WO2016067355A1 - Rolling cylinder type displacement compressor - Google Patents

Rolling cylinder type displacement compressor Download PDF

Info

Publication number
WO2016067355A1
WO2016067355A1 PCT/JP2014/078552 JP2014078552W WO2016067355A1 WO 2016067355 A1 WO2016067355 A1 WO 2016067355A1 JP 2014078552 W JP2014078552 W JP 2014078552W WO 2016067355 A1 WO2016067355 A1 WO 2016067355A1
Authority
WO
WIPO (PCT)
Prior art keywords
cylinder
rolling cylinder
rolling
piston
chamber
Prior art date
Application number
PCT/JP2014/078552
Other languages
French (fr)
Japanese (ja)
Inventor
坪野 勇
柳瀬 裕一
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Priority to JP2016556076A priority Critical patent/JP6294974B2/en
Priority to CN201480081965.6A priority patent/CN107076145B/en
Priority to PCT/JP2014/078552 priority patent/WO2016067355A1/en
Publication of WO2016067355A1 publication Critical patent/WO2016067355A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/08Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing
    • F04C18/10Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of internal-axis type with the outer member having more teeth or tooth equivalents, e.g. rollers, than the inner member

Definitions

  • the present invention is a compressor including three pivoting pivoting pistons, a rolling cylinder that rotates along with the pivoting piston, and a stationary cylinder incorporating them, the working fluid being a working fluid by these compression elements.
  • the present invention relates to a rolling cylinder positive displacement compressor which performs compression of a certain gas.
  • Patent Document 1 discloses a means for solving the problem of pump operation locking in a rolling cylinder positive displacement pump.
  • the working fluid is liquid oil
  • the rotation control means includes rotation synchronization means for synchronizing rotation of the rotation piston and rotation of the rolling cylinder, and piston rotation control means for setting the rotation speed of the rotation piston to twice the rotation speed.
  • a rotation synchronization means provides the turning piston with the side flat part which carries out sliding contact with two side faces of a pump groove, respectively.
  • the piston rotation regulating means is configured to fit the position fixed cylinder into the guide groove.
  • Patent Document 2 includes two suction / discharge mechanisms for suctioning and discharging a refrigerant by reciprocating the piston in a piston chamber provided in a rotating cylinder, and the cylinder is pivoted by back pressure of discharge pressure.
  • a compressor is disclosed that eliminates the need for managing the clearance between the partitioning member and the end face of the cylinder by biasing in a direction. In this conventional example, the compression operation is smoothly continued by combining another rolling cylinder compressor with different rotational phase.
  • the piston rotation regulating means (pin mechanism) has a configuration in which a fixed column (fixing pin) is fitted in the guide groove.
  • the pin mechanism is loaded only when the compression mechanism deviates from normal operation. For this reason, the load applied to the pin mechanism is often an impacting irregular load, and reliable lubrication is always required.
  • the working fluid is oil of liquid having lubricity, reliable lubrication can be realized simply by arranging the pin mechanism in the discharge flow path.
  • the compressor described in Patent Document 2 is different from the system using the rotation regulating means described in Patent Document 1. That is, two compression mechanism parts having different rotational phases are essential. For this reason, the volume of the whole compressor increases and the number of parts also increases. Therefore, there is a limit in improvement in terms of the compactness of the compressor. Furthermore, the assembly which strictly defines the rotational phase difference of the two compression mechanism parts becomes essential, and the deterioration of the assemblability becomes a problem.
  • An object of the present invention is to sufficiently supply lubricating oil to a pin mechanism when the pin mechanism is applied to a rolling cylinder positive displacement compressor, and to improve the reliability of the pin mechanism.
  • the rolling cylinder positive displacement compressor comprises a crankshaft having an eccentric shaft with a shaft axis as a rotation center, a frame for supporting the crankshaft, a rotational drive source for applying rotational drive torque to the crankshaft, and operation.
  • a compression unit includes a compression unit that sucks, compresses and discharges fluid, and an oil storage unit, and the compression unit includes a rolling cylinder having a cylinder groove, a pivoting piston slidably accommodated in the cylinder groove, and a rolling cylinder.
  • a stationary cylinder having an eccentric cylinder hole which can be accommodated, wherein a space surrounded by the rolling cylinder, the orbiting piston and the stationary cylinder is a suction chamber, a compression chamber and a discharge chamber as the rolling cylinder and the orbiting piston rotate.
  • the eccentric shaft has a center line different from the shaft axis, and the pivoting piston A rotatable pin is disposed about the center line of the center shaft, revolves according to the rotation of the crankshaft, and a stationary pin having a center line different from the shaft axis is attached to the eccentric cylinder hole of the stationary cylinder.
  • the fixing pin has a configuration slidably fitted in the slide groove, and the intersection of the bottom surface of the eccentric cylinder hole and the center line of the fixing pin, the bottom surface of the eccentric cylinder hole and the rolling cylinder So that the middle point of the line connecting the centerline of the cylinder and the centerline of the line coincides with the intersection of the bottom of the eccentric cylinder hole and the centerline of the shaft axis, and these three centerlines are parallel to each other It is arranged so that the rotation of the orbiting piston is synchronized with the rotation of the rolling cylinder, and the rotation angular velocity of the orbiting piston is adjusted to half the rotational angular velocity of the crankshaft.
  • the lubricating oil when the pin mechanism is applied to the rolling cylinder positive displacement compressor, the lubricating oil can be sufficiently supplied to the pin mechanism, and the reliability of the pin mechanism can be improved.
  • FIG. 2 is a longitudinal sectional view across the bypass valve and the discharge flow path of the rolling cylinder positive displacement compressor according to the first embodiment.
  • FIG. 2 is a cross-sectional view taken along line AA of FIG.
  • FIG. 2 is a cross-sectional view taken along the line BB in FIG.
  • FIG. 1 is a perspective view showing a rolling cylinder of a rolling cylinder positive displacement compressor according to a first embodiment.
  • FIG. 2 is a perspective view showing a swing piston of the rolling cylinder positive displacement compressor according to the first embodiment.
  • FIG. 3 is a bottom view showing a stationary cylinder on which the fixing pin of the rolling cylinder positive displacement compressor according to the first embodiment is mounted.
  • FIG. 1 is a perspective view showing a frame of a rolling cylinder positive displacement compressor according to a first embodiment.
  • FIG. 2 is an exploded perspective view showing a configuration of a compression unit of the rolling cylinder positive displacement compressor according to the first embodiment.
  • FIG. 7 is a flow diagram showing the compression operation of the rolling cylinder positive displacement compressor according to the first embodiment, using a view seen from a cross section slightly lower than the B-B cross section of FIG. 1; It is an expanded sectional view which shows the detail of arrangement
  • FIG. 10 is an enlarged cross-sectional view showing an arrangement between a crank angle of 180 degrees and a crank angle of 225 degrees in FIG. 9 where one working chamber of the rolling cylinder positive displacement compressor according to the first embodiment shifts from the compression stroke to the discharge stroke. It is an expanded cross-sectional view which shows the M section of FIG. FIG.
  • FIG. 13 is a cross-sectional view taken along the line O-G of FIG.
  • FIG. 3 is an enlarged cross-sectional view schematically showing the vicinity of the surface of a rolling cylinder or a orbiting piston of the rolling cylinder positive displacement compressor according to the first embodiment.
  • FIG. 8 is an enlarged cross-sectional view schematically showing the vicinity of the surface of a rolling cylinder or a orbiting piston of the rolling cylinder positive displacement compressor according to the second embodiment.
  • It is an expansion cross-sectional view which shows the part applicable to the M section of FIG. 3 in the rolling cylinder type positive displacement compressor which concerns on Example 3.
  • FIG. FIG. 17 is a cross-sectional view taken along the line O-G of FIG. It is an expansion longitudinal cross-sectional view which shows the part applicable to the P section of FIG.
  • FIG. 18 is an enlarged perspective view showing a slider in a rolling cylinder positive displacement compressor according to a fifth embodiment; It is an expansion longitudinal cross-sectional view which shows the part applicable to Q part of FIG. 1 in the rolling cylinder type positive displacement compressor which concerns on Example 6.
  • FIG. It is a perspective view showing a rolling cylinder with a cylinder end of a rolling cylinder type displacement type compressor concerning Example 6.
  • the present invention is a compressor including three pivoting pivoting pistons, a rolling cylinder that rotates along with the pivoting piston, and a stationary cylinder incorporating them, the working fluid being a working fluid by these compression elements.
  • the present invention relates to a rolling cylinder positive displacement compressor which performs compression of a certain gas. And, in particular, in order to continue the compression operation smoothly, it comprises rotation synchronization means for synchronizing the rotation speeds of the swing piston and the rolling cylinder, and rotation half means for defining the rotation speed of the swing piston to half the swing speed.
  • the present invention relates to a rolling cylinder positive displacement compressor.
  • the rotation synchronization means and the rotation half means are realized by a pin slide mechanism using a slide groove of a swing piston and a pin mechanism fixedly arranged on a stationary cylinder.
  • the pressure in the oil storage portion is configured to be equal to the pressure in the discharge chamber.
  • Examples of the working fluid used in the present invention include air, a refrigerant and the like.
  • the oil communication passage may be a separately provided pipe, but it is preferable to use an oil supply vertical hole penetrating the crankshaft and the eccentric shaft, and a hole communicating from the oil reservoir to the slide groove. . This eliminates the need for additional piping for refueling. In addition, by providing the crankshaft or the like with a horizontal hole that communicates with the oil supply vertical hole as appropriate, the oil supply to the bearing or the like becomes easy.
  • the pivoting piston has two piston cut surfaces parallel and flat to each other, and the cylinder grooves of the rolling cylinder are two inner side surfaces parallel to each other and flat It is desirable to have a configuration in which two piston cut surfaces are slidably fitted between the two inner side portions. This ensures synchronization of the rotational speeds of the pivoting piston and the rolling cylinder.
  • the rolling cylinder positive displacement compressor has a suction chamber for suction pressure, and a compression chamber and a discharge chamber for raising the pressure to the discharge pressure in the vicinity of the pin mechanism, for the purpose of compression. Therefore, in order to reliably supply the pin mechanism, it is necessary to supply oil at least at the discharge pressure. By doing this, the reliability of the pin mechanism can be improved, but on the other hand, the discharge pressure, which is the maximum pressure in the compressor, is in the vicinity of the pin mechanism. And there is a problem that the gap widens.
  • the axial clearance between the orbiting piston and the stationary cylinder which is the clearance closest to the pin mechanism, is also enlarged. Since this clearance is a seal between the compression chamber or the discharge chamber and the suction chamber, the leakage increases due to the expansion of the clearance. Similarly, the axial clearance between the adjacent rolling cylinder and the stationary cylinder also increases and leakage increases. Furthermore, since the working fluid is a gas, an increase in leakage occurs. Furthermore, since the purpose is compression, the pressure difference between the suction chamber and the compression chamber or the discharge chamber increases, and the amount of leakage further increases. This results in the problem of a significant reduction in compressor efficiency.
  • a back pressure chamber is provided between the rolling cylinder and the frame, and the stationary cylinder has a back pressure DC path communicating the compression chamber and the back pressure chamber, It is desirable that the pressure in the back pressure chamber be set to a pressure intermediate between the pressure in the suction chamber and the pressure in the discharge chamber. This is a back pressure support means. As a result, a differential pressure is generated between the discharge chamber and the back pressure chamber, so that oil can be reliably supplied to the main bearing and the orbiting bearing described later.
  • a back pressure valve be attached to a flow passage communicating the compression chamber with the back pressure chamber.
  • the inner diameter of the flow path can be increased.
  • the drill blade used at the time of preparation of a flow path can be made thick, processing becomes easy, and processing cost can be reduced.
  • it is possible to bias the swinging piston and the rolling cylinder with a pressure close to the minimum necessary pressure to bias the stationary cylinder it is possible to reduce the sliding loss generated with the biasing. This also contributes to the improvement of the compressor efficiency.
  • the number of compression parts can be one. In other words, it is not necessary to make another compression part with different rotational phase overlap. Thereby, a compact rolling cylinder type displacement compressor can be obtained.
  • the compression unit, the rotational drive source, and the oil storage unit are preferably arranged in this order and connected by a crankshaft. Thereby, the circulation of the lubricating oil can be facilitated and the number of parts can be reduced.
  • the rolling cylinder has an eccentric shaft insertion hole, and the pivot piston is configured to close the eccentric shaft insertion hole. This makes it possible to ensure the airtightness of the compression section.
  • a shaft neck having a diameter smaller than that of the eccentric shaft be provided between the eccentric shaft and the rotation shaft of the crankshaft.
  • the diameter of the eccentric shaft insertion hole can be reduced, and the diameter of the compressor can be reduced.
  • a bypass hole having a bypass valve which is a one-way valve, be provided at the bottom of the eccentric cylinder hole of the stationary cylinder.
  • the rolling cylinder preferably includes a rolling cylinder having a cylinder groove and a rolling end plate, and the diameter of the rolling end plate is preferably larger than the diameter of the rolling cylinder.
  • the rolling cylinder is a rolling cylinder having a cylinder groove, and has a configuration in which a rolling end plate separate from the rolling cylinder is stacked on the rolling cylinder. It is desirable to make the diameter larger than the diameter of the rolling cylinder. This facilitates the processing of the rolling cylinder and the rolling end plate.
  • a step is provided between the bottom of the cylinder groove and the end plate front surface which is the cylinder groove side of the rolling end plate.
  • the rolling cylinder may include a rolling cylinder having a cylinder groove and a rolling cylinder end having a diameter equal to that of the rolling cylinder.
  • a compatible film is provided on the surface of at least one of the rolling cylinder and the orbiting piston.
  • FIG. 1 is a longitudinal sectional view of the RC compressor, and is a longitudinal sectional view passing through C1-C2-O-C3 of the transverse sectional view (FIGS. 2 and 3) in AA or BB shown in the figure.
  • C2 is at two places in FIGS. 2 and 3, which means that the space between two C2 is omitted.
  • 2 and 3 are a sectional view taken along the line AA (compression chamber forming part) and a sectional view taken along the line BB of FIG. 1 (an axial gap between the stationary cylinder, the orbiting piston and the rolling cylinder).
  • FIG. 3 the suction groove 2s2 immediately above the B-B cross section is illustrated by a two-dot chain line.
  • 4 and 5 are perspective views of the rolling cylinder and the orbiting piston, respectively.
  • 6 is a bottom view of the stationary cylinder
  • FIG. 7 is a perspective view of the frame.
  • FIG. 9 is a compression operation explanatory view using a cross section slightly lower than the cross section BB of FIG.
  • the suction groove 2s2 immediately above the cross section BB is illustrated by a broken line.
  • FIG. 10 is an enlarged view of the crank angle 0 degree of FIG.
  • FIG. 11 is an enlarged view of a timing at which one working chamber shifts from the compression stroke to the discharge stroke, and shows a state in which the crank angle in FIG. 9 is between 180 degrees and 225 degrees.
  • 12 is an enlarged cross-sectional view of the M portion of FIG. 3 in which the back pressure flow path is disposed
  • FIG. 13 is an OG longitudinal cross-sectional view of FIG.
  • FIG. 14 is an enlarged cross-sectional view near the surface of the rolling cylinder or pivoting piston.
  • the compression part is covered with a stationary cylinder 2 at the upper part and a frame 4 at the lower part, and a crankshaft 6 rotatably supported by a main bearing 24 comprising an upper main bearing 24a and a lower main bearing 24b provided on the frame 4 There is.
  • the motor 7 is provided on the crankshaft 6 while the compression portion is fixed to the chamber cylindrical portion 8a by welding or the like.
  • the motor 7 is composed of a stator 7 b fixedly arranged in the chamber cylindrical portion 8 a and a rotor 7 a fixedly arranged in the crankshaft 6.
  • a main balance 80 is fixed to the upper part and a counter balance 82 is fixed to the lower part of the rotor 7a.
  • the auxiliary bearing 25 is composed of a ball 25 a and a ball holder 25 b which rotatably supports the ball 25 a in all directions. After the lower part of the crankshaft 6 is inserted into the ball 25a and the ball 25a is attached to the ball holder 25b, the ball holder 25b is fixed and arranged on the lower frame 35 welded to the chamber cylindrical portion 8a. Thus, the auxiliary bearing 25 rotatably supports the lower portion of the crankshaft 6. Further, the fueling piece 6x is press-fitted to the lower end of the crankshaft 6.
  • the crankshaft 6 is provided with an oil supply vertical hole 6b penetrating the center in the central axis direction.
  • crankshaft 6 is provided with oil supply horizontal holes (an oil supply auxiliary horizontal hole 6g, an oil supply lower main horizontal hole 6f, an oil supply upper main hole 6e) connected to the auxiliary bearing 25, the lower main bearing 24b and the upper main bearing 24a.
  • oil supply horizontal holes an oil supply auxiliary horizontal hole 6g, an oil supply lower main horizontal hole 6f, an oil supply upper main hole 6e
  • center line refers to a straight line passing through the center of a member having a cylindrical or cylindrical shape.
  • central axis or “axis” may be used in the sense of "central line”.
  • a chamber lower lid 8c is attached by welding to a lower portion of the chamber cylindrical portion 8a.
  • oil is sealed at an appropriate stage of the RC compressor assembly, and an oil storage portion 125 for storing oil is formed near the lowermost chamber lower lid 8c.
  • the oil supply piece 6x is always immersed in the oil of the oil reservoir 125.
  • the oil of the oil storage portion 125 is fed to each portion through the oil supply piece 6x, the oil supply vertical hole 6b of the crankshaft 6, and the oil supply horizontal hole.
  • a chamber upper lid 8b is welded to the upper portion of the chamber cylindrical portion 8a to form a sealed chamber 8 (described in FIGS. 12 and 13) together with the chamber lower lid 8c.
  • a suction pipe 50 for introducing the working fluid from the outside to the compression section provided inside the sealed chamber 8 is provided on the chamber upper lid 8b.
  • a hermetic terminal 220 is provided to which the motor wire 7b3 connected thereto is connected.
  • the working fluid enters the compression section through the suction pipe 50 where it is boosted by the compression operation of the compression element which will be described in detail later.
  • the pressurized working fluid is discharged from the discharge flow path 2 d on the side surface of the compression unit into the inside of the RC compressor, and the inside of the chamber 8 is set to a discharge pressure. Thereafter, the working fluid flows toward the upper portion of the compression unit in order to be directed to the discharge pipe 55 provided in the chamber upper lid 8b, and is finally discharged from the discharge pipe 55 to the outside of the RC compressor.
  • the oil reservoir 125 is connected to each bearing by the oil supply pipe 6x, the oil supply vertical hole 6b, the oil supply horizontal hole 6g, the oil lower main horizontal hole 6f, and the oil upper main horizontal hole 6e constantly immersed in the oil reservoir 125.
  • a refueling channel is provided.
  • the pressure in the oil reservoir 125 is a discharge pressure
  • the oil in the oil reservoir 125 also becomes the discharge pressure.
  • a back pressure chamber 110 is provided for holding the outlet side of the oil from the main bearing 24 and the turning bearing 23 at a back pressure intermediate between the discharge pressure and the suction pressure.
  • Oil is supplied to the main bearing 24 and the orbiting bearing 23 by the differential pressure between the pressure and the back pressure. Further, oil is supplied from the auxiliary bearing 25 by centrifugal oil supply from the oil supply auxiliary horizontal hole 6g, and the oil after lubrication returns directly to the oil storage portion 125.
  • the frame 4 serving as the base of the compression unit will be described with reference to FIG.
  • the frame 4 has a configuration in which a frame mounting surface 4a to which the stationary cylinder 2 is attached later is a top surface, and a main bearing hole 4b is provided at the center.
  • An upper main bearing 24a and a lower main bearing 24b are press-fit into the main bearing hole 4b to form a main bearing 24 for rotatably supporting the crankshaft 6.
  • a shaft thrust surface 4c is provided around the upper surface of the main bearing hole 4b, and a shaft thrust surface groove 4c1 serving as an outlet for oil that lubricated the main bearing 24 is provided at one or more locations.
  • a bed surface 4d on which the rolling cylinder 1 is mounted is provided at a position surrounding the shaft thrust surface 4c.
  • the bed surface 4d is provided with a bed radial groove 4e and a bed peripheral groove 4f, which are passages of oil.
  • an oil flow lower cut surface 4g which is a passage of oil separated from the working fluid is provided.
  • the swing piston 3 has a configuration in which a swing bearing hole 3a is provided at the center.
  • the pivot bearing 23 is press-fit into the pivot bearing hole 3a.
  • two parallel piston cut surfaces 3c and two cylindrical peripheral surfaces 3e whose centers are offset from each other are provided on the side surface of the orbiting piston 3.
  • the upper and lower surfaces are provided with a piston upper surface 3d and a piston lower surface 3f which are flat surfaces parallel to each other.
  • the piston upper surface 3d is provided with a slide groove 3b having a central axis that is a slide axis that intersects the piston rotation axis, which is the central axis of the orbiting bearing 23, and is orthogonal to the piston cut surface 3c.
  • the slide groove 3b is set to a depth which communicates with the orbiting bearing hole 3a.
  • the slide groove 3b is extended to the outer periphery of the piston cut surface 3c.
  • a discontinuous familiar film 85 is provided which becomes discontinuous with the base material as shown in FIG.
  • the base material is an aluminum alloy
  • This makes it possible to provide a highly conformable film on the swing piston 3 because an optimum conformable film can be selected with almost no restriction regardless of the base material. Therefore, high performance can be realized even if the shape accuracy of the orbiting piston 3 is loosened, so there is an effect of cost reduction.
  • the rolling cylinder 1 basically has a configuration in which a rolling cylinder 1b and a rolling end plate 1a having a larger diameter than the rolling cylinder 1b are combined. For this reason, the rolling end plate 1a is in a state of being protruded uniformly to the lower surface portion of the rolling cylinder 1b. Then, on the upper surface side of the rolling cylinder 1b, a cylinder groove 1c having a cylinder axis orthogonal to the rolling cylinder axis which is a central axis of the rolling cylinder 1 as a central axis is provided.
  • the cylinder groove 1c has flat side surfaces parallel to each other, and the bottom surface is parallel to the upper surfaces of the cylinder cylinder 1b and the rolling end plate 1a.
  • the cylinder groove 1c extends to the outer periphery of the rolling cylinder 1b.
  • the piston cut surface 3c is gap-fitted to the side surface of the cylinder groove 1c, and the rolling cylinder 1 is engaged with the orbiting piston 3.
  • an eccentric shaft insertion hole 1d is provided at the center of the bottom of the cylinder groove 1c.
  • an additive familiar film 85 as shown in FIG. 14 may be provided on the entire surface of the rolling cylinder 1. Thereby, the same action and effect as in the case where the additive familiar film 85 is provided on the orbiting piston 3 can be obtained.
  • the stationary cylinder 2 is basically cylindrical in shape, and has a circular cylinder hole 2b (eccentric cylinder hole) formed in the cylinder mounting surface 2a on the lower surface. Furthermore, as the pin mechanism, the simplest fixing pin 5 is fixedly disposed at a position away from the center of the cylinder hole 2b by 2E in the cylinder hole 2b. The fixing pin 5 has a small hole at the bottom of the cylinder hole 2b and is press-fitted thereto. As another arrangement method of fixing pin 5, adhesion, welding, screwing, etc. may be mentioned. Further, a suction hole 2s1 connected from the upper surface to the cylinder hole 2b and a suction groove 2s2 on the upper surface of the cylinder hole 2b connected to the cylinder hole 2s are provided.
  • a suction hole 2s1 connected from the upper surface to the cylinder hole 2b and a suction groove 2s2 on the upper surface of the cylinder hole 2b connected to the cylinder hole 2s are provided.
  • the suction passage 2s is configured by the suction hole 2s1 and the suction groove 2s2. Further, the cylinder outer discharge groove 2d3 in the vertical direction is provided on the outer peripheral side surface, the cylinder inner discharge groove 2d1 is provided on the cylindrical peripheral surface of the cylinder hole 2b, and the cylinder discharge hole 2d2 connecting these two discharge grooves is provided to constitute the discharge flow passage 2d. .
  • bypass valve 22 is provided on the upper surface side of these stationary cylinders 2.
  • the bypass valve 22 has a construction in which a valve plate is inserted into the valve seat and the valve plate is lightly pressed from above with a spring. As a result, the bypass valve 22 becomes a one-way valve that allows only the flow in the direction of coming off from the cylinder hole 2b.
  • a back pressure direct current passage 200 is provided (the back pressure valve passage indicated by reference numeral 210 is neglected here because it is the third embodiment).
  • the back pressure direct current passage 200 which will be described in detail later, is a connection of the compression chamber side back pressure vertical hole 2h1, the back pressure horizontal hole 2h2, and the back pressure chamber side back pressure vertical hole 2h3. It is a flow path connecting the compression chamber 100 and the back pressure chamber 110 provided on the back side of the orbiting piston 3 and the rolling cylinder 1. This has the role of introducing an intermediate pressure from the compression chamber 100 into the back pressure chamber 110, the role of flowing out the oil flowing into the back pressure chamber 110 into the compression chamber 100, and promoting oil circulation in the compression section. It also plays a role in improving sealing performance in the compression chamber 100 by refueling the oil.
  • crankshaft 6 will be described with reference to FIG.
  • a shaft collar portion 6d which is a large diameter portion is provided at the upper portion of the shaft, and an eccentric portion including an eccentric shaft 6a having an eccentricity E and a shaft neck 6c having a smaller diameter than the eccentric shaft 6a is provided at the upper portion.
  • an oil supply vertical hole 6b is formed which penetrates in the axial direction from the lower end portion of the crankshaft 6 through the entire area including the upper eccentric portion.
  • the fueling piece 6x is press-fitted to the lower end portion of the fueling vertical hole 6b, and the fueling upper main horizontal hole 6e, the fueling lower main horizontal hole 6f and the fueling auxiliary horizontal hole 6g are provided in the lateral direction.
  • the crankshaft 6 rotatably supported by the main bearing 24 of the frame 4 is positioned in the axial direction by placing the shaft collar 6 d on the shaft thrust surface 4 c. Then, after the eccentric shaft 1a is made to protrude into the cylinder groove 1c by inserting the eccentric shaft 6a into the eccentric shaft insertion hole 1d of the rolling cylinder 1, the turning piston 3 is inserted to insert the eccentric shaft 6a into the turning bearing 23. Incorporate into the crankshaft 6 As a result, the orbiting piston 3 can rotate on the central axis of the eccentric shaft 1a. That is, the central axis of the eccentric shaft 1 a coincides with the piston rotation shaft 88 which is the rotation shaft of the swing piston 3.
  • a shaft neck 6c having a diameter smaller than that of the eccentric shaft 6a is provided between the eccentric shaft 6a and the shaft collar 6d so as to pass through the eccentric shaft insertion hole 1d.
  • the orbiting piston 3 has the piston cut surface 3c clearance fitted to the side surface of the cylinder groove 1c, and is incorporated into the rolling cylinder 1 in a slidable manner in the cylinder groove 1c.
  • the cylinder groove 1 c is divided into two working chambers by the swing piston 3.
  • the stationary cylinder 2 (stationary cylinder 2 having the fixing pin 5) incorporating the pin mechanism combines the assembly of the crankshaft 6, the rolling cylinder 1 and the turning piston 3 formed as described above in the method described below After that, the cylinder bolt 90 (see FIG. 1) in a state in which the intermediate line 63 between the pin shaft 61 and the central shaft 62 of the cylinder hole 2b (coincident with the rolling cylinder shaft 89 described later) Mount the frame 4).
  • the fixing pin 5 is inserted into the slide groove 3b of the orbiting piston 3, and the slide shaft, which is the central axis of the slide groove 3b, is orthogonal to the pin shaft 61 to constitute a pin slide mechanism. Furthermore, the rolling cylinder 1b of the rolling cylinder 1 is attached to the cylinder hole 2b, and the center line of the cylinder hole 2b and the rolling cylinder shaft 89 are aligned.
  • the interaxial distance between the shaft axis 87 and the pin axis 61 and the interaxial distance between the shaft axis 87 and the rolling cylinder axis 89 become E, and further, the pin axis 61 centered on the shaft axis 87 And the rolling cylinder axis 89 are disposed at point-symmetrical positions.
  • the piston rotation shaft 88 is a circular motion of a turning radius E passing the pin shaft 61 and the rolling cylinder shaft 89 centering on the shaft shaft 87 by the rotation of the crankshaft 6 (this time, clockwise as viewed from above the compressor). I do.
  • the turning piston 3 reciprocates in the cylinder groove 1c. Therefore, it is necessary to extend the length of the orbiting piston 3 so that the eccentric shaft insertion hole 1d is concealed by the orbiting piston 3 even when the orbiting piston 3 is close to the end of the cylinder groove 1c.
  • the diameter of the rolling cylinder 1 increases.
  • the diameter of the stationary cylinder 2 incorporating it increases, so the diameter of the chamber 8 increases, which causes a problem that the diameter of the RC compressor increases. As shown in FIG.
  • a shaft neck 6c is provided so as to pass the eccentric shaft insertion hole 1d with a shaft neck 6c whose diameter is smaller than that of the eccentric shaft 6a.
  • FIGS. 2 and 3 In the middle of the compression operation, two working chambers are formed respectively adjacent to the two piston cylindrical peripheral surfaces 3e of the orbiting piston 3.
  • the working chamber is at a maximum volume. That is, the working chamber having a volume 0 is the discharge chamber 105 completing the discharge stroke or the suction chamber 95 starting the suction stroke, and the working chamber having the largest volume is the suction chamber 95 or compression stroke completing the suction stroke To start the compression chamber 100.
  • the rotational direction of the crankshaft 6 and the rotational direction of the rolling cylinder 1 are the same. In the figure, since the crankshaft 6 rotates clockwise, the rolling cylinder 1 also rotates clockwise (arrows indicating the rotational direction of the rolling cylinder 1 are shown in FIGS. 2 and 3). Thus, when the rolling cylinder 1 rotates clockwise, the working chamber with a volume 0 (left working chamber of the orbiting piston 3) in FIGS. 2 and 3 is provided with the suction flow path 2s to start the suction stroke.
  • the position of the suction hole 2s1 in the stationary cylinder 2 is determined so that the side surface of the suction hole 2s1 starts to communicate with the working chamber.
  • the rolling cylinder 1 rotates slightly counterclockwise (when going back slightly to the time in FIGS. 2 and 3), the working chamber having the largest volume in FIGS.
  • the suction flow path 2s is provided on the Specifically, as shown in FIGS. 2 and 3, the suction groove 2s2 at the bottom of the cylinder hole 2b connected to the suction hole 2s1 continues to communicate with the working chamber (right working chamber of the swing piston 3) which is the suction chamber 95. It is a stretched configuration (see the two-dot chain line in FIG. 3).
  • suction hole 2s1 was provided in the vertical direction this time, it may be provided not only in that but in the horizontal direction. In this case, since the suction hole 2s1 and the chamber 8 are close to each other, the suction pipe 50 in the RC compressor can be shortened, so that suction superheat can be suppressed and the performance can be enhanced.
  • the working chamber having the largest volume in FIGS. 2 and 3 starts a sealed state in which neither the discharge passage 2 d nor the suction passage 2 s is communicated to continue the compression stroke.
  • the closed state continues until the compression chamber 100 is reduced to the specific volume ratio (volume of the suction chamber 95 at the completion of the suction stroke / volume of the compression chamber 100 at the start of the discharge stroke) and the discharge stroke is started.
  • the discharge flow channel 2d in FIGS. 2 and 3 shows the case where the specific volume ratio is 2.2.
  • the cylinder internal discharge groove 2d1 constituting the discharge flow passage 2d together with the cylinder through discharge hole 2d2 and the cylinder external discharge groove 2d3 Is provided at a position where communication with the compression chamber 100 starts. Then, from that time, the compression chamber 100 becomes the discharge chamber 105, and the cylinder internal discharge groove 2d1 is provided to communicate with the discharge chamber 105 in the entire period of the discharge stroke.
  • intrinsic volume ratio is 2.2 was shown here, intrinsic volume ratio is not limited to this numerical value, The function of a compression and discharge should just be obtained as a compressor.
  • the cylinder internal discharge groove 2d1 is positioned and sized so as to be separated from the discharge chamber 105.
  • the discharge portion directly communicating with the discharge chamber 105 is the cylinder internal discharge groove 2d1 provided on the cylindrical peripheral surface of the cylinder hole 2b
  • the present invention is not limited thereto.
  • the groove provided at the bottom of the cylinder hole 2b such as the suction groove 2s2 It may be In this case, the discharge flow path 2d can be set even when the specific volume ratio is large and compression must be performed to reduce the volume of the compression chamber 100 at the start of the discharge stroke.
  • FIGS. 9, 10 and 11 all of which are sections slightly lower than the section BB in FIG. 1.
  • the suction groove 2s2 since the suction groove 2s2 is in front of the cross section BB in FIG. 1, it should originally be represented by an imaginary line by a two-dot chain line.
  • a two-dot chain line in a small figure is difficult to distinguish as a solid line, this time, it is indicated by a broken line for convenience.
  • the compression operation of the RC compressor having the pin slide mechanism as the rotation halving mechanism is the pump operation which can be regarded as identical except that the time difference between the suction stroke end and the discharge stroke start is set extremely small. As such, only a brief description is given herein. Moreover, the overcompression suppression means which is not described in patent document 1 is also demonstrated.
  • FIG. 9 shows the state of the compression element every 45 degrees while the crankshaft 6 makes one rotation clockwise about the shaft axis 87 (the intersection of the center lines of the respective drawings).
  • the entire stroke (suction stroke, compression stroke, discharge stroke) of the compression operation is completed by rotating the crankshaft 6 twice.
  • FIG. 9 shows only half of the stroke, but utilizing the fact that two working chambers make a change by one rotation offset in crank angle in parallel, the second rotation stroke of the other working chamber Explain using change.
  • the description explains the travel of the working chamber to the left of the pivoting piston 3 in the top left view of FIG. Then, the crank angle at this time is set to 0 degrees.
  • the rotation synchronization means for synchronizing the rotation of the rolling cylinder 1 and the rotation of the rotation piston 3 is provided and then the rotation is performed.
  • the rotation half means is provided to reduce the amount of rotation of the piston 3 to half of the amount of rotation.
  • the rotation of the rolling cylinder 1 is always defined by the rotation of the orbiting piston 3 by the rotation synchronization means. This is realized by gap fitting the piston cut surface 3c of the orbiting piston 3 to the side surface of the cylinder groove 1c.
  • the rotation amount of the rolling cylinder 1 synchronized with the rotation of the orbiting piston 3 can be defined to be half of the orbiting amount of the orbiting piston 3 by combining the half rotation means. That is, the rotation of the rolling cylinder 1 can always be defined as normal rotation.
  • the rotation half means of the orbiting piston 3 inserts the fixing pin 5 fixed to the stationary cylinder 2 in the slide groove 3b provided on the piston top surface 3d which is the top surface of the orbiting piston 3.
  • the prescribed degree (regularity) that defines the rotation amount of the orbiting piston 3 by this pin slide mechanism as half of the orbiting amount changes with the crank angle.
  • the crank angle is maximized at 180 degrees
  • the crank angle is 0 degree (see FIG. 11 of Patent Document 1)
  • the pin shaft 61 and the piston rotation shaft 88 coincide with each other. Since the rotation amount of the orbiting piston 3 is not defined by the pin slide mechanism, it can be understood that the prescribed degree is minimized.
  • the crank angle is 0 degree
  • the piston rotation shaft 88 and the rolling cylinder shaft 89 are farthest apart, so originally there was no problem in the compression operation and the pin slide mechanism was unnecessary.
  • the regularity of the pin slide mechanism shows an ideal change in which the increasing necessity of the crank angle increases near 180 degrees and decreases near the decreasing crank angle of 0 degrees.
  • it is not necessary to improve the dimensional tolerance and the assembly accuracy of the compression elements that constitute the compression mechanism, and it is possible to reduce the manufacturing cost.
  • the pin slide mechanism has a high frequency of defining the movement of the compression element at a crank angle near 180 degrees. That is, the crank angle is concentrated around 180 degrees, and a load is applied to the fixed pin 5 and the slide groove 3b, which are pin mechanisms, and the size of the load is ideal for difficult-to-predict compression elements generated from the gaps between the parts. Due to deviations from movement, with irregular and shocking changes.
  • the method of making the piston cut surface 3c of the orbiting piston 3 as the rotation synchronizing means clearance fit to the side surface of the cylinder groove 1c functions as a seal between working chambers separated by the orbiting piston 3 and having a pressure difference. doing. For this reason, the sealability is significantly improved as compared with the wire seal as in Patent Document 2, and the compressor efficiency is improved.
  • the compression chamber volume at the time of discharge is 1 / 2.2 of the volume of the suction chamber 95 at the completion of the suction stroke, that is, the specific volume ratio is 2.2
  • the transition from the compression stroke completion to the discharge stroke open The timing is shown enlarged in FIG. This discharge stroke continues until the crank angle shown in FIG. 9 is 360 degrees, that is, 0 crank angle.
  • a bypass hole 2e always faces the compression chamber 100 during the compression stroke.
  • the bypass hole 2e and the bypass valve 22 of the one-way valve provided on the upper side perform the operation of flowing the working fluid in the compression chamber 100 into the machine space of the chamber 8 which is the discharge pressure. That is, the over-compression suppression means is configured.
  • extra compression can be avoided, so that the compressor efficiency is improved.
  • the bypass hole 2e is disposed at a position facing the discharge chamber 105 for a while after the compression chamber 100 is shifted to the discharge chamber 105.
  • This can be understood from the fact that the bypass hole 2e faces the discharge chamber 105 in the drawing of FIG. From this, the bypass hole 2e at this point of time plays a role of the discharge flow path. Therefore, the discharge flow path resistance can be reduced, and the compressor efficiency can be improved.
  • bypass hole 2e is also exposed to the working chamber when the suction chamber 95 is in operation. This is apparent from the fact that the bypass hole 2e is fully opened in the right working chamber where the compression stroke is started immediately after completing the suction stroke in the drawing of 0 crank angle in FIG. As a result, even if liquid compression occurs due to suction of a working fluid containing a large amount of liquefied working fluid or oil, the fluid undergoing fluid compression can be discharged from the compression chamber 100 at the bypass hole 2e, so an excessive pressure rise It is possible to avoid damage to the compression section due to the effect of improving the reliability.
  • a flapper type valve is used as the bypass valve.
  • the bypass valve may of course be a reed valve type. In this case, since the structure is simple, there is an effect of cost reduction.
  • FIGS. 9 and 12 an enlarged view of a portion M in FIG. 3 in the BB section of FIG. 1 and FIG.
  • oil supply to the pivot bearing 23 and the main bearing 24, oil supply passages to the pin mechanism which is a feature of the present invention, and differential pressure oil supply for flowing oil to the oil supply passages will be described.
  • a back pressure supporting means will be described which uses the back pressure used in differential pressure refueling to avoid the problem of the gap expansion caused by the refueling of the pin mechanism.
  • a description will be given of refueling of the compression chamber by the back pressure flow path for setting the back pressure.
  • the oil supply passage connecting the oil storage portion 125 to the main bearing 24 is provided by the oil supply pipe 6x constantly immersed in the oil storage portion 125, the oil supply vertical hole 6b, the oil lower main lateral hole 6f, and the oil upper main lateral hole 6e. Furthermore, since the vertical feed hole 6b is a hole that also penetrates the eccentric shaft 6a at the upper end of the crankshaft 6, the feed path leading to the pivot bearing 23 press-fit to the pivot piston 3 and the slide of the pivot piston 3 An oil supply passage connected to the fixing pin 5 which is a pin mechanism is formed through the groove 3b.
  • the pressure in the oil reservoir 125 is the discharge pressure
  • the oil in the oil reservoir 125 also becomes the discharge pressure.
  • the inner diameters of the oil supply pipe 6x and the oil supply vertical hole 6b are both large, and the slide groove 3b has an opening cross-sectional area larger than that (see FIG. 12).
  • the fixing pin 5 is provided almost right above the oil supply vertical hole 6b (see FIG. 12), the flow path from the oil reservoir 125 to the fixing pin 5 is linear. Therefore, the flow passage resistance of the pin oil supply passage which is the oil supply passage leading to the fixed pin 5 is extremely small, and it becomes possible to supply the oil of the discharge pressure to the fixed pin 5.
  • a discharge chamber 105 serving as a discharge pressure and a high pressure compression chamber 100 close thereto are adjacent to the fixing pin 5.
  • the gap between the piston upper surface 3 d and the bottom surface of the cylinder hole 2 b depends on the height of the bottom surface of the cylinder groove 1 c in which the orbiting piston 3 is installed. That is, it depends on the built-in height of the rolling cylinder 1.
  • the height of the bed surface 4d defines the gap between the piston upper surface 3d and the bottom of the cylinder hole 2b.
  • the height of the bed surface 4d is set so that the gap between the piston upper surface 3d and the bottom surface of the cylinder hole 2b is about 50 ⁇ m at maximum.
  • the discharge pressure is equal to or less than the discharge pressure in a space (hereinafter referred to as a back pressure chamber 110) formed between the lower end of the orbiting bearing 23 and the upper end of the main bearing 24, ie, below the orbiting piston 3 and the rolling cylinder 1.
  • a pressure hereinafter referred to as a back pressure, which naturally becomes equal to or higher than the suction pressure.
  • a back pressure which naturally becomes equal to or higher than the suction pressure.
  • the direction of relative movement of the fixing pin 5 in the slide groove 3b is always directed to the side for setting the discharge flow path 2d in which the suction flow path 2s is not set (moves downward in each drawing of FIG. 9) .
  • the upper space of the eccentric shaft 6a is narrowed in order to intentionally generate oil compression in the slide groove 3b.
  • the pressure of the oil becomes a pressure higher than the discharge pressure, and the oil can be supplied to the discharge pressure area in the vicinity of the discharge flow path 2d. Therefore, the leakage of the working fluid from the discharge pressure area can be suppressed. It becomes. This has the effect of improving the compressor efficiency.
  • the working fluid leaks from the discharge chamber 105 or the high pressure compression chamber 100 close to the discharge pressure to the low pressure components through the upper clearance. It also leaks to the suction chamber 95, which is a low pressure space, causing an internal leak and reducing the compressor efficiency.
  • pin lubrication becomes uncertain, and in the worst case, lubrication can not be performed. Then, the oil supply to the orbiting bearing 23 becomes unreliable, and the reliability of the fixed pin 5 and the orbiting bearing 23 which are pin mechanisms is impaired. From the above, it is essential to take measures not to enlarge the upper clearance even if the pin mechanism is refueled.
  • the back pressure which is the pressure of the back pressure chamber 110 is raised, and the rolling cylinder 1 and the orbiting piston 3 are A back pressure support means which always biases the stationary cylinder is used (the method of setting the back pressure will be described later).
  • the expansion of the upper gap can be avoided, so that the fixing pin 5 which is the pin mechanism, the turning bearing 23 and the main bearing 24 can be reliably supplied with oil, and the reliability of the RC compressor can be improved. Since it is possible to suppress internal leaks in which the leakage flow path is established, the compressor efficiency of the RC compressor can be improved.
  • the method of setting the back pressure will be described below. This is realized by introducing the pressure of the compression chamber 100 by the back pressure DC path 200 connecting the compression chamber 100 having a pressure close to the back pressure setting value and the back pressure chamber 110.
  • the compression chamber side back pressure vertical hole 2h1 is provided at the bottom of the cylinder hole 2b
  • the back pressure chamber side back pressure vertical hole 2h3 is provided on the cylinder mounting surface 2a, and they are connected by the back pressure horizontal hole 2h2 It is produced by forming a flow path of the shape of [].
  • the back pressure side hole 2h2 is opened from the outer peripheral side of the stationary cylinder 2, it is sealed with a stopper plug 92 after processing.
  • the back pressure chamber side back pressure vertical hole 2h3 communicates with the bed outer peripheral groove 4f, and is further connected to the back pressure chamber 110 via the bed radial groove 4e.
  • the compression chamber 100 of the RC compressor moves relative to the stationary cylinder 2 by the rotation of the rolling cylinder 1 and the movement of the orbiting piston 3 to the outer peripheral side. Therefore, by providing the back pressure introduction port of the back pressure direct current passage 200 in the stationary cylinder 2, it becomes possible to introduce a desired pressure into the back pressure chamber 110.
  • the back pressure DC path 200 is connected so as to connect to the compression chamber 100 in a range in which the volume ratio (maximum volume of suction chamber / compression chamber volume) becomes a desired back pressure value as the average value. Provide a back pressure inlet.
  • the back pressure direct current passage 200 By setting the back pressure direct current passage 200 as described above, the back pressure becomes higher than the pressure of the compression chamber 100 immediately after the back pressure direct current passage 200 starts conduction with the compression chamber 100. Thus, the oil flowing into the back pressure chamber 100 can be discharged to the compression chamber side. As a result, it is possible to continue the refueling to each part, continuously maintain the reliability of each part to be refueled and the sealability by the refueling, and it is possible to operate the compressor stably.
  • the back pressure direct current passage 200 is set at a position not facing the suction chamber 95, but in some cases, it may be a position facing the suction chamber 95 at the initial communication stage of the back pressure direct current passage 200.
  • the suction chamber 95 can be refueled by the back pressure direct current passage 200, the compressor efficiency can be improved by the improvement of the volume efficiency.
  • suction heating may be large, and the volume efficiency may be reduced. Therefore, it is necessary to adjust the communication section of the back pressure DC path 200 according to the operating conditions.
  • the oil that has flowed into the compression chamber 100 by the back pressure direct current passage 200 improves the sealability of the compression chamber 100. Therefore, the internal leakage of the compression stroke can be suppressed, and the compression efficiency can be improved.
  • the oil that has flowed into the compression chamber 100 finally shifts to the discharge stroke together with the working fluid, and is discharged to the inside of the compressor through the discharge flow path 2d as described above.
  • a flat rolling end plate 1a perpendicular to the rolling cylinder shaft 89 is provided as a rolling end.
  • the end plate front surface which is the upper surface of the rolling end plate 1a is biased to the cylinder mounting surface 2a by the biasing of the rolling cylinder 1 toward the stationary cylinder 2 side by the back pressure support described above.
  • the sealability between the back pressure chamber 110 and the suction chamber 95, the compression chamber 100, and the discharge chamber 105 is improved, and the effect of suppressing the internal leak and improving the compressor efficiency can be obtained.
  • the sealability is not perfect and some leaks occur.
  • the oil flowing into the back pressure chamber 110 flows to the suction chamber 95 or the compression chamber 100 whose pressure is lower than the back pressure. This improves the sealability. Further, the oil that has flowed into the suction chamber 95 has the effect of improving the compressor efficiency by improving the volumetric efficiency, since the sealability of the suction chamber 95 is improved.
  • the discontinuous familiar film 85 is provided on the surface of the orbiting piston 3 or the rolling cylinder 1, the upper clearance or the end plate front surface (upper surface of the rolling end plate 1a) and the cylinder mounting surface 2a and between the lower surface 3f of the piston and the bottom surface of the cylinder groove 1c are reduced as a whole along with the shape correction to reduce the leakage loss and to make the shapes thereof smooth to reduce the sliding loss. And the compressor efficiency is improved.
  • the end plate front surface is provided closer to the back surface of the rolling cylinder 1 than the bottom surface of the cylinder groove 1c. That is, the bottom of the cylinder groove 1c is made higher than the end plate front surface (the upper surface of the rolling end plate 1a) to make a level difference (see FIG. 4).
  • a gap between the outer peripheral surface of the step portion and the inner peripheral surface of the cylinder hole 2b is formed in the cylinder groove 1c, and the back pressure chamber 110 and the working chamber (the suction chamber 95, the compression chamber 100, the discharge chamber 105) Since it becomes a seal gap between, it is effective in suppressing leak of the gap and improving compressor efficiency.
  • the rolling cylinder 1 and the annular end plate can be separate parts. Then, the machining of the cylinder groove 1c of the rolling cylinder 1 and the machining of the rolling end plate 1a can be respectively performed by a lathe, and there is also an effect that the machining cost is reduced.
  • the rolling cylinder 1 and the rolling end plate 1a may be joined by welding, screwing or the like.
  • FIG. 15 is an enlarged cross-sectional view near the surface of the rolling cylinder 1 or the orbiting piston 3 and is a continuous familiar film 86 except that the compatibility decreases continuously as it goes inward from the surface. Since the same as in the case of FIG. Preferably, the continuous familiar film 86 is also formed over the entire sliding surface.
  • Such a film is a surface-modified familiar film which is dipped in a treatment agent to modify the surface.
  • the composition is deposited on the surface of the original base material onto the surface to react with the treatment agent to form a highly compatible deposited layer, and the original base material side is eroded and porous. It can be realized by forming an eroded layer which is slightly conformable to the base material but slightly conformable to the place of the base material, but less conformable than the deposit.
  • the base material is cast iron, there is a coating formed by manganese phosphate treatment. As a result, peeling of the coating is less likely to occur than in the case of the discontinuous familiar coating 85, and the reliability is improved.
  • the base material dimension to which the familiar film is provided since a certain degree of familiarity occurs even at the original surface position of the base material, it becomes easy to control the base material dimension to which the familiar film is provided. For example, even if the height of the orbiting piston 3 in the base material is slightly larger than the depth of the cylinder groove 1c in the base material, the continuous familiar film 86 of the orbiting piston 3 can cause wear to less than the base material size. That is, since the tolerances of the base material dimensions can be set to allow mutual interference, the distance between the dense surfaces (between the base surfaces of the base material) when unmatched becomes smaller, and the sealability is further improved and the compression is achieved. There is an effect that the machine efficiency is improved.
  • FIG. 16 is an enlarged cross-sectional view of part M of FIG.
  • FIG. 17 is a vertical cross-sectional view taken along the line O-G in FIG. 16 and shows a cross section of a portion where a back pressure valve channel is installed.
  • the second embodiment is the same as the first or second embodiment except that the back pressure valve channel 210 is used as the back pressure setting method for the back pressure supporting means, and therefore the description of the same portions will be omitted.
  • the back pressure valve flow path 210 is configured as a U-shaped flow path.
  • the compression chamber 100 in communication has a pressure increase due to the back pressure valve 26 described later, the compression chamber 100 is in communication with the compression chamber 100 on the lower pressure side than in the back pressure chamber DC path. Therefore, the position of the vertical hole on the compression chamber 100 side is changed to be the vertical hole 2h4 for the compression chamber side back pressure valve. Furthermore, since the back pressure valve 26 described later bears the setting of the pressure difference, the diameter of each hole is increased.
  • the compression chamber side back pressure valve vertical hole 2h4 is in the slide groove 3b between the crank angle 225 degrees and the crank angle 270 degrees in FIG. I will come. Since the slide groove 3b is filled with the oil of the discharge pressure and the working fluid of the discharge pressure generated therefrom, the discharge pressure is applied to the space for the compression chamber side back pressure valve vertical hole 2h4 and the back pressure valve flow path 210 connected thereto. Fluid flows in. When the compression chamber side back pressure valve vertical hole 2h4 reaches the compression chamber 100, the fluid flows into the compression chamber 100 having a pressure lower than the discharge pressure to cause an internal leak, so the performance is lowered. Therefore, in the present embodiment, slide groove both-ends sealing portions 3b1 shown by cross hatching in FIG. 16 are provided to avoid the internal leak described above and to suppress the performance deterioration.
  • the back pressure valve hole 2 h 5 is processed from the upper surface side of the stationary cylinder 2, and the back pressure valve 26 is installed therein. Therefore, the back pressure valve flow path 210 is configured to include the compression chamber side back pressure valve vertical hole 2 h 4, the back pressure horizontal hole 2 h 2, the back pressure chamber side back pressure vertical hole 2 h 3, the back pressure valve hole 2 h 5 and the back pressure valve 26.
  • the back pressure chamber side back pressure vertical hole 2h3 communicates with the bed outer peripheral groove 4f and is further connected to the back pressure chamber 110 through the bed radial groove 4e.
  • the back pressure valve piece 26 a is press-fitted and fixed to the bottom of the back pressure valve hole 2 h 5. Then, the back pressure valve plate 26b is placed thereon, the back pressure valve spring 26c is disposed thereon, and the back pressure valve hole 2h5 is sealed by the back pressure valve cap 26d. At this time, the back pressure valve spring 26c is compressed to press the back pressure valve plate 26b against the back pressure valve piece 26a with a predetermined force.
  • the back pressure valve 26 is opened when the back pressure is higher than the average pressure of the compression chamber 100 by which the back pressure is communicated by a fixed value corresponding to the pressing force of the back pressure valve spring 26c against the back pressure valve piece 26a. Control the pressure.
  • the oil flowing into the above-described back pressure chamber 110 is used as a fluid for increasing the pressure in the back pressure chamber 110. That is, the back pressure chamber fluid introduction path is all the inflow paths of the oil flowing into the back pressure chamber 110. Specifically, it is a flow path which flows in from the main bearing 24 and a flow path which flows in from the turning bearing 23.
  • the back pressure value becomes a pressure that is approximately a fixed value higher than the pressure of the compression chamber in communication. This is because the pressure close to the minimum pressure required to urge the orbiting piston 3 and the rolling cylinder 1 to the stationary cylinder 2 is a value close to the pressure required when the over-compression suppressing means using the bypass valve 22 etc. described above is adopted.
  • the sliding loss generated with the biasing can be reduced. Therefore, there is an effect that the compressor efficiency can be improved.
  • FIG. 18 is an enlarged vertical sectional view of a portion P in FIG.
  • a pin fixing flange 5 a is provided and screwed with a pin fixing screw 91.
  • the other parts are the same as in the first to third embodiments, and therefore the description of the same parts will be omitted.
  • FIG. 19 An RC compressor according to a fifth embodiment will be described with reference to FIGS. 19 and 20.
  • FIG. 19
  • FIG. 19 is an enlarged vertical sectional view of a portion P of FIG. 1, and FIG. 20 is an enlarged perspective view of a slider.
  • a slider 5c rotatable with respect to the pin axis is provided, thereby providing a pin mechanism.
  • the other parts are the same as in the first to fourth embodiments, and therefore the description of the same parts will be omitted.
  • the slider 5c rotatable relative to the pin axis is installed on the lower surface of the fixing pin 5 by the slider holding flange 5b.
  • the slider 5c is an element which is fitted in the slide groove 3b with a gap.
  • the slider 5c has a slider center hole 5c2 and a slider cut surface 5c1.
  • the slider cut surface 5c1 is provided as two flat portions parallel to each other, and is a portion to be fitted with a gap in the slide groove 3b.
  • the pin mechanism After inserting the slider holding flange 5b into the slider center hole 5c2 with a small amount of slack (play), the pin mechanism is manufactured by press-fitting to the fixing pin 5.
  • an impact load applied to the pin mechanism is applied from the side surface of the slide groove 3b to the slider cut surface 5c1, and further applied from the slider center hole 5c2 to the axis of the slider holding flange 5b. Since the former is flat planes and the latter is cylindrical peripheral surfaces, the delivery of loads at two locations does not involve delivery of loads with concentrated loads. For this reason, concentration of load in the pin mechanism can be suppressed, and there is an effect that the reliability is improved.
  • FIG. 21 is an enlarged vertical cross-sectional view of a portion Q in FIG. 1
  • FIG. 22 is a perspective view showing a modified example of the rolling cylinder 1.
  • the rolling end plate 1a which is a collar of the rolling cylinder 1 of FIG. 4 is replaced with a cylindrical rolling cylindrical end 1h.
  • the other parts are the same as in the first to fifth embodiments, and therefore the description of the same parts will be omitted.
  • the rolling cylindrical end 1h is biased to the inner peripheral surface of the cylinder hole 2b of the stationary cylinder 2 to open to the outer peripheral side by the back pressure, and the compression chamber 100 and the suction chamber 95 above the back pressure chamber 110 and the rolling end plate 1a.
  • the sealability with the discharge chamber 105 is improved, and the compressor efficiency is improved.
  • the rolling end plate 1a does not have a diameter larger than that of the rolling cylinder cylinder 1b, there is an effect that the diameter reduction of the RC compressor can be realized.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)
  • Compressor (AREA)
  • Compressors, Vaccum Pumps And Other Relevant Systems (AREA)

Abstract

A rolling cylinder type displacement compressor according to the present invention is provided with a rotary drive source, a compression unit, and an oil storage unit. The compression unit includes a rolling cylinder (1) having a cylinder groove, a circling piston (3) slidably accommodated in the cylinder groove, and a stationary cylinder (2) having an eccentric cylinder hole in which the rolling cylinder is rotatably accommodated. To the eccentric cylinder hole of the stationary cylinder, a fixed pin (5) having a center line different from a shaft axis is attached. The circling piston has a slide groove (3b). The fixed pin has such a configuration as to be slidably fitted to the slide groove, and is configured in such a manner that the autorotation of the circling piston and the rotation of the rolling cylinder are synchronized. Lubricating oil in the oil storage unit is supplied to the fixed pin and the slide groove. As a result, in the case where a pin mechanism is applied to the rolling cylinder type displacement compressor, the lubricating oil can be sufficiently supplied to the pin mechanism, so reliability of the pin mechanism can be improved.

