WO2018055824A1 - Rolling cylinder-type displacement compressor - Google Patents

Rolling cylinder-type displacement compressor Download PDF

Info

Publication number
WO2018055824A1
WO2018055824A1 PCT/JP2017/015581 JP2017015581W WO2018055824A1 WO 2018055824 A1 WO2018055824 A1 WO 2018055824A1 JP 2017015581 W JP2017015581 W JP 2017015581W WO 2018055824 A1 WO2018055824 A1 WO 2018055824A1
Authority
WO
WIPO (PCT)
Prior art keywords
cylinder
piston
groove
rolling
outer peripheral
Prior art date
Application number
PCT/JP2017/015581
Other languages
French (fr)
Japanese (ja)
Inventor
坪野 勇
智弘 小松
尊 矢口
渡辺 誠二
小川 健
小谷 正直
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Publication of WO2018055824A1 publication Critical patent/WO2018055824A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B27/00Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders
    • F04B27/04Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders having cylinders in star- or fan-arrangement
    • F04B27/06Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders having cylinders in star- or fan-arrangement the cylinders being movable, e.g. rotary
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/08Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing
    • F04C18/10Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of internal-axis type with the outer member having more teeth or tooth equivalents, e.g. rollers, than the inner member

Definitions

  • the present invention relates to a rolling cylinder type positive displacement compressor.
  • Rolling cylinder positive displacement compressors are devices that use geometrically unique trajectories (hypocycloids). When compressing a working fluid such as a refrigerant using this device, it is essential to prevent leakage of the working fluid in order to improve efficiency. In order to prevent leakage of the working fluid, it is also important to supply a sufficient amount of lubricating oil evenly to the sliding portion.
  • Patent Document 1 discloses a rolling cylinder type positive displacement compressor that has one compression part in which a turning piston is fitted in a rolling cylinder and compresses a working fluid by reciprocating movement of the turning piston, and lubricates the sliding part. What has enabled a sufficient supply of oil is disclosed.
  • An object of the present invention is to achieve high compressor efficiency by improving the sealing performance of a working chamber in a rolling cylinder positive displacement compressor.
  • a rolling cylinder type positive displacement compressor includes a cylindrical rolling cylinder having a cylinder groove, a revolving piston having a slide groove, a stationary cylinder having a pin mechanism, and a piston that is a driving source for the revolving motion of the revolving piston.
  • a casing that incorporates a turning drive source, a drive transmission part that connects the turning piston and the piston turning drive source, a frame through which the drive transmission part passes, a turning piston, a rolling cylinder, a stationary cylinder, a piston turning drive source, and a drive transmission part
  • the revolving piston, the rolling cylinder, and the stationary cylinder constitute a compression portion, and the revolving piston relatively reciprocates in the cylinder groove, and the reciprocating motion in the cylinder groove has both ends.
  • a cylinder groove outer peripheral wall is provided.
  • FIG. 1 is an exploded perspective view illustrating a configuration of a compression unit of an RC compressor according to Embodiment 1.
  • FIG. FIG. 1 is an exploded perspective view illustrating a configuration of a compression unit of an RC compressor according to Embodiment 1.
  • FIG. 9 is an enlarged cross-sectional view illustrating an arrangement of the RC compressor according to the first embodiment at a crank angle of 0 deg in FIG. 8.
  • FIG. 9 is an enlarged cross-sectional view illustrating an arrangement between a crank angle of 180 deg and 225 deg in FIG. 8 in which one working chamber of the RC compressor according to the first embodiment shifts from a compression stroke to a discharge stroke. It is an expanded sectional view of the P section of FIG. It is an expanded sectional view which shows the modification of FIG. FIG.
  • FIG. 10 is a top view showing a rolling cylinder of Example 6.
  • FIG. 10 is a perspective view showing a rolling cylinder of Example 7.
  • FIG. 10 is a perspective view showing a rolling cylinder of Example 8.
  • FIG. 1 is a top view showing a rolling cylinder of Embodiment 1.
  • FIG. It is a top view which shows the turning piston of Example 1.
  • 10 is a top view showing a rolling cylinder of Example 9.
  • FIG. It is a top view which shows the turning piston of Example 9.
  • FIG. 10 is a top view showing a rolling cylinder of Example 10. It is a top view which shows the turning piston of Example 10.
  • the present invention is a compressor having a typical configuration in which three main compression elements are a revolving piston that revolves, a rolling cylinder that rotates in conjunction with a stationary cylinder, and a stationary cylinder that incorporates them.
  • the present invention relates to a rolling cylinder positive displacement compressor (hereinafter also referred to as “RC compressor”) that compresses a gas that is a working fluid by a compression element.
  • the working fluid includes not only non-condensable gases such as air but also refrigerants used in air conditioners and refrigerators.
  • the present invention relates to a rolling cylinder type positive displacement compressor comprising: a rotation synchronization means for synchronizing the rotation speeds of a piston and a rolling cylinder; and a swing piston attitude restriction means by a rotation half means for regulating the rotation speed of the rotation piston to half of the rotation speed.
  • a compressor of a type having a plurality of compression units shown therein can also be realized.
  • two compression units may be used for the purpose of suppressing fluctuations in rotational torque.
  • the rolling cylinder need not be integrated, the assembling property of the compression portion is improved.
  • a rolling cylinder positive displacement compressor includes a swing piston, a rolling cylinder, a piston swing drive source, a drive transmission means, a rolling cylinder rotation support, a rotation synchronization means, a rotation half means, and a stationary cylinder. And a casing.
  • the orbiting piston rotates around the piston rotation axis, and revolves around the piston rotation axis parallel to the piston rotation axis with a turning radius E.
  • a rolling cylinder has a cylindrical shape that rotates around a cylinder rotation axis, and has a cylinder groove with a constant width, with a cylinder groove axis perpendicular to the cylinder rotation axis as a central axis and parallel to the cylinder rotation axis. Both side surfaces of the groove are parallel to the cylinder groove axis.
  • the piston turning drive source is a driving source for the turning motion of the turning piston.
  • the drive transmission means connects the turning piston and the piston turning drive source.
  • the rolling cylinder rotation support portion is a cylinder whose cylinder rotation axis is parallel to the piston rotation axis and is eccentric with respect to the piston rotation axis so that the cylinder rotation axis is fixedly arranged on the piston rotation path circle that is the rotation path of the piston rotation axis.
  • the amount of eccentricity is arranged as E equal to the turning radius.
  • Rotation synchronization means synchronizes the amount of rotation of the piston, which is the amount of rotation of the revolving piston, with the amount of rotation of the rolling cylinder.
  • Rotation half means controls the piston rotation amount to half of the piston turning amount which is the turning angle amount of the turning piston.
  • the stationary cylinder and the rolling piston and the rolling cylinder are formed so as to form a compression portion that forms two working chambers by roughly sealing two spaces separated by fitting the swiveling piston into the cylinder groove and partitioning the cylinder groove. Contains the cylinder.
  • Casing has an oil storage part as well as a compression part.
  • the suction flow path and discharge flow path are connected to the stationary cylinder.
  • the suction flow path connects one working chamber whose volume is increased by the swiveling motion of the swivel piston, of the two working chambers, to the suction system.
  • the discharge channel connects the other working chamber, whose volume is reduced by the swiveling motion of the swivel piston, to the discharge system and serves as the discharge chamber.
  • the suction channel and the discharge channel have a period that does not lead to the suction system or the discharge system until the working chamber, which was the suction chamber immediately before the start of the decrease after the increase in volume, is transferred to the discharge chamber. It is arranged to be a compression chamber.
  • the rotation synchronizing means is provided with a piston cut surface, which is a flat surface of two constant intervals, with a cut axis perpendicular to the piston rotation axis as a central axis and parallel to the piston rotation axis, on the side surface of the orbiting piston that is in sliding contact with the two side surfaces of the cylinder groove.
  • the rotation half means is a slide groove having a constant width parallel to the piston rotation axis with the slide axis orthogonal to the piston rotation axis as one of the two piston side end surfaces orthogonal to the piston rotation axis among the side surfaces of the orbiting piston.
  • a pin mechanism arranged on a rolling cylinder rotation support portion that is inserted into the slide groove with the pin axis as a central axis so that the pin axis parallel to the piston rotation axis is always perpendicular to the slide axis, arranged on the piston rotation locus circle It is comprised by the pin slide mechanism which consists of.
  • the pin shaft is arranged at a position on the piston turning locus circle rotated by the pin axis adjustment angle ⁇ from a position opposed to the cylinder rotation shaft arranged on the piston turning locus circle by 180 degrees around the piston turning axis.
  • the slide shaft around the piston rotation axis from the normal direction of the cut shaft in the same rotation direction as the pin shaft adjustment angle by ⁇ / 2 degrees, which is half of the pin shaft adjustment angle, Realize.
  • the rolling cylinder type positive displacement compressor of the present invention will be described in detail with reference to the drawings as appropriate using a plurality of embodiments.
  • common parts will be described using the same drawings.
  • symbol in the figure of each Example shows the same thing or an equivalent, and abbreviate
  • the dimensional ratios of the respective elements shown in the drawings indicate one embodiment. Therefore, the size relationship and angle of each dimension in the illustrated shape also indicate an embodiment.
  • the numbering with parentheses in the figure shows two embodiments depending on the presence / absence of the target part with parentheses.
  • specific dimension values are not particularly limited, but it is desirable that the outer diameter of the rolling cylinder type positive displacement compressor is in a range from 10 mm to 2000 mm.
  • FIG. 1 shows the overall configuration of the RC compressor of the first embodiment.
  • the configuration described in Patent Document 1 is simplified.
  • the RC compressor is roughly composed of a compression unit, a motor 7 as a drive source, and an oil storage unit 125.
  • the compression part, the motor 7, and the oil storage part 125 are arranged in order from the upper part in the casing constituted by the casing cylindrical part 8a, the casing upper cover 8b, and the casing lower cover 8c.
  • the compression unit includes a rolling cylinder 1, a turning piston 3, and a stationary cylinder 2 as components that directly act on the compressed working fluid.
  • the rolling cylinder 1 and the stationary cylinder 2 are all made of cast iron, the cost can be kept low.
  • the rolling cylinder 1 may be made of an aluminum alloy, and the turning piston 3 and the stationary cylinder 2 may be made of cast iron. In this way, since the rolling cylinder 1 that rotates passively can be reduced in weight, it is possible to make it difficult for malfunctions to occur and smooth operation.
  • the revolving piston 3, the rolling cylinder 1 and the stationary cylinder 2 are all made of an aluminum alloy, the entire RC compressor can be reduced in weight.
  • the compression part has a structure in which the upper part is covered with a stationary cylinder 2 and the lower part is covered with a frame 4.
  • the frame 4 is provided with a main bearing 24 including an upper main bearing 24a and a lower main bearing 24b.
  • the crankshaft 6 is supported by the main bearing 24 in a rotatable state. The crankshaft 6 protrudes downward.
  • a working chamber is formed by the rolling cylinder 1, the turning piston 3, and the stationary cylinder 2.
  • the working chamber is the suction chamber 95 or the compression chamber 100.
  • the stationary cylinder 2 is provided with a circular eccentric cylinder hole 2b having a cylinder rotation axis as a central axis.
  • the stationary cylinder 2 has a cylinder outer peripheral groove 2m on the outer peripheral side surface thereof.
  • a bypass hole 2e that penetrates to the eccentric cylinder hole 2b is provided.
  • a bypass valve 22 is provided on the upper surface side of the stationary cylinder 2.
  • This bypass valve 22 has a structure in which a valve plate is disposed on a valve seat and the valve plate is lightly pressed from above by a spring. As a result, the bypass valve 22 is a one-way valve that allows only the flow in the direction from the eccentric cylinder hole 2b to the upper part.
  • a pin mechanism 5 is provided on the bottom surface of the eccentric cylinder hole 2b.
  • the compression section is provided with a suction passage 2s and a discharge hole 2d1.
  • the suction passage 2s includes a suction groove 2s2 provided on the bottom surface of the eccentric cylinder hole 2b, and a suction hole 2s1 connected to the suction groove 2s2 from the upper surface of the stationary cylinder 2.
  • a cylinder upper wall 2w is arranged so as to cover the inner side of the cylinder bolt 90 for attaching the stationary cylinder 2 to the frame 4.
  • a discharge cover 230 is fixed on the upper surface of the cylinder upper wall 2w, and covers the discharge hole 2d1, the bypass hole 2e, and the like.
  • channel 2w1 which connects an inner peripheral part and an outer peripheral part is provided in the several places of the cylinder upper wall 2w.
  • the rolling cylinder 1 has a cylinder bottom end plate 1a that forms the bottom surface of the cylinder groove, and a cylinder groove outer peripheral wall 301.
  • An eccentric shaft insertion hole 1 d is provided in the center of the bottom surface of the rolling cylinder 1.
  • the pin mechanism 5 is inserted into the slide groove 3b of the turning piston 3.
  • the swing bearing 23 is press-fitted into the swing bearing hole 3a (FIG. 2) provided in the swing piston 3.
  • the eccentric shaft 6 a of the crankshaft 6 is inserted into the slewing bearing 23.
  • the eccentric shaft 6a is connected to the turning piston 3 via the eccentric shaft insertion hole 1d.
  • a shaft collar portion 6 c that is a large diameter portion is provided on the upper portion of the crankshaft 6.
  • An eccentric portion including an eccentric shaft 6a and a shaft neck 6d having a smaller diameter than the eccentric shaft 6a is provided above the shaft collar portion 6c.
  • the motor 7 includes a stator 7b fixedly disposed on the casing cylindrical portion 8a and a rotor 7a fixedly disposed on the crankshaft 6.
  • the motor 7 is a piston turning drive source and also a shaft rotation drive source.
  • the rotor 7a has a main balance 80 fixed at the top and a counter balance 82 fixed at the bottom. These serve to dynamically balance the unbalance of the compression element (slewing piston 3) that swirls in the compression operation.
  • the stator 7b is provided with a stator winding 7b2.
  • the oil storage part 125 is an area surrounded by the casing cylindrical part 8a, the casing lower lid 8c, and the sub-frame 35.
  • the compression part is fixed to the casing cylindrical part 8a by welding or the like.
  • the oil pump 200 having a boosting capability is provided at the lower end of the crankshaft 6.
  • the crankshaft 6 is provided with an oil supply vertical hole 6b (oil supply passage) penetrating the center in the central axis direction.
  • the crankshaft 6 is provided with oil supply horizontal holes (oil supply sub horizontal hole 6g, oil supply lower main bearing hole 6f, oil supply upper main bearing hole 6e) connected to the sub bearing 25, the lower main bearing 24b, and the upper main bearing 24a.
  • the upper main bearing 24a is supplied with oil by an upper oil supply upper bearing hole 6e and an oil supply main shaft groove 6k.
  • a part of the oil discharged from the oil supply pump 200 enters the oil supply pump shaft chamber 150 through a gap around the pump connecting pipe 6z and is supplied to the auxiliary bearing 25.
  • the region surrounded by the crankshaft 6, the slewing bearing 23 and the slewing piston 3 is a shaft eccentric end space 115.
  • the slewing bearing 23 is supplied with oil by the shaft eccentric end space 115 and the oil supply eccentric groove 6h.
  • the frame 4 is provided with a plurality of bed radiating grooves 4e serving as oil passages.
  • a rotor cup 210 is tightly fixed to the lower surface of the frame 4 so as to cover the periphery of the rotor 7a.
  • the oil that has passed through the bed radiation groove 4e flows into the back pressure chamber 110 and the bed back pressure chamber 110a, and is discharged from the oil discharge path 4x below the frame 4 to the outside of the rotor cup 210. .
  • gaps such as a cylinder outer peripheral gap 2g and a frame outer peripheral gap 4g, a cylinder outer peripheral groove 2m and a frame outer peripheral groove 4m, which serve as a flow path for the working fluid of the discharge pressure.
  • the suction pipe 50 introduces a working fluid from the outside to a compression section provided inside the casing 8.
  • the discharge pipe 55 discharges the working fluid pressurized by the compression unit to the outside.
  • the suction pipe 50 and the discharge pipe 55 are provided on the casing upper lid 8b.
  • a hermetic terminal 220 is provided on the casing upper lid 8b.
  • a motor wire 7b3 is connected to the hermetic terminal 220 so that electric power can be supplied to the stator winding 7b2 of the motor 7 from an external power source (not shown).
  • the working fluid introduced from the suction pipe 50 is pressurized in the compression section and discharged from the discharge pipe 55 to the outside.
  • the working fluid introduced from the suction pipe 50 is compressed in the compression unit and blows upward from the discharge hole 2d1, the bypass hole 2e, and the like. Then, the working fluid once collides with the discharge cover 230. At this time, the oil contained in the working fluid adheres to the discharge cover 230 and is separated. The working fluid with a reduced amount of oil is blown out from the upper wall groove 2w1. The working fluid further collides with the inner wall of the casing cylindrical portion 8a, and the oil is separated again. Thereafter, the working fluid enters the casing upper chamber 120 and is discharged from the discharge pipe 55 provided in the casing upper lid 8b to the outside of the apparatus. Note that in the casing upper chamber 120, the flow rate of the working fluid decreases, so that a slight amount of remaining oil mist tends to settle, and the amount of oil contained in the working fluid becomes extremely small.
  • the auxiliary bearing 25 includes a ball 25a and a ball holder 25b that rotatably supports the ball 25a in all directions. After the lower part of the crankshaft 6 is inserted into the ball 25a and the ball 25a is mounted on the ball holder 25b, the ball holder 25b is fixedly disposed on the sub-frame 35 welded to the casing cylindrical portion 8a. Thereby, the auxiliary bearing 25 is configured to rotatably support the lower portion of the crankshaft 6.
  • the oil that flows out from the oil discharge path 4x to the lower side of the frame 4 comes out of the rotor cup 210 that covers the periphery of the rotor 7a and is firmly fixed to the lower surface of the frame 4. Then, it travels along the outer periphery of the rotor cup 210 and falls to the stator 7b, and further passes through a hole through which the stator winding 7b2 passes and the outer stator cut surface 7b1 to reach the space below the motor 7. Thereafter, a small amount passes through the sub-frame peripheral hole 35a and returns to the oil storage part 125 except that the small amount of oil passes through the sub-frame central hole 35b and is supplied to the inner and outer circumferences of the balls 25a of the sub-bearing 25.
  • the RC compressor can be installed with the central axis of the cylindrical casing facing in the horizontal direction (lateral). In this case, there is no problem even if the central axis of the cylinder is inclined. However, in this case, it is necessary to adjust the arrangement of the sub-frame surrounding hole 35a and the sub-frame central hole 35b of the sub-frame 35, which is a partition of the oil storage part 125, so that an appropriate amount of lubricating oil stays in the oil storage part 125. There is.
  • FIG. 2 is a cross-sectional view taken along the line AA in FIG. 1 (compression chamber forming portion).
  • FIG. 3 is a cross-sectional view taken along the line BB (a cross-sectional view in the gap between the swing piston and the rolling cylinder above the rolling cylinder).
  • C1-C2-O-C3-C4 shown in FIGS. 2 and 3 is a portion corresponding to the longitudinal sectional view of FIG. 1, and FIG. 1 is a longitudinal sectional view passing through C1-C2-O-C3-C4. It is.
  • the rolling cylinder 1 is provided with a cylinder groove outer peripheral wall 301.
  • the cylinder groove outer peripheral wall 301 is provided at both ends of the reciprocating motion of the revolving piston 3 in the cylinder groove 1c.
  • the cylinder cylinder is provided with a cylinder groove outer peripheral wall 301 that partitions between the cylinder groove 1 c and a cylinder outer peripheral surface that is an outer peripheral surface of the rolling cylinder 1. For this reason, the suction hole is not provided in the cross section shown in FIG.
  • a cylinder outer peripheral groove 2m is provided in a part of the outer peripheral side surface of the stationary cylinder 2, and is arranged so as to communicate with the frame outer peripheral groove 4m provided in the lower frame.
  • the suction path 2s provided in the bottom surface of the eccentric cylinder hole 2b of the stationary cylinder 2 is actually indicated by a two-dot chain line.
  • the suction path 2s includes a suction groove 2s2 provided on the bottom surface of the eccentric cylinder hole 2b, a suction hole 2s1 connected to the suction groove 2s2 from the upper surface of the stationary cylinder 2, and a suction groove refracting portion 2s2k.
  • the suction groove 2 s 2 is provided at a position closer to the inside than the inner side surface of the cylinder groove outer peripheral wall 301.
  • the suction groove refracting portion 2 s 2 k is provided outside the inner surface of the cylinder groove outer peripheral wall 301 and inside the outer surface of the cylinder groove outer peripheral wall 301.
  • the suction groove 2s2 and the suction groove refracting portion 2s2k communicate with the upper surface portion of the stationary cylinder 2 through the suction hole 2s1.
  • a discharge groove 2d2 and a discharge hole 2d1 are provided on the bottom surface of the eccentric cylinder hole 2b.
  • the discharge hole 2d1 is connected to the discharge groove 2d2 from the upper surface of the stationary cylinder 2.
  • the discharge groove 2d2 and the discharge hole 2d1 constitute a discharge path 2d.
  • suction path 2s suction flow path
  • discharge path 2d discharge flow path
  • FIG. 4 is a perspective view showing the rolling cylinder of this embodiment.
  • the rolling cylinder 1 is provided with a cylinder groove outer peripheral wall 301 up to the same height as the cylinder upper surface portion 1e. Thereby, all the sides of the working chamber are sealed.
  • An eccentric shaft insertion hole 1d is provided at the center of the bottom surface of the cylinder groove 1c.
  • the dimension F indicates the depth of the cylinder groove 1c.
  • FIG. 23 is a top view showing an example in which the shape of the cylinder groove outer peripheral wall 301 of the rolling cylinder in FIG. 4 is limited.
  • the rolling cylinder 1 is provided with a uniform wall 1w having a uniform thickness as a cylinder groove outer peripheral wall. Further, the position of the piston eccentric cylindrical tip surface 3e when the revolving piston 3 approaches the uniform wall 1w on the left side in the figure in the cylinder groove 1c is indicated by a two-dot chain line.
  • the minimum distance between the piston eccentric cylinder front end surface 3e and the right end of the eccentric shaft insertion hole 1d in the drawing is the minimum seal width, and is formed by the revolving piston 3 in the cylinder groove 1c by sufficiently securing the minimum seal width. The sealing of the working chamber can be ensured.
  • the rolling cylinder 1 includes a cylinder cylinder 1b having a cylindrical shape and having a cylinder groove 1c inside with the rolling axis as a central axis, and a cylinder bottom end plate 1a forming a bottom surface of the cylinder groove 1c.
  • the cylinder groove 1c is provided in an open shape on the end surface of the cylinder column 1b on the side opposite to the cylinder bottom end plate, and is flat and parallel to each other with a constant width parallel to the rolling axis with the cylinder groove axis orthogonal to the rolling axis as the central axis. It has various sides. Further, the bottom surface of the cylinder groove 1c is parallel to each upper surface.
  • the cylinder groove 1c becomes a cylinder groove outer peripheral wall between the cylinder outer peripheral surface 1s as shown in FIG.
  • R which becomes processable is provided in the corner (small black circle location) of the cylinder groove 1c.
  • the radius of the corner (small black circle) R is set to be equal to or larger than the radius of the end mill.
  • machining by wire cut which is electric discharge machining is also conceivable. In that case, the radius should be about the radius of the wire plus the gap removed by the discharge.
  • the corner of the swiveling piston 3 (small white circle portion in FIG. 24) is shaped so as not to interfere with the corner portion (small black circle portion) of the cylinder groove 1c. Adjust.
  • R may be larger than R at the corner (small black circle) of the cylinder groove 1c.
  • the revolving piston 3 reciprocates in the cylinder groove 1c. For this reason, even when the turning piston 3 approaches the end of the cylinder groove 1c, the eccentric shaft insertion hole 1d is hidden by the turning piston 3, and the turning piston 3 is secured so as to secure a seal width (shown in FIG. 23 is the minimum seal width). It is necessary to increase the length of 3. When the length of the swiveling piston 3 is increased, it is necessary to increase the length of the cylinder groove 1c, and the diameter of the cylinder column 1b is increased. Therefore, since the diameter of the rolling cylinder 1 increases and the diameter of the stationary cylinder 2 into which the rolling cylinder 1 is incorporated increases, the diameter of the casing 8 increases and the RC compressor becomes larger in diameter.
  • the shaft neck 6d is provided so that the eccentric shaft insertion hole 1d passes through the shaft neck 6d having a smaller diameter than the eccentric shaft 6a.
  • the suction groove 2 s 2 is located at a position close to the inside from the side surface of the eccentric cylinder hole 2 b by the thickness of the outer peripheral wall of the cylinder groove (in this embodiment, the thickness of the uniform wall 1 w).
  • the suction groove refracting portion 2s2k is provided by refracting the end of the suction groove 2s2 so that the suction chamber 95 faces the suction groove 2s2 from the start of the suction stroke.
  • the suction groove refracting portion 2s2k is also provided so as not to face the discharge chamber 105 and to cross the uniform wall 1w.
  • a suction hole 2 s 1 is provided so as to connect the suction groove 2 s 2 or the suction groove refracting portion 2 s 2 k and the upper surface of the stationary cylinder 2.
  • the suction hole 2s1 is provided so as not to penetrate the bottom surface of the eccentric cylinder hole 2b.
  • the flow straddles the gap space between the working chamber formed inside the uniform wall 1w that is the outer circumferential wall of the cylinder groove and the cylinder outer circumferential surface 1s that is the gap area formed outside the uniform wall 1w and the side surface of the eccentric cylinder hole 2b.
  • the road disappears. This improves the sealing performance between the space communicating with the gap space between the cylinder outer peripheral surface 1s and the side surface of the eccentric cylinder hole 2b and the suction pressure space such as the suction chamber 95 and the suction passage 2s (suction hole 2s1 and suction groove 2s2).
  • the gap space between the cylinder outer peripheral surface 1s and the eccentric cylinder hole 2b side surface is connected to the back pressure chamber 110 held at the discharge pressure.
  • the working fluid is discharged from the bypass hole 2e through the bypass valve 22.
  • the two bypass holes 2e are designed so that the bypass hole 2e faces the working chamber from the latter half of the suction stroke to the entire compression stroke and the first half of the discharge stroke.
  • FIG. 5 is a perspective view showing a revolving piston.
  • the swivel piston 3 has a structure in which two piston cut surfaces 3c that are parallel to the swivel axis and parallel to each other are provided on the side surface of a cylindrical material having a small thickness.
  • the upper bottom surface of the swing piston 3 is a piston upper surface 3d
  • the lower bottom surface of the swing piston 3 is a piston lower surface 3f.
  • the piston upper surface 3d and the piston lower surface 3f are piston-side end surfaces and are parallel to each other.
  • the piston upper surface 3d and the piston lower surface 3f are flat.
  • a slide groove 3b is provided on the piston upper surface 3d.
  • the piston lower surface 3f is provided with a swivel bearing hole 3a having a circular cross section.
  • a swing bearing 23 is press-fitted into the swing bearing hole 3a.
  • the slide groove 3b is formed with a depth communicating with the swivel bearing hole 3a. Thereby, the oil supply path to the slewing bearing 23 and the oil supply path to the slide groove 3b become common, and the oil supply system is simplified. This has the effect of reducing manufacturing costs.
  • the slide groove 3b extends to the outer periphery of the piston cut surface 3c. Thereby, since the movement of the cutting tool during groove processing becomes uniform, there is an effect that the shape accuracy of the groove is improved.
  • the dimension H has shown the thickness of the turning piston 3.
  • a piston cut groove 3i connected to the slide groove 3b may be provided at the center of the piston cut surface 3c.
  • a similar piston cut groove 3i may be provided on the opposite piston cut surface 3c.
  • the slide groove 3b also serves as an oil supply path to the piston cut surface 3c.
  • the slide shaft is set to the normal direction of the cut shaft (axis perpendicular to the swing bearing shaft). That is, the slide shaft is provided in a direction perpendicular to the two piston cut surfaces 3c parallel to the cut shaft.
  • the pin shaft adjustment angle ⁇ is set to 0 degree.
  • a surface treatment for increasing the hardness of the side plane of the slide groove 3b may be performed.
  • the revolving piston 3 is made of iron, carburizing and quenching or nitriding treatment can be considered.
  • alumite treatment or the like can be considered.
  • FIG. 24 is a top view showing the revolving piston.
  • the swing piston 3 when the swing piston 3 is viewed from above, the swing bearing hole 3a and the swing bearing 23 are partially visible in the slide groove 3b.
  • the piston eccentric cylindrical tip surface 3e is one of the surfaces forming the working chamber.
  • the turning piston 3 is fitted in the cylinder groove 1c of FIG.
  • the shape of the piston eccentric cylindrical tip surface 3e and the inner wall surface of the uniform wall 1w is as narrow as possible. It is desirable to have the same (curvature).
  • the shape of the corner portion (small white circle portion in FIG. 24) of the orbiting piston 3 is adjusted so as not to interfere with the corner portion (small black circle portion in FIG. 23) of the cylinder groove 1c.
  • R may be larger than R at the corner of the cylinder groove 1c (small black circle in FIG. 23).
  • FIG. 6 is a bottom view of the stationary cylinder.
  • a cylinder outer peripheral groove 2m provided on the outer peripheral side surface of the stationary cylinder 2, a suction path 2s composed of a suction hole 2s1, a suction groove 2s2, and a suction groove refracting portion 2s2k, and a discharge composed of a discharge hole 2d1 and a discharge groove 2d2.
  • the arrangement of the path 2d and the pin mechanism 5 is clearly shown.
  • a bypass hole 2e that penetrates to the eccentric cylinder hole 2b is provided from the upper surface of the stationary cylinder 2.
  • a bypass valve 22 is provided on the upper surface side of the stationary cylinder 2.
  • bypass hole 2e penetrating to the eccentric cylinder hole 2b is provided near a portion corresponding to the radius of the inner surface of the cylinder groove outer peripheral wall 301 (FIG. 4).
  • the distance between the pin shaft, which is the center of the pin mechanism 5, and the cylinder rotation shaft is twice the turning radius E.
  • FIG. 7 is a perspective view showing a state where the combination of the components of the compression unit and the crankshaft is developed.
  • FIG. 8 is a view for explaining the compression operation using a cross section slightly shifted to the swivel piston side from the BB cross section of FIG.
  • the suction groove 2s2 immediately above the BB cross section is indicated by a broken line.
  • FIG. 9 is an enlarged view of the crank angle of 0 degree in FIG. This is the timing when the working chamber whose volume is changed from the discharge stroke to the suction stroke is zero and the working chamber whose maximum volume is changed from the suction stroke to the compression stroke coexist.
  • FIG. 10 is an enlarged view of the timing at which one working chamber shifts from the compression stroke to the discharge stroke when a bypass valve 22 described later does not operate, and is in a state between the crank angle of 180 degrees and 225 degrees in FIG. Is shown.
  • FIG. 11 is a vertical cross-sectional view of the pin mechanism mounting portion, and is an enlarged view of a portion P in FIG.
  • a cylindrical fixing pin 5s having a pin axis as a central axis is fixedly arranged on the bottom surface of the eccentric cylinder hole 2b (FIG. 7) to form a pin mechanism 5 (FIG. 7).
  • a pin slide mechanism is configured.
  • the pin slide mechanism plays a role of defining the posture (cut axis direction) in accordance with the turning phase of the turning piston 3, and is a mechanism for smoothly continuing the compression operation of the RC compressor.
  • the fixing pin 5s is inserted into a hole penetrating from the upper surface of the stationary cylinder 2 to the eccentric cylinder hole 2b.
  • the fixing pin 5s has a fixing pin flange portion 5s1, and the fixing pin flange portion 5s1 is fixed by using one or a plurality of pin fixing screws 5s8.
  • a pin fixing main body screw 5s9 may be provided on the upper part of the main body of the fixing pin 5s. In this case, there is an effect that the width of the diameter selection of the fixed pin flange portion 5s1 is widened and the degree of freedom in design is improved.
  • FIG. 12 is a modification of FIG.
  • FIG. 12 it is the same as FIG. 11 except that a fixed pin small flange portion 5s1 'having a reduced collar portion and a pin caulking hole 5s6 are provided. For this reason, description of common points is omitted.
  • the fixing arrangement method of the fixing pins 5s constituting the pin mechanism 5 of this embodiment is a simple cylinder without providing the fixing pin flange portion 5s1 and the fixing pin small flange portion 5s1 'when the impact force applied to the fixing pin 5s is small.
  • Possible shapes include press-fitting, shrink fitting, cold fitting, welding and adhesion. According to this method, the hole to be inserted does not need to be penetrated, so that the degree of freedom in design is improved and the manufacturing cost of the fixing pin 5s can be reduced.
  • the pin mechanism 5 of the present embodiment may be provided with an oil supply hole (fixed pin vertical hole or fixed pin horizontal hole) having an outlet on the outer peripheral surface in the fixed pin 5s, but as shown by M part in FIG.
  • the oil supply hole may not be provided. In this case, there is no need for drilling, which has the effect of reducing manufacturing costs.
  • FIGS. 8, 9 and 10 both cross sections slightly lower than the BB cross section of FIG. 1).
  • the revolving piston 3 relatively reciprocates in the cylinder groove 1c.
  • the revolving piston 3 reciprocates relative to the cylinder groove 1c between the cylinder groove outer peripheral walls 301 at both ends thereof in the cylinder groove 1c.
  • Patent Document 1 Details are described in Patent Document 1 and therefore omitted.
  • the present invention is different in that an oil supply pump 200 is provided in the oil storage section 125 as shown in FIG.
  • Other configurations are almost the same as those of Patent Document 1. Therefore, the detailed description regarding the flow of oil is abbreviate
  • the uniform wall 1w (FIG. 23), which is the outer circumferential wall of the cylinder groove, is provided at both ends of the cylinder groove 1c, the upper surface of the uniform wall 1w is also formed on the bottom surface of the eccentric cylinder hole 2b which is the opposing surface. Approach or slide. Therefore, the latter (the upper surface of the uniform wall 1w) among the upper surface gaps of the uniform wall 1w connected in series from the back pressure chamber 110 to the cylinder outer peripheral clearance (the clearance between the cylinder outer peripheral surface 1s and the inner peripheral surface of the eccentric cylinder hole 2b). (Gap) can be reduced.
  • the surface of the rolling cylinder 1 that can be urged to the stationary cylinder 2 can be limited to the upper surface of the rolling cylinder 1 because the rolling cylinder 1 has a cylindrical shape. Therefore, the gap between the upper surface of the cylinder groove outer peripheral wall (uniform wall 1w in this embodiment), which is a part of the upper surface of the rolling cylinder 1, can be reduced with the bottom surface of the eccentric shaft insertion hole 1d that is the opposite surface. As a result, even if the width of the cylinder groove outer peripheral wall (uniform wall 1w in the present embodiment) is reduced, the sealing performance is hardly deteriorated. Therefore, since the outer diameter of the rolling cylinder 1 can be reduced, there is an effect that an RC compressor that achieves both high compressor efficiency and a reduced diameter can be realized.
  • the orbiting piston 3 performs an extremely complicated relative movement with respect to the stationary cylinder 2 in which the rotation movement and the rotation movement overlap. Therefore, when the orbiting piston 3 is sandwiched between the bottom surface of the cylinder bottom end plate 1a and the eccentric cylinder hole 2b and the piston upper surface 3d (see FIG. 5) applies a biasing force between the bottom surface of the eccentric cylinder hole 2b, The frictional force acting on the piston upper surface 3d increases and changes in a complicated manner, and the turning speed and the rotation speed of the turning piston 3 vary greatly.
  • the depth F (see FIG. 4) of the cylinder groove 1c is made larger than the thickness H (see FIG. 5) of the orbiting piston 3 (F> H).
  • the difference (F ⁇ H) between the two which is the size of the gap, is in the order of microns that can be sealed with an oil film.
  • the oil flowing into the back pressure chamber 110 is discharged from the oil discharge path 4x.
  • the back pressure chamber 110 and the bed back pressure chamber 110a are oil of discharge pressure. Almost satisfied. Since the lower surface of the rolling cylinder 1 is almost at the same height as the bed surface 4d, the oil in the back pressure chamber 110 comes to the lower surface of the rolling cylinder 1 in a normal case.
  • the oil flows into a slight gap connecting the back pressure chamber 110 and the working chamber toward the suction chamber 95 and the compression chamber 100 having a pressure lower than the discharge pressure formed in the upper portion of the rolling cylinder 1.
  • This gap includes a cylinder outer peripheral clearance (a clearance between the cylinder outer peripheral surface 1s and the inner peripheral surface of the eccentric cylinder hole 2b), an upper surface clearance of the uniform wall 1w connected in series therewith, and a piston lower surface 3f and a bottom surface of the cylinder groove 1c.
  • the back pressure chamber 110 side opening of the oil discharge passage 4x is provided at a low position of the back pressure chamber 110.
  • the oil since the oil hardly accumulates in the back pressure chamber 110, the oil does not contact the lower end of the rolling cylinder 1.
  • oil agitation loss can be avoided. Therefore, in the case of an RC compressor in which the rolling cylinder 1 rotates at a high speed or the rotational speed of the rolling cylinder 1 is high at the rated operation (for example, the displacement volume). The compressor efficiency can be improved.
  • FIG. 13 is a longitudinal sectional view showing a slide groove insertion portion of the pin slide mechanism of the present embodiment, and is an enlarged view of an M portion in FIG. 11 or 12.
  • a slider flange 5b is provided at the tip (lower end) of the fixed pin 5s constituting the pin mechanism 5, and the slider 5a is rotatable between the fixed pin 5s and the slider flange 5b with respect to the pin axis. It is sandwiched and fitted into the slide groove 3b.
  • FIG. 14 is a perspective view showing a slider of the pin slide mechanism.
  • the slider 5a has a slider shaft hole 5a2 and a slider cut surface 5a1.
  • the slider cut surface 5a1 is provided as two flat portions parallel to each other, and is a portion to be fitted into the slide groove 3b.
  • the pin mechanism 5 After inserting the slider flange 5b into the slider shaft hole 5a2 with a small gap (about 5 to 20 ⁇ m in diameter), the pin mechanism 5 is manufactured by press-fitting into the fixed pin 5s.
  • the impact load applied to the pin mechanism is applied from the side surface of the slide groove 3b to the slider cut surface 5a1, and further from the slider shaft hole 5a2 to the shaft portion of the slider flange 5b. Since the former is between the flat surfaces and the latter is between the piston eccentric cylindrical peripheral surfaces, there is no load delivery involving a concentrated load. For this reason, since concentration of the load in the pin mechanism can be avoided, there is an effect that the risk of wear in the pin slide mechanism portion is reduced and the reliability is improved.
  • the slider flange 5b is provided with a slider flange vertical hole 5b1 and a slider flange horizontal hole 5b2, and the slider shaft hole 5a2 and the slider from the shaft eccentric end space 115 filled with oil.
  • An oil supply passage for supplying oil directly to the sliding portion of the flange 5b is provided.
  • the material of the slider 5a is generally cast iron or carbon steel, but may be a bearing material.
  • a carbon sintered material in which mainly carbon particles are baked and hardened may be used.
  • a slider groove 5a3 penetrating from one end of the slider cut surface 5a1 to the entire length of the other end is provided.
  • the slide groove 3b shown in FIG. 13 is normally filled with oil, and the pin mechanism 5 reciprocates therein. At this time, since the pin mechanism 5 is configured to partition the slide groove 3b (see FIG. 8), the pressure of the oil whose volume is reduced in the two slide groove spaces formed by partitioning is slightly reduced. Go up. Due to this pressure difference, oil flows into the slider groove 5a3.
  • a plurality of slider grooves 5a3 may be provided on each slider cut surface 5a1 instead of one.
  • a non-penetrating slider groove 5a4 drawn on the slider cut surface 5a1 by a two-dot chain line may be used. In this case, it shall stop on the way from both ends. As a result, there is an effect that the pressurizing action works, the holding force of the oil film increases, and the risk of wear on the slider cut surface 5a1 and the slide groove 3b can be further reduced.
  • two slider shaft oil supply holes 5a6 drawn by a two-dot chain line connecting the two slider tip surfaces 5a5 and the slider shaft hole 5a2 may be provided.
  • the oil on the side whose volume is reduced among the two slide groove spaces formed by being partitioned by the pin mechanism 5 is slightly pressurized, so that the oil passes through the slider shaft oil supply hole 5a6 facing the space, A large amount flows into the slider shaft hole 5a2, and the shaft sliding portions of the slider shaft hole 5a2 and the slider flange 5b are reliably lubricated.
  • FIG. 15 is a perspective view showing the rolling cylinder of this embodiment.
  • a cylinder annular recess 1n is provided on the cylinder outer peripheral surface 1s. Thereby, the cylinder annular convex part 310 is formed. Since the configuration other than this is the same as that of the first embodiment, the description regarding the same portion is omitted.
  • the rolling cylinder 1 can be regarded as a shaft portion that is supported by the bearing of the eccentric cylinder hole 2b and rotates. .
  • the sliding area of the shaft portion of the rolling cylinder 1 (the area of the cylinder outer peripheral surface 1s) is twice the cross-sectional area of the cylinder groove 1c, and the cylinder groove outer peripheral wall 301 is. It increases by the total area increase due to the increase in thickness.
  • the friction loss of the bearing portion generally increases as the sliding area of the shaft increases. For this reason, if the cylinder groove outer peripheral wall 301 is simply provided, an increase in the area of the cylinder outer peripheral surface 1s causes an adverse effect of an increase in friction loss in the eccentric cylinder hole 2b, and the performance improvement amount is slightly reduced.
  • the cylinder annular recess 1n is provided on the cylinder outer peripheral surface 1s to reduce the sliding area of the bearing portion, and the cylinder annular recess 1n is provided closer to the center of the cylinder outer peripheral surface 1s.
  • the bearing support state does not change, and friction loss can be reduced.
  • an increase in the sliding area which is one of the adverse effects of the cylinder groove outer peripheral wall 301, can be avoided, so that the compressor efficiency can be brought closer to the improvement of the compressor efficiency by the inherent leakage suppression that can be realized by the cylinder groove outer peripheral wall 301. There is an effect that can be done.
  • FIG. 16 is a perspective view showing the rolling cylinder of this embodiment.
  • the back pressure chamber 110 (see FIG. 1) and the cylinder annular recess 1n are provided below the cylinder annular recess 310 formed by providing the cylinder annular recess 1n near the center of the cylinder outer peripheral surface 1s.
  • a plurality of rolling outer peripheral lower end recessed portions 1v that connect the two are provided at approximately equal intervals.
  • the oil of the discharge pressure is further stored in the back pressure chamber 110 up to the lower end height of the rolling outer periphery lower end recess 1v (not shown).
  • the description regarding the same part is omitted.
  • the pressure of the cylinder annular recess 1n is the discharge pressure back pressure chamber. Slightly lower than 110. Therefore, the oil of the discharge pressure of the back pressure chamber 110 flows into the cylinder annular recess 1n through the rolling outer peripheral lower end recess 1v. Further, it flows into the working chamber through the upper surface of the cylinder annular convex portion and the upper surface of the rolling cylinder 1. As a result, since lubrication is performed on sliding portions such as the cylinder annular convex portion and the upper surface of the rolling cylinder 1, the friction coefficient is reduced and the friction loss is reduced.
  • FIG. 17 is a perspective view showing the rolling cylinder of this embodiment.
  • FIG. 18 is a top view showing the rolling cylinder of this embodiment.
  • a cut surface 1q and a cut surface oil supply hole 1p connected to the cut surface 1q are provided on the cylinder outer peripheral surface 1s. Since other than this is the same as in the first to fourth embodiments, the description regarding the same parts is omitted.
  • the other end of the cut surface oil supply hole 1p is opened to the side surface of the cylinder groove 1c so as to always face the slide groove 3b (see FIG. 7) of the turning piston 3 inserted into the cylinder groove 1c. That is, as shown in FIG. 18, even when the orbiting piston 3 moves to both ends of the cylinder groove 1c, it is provided so that the cylinder side opening of the cut surface oil supply hole 1p faces the slide groove 3b.
  • the cut surface 1q is provided at a position that is an angle ⁇ (about 60 degrees in this embodiment) of 90 degrees or less from the center of the cylinder groove outer peripheral wall 301 in the rotation direction of the rolling cylinder 1 (the same direction as the turning motion).
  • the rolling cylinder 1 provided with the cylinder groove outer peripheral wall 301 can be regarded as a shaft portion that is supported by the bearing of the eccentric cylinder hole 2b and rotates. Further, when the cylinder groove outer peripheral wall 301 is provided, the rolling cylinder 1 is parallel to the direction of the cylinder groove 1c due to the pressure difference between the working fluids in the two working chambers formed by the rotating piston 3 partitioning the cylinder groove 1c. Receive strong power. This is because the pressure applied to the inner surface of the cylinder groove outer peripheral wall 301 differs between the two working chambers, so that the force from the low pressure working chamber to the high pressure working chamber acts on the rolling cylinder 1.
  • the rolling cylinder 1 can be regarded as a shaft that receives a load in a direction from the low pressure side working chamber to the high pressure side working chamber, and the eccentric cylinder hole 2b can be regarded as a journal sliding bearing that supports the shaft.
  • the rolling is performed at a position slightly rotated from the center of the cylinder groove outer peripheral wall 301 forming the high pressure side working chamber in the rotational direction of the rolling cylinder 1 (the same direction as the turning motion). Due to the eccentricity of the cylinder 1, a minimal portion of the journal slide bearing gap is generated.
  • the vicinity of the bearing clearance minimum portion on the front side in the rotational direction of the rolling cylinder 1 with the minimum bearing clearance is the lower pressure region than the surroundings.
  • the position of the minimum bearing clearance is determined by the magnitude of the load, the rotational speed of the rolling cylinder 1 and the viscosity of the oil, but at least from the load direction (the direction of the cylinder groove 1c) from the rotational direction of the rolling cylinder 1 90 degrees. It can also be seen that the position is small.
  • journal slide bearings By the way, when the oil in the journal slide bearing is accumulated, the oil temperature rises, the viscosity is lowered, the bearing gap becomes substantially zero, and the possibility of seizure increases. For this reason, in journal slide bearings, the oil supply passage is opened from the bearing gap minimum part where the pressure is lower than the surroundings to the position near the rotational direction, so that oil is supplied to the bearing gap abundantly and seizure of the bearing part is avoided. And improve reliability.
  • the same countermeasure is taken on the cylinder outer peripheral surface 1s of the rolling cylinder 1 this time. That is, the cut surface 1q is provided at a position where the angle ⁇ is 90 degrees or less (about 60 degrees in the present embodiment) from the center of the cylinder groove outer peripheral wall 301 where the pressure is lower than the surroundings, and the discharge surface oil is always applied thereto.
  • a cut surface oil supply hole 1p connected to the filled slide groove 3b is provided. That is, the cut surface 1q is a cylinder oil supply groove, and the cut surface oil supply hole 1p is a cylinder oil supply groove (also simply referred to as “oil supply hole”). And since it is connected with the slide groove 3b, it is a slide groove communication path.
  • the cut surface 1q may be provided at a position of 90 degrees from the center of the cylinder groove outer peripheral wall 301. In this case, the cut surface 1q is installed closer to the rotational direction from the bearing gap minimum portion under any operating conditions, and therefore, it is possible to install without considering operating conditions. There is.
  • the cylinder oil groove may be a cut surface oil groove 1r instead of the cut surface oil hole 1p.
  • the oil in the back pressure chamber 110 is supplied to the cut surface 1q.
  • FIG. 19 is a perspective view showing the rolling cylinder of this embodiment.
  • FIG. 20 is a top view showing the rolling cylinder of this embodiment.
  • the cylinder outer peripheral surface 1s is schematically shown.
  • the cylinder outer circumferential surface 1s may be provided with the cylinder annular recess 1n, the cut surface 1q and the cut surface oil supply hole 1p, and the cut surface 1q and the cut surface oil supply groove 1r.
  • the cylinder bottom end plate 1a and the cylinder column 1b of the rolling cylinder 1 shown in FIG. 4 are formed as a flat separate cylinder bottom end plate 1a ′ and a cylindrical separate cylinder column 1b ′, and the cylinder shaft and the separate cylinder bottom end. Since it is the same as that of Example 1 thru
  • the separate cylinder column 1b ' has a through hole that becomes the cylinder groove 1c.
  • the bottom corner of the cylinder groove 1c is always provided with R, so that the lower corner of the swiveling piston 3 (piston cut surface) 3c and the boundary portion between the piston eccentric cylindrical tip surface 3e and the piston lower surface 3f) must be removed by corners such as chamfering in order to avoid interference.
  • a gap is formed between the lower corner of the swiveling piston 3 and the bottom corner of the cylinder groove 1c, which becomes a leakage flow path connecting the two working chambers, leading to a reduction in compressor efficiency. It was.
  • the bottom corner portion of the cylinder groove 1c is formed by combining the separate cylinder bottom end plate 1a 'and the separate cylinder column 1b', so that no R portion is generated. Therefore, the lower corner portion of the orbiting piston 3 does not need to be removed, and a leak passage at the lower corner portion of the orbiting piston 3 is not formed. Therefore, an RC compressor in which the cylinder bottom end plate 1a and the cylinder column 1b are integrated is used. This also has the effect of improving the compressor efficiency.
  • the outer radius of the separate cylinder bottom end plate 1a ' is made smaller than the outer radius of the separate cylinder column 1b'.
  • the outer diameter of the separate cylinder bottom end plate 1a ' is made smaller than the outer diameter of the separate cylinder column 1b'.
  • the separate cylinder column 1b 'and the separate cylinder bottom end plate 1a' may be welded or bonded without being screwed.
  • FIG. 21 is a perspective view showing the rolling cylinder of this embodiment.
  • the cylinder cylinder to be separated is a separate cylinder cylinder 1b ′′ with a side recess having a cylinder annular recess 1n at the lower end of the outer peripheral surface, and the diameter of the cylinder bottom end plate to be separated is the cylinder cylinder. Except for the separate cylinder large-diameter bottom end plate 1a ′′ matched with the outermost diameter, it is the same as that of the third embodiment, and therefore, the description regarding the same parts is omitted.
  • the cylinder annular recess 1n can be formed by cutting the lower end side of the outer peripheral surface of the cylinder cylinder, there is an effect of reducing the processing cost.
  • FIG. 22 is a perspective view showing the rolling cylinder of the present embodiment.
  • the cylinder cylinder to be separated is a separate cylinder cylinder 1b'b '' with a central recess that is provided with a cylinder annular recess 1n on the outer peripheral surface center side, and the diameter of the cylinder bottom end plate to be separated is the cylinder Since it is the same as that of Example 3 except it is set as the separate cylinder small diameter bottom end plate 1a 'a' 'made smaller than the outermost diameter of a cylinder, explanation about the same portion is omitted.
  • a force (bearing support force) that opposes the horizontal gas load due to the compression of the working fluid that the rolling cylinder 1 receives. Is divided into two equal parts from the two cylindrical annular projections. Therefore, since the maximum bearing support force can be reduced, there is an effect that reliability is improved. Further, the friction coefficient at the cylinder annular convex portion is reduced, and the friction loss can be reduced. Therefore, the compressor efficiency can be improved.
  • FIG. 25 is a top view showing the rolling cylinder of this embodiment.
  • FIG. 26 is a top view showing the orbiting piston of the present embodiment.
  • the two tip surfaces of the orbiting piston 3 become piston cylindrical tip surfaces 3x having the same central axis, and correspondingly, the cylinder groove outer peripheral wall 301 becomes thicker toward both ends in the circumferential direction. Except for the non-uniform wall 1x that increases, this is the same as in the first to eighth embodiments, and thus the description of the same portion is omitted.
  • Rotating piston 3 may be formed by processing piston cut surface 3c after processing piston cylinder tip surface 3x which is the tip surface coaxial with slewing bearing hole 3a. Therefore, since the turning bearing hole 3a and the piston cylindrical tip surface 3x can be machined with high coaxiality by lathe machining by the same chucking, there is an effect that the manufacturing cost is reduced.
  • the cylinder groove outer peripheral wall 301 is a non-uniform wall 1x whose thickness increases as it goes to both ends in the circumferential direction, so that the base of the wall is thick. Therefore, since the cylinder groove outer peripheral wall 301 has high rigidity, deformation due to gas load is suppressed, interference between the inner surface of the cylinder groove outer peripheral wall 301 and the tip surface of the turning piston 3, and the outer surface of the cylinder groove outer peripheral wall 301 and the eccentric cylinder hole 2b. There is an effect that the risk of interference with the inner peripheral surface can be reduced and the reliability is improved.
  • FIG. 27 is a top view showing the rolling cylinder.
  • FIG. 28 is a top view showing the orbiting piston.
  • the two tip surfaces of the orbiting piston 3 are piston semi-cylindrical tip surfaces 3y each having a cylindrical surface whose diameter is the distance between the two piston cut surfaces 3c. Since it is the same as that of the ninth embodiment except that the thickness is further increased as compared with the non-uniform wall 1x of the ninth embodiment as it goes to both ends in the circumferential direction, the description on the same parts is omitted. .
  • the revolving piston 3 reciprocates relative to the cylinder groove 1c of the rolling cylinder 1.
  • an eccentric shaft insertion hole 1d communicating with the back pressure chamber is opened at the center of the bottom (cylinder bottom end plate) of the cylinder groove 1c. Therefore, even when the orbiting piston 3 approaches one side in the cylinder groove 1c, a seal portion must be provided between the tip surface of the orbiting piston 3 and the eccentric shaft insertion hole 1d.
  • the seal width of the portion requiring the installation of the seal portion is set to the almost same minimum seal width (see FIG. 27). Accordingly, it can be considered that leakage between the working chamber and the back pressure chamber 110 is effectively suppressed with a minimum seal width. This is due to the fact that the connection position between the piston cut surface 3c of the revolving piston 3 and the piston tip surface is shifted to the piston rotation shaft side.
  • the cylinder groove outer peripheral wall 301 can be formed into a long hole forming wall 1y whose thickness increases greatly toward both ends in the circumferential direction, the base of the wall has a very thick form. Therefore, since the cylinder groove outer peripheral wall 301 is very high in rigidity, deformation due to gas load is completely suppressed, and interference between the inner surface of the cylinder groove outer peripheral wall 301 and the tip surface of the swiveling piston 3 and the outer surface of the cylinder groove outer peripheral wall 301 The risk of interference with the inner peripheral surface of the eccentric cylinder hole 2b can be reduced with extremely high accuracy, and the reliability is greatly improved.
  • the sealing performance of the working chamber can be improved, and high compressor efficiency can be realized. Further, it is possible to suppress an increase in the diameter of the compression element accompanying the improvement in the sealing performance of the working chamber, and to achieve both high compressor efficiency and downsizing.
  • the present invention it is possible to block the leakage flow path that communicates with the back space of the cylinder bottom end plate via the outer periphery of the cylinder bottom end plate of the rolling cylinder, so that the sealing performance of the working chamber can be improved and high compressor efficiency can be achieved. realizable.
  • the leakage flow path can be blocked without increasing the size, and high compression efficiency and downsizing can be realized.

