン樹脂、ポリエーテルウレタン樹脂などをシート状に加工したホットメルトシートを好ましく用いることができる。本発明のホットメルト接着剤樹脂は、引張降伏伸度が70%以上の伸縮性絶縁高分子であることが好ましい。導電布一部または全部がホットメルト接着剤層に埋没することにより、導電繊維と樹脂を含む複合層が」形成され、この部分が伸縮性導電層として機能する。 In the present invention, a hot melt sheet obtained by processing a polyester urethane resin, a polyether urethane resin, or the like having a softening temperature of 40 ° C to 120 ° C into a sheet can be preferably used. The hot melt adhesive resin of the present invention is preferably a stretchable insulating polymer having a tensile yield elongation of 70% or more. By burying part or all of the conductive cloth in the hot melt adhesive layer, a composite layer containing conductive fibers and resin is formed, and this portion functions as an elastic conductive layer.
 図1は、図7(D)にて得られた伸縮性コンデンサに、絶縁カバー層と、外部接続のためのコネクタとして機能するスナップファスナー800を取り付けた状態の断面を図示している。ここに誘電層(フレキシブルシート)を挟んで、表裏の伸縮性導電層が対向している部分が、実質的なコンデンサ素子となっており、この部分Sがセンシング領域となる。また、図1においてスナップファスナー部の外側に位置するT部分が、センシング領域に影響しない縫製可能な領域となる。すなわち導電性布帛が存在する部分が縫製可能領域である。該伸縮性コンデンサの、導電布が含まれる部分は、全面縫製可能ではあるが、センシングの精度、安定性などの点から、縫製部はなるべくセンシング領域に入らないほうが好ましい。 なお、スナップファスナーは金属製の物を用いることが好ましく、素材としてはステンレス鋼製が好ましい。また第一ホットメルト接着剤層は導電布とフレキシブルシートの間に配置されるホットメルト接着剤層であり、第二ホットメルト接着剤層は、カバー絶縁層と導電層との間に配置されるものであることが好ましい。 FIG. 1 illustrates a cross section of the elastic capacitor obtained in FIG. 7 (D) with an insulating cover layer and a snap fastener 800 functioning as a connector for external connection attached. The portion where the elastic conductive layers on the front and back face each other with the dielectric layer (flexible sheet) sandwiched therein is a substantial capacitor element, and this portion S is the sensing region. Further, the T portion located outside the snap fastener portion in FIG. 1 is a sewable region that does not affect the sensing region. That is, the portion where the conductive cloth is present is the sewable area. The portion of the elastic capacitor including the conductive cloth can be sewn on the entire surface, but it is preferable that the sewn portion does not enter the sensing region as much as possible from the viewpoint of sensing accuracy and stability. The snap fastener is preferably made of metal, and the material is preferably stainless steel. The first hot melt adhesive layer is a hot melt adhesive layer arranged between the conductive cloth and the flexible sheet, and the second hot melt adhesive layer is arranged between the cover insulating layer and the conductive layer. It is preferable that it is a thing.
 図2、 図3は、ホットメルト接着剤層と導電布の厚さ、加熱加圧温度条件、加圧加熱時間、などにより本発明が取りうる形態変化を示している。
 図4~図6は、それぞれ図1~図3までの導電布と樹脂との関係を拡大した断面構造を示す概略図である。なお、図4~図6では便宜上、導電布層を平織布の断面構造的に図示しているが、本発明の布生地の織り構造ないし編み構造はこの図例により限定されるわけでは無い。
2 and 3 show morphological changes that can be taken by the present invention depending on the thickness of the hot melt adhesive layer and the conductive cloth, the heating and pressurizing temperature conditions, the pressurizing and heating time, and the like.
4 to 6 are schematic views showing an enlarged cross-sectional structure of the conductive cloth and the resin of FIGS. 1 to 3, respectively. Although the conductive cloth layer is shown in the cross-sectional structure of the plain weave cloth in FIGS. 4 to 6 for convenience, the woven structure or knitted structure of the cloth cloth of the present invention is not limited to this figure. ..
 本発明において、伸縮性コンデンサの面方向への伸縮変形に応じて変化する伸縮性コンデンサの静電容量変化は、主として伸縮性誘電層の面方向への伸縮に伴う、伸縮性誘電層の厚さ方向への変化による静電容量の変化である。かかる特性を発現させるためには伸縮性誘電層に用いる材料のポアソン比が高い方が好ましい。本発明の伸縮性誘電層のポアソン比は0.28以上である事が好ましく、0.38以上である事がなお好ましく、0.48以上である事がさらに好ましい。ポアソン比を高めるには伸縮性誘電層に配合される無機成分が少ない方が良い。 In the present invention, the change in capacitance of the elastic capacitor that changes according to the expansion and contraction deformation of the elastic capacitor in the surface direction is mainly due to the expansion and contraction of the elastic dielectric layer in the surface direction, and the thickness of the elastic dielectric layer. It is a change in capacitance due to a change in direction. In order to exhibit such characteristics, it is preferable that the Poisson's ratio of the material used for the elastic dielectric layer is high. The Poisson's ratio of the stretchable dielectric layer of the present invention is preferably 0.28 or more, more preferably 0.38 or more, and even more preferably 0.48 or more. In order to increase the Poisson's ratio, it is better that the amount of inorganic components blended in the elastic dielectric layer is small.
 本発明の伸縮性コンデンサは、面方向への20%伸長時の応力が15N/cm以下であることが好ましい。伸長時応力は伸縮性コンデンサを構成する材料の物性および、伸縮性コンデンサの検出部の厚さに依存する。特に先に述べた条件を満たした樹脂及び布帛を用いる場合においては、全体の厚さを700μm以下、好ましくは450μm以下、なお好ましくは250μm以下となるように構成することが好ましい。 The stretchable capacitor of the present invention preferably has a stress of 15 N / cm or less at the time of 20% elongation in the plane direction. The stress during elongation depends on the physical characteristics of the material constituting the stretchable capacitor and the thickness of the detection portion of the stretchable capacitor. In particular, when a resin and a fabric satisfying the above-mentioned conditions are used, it is preferable to configure the total thickness to be 700 μm or less, preferably 450 μm or less, and more preferably 250 μm or less.