Description

ローリングシリンダ式容積型圧縮機Rolling cylinder positive displacement compressor
 本発明は、旋回する旋回ピストンと、これに連れて回転するローリングシリンダと、これらを組込む静止シリンダと、を3つの主な圧縮要素とする圧縮機であって、これらの圧縮要素により作動流体である気体の圧縮を行うローリングシリンダ式容積型圧縮機に関する。 The present invention is a compressor including three pivoting pivoting pistons, a rolling cylinder that rotates along with the pivoting piston, and a stationary cylinder incorporating them, the working fluid being a working fluid by these compression elements. The present invention relates to a rolling cylinder positive displacement compressor which performs compression of a certain gas.
 ローリングシリンダ式の容積形ポンプにおけるポンプ動作のロックの問題を解決する手段に関しては、特開2010-185358号公報(特許文献1)に開示されている。特許文献1に記載の容積形ポンプは、作動流体が液体の油であり、旋回ピストンの旋回及びローリングシリンダの回転を維持すると共に旋回ピストンの旋回速度をローリングシリンダの回転速度の2倍に規定する回動規定手段を設けたものである。回動規定手段は、旋回ピストンの自転とローリングシリンダの回転とを同期させる回転同期手段と、旋回ピストンの旋回速度を自転速度の2倍に規定するピストン回動規定手段とを含む。そして、回転同期手段は、旋回ピストンにポンプ溝の2側面と各々摺接する側面平坦部を設けて構成している。また、ピストン回動規定手段は、位置固定円柱をガイド溝に嵌合する構成である。 Japanese Patent Application Laid-Open No. 2010-185358 (Patent Document 1) discloses a means for solving the problem of pump operation locking in a rolling cylinder positive displacement pump. In the positive displacement pump described in Patent Document 1, the working fluid is liquid oil, maintains the rotation of the swing piston and rotation of the rolling cylinder, and defines the swing speed of the swing piston to twice the rotation speed of the rolling cylinder. A rotation regulation means is provided. The rotation control means includes rotation synchronization means for synchronizing rotation of the rotation piston and rotation of the rolling cylinder, and piston rotation control means for setting the rotation speed of the rotation piston to twice the rotation speed. And a rotation synchronization means provides the turning piston with the side flat part which carries out sliding contact with two side faces of a pump groove, respectively. Further, the piston rotation regulating means is configured to fit the position fixed cylinder into the guide groove.
 一方、冷凍サイクル装置に用いることを想定したローリングシリンダ式容積形圧縮機の従来例としては、特開2011-17300号公報(特許文献2)がある。特許文献2には、回転するシリンダ内に設けられたピストン室内をピストンが往復動することによって冷媒の吸入及び吐出を行なう2つの吸入・吐出機構部を備え、吐出圧の背圧によりシリンダを軸方向に付勢するにより、区画部材とシリンダの端面との間のクリアランス管理を不要にする圧縮機が開示されている。この従来例においては、回転位相の異なるもう1つのローリングシリンダ圧縮機を組み合わせることにより、圧縮動作を滑らかに継続させる。 On the other hand, as a conventional example of a rolling cylinder type positive displacement compressor assumed to be used for a refrigeration cycle apparatus, there is JP-A-2011-17300 (Patent Document 2). Patent Document 2 includes two suction / discharge mechanisms for suctioning and discharging a refrigerant by reciprocating the piston in a piston chamber provided in a rotating cylinder, and the cylinder is pivoted by back pressure of discharge pressure. A compressor is disclosed that eliminates the need for managing the clearance between the partitioning member and the end face of the cylinder by biasing in a direction. In this conventional example, the compression operation is smoothly continued by combining another rolling cylinder compressor with different rotational phase.
特開2010-185358号公報JP, 2010-185358, A 特開2011-17300号公報JP, 2011-17300, A
 特許文献1に記載の容積形ポンプにおいては、ピストン回動規定手段(ピン機構)は、位置固定円柱(固定ピン)をガイド溝に嵌合する構成を有する。ピン機構には、圧縮機構が正規の動作からずれた場合のみ荷重が作用する。このため、ピン機構にかかる荷重は、衝撃的な不規則荷重となる場合が多く、常時確実な潤滑が必須となる。容積形ポンプの場合、作動流体が潤滑性を備えた液体の油であるから、吐出流路中にピン機構を配置するだけで、確実な潤滑を実現することができる。 In the positive displacement pump described in Patent Document 1, the piston rotation regulating means (pin mechanism) has a configuration in which a fixed column (fixing pin) is fitted in the guide groove. The pin mechanism is loaded only when the compression mechanism deviates from normal operation. For this reason, the load applied to the pin mechanism is often an impacting irregular load, and reliable lubrication is always required. In the case of the positive displacement pump, since the working fluid is oil of liquid having lubricity, reliable lubrication can be realized simply by arranging the pin mechanism in the discharge flow path.
 特許文献2に記載の圧縮機は、特許文献1に記載の回動規定手段を用いる方式とは異なるものである。すなわち、回転位相が異なる2つの圧縮機構部を必須としている。このため、圧縮機全体の体積が大きくなり、部品点数も多くなる。よって、圧縮機のコンパクト化の面で改善に限界がある。さらに、前記2つの圧縮機構部の回転位相差を厳密に規定する組み付けが必須となり、組み立て性の低下が問題となる。 The compressor described in Patent Document 2 is different from the system using the rotation regulating means described in Patent Document 1. That is, two compression mechanism parts having different rotational phases are essential. For this reason, the volume of the whole compressor increases and the number of parts also increases. Therefore, there is a limit in improvement in terms of the compactness of the compressor. Furthermore, the assembly which strictly defines the rotational phase difference of the two compression mechanism parts becomes essential, and the deterioration of the assemblability becomes a problem.
 ローリングシリンダ方式を採用した圧縮機に特許文献1に記載のピン機構を適用する場合には、作動流体を気体とするため、ピン機構への給油手段を設けることが必要となる。従来、当該ピン機構を圧縮機に適用した例はない。 In the case where the pin mechanism described in Patent Document 1 is applied to a rolling cylinder type compressor, it is necessary to provide a means for supplying oil to the pin mechanism in order to use the working fluid as a gas. Conventionally, there is no example which applied the said pin mechanism to a compressor.
 本発明は、ローリングシリンダ式容積型圧縮機にピン機構を適用した場合において、ピン機構に潤滑油を十分に供給し、ピン機構の信頼性を向上することを目的とする。 An object of the present invention is to sufficiently supply lubricating oil to a pin mechanism when the pin mechanism is applied to a rolling cylinder positive displacement compressor, and to improve the reliability of the pin mechanism.
 本発明のローリングシリンダ式容積型圧縮機は、シャフト軸を回転中心とし偏心シャフトを有するクランクシャフトと、クランクシャフトを軸支するフレームと、クランクシャフトに回転駆動トルクを付与する回転駆動源と、作動流体の吸込、圧縮及び吐出をする圧縮部と、貯油部と、を備え、圧縮部は、シリンダ溝を有するローリングシリンダと、シリンダ溝に摺動可能に収容された旋回ピストンと、ローリングシリンダを回転可能に収容した偏心シリンダ穴を有する静止シリンダと、を含み、ローリングシリンダと旋回ピストンと静止シリンダとで囲まれた空間は、ローリングシリンダ及び旋回ピストンの回転に伴い、吸込室、圧縮室及び吐出室として機能し、偏心シャフトは、シャフト軸とは異なる中心線を有し、旋回ピストンは、偏心シャフトの中心線を中心に自転可能に配置され、クランクシャフトの回転に従い公転し、静止シリンダの偏心シリンダ穴には、シャフト軸とは異なる中心線を有する固定ピンが付設され、旋回ピストンは、スライド溝を有し、固定ピンは、スライド溝に摺動可能に嵌合された構成を有し、偏心シリンダ穴の底面と固定ピンの中心線との交点と、偏心シリンダ穴の底面とローリングシリンダの中心線との交点と、を結ぶ線分の中点が、偏心シリンダ穴の底面とシャフト軸の中心線との交点に一致し、かつ、これらの3つの中心線が互いに平行となるように配置され、これにより旋回ピストンの自転とローリングシリンダの回転とが同期するように構成するとともに、旋回ピストンの自転角速度をクランクシャフトの回転角速度の半分に調整し、貯油部の圧力が吐出室の圧力と等しくなるように構成し、かつ、貯油部とスライド溝を繋ぐ油連通路を設けることにより、貯油部の潤滑油を固定ピン及びスライド溝に供給する。 The rolling cylinder positive displacement compressor according to the present invention comprises a crankshaft having an eccentric shaft with a shaft axis as a rotation center, a frame for supporting the crankshaft, a rotational drive source for applying rotational drive torque to the crankshaft, and operation. A compression unit includes a compression unit that sucks, compresses and discharges fluid, and an oil storage unit, and the compression unit includes a rolling cylinder having a cylinder groove, a pivoting piston slidably accommodated in the cylinder groove, and a rolling cylinder. And a stationary cylinder having an eccentric cylinder hole which can be accommodated, wherein a space surrounded by the rolling cylinder, the orbiting piston and the stationary cylinder is a suction chamber, a compression chamber and a discharge chamber as the rolling cylinder and the orbiting piston rotate. The eccentric shaft has a center line different from the shaft axis, and the pivoting piston A rotatable pin is disposed about the center line of the center shaft, revolves according to the rotation of the crankshaft, and a stationary pin having a center line different from the shaft axis is attached to the eccentric cylinder hole of the stationary cylinder. It has a slide groove, and the fixing pin has a configuration slidably fitted in the slide groove, and the intersection of the bottom surface of the eccentric cylinder hole and the center line of the fixing pin, the bottom surface of the eccentric cylinder hole and the rolling cylinder So that the middle point of the line connecting the centerline of the cylinder and the centerline of the line coincides with the intersection of the bottom of the eccentric cylinder hole and the centerline of the shaft axis, and these three centerlines are parallel to each other It is arranged so that the rotation of the orbiting piston is synchronized with the rotation of the rolling cylinder, and the rotation angular velocity of the orbiting piston is adjusted to half the rotational angular velocity of the crankshaft. , Constructed so that the pressure oil storage portion is equal to the pressure in the discharge chamber, and, by providing a Aburaren passage connecting the oil storage portion and the slide groove, and supplies the lubricating oil of the oil storage portion to the fixing pin and the slide groove.
 本発明によれば、ローリングシリンダ式容積型圧縮機にピン機構を適用した場合において、ピン機構に潤滑油を十分に供給することができ、ピン機構の信頼性を向上することができる。 According to the present invention, when the pin mechanism is applied to the rolling cylinder positive displacement compressor, the lubricating oil can be sufficiently supplied to the pin mechanism, and the reliability of the pin mechanism can be improved.
実施例1に係るローリングシリンダ式容積型圧縮機のバイパス弁及び吐出流路を横切る縦断面図である。FIG. 2 is a longitudinal sectional view across the bypass valve and the discharge flow path of the rolling cylinder positive displacement compressor according to the first embodiment. 図1のA-A断面図である。FIG. 2 is a cross-sectional view taken along line AA of FIG. 図1のB-B断面図である。FIG. 2 is a cross-sectional view taken along the line BB in FIG. 実施例1に係るローリングシリンダ式容積型圧縮機のローリングシリンダを示す斜視図である。FIG. 1 is a perspective view showing a rolling cylinder of a rolling cylinder positive displacement compressor according to a first embodiment. 実施例1に係るローリングシリンダ式容積型圧縮機の旋回ピストンを示す斜視図である。FIG. 2 is a perspective view showing a swing piston of the rolling cylinder positive displacement compressor according to the first embodiment. 実施例1に係るローリングシリンダ式容積型圧縮機の固定ピンを装着した静止シリンダを示す底面図である。FIG. 3 is a bottom view showing a stationary cylinder on which the fixing pin of the rolling cylinder positive displacement compressor according to the first embodiment is mounted. 実施例1に係るローリングシリンダ式容積型圧縮機のフレームを示す斜視図である。FIG. 1 is a perspective view showing a frame of a rolling cylinder positive displacement compressor according to a first embodiment. 実施例1に係るローリングシリンダ式容積型圧縮機の圧縮部の構成を示す分解斜視図である。FIG. 2 is an exploded perspective view showing a configuration of a compression unit of the rolling cylinder positive displacement compressor according to the first embodiment. 実施例1に係るローリングシリンダ式容積型圧縮機の圧縮動作について図1のB-B断面よりもわずかに下方の断面で見た図を用いて示すフロー図である。FIG. 7 is a flow diagram showing the compression operation of the rolling cylinder positive displacement compressor according to the first embodiment, using a view seen from a cross section slightly lower than the B-B cross section of FIG. 1; 図9のクランク角0degにおける配置の詳細を示す拡大断面図である。It is an expanded sectional view which shows the detail of arrangement | positioning in the crank angle 0deg of FIG. 実施例1に係るローリングシリンダ式容積型圧縮機の一方の作動室が圧縮行程から吐出行程へ移行する図9のクランク角180degと225degとの間における配置を示す拡大断面図である。FIG. 10 is an enlarged cross-sectional view showing an arrangement between a crank angle of 180 degrees and a crank angle of 225 degrees in FIG. 9 where one working chamber of the rolling cylinder positive displacement compressor according to the first embodiment shifts from the compression stroke to the discharge stroke. 図3のM部を示す拡大横断面図である。It is an expanded cross-sectional view which shows the M section of FIG. 図12のO-G断面図である。FIG. 13 is a cross-sectional view taken along the line O-G of FIG. 実施例1に係るローリングシリンダ式容積型圧縮機のローリングシリンダまたは旋回ピストンの表面付近を模式的に示す拡大断面図である。FIG. 3 is an enlarged cross-sectional view schematically showing the vicinity of the surface of a rolling cylinder or a orbiting piston of the rolling cylinder positive displacement compressor according to the first embodiment. 実施例2に係るローリングシリンダ式容積型圧縮機のローリングシリンダまたは旋回ピストンの表面付近を模式的に示す拡大断面図である。FIG. 8 is an enlarged cross-sectional view schematically showing the vicinity of the surface of a rolling cylinder or a orbiting piston of the rolling cylinder positive displacement compressor according to the second embodiment. 実施例3に係るローリングシリンダ式容積型圧縮機において図3のM部に該当する部分を示す拡大横断面図である。It is an expansion cross-sectional view which shows the part applicable to the M section of FIG. 3 in the rolling cylinder type positive displacement compressor which concerns on Example 3. FIG. 図16のO-G断面図である。FIG. 17 is a cross-sectional view taken along the line O-G of FIG. 実施例4に係るローリングシリンダ式容積型圧縮機において図1のP部に該当する部分を示す拡大縦断面図である。It is an expansion longitudinal cross-sectional view which shows the part applicable to the P section of FIG. 1 in the rolling cylinder type positive displacement compressor which concerns on Example 4. FIG. 実施例5に係るローリングシリンダ式容積型圧縮機において図1のP部に該当する部分を示す拡大縦断面図である。It is an expansion longitudinal cross-sectional view which shows the part applicable to the P section of FIG. 1 in the rolling cylinder type positive displacement compressor which concerns on Example 5. FIG. 実施例5に係るローリングシリンダ式容積型圧縮機におけるスライダを示す拡大斜視図である。FIG. 18 is an enlarged perspective view showing a slider in a rolling cylinder positive displacement compressor according to a fifth embodiment; 実施例6に係るローリングシリンダ式容積型圧縮機において図1のQ部に該当する部分を示す拡大縦断面図である。It is an expansion longitudinal cross-sectional view which shows the part applicable to Q part of FIG. 1 in the rolling cylinder type positive displacement compressor which concerns on Example 6. FIG. 実施例6に係るローリングシリンダ式容積型圧縮機の円筒端部付きのローリングシリンダを示す斜視図である。It is a perspective view showing a rolling cylinder with a cylinder end of a rolling cylinder type displacement type compressor concerning Example 6.
 本発明は、旋回する旋回ピストンと、これに連れて回転するローリングシリンダと、これらを組込む静止シリンダと、を3つの主な圧縮要素とする圧縮機であって、これらの圧縮要素により作動流体である気体の圧縮を行うローリングシリンダ式容積型圧縮機に関する。そして、特に、圧縮動作を滑らかに継続させるために、旋回ピストン及びローリングシリンダの自転速度を同期させる回転同期手段と、旋回ピストンの自転速度を旋回速度の半分に規定する自転半減手段と、を備えたローリングシリンダ式容積型圧縮機に関する。 The present invention is a compressor including three pivoting pivoting pistons, a rolling cylinder that rotates along with the pivoting piston, and a stationary cylinder incorporating them, the working fluid being a working fluid by these compression elements. The present invention relates to a rolling cylinder positive displacement compressor which performs compression of a certain gas. And, in particular, in order to continue the compression operation smoothly, it comprises rotation synchronization means for synchronizing the rotation speeds of the swing piston and the rolling cylinder, and rotation half means for defining the rotation speed of the swing piston to half the swing speed. The present invention relates to a rolling cylinder positive displacement compressor.
 なお、回転同期手段及び自転半減手段は、旋回ピストンのスライド溝と、静止シリンダに固定配置するピン機構とを用いるピンスライド機構によって実現する。ここで、貯油部の圧力は、吐出室の圧力と等しくなるように構成する。これにより、貯油部の潤滑油をピンスライド機構に供給することができる。 The rotation synchronization means and the rotation half means are realized by a pin slide mechanism using a slide groove of a swing piston and a pin mechanism fixedly arranged on a stationary cylinder. Here, the pressure in the oil storage portion is configured to be equal to the pressure in the discharge chamber. Thereby, the lubricating oil of an oil storage part can be supplied to a pin slide mechanism.
 本発明に用いる作動流体の例としては、空気、冷媒等が挙げられる。 Examples of the working fluid used in the present invention include air, a refrigerant and the like.
 以下、本発明の実施形態に係るローリングシリンダ式容積型圧縮機及びその効果について説明する。 Hereinafter, a rolling cylinder positive displacement compressor according to an embodiment of the present invention and its effects will be described.
 前記ローリングシリンダ式容積型圧縮機においては、油連通路は、別途設けた配管でもよいが、クランクシャフト及び偏心シャフトを貫通する給油縦穴とし、貯油部からスライド溝に連通する穴とすることが望ましい。これにより、給油のための配管を付加する必要がなくなる。また、クランクシャフト等に適宜給油縦穴に連通する横穴を設けることにより、軸受等への給油が容易になる。 In the rolling cylinder positive displacement compressor, the oil communication passage may be a separately provided pipe, but it is preferable to use an oil supply vertical hole penetrating the crankshaft and the eccentric shaft, and a hole communicating from the oil reservoir to the slide groove. . This eliminates the need for additional piping for refueling. In addition, by providing the crankshaft or the like with a horizontal hole that communicates with the oil supply vertical hole as appropriate, the oil supply to the bearing or the like becomes easy.
 前記ローリングシリンダ式容積型圧縮機においては、旋回ピストンは、互いに平行でかつ平坦である2つのピストンカット面を有し、ローリングシリンダのシリンダ溝は、互いに平行でかつ平坦である2つの内側側面部を有し、この2つの内側側面部の間に2つのピストンカット面が摺動可能となるように嵌合された構成とすることが望ましい。これにより、旋回ピストン及びローリングシリンダの自転速度の同期が確実なものとなる。 In the rolling cylinder positive displacement compressor, the pivoting piston has two piston cut surfaces parallel and flat to each other, and the cylinder grooves of the rolling cylinder are two inner side surfaces parallel to each other and flat It is desirable to have a configuration in which two piston cut surfaces are slidably fitted between the two inner side portions. This ensures synchronization of the rotational speeds of the pivoting piston and the rolling cylinder.
 前記ローリングシリンダ式容積型圧縮機は、圧縮を目的とするため、ピン機構の近傍には、吸込圧の吸込室とともに、吐出圧まで昇圧する圧縮室や吐出室が存在する。そのため、ピン機構への給油を確実に行うためには、少なくとも吐出圧の油を供給する必要がある。これを実施することにより、ピン機構の信頼性向上が可能となるが、反面、ピン機構付近が圧縮機内の最高圧力である吐出圧となるため、ピン機構近傍の隙間に吐出圧の油が侵入し、隙間が拡大するという問題が発生する。 The rolling cylinder positive displacement compressor has a suction chamber for suction pressure, and a compression chamber and a discharge chamber for raising the pressure to the discharge pressure in the vicinity of the pin mechanism, for the purpose of compression. Therefore, in order to reliably supply the pin mechanism, it is necessary to supply oil at least at the discharge pressure. By doing this, the reliability of the pin mechanism can be improved, but on the other hand, the discharge pressure, which is the maximum pressure in the compressor, is in the vicinity of the pin mechanism. And there is a problem that the gap widens.
 この結果、ピン機構に最も近い隙間である旋回ピストンと静止シリンダとの軸方向隙間も拡大してしまう。この隙間は、圧縮室又は吐出室と吸込室とのシール部となっているため、その隙間の拡大によって、漏れが増大する。同様に、隣接するローリングシリンダと静止シリンダとの軸方向隙間も拡大し、漏れが増大する。さらに、作動流体が気体であることから漏れ量の増大が生じる。さらに、圧縮を目的とすることから、吸込室と圧縮室や吐出室との圧力差が増大し、漏れ量が一層増大する。この結果、圧縮機効率が大幅に低下するという問題が生じる。 As a result, the axial clearance between the orbiting piston and the stationary cylinder, which is the clearance closest to the pin mechanism, is also enlarged. Since this clearance is a seal between the compression chamber or the discharge chamber and the suction chamber, the leakage increases due to the expansion of the clearance. Similarly, the axial clearance between the adjacent rolling cylinder and the stationary cylinder also increases and leakage increases. Furthermore, since the working fluid is a gas, an increase in leakage occurs. Furthermore, since the purpose is compression, the pressure difference between the suction chamber and the compression chamber or the discharge chamber increases, and the amount of leakage further increases. This results in the problem of a significant reduction in compressor efficiency.
 圧縮性の流体である気体の圧縮を行う場合、シール性を向上する観点から、背圧支持手段を設けることが望ましい。 In the case of compression of a gas which is a compressible fluid, it is desirable to provide a back pressure supporting means from the viewpoint of improving the sealing performance.
 前記ローリングシリンダ式容積型圧縮機においては、ローリングシリンダとフレームとの間には、背圧室が設けられ、静止シリンダは、圧縮室と背圧室とを連通する背圧直流路を有し、背圧室の圧力が吸込室の圧力と吐出室の圧力との中間の圧力となるように構成することが望ましい。これが背圧支持手段である。これにより、吐出室と背圧室との間に差圧が生じるため、後述の主軸受及び旋回軸受に確実に油を供給することができる。 In the rolling cylinder positive displacement compressor, a back pressure chamber is provided between the rolling cylinder and the frame, and the stationary cylinder has a back pressure DC path communicating the compression chamber and the back pressure chamber, It is desirable that the pressure in the back pressure chamber be set to a pressure intermediate between the pressure in the suction chamber and the pressure in the discharge chamber. This is a back pressure support means. As a result, a differential pressure is generated between the discharge chamber and the back pressure chamber, so that oil can be reliably supplied to the main bearing and the orbiting bearing described later.
 前記ローリングシリンダ式容積型圧縮機においては、圧縮室と背圧室とを連通する流路には、背圧弁が付設されていることが望ましい。これにより、圧縮室と背圧室との圧力差の設定は、背圧弁により行うようになるため、流路の内径を大きくすることができる。このため、流路の作製の際に用いるドリル刃を太いものにすることができ、加工が容易となり、加工コストを低減することができる。また、旋回ピストンやローリングシリンダを静止シリンダへ付勢するために必要最低限の圧力に近い圧力で付勢することができるため、付勢に伴って発生する摺動損失を低減することができる。これは、圧縮機効率の向上にも寄与する。 In the rolling cylinder positive displacement compressor, it is preferable that a back pressure valve be attached to a flow passage communicating the compression chamber with the back pressure chamber. As a result, since the setting of the pressure difference between the compression chamber and the back pressure chamber is performed by the back pressure valve, the inner diameter of the flow path can be increased. For this reason, the drill blade used at the time of preparation of a flow path can be made thick, processing becomes easy, and processing cost can be reduced. In addition, since it is possible to bias the swinging piston and the rolling cylinder with a pressure close to the minimum necessary pressure to bias the stationary cylinder, it is possible to reduce the sliding loss generated with the biasing. This also contributes to the improvement of the compressor efficiency.
 前記ローリングシリンダ式容積型圧縮機においては、圧縮部を1つとすることができる。言い換えると、回転位相の異なるもう1つの圧縮部を重ねた構成とする必要がなくなる。これにより、コンパクトなローリングシリンダ式容積型圧縮機を得ることができる。 In the rolling cylinder positive displacement compressor, the number of compression parts can be one. In other words, it is not necessary to make another compression part with different rotational phase overlap. Thereby, a compact rolling cylinder type displacement compressor can be obtained.
 前記ローリングシリンダ式容積型圧縮機においては、圧縮部、回転駆動源及び貯油部は、この順に配置され、クランクシャフトにより接続されていることが望ましい。これにより、潤滑油の循環を容易にし、部品点数を少なくすることができる。 In the rolling cylinder positive displacement compressor, the compression unit, the rotational drive source, and the oil storage unit are preferably arranged in this order and connected by a crankshaft. Thereby, the circulation of the lubricating oil can be facilitated and the number of parts can be reduced.
 前記ローリングシリンダ式容積型圧縮機においては、ローリングシリンダは、偏心シャフト挿入穴を有し、旋回ピストンは、偏心シャフト挿入穴を塞ぐ構成とすることが望ましい。これにより、圧縮部の気密性を確実にすることができる。 In the rolling cylinder positive displacement compressor, preferably, the rolling cylinder has an eccentric shaft insertion hole, and the pivot piston is configured to close the eccentric shaft insertion hole. This makes it possible to ensure the airtightness of the compression section.
 前記ローリングシリンダ式容積型圧縮機においては、偏心シャフトとクランクシャフトの回転軸との間に、偏心シャフトより直径が小さいシャフトネックを設けた構成とすることが望ましい。これにより、偏心シャフト挿入穴の直径を小さくすることができ、圧縮機の直径を小さくすることができる。 In the rolling cylinder positive displacement compressor, it is preferable that a shaft neck having a diameter smaller than that of the eccentric shaft be provided between the eccentric shaft and the rotation shaft of the crankshaft. Thereby, the diameter of the eccentric shaft insertion hole can be reduced, and the diameter of the compressor can be reduced.
 前記ローリングシリンダ式容積型圧縮機においては、静止シリンダの偏心シリンダ穴の底部には、一方向弁であるバイパス弁を有するバイパス穴を設けた構成とすることが望ましい。これにより、圧縮室の圧力を適正に維持することができる。 In the rolling cylinder positive displacement compressor, it is preferable that a bypass hole having a bypass valve, which is a one-way valve, be provided at the bottom of the eccentric cylinder hole of the stationary cylinder. Thereby, the pressure in the compression chamber can be maintained properly.
 前記ローリングシリンダ式容積型圧縮機においては、ローリングシリンダは、シリンダ溝を有するローリング円柱と、ローリング端板と、を含むものとし、ローリング端板の直径をローリング円柱の直径より大きくすることが望ましい。これにより、圧縮部のシール性を向上することができる。 In the rolling cylinder positive displacement compressor, the rolling cylinder preferably includes a rolling cylinder having a cylinder groove and a rolling end plate, and the diameter of the rolling end plate is preferably larger than the diameter of the rolling cylinder. Thereby, the sealability of the compression part can be improved.