Abstract

A rolling cylinder-type displacement compressor is provided with: a cylindrical rolling cylinder having a cylinder groove; an orbiting piston having a slide groove; a stationary cylinder having a pin mechanism; a piston orbiting drive source, i.e. a drive source for the orbiting motion of the orbiting piston; a drive transmission section for connecting the orbiting piston and the piston orbiting drive source; a frame through which the drive transmission section passes; and a casing in which the orbiting piston, the rolling cylinder, the stationary cylinder, the piston orbiting drive source and the drive transmission section are housed; wherein the orbiting piston, the rolling cylinder and the stationary cylinder constitute a compression section; the orbiting piston relatively performs a reciprocating motion in the cylinder groove; and cylinder groove outer circumferential walls are provided at both end parts of the reciprocating motion in the cylinder groove. As a result, the seal integrity of an operating chamber in the rolling cylinder-type displacement compressor is improved and high compressor efficiency is achieved.

Description

ローリングシリンダ式容積型圧縮機Rolling cylinder positive displacement compressor
 本発明は、ローリングシリンダ式容積型圧縮機に関する。 The present invention relates to a rolling cylinder type positive displacement compressor.
 ローリングシリンダ式容積型圧縮機は、幾何学的に独特の軌跡(ハイポサイクロイド)を利用する装置である。この装置を用いて冷媒等の作動流体を圧縮する場合、作動流体の漏れを防止することが効率向上のために必須である。作動流体の漏れを防止するためには、摺動部に十分な量の潤滑油を万遍なく供給することも重要である。 Rolling cylinder positive displacement compressors are devices that use geometrically unique trajectories (hypocycloids). When compressing a working fluid such as a refrigerant using this device, it is essential to prevent leakage of the working fluid in order to improve efficiency. In order to prevent leakage of the working fluid, it is also important to supply a sufficient amount of lubricating oil evenly to the sliding portion.
 特許文献1には、ローリングシリンダに旋回ピストンをはめ込んだ1つの圧縮部を有し、旋回ピストンの往復運動により作動流体を圧縮するローリングシリンダ式容積型圧縮機であって、摺動部への潤滑油の十分な供給を可能としたものが開示されている。 Patent Document 1 discloses a rolling cylinder type positive displacement compressor that has one compression part in which a turning piston is fitted in a rolling cylinder and compresses a working fluid by reciprocating movement of the turning piston, and lubricates the sliding part. What has enabled a sufficient supply of oil is disclosed.
国際公開第2016/067355号International Publication No. 2016/067355
 特許文献1に記載のローリングシリンダ式容積型圧縮機は、シリンダ溝がローリングシリンダの外周面まで延在しているため、シリンダ溝に形成される作動室がシリンダ溝の底面部(シリンダ底端板)の外周を経由して背面空間に通じる漏れ流路が生じ、圧縮機効率の低下を引き起こす点で改善の余地があった。 In the rolling cylinder positive displacement compressor described in Patent Document 1, since the cylinder groove extends to the outer peripheral surface of the rolling cylinder, the working chamber formed in the cylinder groove has a bottom surface portion (cylinder bottom end plate) of the cylinder groove. ), A leakage flow path that leads to the back space is generated, and there is room for improvement in that the compressor efficiency is reduced.
 本発明は、ローリングシリンダ式容積型圧縮機において、作動室のシール性を向上させて高い圧縮機効率を実現することを目的とする。 An object of the present invention is to achieve high compressor efficiency by improving the sealing performance of a working chamber in a rolling cylinder positive displacement compressor.
 本発明のローリングシリンダ式容積型圧縮機は、シリンダ溝を有する円柱状のローリングシリンダと、スライド溝を有する旋回ピストンと、ピン機構を有する静止シリンダと、旋回ピストンの旋回運動の駆動源であるピストン旋回駆動源と、旋回ピストンとピストン旋回駆動源とを繋ぐ駆動伝達部と、駆動伝達部が貫通するフレームと、旋回ピストン、ローリングシリンダ、静止シリンダ、ピストン旋回駆動源及び駆動伝達部を内蔵するケーシングと、を備え、旋回ピストン、ローリングシリンダ及び静止シリンダは、圧縮部を構成し、旋回ピストンは、シリンダ溝にて相対的に往復運動をするものであり、シリンダ溝における往復運動の両端部には、シリンダ溝外周壁が設けられている。 A rolling cylinder type positive displacement compressor according to the present invention includes a cylindrical rolling cylinder having a cylinder groove, a revolving piston having a slide groove, a stationary cylinder having a pin mechanism, and a piston that is a driving source for the revolving motion of the revolving piston. A casing that incorporates a turning drive source, a drive transmission part that connects the turning piston and the piston turning drive source, a frame through which the drive transmission part passes, a turning piston, a rolling cylinder, a stationary cylinder, a piston turning drive source, and a drive transmission part The revolving piston, the rolling cylinder, and the stationary cylinder constitute a compression portion, and the revolving piston relatively reciprocates in the cylinder groove, and the reciprocating motion in the cylinder groove has both ends. A cylinder groove outer peripheral wall is provided.
 本発明によれば、ローリングシリンダ式容積型圧縮機において、作動室のシール性を向上させて高い圧縮機効率を実現することができる。 According to the present invention, in a rolling cylinder type positive displacement compressor, it is possible to improve the sealing performance of the working chamber and realize high compressor efficiency.
実施例1に係るRC圧縮機のバイパス弁及び吐出流路を横切る縦断面図である。It is a longitudinal cross-sectional view which crosses the bypass valve and discharge flow path of RC compressor which concerns on Example 1. FIG. 図1のA-A断面図である。FIG. 2 is a cross-sectional view taken along the line AA in FIG. 図1のB-B断面図である。FIG. 3 is a cross-sectional view taken along the line BB in FIG. 実施例1に係るRC圧縮機のローリングシリンダを示す斜視図である。1 is a perspective view illustrating a rolling cylinder of an RC compressor according to Embodiment 1. FIG. 実施例1に係るRC圧縮機の旋回ピストンを示す斜視図である。1 is a perspective view showing a turning piston of an RC compressor according to Embodiment 1. FIG. 実施例1に係る固定ピンを有する静止シリンダを示す底面図である。It is a bottom view which shows the stationary cylinder which has a fixing pin concerning Example 1. FIG. 実施例1に係るRC圧縮機の圧縮部の構成を示す分解斜視図である。1 is an exploded perspective view illustrating a configuration of a compression unit of an RC compressor according to Embodiment 1. FIG. 実施例1に係るRC圧縮機の圧縮動作について図1のB-B断面よりもわずかに旋回ピストン側へずれた断面で見た図を用いて示すフロー図である。FIG. 2 is a flowchart illustrating a compression operation of the RC compressor according to the first embodiment with reference to a cross-sectional view slightly deviated from the BB cross section of FIG. 1 toward the revolving piston. 実施例1に係るRC圧縮機の図8のクランク角0degにおける配置を示す拡大断面図である。FIG. 9 is an enlarged cross-sectional view illustrating an arrangement of the RC compressor according to the first embodiment at a crank angle of 0 deg in FIG. 8. 実施例1に係るRC圧縮機の一方の作動室が圧縮行程から吐出行程へ移行する図8のクランク角180degと225degとの間における配置を示す拡大断面図である。FIG. 9 is an enlarged cross-sectional view illustrating an arrangement between a crank angle of 180 deg and 225 deg in FIG. 8 in which one working chamber of the RC compressor according to the first embodiment shifts from a compression stroke to a discharge stroke. 図1のP部の拡大断面図である。It is an expanded sectional view of the P section of FIG. 図11の変形例を示す拡大断面図である。It is an expanded sectional view which shows the modification of FIG. 実施例2のピンスライド機構のスライド溝挿入部を示す拡大縦断面図である。FIG. 6 is an enlarged longitudinal sectional view showing a slide groove insertion portion of a pin slide mechanism of Embodiment 2. 実施例2のピンスライド機構のスライダを示す斜視図である。It is a perspective view which shows the slider of the pin slide mechanism of Example 2. FIG. 実施例3のローリングシリンダを示す斜視図である。It is a perspective view which shows the rolling cylinder of Example 3. FIG. 実施例4のローリングシリンダを示す斜視図である。It is a perspective view which shows the rolling cylinder of Example 4. FIG. 実施例5のローリングシリンダを示す斜視図である。It is a perspective view which shows the rolling cylinder of Example 5. FIG. 実施例5のローリングシリンダを示す上面図である。FIG. 10 is a top view showing a rolling cylinder of Embodiment 5. 実施例6のローリングシリンダを示す斜視図である。It is a perspective view which shows the rolling cylinder of Example 6. FIG. 実施例6のローリングシリンダを示す上面図である。FIG. 10 is a top view showing a rolling cylinder of Example 6. 実施例7のローリングシリンダを示す斜視図である。FIG. 10 is a perspective view showing a rolling cylinder of Example 7. 実施例8のローリングシリンダを示す斜視図である。FIG. 10 is a perspective view showing a rolling cylinder of Example 8. 実施例1のローリングシリンダを示す上面図である。1 is a top view showing a rolling cylinder of Embodiment 1. FIG. 実施例1の旋回ピストンを示す上面図である。It is a top view which shows the turning piston of Example 1. 実施例9のローリングシリンダを示す上面図である。10 is a top view showing a rolling cylinder of Example 9. FIG. 実施例9の旋回ピストンを示す上面図である。It is a top view which shows the turning piston of Example 9. 実施例10のローリングシリンダを示す上面図である。FIG. 10 is a top view showing a rolling cylinder of Example 10. 実施例10の旋回ピストンを示す上面図である。It is a top view which shows the turning piston of Example 10.
 本発明は、旋回する旋回ピストンと、連動して回転するローリングシリンダと、これらを組込む静止シリンダと、を3つの主な圧縮要素とする形式を代表的な構成とする圧縮機であって、これらの圧縮要素により作動流体である気体の圧縮を行うローリングシリンダ式容積型圧縮機(以下「RC圧縮機」ともいう。)に関する。ここで、作動流体には、空気等の非凝縮ガスだけでなく、空気調和機や冷凍機に用いられる冷媒も含まれる。 The present invention is a compressor having a typical configuration in which three main compression elements are a revolving piston that revolves, a rolling cylinder that rotates in conjunction with a stationary cylinder, and a stationary cylinder that incorporates them. The present invention relates to a rolling cylinder positive displacement compressor (hereinafter also referred to as “RC compressor”) that compresses a gas that is a working fluid by a compression element. Here, the working fluid includes not only non-condensable gases such as air but also refrigerants used in air conditioners and refrigerators.
 本発明のRC圧縮機の基本的な構成については、特許文献1において開示しているため、本明細書においては、本発明における課題及びその解決手段に焦点を当てて説明する。 Since the basic configuration of the RC compressor of the present invention is disclosed in Patent Document 1, this specification will be described focusing on the problems in the present invention and the means for solving them.
 特に、旋回ピストンの自転軸であるピストン自転軸とローリングシリンダの回転軸であるシリンダ回転軸が重なるタイミングにおいて極めて高い頻度で生じる機構停止を回避するために、圧縮動作を滑らかに継続させるため、旋回ピストン及びローリングシリンダの自転速度を同期させる回転同期手段と、旋回ピストンの自転速度を旋回速度の半分に規定する自転半減手段による旋回ピストンの姿勢規制手段と、を備えるローリングシリンダ式容積型圧縮機に関する。 In particular, in order to keep the compression operation smoothly in order to avoid mechanism stoppage that occurs very frequently at the timing when the rotation axis of the piston that is the rotation axis of the revolving piston and the rotation axis of the cylinder that is the rotation axis of the rolling cylinder overlap, The present invention relates to a rolling cylinder type positive displacement compressor comprising: a rotation synchronization means for synchronizing the rotation speeds of a piston and a rolling cylinder; and a swing piston attitude restriction means by a rotation half means for regulating the rotation speed of the rotation piston to half of the rotation speed. .
 これらの手段により、旋回ピストンが如何なる旋回位相下であろうとも、常時、旋回ピストンのピストンカット面の中心軸であるカット軸がシリンダ回転軸を通るように、旋回ピストンの姿勢が制御される。よって、旋回ピストンは、旋回ピストンが嵌合されるシリンダ溝を直径部に有するローリングシリンダの受動的な回転を阻害することが無くなり、圧縮動作を停止させることがなくなる。このため、前記した機構停止を回避するために従来行われてきた圧縮部を複数設け、さらにそれら複数のローリングシリンダを一体的に回転させる回転一体化手段を施す必要がなくなる。 These means control the posture of the swivel piston so that the cut shaft, which is the central axis of the piston cut surface of the swivel piston, always passes through the cylinder rotation axis, regardless of the swivel phase. Therefore, the orbiting piston does not hinder the passive rotation of the rolling cylinder having the diameter of the cylinder groove into which the orbiting piston is fitted, and does not stop the compression operation. For this reason, it is not necessary to provide a plurality of compression portions conventionally performed to avoid the mechanism stop described above, and to provide a rotation integration means for rotating the plurality of rolling cylinders integrally.
 よって、旋回ピストン1個とローリングシリンダ1個からなる1組の圧縮部だけを有するローリングシリンダ式容積型流体機械が実現可能となる。これにより、冷蔵庫などの小容量または二酸化炭素等の高圧下で使用するために大容量であっても押除け容積が小さい圧縮機には最適となり、圧縮機の小型化を可能にできるという効果がある。 Therefore, it is possible to realize a rolling cylinder type positive displacement fluid machine having only one set of compression parts including one revolving piston and one rolling cylinder. As a result, it is optimal for a compressor having a small displacement volume even if it has a large capacity for use under a small capacity such as a refrigerator or high pressure such as carbon dioxide, and the compressor can be downsized. is there.
 今回の実施形態では、一か所の圧縮部を有するものだけを示すが、そこで示す圧縮部を複数備えるタイプの圧縮機も当然実現できる。例えば、回転トルク変動を抑える目的で、圧縮部を2個にしてもよい。この場合、ローリングシリンダの一体化は不要となるため、圧縮部の組み立て性が向上する。 In the present embodiment, only one having a single compression unit is shown, but a compressor of a type having a plurality of compression units shown therein can also be realized. For example, two compression units may be used for the purpose of suppressing fluctuations in rotational torque. In this case, since the rolling cylinder need not be integrated, the assembling property of the compression portion is improved.
 次に、本発明のローリングシリンダ式容積型圧縮機の大枠の仕様について述べる。 Next, the outline specifications of the rolling cylinder positive displacement compressor of the present invention will be described.
 本発明のローリングシリンダ式容積型圧縮機は、旋回ピストンと、ローリングシリンダと、ピストン旋回駆動源と、駆動伝達手段と、ローリングシリンダ回転支持部と、回転同期手段と、自転半減手段と、静止シリンダと、ケーシングと、を備えている。 A rolling cylinder positive displacement compressor according to the present invention includes a swing piston, a rolling cylinder, a piston swing drive source, a drive transmission means, a rolling cylinder rotation support, a rotation synchronization means, a rotation half means, and a stationary cylinder. And a casing.
 旋回ピストンは、ピストン自転軸を中心に自転運動し、ピストン自転軸と平行なピストン旋回軸を中心に旋回半径Eで旋回運動する。 The orbiting piston rotates around the piston rotation axis, and revolves around the piston rotation axis parallel to the piston rotation axis with a turning radius E.
 ローリングシリンダは、シリンダ回転軸を中心に回転運動する円柱的な形状を有し、シリンダ回転軸と直交するシリンダ溝軸を中心軸としシリンダ回転軸に平行な一定幅のシリンダ溝を有し、シリンダ溝の両側面がシリンダ溝軸に対して平行となる。 A rolling cylinder has a cylindrical shape that rotates around a cylinder rotation axis, and has a cylinder groove with a constant width, with a cylinder groove axis perpendicular to the cylinder rotation axis as a central axis and parallel to the cylinder rotation axis. Both side surfaces of the groove are parallel to the cylinder groove axis.
 ピストン旋回駆動源は、旋回ピストンの旋回運動の駆動源である。 The piston turning drive source is a driving source for the turning motion of the turning piston.
 駆動伝達手段は、旋回ピストンとピストン旋回駆動源を繋ぐ。 The drive transmission means connects the turning piston and the piston turning drive source.
 ローリングシリンダ回転支持部は、シリンダ回転軸をピストン自転軸の旋回軌跡であるピストン旋回軌跡円上に固定配置するべく、シリンダ回転軸をピストン旋回軸に平行としかつピストン旋回軸に対する偏心量であるシリンダ偏心量を旋回半径と等しいEとして配置させる。 The rolling cylinder rotation support portion is a cylinder whose cylinder rotation axis is parallel to the piston rotation axis and is eccentric with respect to the piston rotation axis so that the cylinder rotation axis is fixedly arranged on the piston rotation path circle that is the rotation path of the piston rotation axis. The amount of eccentricity is arranged as E equal to the turning radius.
 回転同期手段は、旋回ピストンの自転角量であるピストン自転量をローリングシリンダの回転角量と同期させる。 Rotation synchronization means synchronizes the amount of rotation of the piston, which is the amount of rotation of the revolving piston, with the amount of rotation of the rolling cylinder.
 自転半減手段は、ピストン自転量を旋回ピストンの旋回角量であるピストン旋回量の半分に制御する。 Rotation half means controls the piston rotation amount to half of the piston turning amount which is the turning angle amount of the turning piston.
 静止シリンダは、旋回ピストンをシリンダ溝へ隙間嵌合させてシリンダ溝を仕切ることにより隔成される2つの空間を概略密閉して2つの作動室を形成する圧縮部とするべく、旋回ピストンとローリングシリンダを内包する。 The stationary cylinder and the rolling piston and the rolling cylinder are formed so as to form a compression portion that forms two working chambers by roughly sealing two spaces separated by fitting the swiveling piston into the cylinder groove and partitioning the cylinder groove. Contains the cylinder.
 ケーシングは、圧縮部とともに貯油部を内蔵する。 Casing has an oil storage part as well as a compression part.
 静止シリンダには、吸込流路と吐出流路が接続している。 The suction flow path and discharge flow path are connected to the stationary cylinder.
 吸込流路は、2つの作動室のうち、旋回ピストンの旋回運動で容積が増大する一方の作動室を吸込系と繋いで吸込室とする。 The suction flow path connects one working chamber whose volume is increased by the swiveling motion of the swivel piston, of the two working chambers, to the suction system.
 吐出流路は、旋回ピストンの旋回運動で容積が減少するもう一方の作動室を吐出系と繋いで吐出室とする。 The discharge channel connects the other working chamber, whose volume is reduced by the swiveling motion of the swivel piston, to the discharge system and serves as the discharge chamber.
 吸込流路及び吐出流路は、容積が増大を終了し減少を開始する直前まで吸込室であった作動室を、吐出室へ移行するまで、吸込系にも吐出系にも繋がらない期間を設けて圧縮室とすべく配置されている。 The suction channel and the discharge channel have a period that does not lead to the suction system or the discharge system until the working chamber, which was the suction chamber immediately before the start of the decrease after the increase in volume, is transferred to the discharge chamber. It is arranged to be a compression chamber.
 回転同期手段は、シリンダ溝の2側面と摺接する旋回ピストンの側面に、ピストン自転軸と直交するカット軸を中心軸としピストン自転軸に平行な一定間隔の二平面であるピストンカット面を設けることにより実現する。 The rotation synchronizing means is provided with a piston cut surface, which is a flat surface of two constant intervals, with a cut axis perpendicular to the piston rotation axis as a central axis and parallel to the piston rotation axis, on the side surface of the orbiting piston that is in sliding contact with the two side surfaces of the cylinder groove. To achieve.
 自転半減手段は、旋回ピストンの側面のうちでピストン自転軸と直交する二つのピストン側端面の一つにピストン自転軸と直交するスライド軸を中心軸としピストン自転軸に平行な一定幅のスライド溝と、ピストン旋回軌跡円上に配置されてピストン旋回軸と平行なピン軸がスライド軸と常に直交するべく、ピン軸を中心軸としてスライド溝へ挿入するローリングシリンダ回転支持部に配されるピン機構からなるピンスライド機構で構成されている。そして、ピン軸を、ピストン旋回軌跡円上に配置するシリンダ回転軸に対して、ピストン旋回軸を中心として180度対向する位置からピン軸調整角δだけ回転したピストン旋回軌跡円上の位置に配置するとともに、スライド軸を、ピストン自転軸を中心として、カット軸の法線方向からピン軸調整角と同一回転方向にピン軸調整角の半分であるδ/2度だけ回転させて設置することにより実現する。 The rotation half means is a slide groove having a constant width parallel to the piston rotation axis with the slide axis orthogonal to the piston rotation axis as one of the two piston side end surfaces orthogonal to the piston rotation axis among the side surfaces of the orbiting piston. And a pin mechanism arranged on a rolling cylinder rotation support portion that is inserted into the slide groove with the pin axis as a central axis so that the pin axis parallel to the piston rotation axis is always perpendicular to the slide axis, arranged on the piston rotation locus circle It is comprised by the pin slide mechanism which consists of. Then, the pin shaft is arranged at a position on the piston turning locus circle rotated by the pin axis adjustment angle δ from a position opposed to the cylinder rotation shaft arranged on the piston turning locus circle by 180 degrees around the piston turning axis. At the same time, by rotating the slide shaft around the piston rotation axis from the normal direction of the cut shaft in the same rotation direction as the pin shaft adjustment angle by δ / 2 degrees, which is half of the pin shaft adjustment angle, Realize.
 以下、本発明のローリングシリンダ式容積型圧縮機について複数の実施例を用い、適宜図面を参照しながら詳細に説明する。なお、各図において共通する部分には同一の図を用いて説明する。また、各実施例の図における同一符号は、同一物または相当物を示し、重複した説明を省略する。なお、模式的図示と記載される以外の箇所においては、図示する各要素の寸法比率は一実施形態を示している。よって、図示される形状における各寸法の大小関係や角度も一実施形態を示す。さらに、図中の括弧付の付番は、括弧付の付番の対象部の有無によって2通りの実施形態を示す。また、具体的な寸法値についても、特に限定されるものではないが、ローリングシリンダ式容積型圧縮機の外径が10mmから2000mmまでの範囲であることが望ましい。 Hereinafter, the rolling cylinder type positive displacement compressor of the present invention will be described in detail with reference to the drawings as appropriate using a plurality of embodiments. In the drawings, common parts will be described using the same drawings. Moreover, the same code | symbol in the figure of each Example shows the same thing or an equivalent, and abbreviate | omits the overlapping description. Note that, in the portions other than those described as schematic illustrations, the dimensional ratios of the respective elements shown in the drawings indicate one embodiment. Therefore, the size relationship and angle of each dimension in the illustrated shape also indicate an embodiment. Further, the numbering with parentheses in the figure shows two embodiments depending on the presence / absence of the target part with parentheses. Further, specific dimension values are not particularly limited, but it is desirable that the outer diameter of the rolling cylinder type positive displacement compressor is in a range from 10 mm to 2000 mm.
 図1は、実施例1のRC圧縮機の全体構成を示したものである。なお、本図の説明においては、特許文献1に記載されている構成については簡略なものとしている。 FIG. 1 shows the overall configuration of the RC compressor of the first embodiment. In the description of this figure, the configuration described in Patent Document 1 is simplified.
 本図に示すように、RC圧縮機は、大きく分けると、圧縮部と、駆動源であるモータ7と、貯油部125と、で構成されている。 As shown in the figure, the RC compressor is roughly composed of a compression unit, a motor 7 as a drive source, and an oil storage unit 125.
 本図においては、ケーシング円筒部8a、ケーシング上フタ8b及びケーシング下フタ8cで構成されているケーシング内の上部から、圧縮部、モータ7及び貯油部125が順に配置されている。 In this figure, the compression part, the motor 7, and the oil storage part 125 are arranged in order from the upper part in the casing constituted by the casing cylindrical part 8a, the casing upper cover 8b, and the casing lower cover 8c.
 圧縮部は、圧縮される作動流体に直接作用する構成要素として、ローリングシリンダ1と、旋回ピストン3と、静止シリンダ2と、を含む。これらの材質に関して、旋回ピストン3、ローリングシリンダ1及び静止シリンダ2をすべて鋳鉄で作製すれば、コストを低く抑えることができる。また、ローリングシリンダ1をアルミニウム合金で作製し、旋回ピストン3及び静止シリンダ2を鋳鉄で作製してもよい。このようにすれば、受動的に回転するローリングシリンダ1を軽量化することができるため、動作不良を起こしにくくすることができ、かつ、運転を滑らかにすることができる。さらに、旋回ピストン3、ローリングシリンダ1及び静止シリンダ2をすべてアルミニウム合金で作製すれば、RC圧縮機全体を軽量化することができる。 The compression unit includes a rolling cylinder 1, a turning piston 3, and a stationary cylinder 2 as components that directly act on the compressed working fluid. With respect to these materials, if the swiveling piston 3, the rolling cylinder 1 and the stationary cylinder 2 are all made of cast iron, the cost can be kept low. Alternatively, the rolling cylinder 1 may be made of an aluminum alloy, and the turning piston 3 and the stationary cylinder 2 may be made of cast iron. In this way, since the rolling cylinder 1 that rotates passively can be reduced in weight, it is possible to make it difficult for malfunctions to occur and smooth operation. Furthermore, if the revolving piston 3, the rolling cylinder 1 and the stationary cylinder 2 are all made of an aluminum alloy, the entire RC compressor can be reduced in weight.
 圧縮部は、上部を静止シリンダ2、下部をフレーム4で覆った構成である。フレーム4には、上主軸受24aと下主軸受24bとからなる主軸受24が設けられている。この主軸受24によりクランクシャフト6が回転可能な状態で支持されている。クランクシャフト6は、下方へ突き出ている。 The compression part has a structure in which the upper part is covered with a stationary cylinder 2 and the lower part is covered with a frame 4. The frame 4 is provided with a main bearing 24 including an upper main bearing 24a and a lower main bearing 24b. The crankshaft 6 is supported by the main bearing 24 in a rotatable state. The crankshaft 6 protrudes downward.
 圧縮部においては、ローリングシリンダ1と、旋回ピストン3と、静止シリンダ2と、で作動室が形成される。作動室は、吸込室95又は圧縮室100となる。 In the compression part, a working chamber is formed by the rolling cylinder 1, the turning piston 3, and the stationary cylinder 2. The working chamber is the suction chamber 95 or the compression chamber 100.