 本発明では、人体上半身用の衣服であり、少なくとも肘部分、上腕周囲、下腕周囲、肩部分、背面、胸部周囲、腹部周囲、脇腹部分のいずれかの個所に前記伸縮性コンデンサを配置したセンシングウェアとすることができる。
 本発明では、人体下半身用の衣服であり、少なくとも膝部分、足首部分、大腿部周囲、脛部周囲、股関節部分、腰部分のいずれかの個所に前記伸縮性コンデンサを配置したセンシングウェアとすることもできる。
 本発明では手袋形状であり、少なくとも手首、手指の各関節の一個所以上のいずれかの部分に前記伸縮性コンデンサを配置したセンシングウェアとすることもできる。
 本発明では、靴下形状であり、少なくとも足首、足指の各関節の一個所以上のいずれかの部分に前記伸縮性コンデンサを配置したセンシングウェアとすることもできる。
 本発明では伸縮性のある素材を用いたベルト形状のセンシングウェアとすることもできる。
In the present invention, it is a garment for the upper body of the human body, and sensing in which the elastic capacitor is arranged at least at any of the elbow portion, the upper arm circumference, the lower arm circumference, the shoulder portion, the back, the chest circumference, the abdominal circumference, and the flank portion. Can be wear.
In the present invention, it is a garment for the lower half of the human body, and is a sensing wear in which the elastic capacitor is arranged at least at any of the knee part, the ankle part, the thigh part, the shin part, the hip joint part, and the waist part. You can also do it.
In the present invention, the shape is a glove, and the sensing wear may be a sensing wear in which the elastic capacitor is arranged at least at one or more of each joint of the wrist and the finger.
In the present invention, it is a sock-shaped sensing wear in which the elastic capacitor is arranged at least at one or more of each joint of the ankle and the toe.
In the present invention, a belt-shaped sensing wear using an elastic material can also be used.
 本発明では、伸縮性コンデンサは、上記例示した衣服の生地に縫製で取り付けることができる。すなわち縫い付けることでセンシングウェアとすることができる。縫い付けはミシンによる機械縫いでも手縫いでも構わない、縫い付けるための糸は特に限定されず、一般的な絶縁素材からなるミシン糸を用いれば良い。
 縫い付けは、伸縮性コンデンサの周辺部のみとすることが好ましい。周辺部とは、伸縮性コンデンサ素子の外形から8mmの幅の部分を云う。本発明ではアップリケの様に伸縮性コンデンサ素子の周囲のみを縫い付けることが好ましい。またさらに好ましくは、縫い付ける範囲(縫い付け部の長さ)を、伸縮性コンデンサの周囲長の50%以下、好ましくは30%以下とすることで、センシングウェアに対して着用者が感じる違和感を低減することができる。下限は特に限定されないが、3%以上であることが好ましく、5%以上であることがより好ましい。
 本発明では伸縮性コンデンサの表裏の導体層間の静電容量を測定することで、センシングエリアの変形、歪量を読み取ることができる。
In the present invention, the stretchable capacitor can be sewn and attached to the fabric of the above-exemplified garment. That is, it can be made into sensing wear by sewing. The sewing may be machine-sewn with a sewing machine or hand-sewn. The thread for sewing is not particularly limited, and a sewing thread made of a general insulating material may be used.
It is preferable that the sewing is performed only on the peripheral portion of the elastic capacitor. The peripheral portion refers to a portion having a width of 8 mm from the outer shape of the elastic capacitor element. In the present invention, it is preferable to sew only the periphery of the elastic capacitor element like an appliqué. Further, more preferably, the sewing range (the length of the sewn portion) is set to 50% or less, preferably 30% or less of the peripheral length of the elastic capacitor, so that the wearer feels uncomfortable with the sensing wear. Can be reduced. The lower limit is not particularly limited, but is preferably 3% or more, and more preferably 5% or more.
In the present invention, the deformation and strain amount of the sensing area can be read by measuring the capacitance between the conductor layers on the front and back of the elastic capacitor.
 以上、示してきたように、本発明の伸縮性コンデンサは縫製による衣服への取り付けが可能であり、縫製によりセンシング素子である伸縮性コンデンサを取り付けられた衣服は、両者の固定エリアを適宜超することで、着用者が違和感や不快感を感じにくくなる。
 本発明のセンシングウェアは、身体の姿勢や、体周囲長変化による脈拍、心拍、呼吸などのセンシングを行うことができ、さらには、モーションキャプチャにも応用可能である。さらに本発明は人体のみならず、動物、機械装置にも適用が可能である。
As described above, the elastic capacitor of the present invention can be attached to clothes by sewing, and the clothes to which the elastic capacitor which is a sensing element is attached by sewing appropriately exceeds the fixed areas of both. As a result, the wearer is less likely to feel discomfort or discomfort.
The sensing wear of the present invention can sense the posture of the body, the pulse, the heartbeat, the respiration, etc. due to the change in the circumference of the body, and can be further applied to motion capture. Further, the present invention can be applied not only to the human body but also to animals and mechanical devices.
300:ホットメルト接着剤層 
310:第一ホットメルト接着剤層       
320;第二ホットメルト接着剤層       
400:離型紙        
500:カバー絶縁層            
600:誘電層(フレキシブルシート)  
700:導電層(導電性布帛)              
750:導電層(導電繊維と樹脂の複合層)      
800:スナップファスナー    
S:センシング領域               
T:縫製可能領域 
300: Hot melt adhesive layer
310: First hot melt adhesive layer
320; Second hot melt adhesive layer
400: Release paper
500: Cover insulation layer
600: Dielectric layer (flexible sheet)
700: Conductive layer (conductive fabric)
750: Conductive layer (composite layer of conductive fiber and resin)
800: Snap fastener
S: Sensing area
T: Sewn area