 前記ローリングシリンダ式容積型圧縮機においては、ローリングシリンダは、シリンダ溝を有するローリング円柱であり、ローリング円柱とは別体であるローリング端板をローリングシリンダに重ねた構成を有し、ローリング端板の直径をローリング円柱の直径より大きくすることが望ましい。これにより、ローリング円柱及びローリング端板の加工が容易となる。 In the rolling cylinder positive displacement compressor, the rolling cylinder is a rolling cylinder having a cylinder groove, and has a configuration in which a rolling end plate separate from the rolling cylinder is stacked on the rolling cylinder. It is desirable to make the diameter larger than the diameter of the rolling cylinder. This facilitates the processing of the rolling cylinder and the rolling end plate.
 前記ローリングシリンダ式容積型圧縮機においては、シリンダ溝の底部とローリング端板のシリンダ溝側である端板おもて面との間には、段差を設けた構成とすることが望ましい。これにより、圧縮部のシール性を向上することができる。 In the rolling cylinder positive displacement compressor, preferably, a step is provided between the bottom of the cylinder groove and the end plate front surface which is the cylinder groove side of the rolling end plate. Thereby, the sealability of the compression part can be improved.
 前記ローリングシリンダ式容積型圧縮機においては、ローリングシリンダは、シリンダ溝を有するローリング円柱と、ローリング円柱と等しい直径を有するローリング円筒端部と、を含むものとしてもよい。これにより、圧縮部の直径を小さくし、かつ、シール性を向上することができる。 In the rolling cylinder positive displacement compressor, the rolling cylinder may include a rolling cylinder having a cylinder groove and a rolling cylinder end having a diameter equal to that of the rolling cylinder. As a result, the diameter of the compression portion can be reduced, and the sealability can be improved.
 前記ローリングシリンダ式容積型圧縮機においては、ローリングシリンダ及び旋回ピストンのうち少なくともいずれか一方の表面に馴染み性の皮膜を設けた構成とすることが望ましい。これにより、旋回ピストンの寸法精度を緩めても高性能を実現できるため、製造コストを低減することができる。 In the rolling cylinder positive displacement compressor, it is preferable that a compatible film is provided on the surface of at least one of the rolling cylinder and the orbiting piston. As a result, high performance can be realized even if the dimensional accuracy of the orbiting piston is loosened, so that the manufacturing cost can be reduced.
 以下、本発明のローリングシリンダ式容積型圧縮機について複数の実施例を用い、適宜図面を参照しながら詳細に説明する。なお、各図において、共通する部分には同一の図を用いて説明する。また、各実施例の図における同一符号は、同一物または相当物を示し、重複した説明を省略する。また、以下の説明においては、図中の上下方向に設置した状態で上面又は下面といった方向を含む表現をする場合があるが、実際の設置は、ここで表現した方向に限定されるものではない。 Hereinafter, a rolling cylinder positive displacement compressor according to the present invention will be described in detail with reference to the drawings, using a plurality of embodiments. In the respective drawings, the same parts will be described using the same drawings. In addition, the same reference numerals in the drawings of the respective embodiments indicate the same or equivalent parts, and duplicate explanations will be omitted. Moreover, in the following description, although the expression including the direction such as the upper surface or the lower surface may be expressed in the state of being installed vertically in the figure, the actual installation is not limited to the direction expressed here .
 実施例1に係るローリングシリンダ式容積型圧縮機(以後、RC圧縮機と略称する。)について、図1乃至図14を用いて説明する。図1はRC圧縮機の縦断面図であり、図中に示すA-AまたはB-Bにおける横断面図(図2、3)のC1-C2-O-C3を通る縦断面図である。ここで、C2は、図2、3中に二箇所あるが、これは二箇所のC2の間を省略したことを意味する。また、図2、3は図1のA-A断面図(圧縮室形成部)とB-B断面図(静止シリンダと旋回ピストンおよびローリングシリンダ間の軸方向隙間部)である。ここで、図3には、B-B断面のすぐ上にある吸込溝2s2が二点鎖線によって図示される。図4、5は各々ローリングシリンダと旋回ピストンの斜視図である。また、図6は静止シリンダの底面図、図7はフレームの斜視図である。そして、これらとクランクシャフトを合わせた圧縮要素部の組立てを説明する斜視図が図8である。そして、図9は図1のB-B断面よりもわずかに下方の断面を用いた圧縮動作説明図である。ここで、図9にはB-B断面のすぐ上にある吸込溝2s2が破線によって図示される。図10は図9のクランク角0度の拡大図である。これは、吐出行程から吸込行程へ移行する容積が0の作動室と吸込行程から圧縮行程へ移行する最大容積の作動室が共存するタイミングである。図11は一方の作動室が圧縮行程から吐出行程に移行するタイミングの拡大図であり、図9のクランク角180度と225度との間にある状態を示したものである。図12は背圧流路が配されている図3のM部の拡大横断面図であり、図13は図12のO-G縦断面図である。最後に、図14はローリングシリンダまたは旋回ピストンの表面近くの拡大断面図である。 A rolling cylinder positive displacement compressor (hereinafter abbreviated as an RC compressor) according to a first embodiment will be described with reference to FIGS. 1 to 14. FIG. 1 is a longitudinal sectional view of the RC compressor, and is a longitudinal sectional view passing through C1-C2-O-C3 of the transverse sectional view (FIGS. 2 and 3) in AA or BB shown in the figure. Here, C2 is at two places in FIGS. 2 and 3, which means that the space between two C2 is omitted. 2 and 3 are a sectional view taken along the line AA (compression chamber forming part) and a sectional view taken along the line BB of FIG. 1 (an axial gap between the stationary cylinder, the orbiting piston and the rolling cylinder). Here, in FIG. 3, the suction groove 2s2 immediately above the B-B cross section is illustrated by a two-dot chain line. 4 and 5 are perspective views of the rolling cylinder and the orbiting piston, respectively. 6 is a bottom view of the stationary cylinder, and FIG. 7 is a perspective view of the frame. And the perspective view explaining the assembly of the compression element part which put these and the crankshaft together is FIG. And FIG. 9 is a compression operation explanatory view using a cross section slightly lower than the cross section BB of FIG. Here, in FIG. 9, the suction groove 2s2 immediately above the cross section BB is illustrated by a broken line. FIG. 10 is an enlarged view of the crank angle 0 degree of FIG. This is the timing at which the working chamber having a volume of 0 transitioning from the discharge stroke to the suction stroke and the working chamber having the largest volume moving from the suction stroke to the compression stroke coexist. FIG. 11 is an enlarged view of a timing at which one working chamber shifts from the compression stroke to the discharge stroke, and shows a state in which the crank angle in FIG. 9 is between 180 degrees and 225 degrees. 12 is an enlarged cross-sectional view of the M portion of FIG. 3 in which the back pressure flow path is disposed, and FIG. 13 is an OG longitudinal cross-sectional view of FIG. Finally, FIG. 14 is an enlarged cross-sectional view near the surface of the rolling cylinder or pivoting piston.
 まず、RC圧縮機の圧縮部内部を除く全体構成を説明した後、圧縮部以外での作動流体と油の流れを説明する。次に、圧縮部の構成と作動流体と油の流れを詳細に説明する。 First, after describing the entire configuration excluding the inside of the compression unit of the RC compressor, the flows of working fluid and oil outside the compression unit will be described. Next, the configuration of the compression unit and the flow of working fluid and oil will be described in detail.
 最初に、圧縮部内部を除く全体構成を、図1を用いて説明する。圧縮部は、上部を静止シリンダ2、下部をフレーム4で覆われ、フレーム4に設けられる上主軸受24aと下主軸受24bからなる主軸受24で回転支持されるクランクシャフト6が下方へ突き出ている。この圧縮部をチャンバ円筒部8aに溶接等によって固定配置しつつ、このクランクシャフト6にモータ7を設ける。モータ7は、チャンバ円筒部8aに固定配置されるステータ7bと、クランクシャフト6に固定配置されるロータ7aとによって構成される。ここで、ロータ7aには、上部に主バランス80、下部にカウンタバランス82が固定されている。これらは、圧縮部の解説で説明するクランクシャフト6に固定配置されるシャフトバランス81とともに、圧縮動作で旋回運動する圧縮要素(旋回ピストン3)の不釣り合いを動的にバランスさせる役目を担う。 First, the entire configuration excluding the inside of the compression unit will be described with reference to FIG. The compression part is covered with a stationary cylinder 2 at the upper part and a frame 4 at the lower part, and a crankshaft 6 rotatably supported by a main bearing 24 comprising an upper main bearing 24a and a lower main bearing 24b provided on the frame 4 There is. The motor 7 is provided on the crankshaft 6 while the compression portion is fixed to the chamber cylindrical portion 8a by welding or the like. The motor 7 is composed of a stator 7 b fixedly arranged in the chamber cylindrical portion 8 a and a rotor 7 a fixedly arranged in the crankshaft 6. Here, a main balance 80 is fixed to the upper part and a counter balance 82 is fixed to the lower part of the rotor 7a. These, together with the shaft balance 81 fixedly arranged on the crankshaft 6 described in the explanation of the compression section, play a role of dynamically balancing the unbalance of the compression element (pivotal piston 3) that pivots in the compression operation.
 副軸受25は、ボール25aと、そのボール25aを全方位で回転支持するボールホルダ25bとから構成される。クランクシャフト6の下部をボール25aへ挿入し、そのボール25aをボールホルダ25bへ装着した後、ボールホルダ25bをチャンバ円筒部8aに溶接された下フレーム35に固定配置する。これにより、副軸受25はクランクシャフト6下部を回転支持する。また、クランクシャフト6の下端には給油ピース6xが圧入される。クランクシャフト6には、中心軸方向に中央を貫通する給油縦穴6bが設けられている。さらに、クランクシャフト6には、副軸受25や下主軸受24bや上主軸受24aへ繋がる給油横穴(給油副横穴6g、給油下主横穴6f、給油上主横穴6e)が設けられている。 The auxiliary bearing 25 is composed of a ball 25 a and a ball holder 25 b which rotatably supports the ball 25 a in all directions. After the lower part of the crankshaft 6 is inserted into the ball 25a and the ball 25a is attached to the ball holder 25b, the ball holder 25b is fixed and arranged on the lower frame 35 welded to the chamber cylindrical portion 8a. Thus, the auxiliary bearing 25 rotatably supports the lower portion of the crankshaft 6. Further, the fueling piece 6x is press-fitted to the lower end of the crankshaft 6. The crankshaft 6 is provided with an oil supply vertical hole 6b penetrating the center in the central axis direction. Further, the crankshaft 6 is provided with oil supply horizontal holes (an oil supply auxiliary horizontal hole 6g, an oil supply lower main horizontal hole 6f, an oil supply upper main hole 6e) connected to the auxiliary bearing 25, the lower main bearing 24b and the upper main bearing 24a.
 なお、本明細書において、「中心線」とは、円柱形状又は円筒形状を有する部材の中心を通る直線をいう。以下では、「中心軸」又は「軸」を「中心線」の意味で使用する場合もある。 In the present specification, the "center line" refers to a straight line passing through the center of a member having a cylindrical or cylindrical shape. In the following, "central axis" or "axis" may be used in the sense of "central line".
 チャンバ円筒部8aの下部には、チャンバ下フタ8cが溶接により付設されている。ここで、RC圧縮機組立ての適当な段階で油を封入し、最下部となるチャンバ下フタ8c付近に油を溜める貯油部125が形成されている。貯油部125の油には常に給油ピース6xが浸かるようにする。貯油部125の油は、給油ピース6x、クランクシャフト6の給油縦穴6b及び給油横穴を介して各部に送られるようになっている。 A chamber lower lid 8c is attached by welding to a lower portion of the chamber cylindrical portion 8a. Here, oil is sealed at an appropriate stage of the RC compressor assembly, and an oil storage portion 125 for storing oil is formed near the lowermost chamber lower lid 8c. The oil supply piece 6x is always immersed in the oil of the oil reservoir 125. The oil of the oil storage portion 125 is fed to each portion through the oil supply piece 6x, the oil supply vertical hole 6b of the crankshaft 6, and the oil supply horizontal hole.
 さらに、チャンバ円筒部8aの上部にはチャンバ上フタ8bが溶接され、前記したチャンバ下フタ8cとともに密閉されたチャンバ8(図12、13に記載)を形成する。この密閉されたチャンバ8の内部に設けられる前記圧縮部へ外部から作動流体を導入する吸込パイプ50をチャンバ上フタ8bに設ける。さらに、チャンバ上フタ8bには、圧縮部で昇圧された作動流体をRC圧縮機外部へ吐出する吐出パイプ55と、モータ7へ電力を供給するための外部電源線(図示せず)とステータ7bへ繋がるモータ線7b3が接続するハーメチック端子220が設けられる。 Furthermore, a chamber upper lid 8b is welded to the upper portion of the chamber cylindrical portion 8a to form a sealed chamber 8 (described in FIGS. 12 and 13) together with the chamber lower lid 8c. A suction pipe 50 for introducing the working fluid from the outside to the compression section provided inside the sealed chamber 8 is provided on the chamber upper lid 8b. Furthermore, in the chamber upper lid 8b, a discharge pipe 55 for discharging the working fluid pressurized in the compression section to the outside of the RC compressor, an external power supply line (not shown) for supplying electric power to the motor 7, and a stator 7b A hermetic terminal 220 is provided to which the motor wire 7b3 connected thereto is connected.
 次に、気体である作動流体の流れを説明する。作動流体は、吸込パイプ50を通って圧縮部へ入り、そこで後で詳細に説明する圧縮要素の圧縮動作によって昇圧する。昇圧した作動流体は、圧縮部側面の吐出流路2dからRC圧縮機内部へ吐出され、チャンバ8内を吐出圧とする。その後、作動流体は、チャンバ上フタ8bに設けられる吐出パイプ55へ向かうため、圧縮部上部側へ流れ、最後に吐出パイプ55からRC圧縮機外部へ吐出される。 Next, the flow of the working fluid which is a gas will be described. The working fluid enters the compression section through the suction pipe 50 where it is boosted by the compression operation of the compression element which will be described in detail later. The pressurized working fluid is discharged from the discharge flow path 2 d on the side surface of the compression unit into the inside of the RC compressor, and the inside of the chamber 8 is set to a discharge pressure. Thereafter, the working fluid flows toward the upper portion of the compression unit in order to be directed to the discharge pipe 55 provided in the chamber upper lid 8b, and is finally discharged from the discharge pipe 55 to the outside of the RC compressor.
 次に、油の流れを説明する。前記した通り、貯油部125に常時浸かっている給油パイプ6x、給油縦穴6b、給油横穴(給油副横穴6g、給油下主横穴6f、給油上主横穴6e)によって、貯油部125から各軸受へ繋がる給油路が設けられている。前記したとおり貯油部125内の圧力は吐出圧であるため、貯油部125の油も吐出圧となる。後の圧縮部の説明で詳細に述べるが、主軸受24や旋回軸受23からの油の出口側を吐出圧と吸込圧との中間となる背圧に保持する背圧室110を設け、吐出圧と背圧との差圧で主軸受24と旋回軸受23へ油を供給する。また、副軸受25は給油副横穴6gから遠心給油で油が供給され、潤滑後の油は貯油部125へ直接戻る。 Next, the flow of oil will be described. As described above, the oil reservoir 125 is connected to each bearing by the oil supply pipe 6x, the oil supply vertical hole 6b, the oil supply horizontal hole 6g, the oil lower main horizontal hole 6f, and the oil upper main horizontal hole 6e constantly immersed in the oil reservoir 125. A refueling channel is provided. As described above, since the pressure in the oil reservoir 125 is a discharge pressure, the oil in the oil reservoir 125 also becomes the discharge pressure. As will be described in detail in the description of the compression section later, a back pressure chamber 110 is provided for holding the outlet side of the oil from the main bearing 24 and the turning bearing 23 at a back pressure intermediate between the discharge pressure and the suction pressure. Oil is supplied to the main bearing 24 and the orbiting bearing 23 by the differential pressure between the pressure and the back pressure. Further, oil is supplied from the auxiliary bearing 25 by centrifugal oil supply from the oil supply auxiliary horizontal hole 6g, and the oil after lubrication returns directly to the oil storage portion 125.
 一方、主軸受24や旋回軸受23を潤滑して背圧室110へ入った油は、圧縮部内の各部の潤滑やシールを行った後、作動流体とともに、吐出流路2dからRC圧縮機内部へ吐出される。ここでは、圧縮部内の給油路のうち、背圧室110を経由する給油路のみ説明したが、それに限らず、他の給油路も存在する。しかし、最後は全て作動流体とともに、吐出流路2dからRC圧縮機内部へ吐出される。これらは、後の圧縮部の説明で詳細に述べる。 On the other hand, after the main bearing 24 and the orbiting bearing 23 are lubricated and the oil entering the back pressure chamber 110 lubricates and seals each part in the compression part, together with the working fluid, from the discharge flow path 2d to the inside of the RC compressor It is discharged. Here, among the oil supply paths in the compression unit, only the oil supply path passing through the back pressure chamber 110 has been described, but the present invention is not limited thereto, and other oil supply paths may be present. However, in the final stage, the fluid is discharged into the RC compressor from the discharge flow path 2d together with the working fluid. These will be described in detail in the description of the compression section later.
 吐出流路2dから作動流体とともにRC圧縮機内へ吐出された油は、チャンバ円筒部8a内壁へ衝突した際、大部分の油は、粘性によって内壁へ付着し、作動流体から分離する。チャンバ円筒部8a内壁へ分離した油は、油流下カット面4gを通って圧縮部下部空間へ流下する。そして、油は、ステータカット面7b1やステータ巻き線7b2を通す穴を通ってステータ下部空間へ流下し、最後に、下フレーム35の油滴下周囲穴35aと油滴下中央穴35bを通って、貯油部125へ戻る。ここで、滴下中央穴35bを通る油は、副軸受25への給油も兼ねる。特に、ボール25aとボールホルダ25bとの隙間への給油となる。 When oil discharged from the discharge flow path 2d into the RC compressor together with the working fluid collides with the inner wall of the chamber cylindrical portion 8a, most of the oil adheres to the inner wall by viscosity and separates from the working fluid. The oil separated to the inner wall of the chamber cylindrical portion 8a flows down to the lower portion space of the compression portion through the oil flow lower cut surface 4g. Then, the oil flows down to the lower space of the stator through the holes passing through the stator cut surface 7b1 and the stator winding 7b2, and finally, the oil is stored through the oil dripping peripheral hole 35a and the oil dripping central hole 35b of the lower frame 35. Return to section 125. Here, the oil passing through the drip center hole 35 b also serves as oil supply to the sub bearing 25. In particular, the oil is supplied to the gap between the ball 25a and the ball holder 25b.
 次に、圧縮部の構成について、図1乃至図14を用いて詳細に説明する。 Next, the configuration of the compression unit will be described in detail using FIGS. 1 to 14.
 まず、圧縮部のベースとなるフレーム4を図7で説明する。フレーム4は、後に静止シリンダ2を取付けるフレーム取付面4aを上面とし、中央部に主軸受穴4bを設けた構成を有する。この主軸受穴4bには、上主軸受24aと下主軸受24b(図1参照)を圧入して、クランクシャフト6を回転支持する主軸受24を形成する。その主軸受穴4bの上面周囲には、シャフトスラスト面4cを設け、その一か所または複数個所に主軸受24を潤滑した油の出口路となるシャフトスラスト面溝4c1を設ける。そして、シャフトスラスト面4cを取り囲んだ位置に、ローリングシリンダ1を載せるベッド面4dを設ける。このベッド面4dには油の通路となるベッド放射溝4eとベッド外周溝4fを設ける。一方、フレーム4の外周には、前記した通り、作動流体から分離した油の通路である油流下カット面4gを設ける。 First, the frame 4 serving as the base of the compression unit will be described with reference to FIG. The frame 4 has a configuration in which a frame mounting surface 4a to which the stationary cylinder 2 is attached later is a top surface, and a main bearing hole 4b is provided at the center. An upper main bearing 24a and a lower main bearing 24b (see FIG. 1) are press-fit into the main bearing hole 4b to form a main bearing 24 for rotatably supporting the crankshaft 6. A shaft thrust surface 4c is provided around the upper surface of the main bearing hole 4b, and a shaft thrust surface groove 4c1 serving as an outlet for oil that lubricated the main bearing 24 is provided at one or more locations. Then, a bed surface 4d on which the rolling cylinder 1 is mounted is provided at a position surrounding the shaft thrust surface 4c. The bed surface 4d is provided with a bed radial groove 4e and a bed peripheral groove 4f, which are passages of oil. On the other hand, on the outer periphery of the frame 4, as described above, an oil flow lower cut surface 4g which is a passage of oil separated from the working fluid is provided.
 次に、旋回ピストン3を図5で説明する。旋回ピストン3は、中央に旋回軸受穴3aを設けた構成を有する。この旋回軸受穴3aに旋回軸受23を圧入する。また、旋回ピストン3の側面には、互いに平行な2つのピストンカット面3cと中心がずれた2つの円筒周面3eとを設ける。さらに、上下には、お互いに平行な平坦面であるピストン上面3dとピストン下面3fとを設ける。このうち、ピストン上面3dには、旋回軸受23の中心軸であるピストン自転軸と交差し、さらにピストンカット面3cと直交するスライド軸を中心軸とするスライド溝3bを設ける。このスライド溝3bは、旋回軸受穴3aと通じる深さに設定する。また、スライド溝3bは、ピストンカット面3cの外周まで延在されている。これにより、溝加工時の刃具の動きが一様になるために、溝の形状精度が向上するという効果がある。 Next, the orbiting piston 3 will be described with reference to FIG. The swing piston 3 has a configuration in which a swing bearing hole 3a is provided at the center. The pivot bearing 23 is press-fit into the pivot bearing hole 3a. Further, on the side surface of the orbiting piston 3, two parallel piston cut surfaces 3c and two cylindrical peripheral surfaces 3e whose centers are offset from each other are provided. Furthermore, the upper and lower surfaces are provided with a piston upper surface 3d and a piston lower surface 3f which are flat surfaces parallel to each other. Among these, the piston upper surface 3d is provided with a slide groove 3b having a central axis that is a slide axis that intersects the piston rotation axis, which is the central axis of the orbiting bearing 23, and is orthogonal to the piston cut surface 3c. The slide groove 3b is set to a depth which communicates with the orbiting bearing hole 3a. Moreover, the slide groove 3b is extended to the outer periphery of the piston cut surface 3c. As a result, the movement of the cutting tool at the time of grooving becomes uniform, so that the shape accuracy of the groove is improved.
 また、旋回ピストン3の表面全域には、図14で示すような馴染み性が母材と不連続になる不連続性馴染み皮膜85を設ける。このような皮膜の例としては、母材がアルミ合金の場合、ニッケルリンメッキ等の、母材とは異なる材料を表面に付加して形成する皮膜がある。これは、母材に関係なく最適な馴染み皮膜をほとんど制約なく選定することができるため、馴染み性の高い皮膜を旋回ピストン3上に設けることが可能となる。よって、旋回ピストン3の形状精度を緩めても高性能を実現できるため、コスト低減という効果がある。 Further, over the entire surface of the orbiting piston 3, a discontinuous familiar film 85 is provided which becomes discontinuous with the base material as shown in FIG. As an example of such a film, when the base material is an aluminum alloy, there is a film formed by adding a material different from the base material, such as nickel phosphorus plating, to the surface. This makes it possible to provide a highly conformable film on the swing piston 3 because an optimum conformable film can be selected with almost no restriction regardless of the base material. Therefore, high performance can be realized even if the shape accuracy of the orbiting piston 3 is loosened, so there is an effect of cost reduction.
 次に、ローリングシリンダ1を図4で説明する。ローリングシリンダ1は、基本的には、ローリング円柱1bと、このローリング円柱1bよりも直径が大きいローリング端板1aとを合わせた構成を有する。このため、ローリング端板1aは、ローリング円柱1bの下面部に一様にはみ出した状態である。そして、ローリング円柱1bの上面側には、ローリングシリンダ1の中心軸であるローリングシリンダ軸と直交するシリンダ軸を中心軸としたシリンダ溝1cを設ける。 Next, the rolling cylinder 1 will be described with reference to FIG. The rolling cylinder 1 basically has a configuration in which a rolling cylinder 1b and a rolling end plate 1a having a larger diameter than the rolling cylinder 1b are combined. For this reason, the rolling end plate 1a is in a state of being protruded uniformly to the lower surface portion of the rolling cylinder 1b. Then, on the upper surface side of the rolling cylinder 1b, a cylinder groove 1c having a cylinder axis orthogonal to the rolling cylinder axis which is a central axis of the rolling cylinder 1 as a central axis is provided.
 このシリンダ溝1cは、平坦で互いに平行な側面を有し、底面はシリンダ円柱1bやローリング端板1aの各上面と平行になっている。また、シリンダ溝1cはローリング円柱1bの外周まで延在されている。これにより、溝加工時の刃具の動きが一様になるために、溝の形状精度が向上するという効果がある。そして、このシリンダ溝1cの側面へ前記ピストンカット面3cを隙間嵌合させ、ローリングシリンダ1を旋回ピストン3と噛み合わせる。ここで、旋回ピストン3はクランクシャフト6で旋回運動させられるため、シリンダ溝1cの底面中央に偏心シャフト挿入穴1dを設ける。また、ローリングシリンダ1の表面全域には、旋回ピストン3と同様に、図14で示すような付加性馴染み皮膜85を設けてもよい。これにより、旋回ピストン3に付加性馴染み皮膜85を設けた場合と同様の作用効果がある。 The cylinder groove 1c has flat side surfaces parallel to each other, and the bottom surface is parallel to the upper surfaces of the cylinder cylinder 1b and the rolling end plate 1a. The cylinder groove 1c extends to the outer periphery of the rolling cylinder 1b. As a result, the movement of the cutting tool at the time of grooving becomes uniform, so that the shape accuracy of the groove is improved. Then, the piston cut surface 3c is gap-fitted to the side surface of the cylinder groove 1c, and the rolling cylinder 1 is engaged with the orbiting piston 3. Here, since the orbiting piston 3 is caused to pivot by the crankshaft 6, an eccentric shaft insertion hole 1d is provided at the center of the bottom of the cylinder groove 1c. Further, as in the case of the orbiting piston 3, an additive familiar film 85 as shown in FIG. 14 may be provided on the entire surface of the rolling cylinder 1. Thereby, the same action and effect as in the case where the additive familiar film 85 is provided on the orbiting piston 3 can be obtained.
 次に、静止シリンダ2を図1、6及び8を用いて説明する。 Next, the stationary cylinder 2 will be described with reference to FIGS.
 静止シリンダ2は、基本的に円柱形状であり、下面のシリンダ取付面2aに円形のシリンダ穴2b(偏心シリンダ穴)を開ける。さらに、このシリンダ穴2bにシリンダ穴2b中心から2Eだけ離れた位置にピン機構としては、最も単純な固定ピン5を固定配置する。この固定ピン5は、シリンダ穴2bの穴底に小穴をあけ、そこへ圧入している。固定ピン5の他の配置方法としては、接着や溶接やねじ止めなども挙げられる。また、上面からシリンダ穴2bに繋がる吸込穴2s1とシリンダ穴2sに繋がるシリンダ穴2b上面の吸込溝2s2を設ける。これらの吸込穴2s1と吸込溝2s2で吸込流路2sを構成する。さらに、外周側面に縦方向のシリンダ外部吐出溝2d3、シリンダ穴2bの円筒周面にシリンダ内部吐出溝2d1、そしてそれら2つの吐出溝を繋ぐシリンダ吐出穴2d2を設け、吐出流路2dを構成する。 The stationary cylinder 2 is basically cylindrical in shape, and has a circular cylinder hole 2b (eccentric cylinder hole) formed in the cylinder mounting surface 2a on the lower surface. Furthermore, as the pin mechanism, the simplest fixing pin 5 is fixedly disposed at a position away from the center of the cylinder hole 2b by 2E in the cylinder hole 2b. The fixing pin 5 has a small hole at the bottom of the cylinder hole 2b and is press-fitted thereto. As another arrangement method of fixing pin 5, adhesion, welding, screwing, etc. may be mentioned. Further, a suction hole 2s1 connected from the upper surface to the cylinder hole 2b and a suction groove 2s2 on the upper surface of the cylinder hole 2b connected to the cylinder hole 2s are provided. The suction passage 2s is configured by the suction hole 2s1 and the suction groove 2s2. Further, the cylinder outer discharge groove 2d3 in the vertical direction is provided on the outer peripheral side surface, the cylinder inner discharge groove 2d1 is provided on the cylindrical peripheral surface of the cylinder hole 2b, and the cylinder discharge hole 2d2 connecting these two discharge grooves is provided to constitute the discharge flow passage 2d. .
 さらに、静止シリンダ2の上面からシリンダ穴2bへ貫通するバイパス穴2eをシリンダ穴2bの側面近くに2個設ける。それらの静止シリンダ2の上面側にはバイパス弁22が設けられている。このバイパス弁22は、図1に示す通り、弁座に弁板を投入し上部から弁板をばねで軽く押さえる構成となっている。これにより、バイパス弁22はシリンダ穴2bから上部へ抜ける方向の流れだけを許容する一方向弁となる。 Further, two bypass holes 2e penetrating from the upper surface of the stationary cylinder 2 to the cylinder hole 2b are provided near the side surface of the cylinder hole 2b. A bypass valve 22 is provided on the upper surface side of these stationary cylinders 2. As shown in FIG. 1, the bypass valve 22 has a construction in which a valve plate is inserted into the valve seat and the valve plate is lightly pressed from above with a spring. As a result, the bypass valve 22 becomes a one-way valve that allows only the flow in the direction of coming off from the cylinder hole 2b.