 静止シリンダ2には、シリンダ回転軸を中心軸とする円形の偏心シリンダ穴2bが設けられている。また、静止シリンダ2は、その外周側面にシリンダ外周溝2mを有する。静止シリンダ2の上面からは、偏心シリンダ穴2bへ貫通するバイパス穴2eが設けられている。静止シリンダ2の上面側には、バイパス弁22が設けられている。このバイパス弁22は、弁座に弁板を配置し、その上部から弁板をばねで軽く押さえた構成となっている。これにより、バイパス弁22は、偏心シリンダ穴2bから上部へ抜ける方向の流れだけを許容する一方向弁となる。偏心シリンダ穴2bの底面には、ピン機構5が設けられている。 The stationary cylinder 2 is provided with a circular eccentric cylinder hole 2b having a cylinder rotation axis as a central axis. The stationary cylinder 2 has a cylinder outer peripheral groove 2m on the outer peripheral side surface thereof. From the upper surface of the stationary cylinder 2, a bypass hole 2e that penetrates to the eccentric cylinder hole 2b is provided. A bypass valve 22 is provided on the upper surface side of the stationary cylinder 2. This bypass valve 22 has a structure in which a valve plate is disposed on a valve seat and the valve plate is lightly pressed from above by a spring. As a result, the bypass valve 22 is a one-way valve that allows only the flow in the direction from the eccentric cylinder hole 2b to the upper part. A pin mechanism 5 is provided on the bottom surface of the eccentric cylinder hole 2b.
 圧縮部には、吸込路2s及び吐出穴2d1が設けられている。吸込路2sは、偏心シリンダ穴2bの底面に設ける吸込溝2s2と、静止シリンダ2の上面から吸込溝2s2に繋がる吸込穴2s1と、で構成されている。 The compression section is provided with a suction passage 2s and a discharge hole 2d1. The suction passage 2s includes a suction groove 2s2 provided on the bottom surface of the eccentric cylinder hole 2b, and a suction hole 2s1 connected to the suction groove 2s2 from the upper surface of the stationary cylinder 2.
 静止シリンダ2の上部には、シリンダ上部壁2wが静止シリンダ2をフレーム4へ取り付けるためのシリンダボルト90よりも内側を覆うように配置されている。シリンダ上部壁2wの上面には、吐出カバー230が固定され、これが吐出穴2d1やバイパス穴2e等を覆っている。そして、シリンダ上部壁2wの複数箇所には、内周部と外周部を繋ぐ上部壁溝2w1が設けられている。 At the upper part of the stationary cylinder 2, a cylinder upper wall 2w is arranged so as to cover the inner side of the cylinder bolt 90 for attaching the stationary cylinder 2 to the frame 4. A discharge cover 230 is fixed on the upper surface of the cylinder upper wall 2w, and covers the discharge hole 2d1, the bypass hole 2e, and the like. And the upper wall groove | channel 2w1 which connects an inner peripheral part and an outer peripheral part is provided in the several places of the cylinder upper wall 2w.
 ローリングシリンダ1は、シリンダ溝の底面を形成するシリンダ底端板1aと、シリンダ溝外周壁301と、を有する。そして、ローリングシリンダ1の底面中央部には、偏心シャフト挿入穴1dが設けてある。 The rolling cylinder 1 has a cylinder bottom end plate 1a that forms the bottom surface of the cylinder groove, and a cylinder groove outer peripheral wall 301. An eccentric shaft insertion hole 1 d is provided in the center of the bottom surface of the rolling cylinder 1.
 旋回ピストン3のスライド溝3bには、ピン機構5が挿入されている。 The pin mechanism 5 is inserted into the slide groove 3b of the turning piston 3.
 旋回ピストン3に設けた旋回軸受穴3a(図2)には、旋回軸受23が圧入されている。 旋回軸受23には、クランクシャフト6の偏心シャフト6aが挿入されている。偏心シャフト6aは、偏心シャフト挿入穴1dを介して旋回ピストン3に接続されている。クランクシャフト6の上部には、大径部であるシャフトつば部6cが設けられている。シャフトつば部6cより上部には、偏心シャフト6aと、偏心シャフト6aよりも小径のシャフトネック6dとからなる偏心部が設けられている。 The swing bearing 23 is press-fitted into the swing bearing hole 3a (FIG. 2) provided in the swing piston 3. The eccentric shaft 6 a of the crankshaft 6 is inserted into the slewing bearing 23. The eccentric shaft 6a is connected to the turning piston 3 via the eccentric shaft insertion hole 1d. A shaft collar portion 6 c that is a large diameter portion is provided on the upper portion of the crankshaft 6. An eccentric portion including an eccentric shaft 6a and a shaft neck 6d having a smaller diameter than the eccentric shaft 6a is provided above the shaft collar portion 6c.
 モータ7は、ケーシング円筒部8aに固定配置されるステータ7bと、クランクシャフト6に固定配置されるロータ7aと、で構成されている。ここで、モータ7は、ピストン旋回駆動源であり、また、シャフト回転駆動源でもある。ロータ7aには、上部に主バランス80、下部にカウンタバランス82が固定されている。これらは、圧縮動作で旋回運動する圧縮要素(旋回ピストン3)の不釣り合いを動的にバランスさせる役目を担う。また、ステータ7bには、ステータ巻線7b2が設けられている。 The motor 7 includes a stator 7b fixedly disposed on the casing cylindrical portion 8a and a rotor 7a fixedly disposed on the crankshaft 6. Here, the motor 7 is a piston turning drive source and also a shaft rotation drive source. The rotor 7a has a main balance 80 fixed at the top and a counter balance 82 fixed at the bottom. These serve to dynamically balance the unbalance of the compression element (slewing piston 3) that swirls in the compression operation. The stator 7b is provided with a stator winding 7b2.
 貯油部125は、ケーシング円筒部8a、ケーシング下フタ8c及び副フレーム35で囲まれた領域である。 The oil storage part 125 is an area surrounded by the casing cylindrical part 8a, the casing lower lid 8c, and the sub-frame 35.
 圧縮部は、ケーシング円筒部8aへ溶接等によって固定配置されている。 The compression part is fixed to the casing cylindrical part 8a by welding or the like.
 クランクシャフト6の下端には、昇圧能力を有する給油ポンプ200が設けられている。クランクシャフト6には、中心軸方向に中央を貫通する給油縦穴6b(給油路)が設けられている。さらに、クランクシャフト6には、副軸受25や下主軸受24bや上主軸受24aへ繋がる給油横穴(給油副横穴6g、給油下主軸受穴6f、給油上主軸受穴6e)が設けられている。上主軸受24aは、給油上主軸受穴6e及び給油主軸溝6kにより給油されるようになっている。 The oil pump 200 having a boosting capability is provided at the lower end of the crankshaft 6. The crankshaft 6 is provided with an oil supply vertical hole 6b (oil supply passage) penetrating the center in the central axis direction. Furthermore, the crankshaft 6 is provided with oil supply horizontal holes (oil supply sub horizontal hole 6g, oil supply lower main bearing hole 6f, oil supply upper main bearing hole 6e) connected to the sub bearing 25, the lower main bearing 24b, and the upper main bearing 24a. . The upper main bearing 24a is supplied with oil by an upper oil supply upper bearing hole 6e and an oil supply main shaft groove 6k.
 給油ポンプ200から吐出される油の一部は、ポンプ連結管6zの周囲の隙間を通って給油ポンプシャフト室150へ入り、副軸受25への給油が行われるようになっている。 A part of the oil discharged from the oil supply pump 200 enters the oil supply pump shaft chamber 150 through a gap around the pump connecting pipe 6z and is supplied to the auxiliary bearing 25.
 クランクシャフト6と旋回軸受23と旋回ピストン3とで囲まれた領域は、シャフト偏心端部空間115である。旋回軸受23は、シャフト偏心端部空間115及び給油偏心溝6hにより給油されるようなっている。 The region surrounded by the crankshaft 6, the slewing bearing 23 and the slewing piston 3 is a shaft eccentric end space 115. The slewing bearing 23 is supplied with oil by the shaft eccentric end space 115 and the oil supply eccentric groove 6h.
 フレーム4には、油の通路となる複数のベッド放射溝4eが設けられている。フレーム4の下面には、ロータカップ210がロータ7aの周囲を覆うようにして密着固定されている。ベッド放射溝4eを通過した油は、背圧室110やベッド背圧室110aに流入し、油排出路4xからフレーム4の下方であってロータカップ210の外側に排出されるようになっている。 The frame 4 is provided with a plurality of bed radiating grooves 4e serving as oil passages. A rotor cup 210 is tightly fixed to the lower surface of the frame 4 so as to cover the periphery of the rotor 7a. The oil that has passed through the bed radiation groove 4e flows into the back pressure chamber 110 and the bed back pressure chamber 110a, and is discharged from the oil discharge path 4x below the frame 4 to the outside of the rotor cup 210. .
 圧縮部の外周には、シリンダ外周隙間2gやフレーム外周隙間4gといった隙間、シリンダ外周溝2mやフレーム外周溝4mがあり、これらが吐出圧の作動流体の流路となる。 On the outer periphery of the compression portion, there are gaps such as a cylinder outer peripheral gap 2g and a frame outer peripheral gap 4g, a cylinder outer peripheral groove 2m and a frame outer peripheral groove 4m, which serve as a flow path for the working fluid of the discharge pressure.
 吸込パイプ50は、ケーシング8の内部に設けられている圧縮部へ外部から作動流体を導入するものである。吐出パイプ55は、圧縮部で昇圧された作動流体を外部へ吐出するものである。吸込パイプ50及び吐出パイプ55は、ケーシング上フタ8bに設けられている。このほか、ケーシング上フタ8bには、ハーメチック端子220が設けられている。このハーメチック端子220にモータ線7b3が接続され、外部の電源(図示せず)からモータ7のステータ巻線7b2に電力を供給できるようになっている。 The suction pipe 50 introduces a working fluid from the outside to a compression section provided inside the casing 8. The discharge pipe 55 discharges the working fluid pressurized by the compression unit to the outside. The suction pipe 50 and the discharge pipe 55 are provided on the casing upper lid 8b. In addition, a hermetic terminal 220 is provided on the casing upper lid 8b. A motor wire 7b3 is connected to the hermetic terminal 220 so that electric power can be supplied to the stator winding 7b2 of the motor 7 from an external power source (not shown).
 吸込パイプ50から導入された作動流体は、圧縮部で昇圧され、吐出パイプ55から外部に吐出されるようになっている。 The working fluid introduced from the suction pipe 50 is pressurized in the compression section and discharged from the discharge pipe 55 to the outside.
 ここで、作動流体の流れについて説明する。 Here, the flow of the working fluid will be described.
 吸込パイプ50から導入された作動流体は、圧縮部において圧縮され、吐出穴2d1やバイパス穴2e等から上方へ吹き出す。そして、作動流体は、一旦、吐出カバー230に衝突する。このとき、作動流体に含まれる油は、吐出カバー230に付着し、分離される。油の量が少なくなった作動流体は、上部壁溝2w1から吹き出す。そして、作動流体は、更にケーシング円筒部8aの内壁に衝突し、再度油が分離される。その後、作動流体は、ケーシング上部室120へ入り、ケーシング上フタ8bに設けられた吐出パイプ55から装置の外部に吐出される。なお、ケーシング上部室120においては、作動流体の流速が低下するため、わずかに残った油ミストが沈降しやすくなり、作動流体に含まれる油の量はきわめて少なくなる。 The working fluid introduced from the suction pipe 50 is compressed in the compression unit and blows upward from the discharge hole 2d1, the bypass hole 2e, and the like. Then, the working fluid once collides with the discharge cover 230. At this time, the oil contained in the working fluid adheres to the discharge cover 230 and is separated. The working fluid with a reduced amount of oil is blown out from the upper wall groove 2w1. The working fluid further collides with the inner wall of the casing cylindrical portion 8a, and the oil is separated again. Thereafter, the working fluid enters the casing upper chamber 120 and is discharged from the discharge pipe 55 provided in the casing upper lid 8b to the outside of the apparatus. Note that in the casing upper chamber 120, the flow rate of the working fluid decreases, so that a slight amount of remaining oil mist tends to settle, and the amount of oil contained in the working fluid becomes extremely small.
 一方、圧縮部の下方には、作動流体の主流は無いが、圧縮部の外周の隙間であるシリンダ外周隙間2gやフレーム外周隙間4g、さらには、圧縮部の外周溝であるシリンダ外周溝2mやフレーム外周溝4mを通って、吐出圧の作動流体が流入するようになっている。
これにより、圧縮部の下方を含むケーシング空間全域が吐出圧となる。すなわち、高圧チャンバ方式を実現する。
On the other hand, there is no main flow of working fluid below the compression part, but the cylinder outer peripheral gap 2g and the frame outer peripheral gap 4g which are outer peripheral gaps of the compression part, and the cylinder outer peripheral groove 2m which is the outer peripheral groove of the compression part, The working fluid of the discharge pressure flows through the frame outer peripheral groove 4m.
Thereby, the whole casing space including the lower part of a compression part becomes discharge pressure. That is, a high pressure chamber system is realized.
 副軸受25は、ボール25aと、そのボール25aを全方位で回転支持するボールホルダ25bと、で構成されている。クランクシャフト6の下部をボール25aへ挿入し、そのボール25aをボールホルダ25bへ装着した後、ボールホルダ25bをケーシング円筒部8aに溶接された副フレーム35に固定配置する。これにより、副軸受25はクランクシャフト6の下部を回転支持するようになっている。 The auxiliary bearing 25 includes a ball 25a and a ball holder 25b that rotatably supports the ball 25a in all directions. After the lower part of the crankshaft 6 is inserted into the ball 25a and the ball 25a is mounted on the ball holder 25b, the ball holder 25b is fixedly disposed on the sub-frame 35 welded to the casing cylindrical portion 8a. Thereby, the auxiliary bearing 25 is configured to rotatably support the lower portion of the crankshaft 6.
 つぎに、圧縮部の下方に流れる一部の油の流れについて説明する。 Next, the flow of a part of oil flowing below the compression unit will be described.
 油排出路4xからフレーム4の下方へ流出する油は、ロータ7aの周囲を覆ってフレーム4の下面に密着固定されているロータカップ210の外側に出る。そして、ロータカップ210の外周を伝って、ステータ7bへ落下し、さらにステータ巻線7b2が通る穴や外周のステータカット面7b1を通って、モータ7の下の空間へ至る。その後、少量が副フレーム中央穴35bを通って副軸受25のボール25aの内外周に給油する以外は、副フレーム周囲穴35aを通って、貯油部125へ戻る。 The oil that flows out from the oil discharge path 4x to the lower side of the frame 4 comes out of the rotor cup 210 that covers the periphery of the rotor 7a and is firmly fixed to the lower surface of the frame 4. Then, it travels along the outer periphery of the rotor cup 210 and falls to the stator 7b, and further passes through a hole through which the stator winding 7b2 passes and the outer stator cut surface 7b1 to reach the space below the motor 7. Thereafter, a small amount passes through the sub-frame peripheral hole 35a and returns to the oil storage part 125 except that the small amount of oil passes through the sub-frame central hole 35b and is supplied to the inner and outer circumferences of the balls 25a of the sub-bearing 25.
 なお、RC圧縮機は、円筒形状のケーシングの中心軸を水平方向(横)に向けて設置することもできる。この場合に、円筒の中心軸が斜めになっていても問題はない。ただし、この場合は、貯油部125の仕切りである副フレーム35の副フレーム周囲穴35a及び副フレーム中央穴35bの配置を調整して、適量の潤滑油が貯油部125の滞留するようにする必要がある。 Note that the RC compressor can be installed with the central axis of the cylindrical casing facing in the horizontal direction (lateral). In this case, there is no problem even if the central axis of the cylinder is inclined. However, in this case, it is necessary to adjust the arrangement of the sub-frame surrounding hole 35a and the sub-frame central hole 35b of the sub-frame 35, which is a partition of the oil storage part 125, so that an appropriate amount of lubricating oil stays in the oil storage part 125. There is.
 以下の説明においては、特許文献1に記載されている各図の構成と異なる部分について記載し、特許文献1に記載されている構成と同じものについては省略している。 In the following description, portions different from the configuration of each figure described in Patent Document 1 are described, and the same configuration as that described in Patent Document 1 is omitted.
 図2は、図1のA-A断面図(圧縮室形成部)である。 FIG. 2 is a cross-sectional view taken along the line AA in FIG. 1 (compression chamber forming portion).
 図3は、B-B断面図(旋回ピストン及びローリングシリンダの上方の静止シリンダとの隙間における横断面図)である。 FIG. 3 is a cross-sectional view taken along the line BB (a cross-sectional view in the gap between the swing piston and the rolling cylinder above the rolling cylinder).
 なお、図2及び3に示すC1-C2-O-C3-C4は、図1の縦断面図に対応する部位であり、図1は、C1-C2-O-C3-C4を通る縦断面図である。ここで、C2、C3は、図2、3中に各二箇所あるが、これは、図1においては、2つのC2間及び2つのC3間を省略したことを意味する。 Note that C1-C2-O-C3-C4 shown in FIGS. 2 and 3 is a portion corresponding to the longitudinal sectional view of FIG. 1, and FIG. 1 is a longitudinal sectional view passing through C1-C2-O-C3-C4. It is. Here, there are two C2 and C3 in FIG. 2 and FIG. 3, respectively, which means that in FIG. 1, between two C2 and between two C3 is omitted.
 図2においては、ローリングシリンダ1にシリンダ溝外周壁301を設けている。シリンダ溝外周壁301は、シリンダ溝1cにおける旋回ピストン3の往復運動の両端部に設けられている。言い換えると、シリンダ円柱には、シリンダ溝1cとローリングシリンダ1の外周面であるシリンダ外周面との間を仕切るシリンダ溝外周壁301が設けられている。このため、図2に示す断面には吸込穴を設けていない。 In FIG. 2, the rolling cylinder 1 is provided with a cylinder groove outer peripheral wall 301. The cylinder groove outer peripheral wall 301 is provided at both ends of the reciprocating motion of the revolving piston 3 in the cylinder groove 1c. In other words, the cylinder cylinder is provided with a cylinder groove outer peripheral wall 301 that partitions between the cylinder groove 1 c and a cylinder outer peripheral surface that is an outer peripheral surface of the rolling cylinder 1. For this reason, the suction hole is not provided in the cross section shown in FIG.
 静止シリンダ2の外周側面の一部には、シリンダ外周溝2mが設けてあり、下方のフレームに設けたフレーム外周溝4mに連通するように配置されている。 A cylinder outer peripheral groove 2m is provided in a part of the outer peripheral side surface of the stationary cylinder 2, and is arranged so as to communicate with the frame outer peripheral groove 4m provided in the lower frame.
 図3においては、実際には静止シリンダ2の偏心シリンダ穴2bの底面に設けられている吸込路2sを二点鎖線で示している。吸込路2sは、偏心シリンダ穴2bの底面に設ける吸込溝2s2と、静止シリンダ2の上面から吸込溝2s2に繋がる吸込穴2s1と、吸込溝屈折部2s2kと、で構成されている。吸込溝2s2は、シリンダ溝外周壁301の内側面より内側に寄った位置に設けられている。吸込溝屈折部2s2kは、シリンダ溝外周壁301の内側面より外側であってシリンダ溝外周壁301の外側面より内側に設けられている。吸込溝2s2及び吸込溝屈折部2s2kは、吸込穴2s1により静止シリンダ2の上面部に連通されている。 In FIG. 3, the suction path 2s provided in the bottom surface of the eccentric cylinder hole 2b of the stationary cylinder 2 is actually indicated by a two-dot chain line. The suction path 2s includes a suction groove 2s2 provided on the bottom surface of the eccentric cylinder hole 2b, a suction hole 2s1 connected to the suction groove 2s2 from the upper surface of the stationary cylinder 2, and a suction groove refracting portion 2s2k. The suction groove 2 s 2 is provided at a position closer to the inside than the inner side surface of the cylinder groove outer peripheral wall 301. The suction groove refracting portion 2 s 2 k is provided outside the inner surface of the cylinder groove outer peripheral wall 301 and inside the outer surface of the cylinder groove outer peripheral wall 301. The suction groove 2s2 and the suction groove refracting portion 2s2k communicate with the upper surface portion of the stationary cylinder 2 through the suction hole 2s1.
 偏心シリンダ穴2bの底面には、吐出溝2d2と、吐出穴2d1と、が設けられている。吐出穴2d1は、静止シリンダ2の上面から吐出溝2d2に繋がっている。吐出溝2d2及び吐出穴2d1は、吐出路2dを構成する。 A discharge groove 2d2 and a discharge hole 2d1 are provided on the bottom surface of the eccentric cylinder hole 2b. The discharge hole 2d1 is connected to the discharge groove 2d2 from the upper surface of the stationary cylinder 2. The discharge groove 2d2 and the discharge hole 2d1 constitute a discharge path 2d.
 まとめると、吸込路2s(吸込流路)及び吐出路2d(吐出流路)は、静止シリンダ2に設けられ、シリンダ溝外周壁301の内壁面よりも中心軸寄りで圧縮部の作動室に臨む構成となっている。 In summary, the suction path 2s (suction flow path) and the discharge path 2d (discharge flow path) are provided in the stationary cylinder 2 and face the working chamber of the compression unit closer to the central axis than the inner wall surface of the cylinder groove outer peripheral wall 301. It has a configuration.
 図4は、本実施例のローリングシリンダを示す斜視図である。 FIG. 4 is a perspective view showing the rolling cylinder of this embodiment.
 本図に示すように、ローリングシリンダ1には、シリンダ上面部1eと同じ高さまでシリンダ溝外周壁301が設けてある。これにより、作動室の側面はすべてシールされる。
シリンダ溝1cの底面中央部には、偏心シャフト挿入穴1dが設けられている。
As shown in this figure, the rolling cylinder 1 is provided with a cylinder groove outer peripheral wall 301 up to the same height as the cylinder upper surface portion 1e. Thereby, all the sides of the working chamber are sealed.
An eccentric shaft insertion hole 1d is provided at the center of the bottom surface of the cylinder groove 1c.
 なお、寸法Fは、シリンダ溝1cの深さを示している。 Note that the dimension F indicates the depth of the cylinder groove 1c.
 図23は、図4のローリングシリンダのシリンダ溝外周壁301について形状を限定した例を示す上面図である。 FIG. 23 is a top view showing an example in which the shape of the cylinder groove outer peripheral wall 301 of the rolling cylinder in FIG. 4 is limited.
 図23においては、ローリングシリンダ1には、シリンダ溝外周壁として厚さが均一な均一壁1wが設けられている。また、旋回ピストン3がシリンダ溝1c内で図中左側の均一壁1wに寄った時のピストン偏心円筒先端面3eの位置を二点鎖線で示している。ピストン偏心円筒先端面3eと偏心シャフト挿入穴1dの図中右端との距離の最小値は、最小シール幅であり、最小シール幅を十分に確保することにより、シリンダ溝1cにおいて旋回ピストン3により形成される作動室のシールを確実なものとすることができる。 23, the rolling cylinder 1 is provided with a uniform wall 1w having a uniform thickness as a cylinder groove outer peripheral wall. Further, the position of the piston eccentric cylindrical tip surface 3e when the revolving piston 3 approaches the uniform wall 1w on the left side in the figure in the cylinder groove 1c is indicated by a two-dot chain line. The minimum distance between the piston eccentric cylinder front end surface 3e and the right end of the eccentric shaft insertion hole 1d in the drawing is the minimum seal width, and is formed by the revolving piston 3 in the cylinder groove 1c by sufficiently securing the minimum seal width. The sealing of the working chamber can be ensured.
 ローリングシリンダ1は、円柱形状でローリング軸を中心軸として内部にシリンダ溝1cがあるシリンダ円柱1bと、シリンダ溝1cの底面を形成するシリンダ底端板1aからなる。このシリンダ溝1cは、シリンダ円柱1bの反シリンダ底端板側の端面に開口する形で設けられ、ローリング軸と直交するシリンダ溝軸を中心軸としてローリング軸に平行な一定幅の平坦で互いに平行な側面を有する。さらに、シリンダ溝1c底面は各上面と平行になっている。 The rolling cylinder 1 includes a cylinder cylinder 1b having a cylindrical shape and having a cylinder groove 1c inside with the rolling axis as a central axis, and a cylinder bottom end plate 1a forming a bottom surface of the cylinder groove 1c. The cylinder groove 1c is provided in an open shape on the end surface of the cylinder column 1b on the side opposite to the cylinder bottom end plate, and is flat and parallel to each other with a constant width parallel to the rolling axis with the cylinder groove axis orthogonal to the rolling axis as the central axis. It has various sides. Further, the bottom surface of the cylinder groove 1c is parallel to each upper surface.
 シリンダ溝1cは、図23で示すとおり、シリンダ外周面1sとの間に、シリンダ溝外周壁となる。ここで、シリンダ溝1cの隅部(小黒丸箇所)には、加工可能となるRを設ける。例えば、シリンダ溝1cをエンドミルで加工する場合には、隅部(小黒丸箇所)のRを使用するエンドミルの半径以上にする。また、後述するようにシリンダ円柱1bとシリンダ底端板1aを別体化させる場合、放電加工であるワイヤーカットによる加工も考えられる。その場合には、ワイヤーの半径と放電によって除去される隙間を加えた半径程度にする。一方、このシリンダ溝1cへ旋回ピストン3を隙間嵌合させるため、旋回ピストン3の角部(図24の小白丸箇所)は、シリンダ溝1cの隅部(小黒丸箇所)と干渉しないように形状を調整する。例えば、シリンダ溝1cの隅部(小黒丸箇所)のRよりも大きいRとすればよい。 The cylinder groove 1c becomes a cylinder groove outer peripheral wall between the cylinder outer peripheral surface 1s as shown in FIG. Here, R which becomes processable is provided in the corner (small black circle location) of the cylinder groove 1c. For example, when the cylinder groove 1c is processed by an end mill, the radius of the corner (small black circle) R is set to be equal to or larger than the radius of the end mill. Further, as will be described later, when the cylinder column 1b and the cylinder bottom end plate 1a are separated, machining by wire cut which is electric discharge machining is also conceivable. In that case, the radius should be about the radius of the wire plus the gap removed by the discharge. On the other hand, in order to allow the swiveling piston 3 to fit into the cylinder groove 1c, the corner of the swiveling piston 3 (small white circle portion in FIG. 24) is shaped so as not to interfere with the corner portion (small black circle portion) of the cylinder groove 1c. Adjust. For example, R may be larger than R at the corner (small black circle) of the cylinder groove 1c.
 なお、旋回ピストン3は、シリンダ溝1c内を往復運動する。このため、旋回ピストン3がシリンダ溝1cの端に寄った場合でも偏心シャフト挿入穴1dが旋回ピストン3で隠れ、さらにシール幅(図23に最小シール幅を示す。)を確保するように旋回ピストン3の長さを伸ばす必要がある。旋回ピストン3の長さが伸びると、シリンダ溝1cの長さを伸ばすことが必要になり、シリンダ円柱1bの直径が増大する。よって、ローリングシリンダ1の直径が増大し、それを組込む静止シリンダ2の直径が増大するため、ケーシング8の直径が増大し、RC圧縮機が大径化してしまうという問題が生じる。 The revolving piston 3 reciprocates in the cylinder groove 1c. For this reason, even when the turning piston 3 approaches the end of the cylinder groove 1c, the eccentric shaft insertion hole 1d is hidden by the turning piston 3, and the turning piston 3 is secured so as to secure a seal width (shown in FIG. 23 is the minimum seal width). It is necessary to increase the length of 3. When the length of the swiveling piston 3 is increased, it is necessary to increase the length of the cylinder groove 1c, and the diameter of the cylinder column 1b is increased. Therefore, since the diameter of the rolling cylinder 1 increases and the diameter of the stationary cylinder 2 into which the rolling cylinder 1 is incorporated increases, the diameter of the casing 8 increases and the RC compressor becomes larger in diameter.
 本実施例は、図1に示すとおり、偏心シャフト6aよりも小径部のシャフトネック6dで偏心シャフト挿入穴1dを通すようにシャフトネック6dを設けている。この結果、シール幅を確保しつつ偏心シャフト挿入穴1dを小さくできるため、RC圧縮機の大径化を抑制できるという効果がある。 In this embodiment, as shown in FIG. 1, the shaft neck 6d is provided so that the eccentric shaft insertion hole 1d passes through the shaft neck 6d having a smaller diameter than the eccentric shaft 6a. As a result, since the eccentric shaft insertion hole 1d can be made small while ensuring the seal width, there is an effect that an increase in the diameter of the RC compressor can be suppressed.