Claims (9)

  1.  伸縮性のある誘電層を、伸縮性のある2枚の導電層で挟んだ構成を有する伸縮性コンデンサにおいて、
     前記伸縮性のある導電層は布帛及び複合層を含み、前記布帛及び複合層は伸縮可能であり、前記複合層は導電繊維及び樹脂を含み、前記複合層が誘電層と導電層との接着に寄与することを特徴とする伸縮性コンデンサ。
    In an elastic capacitor having a structure in which an elastic dielectric layer is sandwiched between two elastic conductive layers.
    The stretchable conductive layer includes a fabric and a composite layer, the fabric and the composite layer are stretchable, the composite layer contains a conductive fiber and a resin, and the composite layer adheres to the dielectric layer and the conductive layer. A stretchable capacitor characterized by contributing.
  2.  前記伸縮可能なシート状の布帛が2wayトリコット構造を有するニット生地であることを特徴とする請求項1に記載の伸縮性コンデンサ。 The stretchable capacitor according to claim 1, wherein the stretchable sheet-shaped cloth is a knit cloth having a 2-way tricot structure.
  3.  前記伸縮性のある誘電層が、さらに樹脂層を有することを特徴とする請求項1または2に記載の伸縮性コンデンサ。 The stretchable capacitor according to claim 1 or 2, wherein the stretchable dielectric layer further has a resin layer.
  4.  伸縮性のある誘電層を、伸縮性のある2枚の導電層で挟んだ構成を有する伸縮性コンデンサにおいて、
     伸縮性のある導電層は樹脂層及び複合層を含み、前記樹脂層及び複合層は伸縮可能背であり、前記複合層は導電繊維および樹脂を含み、前記複合層が誘電層と導電層との接着に寄与することを特徴とする伸縮性コンデンサ。
    In an elastic capacitor having a structure in which an elastic dielectric layer is sandwiched between two elastic conductive layers.
    The elastic conductive layer includes a resin layer and a composite layer, the resin layer and the composite layer have a stretchable back, the composite layer contains a conductive fiber and a resin, and the composite layer is a dielectric layer and a conductive layer. A stretchable capacitor characterized by contributing to adhesion.
  5.  伸縮性のある誘電層を、伸縮性のある2枚の導電層で挟んだ構成を有する伸縮性コンデンサにおいて、
     伸縮性のある導電層は複合層であり、前記複合層は導電繊維および樹脂を含み、前記複合層が前記誘電層と導電層との接着に寄与することを特徴とする伸縮性コンデンサ。
    In an elastic capacitor having a structure in which an elastic dielectric layer is sandwiched between two elastic conductive layers.
    The elastic conductive layer is a composite layer, and the composite layer contains a conductive fiber and a resin, and the composite layer contributes to adhesion between the dielectric layer and the conductive layer.
  6.  前記伸縮性のある導電層の、誘電層とは反対側の面の一部または全部が伸縮性のある絶縁層でカバーされていることを特徴とする請求項1~5のいずれかに記載の伸縮性コンデンサ。 The invention according to any one of claims 1 to 5, wherein a part or all of the surface of the elastic conductive layer opposite to the dielectric layer is covered with the elastic insulating layer. Elastic capacitor.
  7.  請求項1~6のいずれかに記載の伸縮性コンデンサが縫い付けられていることを特徴とするセンシングウェア。 Sensing wear characterized in that the elastic capacitor according to any one of claims 1 to 6 is sewn.
  8.  前記伸縮性コンデンサの縫い付け部が、伸縮コンデンサの周囲部のみであることを特徴とする請求項7に記載のセンシングウェア。 The sensing wear according to claim 7, wherein the sewn portion of the stretchable capacitor is only the peripheral portion of the stretchable capacitor.
  9.  前記伸縮性コンデンサの縫い付け部の長さが、伸縮コンデンサの周囲長の50%以下であることを特徴とする請求項7または8に記載のセンシングウェア。
     