 さらに、背圧直流路200を設ける(符号210で示す背圧弁流路は、実施例3であるため、ここでは無視する。)。この背圧直流路200は、後で詳細に説明するが、圧縮室側背圧縦穴2h1、背圧横穴2h2及び背圧室側背圧縦穴2h3を繋いだものであり、中間的な圧力区間の圧縮室100と旋回ピストン3やローリングシリンダ1の背面側に設ける背圧室110を繋ぐ流路である。これは、背圧室110に圧縮室100から中間圧を導入する役割とともに、背圧室110に流入する油を圧縮室100へ流出して、圧縮部内の油循環を促す役割と、圧縮室100への給油で圧縮室100内のシール性向上を実現する役割も担う。 Furthermore, a back pressure direct current passage 200 is provided (the back pressure valve passage indicated by reference numeral 210 is neglected here because it is the third embodiment). The back pressure direct current passage 200, which will be described in detail later, is a connection of the compression chamber side back pressure vertical hole 2h1, the back pressure horizontal hole 2h2, and the back pressure chamber side back pressure vertical hole 2h3. It is a flow path connecting the compression chamber 100 and the back pressure chamber 110 provided on the back side of the orbiting piston 3 and the rolling cylinder 1. This has the role of introducing an intermediate pressure from the compression chamber 100 into the back pressure chamber 110, the role of flowing out the oil flowing into the back pressure chamber 110 into the compression chamber 100, and promoting oil circulation in the compression section. It also plays a role in improving sealing performance in the compression chamber 100 by refueling the oil.
 最後に、クランクシャフト6を図1で説明する。 Finally, the crankshaft 6 will be described with reference to FIG.
 シャフト上部に大径部であるシャフトつば部6dを設け、それより上部に偏心量Eの偏心シャフト6aと、偏心シャフト6aよりも小径のシャフトネック6cとからなる偏心部を設ける。そして、クランクシャフト6の下端部から上部の偏心部も含む全域を通して軸方向に貫通する給油縦穴6bを設ける。そして、給油縦穴6bの下端部には給油ピース6xを圧入するとともに、横方向に給油上主横穴6eと給油下主横穴6fと給油副横穴6gを設ける。これらの給油横穴は、クランクシャフト6をRC圧縮機に組込んだ場合、軸受に向かう位置に設置される。また、偏心シャフト6aは、クランクシャフト6をRC圧縮機に組込んだ場合、旋回ピストン3の旋回軸受23に挿入する。また、シャフトつば部6dには、前記したシャフトバランス81を偏心シャフト6aと正反対の方向に圧入する。 A shaft collar portion 6d which is a large diameter portion is provided at the upper portion of the shaft, and an eccentric portion including an eccentric shaft 6a having an eccentricity E and a shaft neck 6c having a smaller diameter than the eccentric shaft 6a is provided at the upper portion. Then, an oil supply vertical hole 6b is formed which penetrates in the axial direction from the lower end portion of the crankshaft 6 through the entire area including the upper eccentric portion. Then, the fueling piece 6x is press-fitted to the lower end portion of the fueling vertical hole 6b, and the fueling upper main horizontal hole 6e, the fueling lower main horizontal hole 6f and the fueling auxiliary horizontal hole 6g are provided in the lateral direction. When the crankshaft 6 is incorporated into the RC compressor, these oil supply lateral holes are installed at positions facing the bearings. The eccentric shaft 6a is inserted into the turning bearing 23 of the turning piston 3 when the crankshaft 6 is incorporated into the RC compressor. Further, the shaft balance 81 described above is press-fit into the shaft collar 6d in the direction opposite to the eccentric shaft 6a.
 次に、これまでに説明した圧縮部構成要素の組立てについて、図1、2、3及び8を用いて説明する。まず、図8を用いて組立て方法を説明する。 The assembly of the compression unit components described so far will now be described using FIGS. First, the assembling method will be described with reference to FIG.
 前記したとおり、フレーム4の主軸受24で回転支持されるクランクシャフト6は、シャフトつば部6dをシャフトスラスト面4cにのせることで軸方向の位置決めがなされている。そして、ローリングシリンダ1の偏心シャフト挿入穴1dへ偏心シャフト6aを挿入することで偏心シャフト1aをシリンダ溝1c内に突出させた後、その偏心シャフト6aを旋回軸受23に挿入させるべく旋回ピストン3をクランクシャフト6へ組込む。それにより、旋回ピストン3は偏心シャフト1aの中心軸を中心に自転可能となる。つまり、偏心シャフト1aの中心軸は旋回ピストン3の自転軸であるピストン自転軸88と一致する。 As described above, the crankshaft 6 rotatably supported by the main bearing 24 of the frame 4 is positioned in the axial direction by placing the shaft collar 6 d on the shaft thrust surface 4 c. Then, after the eccentric shaft 1a is made to protrude into the cylinder groove 1c by inserting the eccentric shaft 6a into the eccentric shaft insertion hole 1d of the rolling cylinder 1, the turning piston 3 is inserted to insert the eccentric shaft 6a into the turning bearing 23. Incorporate into the crankshaft 6 As a result, the orbiting piston 3 can rotate on the central axis of the eccentric shaft 1a. That is, the central axis of the eccentric shaft 1 a coincides with the piston rotation shaft 88 which is the rotation shaft of the swing piston 3.
 偏心シャフト6aとシャフトつば部6dとの間には、偏心シャフト6aよりも小径の部分であるシャフトネック6cを設け、偏心シャフト挿入穴1dを通るようにする。さらに、旋回ピストン3は、ピストンカット面3cをシリンダ溝1cの側面へ隙間嵌合させ、シリンダ溝1c内を摺動可能な状態でローリングシリンダ1へ組込む。これにより、シリンダ溝1cは旋回ピストン3によって2個の作動室に仕切られる。 A shaft neck 6c having a diameter smaller than that of the eccentric shaft 6a is provided between the eccentric shaft 6a and the shaft collar 6d so as to pass through the eccentric shaft insertion hole 1d. Further, the orbiting piston 3 has the piston cut surface 3c clearance fitted to the side surface of the cylinder groove 1c, and is incorporated into the rolling cylinder 1 in a slidable manner in the cylinder groove 1c. Thus, the cylinder groove 1 c is divided into two working chambers by the swing piston 3.
 ピン機構を組込んだ静止シリンダ2(固定ピン5を有する静止シリンダ2)は、以上のようにして形成されたクランクシャフト6とローリングシリンダ1と旋回ピストン3のアセンブリを以下に記載する方法で組み合わせた後、ピン軸61とシリンダ穴2bの中心軸62(後述のローリングシリンダ軸89と一致する。)との中間線63をシャフト軸87と一致するようにした状態でシリンダボルト90(図1参照)によりフレーム4に装着する。 The stationary cylinder 2 (stationary cylinder 2 having the fixing pin 5) incorporating the pin mechanism combines the assembly of the crankshaft 6, the rolling cylinder 1 and the turning piston 3 formed as described above in the method described below After that, the cylinder bolt 90 (see FIG. 1) in a state in which the intermediate line 63 between the pin shaft 61 and the central shaft 62 of the cylinder hole 2b (coincident with the rolling cylinder shaft 89 described later) Mount the frame 4).
 まず、固定ピン5を旋回ピストン3のスライド溝3bへ挿入して、スライド溝3bの中心軸であるスライド軸とピン軸61とを直交させてピンスライド機構を構成する。さらに、ローリングシリンダ1のローリング円柱1bをシリンダ穴2bへ装着し、シリンダ穴2bの中心線とローリングシリンダ軸89とを一致させる。以上のように組合せた結果、シャフト軸87とピン軸61との軸間距離及びシャフト軸87とローリングシリンダ軸89との軸間距離はともにEとなり、さらに、シャフト軸87を中心としてピン軸61とローリングシリンダ軸89は、点対称の位置に配置される。そして、ピストン自転軸88は、クランクシャフト6の回転(今回は、圧縮機上方から見て時計回り)によって、シャフト軸87を中心にピン軸61及びローリングシリンダ軸89を通る旋回半径Eの円運動を行う。 First, the fixing pin 5 is inserted into the slide groove 3b of the orbiting piston 3, and the slide shaft, which is the central axis of the slide groove 3b, is orthogonal to the pin shaft 61 to constitute a pin slide mechanism. Furthermore, the rolling cylinder 1b of the rolling cylinder 1 is attached to the cylinder hole 2b, and the center line of the cylinder hole 2b and the rolling cylinder shaft 89 are aligned. As a result of combining as described above, the interaxial distance between the shaft axis 87 and the pin axis 61 and the interaxial distance between the shaft axis 87 and the rolling cylinder axis 89 become E, and further, the pin axis 61 centered on the shaft axis 87 And the rolling cylinder axis 89 are disposed at point-symmetrical positions. And, the piston rotation shaft 88 is a circular motion of a turning radius E passing the pin shaft 61 and the rolling cylinder shaft 89 centering on the shaft shaft 87 by the rotation of the crankshaft 6 (this time, clockwise as viewed from above the compressor). I do.
 ところで、後述するが、旋回ピストン3は、シリンダ溝1c内を往復運動する。このため、旋回ピストン3がシリンダ溝1cの端に寄った場合でも偏心シャフト挿入穴1dが旋回ピストン3で隠れるように旋回ピストン3の長さを伸ばす必要がある。旋回ピストン3の長さが伸びると、シリンダ溝1cの長さを伸ばすことが必要になり、ローリングシリンダ1の直径が増大する。ローリングシリンダ1の直径が増大すると、それを組込む静止シリンダ2の直径が増大するため、チャンバ8の直径が増大し、RC圧縮機が大径化してしまうという問題が生じる。図1で示すとおり、偏心シャフト6aよりも小径部のシャフトネック6cで偏心シャフト挿入穴1dを通すようにシャフトネック6cを設けている。この結果、偏心シャフト挿入穴1dを小さくできるため、RC圧縮機の大径化を抑制できるという効果がある。 By the way, although mentioned later, the turning piston 3 reciprocates in the cylinder groove 1c. Therefore, it is necessary to extend the length of the orbiting piston 3 so that the eccentric shaft insertion hole 1d is concealed by the orbiting piston 3 even when the orbiting piston 3 is close to the end of the cylinder groove 1c. As the length of the orbiting piston 3 increases, it becomes necessary to extend the length of the cylinder groove 1c, and the diameter of the rolling cylinder 1 increases. When the diameter of the rolling cylinder 1 increases, the diameter of the stationary cylinder 2 incorporating it increases, so the diameter of the chamber 8 increases, which causes a problem that the diameter of the RC compressor increases. As shown in FIG. 1, a shaft neck 6c is provided so as to pass the eccentric shaft insertion hole 1d with a shaft neck 6c whose diameter is smaller than that of the eccentric shaft 6a. As a result, since the eccentric shaft insertion hole 1d can be made smaller, it is possible to suppress the increase in diameter of the RC compressor.
 以上のようにして圧縮要素を組込んだRC圧縮機の圧縮部の構成を、図2、3の横断面で説明する。 The configuration of the compression section of the RC compressor incorporating the compression element as described above will be described with reference to the cross sections of FIGS.
 圧縮動作の途中においては旋回ピストン3の2つのピストン円筒周面3eに各々隣接して作動室が2つ形成されるが、図2、3はともに、作動室の一つが容積0となり、他方の作動室が最大の容積となる状態である。すなわち、容積0となる作動室は、吐出行程が完了する吐出室105または吸込行程を開始する吸込室95であり、容積が最大となる作動室は、吸込行程が完了する吸込室95または圧縮行程を開始する圧縮室100である。後述するが、クランクシャフト6の回転方向とローリングシリンダ1の回転方向とは同一である。図中、クランクシャフト6は時計回りに回転するため、ローリングシリンダ1も時計回りに回転する(図2、3にローリングシリンダ1の回転方向を示す矢印を記載)。よって、ローリングシリンダ1が時計回りに回転すると、図2、3で容積0の作動室(旋回ピストン3の左側作動室)が吸込行程を開始するべく吸込流路2sを設ける。 In the middle of the compression operation, two working chambers are formed respectively adjacent to the two piston cylindrical peripheral surfaces 3e of the orbiting piston 3. In FIGS. The working chamber is at a maximum volume. That is, the working chamber having a volume 0 is the discharge chamber 105 completing the discharge stroke or the suction chamber 95 starting the suction stroke, and the working chamber having the largest volume is the suction chamber 95 or compression stroke completing the suction stroke To start the compression chamber 100. As will be described later, the rotational direction of the crankshaft 6 and the rotational direction of the rolling cylinder 1 are the same. In the figure, since the crankshaft 6 rotates clockwise, the rolling cylinder 1 also rotates clockwise (arrows indicating the rotational direction of the rolling cylinder 1 are shown in FIGS. 2 and 3). Thus, when the rolling cylinder 1 rotates clockwise, the working chamber with a volume 0 (left working chamber of the orbiting piston 3) in FIGS. 2 and 3 is provided with the suction flow path 2s to start the suction stroke.
 具体的には、図2、3で示す通り、静止シリンダ2における吸込穴2s1の位置は、吸込穴2s1の側面が作動室と連通開始するように決定する。また、ローリングシリンダ1が反時計回りにわずかに回ったとき(図2、3の時刻をわずかにさかのぼったとき)、図2、3で容積最大となっている作動室が吸込行程中となるように吸込流路2sを設ける。具体的には、図2、3で示す通り、吸込穴2s1と繋がるシリンダ穴2b穴底の吸込溝2s2が吸込室95である作動室(旋回ピストン3の右側作動室)と連通を継続するべく延伸した構成である(図3の二点鎖線参照)。今回は、吸込穴2s1を縦方向に設けたが、それに限らず、横方向に設けてもよい。このようにした場合、吸込穴2s1とチャンバ8が近くなるため、RC圧縮機内の吸込パイプ50を短くすることが可能となり、吸込過熱を抑制でき、性能を高くすることができるという効果がある。 Specifically, as shown in FIGS. 2 and 3, the position of the suction hole 2s1 in the stationary cylinder 2 is determined so that the side surface of the suction hole 2s1 starts to communicate with the working chamber. In addition, when the rolling cylinder 1 rotates slightly counterclockwise (when going back slightly to the time in FIGS. 2 and 3), the working chamber having the largest volume in FIGS. The suction flow path 2s is provided on the Specifically, as shown in FIGS. 2 and 3, the suction groove 2s2 at the bottom of the cylinder hole 2b connected to the suction hole 2s1 continues to communicate with the working chamber (right working chamber of the swing piston 3) which is the suction chamber 95. It is a stretched configuration (see the two-dot chain line in FIG. 3). Although suction hole 2s1 was provided in the vertical direction this time, it may be provided not only in that but in the horizontal direction. In this case, since the suction hole 2s1 and the chamber 8 are close to each other, the suction pipe 50 in the RC compressor can be shortened, so that suction superheat can be suppressed and the performance can be enhanced.
 さらに、ローリングシリンダ1が時計回りに回転すると、図2、3で容積最大の作動室が圧縮行程を継続するべく吐出流路2dにも吸込流路2sにも通じさせない密閉状態を開始する。その密閉状態は、圧縮室100が固有容積比(吸込行程完了時の吸込室95の容積/吐出行程開始時の圧縮室100の容積)の容積まで縮小し吐出行程を開始するまで続ける。図2、3の吐出流路2dは、固有容積比が2.2の場合を示している。すなわち、圧縮室100の容積が吸込行程完了時の吸込室95の容積÷2.2まで縮小した時にシリンダ貫通吐出穴2d2とシリンダ外部吐出溝2d3とともに吐出流路2dを構成するシリンダ内部吐出溝2d1が圧縮室100と連通開始する位置に設けられる。そして、その時から圧縮室100は吐出室105となり、シリンダ内部吐出溝2d1は吐出行程の全期間で吐出室105と連通するように設けられる。なお、ここでは、固有容積比が2.2の場合を示したが、固有容積比は、この数値に限定されるものではなく、圧縮機として圧縮及び吐出の機能が得られればよい。 Furthermore, when the rolling cylinder 1 rotates clockwise, the working chamber having the largest volume in FIGS. 2 and 3 starts a sealed state in which neither the discharge passage 2 d nor the suction passage 2 s is communicated to continue the compression stroke. The closed state continues until the compression chamber 100 is reduced to the specific volume ratio (volume of the suction chamber 95 at the completion of the suction stroke / volume of the compression chamber 100 at the start of the discharge stroke) and the discharge stroke is started. The discharge flow channel 2d in FIGS. 2 and 3 shows the case where the specific volume ratio is 2.2. That is, when the volume of the compression chamber 100 is reduced to the volume ÷ 2.2 of the suction chamber 95 at the completion of the suction stroke, the cylinder internal discharge groove 2d1 constituting the discharge flow passage 2d together with the cylinder through discharge hole 2d2 and the cylinder external discharge groove 2d3 Is provided at a position where communication with the compression chamber 100 starts. Then, from that time, the compression chamber 100 becomes the discharge chamber 105, and the cylinder internal discharge groove 2d1 is provided to communicate with the discharge chamber 105 in the entire period of the discharge stroke. In addition, although the case where intrinsic volume ratio is 2.2 was shown here, intrinsic volume ratio is not limited to this numerical value, The function of a compression and discharge should just be obtained as a compressor.
 そして最後に、吐出室105の容積が0となる吐出行程の完了時(図2、3の容積0の作動室参照)にシリンダ内部吐出溝2d1は吐出室105から外れるような位置と大きさに設けられる。今回は、吐出室105と直接連通する吐出部は、シリンダ穴2bの円筒周面に設けるシリンダ内部吐出溝2d1としたが、それに限らず、吸込溝2s2のようなシリンダ穴2b穴底に設ける溝としてもよい。このようにした場合、固有容積比が大きく、吐出行程開始時の圧縮室100の容積を小さくするまで圧縮しなければならない場合でも吐出流路2dを設定することが可能となる。 Finally, at the time of completion of the discharge stroke where the volume of the discharge chamber 105 is 0 (see the working chamber of volume 0 in FIGS. 2 and 3), the cylinder internal discharge groove 2d1 is positioned and sized so as to be separated from the discharge chamber 105. Provided. In this case, although the discharge portion directly communicating with the discharge chamber 105 is the cylinder internal discharge groove 2d1 provided on the cylindrical peripheral surface of the cylinder hole 2b, the present invention is not limited thereto. The groove provided at the bottom of the cylinder hole 2b such as the suction groove 2s2 It may be In this case, the discharge flow path 2d can be set even when the specific volume ratio is large and compression must be performed to reduce the volume of the compression chamber 100 at the start of the discharge stroke.
 以上で圧縮部の構成の説明を終え、次に圧縮部の動作を、図9、10及び11(ともに図1のB-B断面よりもわずかに下方の断面)を用いて説明する。ここで、吸込溝2s2は図1のB-B断面よりも手前にあるため、本来ならば想像線として二点鎖線で表さなければならない。しかし、小さな図中の二点鎖線は実線と判別しにくいため、今回は便宜的に破線で示す。 Having described the configuration of the compression unit, the operation of the compression unit will be described next using FIGS. 9, 10 and 11 (all of which are sections slightly lower than the section BB in FIG. 1). Here, since the suction groove 2s2 is in front of the cross section BB in FIG. 1, it should originally be represented by an imaginary line by a two-dot chain line. However, since a two-dot chain line in a small figure is difficult to distinguish as a solid line, this time, it is indicated by a broken line for convenience.
 まず、圧縮動作を含む作動流体の流れを説明する。ピンスライド機構を自転半減機構とするRC圧縮機の圧縮動作は、吸込行程終了と吐出行程開始との時間差を極めて小さく設定する以外は同一とみなすことができるポンプ動作が特許文献1で詳細に説明されているため、本明細書においては概略説明だけを行う。また、特許文献1には記載していない過圧縮抑制手段についても説明する。 First, the flow of the working fluid including the compression operation will be described. The compression operation of the RC compressor having the pin slide mechanism as the rotation halving mechanism is the pump operation which can be regarded as identical except that the time difference between the suction stroke end and the discharge stroke start is set extremely small. As such, only a brief description is given herein. Moreover, the overcompression suppression means which is not described in patent document 1 is also demonstrated.
 図9は、クランクシャフト6がシャフト軸87(各図の中心線の交点)を中心に時計回りに一回転する間の45度毎の圧縮要素の状態を示したものである。圧縮動作の全行程(吸込行程、圧縮行程、吐出行程)は、クランクシャフト6が2回転して完了する。このため、図9は、行程の半分しか示していないが、並行して2つの作動室がクランク角で一回転ずれた変化をすることを利用し、二回転目の行程を他方の作動室の変化を使って説明する。説明は、図9の左上図で旋回ピストン3の左側にある作動室の行程を説明する。そして、このときのクランク角を0度とする。 FIG. 9 shows the state of the compression element every 45 degrees while the crankshaft 6 makes one rotation clockwise about the shaft axis 87 (the intersection of the center lines of the respective drawings). The entire stroke (suction stroke, compression stroke, discharge stroke) of the compression operation is completed by rotating the crankshaft 6 twice. For this reason, FIG. 9 shows only half of the stroke, but utilizing the fact that two working chambers make a change by one rotation offset in crank angle in parallel, the second rotation stroke of the other working chamber Explain using change. The description explains the travel of the working chamber to the left of the pivoting piston 3 in the top left view of FIG. Then, the crank angle at this time is set to 0 degrees.
 クランク角が0度となる図9の左上図(その拡大図である図10参照)は、ピストン自転軸88がピン軸61と重なっている。そして、容積が0となる。これは一つ前の吐出行程が終了して吸込行程を開始する移行時である。厳密に容積を0にすることができれば、両流路とこの作動室が通じていても大きな問題にはならない。しかし、ピストン円筒周面3eがシリンダ穴2bの内周面に衝突した場合、信頼性が損なわれるとともに、騒音や振動の増大や、衝突箇所の摺動損失増大による効率低下という問題が生じる。 In the upper left view (see the enlarged view of FIG. 10) of FIG. 9 where the crank angle is 0 degrees, the piston rotation shaft 88 overlaps the pin shaft 61. And, the volume is zero. This is a transition time when the immediately preceding discharge stroke is finished and the suction stroke is started. If the volume can be made strictly zero, there is no big problem even if both flow paths and this working chamber are in communication. However, when the piston cylindrical peripheral surface 3e collides with the inner peripheral surface of the cylinder hole 2b, the reliability is impaired, and problems such as an increase in noise and vibration and a decrease in efficiency due to an increase in sliding loss at the collision point occur.
 このため、最悪でもピストン円筒周面3eがシリンダ穴2bの内周面に衝突しないような公差設定が必要となる。よって、実際にはわずかな容積が残る。つまり、ピストン円筒周面3eとシリンダ穴2bの内周面との間に他の箇所(ローリング円柱1bの外周面とシリンダ穴2bの内周面との間)よりも大きな隙間が形成される。このため、仮にこの作動室に両方の流路が通じていると、ピストン円筒周面3eとシリンダ穴2bの内周面の隙間が内部漏れ流路となり、吐出するべき作動流体が吸込側へ戻り、効率低下を起こす。 For this reason, it is necessary to set a tolerance such that the piston cylindrical peripheral surface 3 e does not collide with the inner peripheral surface of the cylinder hole 2 b at the worst. Therefore, a small volume actually remains. That is, a larger gap is formed between the piston cylindrical peripheral surface 3e and the inner peripheral surface of the cylinder hole 2b than in other places (between the outer peripheral surface of the rolling cylinder 1b and the inner peripheral surface of the cylinder hole 2b). Therefore, if both flow paths are in communication with the working chamber, the gap between the piston cylindrical peripheral surface 3e and the inner peripheral surface of the cylinder hole 2b becomes an internal leak flow path, and the working fluid to be discharged returns to the suction side. , Cause a drop in efficiency.
 よって、実際の設定では、両流路2s、2dに通じさせないようにする。しかし、この両流路2s、2dを作動室へ通じさせない期間は、極めて短時間であるため、図10、11等には明示されていない。 Therefore, in the actual setting, the flow paths 2s and 2d are not communicated. However, since the period in which both flow paths 2s and 2d are not communicated to the working chamber is extremely short, it is not clearly shown in FIGS.
 この後、クランクシャフト6が時計回りにわずかに回転した時点で、作動室は吸込流路2sと通じて吸込パイプ50から作動流体が流入し吸込室95となる。そして、その後、クランク角が増大するにつれて、クランク角の増大と同一の量だけ旋回ピストン3が旋回する。一方、旋回ピストン3が隙間嵌合するシリンダ溝1cは、図9から明らかなように、旋回量の半分の回転量で連れ回る。この旋回ピストン3の旋回とシリンダ溝1cの回転すなわちローリングシリンダ1との回転によって、旋回ピストン3はシリンダ溝1c内を他方の端部へ向かって移動する。つまり、吸込室95の容積は増大し続け、吸込行程が継続する。この動きは、クランク角が360度のところ、すなわちクランクシャフト6が1回転を完了するまで継続する。この間に、ピストン自転軸88は、図9に示す旋回軌跡円96を描く。 Thereafter, when the crankshaft 6 is slightly rotated clockwise, the working chamber communicates with the suction flow passage 2s and the working fluid flows from the suction pipe 50 into the suction chamber 95. And then, as the crank angle increases, the swing piston 3 turns by the same amount as the increase of the crank angle. On the other hand, as is clear from FIG. 9, the cylinder groove 1c in which the orbiting piston 3 is fitted with a gap rotates with the amount of rotation that is half the amount of orbit. The pivoting piston 3 moves in the cylinder groove 1c toward the other end by the rotation of the pivoting piston 3 and the rotation of the cylinder groove 1c, that is, the rotation with the rolling cylinder 1. That is, the volume of the suction chamber 95 continues to increase, and the suction stroke continues. This movement continues at a crank angle of 360 degrees, that is, until the crankshaft 6 completes one rotation. During this time, the piston rotation axis 88 draws a turning locus circle 96 shown in FIG.
 ここで、クランク角が180度の時、ピストン自転軸88とローリングシリンダ軸89とが一致する。このため、ローリングシリンダ1は、旋回ピストン3の旋回量の半分で連れ回る正規の回転とは異なる非正規の回転を起こしても噛み合いが成立する。 Here, when the crank angle is 180 degrees, the piston rotation shaft 88 and the rolling cylinder shaft 89 coincide with each other. For this reason, the rolling cylinder 1 achieves meshing even if it causes an irregular rotation different from the regular rotation that follows the half of the pivoting amount of the pivoting piston 3.
 実際の場合、ローリングシリンダ1や旋回ピストン3や静止シリンダ2相互の隙間からくる理想的な回動からのずれにより、上記したローリングシリンダ1の非正規回転が頻発する。そして、一旦この非正規回転が生じると、特許文献1において指摘したとおり、力学的に正規回転へ自動復帰することは不可能となり、圧縮動作は停止してしまう。そのようなロック状態を常時回避して、滑らかな圧縮動作を継続するため、本実施例では、ローリングシリンダ1の回転と旋回ピストン3の自転とを同期させる回転同期手段を設けたうえで、旋回ピストン3の自転量を旋回量の半分にする自転半減手段を設けている。 In actuality, the above-mentioned irregular rotation of the rolling cylinder 1 frequently occurs due to the deviation from the ideal rotation coming from the gap between the rolling cylinder 1, the swing piston 3 and the stationary cylinder 2. Once this non-normal rotation occurs, as pointed out in Patent Document 1, it is impossible to automatically return to normal rotation dynamically, and the compression operation is stopped. In order to continuously avoid such a locked state and continue the smooth compression operation, in the present embodiment, the rotation synchronization means for synchronizing the rotation of the rolling cylinder 1 and the rotation of the rotation piston 3 is provided and then the rotation is performed. The rotation half means is provided to reduce the amount of rotation of the piston 3 to half of the amount of rotation.
 まず、回転同期手段でローリングシリンダ1の回転が常に旋回ピストン3の自転で規定される。これは、旋回ピストン3のピストンカット面3cをシリンダ溝1cの側面へ隙間嵌合させることで実現する。そして、自転半減手段を組み合わせることによって、旋回ピストン3の自転と同期したローリングシリンダ1の回転量を旋回ピストン3の旋回量の半分に規定することができる。すなわち、ローリングシリンダ1の回転を常に正規回転に規定可能となる。 First, the rotation of the rolling cylinder 1 is always defined by the rotation of the orbiting piston 3 by the rotation synchronization means. This is realized by gap fitting the piston cut surface 3c of the orbiting piston 3 to the side surface of the cylinder groove 1c. The rotation amount of the rolling cylinder 1 synchronized with the rotation of the orbiting piston 3 can be defined to be half of the orbiting amount of the orbiting piston 3 by combining the half rotation means. That is, the rotation of the rolling cylinder 1 can always be defined as normal rotation.