 更に述べると、図3において、吸込溝2s2の大半は、偏心シリンダ穴2bの側面からシリンダ溝外周壁の厚さ程度(本実施例では、均一壁1wの厚さ)だけ内側に寄った位置に設けられている。一方、吸込行程の開始時点から吸込室95が吸込溝2s2に臨むように、吸込溝2s2の端部を屈折させて吸込溝屈折部2s2kが設けられている。ここで、吸込溝屈折部2s2kも、吐出室105に臨まず、また均一壁1wを横断しないように設けられている。さらに、吸込溝2s2や吸込溝屈折部2s2kと静止シリンダ2の上面を繋ぐように吸込穴2s1が設けられている。ここで、吸込穴2s1は、偏心シリンダ穴2bの底面を貫通しないように設けられている。このような吸込溝2s2と吸込穴2s1を設けることで、吸込流路の吸込室寄り区間である吸込路2sを形成する。 Further, in FIG. 3, most of the suction groove 2 s 2 is located at a position close to the inside from the side surface of the eccentric cylinder hole 2 b by the thickness of the outer peripheral wall of the cylinder groove (in this embodiment, the thickness of the uniform wall 1 w). Is provided. On the other hand, the suction groove refracting portion 2s2k is provided by refracting the end of the suction groove 2s2 so that the suction chamber 95 faces the suction groove 2s2 from the start of the suction stroke. Here, the suction groove refracting portion 2s2k is also provided so as not to face the discharge chamber 105 and to cross the uniform wall 1w. Further, a suction hole 2 s 1 is provided so as to connect the suction groove 2 s 2 or the suction groove refracting portion 2 s 2 k and the upper surface of the stationary cylinder 2. Here, the suction hole 2s1 is provided so as not to penetrate the bottom surface of the eccentric cylinder hole 2b. By providing such a suction groove 2s2 and a suction hole 2s1, a suction path 2s that is a section closer to the suction chamber of the suction flow path is formed.
 これにより、シリンダ溝外周壁である均一壁1wの内側に形成される作動室と均一壁1wの外側に形成される隙間領域であるシリンダ外周面1sと偏心シリンダ穴2b側面の間隙空間を跨ぐ流路が無くなる。これにより、シリンダ外周面1sと偏心シリンダ穴2b側面の間隙空間と通じる空間と、吸込室95や吸込路2s(吸込穴2s1と吸込溝2s2)などの吸込圧空間とのシール性が向上する。 As a result, the flow straddles the gap space between the working chamber formed inside the uniform wall 1w that is the outer circumferential wall of the cylinder groove and the cylinder outer circumferential surface 1s that is the gap area formed outside the uniform wall 1w and the side surface of the eccentric cylinder hole 2b. The road disappears. This improves the sealing performance between the space communicating with the gap space between the cylinder outer peripheral surface 1s and the side surface of the eccentric cylinder hole 2b and the suction pressure space such as the suction chamber 95 and the suction passage 2s (suction hole 2s1 and suction groove 2s2).
 本実施例では、シリンダ外周面1sと偏心シリンダ穴2b側面の間隙空間は吐出圧に保持される背圧室110と繋がっている。これにより、背圧室110から吐出圧の流体が吸込室95へ漏れ込むことを抑制できるため、体積効率や圧縮機効率を向上させるという効果がある。 In this embodiment, the gap space between the cylinder outer peripheral surface 1s and the eccentric cylinder hole 2b side surface is connected to the back pressure chamber 110 held at the discharge pressure. Thereby, since the fluid of the discharge pressure from the back pressure chamber 110 can be prevented from leaking into the suction chamber 95, the volume efficiency and the compressor efficiency are improved.
 また、過圧縮条件(例えば、固有容積比が2.2の場合)では、作動流体がバイパス穴2eからバイパス弁22を通って吐出する。本実施例では、吸込行程の後半から圧縮行程の全域、および吐出行程の前半で、作動室にバイパス穴2eが臨むように2個のバイパス穴2eが設計してある。これにより、過圧縮条件での過圧縮回避や吐出流路抵抗の低減により、圧縮機効率向上の効果がある。また、吸込行程を含んでいることから、液圧縮を回避できるため、圧縮機の信頼性向上の効果がある。 Also, under over-compression conditions (for example, when the specific volume ratio is 2.2), the working fluid is discharged from the bypass hole 2e through the bypass valve 22. In this embodiment, the two bypass holes 2e are designed so that the bypass hole 2e faces the working chamber from the latter half of the suction stroke to the entire compression stroke and the first half of the discharge stroke. Thereby, there is an effect of improving the compressor efficiency by avoiding over-compression under over-compression conditions and reducing the discharge flow path resistance. In addition, since the suction stroke is included, liquid compression can be avoided, so that there is an effect of improving the reliability of the compressor.
 図5は、旋回ピストンを示す斜視図である。 FIG. 5 is a perspective view showing a revolving piston.
 本図に示すように、旋回ピストン3は、厚さが小さい円柱状の材料の側面に、互いに平行でありかつ旋回軸に平行である2つのピストンカット面3cを設けた構成である。旋回ピストン3の上底面はピストン上面3d、旋回ピストン3の下底面はピストン下面3fである。ピストン上面3d及びピストン下面3fは、ピストン側端面であり、互いに平行である。また、ピストン上面3d及びピストン下面3fは、平坦である。 As shown in this figure, the swivel piston 3 has a structure in which two piston cut surfaces 3c that are parallel to the swivel axis and parallel to each other are provided on the side surface of a cylindrical material having a small thickness. The upper bottom surface of the swing piston 3 is a piston upper surface 3d, and the lower bottom surface of the swing piston 3 is a piston lower surface 3f. The piston upper surface 3d and the piston lower surface 3f are piston-side end surfaces and are parallel to each other. The piston upper surface 3d and the piston lower surface 3f are flat.
 ピストン上面3dには、スライド溝3bが設けられている。ピストン下面3fには、断面が円形の旋回軸受穴3aが設けられている。旋回軸受穴3aには、旋回軸受23が圧入されている。 A slide groove 3b is provided on the piston upper surface 3d. The piston lower surface 3f is provided with a swivel bearing hole 3a having a circular cross section. A swing bearing 23 is press-fitted into the swing bearing hole 3a.
 スライド溝3bは、旋回軸受穴3aと通じる深さで形成されている。これにより、旋回軸受23への給油路とスライド溝3bへの給油路とが共通となり、給油系統が単純になっている。これにより、製造コストが低減するという効果がある。また、スライド溝3bは、ピストンカット面3cの外周まで延在されている。これにより、溝加工時の刃具の動きが一様になるために、溝の形状精度が向上するという効果がある。 The slide groove 3b is formed with a depth communicating with the swivel bearing hole 3a. Thereby, the oil supply path to the slewing bearing 23 and the oil supply path to the slide groove 3b become common, and the oil supply system is simplified. This has the effect of reducing manufacturing costs. The slide groove 3b extends to the outer periphery of the piston cut surface 3c. Thereby, since the movement of the cutting tool during groove processing becomes uniform, there is an effect that the shape accuracy of the groove is improved.
 なお、寸法Hは、旋回ピストン3の厚さを示している。 In addition, the dimension H has shown the thickness of the turning piston 3. FIG.
 本図においては、二点鎖線で示すように、ピストンカット面3cの中央部にスライド溝3bと繋がるピストンカット溝3iを設けてもよい。図示していないが、反対側のピストンカット面3cにも同様のピストンカット溝3iを設けてもよい。これにより、図4のシリンダ溝1cの側面及びピストンカット面3cのシール隙間へ油を潤沢に供給できるため、内部漏れや摩擦を一層低減するという効果がある。 In this figure, as shown by a two-dot chain line, a piston cut groove 3i connected to the slide groove 3b may be provided at the center of the piston cut surface 3c. Although not shown, a similar piston cut groove 3i may be provided on the opposite piston cut surface 3c. As a result, oil can be sufficiently supplied to the seal gap between the side surface of the cylinder groove 1c and the piston cut surface 3c in FIG. 4, so that there is an effect of further reducing internal leakage and friction.
 また、スライド溝3bは、ピストンカット面3cへの給油路ともなる。ところで、本実施例では、スライド軸をカット軸(旋回軸受軸に垂直な軸)の法線方向とする。つまり、スライド軸をカット軸に平行な2つのピストンカット面3cに垂直な方向に設ける。これは、ピン軸調整角δを0度としたものである。 The slide groove 3b also serves as an oil supply path to the piston cut surface 3c. By the way, in this embodiment, the slide shaft is set to the normal direction of the cut shaft (axis perpendicular to the swing bearing shaft). That is, the slide shaft is provided in a direction perpendicular to the two piston cut surfaces 3c parallel to the cut shaft. In this case, the pin shaft adjustment angle δ is set to 0 degree.
 さらに、スライド溝3bには、固定ピン5sを挿入するため、摩耗の危険性がある。そこで、摩耗の危険性を低下させるため、スライド溝3bの側平面の硬度を増大させる表面処理を施してもよい。例えば、旋回ピストン3が鉄製であれば、浸炭焼き入れや窒化処理などが考えられる。またアルミ合金であれば、アルマイト処理等が考えられる。 Furthermore, since the fixing pin 5s is inserted into the slide groove 3b, there is a risk of wear. Therefore, in order to reduce the risk of wear, a surface treatment for increasing the hardness of the side plane of the slide groove 3b may be performed. For example, if the revolving piston 3 is made of iron, carburizing and quenching or nitriding treatment can be considered. In the case of an aluminum alloy, alumite treatment or the like can be considered.
 図24は、旋回ピストンを示す上面図である。 FIG. 24 is a top view showing the revolving piston.
 本図に示すように、旋回ピストン3を上方から見ると、スライド溝3bの中に旋回軸受穴3a及び旋回軸受23が部分的に見えるようになっている。ピストン偏心円筒先端面3eは、作動室を形成する面の一つとなる。 As shown in the figure, when the swing piston 3 is viewed from above, the swing bearing hole 3a and the swing bearing 23 are partially visible in the slide groove 3b. The piston eccentric cylindrical tip surface 3e is one of the surfaces forming the working chamber.
 旋回ピストン3は、図23のシリンダ溝1cに隙間嵌合されている。旋回ピストン3の運動によりピストン偏心円筒先端面3eと図23の均一壁1wとが接触する際は、作動室ができるだけ狭くなるように、ピストン偏心円筒先端面3eと均一壁1wの内壁面の形状(曲率)を同じものとすることが望ましい。また、旋回ピストン3の角部(図24の小白丸箇所)は、シリンダ溝1cの隅部(図23の小黒丸箇所)と干渉しないように形状を調整する。例えば、シリンダ溝1cの隅部(図23の小黒丸箇所)のRよりも大きいRとすればよい。 The turning piston 3 is fitted in the cylinder groove 1c of FIG. When the piston eccentric cylindrical tip surface 3e comes into contact with the uniform wall 1w of FIG. 23 by the movement of the swiveling piston 3, the shape of the piston eccentric cylindrical tip surface 3e and the inner wall surface of the uniform wall 1w is as narrow as possible. It is desirable to have the same (curvature). In addition, the shape of the corner portion (small white circle portion in FIG. 24) of the orbiting piston 3 is adjusted so as not to interfere with the corner portion (small black circle portion in FIG. 23) of the cylinder groove 1c. For example, R may be larger than R at the corner of the cylinder groove 1c (small black circle in FIG. 23).
 図6は、静止シリンダの底面図である。 FIG. 6 is a bottom view of the stationary cylinder.
 本図においては、静止シリンダ2の外周側面に設けたシリンダ外周溝2m、吸込穴2s1と吸込溝2s2と吸込溝屈折部2s2kとからなる吸込路2s、吐出穴2d1と吐出溝2d2とからなる吐出路2d、及びピン機構5の配置が明瞭に示されている。また、静止シリンダ2の上面からは、偏心シリンダ穴2bへ貫通するバイパス穴2eが設けられている。静止シリンダ2の上面側には、バイパス弁22が設けられている。バイパス弁22の底面からは、偏心シリンダ穴2bへ貫通するバイパス穴2eがシリンダ溝外周壁301(図4)の内面の半径に対応する部位の近くに設けられている。本実施例では、バイパス穴2eは2個とする。 In this figure, a cylinder outer peripheral groove 2m provided on the outer peripheral side surface of the stationary cylinder 2, a suction path 2s composed of a suction hole 2s1, a suction groove 2s2, and a suction groove refracting portion 2s2k, and a discharge composed of a discharge hole 2d1 and a discharge groove 2d2. The arrangement of the path 2d and the pin mechanism 5 is clearly shown. Further, a bypass hole 2e that penetrates to the eccentric cylinder hole 2b is provided from the upper surface of the stationary cylinder 2. A bypass valve 22 is provided on the upper surface side of the stationary cylinder 2. From the bottom surface of the bypass valve 22, a bypass hole 2e penetrating to the eccentric cylinder hole 2b is provided near a portion corresponding to the radius of the inner surface of the cylinder groove outer peripheral wall 301 (FIG. 4). In this embodiment, there are two bypass holes 2e.
 なお、本図に示すように、ピン機構5の中心であるピン軸とシリンダ回転軸との距離が旋回半径Eの2倍である。 In addition, as shown in this figure, the distance between the pin shaft, which is the center of the pin mechanism 5, and the cylinder rotation shaft is twice the turning radius E.
 図7は、圧縮部の構成要素とクランクシャフトとの組み合わせを展開した状態で示す斜視図である。 FIG. 7 is a perspective view showing a state where the combination of the components of the compression unit and the crankshaft is developed.
 本図においては、シリンダ外周溝2m、フレーム外周溝4m等の配置、クランクシャフト6の上端部を構成する偏心シャフト6a、シャフトネック6d、シャフトつば部6c等の形状が明瞭に示されている。また、ピン軸、ピストン自転軸、シャフト軸(ピストン旋回軸)及びシリンダ回転軸と各構成要素との関係も明瞭に示されている。 In this figure, the arrangement of the cylinder outer circumferential groove 2m, the frame outer circumferential groove 4m, and the like, and the shapes of the eccentric shaft 6a, the shaft neck 6d, the shaft collar portion 6c, etc. constituting the upper end portion of the crankshaft 6 are clearly shown. Further, the relationship between the pin shaft, the piston rotation shaft, the shaft shaft (piston turning shaft), the cylinder rotation shaft, and each component is also clearly shown.
 図8は、図1のB-B断面よりもわずかに旋回ピストン側へずれた断面を用いて圧縮動作を説明するための図である。ここで、図8においては、B-B断面のすぐ上にある吸込溝2s2が破線によって示されている。 FIG. 8 is a view for explaining the compression operation using a cross section slightly shifted to the swivel piston side from the BB cross section of FIG. Here, in FIG. 8, the suction groove 2s2 immediately above the BB cross section is indicated by a broken line.
 図9は、図8のクランク角0度の拡大図である。これは、吐出行程から吸込行程へ移行する容積が0の作動室と吸込行程から圧縮行程へ移行する最大容積の作動室が共存するタイミングである。 FIG. 9 is an enlarged view of the crank angle of 0 degree in FIG. This is the timing when the working chamber whose volume is changed from the discharge stroke to the suction stroke is zero and the working chamber whose maximum volume is changed from the suction stroke to the compression stroke coexist.
 図10は、後述するバイパス弁22が動作しない場合に一方の作動室が圧縮行程から吐出行程に移行するタイミングの拡大図であり、図8のクランク角180度と225度との間にある状態を示したものである。 FIG. 10 is an enlarged view of the timing at which one working chamber shifts from the compression stroke to the discharge stroke when a bypass valve 22 described later does not operate, and is in a state between the crank angle of 180 degrees and 225 degrees in FIG. Is shown.
 図11は、ピン機構取り付け部の縦断面図であり、図1のP部の拡大図である。 FIG. 11 is a vertical cross-sectional view of the pin mechanism mounting portion, and is an enlarged view of a portion P in FIG.
 偏心シリンダ穴2b(図7)の底面にピン軸を中心軸とする円柱状の固定ピン5sを固定配置して、ピン機構5(図7)とする。このピン機構5をスライド溝3b(図7)へ挿入することにより、ピンスライド機構が構成される。ピンスライド機構は、旋回ピストン3の旋回位相に伴って姿勢(カット軸方向)を規定する役目を担い、RC圧縮機の圧縮動作を滑らかに継続するための機構である。 A cylindrical fixing pin 5s having a pin axis as a central axis is fixedly arranged on the bottom surface of the eccentric cylinder hole 2b (FIG. 7) to form a pin mechanism 5 (FIG. 7). By inserting the pin mechanism 5 into the slide groove 3b (FIG. 7), a pin slide mechanism is configured. The pin slide mechanism plays a role of defining the posture (cut axis direction) in accordance with the turning phase of the turning piston 3, and is a mechanism for smoothly continuing the compression operation of the RC compressor.
 図11においては、固定ピン5sは、静止シリンダ2の上面から偏心シリンダ穴2bまで貫通した穴に挿入されている。固定ピン5sは、固定ピンフランジ部5s1を有し、固定ピンフランジ部5s1は、1本または複数本のピン固定ねじ5s8を用いて固定する。
これにより、固定ピン5sの先端近くに軸方向に垂直な方向の衝撃的荷重がかかって固定ピン5sをこじるようなトルクがかかっても、ピン軸から離れた箇所でねじ固定しているため、腕の長さが長くなり、対抗するトルクを容易に発生させることができる。これにより、固定ピン5sが静止シリンダ2から脱落する危険性を回避でき、確実な圧縮動作を継続できる。
In FIG. 11, the fixing pin 5s is inserted into a hole penetrating from the upper surface of the stationary cylinder 2 to the eccentric cylinder hole 2b. The fixing pin 5s has a fixing pin flange portion 5s1, and the fixing pin flange portion 5s1 is fixed by using one or a plurality of pin fixing screws 5s8.
As a result, even if an impact load in a direction perpendicular to the axial direction is applied near the tip of the fixing pin 5s and a torque that squeezes the fixing pin 5s is applied, the screw is fixed at a location away from the pin shaft. The length of the arm is increased, and the opposing torque can be easily generated. Thereby, it is possible to avoid a risk that the fixing pin 5s drops off from the stationary cylinder 2, and a reliable compression operation can be continued.
 また、ピン固定ねじ5s8の代わりに、固定ピン5sの本体上部にピン固定本体ねじ5s9を設けてもよい。この場合、固定ピンフランジ部5s1の径選択の幅が広がり、設計の自由度が向上するという効果がある。 Further, instead of the pin fixing screw 5s8, a pin fixing main body screw 5s9 may be provided on the upper part of the main body of the fixing pin 5s. In this case, there is an effect that the width of the diameter selection of the fixed pin flange portion 5s1 is widened and the degree of freedom in design is improved.
 図12は、図11の変形例である。 FIG. 12 is a modification of FIG.
 図12においては、固定ピン5sの静止シリンダ2への取付方法を、図11に示すねじ止めの代わりに、かしめに変更している。 In FIG. 12, the method of attaching the fixing pin 5s to the stationary cylinder 2 is changed to caulking instead of screwing shown in FIG.
 図12に示すように、つば部を小さくした固定ピン小フランジ部5s1’を設け、ピンかしめ穴5s6を設けたこと以外は、図11と同様である。このため、共通点の説明は省略する。 As shown in FIG. 12, it is the same as FIG. 11 except that a fixed pin small flange portion 5s1 'having a reduced collar portion and a pin caulking hole 5s6 are provided. For this reason, description of common points is omitted.
 図12においては、固定ピン5sの固定は、ピンかしめ穴5s6に先端がテーパ状のプレス治具を挿入し、それを静止シリンダ2に押し込むことにより完了する。このため、組み立てコストの低減という効果がある。 In FIG. 12, the fixing of the fixing pin 5s is completed by inserting a press jig having a tapered tip into the pin caulking hole 5s6 and pushing it into the stationary cylinder 2. For this reason, there exists an effect of a reduction of assembly cost.
 本実施例のピン機構5を構成する固定ピン5sの固定配置方法は、固定ピン5sにかかる衝撃力が小さい場合、固定ピンフランジ部5s1や固定ピン小フランジ部5s1’を設けずに単純な円筒形状として、圧入、焼きばめ、冷やしばめ、さらに溶接や接着なども考えられる。この方法によれば、挿入する穴は貫通としなくてもよくなり、設計の自由度が向上するとともに、固定ピン5sの製造コストを低減できるという効果がある。 The fixing arrangement method of the fixing pins 5s constituting the pin mechanism 5 of this embodiment is a simple cylinder without providing the fixing pin flange portion 5s1 and the fixing pin small flange portion 5s1 'when the impact force applied to the fixing pin 5s is small. Possible shapes include press-fitting, shrink fitting, cold fitting, welding and adhesion. According to this method, the hole to be inserted does not need to be penetrated, so that the degree of freedom in design is improved and the manufacturing cost of the fixing pin 5s can be reduced.
 また、本実施例のピン機構5は、固定ピン5s内に外周面に出口を有する給油穴(固定ピン縦穴や固定ピン横穴)を設けてよいが、図11又は12のM部で示すように、給油穴を設けなくてもよい。この場合、穴加工が不要となるので、製造コスト低減の効果がある。 Further, the pin mechanism 5 of the present embodiment may be provided with an oil supply hole (fixed pin vertical hole or fixed pin horizontal hole) having an outlet on the outer peripheral surface in the fixed pin 5s, but as shown by M part in FIG. The oil supply hole may not be provided. In this case, there is no need for drilling, which has the effect of reducing manufacturing costs.
 圧縮部の動作については、図8、9及び10(ともに図1のB-B断面よりもわずかに下方の断面)に示したとおりである。 The operation of the compression section is as shown in FIGS. 8, 9 and 10 (both cross sections slightly lower than the BB cross section of FIG. 1).
 図8に示すように、シリンダ溝1cを有するローリングシリンダ1の自転に伴い、旋回ピストン3は、シリンダ溝1cにて相対的に往復運動をする。言い換えると、旋回ピストン3は、シリンダ溝1cにてその両端部のシリンダ溝外周壁301の間でシリンダ溝1cに対して相対的に往復運動をする。 As shown in FIG. 8, as the rolling cylinder 1 having the cylinder groove 1c rotates, the revolving piston 3 relatively reciprocates in the cylinder groove 1c. In other words, the revolving piston 3 reciprocates relative to the cylinder groove 1c between the cylinder groove outer peripheral walls 301 at both ends thereof in the cylinder groove 1c.
 詳細については、特許文献1において説明しているので、省略する。 Details are described in Patent Document 1 and therefore omitted.
 本発明においては、シリンダ溝外周壁301を設けたため、吸込路2s及び吐出路2dの配置が特許文献1とは異なるが、圧縮部の動作及び圧縮部の作動流体の流れについては、原理的に異なるものではない。 In the present invention, since the cylinder groove outer peripheral wall 301 is provided, the arrangement of the suction passage 2s and the discharge passage 2d is different from that in Patent Document 1, but the operation of the compression portion and the flow of the working fluid in the compression portion are in principle. It's not different.
 油の流れについて特許文献1と異なる点について説明する。 The difference between the oil flow and Patent Document 1 will be described.
 本発明においては、図1に示すように、貯油部125に給油ポンプ200を設けた点で異なる。他の構成は、特許文献1とほぼ同様である。よって、油の流れに関する詳細な説明は省略する。 The present invention is different in that an oil supply pump 200 is provided in the oil storage section 125 as shown in FIG. Other configurations are almost the same as those of Patent Document 1. Therefore, the detailed description regarding the flow of oil is abbreviate | omitted.
 本実施例においては、シリンダ溝1cの両端にシリンダ溝外周壁である均一壁1w(図23)が設けられているため、この均一壁1wの上面も対向面である偏心シリンダ穴2bの底面に接近または摺動する。よって、前記した背圧室110からシリンダ外周隙間(シリンダ外周面1sと偏心シリンダ穴2bの内周面の間の隙間)と直列に繋がる均一壁1wの上面隙間のうち後者(均一壁1wの上面隙間)を低減できる。 In the present embodiment, since the uniform wall 1w (FIG. 23), which is the outer circumferential wall of the cylinder groove, is provided at both ends of the cylinder groove 1c, the upper surface of the uniform wall 1w is also formed on the bottom surface of the eccentric cylinder hole 2b which is the opposing surface. Approach or slide. Therefore, the latter (the upper surface of the uniform wall 1w) among the upper surface gaps of the uniform wall 1w connected in series from the back pressure chamber 110 to the cylinder outer peripheral clearance (the clearance between the cylinder outer peripheral surface 1s and the inner peripheral surface of the eccentric cylinder hole 2b). (Gap) can be reduced.
 以上より、シリンダ溝外周壁である均一壁1wを設けることによって、シリンダ溝1cが旋回ピストン3により仕切られて形成される作動室を取り囲む全ての軸方向隙間を縮小できる。この結果、吸込室95や圧縮室100や吐出室105となる全ての作動室のシール性が向上し、体積効率及び圧縮機効率の向上を実現できるという効果がある。 As described above, by providing the uniform wall 1w which is the outer circumferential wall of the cylinder groove, all axial gaps surrounding the working chamber formed by the cylinder groove 1c partitioned by the revolving piston 3 can be reduced. As a result, the sealing performance of all the working chambers that become the suction chamber 95, the compression chamber 100, and the discharge chamber 105 is improved, and the volume efficiency and the compressor efficiency can be improved.
 また、ローリングシリンダ1の静止シリンダ2への付勢可能な面は、ローリングシリンダ1を円柱形状としたため、ローリングシリンダ1の上面に限定することができる。よって、ローリングシリンダ1上面の一部であるシリンダ溝外周壁(本実施例では均一壁1w)上面はその対向面である偏心シャフト挿入穴1dの底面との隙間を縮小させることができる。その結果、シリンダ溝外周壁(本実施例では均一壁1w)の幅を小さくしても、シール性はほとんど低下しない。よって、ローリングシリンダ1の外径を小さくできるため、高い圧縮機効率と小径化を両立させたRC圧縮機が実現可能となる効果がある。 Also, the surface of the rolling cylinder 1 that can be urged to the stationary cylinder 2 can be limited to the upper surface of the rolling cylinder 1 because the rolling cylinder 1 has a cylindrical shape. Therefore, the gap between the upper surface of the cylinder groove outer peripheral wall (uniform wall 1w in this embodiment), which is a part of the upper surface of the rolling cylinder 1, can be reduced with the bottom surface of the eccentric shaft insertion hole 1d that is the opposite surface. As a result, even if the width of the cylinder groove outer peripheral wall (uniform wall 1w in the present embodiment) is reduced, the sealing performance is hardly deteriorated. Therefore, since the outer diameter of the rolling cylinder 1 can be reduced, there is an effect that an RC compressor that achieves both high compressor efficiency and a reduced diameter can be realized.
 ところで、旋回ピストン3は、静止シリンダ2に対し、自転運動と旋回運動が重なる極めて複雑な相対運動を行う。よって、旋回ピストン3が、シリンダ底端板1aと偏心シリンダ穴2bの底面に挟みこまれて、ピストン上面3d(図5参照)が偏心シリンダ穴2bの底面との間で付勢力を掛け合う場合、ピストン上面3dに作用する摩擦力は大きくなる上に複雑に変化し、旋回ピストン3の旋回速度や自転速度は大きく変動する。この結果、自らは回転駆動源をもたずに旋回ピストン3の動きで回転を起こすローリングシリンダ1の回転運動にも変動が生じ、それが、旋回ピストン3の運動の変動を一層増大させる。このようにして、圧縮動作には極めて大きな不規則変動が伴うようになり、圧縮部の各部での不規則な衝突や摺動部での極端な荷重変動が生じ、振動騒音の増大や、摩耗の発生、漏れや摩擦力の増大による圧縮機効率の低下が生じる。 By the way, the orbiting piston 3 performs an extremely complicated relative movement with respect to the stationary cylinder 2 in which the rotation movement and the rotation movement overlap. Therefore, when the orbiting piston 3 is sandwiched between the bottom surface of the cylinder bottom end plate 1a and the eccentric cylinder hole 2b and the piston upper surface 3d (see FIG. 5) applies a biasing force between the bottom surface of the eccentric cylinder hole 2b, The frictional force acting on the piston upper surface 3d increases and changes in a complicated manner, and the turning speed and the rotation speed of the turning piston 3 vary greatly. As a result, the rotational movement of the rolling cylinder 1 that does not have a rotational drive source and rotates by the movement of the swiveling piston 3 also varies, which further increases the fluctuation of the movement of the swiveling piston 3. In this way, the compression operation is accompanied by extremely large irregular fluctuations, causing irregular collisions at each part of the compression part and extreme load fluctuations at the sliding part, increasing vibration noise and wear. , The efficiency of the compressor is reduced due to leakage and increased frictional force.