    The sensing wear according to claim 7 or 8, wherein the length of the sewn portion of the stretchable capacitor is 50% or less of the peripheral length of the stretchable capacitor.
PCT/JP2021/029496 2020-09-14 2021-08-10 Elastic capacitor and sensing wear WO2022054488A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022547450A JPWO2022054488A1 (en) 2020-09-14 2021-08-10

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-153933 2020-09-14
JP2020153933 2020-09-14

Publications (1)

Publication Number Publication Date
WO2022054488A1 true WO2022054488A1 (en) 2022-03-17

Family

ID=80632563

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/029496 WO2022054488A1 (en) 2020-09-14 2021-08-10 Elastic capacitor and sensing wear

Country Status (2)

Country Link
JP (1) JPWO2022054488A1 (en)
WO (1) WO2022054488A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014204323A1 (en) * 2013-06-17 2014-12-24 Stretchsense Limited Stretchable fabric sensors
WO2018037855A1 (en) * 2016-08-25 2018-03-01 グンゼ株式会社 Wearable device for detection of human body motion and human body motion monitoring device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014204323A1 (en) * 2013-06-17 2014-12-24 Stretchsense Limited Stretchable fabric sensors
WO2018037855A1 (en) * 2016-08-25 2018-03-01 グンゼ株式会社 Wearable device for detection of human body motion and human body motion monitoring device

Also Published As

Publication number Publication date
JPWO2022054488A1 (en) 2022-03-17

Similar Documents

Publication Publication Date Title
JP6986667B2 (en) Wearing device for detecting human body movement
WO2018047814A1 (en) Biosignal detection garment
US20210204877A1 (en) Textile computing platform in sleeve form
US11071498B2 (en) Smart clothing with inertial, strain, and electromyographic sensors for human motion capture
US20180279951A1 (en) Movement compensation for sensor-equipped athletic garments
TW201906577A (en) Biological information measuring garment
JPWO2018173749A1 (en) Conductive composite sheet
JPWO2018056062A1 (en) Elastic capacitor, deformation sensor, displacement sensor, sensing method of breathing state and sensing wear
JP7446368B2 (en) Device with at least one electrode unit for data detection of electrical stimulation or diagnostic equipment
JP2019068901A (en) Bioelectrode and garment having the same
JP2017089052A (en) Garment for biological data acquisition
JP2022133335A (en) clothing
WO2022054488A1 (en) Elastic capacitor and sensing wear
JP2018183964A (en) Knit with conductive layer, strain sensor, and wearable sensor
US11304628B2 (en) Smart clothing with dual inertial sensors and dual stretch sensors for human motion capture
WO2021186890A1 (en) Garment
US20230148077A1 (en) Motion detection member
JP2018184687A (en) Knit with conductive layer, strain sensor, wearable sensor, and method of manufacturing knit with conductive layer
WO2022054487A1 (en) Stretchable capacitor and wearable sensing system
JP2019050935A (en) Wearable implement
JP2019050936A (en) Wearable implement
JP6772403B1 (en) clothing
WO2018012142A1 (en) Biosignal detector
JP2018021270A (en) Human body motion detecting wear
JP6991805B2 (en) Body wear

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21866448

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022547450

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21866448

Country of ref document: EP

Kind code of ref document: A1