 旋回ピストン3の自転半減手段は、特許文献1に記載されている通り、旋回ピストン3の上面であるピストン上面3dに設けるスライド溝3bへ、静止シリンダ2に固定配置される固定ピン5を挿入させて構成するピンスライド機構によって実現する。このピンスライド機構による旋回ピストン3の自転量を旋回量の半分に規定する規定の度合い(規定度)は、クランク角で変化する。特許文献1で記載されているとおり、クランク角が180度で最大となる一方、クランク角が0度の時(特許文献1の図11参照)、ピン軸61とピストン自転軸88とが一致し、旋回ピストン3の自転量はピンスライド機構によって規定されないことから、規定度は最小となることがわかる。しかし、クランク角が0度の場合は、ピストン自転軸88とローリングシリンダ軸89は最も離れているため、元々、圧縮動作に問題はなく、ピンスライド機構は不要であった。 As described in Patent Document 1, the rotation half means of the orbiting piston 3 inserts the fixing pin 5 fixed to the stationary cylinder 2 in the slide groove 3b provided on the piston top surface 3d which is the top surface of the orbiting piston 3. This is realized by the pin slide mechanism that is configured. The prescribed degree (regularity) that defines the rotation amount of the orbiting piston 3 by this pin slide mechanism as half of the orbiting amount changes with the crank angle. As described in Patent Document 1, while the crank angle is maximized at 180 degrees, when the crank angle is 0 degree (see FIG. 11 of Patent Document 1), the pin shaft 61 and the piston rotation shaft 88 coincide with each other. Since the rotation amount of the orbiting piston 3 is not defined by the pin slide mechanism, it can be understood that the prescribed degree is minimized. However, when the crank angle is 0 degree, the piston rotation shaft 88 and the rolling cylinder shaft 89 are farthest apart, so originally there was no problem in the compression operation and the pin slide mechanism was unnecessary.
 以上より、ピンスライド機構の規定度は、必要性の高まるクランク角が180度付近で高くなり、必要性の低下するクランク角0度付近で低下するという理想的な変化を示す。これにより、圧縮機構を構成する圧縮要素の寸法公差や組立て精度の高度化を行う必要がなく、製作コストを低減できるという効果がある。 From the above, the regularity of the pin slide mechanism shows an ideal change in which the increasing necessity of the crank angle increases near 180 degrees and decreases near the decreasing crank angle of 0 degrees. As a result, it is not necessary to improve the dimensional tolerance and the assembly accuracy of the compression elements that constitute the compression mechanism, and it is possible to reduce the manufacturing cost.
 また、これにより、ピンスライド機構は、クランク角が180度付近で圧縮要素の動きを規定する頻度が高まることがわかる。すなわち、クランク角が180度付近に集中して、ピン機構である固定ピン5やスライド溝3bに負荷がかかり、さらに負荷の大きさは、各部の隙間から生じる予測困難な圧縮要素の理想的な動きからのずれを原因とするため、不規則で衝撃的な変化を伴う。 This also shows that the pin slide mechanism has a high frequency of defining the movement of the compression element at a crank angle near 180 degrees. That is, the crank angle is concentrated around 180 degrees, and a load is applied to the fixed pin 5 and the slide groove 3b, which are pin mechanisms, and the size of the load is ideal for difficult-to-predict compression elements generated from the gaps between the parts. Due to deviations from movement, with irregular and shocking changes.
 以上より、ピンスライド機構には、不規則で衝撃的な負荷がかかるため、確実な潤滑を行うことが必須となる。ところで、スライド溝3bにかかる負荷は固定ピン5から作用するため、ピンスライド機構への潤滑は、ピン機構へ給油すればよい。よって、滑らかな圧縮動作を回転同期手段とピンスライド機構による自転半減手段により実現するRC圧縮機において、ピン機構への給油は必須となる。このピン給油機構に関する説明は、後述する油の流れの説明の中で行う。 As mentioned above, since an irregular and impulsive load is applied to a pin slide mechanism, it becomes essential to perform reliable lubrication. By the way, since the load applied to the slide groove 3b acts from the fixing pin 5, the pin slide mechanism may be lubricated by supplying oil to the pin mechanism. Therefore, in the RC compressor which realizes smooth compression operation by means of the rotation synchronization means and the rotation half means by the pin slide mechanism, oil supply to the pin mechanism is essential. The description of the pin oiling mechanism will be made in the description of the flow of oil described later.
 ところで、回転同期手段とする旋回ピストン3のピストンカット面3cをシリンダ溝1cの側面へ隙間嵌合させる方法は、旋回ピストン3で仕切られて、圧力差のある作動室間のシール部としても機能している。このため、特許文献2のような線シールよりも格段にシール性が向上し、圧縮機効率が向上するという効果がある。 By the way, the method of making the piston cut surface 3c of the orbiting piston 3 as the rotation synchronizing means clearance fit to the side surface of the cylinder groove 1c functions as a seal between working chambers separated by the orbiting piston 3 and having a pressure difference. doing. For this reason, the sealability is significantly improved as compared with the wire seal as in Patent Document 2, and the compressor efficiency is improved.
 2回転目以降の行程は、上述したとおり、図9のもう一方の作動室(右上図の右側作動室)で説明する。これまで吸込室95であった作動室は、吸込流路2sが外れて密閉空間となる。この結果、圧縮行程が開始され、作動室内の作動流体は容積が縮小して圧縮される。つまり作動室は圧縮室100となる。この圧縮行程は、圧縮室100の容積が0に近づく図9の左下図へ至る前に圧縮室100が吐出流路2dと連通することで完了し、吐出行程が開始されて昇圧して吐出圧となった作動流体は、吐出流路2dを通ってRC圧縮機の機内へ吐出される。 The stroke after the second rotation is described in the other working chamber of FIG. 9 (right working chamber in the upper right figure) as described above. In the working chamber which has been the suction chamber 95 up to this point, the suction flow path 2s is separated and becomes a sealed space. As a result, the compression stroke is started, and the working fluid in the working chamber is reduced in volume and compressed. That is, the working chamber is the compression chamber 100. This compression stroke is completed by communication between the compression chamber 100 and the discharge flow passage 2d before the volume of the compression chamber 100 approaches 0 in the lower left view of FIG. The working fluid thus obtained is discharged into the machine of the RC compressor through the discharge flow path 2d.
 例えば、吐出時の圧縮室容積が吸込行程完了時の吸込室95容積の2.2分の1になる場合、すなわち固有容積比が2.2の場合の圧縮行程完了から吐出行程開へ移行するタイミングを図11に拡大して示す。この吐出行程は、図9のクランク角が360度すなわちクランク角0度で示す状態まで継続する。また、圧縮行程中の圧縮室100には、常時バイパス穴2eが臨む。これにより、過圧縮時、バイパス穴2eとその上部に設ける一方向弁のバイパス弁22は、圧縮室100内の作動流体を吐出圧であるチャンバ8の機内空間へ流す動作を行う。すなわち、過圧縮抑制手段を構成する。これにより、過圧縮運転時には、余分な圧縮を回避できるため、圧縮機効率が向上するという効果がある。 For example, when the compression chamber volume at the time of discharge is 1 / 2.2 of the volume of the suction chamber 95 at the completion of the suction stroke, that is, the specific volume ratio is 2.2, the transition from the compression stroke completion to the discharge stroke open The timing is shown enlarged in FIG. This discharge stroke continues until the crank angle shown in FIG. 9 is 360 degrees, that is, 0 crank angle. Further, a bypass hole 2e always faces the compression chamber 100 during the compression stroke. As a result, at the time of over-compression, the bypass hole 2e and the bypass valve 22 of the one-way valve provided on the upper side perform the operation of flowing the working fluid in the compression chamber 100 into the machine space of the chamber 8 which is the discharge pressure. That is, the over-compression suppression means is configured. As a result, during the over-compression operation, extra compression can be avoided, so that the compressor efficiency is improved.
 ところで、このバイパス穴2eは、圧縮室100が吐出室105へ移行した後も暫くの間は吐出室105へ臨む位置に配されている。これは、図9の吐出行程となるクランク角225度の図で、バイパス穴2eが吐出室105に臨んでいることからわかる。これより、この時点でのバイパス穴2eは吐出流路の役割を果たしていることになる。よって、吐出流路抵抗を低減できるため、圧縮機効率が向上するという効果がある。 By the way, the bypass hole 2e is disposed at a position facing the discharge chamber 105 for a while after the compression chamber 100 is shifted to the discharge chamber 105. This can be understood from the fact that the bypass hole 2e faces the discharge chamber 105 in the drawing of FIG. From this, the bypass hole 2e at this point of time plays a role of the discharge flow path. Therefore, the discharge flow path resistance can be reduced, and the compressor efficiency can be improved.
 さらに、このバイパス穴2eは作動室が吸込室95の時もそこへ臨んでいることがわかる。それは、図10のクランク角0度の図中で、吸込行程を完了した直後で圧縮行程を開始した右側の作動室にバイパス穴2eが全開していることから明らかである。これにより、液化した作動流体や油を大量に含む作動流体の吸込に伴う液圧縮が生じても、液圧縮を起こしている流体をバイパス穴2eで圧縮室100から排出できるため、過大な圧力上昇による圧縮部の損傷を回避でき、信頼性が向上するという効果がある。 Furthermore, it can be seen that the bypass hole 2e is also exposed to the working chamber when the suction chamber 95 is in operation. This is apparent from the fact that the bypass hole 2e is fully opened in the right working chamber where the compression stroke is started immediately after completing the suction stroke in the drawing of 0 crank angle in FIG. As a result, even if liquid compression occurs due to suction of a working fluid containing a large amount of liquefied working fluid or oil, the fluid undergoing fluid compression can be discharged from the compression chamber 100 at the bypass hole 2e, so an excessive pressure rise It is possible to avoid damage to the compression section due to the effect of improving the reliability.
 本実施例では、バイパス弁として、フラッパタイプの弁を用いている。これにより、圧縮室100からバイパス弁22の弁板までの距離を短く設定できるため、再膨張損失を抑制できるという効果がある。ここで、バイパス弁をリード弁タイプとしてももちろんよい。この場合、構造が単純となるため、コスト低減という効果がある。 In the present embodiment, a flapper type valve is used as the bypass valve. As a result, since the distance from the compression chamber 100 to the valve plate of the bypass valve 22 can be set short, there is an effect that re-expansion loss can be suppressed. Here, the bypass valve may of course be a reed valve type. In this case, since the structure is simple, there is an effect of cost reduction.
 次に、圧縮部の油の流れを、図9、図12(図1のB-B断面で図3のM部拡大図)及び図13を用いて説明する。ここでは、旋回軸受23及び主軸受24への給油及び本発明の特徴であるピン機構への給油路とそれらの給油路へ油を流すための差圧給油に関して説明する。そして、差圧給油で用いる背圧を使って、ピン機構への給油による隙間拡大の弊害を回避する背圧支持手段について説明を行う。さらに、背圧設定のための背圧流路による圧縮室への給油についても説明を行う。 Next, the flow of oil in the compression section will be described with reference to FIGS. 9 and 12 (an enlarged view of a portion M in FIG. 3 in the BB section of FIG. 1) and FIG. Here, oil supply to the pivot bearing 23 and the main bearing 24, oil supply passages to the pin mechanism which is a feature of the present invention, and differential pressure oil supply for flowing oil to the oil supply passages will be described. Then, a back pressure supporting means will be described which uses the back pressure used in differential pressure refueling to avoid the problem of the gap expansion caused by the refueling of the pin mechanism. Furthermore, a description will be given of refueling of the compression chamber by the back pressure flow path for setting the back pressure.
 前記した通り、貯油部125に常時浸かっている給油パイプ6x、給油縦穴6b、給油下主横穴6f、給油上主横穴6eによって、貯油部125から主軸受24へ繋がる給油路が設けられる。さらに、給油縦穴6bは、クランクシャフト6の上端にある偏心シャフト6aも貫通する穴としてあるため、これによって、旋回ピストン3に圧入されている旋回軸受23へ繋がる給油路と、旋回ピストン3のスライド溝3bを通ってピン機構である固定ピン5へ繋がる給油路とが形成される。 As described above, the oil supply passage connecting the oil storage portion 125 to the main bearing 24 is provided by the oil supply pipe 6x constantly immersed in the oil storage portion 125, the oil supply vertical hole 6b, the oil lower main lateral hole 6f, and the oil upper main lateral hole 6e. Furthermore, since the vertical feed hole 6b is a hole that also penetrates the eccentric shaft 6a at the upper end of the crankshaft 6, the feed path leading to the pivot bearing 23 press-fit to the pivot piston 3 and the slide of the pivot piston 3 An oil supply passage connected to the fixing pin 5 which is a pin mechanism is formed through the groove 3b.
 前記したとおり、貯油部125内の圧力は吐出圧であるため、貯油部125の油も吐出圧となる。給油パイプ6x及び給油縦穴6bの内径はともに大きく、スライド溝3bもそれ以上に開口断面積が大きい(図12参照)。さらに、固定ピン5は給油縦穴6bのほとんど真上に設けられている(図12参照)ため、貯油部125から固定ピン5へ至る流路は直線状となる。よって、固定ピン5へ至る給油路であるピン給油路の流路抵抗は極めて小さく、固定ピン5へ吐出圧の油を供給することが可能となる。固定ピン5には、吐出圧となる吐出室105やそれに近い高圧の圧縮室100が隣接している。 As described above, since the pressure in the oil reservoir 125 is the discharge pressure, the oil in the oil reservoir 125 also becomes the discharge pressure. The inner diameters of the oil supply pipe 6x and the oil supply vertical hole 6b are both large, and the slide groove 3b has an opening cross-sectional area larger than that (see FIG. 12). Furthermore, since the fixing pin 5 is provided almost right above the oil supply vertical hole 6b (see FIG. 12), the flow path from the oil reservoir 125 to the fixing pin 5 is linear. Therefore, the flow passage resistance of the pin oil supply passage which is the oil supply passage leading to the fixed pin 5 is extremely small, and it becomes possible to supply the oil of the discharge pressure to the fixed pin 5. A discharge chamber 105 serving as a discharge pressure and a high pressure compression chamber 100 close thereto are adjacent to the fixing pin 5.
 しかし、それらの領域と固定ピン5との間(ピストン上面3dとシリンダ穴2b底面の隙間)は狭い隙間に設定されているため、作動流体等の流体はこれらの隙間から固定ピン5へ流入できない。これにより、固定ピン5への流路抵抗が実質0のピン給油路によって固定ピン5へ給油が行われる可能性が高くなる。ここで、ピストン上面3dとシリンダ穴2bの底面との隙間は、旋回ピストン3が設置されるシリンダ溝1cの底面高さに依存する。すなわち、ローリングシリンダ1の組み込み高さに依存する。 However, since a narrow gap is set between these areas and the fixing pin 5 (the gap between the piston upper surface 3 d and the bottom of the cylinder hole 2 b), fluid such as working fluid can not flow into the fixing pin 5 from these gaps. . As a result, there is a high possibility that the fixed pin 5 can be refueled by the pin oil supply passage whose flow path resistance to the fixed pin 5 is substantially zero. Here, the gap between the piston upper surface 3 d and the bottom surface of the cylinder hole 2 b depends on the height of the bottom surface of the cylinder groove 1 c in which the orbiting piston 3 is installed. That is, it depends on the built-in height of the rolling cylinder 1.
 図13からわかるように、ローリングシリンダ1の下面は、フレーム4のベッド面4dと対向する。よって、ベッド面4dの高さが、ピストン上面3dとシリンダ穴2bの底面との隙間を規定する。この例では、ピストン上面3dとシリンダ穴2bの底面との隙間が最大でも50μm程度となるように、ベッド面4dの高さを設定する。これにより、作動流体が高圧領域から固定ピン5側へ流れようとしても、流路抵抗が大きいために流れることができず、ピン給油は阻害されない。 As can be seen from FIG. 13, the lower surface of the rolling cylinder 1 faces the bed surface 4 d of the frame 4. Therefore, the height of the bed surface 4d defines the gap between the piston upper surface 3d and the bottom of the cylinder hole 2b. In this example, the height of the bed surface 4d is set so that the gap between the piston upper surface 3d and the bottom surface of the cylinder hole 2b is about 50 μm at maximum. As a result, even if the working fluid tries to flow from the high pressure region to the fixed pin 5 side, it can not flow because of the large flow path resistance, and the pin refueling is not inhibited.
 ところで、給油路へ油を流すためには、油へ駆動力を与える手段が必要となる。この例では、旋回軸受23の下端と主軸受24の上端との間、すなわち旋回ピストン3及びローリングシリンダ1の下方に形成される空間(以後、背圧室110と呼称する。)に吐出圧以下となる圧力(以後、背圧と呼称する。当然、吸込圧以上となる。)をかける。これは、その空間が各給油路の上流の空間となっており、下流の空間である吐出圧の貯油部125よりも圧力を低くすることで差圧給油が実現するからである。これにより、主軸受24とともに旋回軸受23にも油が供給され、両軸受の信頼性を向上させる効果がある。 By the way, in order to flow oil to the oil supply passage, a means for applying a driving force to the oil is required. In this example, the discharge pressure is equal to or less than the discharge pressure in a space (hereinafter referred to as a back pressure chamber 110) formed between the lower end of the orbiting bearing 23 and the upper end of the main bearing 24, ie, below the orbiting piston 3 and the rolling cylinder 1. Apply a pressure (hereinafter referred to as a back pressure, which naturally becomes equal to or higher than the suction pressure). This is because the space is a space upstream of each oil supply passage, and differential pressure oiling is realized by making the pressure lower than the oil storage portion 125 of the discharge pressure which is the space downstream. As a result, oil is supplied not only to the main bearing 24 but also to the orbiting bearing 23, which has the effect of improving the reliability of both bearings.
 さらに、旋回軸受23への給油経路途中にある偏心シャフト6a上部にも油が潤沢に供給される。よって、偏心シャフト6a上部にある固定ピン5までのピン給油路の流路抵抗は上記したとおり実質0であるため、吐出圧油が固定ピン5へ潤沢に供給される。これにより、ピンスライド機構の課題であるピン機構への確実な給油を実現でき、RC圧縮機の信頼性を向上させるという効果がある。 Further, oil is also supplied abundantly to the upper part of the eccentric shaft 6a in the middle of the oil supply path to the turning bearing 23. Therefore, since the flow resistance of the pin oil supply passage to the fixing pin 5 at the upper part of the eccentric shaft 6a is substantially zero as described above, the discharge pressure oil is abundantly supplied to the fixing pin 5. As a result, reliable oil supply to the pin mechanism, which is a problem of the pin slide mechanism, can be realized, and the reliability of the RC compressor can be improved.
 ところで、ピン給油路によって、スライド溝3bにも油が流入するため、通常、スライド溝3bは油で満杯の状態となる。図9より、相対的にみると、固定ピン5はスライド溝3b内を往復運動するととらえることができるため、密閉性を緩和させて、油圧縮を回避する必要がある。そこで、この例では、図13に示すとおり、偏心シャフト6aの上部空間を大きくして、油圧縮を回避させてある。 By the way, since oil flows also into the slide groove 3b by the pin oil supply passage, the slide groove 3b is normally full of oil. From the perspective of FIG. 9, since the fixing pin 5 can be grasped as reciprocating in the slide groove 3b, it is necessary to relieve the sealing property to avoid oil compression. Therefore, in this example, as shown in FIG. 13, the upper space of the eccentric shaft 6a is enlarged to avoid oil compression.
 ところで、スライド溝3b内における固定ピン5の相対的な移動の向きは、吸込流路2sを設定しない吐出流路2dを設定する側に常に向かう(図9の各図で下側へ移動する)。これことから、スライド溝3b内の油圧縮をあえて若干発生させるべく、偏心シャフト6aの上部空間を狭めた構成も考えられる。この場合、油の圧力が吐出圧よりも若干高い吐出圧以上の圧力となり、吐出流路2d付近の吐出圧領域への給油が可能となるため、吐出圧領域からの作動流体の漏れを抑制可能となる。これにより、圧縮機効率が向上するという効果がある。 By the way, the direction of relative movement of the fixing pin 5 in the slide groove 3b is always directed to the side for setting the discharge flow path 2d in which the suction flow path 2s is not set (moves downward in each drawing of FIG. 9) . From this, a configuration is conceivable in which the upper space of the eccentric shaft 6a is narrowed in order to intentionally generate oil compression in the slide groove 3b. In this case, the pressure of the oil becomes a pressure higher than the discharge pressure, and the oil can be supplied to the discharge pressure area in the vicinity of the discharge flow path 2d. Therefore, the leakage of the working fluid from the discharge pressure area can be suppressed. It becomes. This has the effect of improving the compressor efficiency.
 以上で差圧給油による各部への給油の説明を終わり、次に、前記ピン給油路の設置で生じる弊害とその対策を説明する。 This concludes the description of the refueling to each part by differential pressure refueling, and next, the harmful effects that occur in the installation of the pin refueling passage and the measures therefor will be described.
 ピン給油路によって、ピン機構へ吐出圧の油を潤沢に流し込むことができるようになるため、固定ピン5の信頼性が向上するが、この結果、旋回ピストン3のピストン上面3d付近が吐出圧となる。さらに、ピストン上面3dと隣接するローリングシリンダ1の上面であるローリング円柱1bの上面にも吐出圧の領域が広がる。これにより、旋回ピストン3及びローリングシリンダ1は下方へ移動しようとする。この移動が生じてしまうと、ピストン上面3d及びローリング円柱1b上面とシリンダ穴2b底面との隙間(これ以降、「上部隙間」と呼称する。)が拡大してしまう。こうなると、吐出室105や吐出圧に近い高圧の圧縮室100から作動流体が上部隙間を通って低圧各部へ漏れ出てしまう。低圧空間である吸込室95へも漏れ出てしまい、内部漏れとなって圧縮機効率を低下させる。 Since the oil of the discharge pressure can be poured into the pin mechanism abundantly by the pin oil supply passage, the reliability of the fixed pin 5 is improved. As a result, the discharge pressure and the pressure in the vicinity of the piston upper surface 3d of the orbiting piston 3 Become. Further, the area of the discharge pressure also spreads on the upper surface of the rolling cylinder 1b which is the upper surface of the rolling cylinder 1 adjacent to the piston upper surface 3d. Thereby, the swing piston 3 and the rolling cylinder 1 try to move downward. When this movement occurs, the gap between the upper surface 3 d of the piston and the upper surface of the rolling cylinder 1 b and the bottom surface of the cylinder hole 2 b (hereinafter referred to as “upper gap”) is enlarged. In this case, the working fluid leaks from the discharge chamber 105 or the high pressure compression chamber 100 close to the discharge pressure to the low pressure components through the upper clearance. It also leaks to the suction chamber 95, which is a low pressure space, causing an internal leak and reducing the compressor efficiency.
 さらに、前記したピン機構へ作動流体が流れ込むため、ピン給油が不確実になり、最悪の場合、給油ができなくなる。そうなると、旋回軸受23への給油も不確実となり、ピン機構である固定ピン5や旋回軸受23の信頼性が損なわれる。以上より、ピン機構への給油を行っても、上部隙間を拡大させない対策が必須となる。 Furthermore, since the working fluid flows into the above-described pin mechanism, pin lubrication becomes uncertain, and in the worst case, lubrication can not be performed. Then, the oil supply to the orbiting bearing 23 becomes unreliable, and the reliability of the fixed pin 5 and the orbiting bearing 23 which are pin mechanisms is impaired. From the above, it is essential to take measures not to enlarge the upper clearance even if the pin mechanism is refueled.
 この例では、差圧給油による給油量が必要給油を確保できるように各部の隙間を調整しつつ、背圧室110の圧力である背圧を上げ、背圧でローリングシリンダ1及び旋回ピストン3を静止シリンダへ常時付勢させる背圧支持手段を用いる(この背圧設定の方法は後述)。これにより、上部隙間の拡大を回避できるため、ピン機構である固定ピン5や旋回軸受23や主軸受24の給油を確実に行うことができ、RC圧縮機の信頼性を向上できるとともに、上部隙間を漏れ流路とする内部漏れを抑制できるため、RC圧縮機の圧縮機効率を向上できるという効果がある。 In this example, while adjusting the clearances of each part so that the amount of oil supply by differential pressure oiling can ensure necessary oiling, the back pressure which is the pressure of the back pressure chamber 110 is raised, and the rolling cylinder 1 and the orbiting piston 3 are A back pressure support means which always biases the stationary cylinder is used (the method of setting the back pressure will be described later). Thus, the expansion of the upper gap can be avoided, so that the fixing pin 5 which is the pin mechanism, the turning bearing 23 and the main bearing 24 can be reliably supplied with oil, and the reliability of the RC compressor can be improved. Since it is possible to suppress internal leaks in which the leakage flow path is established, the compressor efficiency of the RC compressor can be improved.
 背圧の設定方法を以下に説明する。これは背圧設定値に近い圧力の圧縮室100と背圧室110を繋ぐ背圧直流路200により、圧縮室100の圧力を導入することで実現する。 The method of setting the back pressure will be described below. This is realized by introducing the pressure of the compression chamber 100 by the back pressure DC path 200 connecting the compression chamber 100 having a pressure close to the back pressure setting value and the back pressure chamber 110.
 背圧直流路200は、シリンダ穴2bの底部に圧縮室側背圧縦穴2h1を設け、シリンダ取付面2aに背圧室側背圧縦穴2h3を設け、それらを背圧横穴2h2で接続してコの字型の流路を形成することにより、作製される。ここで、背圧横穴2h2は、静止シリンダ2の外周側から開けるため、加工後に止め栓92で封止する。背圧室側背圧縦穴2h3は、ベッド外周溝4fに連通し、更にベッド放射溝4eを介して背圧室110に接続されるようになっている。 In the back pressure DC path 200, the compression chamber side back pressure vertical hole 2h1 is provided at the bottom of the cylinder hole 2b, the back pressure chamber side back pressure vertical hole 2h3 is provided on the cylinder mounting surface 2a, and they are connected by the back pressure horizontal hole 2h2 It is produced by forming a flow path of the shape of []. Here, since the back pressure side hole 2h2 is opened from the outer peripheral side of the stationary cylinder 2, it is sealed with a stopper plug 92 after processing. The back pressure chamber side back pressure vertical hole 2h3 communicates with the bed outer peripheral groove 4f, and is further connected to the back pressure chamber 110 via the bed radial groove 4e.
 図9から明らかなように、RC圧縮機の圧縮室100は、ローリングシリンダ1の回転と旋回ピストン3の外周側への移動により、静止シリンダ2に対して移動していく。よって、静止シリンダ2に背圧直流路200の背圧導入口を設けることで、所望の圧力を背圧室110へ導入することが可能となる。実際には、容積比(吸込室の最大容積/圧縮室容積)が所望の背圧値となる特定の容積比を平均値とする範囲の圧縮室100と繋がるように、背圧直流路200の背圧導入口を設ける。 As apparent from FIG. 9, the compression chamber 100 of the RC compressor moves relative to the stationary cylinder 2 by the rotation of the rolling cylinder 1 and the movement of the orbiting piston 3 to the outer peripheral side. Therefore, by providing the back pressure introduction port of the back pressure direct current passage 200 in the stationary cylinder 2, it becomes possible to introduce a desired pressure into the back pressure chamber 110. In practice, the back pressure DC path 200 is connected so as to connect to the compression chamber 100 in a range in which the volume ratio (maximum volume of suction chamber / compression chamber volume) becomes a desired back pressure value as the average value. Provide a back pressure inlet.
 このような背圧直流路200の設定により、背圧直流路200が圧縮室100と導通を開始した直後は、背圧の方が圧縮室100の圧力よりも高くなる。これによって、背圧室100へ流入している油を圧縮室側へ排出することが可能となる。これにより、各部への給油を継続することができ、給油を行う各部の信頼性と給油によるシール性を継続して確保でき、安定な圧縮機の運転を可能にするという効果がある。 By setting the back pressure direct current passage 200 as described above, the back pressure becomes higher than the pressure of the compression chamber 100 immediately after the back pressure direct current passage 200 starts conduction with the compression chamber 100. Thus, the oil flowing into the back pressure chamber 100 can be discharged to the compression chamber side. As a result, it is possible to continue the refueling to each part, continuously maintain the reliability of each part to be refueled and the sealability by the refueling, and it is possible to operate the compressor stably.