 そこで、シリンダ溝1cの深さF(図4参照)を旋回ピストン3の厚さH(図5参照)よりも大きくする(F>H)場合も考えられる。但し、隙間の大きさとなる両者の差(F-H)は、油膜によってシールが可能なミクロンオーダーとする。 Therefore, there may be a case where the depth F (see FIG. 4) of the cylinder groove 1c is made larger than the thickness H (see FIG. 5) of the orbiting piston 3 (F> H). However, the difference (F−H) between the two, which is the size of the gap, is in the order of microns that can be sealed with an oil film.
 この結果、圧縮可動部を静止シリンダ2へ付勢しても、ピストン上面3dに付勢力は作用しない。よって、ピストン上面3dに作用する摩擦力も小さく、さらに、摩擦力の不規則変動も抑えられる。この結果、旋回ピストン3は滑らかな運動をする。一方、ローリングシリンダ1の上面は、偏心シリンダ穴2bの底面に付勢されるために、摩擦力が発生するが、その摩擦力は、単純なローリングシリンダ1の回転運動に起因するため、油膜が形成されて潤滑性が向上して摩擦係数が低下し、摩擦力が極めて小さくなる。さらに、前記した通り、ローリングシリンダ1の回転駆動源である旋回ピストン3も滑らかな運動をするために、前記した摩擦係数の低下を阻害することがない。 As a result, even if the compression movable part is urged to the stationary cylinder 2, the urging force does not act on the piston upper surface 3d. Therefore, the frictional force acting on the piston upper surface 3d is small, and irregular fluctuations in the frictional force can be suppressed. As a result, the orbiting piston 3 moves smoothly. On the other hand, since the upper surface of the rolling cylinder 1 is urged against the bottom surface of the eccentric cylinder hole 2b, a frictional force is generated. The frictional force is caused by a simple rotational motion of the rolling cylinder 1, so As a result, the lubricity is improved, the friction coefficient is lowered, and the frictional force becomes extremely small. Furthermore, as described above, the revolving piston 3 that is the rotational drive source of the rolling cylinder 1 also moves smoothly, so that the above-described decrease in the friction coefficient is not hindered.
 これより、F>Hにすると、圧縮動作は極めて滑らかになり、ピン機構に代表される圧縮部各部で発生する不規則な衝突を抑えることができ、振動騒音の低減や、摩耗の抑制による信頼性の向上という効果がある。さらに、摺動部での極端な荷重変動を回避できるため、油膜の保持が容易となり、シール性や潤滑性の向上を図ることが可能となり、漏れの抑制や摩擦力低減を実現し、圧縮機効率の向上を実現できるという効果がある。 As a result, when F> H, the compression operation becomes extremely smooth, and it is possible to suppress irregular collisions that occur in each part of the compression unit represented by the pin mechanism, and to reduce the vibration noise and to improve reliability by suppressing wear. There is an effect of improving the sex. Furthermore, since extreme load fluctuations at the sliding part can be avoided, the oil film can be easily held, sealing and lubrication can be improved, leakage is reduced, and frictional force is reduced. There is an effect that improvement in efficiency can be realized.
 ところで、背圧室110へ流入した油は、油排出路4xから排出される。ここで、油排出路4xの背圧室110側開口部の大半は、背圧室110の最も高いベッド面4dに設けられるため、背圧室110及びベッド背圧室110aは吐出圧の油でほぼ満たされる。ローリングシリンダ1の下面はこのベッド面4dとほぼ同じ高さにくるため、通常の場合、ローリングシリンダ1の下面まで背圧室110内部の油が来ている。 Incidentally, the oil flowing into the back pressure chamber 110 is discharged from the oil discharge path 4x. Here, since most of the opening on the back pressure chamber 110 side of the oil discharge passage 4x is provided on the highest bed surface 4d of the back pressure chamber 110, the back pressure chamber 110 and the bed back pressure chamber 110a are oil of discharge pressure. Almost satisfied. Since the lower surface of the rolling cylinder 1 is almost at the same height as the bed surface 4d, the oil in the back pressure chamber 110 comes to the lower surface of the rolling cylinder 1 in a normal case.
 これにより、ローリングシリンダ1の上部に形成される吐出圧よりも低い圧力の吸込室95や圧縮室100へ向かって背圧室110と作動室間を繋ぐわずかな隙間に油が流入する。この隙間としてはシリンダ外周隙間(シリンダ外周面1sと偏心シリンダ穴2bの内周面の間の隙間)やそれと直列に繋がる均一壁1wの上面隙間、また、ピストン下面3fとシリンダ溝1cの底面であるシリンダ底端板1aの上面との隙間がある。これらの隙間に油が流入することにより、シール性や潤滑性が向上し、体積効率や圧縮機効率の向上という効果がある。 Thus, the oil flows into a slight gap connecting the back pressure chamber 110 and the working chamber toward the suction chamber 95 and the compression chamber 100 having a pressure lower than the discharge pressure formed in the upper portion of the rolling cylinder 1. This gap includes a cylinder outer peripheral clearance (a clearance between the cylinder outer peripheral surface 1s and the inner peripheral surface of the eccentric cylinder hole 2b), an upper surface clearance of the uniform wall 1w connected in series therewith, and a piston lower surface 3f and a bottom surface of the cylinder groove 1c. There is a gap with the upper surface of a certain cylinder bottom end plate 1a. When oil flows into these gaps, the sealing performance and lubricity are improved, and the volume efficiency and the compressor efficiency are improved.
 ところで、油排出路4xの背圧室110側開口部を背圧室110の低いところに設ける場合も考えられる。この場合、背圧室110には油がほとんど溜まらないため、ローリングシリンダ1の下端に油が接触しない。これにより、油の撹拌損失を回避できるため、ローリングシリンダ1が高速で回転する運転下や、ローリングシリンダ1の定格運転時での回転数が高いようなRC圧縮機の場合(例えば、押除け容積を小さく設定した場合など)の圧縮機効率を向上できるという効果がある。 Incidentally, there may be a case where the back pressure chamber 110 side opening of the oil discharge passage 4x is provided at a low position of the back pressure chamber 110. In this case, since the oil hardly accumulates in the back pressure chamber 110, the oil does not contact the lower end of the rolling cylinder 1. As a result, oil agitation loss can be avoided. Therefore, in the case of an RC compressor in which the rolling cylinder 1 rotates at a high speed or the rotational speed of the rolling cylinder 1 is high at the rated operation (for example, the displacement volume). The compressor efficiency can be improved.
 図13は、本実施例のピンスライド機構のスライド溝挿入部を示す縦断面図であり、図11又は12のM部の拡大図である。 FIG. 13 is a longitudinal sectional view showing a slide groove insertion portion of the pin slide mechanism of the present embodiment, and is an enlarged view of an M portion in FIG. 11 or 12.
 図13においては、ピン機構5を構成する固定ピン5sの先端部(下端部)にスライダフランジ5bを設け、固定ピン5sとスライダフランジ5bとの間にスライダ5aをピン軸に対して回転自在に挟み込み、スライド溝3bに隙間嵌合させている。 In FIG. 13, a slider flange 5b is provided at the tip (lower end) of the fixed pin 5s constituting the pin mechanism 5, and the slider 5a is rotatable between the fixed pin 5s and the slider flange 5b with respect to the pin axis. It is sandwiched and fitted into the slide groove 3b.
 図14は、ピンスライド機構のスライダを示す斜視図である。 FIG. 14 is a perspective view showing a slider of the pin slide mechanism.
 本図に示すように、スライダ5aは、スライダ軸穴5a2を有し、スライダカット面5a1を有する。スライダカット面5a1は、互いに平行な2つの平面部として設けたものであり、スライド溝3bに隙間嵌合させる部分である。 As shown in the figure, the slider 5a has a slider shaft hole 5a2 and a slider cut surface 5a1. The slider cut surface 5a1 is provided as two flat portions parallel to each other, and is a portion to be fitted into the slide groove 3b.
 スライダフランジ5bを、スライダ軸穴5a2に小さい隙間(直径で5~20μm程度)で挿入した後、固定ピン5sへ圧入することにより、ピン機構5を作製する。 After inserting the slider flange 5b into the slider shaft hole 5a2 with a small gap (about 5 to 20 μm in diameter), the pin mechanism 5 is manufactured by press-fitting into the fixed pin 5s.
 これにより、ピン機構にかかる衝撃荷重は、スライド溝3bの側面からスライダカット面5a1へかかり、さらに、スライダ軸穴5a2からスライダフランジ5bの軸部へかかる。2箇所の荷重の受け渡しは、前者が平面同士であり、後者がピストン偏心円筒周面同士であるため、集中荷重を伴う荷重の受け渡しはない。このため、ピン機構における荷重の集中を回避することができるため、ピンスライド機構部での摩耗の危険性を低減し、信頼性が向上するという効果がある。 Thereby, the impact load applied to the pin mechanism is applied from the side surface of the slide groove 3b to the slider cut surface 5a1, and further from the slider shaft hole 5a2 to the shaft portion of the slider flange 5b. Since the former is between the flat surfaces and the latter is between the piston eccentric cylindrical peripheral surfaces, there is no load delivery involving a concentrated load. For this reason, since concentration of the load in the pin mechanism can be avoided, there is an effect that the risk of wear in the pin slide mechanism portion is reduced and the reliability is improved.
 さらに、本実施例においては、図13に示すように、スライダフランジ5bにスライダフランジ縦穴5b1及びスライダフランジ横穴5b2を設け、油が満たされているシャフト偏心端部空間115からスライダ軸穴5a2及びスライダフランジ5bの摺動部へ直接油を供給する給油路を設けている。これにより、ピンスライド機構部での摩耗の危険性を一層低減し、RC圧縮機の信頼性を一層高めるという効果がある。この給油路は、なくてももちろんよい。 Further, in this embodiment, as shown in FIG. 13, the slider flange 5b is provided with a slider flange vertical hole 5b1 and a slider flange horizontal hole 5b2, and the slider shaft hole 5a2 and the slider from the shaft eccentric end space 115 filled with oil. An oil supply passage for supplying oil directly to the sliding portion of the flange 5b is provided. Thereby, there is an effect of further reducing the risk of wear at the pin slide mechanism and further improving the reliability of the RC compressor. Of course, this oil supply path is not necessary.
 なお、スライダ5aの材質としては、鋳鉄や炭素鋼が一般的であるが、軸受材でもよい。例えば、主として炭素の粒子を焼き固めたカーボン焼結材を用いてもよい。 Note that the material of the slider 5a is generally cast iron or carbon steel, but may be a bearing material. For example, a carbon sintered material in which mainly carbon particles are baked and hardened may be used.
 図14においては、スライダカット面5a1の一端からもう一端の全長にわたって貫通したスライダグルーブ5a3を設けている。 In FIG. 14, a slider groove 5a3 penetrating from one end of the slider cut surface 5a1 to the entire length of the other end is provided.
 図13に示すスライド溝3bは、通常油で満たされ、その中をピン機構5が往復動する。この際、ピン機構5はスライド溝3bを仕切る形となっている(図8参照)ため、仕切られて形成された2つのスライド溝空間のうちで容積が縮小する側の油の圧力がわずかに上がる。この圧力差によって、スライダグルーブ5a3に油が流れる。 The slide groove 3b shown in FIG. 13 is normally filled with oil, and the pin mechanism 5 reciprocates therein. At this time, since the pin mechanism 5 is configured to partition the slide groove 3b (see FIG. 8), the pressure of the oil whose volume is reduced in the two slide groove spaces formed by partitioning is slightly reduced. Go up. Due to this pressure difference, oil flows into the slider groove 5a3.
 これにより、スライダカット面5a1へ油を潤沢に供給できるため、スライダカット面5a1とスライド溝3bの摺動部の摩擦損失が低減し、圧縮機効率が向上するという効果がある。また、スライダ5aの上下側の隙間が小さい場合には、油の昇圧を抑制して、入力される電力の増大を抑制するという効果もある。 Thereby, oil can be supplied to the slider cut surface 5a1 abundantly, so that the friction loss between the slider cut surface 5a1 and the sliding portion of the slide groove 3b is reduced, and the compressor efficiency is improved. Further, when the gap between the upper and lower sides of the slider 5a is small, there is also an effect that the increase of input electric power is suppressed by suppressing the pressure increase of the oil.
 ところで、スライダグルーブ5a3は、各スライダカット面5a1に一本ではなく複数本設けてもよい。さらに、スライダカット面5a1上に二点鎖線で描いた、敢えて途中で止める非貫通スライダグルーブ5a4としてもよい。この場合は、両端から途中で止めるものとする。これにより、昇圧作用が働き、油膜の保持力が上がって、スライダカット面5a1とスライド溝3bでの摩耗の危険性を一層低減できるという効果がある。 Incidentally, a plurality of slider grooves 5a3 may be provided on each slider cut surface 5a1 instead of one. Further, a non-penetrating slider groove 5a4 drawn on the slider cut surface 5a1 by a two-dot chain line may be used. In this case, it shall stop on the way from both ends. As a result, there is an effect that the pressurizing action works, the holding force of the oil film increases, and the risk of wear on the slider cut surface 5a1 and the slide groove 3b can be further reduced.
 さらに、2か所のスライダ先端面5a5とスライダ軸穴5a2を繋ぐ二点鎖線で描いた2本のスライダ軸給油穴5a6を設けてもよい。これにより、ピン機構5で仕切られて形成された2つのスライド溝空間のうちで容積が縮小する側の油が少し昇圧するため、油が、その空間に臨むスライダ軸給油穴5a6を通って、スライダ軸穴5a2へ多量に流れ込み、スライダ軸穴5a2とスライダフランジ5bの軸摺動部を確実に潤滑する。これにより、スライダ軸穴5a2とスライダフランジ5bの軸摺動部における摩耗の危険性をより一層低減するとともに、摩擦力を低減して、圧縮機効率を向上させるという効果がある。 Further, two slider shaft oil supply holes 5a6 drawn by a two-dot chain line connecting the two slider tip surfaces 5a5 and the slider shaft hole 5a2 may be provided. As a result, the oil on the side whose volume is reduced among the two slide groove spaces formed by being partitioned by the pin mechanism 5 is slightly pressurized, so that the oil passes through the slider shaft oil supply hole 5a6 facing the space, A large amount flows into the slider shaft hole 5a2, and the shaft sliding portions of the slider shaft hole 5a2 and the slider flange 5b are reliably lubricated. As a result, there is an effect that the risk of wear at the shaft sliding portions of the slider shaft hole 5a2 and the slider flange 5b is further reduced, and the frictional force is reduced to improve the compressor efficiency.
 図15は、本実施例のローリングシリンダを示す斜視図である。 FIG. 15 is a perspective view showing the rolling cylinder of this embodiment.
 本図においては、シリンダ外周面1sにシリンダ環状凹部1nが設けられている。これにより、シリンダ環状凸部310が形成される。これ以外の構成については、実施例1と同様であるため、同様な箇所に関する説明は省略する。 In this figure, a cylinder annular recess 1n is provided on the cylinder outer peripheral surface 1s. Thereby, the cylinder annular convex part 310 is formed. Since the configuration other than this is the same as that of the first embodiment, the description regarding the same portion is omitted.
 シリンダ外周面1sは、偏心シリンダ穴2b(図7)の内周面に対向して回転するため、ローリングシリンダ1は、偏心シリンダ穴2bの軸受に支持されて回転する軸部とみなすことができる。本発明では、シリンダ溝外周壁301を設けたために、ローリングシリンダ1という軸部の摺動面積(シリンダ外周面1sの面積)が、シリンダ溝1cの断面積の2倍と、シリンダ溝外周壁301の厚さ増加に起因する面積増加の合計分だけ増加する。軸受部の摩擦損失は、軸の摺動面積が増大すると、一般に増大する。このため、単にシリンダ溝外周壁301を設けると、シリンダ外周面1sの面積増大によって、偏心シリンダ穴2bでの摩擦損失の増大という弊害が生じ、性能向上量が少し低下してしまう。 Since the cylinder outer peripheral surface 1s rotates opposite to the inner peripheral surface of the eccentric cylinder hole 2b (FIG. 7), the rolling cylinder 1 can be regarded as a shaft portion that is supported by the bearing of the eccentric cylinder hole 2b and rotates. . In the present invention, since the cylinder groove outer peripheral wall 301 is provided, the sliding area of the shaft portion of the rolling cylinder 1 (the area of the cylinder outer peripheral surface 1s) is twice the cross-sectional area of the cylinder groove 1c, and the cylinder groove outer peripheral wall 301 is. It increases by the total area increase due to the increase in thickness. The friction loss of the bearing portion generally increases as the sliding area of the shaft increases. For this reason, if the cylinder groove outer peripheral wall 301 is simply provided, an increase in the area of the cylinder outer peripheral surface 1s causes an adverse effect of an increase in friction loss in the eccentric cylinder hole 2b, and the performance improvement amount is slightly reduced.
 そこで、本実施例では、シリンダ外周面1sにシリンダ環状凹部1nを設け、軸受部の摺動面積を縮小するとともに、シリンダ環状凹部1nをシリンダ外周面1sの中央寄りに設けたので、片当たり等の軸受支持状況の変化が起きず、摩擦損失を低減させることができる。これにより、シリンダ溝外周壁301の弊害の一つである摺動面積増大を回避できるため、圧縮機効率を、シリンダ溝外周壁301で実現できる本来の漏れ抑制による圧縮機効率向上に近づけることができるという効果がある。 Therefore, in this embodiment, the cylinder annular recess 1n is provided on the cylinder outer peripheral surface 1s to reduce the sliding area of the bearing portion, and the cylinder annular recess 1n is provided closer to the center of the cylinder outer peripheral surface 1s. The bearing support state does not change, and friction loss can be reduced. As a result, an increase in the sliding area, which is one of the adverse effects of the cylinder groove outer peripheral wall 301, can be avoided, so that the compressor efficiency can be brought closer to the improvement of the compressor efficiency by the inherent leakage suppression that can be realized by the cylinder groove outer peripheral wall 301. There is an effect that can be done.
 図16は、本実施例のローリングシリンダを示す斜視図である。 FIG. 16 is a perspective view showing the rolling cylinder of this embodiment.
 本図においては、シリンダ外周面1sの中央寄りにシリンダ環状凹部1nを設けることで形成されるシリンダ環状凸部310のうちの下側に、背圧室110(図1参照)とシリンダ環状凹部1nを繋ぐローリング外周下端凹み部1vを概略等間隔に複数設けている。
これにより、更に背圧室110にローリング外周下端凹み部1vの下端高さまで吐出圧の油を貯めている(図示せず)。これ以外は、実施例3と同様なので、同様な箇所に関する説明は省略する。
In this figure, the back pressure chamber 110 (see FIG. 1) and the cylinder annular recess 1n are provided below the cylinder annular recess 310 formed by providing the cylinder annular recess 1n near the center of the cylinder outer peripheral surface 1s. A plurality of rolling outer peripheral lower end recessed portions 1v that connect the two are provided at approximately equal intervals.
Thereby, the oil of the discharge pressure is further stored in the back pressure chamber 110 up to the lower end height of the rolling outer periphery lower end recess 1v (not shown). Other than this, since it is the same as that of the third embodiment, the description regarding the same part is omitted.
 シリンダ環状凹部1nからシリンダ環状凸部310のうちの上側の表面を経由して低圧の作動室へ至る漏れ流路はわずかに存在するため、シリンダ環状凹部1nの圧力は、吐出圧の背圧室110よりもわずかに低下する。よって、背圧室110の吐出圧の油が、ローリング外周下端凹み部1vを通って、シリンダ環状凹部1nへ流入する。そして、さらに、シリンダ環状凸部のうちの上側の表面とローリングシリンダ1の上面を通って、作動室へ流入する。この結果、シリンダ環状凸部やローリングシリンダ1の上面などの摺動部の潤滑を行うため、摩擦係数が低下して摩擦損失が低減する。 Since there is a slight leakage channel from the cylinder annular recess 1n to the low-pressure working chamber via the upper surface of the cylinder annular projection 310, the pressure of the cylinder annular recess 1n is the discharge pressure back pressure chamber. Slightly lower than 110. Therefore, the oil of the discharge pressure of the back pressure chamber 110 flows into the cylinder annular recess 1n through the rolling outer peripheral lower end recess 1v. Further, it flows into the working chamber through the upper surface of the cylinder annular convex portion and the upper surface of the rolling cylinder 1. As a result, since lubrication is performed on sliding portions such as the cylinder annular convex portion and the upper surface of the rolling cylinder 1, the friction coefficient is reduced and the friction loss is reduced.
 一方、吐出圧の油が低圧の作動室へ流入することで油中に溶解する作動流体による実質的な漏れや作動流体の加熱などの弊害が生じるが、流量が極めて少ないために、無視できるオーダーとなる。 On the other hand, when the discharge pressure oil flows into the low-pressure working chamber, there are problems such as substantial leakage due to the working fluid dissolved in the oil and heating of the working fluid, but the order is negligible because the flow rate is extremely small. It becomes.
 よって、総合的に、供給する電力が低減するため、圧縮機効率が向上するという効果がある。 Therefore, overall, since the power to be supplied is reduced, there is an effect that the compressor efficiency is improved.
 図17は、本実施例のローリングシリンダを示す斜視図である。図18は、本実施例のローリングシリンダを示す上面図である。 FIG. 17 is a perspective view showing the rolling cylinder of this embodiment. FIG. 18 is a top view showing the rolling cylinder of this embodiment.
 これらの図に示すように、本実施例においては、シリンダ外周面1sに、カット面1qとそのカット面1qに繋がるカット面給油穴1pを設けている。これ以外は、実施例1乃至4と同様なので、同様な箇所に関する説明は省略する。 As shown in these drawings, in this embodiment, a cut surface 1q and a cut surface oil supply hole 1p connected to the cut surface 1q are provided on the cylinder outer peripheral surface 1s. Since other than this is the same as in the first to fourth embodiments, the description regarding the same parts is omitted.
 ここで、カット面給油穴1pの他端は、シリンダ溝1cの側面に開口し、シリンダ溝1cに挿入される旋回ピストン3のスライド溝3b(図7参照)に常時臨むように開口させる。すなわち、図18に示すとおり、旋回ピストン3がシリンダ溝1cの両端へ移動した際にも、カット面給油穴1pのシリンダ側開口部がスライド溝3bへ臨むように設ける。
そして、カット面1qは、シリンダ溝外周壁301の中央からローリングシリンダ1の回転方向(旋回運動と同一方向)へ90度以下の角度θ(本実施例では60度程度)となる位置に設ける。
Here, the other end of the cut surface oil supply hole 1p is opened to the side surface of the cylinder groove 1c so as to always face the slide groove 3b (see FIG. 7) of the turning piston 3 inserted into the cylinder groove 1c. That is, as shown in FIG. 18, even when the orbiting piston 3 moves to both ends of the cylinder groove 1c, it is provided so that the cylinder side opening of the cut surface oil supply hole 1p faces the slide groove 3b.
The cut surface 1q is provided at a position that is an angle θ (about 60 degrees in this embodiment) of 90 degrees or less from the center of the cylinder groove outer peripheral wall 301 in the rotation direction of the rolling cylinder 1 (the same direction as the turning motion).
 ここで、実施例3で説明したとおり、シリンダ溝外周壁301を設けるローリングシリンダ1は、偏心シリンダ穴2bの軸受に支持されて回転する軸部とみなすことができる。
そして、さらに、シリンダ溝外周壁301を設けると、旋回ピストン3でシリンダ溝1cを仕切って形成される2つの作動室内の作動流体の圧力差により、ローリングシリンダ1は、シリンダ溝1cの方向に平行な力を受ける。それは、シリンダ溝外周壁301の内面にかかる圧力が2つの作動室で異なるために、圧力の低い作動室から圧力の高い作動室へ向かう力がローリングシリンダ1に作用するためである。これにより、ローリングシリンダ1は、低圧側作動室から高圧側作動室へ向かう向きに荷重を受ける軸、そして、偏心シリンダ穴2bはその軸を支持するジャーナル滑り軸受とみなすことができる。
Here, as described in the third embodiment, the rolling cylinder 1 provided with the cylinder groove outer peripheral wall 301 can be regarded as a shaft portion that is supported by the bearing of the eccentric cylinder hole 2b and rotates.
Further, when the cylinder groove outer peripheral wall 301 is provided, the rolling cylinder 1 is parallel to the direction of the cylinder groove 1c due to the pressure difference between the working fluids in the two working chambers formed by the rotating piston 3 partitioning the cylinder groove 1c. Receive strong power. This is because the pressure applied to the inner surface of the cylinder groove outer peripheral wall 301 differs between the two working chambers, so that the force from the low pressure working chamber to the high pressure working chamber acts on the rolling cylinder 1. Accordingly, the rolling cylinder 1 can be regarded as a shaft that receives a load in a direction from the low pressure side working chamber to the high pressure side working chamber, and the eccentric cylinder hole 2b can be regarded as a journal sliding bearing that supports the shaft.
 これにより、ジャーナル滑り軸受の理論から明らかなように、高圧側作動室を形成するシリンダ溝外周壁301の中央からローリングシリンダ1の回転方向(旋回運動と同一方向)へ少し回転した位置に、ローリングシリンダ1の偏心によって、ジャーナル滑り軸受隙間の極小部が発生する。 As a result, as apparent from the theory of the journal sliding bearing, the rolling is performed at a position slightly rotated from the center of the cylinder groove outer peripheral wall 301 forming the high pressure side working chamber in the rotational direction of the rolling cylinder 1 (the same direction as the turning motion). Due to the eccentricity of the cylinder 1, a minimal portion of the journal slide bearing gap is generated.
 さらに、ジャーナル滑り軸受の理論から、軸受隙間極小部を境にしてローリングシリンダ1の回転方向前方側の軸受隙間極小部近傍は、周囲よりも低圧の領域となる。そして、軸受隙間極小部の位置は、荷重の大きさやローリングシリンダ1の回転速度や油の粘度などで決まるが、少なくとも、荷重方向(シリンダ溝1cの方向)からローリングシリンダ1の回転方向90度よりも小さい位置となることもわかる。 Furthermore, from the theory of journal sliding bearings, the vicinity of the bearing clearance minimum portion on the front side in the rotational direction of the rolling cylinder 1 with the minimum bearing clearance is the lower pressure region than the surroundings. The position of the minimum bearing clearance is determined by the magnitude of the load, the rotational speed of the rolling cylinder 1 and the viscosity of the oil, but at least from the load direction (the direction of the cylinder groove 1c) from the rotational direction of the rolling cylinder 1 90 degrees. It can also be seen that the position is small.
 ところで、ジャーナル滑り軸受内の油が滞留すると、油温が上昇して粘度が低下し、軸受隙間が実質的に0となり、焼き付きの可能性が高まる。このため、ジャーナル滑り軸受では、圧力が周囲よりも低下する軸受隙間極小部から回転方向寄りの箇所に給油路を開口させることで、軸受隙間へ油を潤沢に供給し、軸受部の焼き付きを回避して、信頼性を向上させる。 By the way, when the oil in the journal slide bearing is accumulated, the oil temperature rises, the viscosity is lowered, the bearing gap becomes substantially zero, and the possibility of seizure increases. For this reason, in journal slide bearings, the oil supply passage is opened from the bearing gap minimum part where the pressure is lower than the surroundings to the position near the rotational direction, so that oil is supplied to the bearing gap abundantly and seizure of the bearing part is avoided. And improve reliability.
 今回のローリングシリンダ1のシリンダ外周面1sにおいて、同様の対策をしたのが、本実施例である。すなわち、圧力が周囲よりも低下するシリンダ溝外周壁301の中心から90度以下の角度θ(本実施例では60度程度)となる位置にカット面1qを設け、そこへ吐出圧の油で常時満たされているスライド溝3bと繋がるカット面給油穴1pを設ける。すなわち、カット面1qはシリンダ給油溝となり、カット面給油穴1pはシリンダ給油溝路(単に「給油穴」ともいう。)となる。そして、それはスライド溝3bと繋がっているので、スライド溝連通路となっている。 In this embodiment, the same countermeasure is taken on the cylinder outer peripheral surface 1s of the rolling cylinder 1 this time. That is, the cut surface 1q is provided at a position where the angle θ is 90 degrees or less (about 60 degrees in the present embodiment) from the center of the cylinder groove outer peripheral wall 301 where the pressure is lower than the surroundings, and the discharge surface oil is always applied thereto. A cut surface oil supply hole 1p connected to the filled slide groove 3b is provided. That is, the cut surface 1q is a cylinder oil supply groove, and the cut surface oil supply hole 1p is a cylinder oil supply groove (also simply referred to as “oil supply hole”). And since it is connected with the slide groove 3b, it is a slide groove communication path.
 これにより、カット面1qを介して、シリンダ外周面1sと偏心シャフト挿入穴1d内周面の隙間へ油を潤沢に供給できるようになるため、シリンダ外周面1sと偏心シャフト挿入穴1d内周面の焼き付きを回避でき、信頼性を向上するという効果がある。また、シリンダ外周面1sと偏心シャフト挿入穴1d内周面の隙間に安定した油膜を形成できるため、ローリングシリンダ1の回転運動を安定化させることができる。よって、このジャーナル滑り軸受部の摩擦損失を低減できるため、圧縮機効率が向上するという効果がある。 As a result, oil can be sufficiently supplied to the gap between the cylinder outer peripheral surface 1s and the eccentric shaft insertion hole 1d inner peripheral surface via the cut surface 1q, so the cylinder outer peripheral surface 1s and the eccentric shaft insertion hole 1d inner peripheral surface. This has the effect of avoiding seizing and improving reliability. Further, since a stable oil film can be formed in the gap between the cylinder outer peripheral surface 1s and the eccentric shaft insertion hole 1d inner peripheral surface, the rotational motion of the rolling cylinder 1 can be stabilized. Therefore, since the friction loss of this journal sliding bearing part can be reduced, there is an effect that the compressor efficiency is improved.
 ここで、カット面1qをシリンダ溝外周壁301の中心から90度の位置に設けてもよい。この場合には、如何なる運転条件においても、カット面1qは、軸受隙間極小部から回転方向寄りに設置することになるため、運転条件を考慮せずに、設置が可能になるという設計上の長所がある。 Here, the cut surface 1q may be provided at a position of 90 degrees from the center of the cylinder groove outer peripheral wall 301. In this case, the cut surface 1q is installed closer to the rotational direction from the bearing gap minimum portion under any operating conditions, and therefore, it is possible to install without considering operating conditions. There is.
 また、シリンダ給油溝路として、カット面給油穴1pの代わりに、カット面給油溝1rとしてもよい。このときは、背圧室110内の油がカット面1qに供給される。この場合、旋回ピストン3へのシリンダ給油溝路の設置が不要となるうえに、カット面1qをシリンダ外周面1sの下端まで伸ばすだけで設置できるため、加工コストが低減できるという効果がある。 Also, the cylinder oil groove may be a cut surface oil groove 1r instead of the cut surface oil hole 1p. At this time, the oil in the back pressure chamber 110 is supplied to the cut surface 1q. In this case, it is not necessary to install a cylinder oil supply groove on the revolving piston 3, and it can be installed simply by extending the cut surface 1q to the lower end of the cylinder outer peripheral surface 1s, so that the processing cost can be reduced.
 図19は、本実施例のローリングシリンダを示す斜視図である。図20は、本実施例のローリングシリンダを示す上面図である。ここで、シリンダ外周面1sは模式的に示している。なお、実施例5のように、シリンダ外周面1sに、シリンダ環状凹部1nや、カット面1qとカット面給油穴1pや、カット面1qとカット面給油溝1rを設けてもよい。 FIG. 19 is a perspective view showing the rolling cylinder of this embodiment. FIG. 20 is a top view showing the rolling cylinder of this embodiment. Here, the cylinder outer peripheral surface 1s is schematically shown. As in the fifth embodiment, the cylinder outer circumferential surface 1s may be provided with the cylinder annular recess 1n, the cut surface 1q and the cut surface oil supply hole 1p, and the cut surface 1q and the cut surface oil supply groove 1r.
 図4に示すローリングシリンダ1のシリンダ底端板1aとシリンダ円柱1bを、平板状の別体シリンダ底端板1a’と円筒状の別体シリンダ円柱1b’とし、シリンダ軸と別体シリンダ底端板1a’の中心軸が合うように端板ねじ1fで固定する以外は、実施例1乃至9と同様なので、同様な箇所に関する説明は省略する。 The cylinder bottom end plate 1a and the cylinder column 1b of the rolling cylinder 1 shown in FIG. 4 are formed as a flat separate cylinder bottom end plate 1a ′ and a cylindrical separate cylinder column 1b ′, and the cylinder shaft and the separate cylinder bottom end. Since it is the same as that of Example 1 thru | or 9 except fixing with the end plate screw 1f so that the center axis | shaft of board 1a 'may match, description regarding the same location is abbreviate | omitted.
 別体シリンダ円柱1b’は、シリンダ溝1cとなる貫通孔を有する。 The separate cylinder column 1b 'has a through hole that becomes the cylinder groove 1c.
 本実施例によれば、シリンダ底端板1aの仕上げ加工に平研が可能となり、精度向上とともに、コスト低減を図ることが可能となる。 According to the present embodiment, it is possible to flatten the finishing process of the cylinder bottom end plate 1a, and it is possible to improve the accuracy and reduce the cost.
 別体シリンダ底端板1a’と別体シリンダ円柱1b’とを別体化しない場合は、シリンダ溝1cの底隅部には必ずRが付くため、旋回ピストン3の下方角部(ピストンカット面3cおよびピストン偏心円筒先端面3eとピストン下面3fの境界部)は、干渉回避のために面取り等の角部除去が必須となる。この結果、旋回ピストン3の下方角部とシリンダ溝1cの底隅部との間には隙間が生じてしまい、それは2つの作動室を繋ぐ漏れ流路となって、圧縮機効率の低下を招いていた。 When the separate cylinder bottom end plate 1a ′ and the separate cylinder column 1b ′ are not separated, the bottom corner of the cylinder groove 1c is always provided with R, so that the lower corner of the swiveling piston 3 (piston cut surface) 3c and the boundary portion between the piston eccentric cylindrical tip surface 3e and the piston lower surface 3f) must be removed by corners such as chamfering in order to avoid interference. As a result, a gap is formed between the lower corner of the swiveling piston 3 and the bottom corner of the cylinder groove 1c, which becomes a leakage flow path connecting the two working chambers, leading to a reduction in compressor efficiency. It was.
 本実施例では、シリンダ溝1cの底隅部は、別体シリンダ底端板1a’と別体シリンダ円柱1b’の合体により形成されるため、R部は生じない。よって、旋回ピストン3の下方角部は角部除去も不要となり、旋回ピストン3の下方角部の漏れ流路は形成されないため、シリンダ底端板1aとシリンダ円柱1bを一体化したRC圧縮機よりも圧縮機効率が向上するという効果がある。 In the present embodiment, the bottom corner portion of the cylinder groove 1c is formed by combining the separate cylinder bottom end plate 1a 'and the separate cylinder column 1b', so that no R portion is generated. Therefore, the lower corner portion of the orbiting piston 3 does not need to be removed, and a leak passage at the lower corner portion of the orbiting piston 3 is not formed. Therefore, an RC compressor in which the cylinder bottom end plate 1a and the cylinder column 1b are integrated is used. This also has the effect of improving the compressor efficiency.
 また、別体シリンダ底端板1a’の外半径を別体シリンダ円柱1b’の外半径よりも小さくすることが考えられる。言い換えると、別体シリンダ底端板1a’の外周直径を別体シリンダ円柱1b’の外周直径よりも小さくする。このようにした場合、端板ねじ1fによるねじ固定時に、別体シリンダ底端板1a’と別体シリンダ円柱1b’の中心合わせは半径差だけの誤差を許容できるため、製造コストを低減させる効果がある。 It is also conceivable that the outer radius of the separate cylinder bottom end plate 1a 'is made smaller than the outer radius of the separate cylinder column 1b'. In other words, the outer diameter of the separate cylinder bottom end plate 1a 'is made smaller than the outer diameter of the separate cylinder column 1b'. In this case, when the screw is fixed by the end plate screw 1f, the center alignment of the separate cylinder bottom end plate 1a ′ and the separate cylinder column 1b ′ can allow an error of only the radius difference, and thus the manufacturing cost can be reduced. There is.
 さらに、別体シリンダ円柱1b’と別体シリンダ底端板1a’をねじ固定せず、溶接や接着でもよい。 Furthermore, the separate cylinder column 1b 'and the separate cylinder bottom end plate 1a' may be welded or bonded without being screwed.
 図21は、本実施例のローリングシリンダを示す斜視図である。 FIG. 21 is a perspective view showing the rolling cylinder of this embodiment.
 本図においては、別体化するシリンダ円柱を、外周面下端にシリンダ環状凹部1nを設ける片寄り凹部付別体シリンダ円柱1b’’とし、別体化するシリンダ底端板の径をシリンダ円柱の最外径に一致させた別体シリンダ大径底端板1a’’とする以外は、実施例3と同様なので、同様な箇所に関する説明は省略する。 In this figure, the cylinder cylinder to be separated is a separate cylinder cylinder 1b ″ with a side recess having a cylinder annular recess 1n at the lower end of the outer peripheral surface, and the diameter of the cylinder bottom end plate to be separated is the cylinder cylinder. Except for the separate cylinder large-diameter bottom end plate 1a ″ matched with the outermost diameter, it is the same as that of the third embodiment, and therefore, the description regarding the same parts is omitted.
 シリンダ円柱の外周面の下端側を削ることで、シリンダ環状凹部1nを形成できるため、加工コストの低減効果がある。 Since the cylinder annular recess 1n can be formed by cutting the lower end side of the outer peripheral surface of the cylinder cylinder, there is an effect of reducing the processing cost.
 図22は、本実施例のローリングシリンダを示す斜視図である。 FIG. 22 is a perspective view showing the rolling cylinder of the present embodiment.
 本図においては、別体化するシリンダ円柱を、外周面中央側にシリンダ環状凹部1nを設ける中寄り凹部付別体シリンダ円柱1b’ ’ ’とし、別体化するシリンダ底端板の径をシリンダ円柱の最外径よりも小さくする別体シリンダ小径底端板1a’ ’ ’とする以外は、実施例3と同様なので、同様な箇所に関する説明は省略する。 In this figure, the cylinder cylinder to be separated is a separate cylinder cylinder 1b'b '' with a central recess that is provided with a cylinder annular recess 1n on the outer peripheral surface center side, and the diameter of the cylinder bottom end plate to be separated is the cylinder Since it is the same as that of Example 3 except it is set as the separate cylinder small diameter bottom end plate 1a 'a' 'made smaller than the outermost diameter of a cylinder, explanation about the same portion is omitted.
 端板ねじ1fによる固定時に、別体シリンダ小径底端板1a’ ’ ’と中寄り凹部付別体シリンダ円柱1b’ ’ ’の中心合わせは半径差だけの誤差を許容できるため、組み立てが容易となり、製造コストを低減させる効果がある。 When fixed with the end plate screw 1f, the centering of the separate cylinder small-diameter bottom end plate 1a '' 'and the separate cylinder cylinder 1b' '' with a central recess allows for an error of only the radius difference, making assembly easier. There is an effect of reducing the manufacturing cost.
 また、シリンダ溝1cが存在する高さ範囲の上端と下端にシリンダ環状凸部を設けることになるため、ローリングシリンダ1が受ける作動流体の圧縮による水平方向ガス荷重に対抗する力(軸受支持力)を二か所のシリンダ環状凸部から二等分割して受ける。よって、最大の軸受支持力を小さくできるため、信頼性が向上するという効果がある。また、シリンダ環状凸部における摩擦係数が小さくなり、摩擦損失を低減できる。よって、圧縮機効率を向上できるという効果がある。 Further, since the cylinder annular convex portions are provided at the upper end and the lower end of the height range in which the cylinder groove 1c exists, a force (bearing support force) that opposes the horizontal gas load due to the compression of the working fluid that the rolling cylinder 1 receives. Is divided into two equal parts from the two cylindrical annular projections. Therefore, since the maximum bearing support force can be reduced, there is an effect that reliability is improved. Further, the friction coefficient at the cylinder annular convex portion is reduced, and the friction loss can be reduced. Therefore, the compressor efficiency can be improved.
 図25は、本実施例のローリングシリンダを示す上面図である。図26は、本実施例の旋回ピストンを示す上面図である。 FIG. 25 is a top view showing the rolling cylinder of this embodiment. FIG. 26 is a top view showing the orbiting piston of the present embodiment.
 これらの図においては、旋回ピストン3の2つの先端面が中心軸を同一とするピストン円筒先端面3xとなり、それに対応して、シリンダ溝外周壁301が、周方向の両端側へいくにつれて厚さが増大する不均一壁1xとする以外は、実施例1乃至8と同様なので、同様な箇所に関する説明は省略する。 In these drawings, the two tip surfaces of the orbiting piston 3 become piston cylindrical tip surfaces 3x having the same central axis, and correspondingly, the cylinder groove outer peripheral wall 301 becomes thicker toward both ends in the circumferential direction. Except for the non-uniform wall 1x that increases, this is the same as in the first to eighth embodiments, and thus the description of the same portion is omitted.
 旋回ピストン3は、旋回軸受穴3aと同軸で先端面であるピストン円筒先端面3xを加工した上で、ピストンカット面3cを加工すればいい。よって、旋回軸受穴3aとピストン円筒先端面3xが同一チャッキングによる旋盤加工で、高い同軸度を伴って加工可能になるため、製造コストが低減するという効果がある。 Rotating piston 3 may be formed by processing piston cut surface 3c after processing piston cylinder tip surface 3x which is the tip surface coaxial with slewing bearing hole 3a. Therefore, since the turning bearing hole 3a and the piston cylindrical tip surface 3x can be machined with high coaxiality by lathe machining by the same chucking, there is an effect that the manufacturing cost is reduced.
 また、シリンダ溝外周壁301には大きなガス荷重がかかるため、高い剛性が必要となる。本実施例では、シリンダ溝外周壁301を、周方向の両端側へいくにつれて厚さが増大する不均一壁1xとするため、壁の根元が厚い形態となっている。よって、剛性が高いシリンダ溝外周壁301となるため、ガス荷重による変形が抑制され、シリンダ溝外周壁301内面と旋回ピストン3の先端面との干渉やシリンダ溝外周壁301外面と偏心シリンダ穴2b内周面との干渉の危険性を低減でき、信頼性が向上するという効果がある。また、シリンダ溝外周壁301外面の変形が抑制されることにより、偏心シリンダ穴2b内周面との摩擦係数が小さくなり、摩擦損失を低減できる。よって、圧縮機効率を向上できるという効果がある。 
 一方、シリンダ溝外周壁301の剛性増大分を、シリンダ溝外周壁301の厚さ縮小に使う場合も考えられる。これにより、ローリングシリンダ1の外径を縮小可能になるため、RC圧縮機を小径化できるという効果がある。
Further, since a large gas load is applied to the cylinder groove outer peripheral wall 301, high rigidity is required. In the present embodiment, the cylinder groove outer peripheral wall 301 is a non-uniform wall 1x whose thickness increases as it goes to both ends in the circumferential direction, so that the base of the wall is thick. Therefore, since the cylinder groove outer peripheral wall 301 has high rigidity, deformation due to gas load is suppressed, interference between the inner surface of the cylinder groove outer peripheral wall 301 and the tip surface of the turning piston 3, and the outer surface of the cylinder groove outer peripheral wall 301 and the eccentric cylinder hole 2b. There is an effect that the risk of interference with the inner peripheral surface can be reduced and the reliability is improved. Further, by suppressing the deformation of the outer surface of the cylinder groove outer peripheral wall 301, the friction coefficient with the inner peripheral surface of the eccentric cylinder hole 2b is reduced, and the friction loss can be reduced. Therefore, the compressor efficiency can be improved.
On the other hand, a case where the rigidity increase of the cylinder groove outer peripheral wall 301 is used to reduce the thickness of the cylinder groove outer peripheral wall 301 is also conceivable. Thereby, since the outer diameter of the rolling cylinder 1 can be reduced, there is an effect that the diameter of the RC compressor can be reduced.
 図27は、ローリングシリンダを示す上面図である。図28は、旋回ピストンを示す上面図である。 FIG. 27 is a top view showing the rolling cylinder. FIG. 28 is a top view showing the orbiting piston.
 これらの図においては、旋回ピストン3の2つの先端面が2つのピストンカット面3cの距離を直径とする円筒面からなるピストン半円筒先端面3yとし、それに対応して、シリンダ溝外周壁301が、周方向の両端側へいくにつれて実施例9の不均一壁1xよりも更に厚さが増大する長穴形成壁1yとする以外は、実施例9と同様なので、同様な箇所に関する説明は省略する。 In these figures, the two tip surfaces of the orbiting piston 3 are piston semi-cylindrical tip surfaces 3y each having a cylindrical surface whose diameter is the distance between the two piston cut surfaces 3c. Since it is the same as that of the ninth embodiment except that the thickness is further increased as compared with the non-uniform wall 1x of the ninth embodiment as it goes to both ends in the circumferential direction, the description on the same parts is omitted. .
 旋回ピストン3は、ローリングシリンダ1のシリンダ溝1cに対して相対的に往復運動を行う。一方、シリンダ溝1cの底部(シリンダ底端板)中央には、背圧室と通じる偏心シャフト挿入穴1dが開口している。よって、旋回ピストン3がシリンダ溝1c内の片側へ寄った場合でも、旋回ピストン3の先端面と偏心シャフト挿入穴1dの間にシール部を設けなければならない。 The revolving piston 3 reciprocates relative to the cylinder groove 1c of the rolling cylinder 1. On the other hand, an eccentric shaft insertion hole 1d communicating with the back pressure chamber is opened at the center of the bottom (cylinder bottom end plate) of the cylinder groove 1c. Therefore, even when the orbiting piston 3 approaches one side in the cylinder groove 1c, a seal portion must be provided between the tip surface of the orbiting piston 3 and the eccentric shaft insertion hole 1d.
 本実施例においては、シール部設置を必要とする箇所のシール幅をほぼ同一の最小シール幅(図27参照)としている。これにより、作動室と背圧室110間の漏れを最小のシール幅で効果的に抑制しているとみなすことができる。これは、旋回ピストン3のピストンカット面3cとピストン先端面の接続位置をピストン自転軸側へシフトさせたことに起因している。 In the present embodiment, the seal width of the portion requiring the installation of the seal portion is set to the almost same minimum seal width (see FIG. 27). Accordingly, it can be considered that leakage between the working chamber and the back pressure chamber 110 is effectively suppressed with a minimum seal width. This is due to the fact that the connection position between the piston cut surface 3c of the revolving piston 3 and the piston tip surface is shifted to the piston rotation shaft side.
 この結果、シリンダ溝外周壁301を、周方向の両端側へいくにつれて厚さが非常に増大する長穴形成壁1yにできるため、壁の根元が非常に厚い形態となっている。よって、剛性が非常に高いシリンダ溝外周壁301となるため、ガス荷重による変形が完全に抑制され、シリンダ溝外周壁301内面と旋回ピストン3の先端面との干渉やシリンダ溝外周壁301外面と偏心シリンダ穴2b内周面との干渉の危険性を極めて高い確度で低減でき、信頼性が非常に向上するという効果がある。また、シリンダ溝外周壁301外面の変形が非常に抑制されることにより、偏心シリンダ穴2b内周面との摩擦係数がとても小さくなり、摩擦損失を一層低減できる。よって、圧縮機効率を一層向上できるという効果がある。 As a result, since the cylinder groove outer peripheral wall 301 can be formed into a long hole forming wall 1y whose thickness increases greatly toward both ends in the circumferential direction, the base of the wall has a very thick form. Therefore, since the cylinder groove outer peripheral wall 301 is very high in rigidity, deformation due to gas load is completely suppressed, and interference between the inner surface of the cylinder groove outer peripheral wall 301 and the tip surface of the swiveling piston 3 and the outer surface of the cylinder groove outer peripheral wall 301 The risk of interference with the inner peripheral surface of the eccentric cylinder hole 2b can be reduced with extremely high accuracy, and the reliability is greatly improved. Further, since the deformation of the outer surface of the cylinder groove outer peripheral wall 301 is extremely suppressed, the friction coefficient with the inner peripheral surface of the eccentric cylinder hole 2b becomes very small, and the friction loss can be further reduced. Therefore, there is an effect that the compressor efficiency can be further improved.
 一方、シリンダ溝外周壁301の剛性増大分を、シリンダ溝外周壁301の厚さ縮小に使う場合も考えられる。これにより、ローリングシリンダ1の外径を一層縮小可能になるため、RC圧縮機を一層小径化できるという効果がある。 On the other hand, a case where the increased rigidity of the cylinder groove outer peripheral wall 301 is used to reduce the thickness of the cylinder groove outer peripheral wall 301 is also conceivable. Thereby, since the outer diameter of the rolling cylinder 1 can be further reduced, there is an effect that the RC compressor can be further reduced in diameter.
 さらに、シリンダ溝1cを、2つのピストンカット面3cの距離を直径とするエンドミルで加工することが可能となる。これにより、加工コストが低減するという効果がある。 Furthermore, it becomes possible to process the cylinder groove 1c with an end mill whose diameter is the distance between the two piston cut surfaces 3c. Thereby, there exists an effect that processing cost reduces.
 本発明によれば、ローリングシリンダ式容積型圧縮機において、作動室のシール性を向上させることができ、高い圧縮機効率を実現することができる。また、作動室のシール性向上に伴う圧縮要素の大径化を抑制し、高い圧縮機効率と小型化とを両立することができる。 According to the present invention, in the rolling cylinder positive displacement compressor, the sealing performance of the working chamber can be improved, and high compressor efficiency can be realized. Further, it is possible to suppress an increase in the diameter of the compression element accompanying the improvement in the sealing performance of the working chamber, and to achieve both high compressor efficiency and downsizing.
 本発明によれば、ローリングシリンダのシリンダ底端板の外周を経由してシリンダ底端板の背面空間と通じる漏れ流路を遮断できるため、作動室のシール性を向上でき、高い圧縮機効率を実現できる。また、大型化を伴わずに前記漏れ流路の遮断を実現し、高い圧縮機効率とともに小型化も実現できる。 According to the present invention, it is possible to block the leakage flow path that communicates with the back space of the cylinder bottom end plate via the outer periphery of the cylinder bottom end plate of the rolling cylinder, so that the sealing performance of the working chamber can be improved and high compressor efficiency can be achieved. realizable. In addition, the leakage flow path can be blocked without increasing the size, and high compression efficiency and downsizing can be realized.
 1:ローリングシリンダ、1a:シリンダ底端板、1a’:別体シリンダ底端板、1b:シリンダ円柱、1c:シリンダ溝、1d:偏心シャフト挿入穴、1f:端板ねじ、1n:シリンダ環状凹部、1p:カット面給油穴、1q:カット面、1r:カット面給油溝、1s:シリンダ外周面、1v:ローリング外周下端凹み部、1w:均一壁、1x:不均一壁、1y:長穴形成壁、2:静止シリンダ、2a:シリンダ取付面、2b:偏心シリンダ穴、2d:吐出路、2e:バイパス穴、2g:シリンダ外周隙間、2m:シリンダ外周溝、2s:吸込路、2w:シリンダ上部壁、3:旋回ピストン、3a:旋回軸受穴、3b:スライド溝、3c:ピストンカット面、3d:ピストン上面、3f:ピストン下面、3e:ピストン偏心円筒先端面、3i:ピストンカット溝、3x:ピストン円筒先端面、3y:ピストン半円筒先端面、4:フレーム、4a:フレーム取付面、4b:主軸受穴、4c:つば受面、4c1:つば受切欠き、4d:ベッド面、4e:ベッド放射溝、4g:フレーム外周隙間、4m:フレーム外周溝、4x:油排出路、5:ピン機構、5a:スライダ、5a1:スライダカット面、5a2:スライダ軸穴、5a5:スライダ先端面、5a6:スライダ軸給油穴、5b:スライダフランジ、5b1:スライダフランジ縦穴、5b2:スライダフランジ横穴、5c:スライダ転動体、5s:固定ピン、5s1:固定ピンフランジ部、5s1’:固定ピン小フランジ部、5s3:固定ピン縦穴、5s5:固定ピン横穴、5s6:ピンかしめ穴、5s8:ピン固定ねじ、5s9:ピン固定本体ねじ、6:クランクシャフト、6a:偏心シャフト、6b:給油縦穴、6c:シャフトつば部、6d:シャフトネック、6e:給油上主軸受穴、6f:給油下主軸受穴、6g:給油副横穴、6h:給油偏心溝、6k:給油主軸溝、6z:ポンプ連結管、7:モータ、7a:ロータ、7b:ステータ、7b1:ステータカット面、7b2:ステータ巻線、7b3:モータ線、8:ケーシング、8a:ケーシング円筒部、8b:ケーシング上フタ、8c:ケーシング下フタ、22:バイパス弁、23:旋回軸受、24:主軸受、24a:上主軸受、24b:下主軸受、25:副軸受、25a:ボール、25b:ボールホルダ、35:副フレーム、35a:副フレーム周囲穴、35b:副フレーム中央穴、50:吸込パイプ、55:吐出パイプ、80:主バランス、82:カウンタバランス、85:不連続性馴染み皮膜、86:連続性馴染み皮膜、90:シリンダボルト、95:吸込室、100:圧縮室、105:吐出室、110:背圧室、110a:ベッド背圧室、115:シャフト偏心端部空間、120:ケーシング上部室、125:貯油部、150:給油ポンプシャフト室、200:給油ポンプ、301:シリンダ溝外周壁、310:シリンダ環状凸部。 1: rolling cylinder, 1a: cylinder bottom end plate, 1a ′: separate cylinder bottom end plate, 1b: cylinder cylinder, 1c: cylinder groove, 1d: eccentric shaft insertion hole, 1f: end plate screw, 1n: cylinder annular recess 1p: Cut surface oil supply hole, 1q: Cut surface, 1r: Cut surface oil supply groove, 1s: Cylinder outer peripheral surface, 1v: Rolling outer peripheral lower end recess, 1w: Uniform wall, 1x: Non-uniform wall, 1y: Slot formation Wall, 2: Static cylinder, 2a: Cylinder mounting surface, 2b: Eccentric cylinder hole, 2d: Discharge passage, 2e: Bypass hole, 2g: Cylinder outer circumferential clearance, 2m: Cylinder outer circumferential groove, 2s: Suction passage, 2w: Upper cylinder Wall, 3: slewing piston, 3a: slewing bearing hole, 3b: slide groove, 3c: piston cut surface, 3d: piston upper surface, 3f: piston lower surface, 3e: piston eccentric cylindrical tip surface, i: piston cut groove, 3x: piston cylindrical tip surface, 3y: piston semi-cylindrical tip surface, 4: frame, 4a: frame mounting surface, 4b: main bearing hole, 4c: collar receiving surface, 4c1: collar receiving notch, 4d: Bed surface, 4e: Bed radiation groove, 4g: Frame outer periphery clearance, 4m: Frame outer periphery groove, 4x: Oil discharge passage, 5: Pin mechanism, 5a: Slider, 5a1: Slider cut surface, 5a2: Slider shaft hole, 5a5: Slider tip surface, 5a6: Slider shaft oil supply hole, 5b: Slider flange, 5b1: Slider flange vertical hole, 5b2: Slider flange horizontal hole, 5c: Slider rolling element, 5s: Fixed pin, 5s1: Fixed pin flange, 5s1 ' : Fixed pin small flange, 5s3: fixed pin vertical hole, 5s5: fixed pin side hole, 5s6: pin caulking hole, 5s8: pin fixing screw, 5 9: Pin fixing body screw, 6: Crankshaft, 6a: Eccentric shaft, 6b: Lubricating vertical hole, 6c: Shaft collar, 6d: Shaft neck, 6e: Upper oiled main bearing hole, 6f: Lower oiled main bearing hole, 6g : Oil supply sub horizontal hole, 6h: Oil supply eccentric groove, 6k: Oil supply main shaft groove, 6z: Pump connection pipe, 7: Motor, 7a: Rotor, 7b: Stator, 7b1: Stator cut surface, 7b2: Stator winding, 7b3: Motor Wire, 8: casing, 8a: casing cylindrical portion, 8b: casing upper lid, 8c: casing lower lid, 22: bypass valve, 23: slewing bearing, 24: main bearing, 24a: upper main bearing, 24b: lower main bearing 25: Sub bearing, 25a: Ball, 25b: Ball holder, 35: Sub frame, 35a: Sub frame peripheral hole, 35b: Sub frame central hole, 50: Suction pipe, 55 : Discharge pipe, 80: Main balance, 82: Counter balance, 85: Discontinuous familiar film, 86: Continuous familiar film, 90: Cylinder bolt, 95: Suction chamber, 100: Compression chamber, 105: Discharge chamber, 110 : Back pressure chamber, 110a: bed back pressure chamber, 115: shaft eccentric end space, 120: casing upper chamber, 125: oil storage section, 150: oil pump shaft chamber, 200: oil pump, 301: cylinder groove outer peripheral wall, 310: Cylinder annular convex part.