 この例では、背圧直流路200は、吸込室95へは臨まない位置に設定したが、場合によっては、背圧直流路200の連通初期において吸込室95に臨む位置としてもよい。この場合、背圧直流路200によって吸込室95への給油を行うことができるため、体積効率の向上による圧縮機効率向上を図ることができる。しかし、油温が高い場合には、吸込加熱が大きくなり、逆に体積効率を低下させる可能性もある。よって、運転条件により、背圧直流路200の連通区間を調整する必要がある。 In this example, the back pressure direct current passage 200 is set at a position not facing the suction chamber 95, but in some cases, it may be a position facing the suction chamber 95 at the initial communication stage of the back pressure direct current passage 200. In this case, since the suction chamber 95 can be refueled by the back pressure direct current passage 200, the compressor efficiency can be improved by the improvement of the volume efficiency. However, if the oil temperature is high, suction heating may be large, and the volume efficiency may be reduced. Therefore, it is necessary to adjust the communication section of the back pressure DC path 200 according to the operating conditions.
 以上のように、背圧直流路200によって圧縮室100へ流入した油は、圧縮室100のシール性を向上させる。よって、圧縮行程の内部漏れを抑制し、圧縮効率の向上させる効果がある。このようにして圧縮室100へ流入した油は、最終的に作動流体とともに吐出行程へ移行し、前記したとおり、吐出流路2dを通って、圧縮機内部へ吐出される。 As described above, the oil that has flowed into the compression chamber 100 by the back pressure direct current passage 200 improves the sealability of the compression chamber 100. Therefore, the internal leakage of the compression stroke can be suppressed, and the compression efficiency can be improved. Thus, the oil that has flowed into the compression chamber 100 finally shifts to the discharge stroke together with the working fluid, and is discharged to the inside of the compressor through the discharge flow path 2d as described above.
 本実施例では、ローリングシリンダ1のシリンダ溝1cの反対側である下方端部には、ローリングシリンダ軸89に垂直な平板状のローリング端板1aがローリング端部として設けてある。これは、前記した背圧支持によるローリングシリンダ1の静止シリンダ2側への付勢によって、ローリング端板1aの上面である端板おもて面がシリンダ取付面2aへ付勢される。これにより、背圧室110と、吸込室95や圧縮室100や吐出室105とのシール性が向上し、内部漏れが抑制されて圧縮機効率が向上するという効果が得られる。しかし、そのシール性は完全ではなく、若干の漏れが発生する。その場合には、背圧室110へ流入した油が背圧よりも圧力が低い吸込室95や圧縮室100へ流れる。これによって、シール性の改善が図られる。また、吸込室95へ流入した油は、吸込室95のシール性を向上させるため、体積効率向上による圧縮機効率を向上させる効果がある。 In this embodiment, at the lower end opposite to the cylinder groove 1c of the rolling cylinder 1, a flat rolling end plate 1a perpendicular to the rolling cylinder shaft 89 is provided as a rolling end. This is because the end plate front surface which is the upper surface of the rolling end plate 1a is biased to the cylinder mounting surface 2a by the biasing of the rolling cylinder 1 toward the stationary cylinder 2 side by the back pressure support described above. As a result, the sealability between the back pressure chamber 110 and the suction chamber 95, the compression chamber 100, and the discharge chamber 105 is improved, and the effect of suppressing the internal leak and improving the compressor efficiency can be obtained. However, the sealability is not perfect and some leaks occur. In that case, the oil flowing into the back pressure chamber 110 flows to the suction chamber 95 or the compression chamber 100 whose pressure is lower than the back pressure. This improves the sealability. Further, the oil that has flowed into the suction chamber 95 has the effect of improving the compressor efficiency by improving the volumetric efficiency, since the sealability of the suction chamber 95 is improved.
 さらに、本実施例では、旋回ピストン3またはローリングシリンダ1の表面に不連続性馴染み皮膜85を設けているため、上部隙間や端板おもて面(ローリング端板1aの上面)とシリンダ取付面2aとの間やピストン下面3fとシリンダ溝1c底面との間の隙間が形状補正を伴って全体的に縮小し、漏れ損失が低減するとともに、互いの形状が滑らかになって摺動損失が低減し、圧縮機効率が向上するという効果がある。また、背圧支持による付勢がなされない対向面(例えば、ローリング円柱1b外周面とシリンダ穴2b内周面との間やピストンカット面3cとシリンダ溝1c側面との間)においても、馴染み切った後では、馴染み皮膜を設けない場合よりも隙間が縮小するため、シール性が向上し、圧縮機効率が向上するという効果がある。 Furthermore, in the present embodiment, since the discontinuous familiar film 85 is provided on the surface of the orbiting piston 3 or the rolling cylinder 1, the upper clearance or the end plate front surface (upper surface of the rolling end plate 1a) and the cylinder mounting surface 2a and between the lower surface 3f of the piston and the bottom surface of the cylinder groove 1c are reduced as a whole along with the shape correction to reduce the leakage loss and to make the shapes thereof smooth to reduce the sliding loss. And the compressor efficiency is improved. In addition, even on the opposite surface (for example, between the outer peripheral surface of rolling cylinder 1b and the inner peripheral surface of cylinder hole 2b or between piston cut surface 3c and the side surface of cylinder groove 1c) which is not biased by back pressure support After that, the gap is reduced as compared with the case where the familiar film is not provided, so that the sealing performance is improved, and the compressor efficiency is improved.
 さらに、本実施例では、端板おもて面をシリンダ溝1c底面よりもローリングシリンダ1の背面寄りに設ける。つまり、端板おもて面(ローリング端板1aの上面)よりもシリンダ溝1c底面を高くし、段差をつける(図4参照)。これにより、段差部の外周面とシリンダ穴2b内周面との間の隙間がシリンダ溝1cに形成される作動室(吸込室95や圧縮室100や吐出室105)と背圧室110との間のシール隙間となるため、その隙間の漏れを抑制し、圧縮機効率が向上するという効果がある。 Furthermore, in the present embodiment, the end plate front surface is provided closer to the back surface of the rolling cylinder 1 than the bottom surface of the cylinder groove 1c. That is, the bottom of the cylinder groove 1c is made higher than the end plate front surface (the upper surface of the rolling end plate 1a) to make a level difference (see FIG. 4). Thereby, a gap between the outer peripheral surface of the step portion and the inner peripheral surface of the cylinder hole 2b is formed in the cylinder groove 1c, and the back pressure chamber 110 and the working chamber (the suction chamber 95, the compression chamber 100, the discharge chamber 105) Since it becomes a seal gap between, it is effective in suppressing leak of the gap and improving compressor efficiency.
 また、この場合、ローリングシリンダ1と円環状の端板とを別々の部品とすることができる。そして、ローリングシリンダ1のシリンダ溝1cの加工とローリング端板1aの加工とをそれぞれ、旋盤により行うことが可能となり、加工コストが低減するという効果もある。もちろん、ローリングシリンダ1とローリング端板1aとを溶接、ねじ止め等により接合して用いてもよい。 Also in this case, the rolling cylinder 1 and the annular end plate can be separate parts. Then, the machining of the cylinder groove 1c of the rolling cylinder 1 and the machining of the rolling end plate 1a can be respectively performed by a lathe, and there is also an effect that the machining cost is reduced. Of course, the rolling cylinder 1 and the rolling end plate 1a may be joined by welding, screwing or the like.
 次に、実施例2に係るRC圧縮機について、図15を用いて説明する。図15は、ローリングシリンダ1または旋回ピストン3の表面近くの拡大断面図であり、表面から内側へ入るにつれて馴染み性が連続的に低下していく連続性馴染み皮膜86とする以外は、実施例1と同様なので、同様な箇所に関する説明は省略する。なお、連続性馴染み皮膜86も、摺動する表面全域に形成することが望ましい。 Next, an RC compressor according to a second embodiment will be described with reference to FIG. FIG. 15 is an enlarged cross-sectional view near the surface of the rolling cylinder 1 or the orbiting piston 3 and is a continuous familiar film 86 except that the compatibility decreases continuously as it goes inward from the surface. Since the same as in the case of FIG. Preferably, the continuous familiar film 86 is also formed over the entire sliding surface.
 このような皮膜の例としては、処理剤に浸して表面を改質する表面改質馴染み皮膜があげられる。これは図15で示すように、元の母材表面から構成物が表面上へ析出して処理剤と反応し馴染み性の高い析出層を形成するとともに、元の母材側は侵食されて多孔性となったところへ処理剤が侵食して母材よりは馴染み性がわずかに高いが析出層よりは馴染み性の低い侵食層を形成することで実現できる。例えば、母材が鋳鉄の場合、燐酸マンガン処理による皮膜がある。これによって、不連続性馴染み皮膜85の場合よりも皮膜はがれが生じにくくなり、信頼性が向上するという効果がある。 An example of such a film is a surface-modified familiar film which is dipped in a treatment agent to modify the surface. As shown in FIG. 15, the composition is deposited on the surface of the original base material onto the surface to react with the treatment agent to form a highly compatible deposited layer, and the original base material side is eroded and porous. It can be realized by forming an eroded layer which is slightly conformable to the base material but slightly conformable to the place of the base material, but less conformable than the deposit. For example, when the base material is cast iron, there is a coating formed by manganese phosphate treatment. As a result, peeling of the coating is less likely to occur than in the case of the discontinuous familiar coating 85, and the reliability is improved.
 また、母材の元表面位置でもある程度の馴染み性が発生するため、馴染み皮膜を設ける母材寸法の管理が容易となる。例えば、母材における旋回ピストン3の高さが母材におけるシリンダ溝1cの深さより多少大きくなっても、旋回ピストン3の連続性馴染み皮膜86により、母材寸法以下まで磨耗させることができる。つまり、母材寸法の公差を互いの干渉を許容する設定にできるため、馴染み切ったときの稠密な表面間(母材の元表面間)の距離が小さくなり、シール性が一層向上して圧縮機効率が向上するという効果がある。 In addition, since a certain degree of familiarity occurs even at the original surface position of the base material, it becomes easy to control the base material dimension to which the familiar film is provided. For example, even if the height of the orbiting piston 3 in the base material is slightly larger than the depth of the cylinder groove 1c in the base material, the continuous familiar film 86 of the orbiting piston 3 can cause wear to less than the base material size. That is, since the tolerances of the base material dimensions can be set to allow mutual interference, the distance between the dense surfaces (between the base surfaces of the base material) when unmatched becomes smaller, and the sealability is further improved and the compression is achieved. There is an effect that the machine efficiency is improved.
 次に、実施例3に係るRC圧縮機について、図16及び図17を用いて説明する。図16は、図3のM部の拡大横断面図である。また、図17は、図16のO-G縦断面図であり、背圧弁流路を設置した部位の断面を示したものである。背圧支持手段のための背圧設定方法として背圧弁流路210を用いる以外は、実施例1又は2と同様なので、同様な箇所に関する説明は省略する。 Next, an RC compressor according to a third embodiment will be described using FIGS. 16 and 17. FIG. 16 is an enlarged cross-sectional view of part M of FIG. FIG. 17 is a vertical cross-sectional view taken along the line O-G in FIG. 16 and shows a cross section of a portion where a back pressure valve channel is installed. The second embodiment is the same as the first or second embodiment except that the back pressure valve channel 210 is used as the back pressure setting method for the back pressure supporting means, and therefore the description of the same portions will be omitted.
 背圧弁流路210は、実施例1の背圧直流路200と同様に、コの字型の流路が構成される。ただし、連通する圧縮室100は、後述する背圧弁26による昇圧分があるため、背圧室直流路時よりも低圧側の圧縮室100と連通させる。このため、圧縮室100側の縦穴の位置を変更し、圧縮室側背圧弁用縦穴2h4とする。さらに、圧力差の設定は後述する背圧弁26が担うため、各穴の径を大きくする。 Similar to the back pressure direct current path 200 of the first embodiment, the back pressure valve flow path 210 is configured as a U-shaped flow path. However, since the compression chamber 100 in communication has a pressure increase due to the back pressure valve 26 described later, the compression chamber 100 is in communication with the compression chamber 100 on the lower pressure side than in the back pressure chamber DC path. Therefore, the position of the vertical hole on the compression chamber 100 side is changed to be the vertical hole 2h4 for the compression chamber side back pressure valve. Furthermore, since the back pressure valve 26 described later bears the setting of the pressure difference, the diameter of each hole is increased.
 ここで、スライド溝3bがピストンカット面3cまでつながる実施例1または2の場合、圧縮室側背圧弁用縦穴2h4は、図9のクランク角225度とクランク角270度の間でスライド溝3bに臨んでしまう。そして、スライド溝3bは吐出圧の油とそこから発泡した吐出圧の作動流体で満たされているため、圧縮室側背圧弁用縦穴2h4やそれに連なる背圧弁流路210の空間には、吐出圧の流体が流入する。この流体は、圧縮室側背圧弁用縦穴2h4が圧縮室100へ臨んだ際、吐出圧よりも低圧の圧縮室100へ流入して内部漏れとなるため、性能が低下する。そこで、本実施例では、図16のクロスハッチングで示すスライド溝両端封止部3b1を設けて、前記した内部漏れを回避し、性能低下を抑制する。 Here, in the case of the embodiment 1 or 2 in which the slide groove 3b is connected to the piston cut surface 3c, the compression chamber side back pressure valve vertical hole 2h4 is in the slide groove 3b between the crank angle 225 degrees and the crank angle 270 degrees in FIG. I will come. Since the slide groove 3b is filled with the oil of the discharge pressure and the working fluid of the discharge pressure generated therefrom, the discharge pressure is applied to the space for the compression chamber side back pressure valve vertical hole 2h4 and the back pressure valve flow path 210 connected thereto. Fluid flows in. When the compression chamber side back pressure valve vertical hole 2h4 reaches the compression chamber 100, the fluid flows into the compression chamber 100 having a pressure lower than the discharge pressure to cause an internal leak, so the performance is lowered. Therefore, in the present embodiment, slide groove both-ends sealing portions 3b1 shown by cross hatching in FIG. 16 are provided to avoid the internal leak described above and to suppress the performance deterioration.
 これにより、加工に用いるドリル刃を太いものに変更できるため、損傷の危険性が低減し、加工が容易となって加工コストが低減するという効果がある。以上のようにして構成したコの字形状の流路に加え、この例では、背圧弁穴2h5を静止シリンダ2の上面側から加工し、その内部に背圧弁26を設置する。よって、背圧弁流路210は、圧縮室側背圧弁用縦穴2h4、背圧横穴2h2、背圧室側背圧縦穴2h3、背圧弁穴2h5及び背圧弁26を含む構成である。背圧室側背圧縦穴2h3は、ベッド外周溝4fに連通し、更にベッド放射溝4eを介して背圧室110に接続されている。 Thereby, since the drill bit used for processing can be changed into a thick thing, the risk of damage reduces, and there is an effect that processing becomes easy and processing cost reduces. In addition to the U-shaped flow path configured as described above, in this example, the back pressure valve hole 2 h 5 is processed from the upper surface side of the stationary cylinder 2, and the back pressure valve 26 is installed therein. Therefore, the back pressure valve flow path 210 is configured to include the compression chamber side back pressure valve vertical hole 2 h 4, the back pressure horizontal hole 2 h 2, the back pressure chamber side back pressure vertical hole 2 h 3, the back pressure valve hole 2 h 5 and the back pressure valve 26. The back pressure chamber side back pressure vertical hole 2h3 communicates with the bed outer peripheral groove 4f and is further connected to the back pressure chamber 110 through the bed radial groove 4e.
 つぎに、図17を用いて背圧弁流路210の作製手順を説明する。 Next, the procedure for producing the back pressure valve channel 210 will be described with reference to FIG.
 まず、背圧弁穴2h5の底に背圧弁ピース26aを圧入固定する。そして、その上に背圧弁板26bを置き、その上に背圧弁ばね26cを配置し、背圧弁キャップ26dで背圧弁穴2h5を封止する。この際、背圧弁ばね26cは圧縮され、背圧弁板26bを所定の力で背圧弁ピース26aへ押付ける。 First, the back pressure valve piece 26 a is press-fitted and fixed to the bottom of the back pressure valve hole 2 h 5. Then, the back pressure valve plate 26b is placed thereon, the back pressure valve spring 26c is disposed thereon, and the back pressure valve hole 2h5 is sealed by the back pressure valve cap 26d. At this time, the back pressure valve spring 26c is compressed to press the back pressure valve plate 26b against the back pressure valve piece 26a with a predetermined force.
 これによって、背圧が連通する圧縮室100の平均圧力よりも背圧弁ばね26cの背圧弁ピース26aへの押付け力に応じた一定値だけ、高くなったときに、背圧弁26が開口し、背圧を制御する。 The back pressure valve 26 is opened when the back pressure is higher than the average pressure of the compression chamber 100 by which the back pressure is communicated by a fixed value corresponding to the pressing force of the back pressure valve spring 26c against the back pressure valve piece 26a. Control the pressure.
 ここで、背圧室110の圧力を高くする流体として、前記した背圧室110へ流入する油を用いる。つまり、背圧室流体導入路は、背圧室110へ流入する油の流入路全てとする。具体的には、主軸受24から流入してくる流路と旋回軸受23から流入してくる流路である。 Here, the oil flowing into the above-described back pressure chamber 110 is used as a fluid for increasing the pressure in the back pressure chamber 110. That is, the back pressure chamber fluid introduction path is all the inflow paths of the oil flowing into the back pressure chamber 110. Specifically, it is a flow path which flows in from the main bearing 24 and a flow path which flows in from the turning bearing 23.
 以上のような、背圧弁流路による背圧設定により、背圧値は、連通する圧縮室の圧力よりも概略一定値だけ高い圧力となる。これは、前記したバイパス弁22等による過圧縮抑制手段を採用した場合、旋回ピストン3やローリングシリンダ1を静止シリンダ2へ付勢するために最低限必要な圧力に近い圧力に近い値となるため、付勢に伴って発生する摺動損失を低減できる。よって、圧縮機効率を向上させることができるという効果がある。 As described above, due to the back pressure setting by the back pressure valve channel, the back pressure value becomes a pressure that is approximately a fixed value higher than the pressure of the compression chamber in communication. This is because the pressure close to the minimum pressure required to urge the orbiting piston 3 and the rolling cylinder 1 to the stationary cylinder 2 is a value close to the pressure required when the over-compression suppressing means using the bypass valve 22 etc. described above is adopted. The sliding loss generated with the biasing can be reduced. Therefore, there is an effect that the compressor efficiency can be improved.
 次に、実施例4に係るRC圧縮機について、図18を用いて説明する。図18は、図1のP部の拡大縦断面図である。本図においては、最も単純なピン機構である固定ピン5を固定するために、ピン固定フランジ5aを設け、ピン固定ねじ91によりねじ固定する。これ以外は、実施例1~3と同様なので、同様な箇所に関する説明は省略する。 Next, an RC compressor according to a fourth embodiment will be described with reference to FIG. FIG. 18 is an enlarged vertical sectional view of a portion P in FIG. In this figure, in order to fix the fixing pin 5 which is the simplest pin mechanism, a pin fixing flange 5 a is provided and screwed with a pin fixing screw 91. The other parts are the same as in the first to third embodiments, and therefore the description of the same parts will be omitted.
 固定ピン5には、前記したとおり、衝撃的な荷重がかかる。このため、円筒面だけの固定の場合、衝撃荷重を線状の領域で受けるため、少しずつ穴が拡大して固定ピン5が脱落する危険性があった。 An impactive load is applied to the fixing pin 5 as described above. For this reason, in the case of fixing only the cylindrical surface, since the impact load is received in the linear region, there is a risk that the hole is gradually enlarged and the fixing pin 5 falls off.
 本実施例においては、ピン固定フランジ5aを設けることで、衝撃荷重をピン固定フランジ5aの面で受けることができる。また、ピン固定ねじ91で固定ピン5を固定することができるため、固定ピン5の脱落を防止することができ、圧縮機の信頼性が向上するという効果がある。ところで、図18では、ピン固定ねじ91は1本のみであるが、複数本でももちろんよい。 In the present embodiment, by providing the pin fixing flange 5a, an impact load can be received on the surface of the pin fixing flange 5a. In addition, since the fixing pin 5 can be fixed by the pin fixing screw 91, it is possible to prevent the fixing pin 5 from falling off, and there is an effect that the reliability of the compressor is improved. By the way, although only one pin fixing screw 91 is shown in FIG.
 次に、実施例5に係るRC圧縮機について、図19及び図20を用いて説明する。 Next, an RC compressor according to a fifth embodiment will be described with reference to FIGS. 19 and 20. FIG.
 図19は、図1のP部の拡大縦断面図であり、図20は、スライダの拡大斜視図である。 FIG. 19 is an enlarged vertical sectional view of a portion P of FIG. 1, and FIG. 20 is an enlarged perspective view of a slider.
 これらの図においては、ピン軸に対して回転可能なスライダ5cを設けてあり、これによりピン機構とする。これ以外は実施例1~4と同様なので、同様な箇所に関する説明は省略する。 In these figures, a slider 5c rotatable with respect to the pin axis is provided, thereby providing a pin mechanism. The other parts are the same as in the first to fourth embodiments, and therefore the description of the same parts will be omitted.
 本実施例においては、ピン機構は、図19に示すように、ピン軸に対して回転自在なスライダ5cを、固定ピン5の下面にスライダ保持フランジ5bにより設置したものである。スライダ5cは、スライド溝3bに隙間嵌合させる要素である。スライダ5cは、図20に示すように、スライダ中心穴5c2を有し、スライダカット面5c1を有する。スライダカット面5c1は、互いに平行な2つの平面部として設けたものであり、スライド溝3bに隙間嵌合させる部分である。 In this embodiment, as shown in FIG. 19, in the pin mechanism, the slider 5c rotatable relative to the pin axis is installed on the lower surface of the fixing pin 5 by the slider holding flange 5b. The slider 5c is an element which is fitted in the slide groove 3b with a gap. As shown in FIG. 20, the slider 5c has a slider center hole 5c2 and a slider cut surface 5c1. The slider cut surface 5c1 is provided as two flat portions parallel to each other, and is a portion to be fitted with a gap in the slide groove 3b.
 スライダ中心穴5c2にスライダ保持フランジ5bをがた(あそび)が小さい状態で挿入した後、固定ピン5へ圧入することにより、ピン機構を作製する。 After inserting the slider holding flange 5b into the slider center hole 5c2 with a small amount of slack (play), the pin mechanism is manufactured by press-fitting to the fixing pin 5.
 これにより、ピン機構にかかる衝撃荷重は、スライド溝3bの側面からスライダカット面5c1へかかり、さらに、スライダ中心穴5c2からスライダ保持フランジ5bの軸へかかる。2箇所の荷重の受け渡しは、前者が平面同士であり、後者が円筒周面同士であるため、集中荷重を伴う荷重の受け渡しはない。このため、ピン機構における荷重の集中が抑制でき、信頼性が向上するという効果がある。 Thereby, an impact load applied to the pin mechanism is applied from the side surface of the slide groove 3b to the slider cut surface 5c1, and further applied from the slider center hole 5c2 to the axis of the slider holding flange 5b. Since the former is flat planes and the latter is cylindrical peripheral surfaces, the delivery of loads at two locations does not involve delivery of loads with concentrated loads. For this reason, concentration of load in the pin mechanism can be suppressed, and there is an effect that the reliability is improved.
 次に、実施例6に係るRC圧縮機について、図21及び図22を用いて説明する。図21は、図1のQ部の拡大縦断面図であり、図22は、ローリングシリンダ1の変形例を示す斜視図である。 Next, an RC compressor according to a sixth embodiment will be described using FIGS. 21 and 22. FIG. FIG. 21 is an enlarged vertical cross-sectional view of a portion Q in FIG. 1, and FIG. 22 is a perspective view showing a modified example of the rolling cylinder 1.
 これらの図においては、図4のローリングシリンダ1のつば部であるローリング端板1aを円筒状のローリング円筒端部1hに置き換えたものである。これ以外は、実施例1~5と同様なので、同様な箇所に関する説明は省略する。 In these figures, the rolling end plate 1a which is a collar of the rolling cylinder 1 of FIG. 4 is replaced with a cylindrical rolling cylindrical end 1h. The other parts are the same as in the first to fifth embodiments, and therefore the description of the same parts will be omitted.
 ローリング円筒端部1hは、背圧により外周側に開くため、静止シリンダ2のシリンダ穴2b内周面に付勢され、背圧室110とローリング端板1aより上部の圧縮室100や吸込室95や吐出室105との間におけるシール性が向上し、圧縮機効率が向上する。さらに、ローリング端板1aがローリングシリンダ円柱1bよりも大径とならないため、RC圧縮機の小径化を実現できるという効果がある。 The rolling cylindrical end 1h is biased to the inner peripheral surface of the cylinder hole 2b of the stationary cylinder 2 to open to the outer peripheral side by the back pressure, and the compression chamber 100 and the suction chamber 95 above the back pressure chamber 110 and the rolling end plate 1a. The sealability with the discharge chamber 105 is improved, and the compressor efficiency is improved. Furthermore, since the rolling end plate 1a does not have a diameter larger than that of the rolling cylinder cylinder 1b, there is an effect that the diameter reduction of the RC compressor can be realized.
 1:ローリングシリンダ、1a:ローリング端板、1b:ローリング円柱、1c:シリンダ溝、1d:偏心シャフト挿入穴、1h:ローリング円筒端部、2:静止シリンダ、2a:シリンダ取付面、2b:シリンダ穴、2d:吐出流路、2d1:シリンダ内部吐出溝、2d2:シリンダ貫通吐出穴、2d3:シリンダ外部吐出溝、2e:バイパス穴、2h1:圧縮室側背圧縦穴、2h2:背圧横穴、2h3:背圧室側背圧縦穴、2h4:圧縮室側背圧弁用縦穴、2h5:背圧弁穴、2s:吸込流路、2s1:吸込穴、2s2:吸込溝、3:旋回ピストン、3a:旋回軸受穴、3b:スライド溝、3c:ピストンカット面、4:フレーム、4d:ベッド面、5:固定ピン、5a:ピン固定フランジ、5b:スライダ保持フランジ、5c:スライダ、5c1:スライダカット面、6:クランクシャフト、6a:偏心シャフト、6b:給油縦穴、6c:シャフトネック、6d:シャフトつば部、7:モータ、7a:ロータ、7b:ステータ、8:チャンバ、8a:チャンバ円筒部、8b:チャンバ上フタ、8c:チャンバ下フタ、22:バイパス弁、23:旋回軸受、24:主軸受、25:副軸受、26:背圧弁、26a:背圧弁ピース、26b:背圧弁板、26c:背圧弁ばね、26d:背圧弁キャップ、35:下フレーム、50:吸込パイプ、55:吐出パイプ、85:不連続性馴染み皮膜、86:連続性馴染み皮膜、90:シリンダボルト、95:吸込室、100:圧縮室、105:吐出室、110:背圧室、125:貯油部、200:背圧直流路、210:背圧弁流路、220:ハーメチック端子。 1: Rolling cylinder, 1a: rolling end plate, 1b: rolling cylinder, 1c: cylinder groove, 1d: eccentric shaft insertion hole, 1h: rolling cylinder end, 2: stationary cylinder, 2a: cylinder mounting surface, 2b: cylinder hole , 2d: discharge flow channel, 2d1: cylinder internal discharge groove, 2d2: cylinder penetrating discharge hole, 2d3: cylinder external discharge groove, 2e: bypass hole, 2h1: compression chamber side back pressure vertical hole, 2h2: back pressure horizontal hole, 2h3: Back pressure chamber side back pressure vertical hole, 2h 4: vertical hole for compression chamber side back pressure valve, 2h 5: back pressure valve hole, 2s: suction passage, 2s 1: suction hole, 2s 2: suction groove, 3: swirl piston, 3a: swirl bearing hole , 3b: slide groove, 3c: piston cut surface, 4: frame, 4d: bed surface, 5: fixing pin, 5a: pin fixing flange, 5b: slider holding flange, 5c: slide Da, 5c1: Slider cut surface, 6: Crankshaft, 6a: Eccentric shaft, 6b: Refueling vertical hole, 6c: Shaft neck, 6d: Shaft collar, 7: Motor, 7a: Rotor, 7b: Stator, 8: Chamber, 8a: chamber cylindrical portion, 8b: chamber upper lid, 8c: chamber lower lid, 22: bypass valve, 23: pivot bearing, 24: main bearing, 25: auxiliary bearing, 26: back pressure valve, 26a: back pressure valve piece, 26b A: back pressure valve plate, 26 c: back pressure valve spring, 26 d: back pressure valve cap, 35: lower frame, 50: suction pipe, 55: discharge pipe, 85: discontinuous compatible film, 86: continuous compatible film, 90: cylinder Bolt, 95: suction chamber, 100: compression chamber, 105: discharge chamber, 110: back pressure chamber, 125: oil reservoir, 200: back pressure DC path, 210: back pressure valve path, 220 Hermetic terminal.