Claims (8)

  1.  シリンダ溝を有する円柱状のローリングシリンダと、
     スライド溝を有する旋回ピストンと、
     ピン機構を有する静止シリンダと、
     前記旋回ピストンの旋回運動の駆動源であるピストン旋回駆動源と、
     前記旋回ピストンと前記ピストン旋回駆動源とを繋ぐ駆動伝達部と、
     前記駆動伝達部が貫通するフレームと、
     前記旋回ピストン、前記ローリングシリンダ、前記静止シリンダ、前記ピストン旋回駆動源及び前記駆動伝達部を内蔵するケーシングと、を備え、
     前記旋回ピストン、前記ローリングシリンダ及び前記静止シリンダは、圧縮部を構成し、
     前記旋回ピストンは、前記シリンダ溝にて相対的に往復運動をするものであり、
     前記シリンダ溝における前記往復運動の両端部には、シリンダ溝外周壁が設けられている、ローリングシリンダ式容積型圧縮機。
    A cylindrical rolling cylinder having a cylinder groove;
    A swivel piston having a slide groove;
    A stationary cylinder having a pin mechanism;
    A piston turning drive source which is a drive source of the turning motion of the turning piston;
    A drive transmission unit connecting the revolving piston and the piston revolving drive source;
    A frame through which the drive transmission portion passes;
    The revolving piston, the rolling cylinder, the stationary cylinder, the piston revolving drive source, and a casing containing the drive transmission unit,
    The swiveling piston, the rolling cylinder and the stationary cylinder constitute a compression part,
    The orbiting piston relatively reciprocates in the cylinder groove,
    A rolling cylinder type positive displacement compressor in which cylinder groove outer peripheral walls are provided at both ends of the reciprocating motion in the cylinder groove.
  2.  前記シリンダ溝の深さは、前記旋回ピストンの厚さより大きい、請求項1記載のローリングシリンダ式容積型圧縮機。 The rolling cylinder positive displacement compressor according to claim 1, wherein a depth of the cylinder groove is larger than a thickness of the orbiting piston.
  3.  前記圧縮部は、吸込流路と吐出流路とを有し、
     前記吸込流路及び前記吐出流路は、前記静止シリンダに設けられ、前記シリンダ溝外周壁の内壁面よりも中心軸寄りで前記圧縮部の作動室に臨む構成である、請求項1又は2に記載のローリングシリンダ式容積型圧縮機。
    The compression part has a suction channel and a discharge channel,
    The said suction flow path and the said discharge flow path are provided in the said stationary cylinder, It is the structure which faces the working chamber of the said compression part nearer to a center axis than the inner wall face of the said cylinder groove outer peripheral wall. The rolling cylinder type positive displacement compressor as described.
  4.  前記ローリングシリンダのシリンダ外周面と前記シリンダ溝とを繋ぐ給油路が設けられている、請求項1乃至3のいずれか一項に記載のローリングシリンダ式容積型圧縮機。 The rolling cylinder type positive displacement compressor according to any one of claims 1 to 3, further comprising an oil supply passage that connects a cylinder outer peripheral surface of the rolling cylinder and the cylinder groove.
  5.  前記シリンダ外周面には、前記給油路に連なるシリンダ給油溝が設けられ、
     前記シリンダ給油溝は、前記シリンダ溝外周壁の中央から前記旋回運動と同一方向となる前記ローリングシリンダの回転方向であるローリングシリンダ回転方向へ90度以下の角度だけ回転させた位置に設けられている、請求項4記載のローリングシリンダ式容積型圧縮機。
    The cylinder outer peripheral surface is provided with a cylinder oil groove that is continuous with the oil supply passage,
    The cylinder oil supply groove is provided at a position rotated from the center of the outer peripheral wall of the cylinder groove by an angle of 90 degrees or less in the rolling cylinder rotation direction that is the rotation direction of the rolling cylinder, which is the same direction as the turning motion. The rolling cylinder type positive displacement compressor according to claim 4.
  6.  前記シリンダ外周面には、シリンダ環状凹部が設けられている、請求項4又は5に記載のローリングシリンダ式容積型圧縮機。 The rolling cylinder positive displacement compressor according to claim 4 or 5, wherein a cylinder annular recess is provided on the outer peripheral surface of the cylinder.
  7.  前記ローリングシリンダは、別体シリンダ底端板と別体シリンダ円柱とを一体化した構成を有し、
     前記別体シリンダ円柱は、前記シリンダ溝となる貫通孔を有する、請求項1乃至6のいずれか一項に記載のローリングシリンダ式容積型圧縮機。
    The rolling cylinder has a configuration in which a separate cylinder bottom end plate and a separate cylinder column are integrated,
    The rolling cylinder type positive displacement compressor according to any one of claims 1 to 6, wherein the separate cylinder column has a through hole serving as the cylinder groove.
  8.  前記別体シリンダ底端板の外周直径は、前記別体シリンダ円柱の外周直径よりも小さい、請求項7記載のローリングシリンダ式容積型圧縮機。 The rolling cylinder positive displacement compressor according to claim 7, wherein an outer peripheral diameter of the separate cylinder bottom end plate is smaller than an outer peripheral diameter of the separate cylinder column.
PCT/JP2017/015581 2016-09-20 2017-04-18 Rolling cylinder-type displacement compressor WO2018055824A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-182850 2016-09-20
JP2016182850A JP2019218861A (en) 2016-09-20 2016-09-20 Rolling cylinder type displacement compressor