Claims (15)

  1.  シャフト軸を回転中心とし偏心シャフトを有するクランクシャフトと、
     前記クランクシャフトを軸支するフレームと、
     前記クランクシャフトに回転駆動トルクを付与する回転駆動源と、
     作動流体の吸込、圧縮及び吐出をする圧縮部と、
     貯油部と、を備え、
     前記圧縮部は、シリンダ溝を有するローリングシリンダと、前記シリンダ溝に摺動可能に収容された旋回ピストンと、前記ローリングシリンダを回転可能に収容した偏心シリンダ穴を有する静止シリンダと、を含み、
     前記ローリングシリンダと前記旋回ピストンと前記静止シリンダとで囲まれた空間は、前記ローリングシリンダ及び前記旋回ピストンの回転に伴い、吸込室、圧縮室及び吐出室として機能し、
     前記偏心シャフトは、前記シャフト軸とは異なる中心線を有し、
     前記旋回ピストンは、前記偏心シャフトの前記中心線を中心に自転可能に配置され、前記クランクシャフトの回転に従い公転し、
     前記静止シリンダの前記偏心シリンダ穴には、前記シャフト軸とは異なる中心線を有する固定ピンが付設され、
     前記旋回ピストンは、スライド溝を有し、前記固定ピンは、前記スライド溝に摺動可能に嵌合された構成を有し、
     前記偏心シリンダ穴の底面と前記固定ピンの中心線との交点と、前記偏心シリンダ穴の底面と前記ローリングシリンダの中心線との交点と、を結ぶ線分の中点が、前記偏心シリンダ穴の底面と前記シャフト軸の中心線との交点に一致し、かつ、これらの3つの中心線が互いに平行となるように配置され、これにより前記旋回ピストンの自転と前記ローリングシリンダの回転とが同期するように構成するとともに、前記旋回ピストンの自転角速度を前記クランクシャフトの回転角速度の半分に調整し、
     前記貯油部の圧力が前記吐出室の圧力と等しくなるように構成し、かつ、前記貯油部と前記スライド溝を繋ぐ油連通路を設けることにより、前記貯油部の潤滑油を前記固定ピン及び前記スライド溝に供給する、ローリングシリンダ式容積型圧縮機。
    A crankshaft having an eccentric shaft centered on the shaft axis,
    A frame pivotally supporting the crankshaft;
    A rotational drive source for applying a rotational drive torque to the crankshaft;
    A compression unit for suctioning, compressing and discharging working fluid;
    And an oil storage unit,
    The compression unit includes a rolling cylinder having a cylinder groove, a swing piston slidably housed in the cylinder groove, and a stationary cylinder having an eccentric cylinder hole rotatably accommodating the rolling cylinder.
    A space surrounded by the rolling cylinder, the orbiting piston, and the stationary cylinder functions as a suction chamber, a compression chamber, and a discharge chamber as the rolling cylinder and the orbiting piston rotate.
    The eccentric shaft has a center line different from the shaft axis,
    The orbiting piston is disposed rotatably around the center line of the eccentric shaft, and revolves according to the rotation of the crankshaft.
    The eccentric cylinder hole of the stationary cylinder is additionally provided with a fixing pin having a center line different from the shaft axis,
    The pivot piston has a slide groove, and the fixing pin has a configuration slidably fitted in the slide groove,
    The middle point of the line connecting the intersection of the bottom of the eccentric cylinder hole with the center line of the fixing pin and the intersection of the bottom of the eccentric cylinder hole and the center line of the rolling cylinder is the eccentric cylinder hole At the intersection of the bottom surface and the centerline of the shaft axis, the three centerlines are arranged parallel to each other, whereby the rotation of the orbiting piston and the rotation of the rolling cylinder are synchronized. And adjusting the rotational angular velocity of the orbiting piston to half the rotational angular velocity of the crankshaft,
    The lubricating oil of the oil storage portion is fixed to the fixing pin and the oil by forming an oil communication passage connecting the oil storage portion and the slide groove so that the pressure of the oil storage portion is equal to the pressure of the discharge chamber. Rolling cylinder positive displacement compressor that supplies slide grooves.
  2.  前記油連通路は、前記クランクシャフト及び前記偏心シャフトを貫通し前記スライド溝に連通する給油縦穴で構成された、請求項1記載のローリングシリンダ式容積型圧縮機。 The rolling cylinder positive displacement compressor according to claim 1, wherein the oil communication passage is constituted by an oil supply vertical hole which penetrates the crankshaft and the eccentric shaft and communicates with the slide groove.
  3.  前記旋回ピストンは、互いに平行でかつ平坦である2つのピストンカット面を有し、
     前記シリンダ溝は、互いに平行でかつ平坦である2つの内側側面部を有し、
     前記2つの内側側面部の間に前記2つのピストンカット面が摺動可能となるように嵌合された構成を有する、請求項1又は2に記載のローリングシリンダ式容積型圧縮機。
    The pivoting piston has two piston cutting surfaces which are parallel and flat to one another;
    The cylinder groove has two inner side portions parallel and flat to one another,
    The rolling cylinder positive displacement compressor according to claim 1 or 2, further comprising a configuration in which the two piston cut surfaces are slidably fitted between the two inner side surfaces.
  4.  前記ローリングシリンダと前記フレームとの間には、背圧室が設けられ、
     前記静止シリンダは、前記圧縮室と前記背圧室とを連通する背圧直流路を有し、前記背圧室の圧力が前記吸込室の圧力と前記吐出室の圧力との中間の圧力となるように構成した、請求項1~3のいずれか一項に記載のローリングシリンダ式容積型圧縮機。
    A back pressure chamber is provided between the rolling cylinder and the frame;
    The stationary cylinder has a back pressure DC path communicating the compression chamber with the back pressure chamber, and the pressure in the back pressure chamber is an intermediate pressure between the pressure in the suction chamber and the pressure in the discharge chamber. The rolling cylinder positive displacement compressor according to any one of claims 1 to 3, which is configured as follows.
  5.  前記圧縮室と前記背圧室とを連通する流路には、背圧弁が付設されている、請求項4記載のローリングシリンダ式容積型圧縮機。 The rolling cylinder positive displacement compressor according to claim 4, wherein a back pressure valve is attached to a flow passage communicating the compression chamber and the back pressure chamber.
  6.  前記圧縮部が1つである、請求項1~5のいずれか一項に記載のローリングシリンダ式容積型圧縮機。 The rolling cylinder positive displacement compressor according to any one of claims 1 to 5, wherein the number of the compression part is one.
  7.  前記圧縮部、前記回転駆動源及び前記貯油部は、この順に配置され、前記クランクシャフトにより接続されている、請求項6記載のローリングシリンダ式容積型圧縮機。 The rolling cylinder positive displacement compressor according to claim 6, wherein the compression unit, the rotational drive source, and the oil storage unit are arranged in this order and connected by the crankshaft.
  8.  前記ローリングシリンダは、偏心シャフト挿入穴を有し、
     前記旋回ピストンは、前記偏心シャフト挿入穴を塞ぐ構成である、請求項1~7のいずれか一項に記載のローリングシリンダ式容積型圧縮機。
    The rolling cylinder has an eccentric shaft insertion hole,
    The rolling cylinder positive displacement compressor according to any one of claims 1 to 7, wherein the turning piston is configured to close the eccentric shaft insertion hole.
  9.  前記偏心シャフトと前記クランクシャフトの回転軸との間には、前記偏心シャフトより直径が小さいシャフトネックを設けた、請求項8記載のローリングピストン式容積型圧縮機。 9. The rolling piston positive displacement compressor according to claim 8, wherein a shaft neck having a diameter smaller than that of the eccentric shaft is provided between the eccentric shaft and the rotation shaft of the crankshaft.
  10.  前記偏心シリンダ穴の底部には、一方向弁であるバイパス弁を有するバイパス穴を設けた、請求項1~9のいずれか一項に記載のローリングシリンダ式容積型圧縮機。 The rolling cylinder positive displacement compressor according to any one of claims 1 to 9, wherein a bypass hole having a bypass valve which is a one-way valve is provided at the bottom of the eccentric cylinder hole.
  11.  前記ローリングシリンダは、前記シリンダ溝を有するローリング円柱と、ローリング端板と、を含み、
     前記ローリング端板の直径は、前記ローリング円柱の直径より大きい、請求項1~10のいずれか一項に記載のローリングシリンダ式容積型圧縮機。
    The rolling cylinder includes a rolling cylinder having the cylinder groove and a rolling end plate,
    The rolling cylinder positive displacement compressor according to any one of claims 1 to 10, wherein a diameter of the rolling end plate is larger than a diameter of the rolling cylinder.
  12.  前記ローリングシリンダは、前記シリンダ溝を有するローリング円柱であり、前記ローリング円柱とは別体であるローリング端板を前記ローリングシリンダに重ねた構成を有し、
     前記ローリング端板の直径は、前記ローリング円柱の直径より大きい、請求項1~10のいずれか一項に記載のローリングシリンダ式容積型圧縮機。
    The rolling cylinder is a rolling cylinder having the cylinder groove, and has a configuration in which a rolling end plate separate from the rolling cylinder is stacked on the rolling cylinder.
    The rolling cylinder positive displacement compressor according to any one of claims 1 to 10, wherein a diameter of the rolling end plate is larger than a diameter of the rolling cylinder.
  13.  前記シリンダ溝の底部と前記ローリング端板の前記シリンダ溝側である端板おもて面との間には、段差を設けた、請求項1~12のいずれか一項に記載のローリングシリンダ式容積型圧縮機。 The rolling cylinder type according to any one of claims 1 to 12, wherein a step is provided between a bottom portion of the cylinder groove and an end plate front surface which is the cylinder groove side of the rolling end plate. Displacement compressor.
  14.  前記ローリングシリンダは、前記シリンダ溝を有するローリング円柱と、前記ローリング円柱と等しい直径を有するローリング円筒端部と、を含む、請求項1~10のいずれか一項に記載のローリングシリンダ式容積型圧縮機。 The rolling cylinder positive displacement compression according to any one of claims 1 to 10, wherein the rolling cylinder includes a rolling cylinder having the cylinder groove and a rolling cylinder end having a diameter equal to the rolling cylinder. Machine.
  15.  前記ローリングシリンダ及び前記旋回ピストンのうち少なくともいずれか一方の表面には、馴染み性の皮膜を設けた、請求項1~14のいずれか一項に記載のローリングピストン式容積型圧縮機。 The rolling piston positive displacement compressor according to any one of claims 1 to 14, wherein a compatible film is provided on the surface of at least one of the rolling cylinder and the orbiting piston.
PCT/JP2014/078552 2014-10-28 2014-10-28 Rolling cylinder type displacement compressor WO2016067355A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2016556076A JP6294974B2 (en) 2014-10-28 2014-10-28 Rolling cylinder positive displacement compressor
CN201480081965.6A CN107076145B (en) 2014-10-28 2014-10-28 Rolling cylinder formula displacement type compressor
PCT/JP2014/078552 WO2016067355A1 (en) 2014-10-28 2014-10-28 Rolling cylinder type displacement compressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/078552 WO2016067355A1 (en) 2014-10-28 2014-10-28 Rolling cylinder type displacement compressor

Publications (1)

Publication Number Publication Date
WO2016067355A1 true WO2016067355A1 (en) 2016-05-06

Family

ID=55856749

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/078552 WO2016067355A1 (en) 2014-10-28 2014-10-28 Rolling cylinder type displacement compressor

Country Status (3)

Country Link
JP (1) JP6294974B2 (en)
CN (1) CN107076145B (en)
WO (1) WO2016067355A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018055824A1 (en) * 2016-09-20 2018-03-29 株式会社日立製作所 Rolling cylinder-type displacement compressor
WO2018198811A1 (en) 2017-04-24 2018-11-01 日立ジョンソンコントロールズ空調株式会社 Rolling-cylinder-type displacement compressor
JP2021529279A (en) * 2018-07-18 2021-10-28 グリー エレクトリック アプライアンシーズ インク オブ ズーハイGree Electric Appliances, Inc. Of Zhuhai Pump body unit, fluid machinery, and heat exchanger
US11566619B2 (en) 2016-07-29 2023-01-31 Gree Green Refrigeration Technology Center Co., Ltd. Of Zhuhai Rotary cylinder piston compressor pump and compressor with rotary cylinder piston compressor pump

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107435634B (en) * 2017-07-31 2023-03-21 珠海格力节能环保制冷技术研究中心有限公司 Compressor pump body, compressor and assembly method of compressor pump body
CN108343608A (en) * 2018-04-26 2018-07-31 广东美芝制冷设备有限公司 Compressor
CN112664428B (en) * 2020-12-29 2022-12-09 西安交通大学 Rotary cylinder piston compressor

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2327425A1 (en) * 1975-10-08 1977-05-06 Mathalienne Construction Meca Positive displacement pump - has rotor with diametral bore containing piston reciprocating under action of fixed cam
US4649801A (en) * 1985-04-08 1987-03-17 Johnson Neil M Compound displacement mechanism for simplified motors and compressors
JPH10281052A (en) * 1997-02-06 1998-10-20 Kayseven Co Ltd Pump
JPH11230069A (en) * 1998-02-13 1999-08-24 Matsushita Electric Ind Co Ltd Sealed compressor
JP2003176794A (en) * 2002-12-13 2003-06-27 Hitachi Ltd Scroll compressor

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1153004C (en) * 1999-06-18 2004-06-09 株式会社三协精机制作所 Rotary cylinder device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2327425A1 (en) * 1975-10-08 1977-05-06 Mathalienne Construction Meca Positive displacement pump - has rotor with diametral bore containing piston reciprocating under action of fixed cam
US4649801A (en) * 1985-04-08 1987-03-17 Johnson Neil M Compound displacement mechanism for simplified motors and compressors
JPH10281052A (en) * 1997-02-06 1998-10-20 Kayseven Co Ltd Pump
JPH11230069A (en) * 1998-02-13 1999-08-24 Matsushita Electric Ind Co Ltd Sealed compressor
JP2003176794A (en) * 2002-12-13 2003-06-27 Hitachi Ltd Scroll compressor

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11566619B2 (en) 2016-07-29 2023-01-31 Gree Green Refrigeration Technology Center Co., Ltd. Of Zhuhai Rotary cylinder piston compressor pump and compressor with rotary cylinder piston compressor pump
WO2018055824A1 (en) * 2016-09-20 2018-03-29 株式会社日立製作所 Rolling cylinder-type displacement compressor
WO2018198811A1 (en) 2017-04-24 2018-11-01 日立ジョンソンコントロールズ空調株式会社 Rolling-cylinder-type displacement compressor
US10801483B2 (en) 2017-04-24 2020-10-13 Hitachi-Johnson Controls Air Conditioning, Inc. Rolling cylinder displacement compressor
EP3617502A4 (en) * 2017-04-24 2021-01-20 Hitachi-Johnson Controls Air Conditioning, Inc. Rolling-cylinder-type displacement compressor
JP2021529279A (en) * 2018-07-18 2021-10-28 グリー エレクトリック アプライアンシーズ インク オブ ズーハイGree Electric Appliances, Inc. Of Zhuhai Pump body unit, fluid machinery, and heat exchanger
JP7066012B2 (en) 2018-07-18 2022-05-12 グリー エレクトリック アプライアンシーズ インク オブ ズーハイ Pump body unit, fluid machine, and heat exchanger

Also Published As

Publication number Publication date
CN107076145A (en) 2017-08-18
JP6294974B2 (en) 2018-03-14
CN107076145B (en) 2019-04-12
JPWO2016067355A1 (en) 2017-06-15

Similar Documents

Publication Publication Date Title
WO2016067355A1 (en) Rolling cylinder type displacement compressor
JP2016173045A (en) Rolling cylinder type displacement fluid machine
KR20120044907A (en) Scroll compressor
JP5774134B2 (en) Vane type compressor
JP2008303844A (en) Scroll fluid machine
JP3893487B2 (en) Scroll compressor
JP4431160B2 (en) Fluid machinery
JP5511438B2 (en) Scroll compressor
JP2018031263A (en) Rotary Compressor
JP2012184709A (en) Scroll compressor
WO2017183330A1 (en) Rolling cylinder-type positive displacement compressor
JP5863436B2 (en) Fluid machinery
JP6541708B2 (en) Rolling cylinder positive displacement compressor
WO2018055824A1 (en) Rolling cylinder-type displacement compressor
JP7175657B2 (en) Rolling cylinder positive displacement compressor
JP2006241993A (en) Scroll compressor
JP3949840B2 (en) Scroll fluid machinery
JP2006161818A (en) Scroll compressor
JP2004003525A (en) Scroll compressor
JP2001003883A (en) Scroll type fluid machine
JP2012052494A (en) Hermetically sealed compressor
JP6545922B1 (en) Rolling cylinder positive displacement compressor
JP6903228B2 (en) Scroll compressor and refrigeration cycle equipment
KR20240017262A (en) Scroll Compressor
JP4089260B2 (en) Scroll compressor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14905128

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016556076

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14905128

Country of ref document: EP

Kind code of ref document: A1