Publications (1)

Publication Number Publication Date
WO2018055824A1 true WO2018055824A1 (en) 2018-03-29

Family

ID=61690281

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/015581 WO2018055824A1 (en) 2016-09-20 2017-04-18 Rolling cylinder-type displacement compressor

Country Status (2)

Country Link
JP (1) JP2019218861A (en)
WO (1) WO2018055824A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020016179A (en) * 2018-07-25 2020-01-30 日立ジョンソンコントロールズ空調株式会社 Rolling cylinder type displacement compressor

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE728131C (en) * 1940-10-03 1942-11-20 Franz Taborsky Valveless piston compressor or machine operating according to the same principle with a rotating piston housing and with this rotating working piston that moves back and forth at the same time
JPS5228164B2 (en) * 1973-08-27 1977-07-25
JPH11230069A (en) * 1998-02-13 1999-08-24 Matsushita Electric Ind Co Ltd Sealed compressor
WO2016067355A1 (en) * 2014-10-28 2016-05-06 株式会社日立製作所 Rolling cylinder type displacement compressor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE728131C (en) * 1940-10-03 1942-11-20 Franz Taborsky Valveless piston compressor or machine operating according to the same principle with a rotating piston housing and with this rotating working piston that moves back and forth at the same time
JPS5228164B2 (en) * 1973-08-27 1977-07-25
JPH11230069A (en) * 1998-02-13 1999-08-24 Matsushita Electric Ind Co Ltd Sealed compressor
WO2016067355A1 (en) * 2014-10-28 2016-05-06 株式会社日立製作所 Rolling cylinder type displacement compressor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020016179A (en) * 2018-07-25 2020-01-30 日立ジョンソンコントロールズ空調株式会社 Rolling cylinder type displacement compressor
JP7175657B2 (en) 2018-07-25 2022-11-21 日立ジョンソンコントロールズ空調株式会社 Rolling cylinder positive displacement compressor

Also Published As

Publication number Publication date
JP2019218861A (en) 2019-12-26

Similar Documents

Publication Publication Date Title
JP2016173045A (en) Rolling cylinder type displacement fluid machine
JP6294974B2 (en) Rolling cylinder positive displacement compressor
KR101947305B1 (en) Scroll compressor
JP2008303844A (en) Scroll fluid machine
JP3893487B2 (en) Scroll compressor
JP4939884B2 (en) Fluid compressor
KR100657038B1 (en) Fluid compressor
WO2018055824A1 (en) Rolling cylinder-type displacement compressor
WO2017183330A1 (en) Rolling cylinder-type positive displacement compressor
WO2018198811A1 (en) Rolling-cylinder-type displacement compressor
WO2009090888A1 (en) Rotary fluid machine
JPH0610864A (en) Scroll compressor
JP6700691B2 (en) Electric compressor
CN112412792B (en) Compressor and refrigeration cycle device with same
WO2021124424A1 (en) Scroll compressor
JPH1089274A (en) Electric motive fluid machine
JP7175657B2 (en) Rolling cylinder positive displacement compressor
JP2006161818A (en) Scroll compressor
JP6545922B1 (en) Rolling cylinder positive displacement compressor
JP7400080B2 (en) Rotary compressor and refrigeration cycle equipment
EP3705723B1 (en) Scroll compressor
JP2002227778A (en) Scroll fluid machinery
JPH11132173A (en) Fluid compressor
WO2018030066A1 (en) Fluid machine
JP2001082367A (en) Fluid compressor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17852605

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17852605

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP