WO2018054359A1 - 一种喹唑啉衍生物的盐、其制备方法及应用 - Google Patents

一种喹唑啉衍生物的盐、其制备方法及应用 Download PDF

Info

Publication number
WO2018054359A1
WO2018054359A1 PCT/CN2017/102998 CN2017102998W WO2018054359A1 WO 2018054359 A1 WO2018054359 A1 WO 2018054359A1 CN 2017102998 W CN2017102998 W CN 2017102998W WO 2018054359 A1 WO2018054359 A1 WO 2018054359A1
Authority
WO
WIPO (PCT)
Prior art keywords
quinazoline derivative
salt
tetrahydrofuran
citrate
solution
Prior art date
Application number
PCT/CN2017/102998
Other languages
English (en)
French (fr)
Inventor
夏广新
李迪
周宁
陈敖
赵亮
韩建生
刘彦君
Original Assignee
上海医药集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海医药集团股份有限公司 filed Critical 上海医药集团股份有限公司
Priority to EP17852427.8A priority Critical patent/EP3517529B1/en
Priority to US16/335,622 priority patent/US10870627B2/en
Priority to KR1020197011745A priority patent/KR102355955B1/ko
Priority to JP2019516127A priority patent/JP7068280B2/ja
Publication of WO2018054359A1 publication Critical patent/WO2018054359A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D239/00Heterocyclic compounds containing 1,3-diazine or hydrogenated 1,3-diazine rings
    • C07D239/70Heterocyclic compounds containing 1,3-diazine or hydrogenated 1,3-diazine rings condensed with carbocyclic rings or ring systems
    • C07D239/72Quinazolines; Hydrogenated quinazolines
    • C07D239/86Quinazolines; Hydrogenated quinazolines with hetero atoms directly attached in position 4
    • C07D239/94Nitrogen atoms
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/495Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with two or more nitrogen atoms as the only ring heteroatoms, e.g. piperazine or tetrazines
    • A61K31/505Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim
    • A61K31/517Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim ortho- or peri-condensed with carbocyclic ring systems, e.g. quinazoline, perimidine
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/535Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with at least one nitrogen and one oxygen as the ring hetero atoms, e.g. 1,2-oxazines
    • A61K31/53751,4-Oxazines, e.g. morpholine
    • A61K31/53771,4-Oxazines, e.g. morpholine not condensed and containing further heterocyclic rings, e.g. timolol
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C309/00Sulfonic acids; Halides, esters, or anhydrides thereof
    • C07C309/01Sulfonic acids
    • C07C309/02Sulfonic acids having sulfo groups bound to acyclic carbon atoms
    • C07C309/03Sulfonic acids having sulfo groups bound to acyclic carbon atoms of an acyclic saturated carbon skeleton
    • C07C309/05Sulfonic acids having sulfo groups bound to acyclic carbon atoms of an acyclic saturated carbon skeleton containing at least two sulfo groups bound to the carbon skeleton
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C309/00Sulfonic acids; Halides, esters, or anhydrides thereof
    • C07C309/01Sulfonic acids
    • C07C309/28Sulfonic acids having sulfo groups bound to carbon atoms of six-membered aromatic rings of a carbon skeleton
    • C07C309/29Sulfonic acids having sulfo groups bound to carbon atoms of six-membered aromatic rings of a carbon skeleton of non-condensed six-membered aromatic rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C309/00Sulfonic acids; Halides, esters, or anhydrides thereof
    • C07C309/01Sulfonic acids
    • C07C309/28Sulfonic acids having sulfo groups bound to carbon atoms of six-membered aromatic rings of a carbon skeleton
    • C07C309/33Sulfonic acids having sulfo groups bound to carbon atoms of six-membered aromatic rings of a carbon skeleton of six-membered aromatic rings being part of condensed ring systems
    • C07C309/34Sulfonic acids having sulfo groups bound to carbon atoms of six-membered aromatic rings of a carbon skeleton of six-membered aromatic rings being part of condensed ring systems formed by two rings
    • C07C309/35Naphthalene sulfonic acids
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C309/00Sulfonic acids; Halides, esters, or anhydrides thereof
    • C07C309/01Sulfonic acids
    • C07C309/28Sulfonic acids having sulfo groups bound to carbon atoms of six-membered aromatic rings of a carbon skeleton
    • C07C309/39Sulfonic acids having sulfo groups bound to carbon atoms of six-membered aromatic rings of a carbon skeleton containing halogen atoms bound to the carbon skeleton
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C55/00Saturated compounds having more than one carboxyl group bound to acyclic carbon atoms
    • C07C55/02Dicarboxylic acids
    • C07C55/08Malonic acid
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C55/00Saturated compounds having more than one carboxyl group bound to acyclic carbon atoms
    • C07C55/02Dicarboxylic acids
    • C07C55/10Succinic acid
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C57/00Unsaturated compounds having carboxyl groups bound to acyclic carbon atoms
    • C07C57/02Unsaturated compounds having carboxyl groups bound to acyclic carbon atoms with only carbon-to-carbon double bonds as unsaturation
    • C07C57/13Dicarboxylic acids
    • C07C57/145Maleic acid
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C59/00Compounds having carboxyl groups bound to acyclic carbon atoms and containing any of the groups OH, O—metal, —CHO, keto, ether, groups, groups, or groups
    • C07C59/01Saturated compounds having only one carboxyl group and containing hydroxy or O-metal groups
    • C07C59/10Polyhydroxy carboxylic acids
    • C07C59/105Polyhydroxy carboxylic acids having five or more carbon atoms, e.g. aldonic acids
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C59/00Compounds having carboxyl groups bound to acyclic carbon atoms and containing any of the groups OH, O—metal, —CHO, keto, ether, groups, groups, or groups
    • C07C59/235Saturated compounds containing more than one carboxyl group
    • C07C59/245Saturated compounds containing more than one carboxyl group containing hydroxy or O-metal groups
    • C07C59/255Tartaric acid
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C59/00Compounds having carboxyl groups bound to acyclic carbon atoms and containing any of the groups OH, O—metal, —CHO, keto, ether, groups, groups, or groups
    • C07C59/235Saturated compounds containing more than one carboxyl group
    • C07C59/245Saturated compounds containing more than one carboxyl group containing hydroxy or O-metal groups
    • C07C59/265Citric acid
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C59/00Compounds having carboxyl groups bound to acyclic carbon atoms and containing any of the groups OH, O—metal, —CHO, keto, ether, groups, groups, or groups
    • C07C59/235Saturated compounds containing more than one carboxyl group
    • C07C59/305Saturated compounds containing more than one carboxyl group containing ether groups, groups, groups, or groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C59/00Compounds having carboxyl groups bound to acyclic carbon atoms and containing any of the groups OH, O—metal, —CHO, keto, ether, groups, groups, or groups
    • C07C59/235Saturated compounds containing more than one carboxyl group
    • C07C59/347Saturated compounds containing more than one carboxyl group containing keto groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C65/00Compounds having carboxyl groups bound to carbon atoms of six—membered aromatic rings and containing any of the groups OH, O—metal, —CHO, keto, ether, groups, groups, or groups
    • C07C65/01Compounds having carboxyl groups bound to carbon atoms of six—membered aromatic rings and containing any of the groups OH, O—metal, —CHO, keto, ether, groups, groups, or groups containing hydroxy or O-metal groups
    • C07C65/105Compounds having carboxyl groups bound to carbon atoms of six—membered aromatic rings and containing any of the groups OH, O—metal, —CHO, keto, ether, groups, groups, or groups containing hydroxy or O-metal groups polycyclic
    • C07C65/11Compounds having carboxyl groups bound to carbon atoms of six—membered aromatic rings and containing any of the groups OH, O—metal, —CHO, keto, ether, groups, groups, or groups containing hydroxy or O-metal groups polycyclic with carboxyl groups on a condensed ring system containing two rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C69/00Esters of carboxylic acids; Esters of carbonic or haloformic acids
    • C07C69/34Esters of acyclic saturated polycarboxylic acids having an esterified carboxyl group bound to an acyclic carbon atom
    • C07C69/38Malonic acid esters
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C69/00Esters of carboxylic acids; Esters of carbonic or haloformic acids
    • C07C69/34Esters of acyclic saturated polycarboxylic acids having an esterified carboxyl group bound to an acyclic carbon atom
    • C07C69/40Succinic acid esters
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D307/00Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom
    • C07D307/02Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings
    • C07D307/04Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings having no double bonds between ring members or between ring members and non-ring members
    • C07D307/06Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings having no double bonds between ring members or between ring members and non-ring members with only hydrogen atoms or radicals containing only hydrogen and carbon atoms, directly attached to ring carbon atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D307/00Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom
    • C07D307/02Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings
    • C07D307/04Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings having no double bonds between ring members or between ring members and non-ring members
    • C07D307/06Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings having no double bonds between ring members or between ring members and non-ring members with only hydrogen atoms or radicals containing only hydrogen and carbon atoms, directly attached to ring carbon atoms
    • C07D307/08Preparation of tetrahydrofuran
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D319/00Heterocyclic compounds containing six-membered rings having two oxygen atoms as the only ring hetero atoms
    • C07D319/101,4-Dioxanes; Hydrogenated 1,4-dioxanes
    • C07D319/121,4-Dioxanes; Hydrogenated 1,4-dioxanes not condensed with other rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D401/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom
    • C07D401/02Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings
    • C07D401/12Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings linked by a chain containing hetero atoms as chain links
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D403/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00
    • C07D403/02Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing two hetero rings
    • C07D403/12Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing two hetero rings linked by a chain containing hetero atoms as chain links
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D405/00Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom
    • C07D405/02Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing two hetero rings
    • C07D405/12Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing two hetero rings linked by a chain containing hetero atoms as chain links
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D413/00Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms
    • C07D413/02Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms containing two hetero rings
    • C07D413/12Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms containing two hetero rings linked by a chain containing hetero atoms as chain links
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic Table
    • C07F9/02Phosphorus compounds
    • C07F9/547Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom
    • C07F9/645Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom having two nitrogen atoms as the only ring hetero atoms
    • C07F9/6509Six-membered rings
    • C07F9/6512Six-membered rings having the nitrogen atoms in positions 1 and 3
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic Table
    • C07F9/02Phosphorus compounds
    • C07F9/547Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom
    • C07F9/6558Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom containing at least two different or differently substituted hetero rings neither condensed among themselves nor condensed with a common carbocyclic ring or ring system
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B2200/00Indexing scheme relating to specific properties of organic compounds
    • C07B2200/13Crystalline forms, e.g. polymorphs

Definitions

  • the present invention relates to a salt of a quinazoline derivative, a process for the preparation thereof and use thereof.
  • the quinazoline derivative i.e., the compound of formula 1
  • a process for the preparation thereof are disclosed in US2014206687, WO2013013640, CN102898386, and JP2014521613.
  • the compound of the formula 1 is a pale yellow or off-white powdery solid which is poorly water-soluble.
  • the technical problem to be solved by the present invention is that the conventional quinazoline derivative has poor water solubility, and thus, the present invention provides a salt of a quinazoline derivative, a preparation method thereof and use thereof.
  • the salts of the quinazoline derivatives have one or more improved properties, at least better water solubility, than known quinazoline derivatives.
  • the present invention provides a salt of a quinazoline derivative which is a citrate salt of the formula 2, a citrate hemiethanolate of the formula 2-1, as in the formula 2-2.
  • a ketoglutarate a bis-ketoglutarate as shown in Formula 10
  • a bisphosphonate represented by Formula 11 a dimella as shown in Formula 12
  • An acid salt a monosuccinate represented by Formula 13, a succinate represented by Formula 14, a diglycolate represented by Formula 15, a malonate represented by Formula 16, a dimalonate represented by Formula 17, a trimalonate represented by Formula 18, a disulfate represented by Formula 19, and a di-1,5-naphthalene disulfonate represented by Formula 20 a pamoate as shown in Formula 21, a pair of tosylate as shown in Formula 22, a 1,5-naphthalene disulfonate represented by Formula 23, or as shown in Formula 24 a pair of chlorobenzenesulfonates;
  • the citrate salt 2 the citrate salt hemiethanolate 2-1, the citrate ditetrahydrofuran compound 2-2, the citrate half 1,4-dioxane 2- 3.
  • the structural formula of the salt 14, trimalonate 18 and the pair of tosylate 22 represents that it consists only of the quinazoline derivative and the acid shown in the structural formula, or that it is only represented by the quinazoline of the formula Derivatives, acids and solvent molecules.
  • the structural formula of naphthalene disulfonate 20, monopalmitate 21, mono-1,5-naphthalenedisulfonate 23, and p-chlorobenzenesulfonate 24 is represented by the quinazoline derivative shown in the structural formula.
  • acid ie, It may also contain solvent molecules (which may be water or organic solvents) not shown in the structural formula.
  • their structural formulas represent that they consist only of the quinazoline derivatives and acids shown in the structural formula.
  • the structural formula of the L-tartrate 5, mono-ketoglutarate 9, bisphosphonate 11, and malonate 16 is represented by the quinazoline derivative and acid shown in the structural formula (also That is, it may also contain a solvent molecule (which may be water or an organic solvent) not shown in the structural formula.
  • their structural formulas represent that they consist only of the quinazoline derivatives, acids and water shown in the formula.
  • the citrate salt as shown in Formula 2 may further have the following parameters: 1
  • the X-ray powder diffraction pattern thereof has a diffraction angle 2 ⁇ of 8.280 ⁇ 0.2°, 8.720 ⁇ 0.2°, 16.962 ⁇ 0.2°, 19.124 ⁇ 0.2°, 19.742.
  • 15.926 ⁇ 0.2°, 18.400 ⁇ 0.2°, 21.520 ⁇ 0.2°, 22.942 ⁇ 0.2°, 24.584 ⁇ 0.2° and 26.943 ⁇ 0.2° (again, 6.757 ⁇ 0.2°, 10.441 ⁇ 0.2°, 11.521 ⁇ 0.2°, 13.084) ⁇ 0.2°, 13.406 ⁇ 0.2°, 15.926 ⁇ 0.2°, 17.540 ⁇ 0.2°, 18.400 ⁇ 0.2°, 21.520 ⁇ 0.2°, 22.942 ⁇ 0.2°, 24.584 ⁇ 0.2°, and 26.943 ⁇ 0.2°; may also be 6.757 ⁇ 0.2 °, 10.441 ⁇ 0.2°, 11.521 ⁇ 0.2°, 13.084 ⁇ 0.2°, 13.406 ⁇ 0.2°, 14.003 ⁇ 0.2°, 14.594 ⁇ 0.2°, 15.097 ⁇ 0.2°, 15.926 ⁇ 0.2°, 17.540 ⁇ 0.2°, 18.400 ⁇ 0.2 Characteristic peaks (ie, crystal form 13) are present at °, 20.898 ⁇ 0.2 °, 21.520 ⁇ 0.2 °, 22.942 ⁇ 0.2 °
  • the citrate hemiethanolate represented by Formula 2-1 may further have the following parameters: the X-ray powder diffraction pattern has a diffraction angle 2 ⁇ of 4.700 ⁇ 0.2°, 7.400 ⁇ 0.2°, 7.801 ⁇ 0.2°, and 11.340.
  • ⁇ 0.2°, 13.298 ⁇ 0.2°, 13.799 ⁇ 0.2°, 18.464 ⁇ 0.2°, and 22.618 ⁇ 0.2° may be 4.700 ⁇ 0.2°, 7.400 ⁇ 0.2°, 7.801 ⁇ 0.2°, 11.340 ⁇ 0.2°, 13.298 ⁇ 0.2 Characteristic peaks (ie, crystal form) at 13.799 ⁇ 0.2°, 14.397 ⁇ 0.2°, 15.719 ⁇ 0.2°, 18.464 ⁇ 0.2°, 20.036 ⁇ 0.2°, 22.618 ⁇ 0.2°, 31.385 ⁇ 0.2°, and 31.604 ⁇ 0.2°) 2).
  • the citrate ditetrahydrofuran compound represented by Formula 2-2 may further have the following parameters: the X-ray powder diffraction pattern has a diffraction angle 2 ⁇ of 6.939 ⁇ 0.2°, 7.462 ⁇ 0.2°, 18.603 ⁇ 0.2°, 19.183 ⁇ 0.2°, 24.803 ⁇ 0.2° and 25.983 ⁇ 0.2° (again, 6.939 ⁇ 0.2°, 7.462 ⁇ 0.2°, 15.181 ⁇ 0.2°, 15.976 ⁇ 0.2°, 18.603 ⁇ 0.2°, 19.183 ⁇ 0.2°, 20.861 ⁇ 0.2°, 21.444 ⁇ 0.2°, 22.321 ⁇ 0.2°, 23.040 ⁇ 0.2°, 24.803 ⁇ 0.2° and 25.983 ⁇ 0.2°; also 6.939 ⁇ 0.2°, 7.462 ⁇ 0.2°, 13.042 ⁇ 0.2°, 15.181 ⁇ 0.2°, 15.976 ⁇ 0.2°, 16.502 ⁇ 0.2°, 17.318 ⁇ 0.2°, 18.603 ⁇ 0.2°, 19.183 ⁇ 0.2°, 20.861 ⁇ 0.2°, 21.444 ⁇ 0.2°, 2
  • the citrate half 1,4-dioxane compound represented by Formula 2-3 may further have the following parameters: the X-ray powder diffraction pattern has a diffraction angle 2 ⁇ of 6.962 ⁇ 0.2° and 7.821 ⁇ 0.2°. , 8.560 ⁇ 0.2 °, 8.999 ⁇ 0.2 °, 17.262 ⁇ 0.2 ° and 19.441 ⁇ 0.2 ° (may be 6.962 ⁇ 0.2 °, 7.821 ⁇ 0.2 °, 8.560 ⁇ 0.2 °, 8.999 ⁇ 0.2 °, 15.712 ⁇ 0.2 °, 17.262 ⁇ 0.2°, 19.441 ⁇ 0.2°, 20.037 ⁇ 0.2°, 20.754 ⁇ 0.2°, 24.062 ⁇ 0.2°, and 25.407 ⁇ 0.2°; may also be 6.962 ⁇ 0.2°, 7.821 ⁇ 0.2°, 8.560 ⁇ 0.2°, 8.999 ⁇ 0.2 Characteristic peaks (ie, crystal form) at 15.712 ⁇ 0.2°, 17.262 ⁇ 0.2°, 19.441
  • the citrate dihydrate as shown in Formula 2-4 may further have the following parameters: 1
  • the X-ray powder diffraction pattern thereof has a diffraction angle 2 ⁇ of 6.443 ⁇ 0.2°, 10.780 ⁇ 0.2°, 12.808 ⁇ 0.2°, 16.230.
  • ⁇ 0.2°, 18.683 ⁇ 0.2°, 19.262 ⁇ 0.2°, 24.519 ⁇ 0.2°, 25.885 ⁇ 0.2°, and 28.743 ⁇ 0.2° (again, 6.443 ⁇ 0.2°, 7.801 ⁇ 0.2°, 10.780 ⁇ 0.2°, 12.808 ⁇ 0.2 °, 13.211 ⁇ 0.2°, 14.221 ⁇ 0.2°, 16.230 ⁇ 0.2°, 18.683 ⁇ 0.2°, 19.262 ⁇ 0.2°, 19.744 ⁇ 0.2°, 21.042 ⁇ 0.2°, 21.540 ⁇ 0.2°, 24.519 ⁇ 0.2°, 25.885 ⁇ 0.2 ° and 28.743 ⁇ 0.2°; may also be 6.443 ⁇ 0.2°, 7.801 ⁇ 0.2°, 8.140 ⁇ 0.2°, 10.780 ⁇ 0.2°, 12.808 ⁇ 0.2°, 13.211 ⁇ 0.2°, 14.221 ⁇ 0.2°, 16.230 ⁇ 0.2°, 16.543 ⁇ 0.2°, 18.683 ⁇ 0.2°, 19.262 ⁇ 0.2°, 24.519 ⁇ 0.2°, 25.886 ⁇ 0.2° and 28.743 ⁇ 0.2°; more
  • the citrate semi-chloroform compound represented by Formula 2-5 may further have the following parameters: the X-ray powder diffraction pattern has a diffraction angle 2 ⁇ of 7.682 ⁇ 0.2°, 19.122 ⁇ 0.2°, and 26.044 ⁇ 0.2° (again There may be characteristic peaks (ie, Form 6) at 7.682 ⁇ 0.2 °, 8.101 ⁇ 0.2 °, 16.705 ⁇ 0.2 °, 17.138 ⁇ 0.2 °, 19.122 ⁇ 0.2 °, and 26.044 ⁇ 0.2 °.
  • the citrate trihydrate as shown in Formula 2-6 may further have the following parameters: the X-ray powder diffraction pattern has a diffraction angle 2 ⁇ of 5.659 ⁇ 0.2°, 5.920 ⁇ 0.2°, 9.064 ⁇ 0.2°, and 11.760 ⁇ .
  • the citrate 2.5 hydrate as shown in Formula 2-7 may further have the following parameters: the X-ray powder diffraction pattern has a diffraction angle 2 ⁇ of 7.852 ⁇ 0.2°, 14.859 ⁇ 0.2°, 15.605 ⁇ 0.2°, 19.448 ⁇ 0.2°, 23.439 ⁇ 0.2° and 25.604 ⁇ 0.2° (again, 7.852 ⁇ 0.2°, 14.128 ⁇ 0.2°, 14.859 ⁇ 0.2°, 15.605 ⁇ 0.2°, 16.580 ⁇ 0.2°, 19.448 ⁇ 0.2°, 20.221 ⁇ 0.2° There are characteristic peaks at 23.439 ⁇ 0.2° and 25.604 ⁇ 0.2° (ie, Form 14).
  • the monobenzenesulfonate salt of the formula 3 may further have the following parameters: the X-ray powder diffraction pattern has a diffraction angle 2 ⁇ of 7.642 ⁇ 0.2°, 13.639 ⁇ 0.2°, 14.861 ⁇ 0.2°, 15.445 ⁇ 0.2°, 16.182. ⁇ 0.2°, 16.904 ⁇ 0.2°, 17.542 ⁇ 0.2°, 18.821 ⁇ 0.2°, 19.160 ⁇ 0.2°, 20.563 ⁇ 0.2°, 21.643 ⁇ 0.2°, 22.843 ⁇ 0.2°, 23.542 ⁇ 0.2°, 25.252 ⁇ 0.2°, and 26.201 There are characteristic peaks at ⁇ 0.2°.
  • the ethanedisulfonate salt of the formula 4 may further have the following parameters: the X-ray powder diffraction pattern has a diffraction angle 2 ⁇ of 5.447 ⁇ 0.2°, 8.286 ⁇ 0.2°, 13.734 ⁇ 0.2°, 18.614 ⁇ 0.2°, There are characteristic peaks at 20.686 ⁇ 0.2 °, 22.596 ⁇ 0.2 °, 24.179 ⁇ 0.2 °, 24.908 ⁇ 0.2 °, and 29.606 ⁇ 0.2 °.
  • the L-tartrate salt as shown in Formula 5 may further have the following parameters: the X-ray powder diffraction pattern has a diffraction angle 2 ⁇ of 5.738 ⁇ 0.2°, 7.332 ⁇ 0.2°, 8.818 ⁇ 0.2°, 11.084 ⁇ 0.2°, 13.060. ⁇ 0.2°, 17.063 ⁇ 0.2°, 17.814 ⁇ 0.2°, There are characteristic peaks at 19.841 ⁇ 0.2 °, 20.469 ⁇ 0.2 °, 21. 844 ⁇ 0.2 °, and 24.123 ⁇ 0.2 ° (ie, Form 15).
  • An L-tartrate tetrahydrate as shown in Formula 5-1 may further have the following parameters: the X-ray powder diffraction pattern has a diffraction angle 2 ⁇ of 7.357 ⁇ 0.2°, 8.696 ⁇ 0.2°, 9.437 ⁇ 0.2°, 12.725. Characteristic peaks (ie, crystals) at ⁇ 0.2°, 16.543 ⁇ 0.2°, 17.444 ⁇ 0.2°, 18.959 ⁇ 0.2°, 21.847 ⁇ 0.2°, 22.101 ⁇ 0.2°, 24.819 ⁇ 0.2°, 29.444 ⁇ 0.2°, and 33.501 ⁇ 0.2° Type 16).
  • the monohydrochloride monohydrate of the formula 6 may also have the following parameters: the X-ray powder diffraction pattern has a diffraction angle 2 ⁇ of 8.862 ⁇ 0.2°, 13.860 ⁇ 0.2°, 17.127 ⁇ 0.2°, 17.516 ⁇ 0.2°. Characteristic peaks at 21.452 ⁇ 0.2°, 23.545 ⁇ 0.2°, 25.421 ⁇ 0.2°, and 27.985 ⁇ 0.2°.
  • the monosulfate salt as shown in Formula 7 may further have the following parameters: the X-ray powder diffraction pattern has a diffraction angle 2 ⁇ of 6.102 ⁇ 0.2°, 6.982 ⁇ 0.2°, 13.336 ⁇ 0.2°, 14.340 ⁇ 0.2°, 14.857 ⁇ 0.2. Characteristic peaks at °, 21.585 ⁇ 0.2 °, 23.009 ⁇ 0.2 °, 24.254 ⁇ 0.2 °, and 25.783 ⁇ 0.2 °.
  • a D-gluconate as shown in Formula 8 may further have a parameter in which the X-ray powder diffraction pattern has a diffraction angle 2 ⁇ of 6.280 ⁇ 0.2°, 7.901 ⁇ 0.2°, 12.403 ⁇ 0.2°, 15.719 ⁇ 0.2°, 16.106 ⁇ 0.2°, 18.001 ⁇ 0.2°, 19.581 ⁇ 0.2°, 21.601 ⁇ 0.2°, 22.760 ⁇ 0.2°, 23.980 ⁇ 0.2°, 24.461 ⁇ 0.2°, 25.140 ⁇ 0.2°, 26.764 ⁇ 0.2°, 27.419 ⁇ 0.2° and There are characteristic peaks at 28.902 ⁇ 0.2°.
  • the ⁇ -ketoglutarate as shown in Formula 9 may further have the following parameters: the X-ray powder diffraction pattern has a diffraction angle 2 ⁇ of 5.349 ⁇ 0.2°, 7.186 ⁇ 0.2°, 7.818 ⁇ 0.2°, and 8.446 ⁇ 0.2. Characteristic peaks at °, 9.259 ⁇ 0.2°, 11.114 ⁇ 0.2°, 15.968 ⁇ 0.2°, 16.851 ⁇ 0.2°, 17.411 ⁇ 0.2°, 20.408 ⁇ 0.2°, 22.381 ⁇ 0.2°, 23.943 ⁇ 0.2°, and 24.198 ⁇ 0.2° .
  • the bis-ketoglutarate as shown in Formula 10 may further have the following parameters: the X-ray powder diffraction pattern has a diffraction angle 2 ⁇ of 5.738 ⁇ 0.2°, 7.003 ⁇ 0.2°, 9.537 ⁇ 0.2°, and 12.779 ⁇ 0.2. °, 14.379 ⁇ 0.2°, 15.815 ⁇ 0.2°, 17.042 ⁇ 0.2°, 17.765 ⁇ 0.2°, 19.121 ⁇ 0.2°, 23.343 ⁇ 0.2°, 24.722 ⁇ 0.2°, 25.821 ⁇ 0.2°, 26.379 ⁇ 0.2°, 27.162 ⁇ 0.2 There are characteristic peaks at ° and 36.062 ⁇ 0.2 °.
  • the bisphosphonate represented by Formula 11 may further have a parameter in which the X-ray powder diffraction pattern is at a diffraction angle 2 ⁇ of 5.080 ⁇ 0.2°, 14.304 ⁇ 0.2°, 15.552 ⁇ 0.2°, 19.781 ⁇ 0.2°, 22.580 ⁇ 0.2. There are characteristic peaks at ° and 24.720 ⁇ 0.2 °.
  • the dimaleate salt represented by Formula 12 may further have the following parameters: the X-ray powder diffraction pattern has a diffraction angle 2 ⁇ of 4.777 ⁇ 0.2°, 6.094 ⁇ 0.2°, 9.750 ⁇ 0.2°, 10.397 ⁇ 0.2°, 12.279. ⁇ 0.2°, 15.573 ⁇ 0.2°, 16.264 ⁇ 0.2°, 17.230 ⁇ 0.2°, 18.594 ⁇ 0.2°, 18.928 ⁇ 0.2°, 19.662 ⁇ 0.2°, 20.505 ⁇ 0.2°, 21.751 ⁇ 0.2°, 24.098 ⁇ 0.2°, 25.698 Characteristic peaks at ⁇ 0.2°, 26.314 ⁇ 0.2°, 27.871 ⁇ 0.2°, 28.759 ⁇ 0.2°, and 29.767 ⁇ 0.2°.
  • the monosuccinate salt of the formula 13 may further have the following parameters: the X-ray powder diffraction pattern is at the diffraction angle 2? There are characteristic peaks at 4.060 ⁇ 0.2°, 7.998 ⁇ 0.2°, 13.866 ⁇ 0.2°, 19.763 ⁇ 0.2°, 21.820 ⁇ 0.2°, 22.543 ⁇ 0.2°, 25.667 ⁇ 0.2°, 27.851 ⁇ 0.2° and 31.700 ⁇ 0.2°.
  • the succinate salt of the formula 14 may further have the following parameters: the X-ray powder diffraction pattern has a diffraction angle 2 ⁇ of 4.920 ⁇ 0.2°, 8.941 ⁇ 0.2°, 16.988 ⁇ 0.2°, 20.302 ⁇ 0.2°, 23.799. Characteristic peaks at ⁇ 0.2°, 26.384 ⁇ 0.2°, 27.862 ⁇ 0.2°, and 31.802 ⁇ 0.2°.
  • the diglycolate as shown in Formula 15 may further have the following parameters: the X-ray powder diffraction pattern has diffraction angles 2 ⁇ of 10.121 ⁇ 0.2°, 11.700 ⁇ 0.2°, 13.863 ⁇ 0.2°, 14.360 ⁇ 0.2°, and 15.116 ⁇ . 0.2°, 15.977 ⁇ 0.2°, 16.421 ⁇ 0.2°, 17.484 ⁇ 0.2°, 18.642 ⁇ 0.2°, 20.341 ⁇ 0.2°, 21.163 ⁇ 0.2°, 21.822 ⁇ 0.2°, 22.622 ⁇ 0.2°, 23.401 ⁇ 0.2°, 24.481 ⁇ Characteristic peaks were found at 0.2°, 26.405 ⁇ 0.2°, 27.083 ⁇ 0.2°, 27.865 ⁇ 0.2°, 28.682 ⁇ 0.2°, and 30.023 ⁇ 0.2°.
  • the monomalonate represented by Formula 16 may further have the following parameters: the X-ray powder diffraction pattern has a diffraction angle 2 ⁇ of 7.018 ⁇ 0.2°, 13.866 ⁇ 0.2°, 17.541 ⁇ 0.2°, 19.127 ⁇ 0.2°, 20.342. Characteristic peaks at ⁇ 0.2°, 21.184 ⁇ 0.2°, 23.183 ⁇ 0.2°, 24.981 ⁇ 0.2°, 27.852 ⁇ 0.2°, and 28.444 ⁇ 0.2°.
  • the dimalonate salt of the formula 17 may further have the following parameters: the X-ray powder diffraction pattern has a diffraction angle 2 ⁇ of 5.180 ⁇ 0.2°, 7.141 ⁇ 0.2°, 13.876 ⁇ 0.2°, 14.742 ⁇ 0.2°, 16.424. ⁇ 0.2°, 16.840 ⁇ 0.2°, 18.485 ⁇ 0.2°, 19.299 ⁇ 0.2°, 20.024 ⁇ 0.2°, 21.940 ⁇ 0.2°, 23.845 ⁇ 0.2°, 25.003 ⁇ 0.2°, 26.962 ⁇ 0.2°, and 27.847 ⁇ 0.2° Characteristic peaks.
  • the trimalonate salt of the formula 18 may further have the following parameters: the X-ray powder diffraction pattern has a diffraction angle 2 ⁇ of 5.062 ⁇ 0.2°, 7.181 ⁇ 0.2°, 13.843 ⁇ 0.2°, 14.731 ⁇ 0.2°, 15.700. ⁇ 0.2°, 16.158 ⁇ 0.2°, 16.841 ⁇ 0.2°, 17.923 ⁇ 0.2°, 19.042 ⁇ 0.2°, 19.722 ⁇ 0.2°, 22.123 ⁇ 0.2°, 23.303 ⁇ 0.2°, 26.621 ⁇ 0.2°, and 27.480 ⁇ 0.2° Characteristic peaks.
  • the disulfate salt of the formula 19 may further have the following parameters: the X-ray powder diffraction pattern has a diffraction angle 2 ⁇ of 6.896 ⁇ 0.2°, 13.362 ⁇ 0.2°, 14.516 ⁇ 0.2°, 14.981 ⁇ 0.2°, 18.179 ⁇ 0.2. °, 18.622 ⁇ 0.2°, 19.806 ⁇ 0.2°, 20.983 ⁇ 0.2°, 22.801 ⁇ 0.2°, 24.062 ⁇ 0.2°, 24.783 ⁇ 0.2°, 25.662 ⁇ 0.2°, 26.503 ⁇ 0.2°, 27.543 ⁇ 0.2° and 28.143 ⁇ 0.2 There are characteristic peaks at °.
  • the di-1,5-naphthalenedisulfonate salt represented by Formula 20 may further have a parameter in which the X-ray powder diffraction pattern has a diffraction angle 2 ⁇ of 6.740 ⁇ 0.2°, 7.660 ⁇ 0.2°, 8.821 ⁇ 0.2°, 10.582.
  • the pamoate salt represented by Formula 21 may further have a parameter in which the X-ray powder diffraction pattern is at a diffraction angle 2? 4.861 ⁇ 0.2°, 7.501 ⁇ 0.2°, 8.220 ⁇ 0.2°, 9.19 ⁇ 0.2°, 12.723 ⁇ 0.2°, 14.203 ⁇ 0.2°, 15.821 ⁇ 0.2°, 16.960 ⁇ 0.2°, 19.382 ⁇ 0.2°, 21.661 ⁇ 0.2°, There are characteristic peaks at 23.082 ⁇ 0.2 °, 23.461 ⁇ 0.2 ° and 27.343 ⁇ 0.2 °.
  • the pair of tosylate salts represented by Formula 22 may further have the following parameters: the X-ray powder diffraction pattern has a diffraction angle 2 ⁇ of 7.560 ⁇ 0.2°, 15.224 ⁇ 0.2°, 16.002 ⁇ 0.2°, 16.903 ⁇ 0.2°, Characteristic peaks at 17.421 ⁇ 0.2 °, 18.857 ⁇ 0.2 °, 20.141 ⁇ 0.2 °, 21.143 ⁇ 0.2 °, 22.564 ⁇ 0.2 °, 23.023 ⁇ 0.2 °, 29.621 ⁇ 0.2 °, and 31.325 ⁇ 0.2 °.
  • the 1,5-naphthalenedisulfonate salt of the formula 23 may further have the following parameters: the X-ray powder diffraction pattern has a diffraction angle 2 ⁇ of 5.566 ⁇ 0.2°, 7.363 ⁇ 0.2°, 7.914 ⁇ 0.2°, 8.784. ⁇ 0.2°, 9.354 ⁇ 0.2°, 10.617 ⁇ 0.2°, 12.534 ⁇ 0.2°, 15.926 ⁇ 0.2°, 17.584 ⁇ 0.2°, 18.004 ⁇ 0.2°, 19.779 ⁇ 0.2°, 20.506 ⁇ 0.2°, 20.725 ⁇ 0.2°, 22.798 Characteristic peaks at ⁇ 0.2°, 24.138 ⁇ 0.2°, and 25.541 ⁇ 0.2°.
  • the pair of chlorobenzenesulfonates as shown in Formula 24 may further have the following parameters: the X-ray powder diffraction pattern has a diffraction angle 2 ⁇ of 7.623 ⁇ 0.2°, 15.244 ⁇ 0.2°, 15.994 ⁇ 0.2°, and 17.046 ⁇ 0.2°. , 17.487 ⁇ 0.2 °, 18.885 ⁇ 0.2 °, 20.197 ⁇ 0.2 °, 21.267 ⁇ 0.2 °, 21.487 ⁇ 0.2 °, 22.501 ⁇ 0.2 °, 23.154 ⁇ 0.2 °, 23.423 ⁇ 0.2 °, 24.662 ⁇ 0.2 ° and 29.617 ⁇ 0.2 ° There are characteristic peaks.
  • a typical example of the citrate salt form 1 has an X-ray powder diffraction pattern as shown in FIG. Further, the monocitrate salt form 1 has a thermogravimetric analysis (TGA) pattern as shown in FIG. 2, showing that the monocitrate salt form 1 is an anhydride. Further, the monocitrate salt form 1 has a differential scanning calorimetry (DSC) as shown in Fig. 3, which shows a melting point of 165-169 ° C, and melting accompanied by decomposition. Further, the monocitrate salt form 1 has a dynamic moisture adsorption diagram (DVS) as shown in FIG. 4, showing that the one citrate salt form 1 absorbs water by 0.21% in a range of 20-80% relative humidity.
  • TGA thermogravimetric analysis
  • DSC differential scanning calorimetry
  • Fig. 3 shows a melting point of 165-169 ° C, and melting accompanied by decomposition.
  • DSC differential scanning calorimetry
  • the monocitrate salt form 1 has
  • hemi-ethanolate form 2 has an X-ray powder diffraction pattern as shown in FIG. Further, the hemi-ethanolate form 2 has a thermogravimetric analysis (TGA) pattern as shown in FIG. 30, which shows that the decomposition temperature of the hemi-ethanolate form 2 is 142 ° C, and 3.2% before decomposition. Weight loss, containing 0.5 moles of ethanol. Further, the hemi-ethanolate form 2 has a differential scanning calorimetry (DSC) as shown in FIG. 31, showing that the hemi-ethanolate form 2 has a de-ethanol between 89-120 ° C. Endothermic peak.
  • TGA thermogravimetric analysis
  • DSC differential scanning calorimetry
  • a typical example of the ditetrahydrofuron crystal form 3 has an X-ray powder diffraction pattern as shown in FIG. Further, the ditetrahydrofuron crystal form 3 has a thermogravimetric analysis (TGA) pattern as shown in FIG. 33, which shows that the decomposition temperature of the ditetrahydrofuran crystal form 3 is 169 ° C, and 17.3% before decomposition. Weight loss, containing 2 moles of tetrahydrofuran.
  • TGA thermogravimetric analysis
  • a typical example of the semi-1,4-dioxane crystal form 4 has the structure shown in FIG. X-ray powder diffraction pattern. Further, the semi-1,4-dioxane crystal form 4 has a thermogravimetric analysis (TGA) pattern as shown in FIG. 35, showing the semi-1,4-dioxane crystal form
  • TGA thermogravimetric analysis
  • a typical example of the dihydrate crystal form 5 has an X-ray powder diffraction pattern as shown in FIG.
  • the dihydrate crystal form 5 has a thermogravimetric analysis (TGA) pattern as shown in FIG. 6, which shows that the dihydrate crystal form 5 is a hydrate, and the decomposition temperature of the dihydrate crystal form 5 At 145 ° C, there is 5.3% weight loss before decomposition, about 2 moles of water.
  • the dihydrate crystal form 5 has a differential scanning calorimetry (DSC) as shown in FIG. 7, which shows that the dihydrate crystal form 5 has an endothermic peak of decrystallization water before 123 ° C. .
  • the dihydrate crystal form 5 has a dynamic moisture adsorption diagram (DVS) as shown in FIG. 8, which shows that the dihydrate crystal form 5 absorbs water by 0.4% in a range of 0-80% relative humidity.
  • a typical example of the semi-chloroform crystal form 6 has an X-ray powder diffraction pattern as shown in FIG. Further, the semi-chloroform crystal form 6 has a thermogravimetric analysis (TGA) pattern as shown in FIG. 37, which shows that the decomposition temperature of the semi-chloroform crystal form 6 is 173 ° C, and 7.3% before decomposition. Weight loss, containing 0.5 moles of chloroform.
  • TGA thermogravimetric analysis
  • a typical example of the dihydrate crystal form 7 has an X-ray powder diffraction pattern as shown in FIG. Further, the dihydrate crystal form 7 has a thermogravimetric analysis (TGA) pattern as shown in FIG. 18, which shows that the decomposition temperature of the dihydrate crystal form 7 is 145 ° C, and 4.7% weight loss before decomposition. Contains 2 moles of water. Further, the dihydrate crystal form 7 has a differential scanning calorimetry (DSC) as shown in FIG. 19, showing that the dihydrate crystal form 7 has two between 79 ° C and 115-117 ° C. A dehydrated endothermic peak. Further, the dihydrate crystal form 7 has a dynamic moisture adsorption diagram (DVS) as shown in FIG. 20, which shows that the dihydrate crystal form 7 absorbs 0.38% in a range of 10-80% relative humidity, and the relative humidity Below 10%, a water molecule is removed, and the removed water molecules recombine at a relative humidity of 30%.
  • TGA thermogravimetric analysis
  • DSC differential scanning
  • a typical example of the trihydrate crystalline form 10 has an X-ray powder diffraction pattern as shown in FIG. Further, the trihydrate crystal form 10 has a thermogravimetric analysis (TGA) pattern as shown in FIG. 22, which shows that the decomposition temperature of the trihydrate crystal form 10 is 159 ° C, and there is a 7.7% weight loss before decomposition. Contains 3 moles of water. Further, the trihydrate crystalline form 10 has a differential scanning calorimetry (DSC) as shown in FIG. 23, showing that the trihydrate crystalline form 10 has an endothermic peak of dehydration before 117 °C. Further, the trihydrate crystal form 10 has a dynamic moisture adsorption diagram (DVS) as shown in FIG. 24, which indicates that the trihydrate crystal form 10 removes 3.5% of crystal water below 50% relative humidity, but The hydrate is stable in the range of 50-80% relative humidity and absorbs water by 1.1%.
  • TGA thermogravimetric analysis
  • FIG. 22 shows that the decomposition temperature of the trihydrate crystal form 10
  • a typical example of the dihydrate crystal form 11 has an X-ray powder diffraction pattern as shown in FIG. Further, the dihydrate crystal form 11 has a thermogravimetric analysis (TGA) pattern as shown in FIG. The dihydrate crystal form 11 was shown to have a decomposition temperature of 142 ° C, a weight loss of 4.8% before decomposition, and 2 moles of water. Further, the dihydrate crystal form 11 has a differential scanning calorimetry (DSC) as shown in FIG. 27, showing that the dihydrate crystal form 11 has an endothermic peak of dehydration before 71 °C. Further, the crystalline form 11 has a dynamic moisture adsorption diagram (DVS) as shown in FIG. 28, showing that the dihydrate crystal form 11 is stably present in a range of 50-80% relative humidity, and the water absorption is 5.3%. Crystal water is removed by a relative humidity of 50% or less.
  • TGA thermogravimetric analysis
  • a typical example of the citrate salt form 13 has an X-ray powder diffraction pattern as shown in FIG. Further, the citrate salt form 13 has a thermogravimetric analysis (TGA) pattern as shown in FIG. 10, showing that the decomposition temperature of the citrate salt form 13 is 144 ° C, the citrate salt Form 13 is an anhydride. Further, the monocitrate salt form 13 has a differential scanning calorimetry (DSC) as shown in FIG. 11, which shows that the melting point of the monocitrate crystal form 13 is 127-138 °C. Further, the monocitrate salt form 13 has a dynamic moisture adsorption map (DVS) as shown in FIG. 12, showing that the monocitrate salt form 13 absorbs water by 0.2% in a range of 20-80% relative humidity.
  • TGA thermogravimetric analysis
  • DSC differential scanning calorimetry
  • DSC differential scanning calorimetry
  • DSC dynamic moisture adsorption map
  • a typical example of the 2.5 hydrate crystal form 14 has an X-ray powder diffraction pattern as shown in FIG. Further, the 2.5 hydrate crystal form 14 has a thermogravimetric analysis (TGA) pattern as shown in FIG. 14, which shows that the decomposition temperature of the 2.5 hydrate crystal form 14 is 144 ° C, and the weight loss is 6.3% before decomposition. Contains 2.5 moles of water. Further, the 2.5 hydrate crystal form 14 has a differential scanning calorimetry (DSC) as shown in FIG. 15, showing that the 2.5 hydrate crystal form 14 has an endothermic peak of dehydration before 130 °C. Further, the 2.5 hydrate crystal form 14 has a dynamic moisture adsorption diagram (DVS) as shown in FIG. 16, which shows that the 2.5 hydrate crystal form 14 absorbs water by 0.7% in a range of 10-80% relative humidity, and the relative humidity Part of the crystal water will be removed below 10%.
  • TGA thermogravimetric analysis
  • a typical example of the monobenzenesulfonate of the quinazoline derivative has an X-ray powder diffraction pattern as shown in FIG. Further, the monobenzenesulfonate of the quinazoline derivative has a thermogravimetric analysis (TGA) pattern as shown in FIG. 51, indicating that the monophenylsulfonate of the quinazoline derivative is not apparent before decomposition. Loss of weight, an anhydrate, decomposition temperature of 199 ° C. Further, the monobenzenesulfonate of the quinazoline derivative has a differential scanning calorimetry (DSC) as shown in FIG.
  • TGA thermogravimetric analysis
  • DSC differential scanning calorimetry
  • the monobenzenesulfonate of the quinazoline derivative has a dynamic moisture adsorption diagram (DVS) as shown in FIG. 53, and the monobenzenesulfonate of the quinazoline derivative is shown to be in the range of 20-80%.
  • the weight change in the relative humidity range is about 0.3%.
  • a typical example of the ethanedisulfonate salt of the quinazoline derivative has an X-ray powder diffraction pattern as shown in FIG.
  • the bisoxalate salt of the quinazoline derivative has a thermogravimetric analysis (TGA) spectrum as shown in FIG. 39, showing that the bisoxalate salt of the quinazoline derivative is at 250 ° C The above starts to decompose and there is a 1.2% slow weight loss before decomposition.
  • TGA thermogravimetric analysis
  • the bisoxalate salt of the quinazoline derivative has the structure shown in FIG. 40
  • the differential scanning calorimetry (DSC) shown shows that the ethanedisulfonate salt of the quinazoline derivative has no melting point.
  • the ethanedisulfonate salt of the quinazoline derivative has a dynamic moisture adsorption diagram (DVS) as shown in FIG. 41, and the bisoxalate salt of the quinazoline derivative is shown at 20-
  • the weight change in the 80% relative humidity range is about 1.46%.
  • L-tartrate (Form 15) has an X-ray powder diffraction pattern as shown in FIG. Further, the L-tartrate (Form 15) has a thermogravimetric analysis (TGA) pattern as shown in FIG. 63, showing that the L-tartrate (Form 15) starts to decompose at 198 ° C and decomposes. There is 8.1% weight loss before, which may correspond to desolvation or dehydration.
  • TGA thermogravimetric analysis
  • L-tartrate tetrahydrate has an X-ray powder diffraction pattern as shown in FIG.
  • the L-tartrate tetrahydrate (Form 16) has a thermogravimetric analysis (TGA) pattern as shown in FIG. 65, showing that the L-tartrate tetrahydrate (Form 16) is Decomposition began at 190 ° C, with 9.5% weight loss before decomposition, containing 4 moles of water.
  • TGA thermogravimetric analysis
  • DSC differential scanning calorimetry
  • the L-tartrate tetrahydrate (Form 16) There is an endothermic peak of desolvation before 106 ° C, and the sample has no melting point. Further, the L-tartrate tetrahydrate (Form 16) has a dynamic moisture adsorption diagram (DVS) as shown in FIG. 67, showing that the L-tartrate tetrahydrate (Form 16) is The weight change in the range of 20-80% relative humidity is about 0.8%, and a large amount of water is quickly removed at 10% relative humidity.
  • DVS dynamic moisture adsorption diagram
  • a typical example of the monohydrochloride monohydrate of the quinazoline derivative has an X-ray powder diffraction pattern as shown in FIG.
  • the monohydrochloride monohydrate of the quinazoline derivative has a thermogravimetric analysis (TGA) pattern as shown in FIG. 55, showing that the monohydrochloride monohydrate of the quinazoline derivative is A small amount of decomposition at 156 ° C, a large amount of decomposition began at 228 ° C, 3.3% weight loss before decomposition, containing 1 mole of water.
  • TGA thermogravimetric analysis
  • the monohydrochloride monohydrate of the quinazoline derivative has a differential scanning calorimetry (DSC) as shown in FIG.
  • the monohydrochloride monohydrate of the quinazoline derivative has no melting point, and the change in heat at 220 ° C is caused by decomposition. Further, the monohydrochloride monohydrate of the quinazoline derivative has a dynamic moisture adsorption diagram (DVS) as shown in FIG. 57, showing that the monohydrochloride monohydrate of the quinazoline derivative is The weight change in the range of 20-80% relative humidity is about 0.17%.
  • DVDS dynamic moisture adsorption diagram
  • a typical example of the monosulfate salt of the quinazoline derivative has an X-ray powder diffraction pattern as shown in FIG.
  • the monosulfate salt of the quinazoline derivative has a thermogravimetric analysis (TGA) pattern as shown in FIG. 43, and it is shown that the monosulfate salt of the quinazoline derivative starts to decompose above 230 ° C, before decomposition. There is 7.5% weight loss.
  • the monosulfate salt of the quinazoline derivative has a differential scanning calorimetry chart (DSC) as shown in FIG. 44, and it is shown that the monosulfate salt of the quinazoline derivative has a melting point of 165 °C.
  • DSC differential scanning calorimetry chart
  • the monosulfate salt of the quinazoline derivative has a dynamic moisture adsorption diagram (DVS) as shown in FIG. 45, showing the quinazoline derivative
  • DVS dynamic moisture adsorption diagram
  • the monosulfate has a weight change of about 11.68% in the range of 20-80% relative humidity, which is relatively hygroscopic.
  • a typical example of a D-gluconate salt of the quinazoline derivative has an X-ray powder diffraction pattern as shown in FIG.
  • a D-gluconate of the quinazoline derivative has a thermogravimetric analysis (TGA) pattern as shown in FIG. 59, showing that the D-gluconate of the quinazoline derivative is at 180 ° C Start to decompose and there is no weight loss before decomposition.
  • TGA thermogravimetric analysis
  • the D-gluconate salt of the quinazoline derivative has a differential scanning calorimetry (DSC) as shown in FIG. 60, and shows that an endothermic peak at 193 ° C is the quinazoline derivative.
  • the melting point of a D-gluconate which is decomposed after melting.
  • the D-gluconate salt of the quinazoline derivative has a dynamic moisture adsorption diagram (DVS) as shown in FIG. 61, and shows that a D-gluconate of the quinazoline derivative is in 20-
  • the weight change in the 80% relative humidity range is about 0.12%.
  • a typical example of an ⁇ -ketoglutarate of the quinazoline derivative has an X-ray powder diffraction pattern as shown in FIG. Further, the ⁇ -ketoglutarate of the quinazoline derivative has a thermogravimetric analysis (TGA) pattern as shown in FIG. 78, and shows an ⁇ -ketoglutaric acid of the quinazoline derivative.
  • TGA thermogravimetric analysis
  • the salt begins to decompose at 193 ° C and has a weight loss of 9.8% before decomposition.
  • a typical example of the bis-ketoglutarate of the quinazoline derivative has an X-ray powder diffraction pattern as shown in FIG. Further, the bis-ketoglutarate of the quinazoline derivative has a thermogravimetric analysis (TGA) pattern as shown in FIG. 91, showing the bis-ketoglutaric acid of the quinazoline derivative
  • TGA thermogravimetric analysis
  • a typical example of the bisphosphonate of the quinazoline derivative has an X-ray powder diffraction pattern as shown in FIG. Further, the bisphosphonate of the quinazoline derivative has a thermogravimetric analysis (TGA) pattern as shown in FIG. 69, and it is shown that the bisphosphonate of the quinazoline derivative starts to decompose at 234 ° C, and is decomposed before decomposition. 7.1% weight loss.
  • TGA thermogravimetric analysis
  • a typical example of the dimaleate salt of the quinazoline derivative has an X-ray powder diffraction pattern as shown in FIG. Further, the dimaleate salt of the quinazoline derivative has a thermogravimetric analysis (TGA) pattern as shown in FIG. 80, showing the dimaleate salt of the quinazoline derivative at 75 ° C and 136 °C has stage weight loss and decomposes at 167 °C.
  • TGA thermogravimetric analysis
  • a typical example of the monosuccinate of the quinazoline derivative has an X-ray powder diffraction pattern as shown in FIG.
  • a typical example of the succinate derivative of the quinazoline derivative has an X-ray powder diffraction pattern as shown in FIG. Further, the succinate derivative of the quinazoline derivative has a thermogravimetric analysis (TGA) pattern as shown in FIG. 89, and the succinic acid salt of the quinazoline derivative is decomposed at 173 ° C. .
  • TGA thermogravimetric analysis
  • a typical example of the diglycolate of the quinazoline derivative has a structure as shown in FIG. X-ray powder diffraction pattern.
  • a typical example of the monomalonate of the quinazoline derivative has an X-ray powder diffraction pattern as shown in FIG. Further, the monomalonate of the quinazoline derivative has a thermogravimetric analysis (TGA) pattern as shown in FIG. 75, and it is shown that the monomalonate of the quinazoline derivative starts to decompose at 88 ° C. .
  • TGA thermogravimetric analysis
  • a typical example of the dimalonate of the quinazoline derivative has an X-ray powder diffraction pattern as shown in FIG. Further, the dimalonate of the quinazoline derivative has a thermogravimetric analysis (TGA) pattern as shown in FIG. 83, showing that the dimalonate of the quinazoline derivative starts to decompose at 135 ° C. .
  • TGA thermogravimetric analysis
  • trimalonate of the quinazoline derivative has an X-ray powder diffraction pattern as shown in FIG. Further, the trimalonate of the quinazoline derivative has a thermogravimetric analysis (TGA) pattern as shown in FIG. 85, showing that the tripropionate of the quinazoline derivative starts to decompose at 140 ° C. .
  • TGA thermogravimetric analysis
  • a typical example of the disulfate salt of the quinazoline derivative has an X-ray powder diffraction pattern as shown in FIG.
  • the disulfate salt of the quinazoline derivative has a thermogravimetric analysis (TGA) pattern as shown in FIG. 47, showing that the decomposition temperature of the bisazoline derivative of the quinazoline derivative is 250 ° C, 150 ° C There is 3% weight loss before.
  • the disulfate salt of the quinazoline derivative has a differential scanning calorimetry chart (DSC) as shown in FIG.
  • the disulfate salt of the quinazoline derivative has a dynamic moisture adsorption diagram (DVS) as shown in FIG. 49, showing that the disulfate salt of the quinazoline derivative is in the range of 20-80% relative humidity. The weight change is approximately 2%.
  • a typical example of the bis-quinone disulfonate salt of the quinazoline derivative has an X-ray powder diffraction pattern as shown in FIG.
  • the bis-1,5-naphthalene disulfonate of the quinazoline derivative has a thermogravimetric analysis (TGA) pattern as shown in FIG. 87, showing the bis, 5, of the quinazoline derivative.
  • TGA thermogravimetric analysis
  • a typical example of the mono-pamoate salt of the quinazoline derivative has an X-ray powder diffraction pattern as shown in FIG.
  • a typical example of a pair of tosylate salts of the quinazoline derivative has an X-ray powder diffraction pattern as shown in FIG.
  • the pair of tosylate salts of the quinazoline derivative have a thermogravimetric analysis (TGA) pattern as shown in FIG. 72, showing a pair of tosylate salts of the quinazoline derivative at 245 ° C Start to decompose and there is no weight loss before decomposition.
  • TGA thermogravimetric analysis
  • a typical example of the 1,5-naphthalene disulfonate salt of the quinazoline derivative has an X-ray powder diffraction pattern as shown in FIG.
  • a typical example of the p-chlorobenzenesulfonate of the quinazoline derivative has the structure shown in FIG. X-ray powder diffraction pattern.
  • the present invention also provides a method for preparing a salt of a quinazoline derivative as described above:
  • the salt is a citrate 2 (for example, Form 1)
  • it comprises the steps of: salt-forming a quinazoline derivative and citric acid in tetrahydrofuran to obtain a citric acid Salt 2 (for example, Form 1);
  • the salt is a citrate hemiethanolate 2-1 (for example, Form 2)
  • it comprises the steps of: beating a citrate 2 (for example, Form 1) in ethanol , obtaining a citrate hemiethanolate 2-1 (for example, Form 2);
  • the salt is a citrate ditetrahydrofuran 2-2 (for example, Form 3)
  • it comprises the steps of: beating a citrate 2 (for example, Form 1) in tetrahydrofuran. , obtaining a citrate ditetrahydrofuran 2-2 (for example, Form 3);
  • the salt is a citrate semi-1,4-dioxane 2-3 (e.g., Form 4), it comprises the steps of: 1,4-dioxane
  • a citrate 2 for example, Form 1
  • a citrate half 1,4-dioxane 2-3 for example, Form 4
  • the salt is a citrate dihydrate 2-4 (eg, Form 5)
  • it comprises the steps of: citrating a citrate 2 (eg, Form 1) in n-butanol or Beating in water to obtain a citrate dihydrate 2-4 (for example, Form 5);
  • the salt is a citrate dihydrate 2-4 (for example, Form 5)
  • it comprises the steps of: citrating a citrate 2 (for example, Form 1) in a solvent Volatilizing and crystallization to obtain a citrate dihydrate 2-4 (for example, Form 5);
  • the solvent is an aqueous methanol solution, an aqueous ethanol solution or an aqueous solution of isopropanol;
  • the salt is a citrate dihydrate 2-4 (for example, Form 5)
  • it comprises the step of: in the solvent, a citrate 2 (for example, Form 1) Recrystallization, to obtain a citrate dihydrate 2-4 (for example, Form 5);
  • the solvent is methanol and acetone, or, 1,4-dioxane and acetone;
  • the salt is a citrate semi-chloroform 2-5 (e.g., Form 6)
  • it comprises the steps of: beating a citrate 2 (e.g., Form 1) in chloroform , obtaining a citrate semi-chloroform 2-5 (for example, Form 6);
  • the salt is a citrate dihydrate 2-4 (e.g., Form 7)
  • it comprises the steps of: beating a citrate 2 (e.g., Form 1) in chloroform, Obtaining a citrate dihydrate 2-4 (for example, Form 7);
  • the salt is trihydrate 2-6 (for example, crystal form 10)
  • it comprises the steps of: volatilizing a citrate 2 (for example, crystal form 1) in a solvent to obtain a crystal.
  • the trihydrate 2-6 (for example, the crystal form 10) may be used;
  • the solvent is methanol, an aqueous solution of n-propanol, an aqueous solution of tetrahydrofuran or an aqueous solution of acetonitrile;
  • the salt is a citrate dihydrate 2-4 (e.g., Form 11)
  • it comprises the steps of: concentrating a citrate 2 (e.g., Form 1) in a solvent Crystallization, a citrate dihydrate 2-4 (for example, Form 11) is obtained;
  • the solvent is methanol and ethanol, nitromethane and ethanol, acetonitrile and ethanol, n-propanol, or isopropanol ;
  • the salt is a citrate dihydrate 2-4 (for example, Form 11)
  • it comprises the step of: in the solvent, a citrate 2 (for example, Form 1) Beating to obtain a citrate dihydrate 2-4 (such as Form 11);
  • the solvent is methanol and ethanol, nitromethane and ethanol, or, acetonitrile and ethanol;
  • the salt is a citrate 2 (for example, Form 13)
  • it comprises the steps of: recrystallizing a citrate 2 (for example, Form 1) in n-butanol to obtain a citrate 2 (for example, Form 13);
  • the salt is a citrate 2 (for example, Form 13)
  • it comprises the steps of: volatilizing a citrate 2 (for example, Form 1) in water and acetonitrile. Crystallized to obtain a citrate 2 (for example, Form 13);
  • the salt is 2.5 hydrate 2-7 (e.g., Form 14)
  • it comprises the steps of: citrating a citrate 2 (e.g., Form 1) in water and dimethyl sulfoxide. Recrystallization, to obtain 2.5 hydrate 2-7 (for example, Form 14);
  • the salt is 2.5 hydrate 2-7 (for example, Form 14)
  • it comprises the step of volatilizing a citrate 2 (for example, Form 1) in water and acetone. Crystallization, 2.5 hydrate 2-7 (for example, crystal form 14) is obtained;
  • the method comprises the steps of: salt-forming a quinazoline derivative and ethanedisulfonic acid in tetrahydrofuran to obtain a ethanedisulfonate Yes;
  • the method comprises the steps of: forming a salt of a quinazoline derivative and sulfuric acid in tetrahydrofuran to obtain a sulfate;
  • the quinazoline derivative has a molar ratio of from 1 to 1.3;
  • the method comprises the steps of: subjecting a quinazoline derivative and sulfuric acid to a salt formation reaction in tetrahydrofuran to obtain a disulfate salt;
  • the quinazoline derivative may have a molar ratio of 2.2 to 3.3;
  • the method comprises the steps of: performing a salt formation reaction of the quinazoline derivative and the benzenesulfonic acid in tetrahydrofuran to obtain a monobenzenesulfonate;
  • the method comprises the steps of: salt-forming a quinazoline derivative and HCl in tetrahydrofuran and water to obtain a monohydrochloride monohydrate Yes;
  • the salt when it is a D-gluconate, it comprises the steps of: quinazolyl in dichloromethane The morphological reaction of the porphyrin derivative with D-gluconic acid is carried out to obtain a D-gluconate;
  • the salt is an L-tartrate (Form 15)
  • it comprises the steps of: salt-forming a quinazoline derivative and L-tartaric acid in tetrahydrofuran to obtain an L- Tartrate (crystal form 15);
  • the salt is an L-tartrate tetrahydrate (Form 16)
  • it comprises the steps of: re-crystallizing an L-tartrate (Form 15) in water to obtain an L - tartrate tetrahydrate (form 16);
  • the method comprises the steps of: performing a salt formation reaction of a quinazoline derivative and phosphoric acid in tetrahydrofuran to obtain a bisphosphonate;
  • the method comprises the steps of: performing a salt formation reaction of a quinazoline derivative and palmitic acid in tetrahydrofuran to obtain a palmitic acid;
  • the method comprises the steps of: salt-forming a quinazoline derivative and p-toluenesulfonic acid in chloroform and ethanol to obtain a pair of toluene Acid salt can be;
  • the method comprises the steps of: performing a salt formation reaction of a quinazoline derivative and glycolic acid in dichloromethane to obtain a diglycolic acid;
  • the method comprises the steps of: subjecting a quinazoline derivative and malonic acid to a salt formation reaction in dichloromethane to obtain a malonate
  • the molar ratio of the malonic acid to the quinazoline derivative is from 1 to 1.2;
  • the method comprises the steps of: performing a salt formation reaction of a quinazoline derivative and succinic acid in dichloromethane to obtain a monosuccinate
  • the molar ratio of the succinic acid to the quinazoline derivative is from 1 to 1.2;
  • the method comprises the steps of: salt-forming a quinazoline derivative and ⁇ -ketoglutaric acid in tetrahydrofuran to obtain an ⁇ - ketoglutaric acid; the molar ratio of the ⁇ -ketoglutaric acid to the quinazoline derivative is from 1 to 1.2;
  • the method comprises the steps of: subjecting a quinazoline derivative and maleic acid to a salt formation reaction in tetrahydrofuran to obtain a dimaleate;
  • the method comprises the steps of: salt-forming a quinazoline derivative and 1,5-naphthalenedisulfonic acid in tetrahydrofuran Obtaining a 1,5-naphthalene disulfonate; the molar ratio of the 1,5-naphthalene disulfonate to the quinazoline derivative is 1.1 to 1.5.
  • the method comprises the steps of: performing a salt formation reaction of a quinazoline derivative and malonic acid in dichloromethane to obtain a dipropionate
  • the molar ratio of the malonic acid to the quinazoline derivative is 2.0 to 2.3;
  • the method comprises the steps of: quinazoline derivative in dichloromethane The biological and malonic acid salt-to-salt reaction to obtain a tripropionate; the molar ratio of the malonic acid to the quinazoline derivative is 3.0 to 3.4;
  • the method comprises the steps of: salt-forming a quinazoline derivative and 1,5-naphthalene disulfonic acid in tetrahydrofuran Obtaining a 1,5-naphthalenedisulfonate; the molar ratio of the 1,5-naphthalenedisulfonate to the quinazoline derivative is 2.2-3.3
  • the method comprises the steps of: subjecting a quinazoline derivative and succinic acid to a salt formation reaction in dichloromethane to obtain a tributyrate
  • the molar ratio of the succinic acid to the quinazoline derivative is 2.2 to 3.3;
  • the method comprises the steps of: subjecting a quinazoline derivative to ⁇ -ketoglutaric acid to a salt reaction in tetrahydrofuran to obtain a bis - ketoglutaric acid; the molar ratio of the ⁇ -ketoglutaric acid to the quinazoline derivative is 2.2 to 3.3;
  • the process comprises the steps of: salt-forming a quinazoline derivative and p-chlorobenzenesulfonic acid in tetrahydrofuran to obtain a pair of chlorine
  • the besylate salt can be used;
  • the quinazoline derivative may be in any crystal form or amorphous form, for example, a quinazoline derivative obtained by the method described in CN102898386.
  • the volume-to-mass ratio of the tetrahydrofuran to the quinazoline derivative may be 25 to 50 mL/g, or may be 26 to 48 mL/g.
  • the molar ratio of the citric acid to the quinazoline derivative may be from 1 to 1.5.
  • the salt formation temperature may be 10 to 30 °C.
  • the salt formation time may be from 0.5 to 24 hours.
  • the operation of the salt-forming reaction may be a conventional operation in the art, for example, mixing a tetrahydrofuran solution of citric acid and a tetrahydrofuran solution of a quinazoline derivative (for example, a tetrahydrofuran solution of citric acid). Add to the tetrahydrofuran solution of the quinazoline derivative).
  • the concentration of the quinazoline derivative in tetrahydrofuran solution may be 25-50 mg/mL.
  • the concentration of the citric acid in tetrahydrofuran solution may be 50-100 mg/mL.
  • the post-treatment of the salt-forming reaction may be a conventional post-treatment of such a reaction in the art, such as filtration and drying.
  • the drying temperature may be 40 to 50 ° C or 40 to 45 ° C.
  • the drying can be vacuum drying dry.
  • the method (1) may include the steps of: mixing and reacting a solution of the quinazoline derivative in tetrahydrofuran with a tetrahydrofuran solution of citric acid, and separating and drying the precipitated solid to obtain (wherein the quinine)
  • the concentration of the quinazoline derivative is preferably 25-50 mg/mL
  • the concentration of the citric acid is preferably 50.8-101.6 mg/
  • the molar ratio of the quinazoline derivative and the citric acid is preferably from 1:1 to 1:1.5; the reaction time is preferably from 0.5 to 24 hours).
  • the volume-to-mass ratio of the ethanol to the monocitrate 2 (for example, the crystal form 1) may be 35 to 45 mL/g, or may be 40 to 45 mL/g.
  • the monocitrate 2 (for example, the crystal form 1) can be produced according to the method (1).
  • the beating temperature may be 55 to 65 ° C or 60 ° C.
  • the beating time may be 8-16 hours.
  • the method (2) may include the steps of: mixing the citrate 2 (for example, Form 1) and ethanol to form a suspension, and stirring at 55-65 ° C, wherein Preferably, the citrate 2 (e.g., Form 1) and ethanol are 10-50 mg/mL; the agitation time is preferably 8-16 hours; and the agitation temperature is preferably 60 °C. ).
  • the volume-to-mass ratio of the tetrahydrofuran to the monocitrate 2 (for example, the crystal form 1) may be 35 to 45 mL/g, or may be 40 to 45 mL/g.
  • the monocitrate 2 (for example, the crystal form 1) can be produced according to the method (1).
  • the beating temperature may be from 10 to 60 °C.
  • the beating time may be 8-16 hours.
  • the method (3) may include the steps of: mixing the monocitrate 2 (for example, Form 1) and tetrahydrofuran to form a suspension, and stirring at 10 to 60 ° C to obtain (wherein Preferably, the citrate 2 (e.g., Form 1) and tetrahydrofuran are 10-50 mg/mL; the agitation time is preferably 8-16 hours).
  • the volume-to-mass ratio of the 1,4-dioxane to the monocitrate 2 may be 80 to 120 mL/g, or may be 100 to 120 mL / g.
  • the monocitrate 2 (e.g., Form 1) can be obtained according to the method (1).
  • the recrystallization may be hot solution recrystallization and recrystallization, and the dissolution temperature may be 50-60 ° C, and the cooling target temperature may be 10-30 ° C.
  • the method (4) may include the steps of: mixing the citrate 2 (for example, Form 1) and dioxane to form a solution at a temperature of 60 ° C or higher, and naturally cooling under stirring. That is, (wherein the concentration of the monocitrate 2 (for example, Form 1) is preferably 8.3-16.7 mg/mL; the natural cooling means cold at room temperature. but).
  • the volume-to-mass ratio of the water to the monocitrate 2 (for example, Form 1) may be 60 to 70 mL/g, or may be 66 to 70 mL/g.
  • the volume-to-mass ratio of the tetrahydrofuran to the monocitrate 2 (for example, the crystal form 1) may be 80 to 120 mL/g, or may be 100 to 120 mL/g.
  • the monocitrate 2 (for example, the crystal form 1) can be obtained according to the method (1).
  • the beating temperature may be from 10 to 60 °C.
  • the beating time may be 8-16 hours.
  • the method (5) may include the steps of: mixing the citrate 2 (for example, Form 1) and a solvent to form a suspension, and stirring at 10 to 60 ° C, the solvent is Water or n-butanol (wherein the citrate 2 (eg Form 1) is preferably present in a solvent with a solvent of from 5 to 40 mg/mL, more preferably from 10 to 20 mg/mL; It is preferably 5-16 hours).
  • the volume-to-mass ratio of the solvent to the monocitrate 2 (for example, Form 1) may be 20 to 200 mL/g.
  • the volume ratio of the alcohol solvent to water in the solvent may be 1.
  • the monocitrate 2 (for example, the crystal form 1) can be produced according to the method (1).
  • the volatilization temperature may be from 10 to 60 °C.
  • the method (5-1) may include the steps of: mixing the citrate 2 (for example, Form 1) and a solvent to form a solution, and volatilizing the solvent to dry at 10-60 ° C;
  • the solvent is an aqueous methanol solution, an aqueous ethanol solution or an aqueous isopropanol solution (wherein the concentration of the monocitrate 2 (for example, Form 1) is preferably 5 to 50 mg/mL).
  • the volume-mass ratio of the solvent to the monocitrate 2 (for example, the crystal form 1) may be 160 to 240 mL/g, or may be 200 to 240 mL/g.
  • the volume ratio of methanol to acetone may be 1.
  • the volume ratio of the 1,4-dioxane to acetone may be 1.
  • the monocitrate 2 (for example, the crystal form 1) can be produced according to the method (1).
  • the recrystallization may be a hot solution cold recrystallization, which may have a dissolution temperature of 50 to 60 ° C and a cooling target temperature of 10 to 30 ° C.
  • the volume-to-mass ratio of the chloroform to the monocitrate 2 (for example, the crystal form 1) may be 35 to 45 mL/g, or may be 40 to 45 mL/g.
  • the monocitrate 2 (e.g., Form 1) can be obtained according to the method (1).
  • the beating temperature may be 55 to 65 ° C or 60 ° C.
  • the beating time may be 8-16 hours.
  • the method (6) may include the steps of: mixing the citrate 2 (for example, Form 1) and chloroform to form a suspension, and stirring at room temperature to obtain (wherein the citric acid
  • the salt 2 (e.g., Form 1) and chloroform are 10-50 mg/mL; the agitation time is preferably 8-16 hours).
  • the volume-to-mass ratio of the chloroform to the monocitrate 2 (for example, the crystal form 1) may be 80 to 120 mL/g, or may be 100 to 120 mL/g.
  • the monocitrate 2 (for example, the crystal form 1) can be produced according to the method (1).
  • the beating temperature may be 10 to 30 °C.
  • the beating time may be 8-16 hours.
  • the method (7) may include the steps of: mixing the citrate 2 (for example, Form 1) and water to form a suspension, and stirring at room temperature to obtain (wherein the citric acid
  • the salt 2 (e.g., Form 1) and water are preferably present in an amount of 5-40 mg/mL, more preferably 10-20 mg/mL; the agitation time is preferably 8-16 hours).
  • the volume-to-mass ratio of the solvent to the monocitrate 2 (for example, Form 1) may be 100 to 200 mL/g.
  • the volume ratio of the nonaqueous solvent to water in the solvent may be 1.
  • the monocitrate 2 (e.g., Form 1) can be obtained according to the method (1).
  • the volatilization temperature may be 10 to 30 °C.
  • the method (8) may include the steps of: mixing the citrate 2 (for example, Form 1) and a solvent to form a solution, and naturally volatilizing at room temperature, thereby obtaining (wherein the citrate
  • the concentration of 2 (for example, Form 1) is preferably 5-10 mg/mL; the natural volatilization may be volatilization without capping or punching volatilization.
  • the volume of n-propanol and water in the aqueous solution of n-propanol More preferably, it is 1:1; in the aqueous tetrahydrofuran solution, the volume of tetrahydrofuran and water is preferably 1:1; in the aqueous acetonitrile solution, the volume of acetonitrile and water is preferably 1:1).
  • the volume-mass ratio of the solvent to the monocitrate 2 (for example, the crystal form 1) may be 200 to 600 mL/g, or may be 200 to 500 mL/g.
  • the monocitrate 2 (for example, the crystal form 1) can be produced according to the method (1).
  • the recrystallization may be hot solution recrystallization and recrystallization, and the dissolution temperature may be 50 to 60 ° C, and the cooling target temperature may be 10 to 30 ° C.
  • the method (9) may include the steps of: mixing the citrate 2 (for example, Form 1) and an organic solvent containing an alcohol to form a solution at a temperature of 60 ° C or higher, and naturally stirring under stirring conditions. Cooling, that is, (wherein the organic solvent containing alcohol is preferably a solution of n-propanol, isopropanol, methanol in ethanol, an ethanol solution of acetonitrile or an ethanol solution of nitromethane; the ethanol solution of methanol Medium, the volume of methanol and ethanol is preferably 1:1; In the ethanol solution of acetonitrile, the volume of acetonitrile and ethanol is preferably 1:1; in the ethanol solution of nitromethane, the volume of nitromethane and ethanol is preferably 1:1).
  • the organic solvent containing alcohol is preferably a solution of n-propanol, isopropanol, methanol in ethanol, an ethanol solution of acetonitrile or an ethanol
  • the volume-mass ratio of the solvent to the monocitrate 2 (for example, the crystal form 1) may be 160 to 240 mL/g, or may be 200 to 240 mL/g.
  • the volume ratio of the methanol to the ethanol may be 1.
  • the volume ratio of the nitromethane to the ethanol may be 1.
  • the volume ratio of the acetonitrile to the ethanol may be 1.
  • the monocitrate 2 (for example, the crystal form 1) can be produced according to the method (1).
  • the beating temperature may be 10 to 30 °C.
  • the beating time may be 8 to 16 hours.
  • the method (9-2) may include the steps of: mixing the citrate 2 (for example, Form 1) and an organic solvent containing an alcohol to form a suspension, and stirring at room temperature to obtain
  • the organic solvent containing an alcohol is preferably an ethanol solution of methanol, an ethanol solution of acetonitrile or an ethanol solution of nitromethane
  • in the ethanol solution of methanol the volume of methanol and ethanol is preferably 1: 1
  • in the ethanol solution of acetonitrile, the volume of acetonitrile and ethanol is preferably 1:1
  • in the ethanol solution of nitromethane, the volume of nitromethane and ethanol is preferably 1:1
  • the stirring time is preferably 8-16 hours).
  • the mass ratio of the n-butanol to the monocitrate 2 (for example, the crystal form 1) may be 200 to 300 mL/g, or may be 240 to 300 mL/g.
  • the monocitrate 2 (e.g., Form 1) can be obtained according to the method (1).
  • the recrystallization may be hot solution recrystallization and recrystallization, and the dissolution temperature may be 50-60 ° C, and the cooling target temperature may be 10-30 ° C.
  • the method (10) may include the steps of: mixing the citrate 2 (for example, Form 1) and n-butanol at 50-60 ° C to form a solution, and naturally cooling to room temperature under stirring, that is,
  • the concentration of the monocitrate 2 (e.g., Form 1) is preferably from 4.1 to 8.3 mg/mL.
  • the volume-mass ratio of the "water and acetonitrile" to the monocitrate 2 may be 100 to 200 mL/g.
  • the volume ratio of acetonitrile to water in the solvent may be 1.
  • the monocitrate 2 (for example, the crystal form 1) can be produced according to the method (1).
  • the volatilization temperature may be 50 to 60 °C.
  • the method (10-2) may include the steps of: mixing the citrate 2 (for example, Form 1), acetonitrile and water to form a solution at 55-65 ° C, and evaporating the solvent to dryness, that is, obtaining (wherein the citrate 2 (eg crystal form)
  • the concentration of 1) is preferably from 5 to 50 mg/mL; the volume of the acetonitrile and water is preferably 1:1).
  • the volume-mass ratio of the "water and dimethyl sulfoxide" to the monocitrate 2 may be 200 to 300 mL/g, or may be 240 to 300 mL / g.
  • the volume ratio of water to dimethyl sulfoxide in the solvent may be 60.
  • the monocitrate 2 (for example, the crystal form 1) can be produced according to the method (1).
  • the recrystallization may be an anti-solvent recrystallization, for example, first dissolved in dimethyl sulfoxide and then mixed with water.
  • the method (11) may include the steps of: mixing the citrate 2 (for example, Form 1) and dimethyl sulfoxide to form a solution, adding the solution to water, and stirring at room temperature, that is, Wherein the concentration of the monocitrate 2 (e.g., Form 1) in the solution is preferably from 200 to 400 mg/mL; and the volume of the water and dimethyl sulfoxide is preferably from 5 to 10 The stirring time is preferably 5-30 minutes).
  • the volume-mass ratio of the "water and acetone" to the monocitrate 2 may be 110 to 200 mL/g.
  • the volume ratio of acetone to water in the solvent may be 1.
  • the monocitrate 2 (for example, the crystal form 1) can be produced according to the method (1).
  • the volatilization temperature may be 50 to 60 °C.
  • the volume-to-mass ratio of the tetrahydrofuran to the quinazoline derivative may be 20 to 100 mL/g.
  • the molar ratio of the ethanedisulfonic acid to the quinazoline derivative may be from 1.1 to 2.2.
  • the salt formation temperature may be 10 to 30 °C.
  • the salt formation time may be from 0.5 to 24 hours.
  • the operation of the salt-forming reaction may be a conventional operation in the art, for example, mixing a tetrahydrofuran solution of ethanedisulfonic acid and a tetrahydrofuran solution of a quinazoline derivative (for example, ethanedisulfonate)
  • a quinazoline derivative for example, ethanedisulfonate
  • An acid tetrahydrofuran solution is added to the tetrahydrofuran solution of the quinazoline derivative).
  • the concentration of the quinazoline derivative in tetrahydrofuran solution may be 12.5-25 mg/mL.
  • the concentration of the ethanedisulfonic acid in tetrahydrofuran solution may be 20.75-41.5 mg/mL.
  • the method (12) may include the steps of: mixing and reacting a solution of the quinazoline derivative in tetrahydrofuran and a solution of ethanedisulfonic acid in tetrahydrofuran, separating and drying the precipitated solid, thereby obtaining
  • the method and conditions for the mixing may be conventional methods and conditions in the art.
  • the mixing is preferably carried out by dropwise adding a solution of ethanedisulfonic acid in tetrahydrofuran to the tetrahydrofuran solution of the quinazoline derivative.
  • the concentration of the quinazoline derivative is preferably from 12.5 to 25 mg/mL; in the tetrahydrofuran solution of ethanedisulfonic acid, the concentration of the ethanedisulfonic acid is preferably from 20.75 to 41.5 mg/mL; the quinazoline
  • the molar ratio of the derivative and the ethanedisulfonic acid is preferably 1:1.1-1:2.2; the time of the reaction Preferably it is between 0.5 and 24 hours).
  • the volume-to-mass ratio of the tetrahydrofuran to the quinazoline derivative may be 50 to 100 mL/g.
  • the sulfuric acid is used in the form of concentrated sulfuric acid.
  • the salt formation temperature may be 10 to 30 °C.
  • the salt formation time may be from 0.5 to 24 hours.
  • the operation of the salt-forming reaction may be a conventional operation in the art, for example, mixing a tetrahydrofuran solution of sulfuric acid and a tetrahydrofuran solution of a quinazoline derivative (for example, adding a tetrahydrofuran solution of sulfuric acid to the solution) a solution of a quinazoline derivative in tetrahydrofuran).
  • concentration of the quinazoline derivative in tetrahydrofuran solution may be 12.5-25 mg/mL.
  • the concentration of the sulfuric acid in tetrahydrofuran solution may be 9.75-19.5 mg/mL.
  • the method (13) may include the steps of: mixing and reacting a solution of the quinazoline derivative in tetrahydrofuran and a solution of sulfuric acid in tetrahydrofuran, separating and drying the precipitated solid, wherein the quinazoline is obtained;
  • the molar ratio of the morphological derivative to the sulfuric acid is 1:1 to 1:1.3 (wherein the mixing method and conditions may be conventional methods and conditions in the art.
  • the mixing is preferably: sulfuric acid a tetrahydrofuran solution is added dropwise to the tetrahydrofuran solution of the quinazoline derivative.
  • the concentration of the quinazoline derivative in the tetrahydrofuran solution of the quinazoline derivative is preferably 12.5-25 mg/mL; In the tetrahydrofuran solution, the concentration of the sulfuric acid is preferably from 9.75 to 199.5 mg/mL; the reaction time is preferably from 0.5 to 24 hours).
  • the volume-to-mass ratio of the tetrahydrofuran to the quinazoline derivative may be 50 to 100 mL/g.
  • the sulfuric acid is used in the form of concentrated sulfuric acid.
  • the salt formation temperature may be 10 to 30 °C.
  • the salt formation time may be from 0.5 to 24 hours.
  • the method (14) may include the steps of: mixing and reacting a solution of the quinazoline derivative in tetrahydrofuran with a tetrahydrofuran solution of sulfuric acid, separating and drying the precipitated solid, wherein the quinazoline is obtained;
  • the molar ratio of the morphological derivative to the sulfuric acid is 1:2.2-1:3.3 (wherein the mixing method and conditions can be conventional methods and conditions in the art.
  • the mixing is preferably: sulfuric acid a tetrahydrofuran solution is added dropwise to the tetrahydrofuran solution of the quinazoline derivative.
  • the concentration of the quinazoline derivative in the tetrahydrofuran solution of the quinazoline derivative is preferably 12.5-25 mg/mL;
  • the concentration of the sulfuric acid in the tetrahydrofuran solution is preferably 29.25-58.5 mg/mL;
  • the molar ratio of the quinazoline derivative and the sulfuric acid is preferably 1:3.3;
  • the reaction time is preferably 0.5-24 hours).
  • the volume-mass ratio of the tetrahydrofuran to the quinazoline derivative may be 50 ⁇ 100mL / g.
  • the molar ratio of the benzenesulfonic acid to the quinazoline derivative may be from 1 to 1.3;
  • the salt formation temperature may be 10 to 30 °C.
  • the salt formation time may be from 0.5 to 24 hours.
  • the operation of the salt-forming reaction may be a conventional operation in the art, for example, mixing a tetrahydrofuran solution of benzenesulfonic acid and a tetrahydrofuran solution of a quinazoline derivative (for example, a benzenesulfonic acid) A tetrahydrofuran solution was added to the tetrahydrofuran solution of the quinazoline derivative).
  • the concentration of the quinazoline derivative in tetrahydrofuran solution may be 12.5-25 mg/mL.
  • the concentration of the benzenesulfonic acid in tetrahydrofuran solution may be from 15.7 to 31.4 mg/mL.
  • the method (15) may include the steps of: mixing and reacting a solution of the quinazoline derivative in tetrahydrofuran and a solution of benzenesulfonic acid in tetrahydrofuran, separating and drying the precipitated solid, wherein
  • the method and conditions of mixing may be conventional methods and conditions in the art.
  • the mixing is preferably carried out by dropwise adding a solution of benzenesulfonic acid in tetrahydrofuran to a solution of the quinazoline derivative in tetrahydrofuran.
  • the concentration of the quinazoline derivative is preferably from 12.5 to 25 mg/mL in the tetrahydrofuran solution of the oxoline derivative; and the concentration of the benzenesulfonic acid is preferably from 15.7 to 31.4 mg in the tetrahydrofuran solution of benzenesulfonic acid; /mL; the molar ratio of the quinazoline derivative and the benzenesulfonic acid is preferably from 1:1 to 1.3; the reaction time is preferably from 0.5 to 24 hours).
  • the volume-to-mass ratio of the tetrahydrofuran to the quinazoline derivative may be 50 to 100 mL/g.
  • the HCl may be used in the form of a concentrated hydrochloric acid (a saturated aqueous solution of HCl) with water.
  • the molar ratio of the HCl to the quinazoline derivative may be 1.1 to 3.3;
  • the salt formation temperature may be 10 to 30 °C.
  • the salt formation time may be from 0.5 to 24 hours.
  • the method (16) may include the steps of: mixing and reacting a solution of the quinazoline derivative in tetrahydrofuran and a solution of hydrochloric acid in tetrahydrofuran, separating and drying the precipitated solid, thereby obtaining the method and the method of mixing
  • the conditions may be conventional methods and conditions in the art.
  • the mixing is preferably carried out by dropwise adding a tetrahydrofuran solution of hydrochloric acid to the tetrahydrofuran solution of the quinazoline derivative.
  • the tetrahydrofuran solution of the quinazoline derivative The concentration of the quinazoline derivative is preferably from 12.5 to 25 mg/mL; in the tetrahydrofuran solution of hydrochloric acid, the concentration of the hydrochloric acid is preferably from 11 to 22 mg/mL; the quinazoline derivative and The molar ratio of the hydrochloric acid is preferably from 1:1.1 to 1:3.3; the reaction time is preferably from 0.5 to 24 hours).
  • the volume-to-mass ratio of the tetrahydrofuran to the quinazoline derivative may be 230 to 400 mL/g.
  • the molar ratio of the D-gluconic acid to the quinazoline derivative may be 1.1 to 3.3;
  • the salt formation temperature may be 10 to 30 °C.
  • the salt formation time may be from 0.5 to 24 hours.
  • the method (17) may include the steps of: mixing and reacting a dichloromethane solution of the quinazoline derivative and a dichloromethane suspension of D-gluconic acid, separating and drying the precipitated solid. That is, (wherein the mixing method and conditions may be the methods and conditions conventional in the art.
  • the mixing is preferably: adding the dichloromethane solution of the quinazoline derivative to D-glucose In a dichloromethane suspension of acid.
  • the concentration of the quinazoline derivative in the dichloromethane solution of the quinazoline derivative is preferably 5-10 mg/mL; dichloride of D-gluconic acid In the methane suspension, the content of the D-gluconic acid is preferably 3-5 mg/mL; the molar ratio of the quinazoline derivative and the D-gluconic acid is preferably 1:1.1-1: 3.3; the reaction time is preferably 16-24 hours).
  • the volume-to-mass ratio of the tetrahydrofuran to the quinazoline derivative may be 100 to 300 mL/g.
  • the molar ratio of the L-tartaric acid to the quinazoline derivative may be from 1 to 1.3;
  • the salt formation temperature may be 10 to 30 °C.
  • the salt formation time may be from 0.5 to 24 hours.
  • the method (18) may include the steps of: mixing and reacting a solution of the quinazoline derivative in tetrahydrofuran and a solution of L-tartaric acid in tetrahydrofuran, separating and drying the precipitated solid, wherein
  • the method and conditions of mixing may be conventional methods and conditions in the art.
  • the mixing is preferably carried out by dropwise adding a solution of L-tartaric acid in tetrahydrofuran to a solution of the quinazoline derivative in tetrahydrofuran.
  • the concentration of the quinazoline derivative is preferably from 12.5 to 25 mg/mL in the tetrahydrofuran solution of the oxoline derivative; and the concentration of the L-tartaric acid is preferably from 14.9 to 29.8 mg in the tetrahydrofuran solution of L-tartaric acid. /mL; the molar ratio of the quinazoline derivative and the L-tartaric acid is preferably from 1:1 to 1:1.3; the reaction time is preferably from 0.5 to 24 hours).
  • the recrystallization may be stirred and recrystallized.
  • the L-tartrate (Form 15) can be obtained according to the method (18).
  • the recrystallization time may be 6 to 12 hours.
  • the method (19) may include the steps of: dissolving the L-tartrate (form 15) with water, stirring until the solid is completely precipitated, separating the precipitated solid, and drying, thereby obtaining (where The agitation time is preferably from 6 to 12 hours).
  • the volume-to-mass ratio of the tetrahydrofuran to the quinazoline derivative may be 50 to 130 mL/g.
  • the phosphoric acid is used in the form of an 85% aqueous phosphoric acid solution.
  • the molar ratio of the phosphoric acid to the quinazoline derivative may be 1.1 to 3.3;
  • the salt formation temperature may be 10 to 30 °C.
  • the salt formation time may be from 0.5 to 24 hours.
  • the method (20) may include the steps of: mixing and reacting a solution of the quinazoline derivative in tetrahydrofuran and a solution of phosphoric acid in tetrahydrofuran, separating and drying the precipitated solid, wherein the mixed
  • the method and conditions may be conventional methods and conditions in the art.
  • the mixing is preferably carried out by dropwise adding a solution of phosphoric acid in tetrahydrofuran to a solution of the quinazoline derivative in tetrahydrofuran.
  • the concentration of the quinazoline derivative is preferably 12.5-25 mg/mL; in the tetrahydrofuran solution of phosphoric acid, the concentration of the phosphoric acid is preferably 7.75-15.5 mg/mL; the quinazoline
  • the molar ratio of the derivative to the phosphoric acid is preferably from 1:1.1 to 1:3.3; the reaction time is preferably from 0.5 to 24 hours).
  • the volume-to-mass ratio of the tetrahydrofuran to the quinazoline derivative may be 65 to 130 mL/g.
  • the molar ratio of the palmitic acid to the quinazoline derivative may be from 1 to 1.3;
  • the salt formation temperature may be 10 to 30 °C.
  • the salt formation time may be 16 to 24 hours.
  • the method (21) may include the steps of: mixing and reacting a tetrahydrofuran solution of the quinazoline derivative and a tetrahydrofuran suspension of palmitic acid, separating and drying the precipitated solid, wherein
  • the method and conditions of the mixing may be conventional methods and conditions in the art.
  • the mixing is preferably carried out by dropwise adding a solution of the quinazoline derivative in tetrahydrofuran to a suspension of palmitic acid in tetrahydrofuran.
  • the concentration of the quinazoline derivative is preferably 12.5-25 mg/mL; in the tetrahydrofuran suspension of palmitic acid, the content of the palmitic acid is preferably The ground is 10-20 mg/mL; the molar ratio of the quinazoline derivative to the palmitic acid is preferably from 1:1 to 1:1.3; the reaction time is preferably from 16 to 24 hours).
  • the volume-to-mass ratio of the "chloroform and ethanol" to the quinazoline derivative may be 45 to 90 mL/g.
  • the volume ratio of the chloroform to the ethanol is 8 to 10.
  • the molar ratio of the p-toluenesulfonic acid to the quinazoline derivative may be from 1 to 1.3;
  • the salt formation temperature may be 10 to 30 °C.
  • the salt formation time may be 16 to 24 hours.
  • the method (22) may include the steps of: mixing and reacting a chloroform solution of the quinazoline derivative and an ethanol solution of p-toluenesulfonic acid, separating and drying the precipitated solid, thereby obtaining
  • the method and conditions for mixing may be conventional methods and conditions in the art.
  • the mixing is preferably: adding a solution of p-toluenesulfonic acid in ethanol. To the tetrahydrofuran solution of the quinazoline derivative.
  • the concentration of the quinazoline derivative is preferably 12.5-25 mg/mL; and in the ethanol solution of p-toluenesulfonic acid, the concentration of the p-toluenesulfonic acid is preferably The ground is 41-82 mg/mL; the molar ratio of the quinazoline derivative and the p-toluenesulfonic acid is preferably 1:1.1-1:1.3; the reaction time is preferably 16-24 hours) .
  • the volume-to-mass ratio of the dichloromethane to the quinazoline derivative may be from 125 to 250 mL/g.
  • the molar ratio of the glycolic acid to the quinazoline derivative may be 2.0 to 2.2;
  • the salt formation temperature may be 10 to 30 °C.
  • the salt formation time may be 16 to 24 hours.
  • the method (23) may include the steps of: mixing and reacting a dichloromethane solution of the quinazoline derivative and a dichloromethane suspension of glycolic acid, separating and drying the precipitated solid, thereby obtaining (wherein, the method and conditions of the mixing may be conventional methods and conditions in the art.
  • the mixing is preferably: adding a dichloromethane solution of the quinazoline derivative to dichloro of glycolic acid
  • concentration of the quinazoline derivative in the dichloromethane solution of the quinazoline derivative is preferably 5-10 mg/mL
  • concentration of the quinazoline derivative in the dichloromethane solution of the quinazoline derivative is preferably 5-10 mg/mL
  • the content of the glycolic acid is preferably 5-10 mg/mL
  • the molar ratio of the quinazoline derivative and the glycolic acid is preferably 1:2.0-1:2.2
  • the reaction time is preferably For 16-24 hours).
  • the volume-to-mass ratio of the dichloromethane to the quinazoline derivative may be from 125 to 250 mL/g.
  • the salt formation temperature may be 10 to 30 °C.
  • the salt formation time may be 16 to 24 hours.
  • the method (24) may include the steps of: mixing and reacting a dichloromethane solution of the quinazoline derivative and a methylene chloride suspension of malonic acid, separating and drying the precipitated solid, ie, Wherein the molar ratio of the quinazoline derivative to the malonic acid is 1:1 to 1:1.2 (wherein the method and conditions of the mixing may be conventional methods and conditions in the art.
  • the mixing is preferably carried out by dropwise adding a dichloromethane solution of the quinazoline derivative to a methylene chloride suspension of malonic acid.
  • the quinazoline derivative and the molar of the malonic acid More preferably 1:1.1.
  • the concentration of the quinazoline derivative is preferably 5-10 mg/mL in a dichloromethane solution of the quinazoline derivative; methylene chloride suspension of malonic acid In the liquid, the content of the malonic acid is preferably 3-5 mg/mL; the reaction time is preferably 16-24 hours).
  • the volume-to-mass ratio of the dichloromethane to the quinazoline derivative may be from 125 to 250 mL/g.
  • the salt formation temperature may be 10 to 30 °C.
  • the salt formation time may be 16 to 24 hours.
  • the method (25) may include the steps of: mixing and reacting a dichloromethane solution of the quinazoline derivative and a methylene chloride suspension of succinic acid, separating and drying the precipitated solid, ie,
  • the molar ratio of the quinazoline derivative to the succinic acid is 1:1 to 1:1.2 (wherein the method and conditions of the mixing may be conventional methods and conditions in the art.
  • the dichloromethane solution of the quinazoline derivative is added dropwise to a dichloromethane suspension of succinic acid.
  • the molar ratio of the quinazoline derivative to the succinic acid is better.
  • the ground is 1:1.1.
  • the concentration of the quinazoline derivative in the dichloromethane solution of the quinazoline derivative is preferably 5-10 mg/mL; in a dichloromethane suspension of succinic acid
  • the content of the succinic acid is preferably 3-5 mg/mL; the reaction time is preferably 16-24 hours).
  • the volume-to-mass ratio of the tetrahydrofuran to the quinazoline derivative may be 50 to 100 mL/g.
  • the salt formation temperature may be 10 to 30 °C.
  • the salt formation time may be from 0.5 to 24 hours.
  • the method (26) may include the steps of: mixing and reacting a solution of the quinazoline derivative in tetrahydrofuran and a solution of ⁇ -ketoglutaric acid in tetrahydrofuran, separating and drying the precipitated solid;
  • the molar ratio of the quinazoline derivative to the ⁇ -ketoglutaric acid is 1:1 to 1:1.2 (wherein the method and conditions of the mixing may be conventional methods and conditions in the art.
  • the mixing is preferably carried out by dropwise adding a solution of ⁇ -ketoglutarate in tetrahydrofuran to a solution of the quinazoline derivative in tetrahydrofuran.
  • the quinazoline derivative and the ⁇ -ketoglutaric acid molar More preferably 1:1.1.
  • the concentration of the quinazoline derivative in the tetrahydrofuran solution of the quinazoline derivative is preferably 12.5-25 mg/mL; in the tetrahydrofuran solution of ⁇ -ketoglutaric acid, The concentration of the ⁇ -ketoglutaric acid is preferably from 15.95 to 31.9 mg/mL; the reaction time is preferably from 0.5 to 24 hours).
  • the volume-to-mass ratio of the tetrahydrofuran to the quinazoline derivative may be 60 to 120 mL/g.
  • the molar ratio of the maleic acid to the quinazoline derivative may be from 1.1 to 3.3.
  • the salt formation temperature may be 10 to 30 °C.
  • the salt formation time may be from 0.5 to 24 hours.
  • the method (27) may include the steps of: mixing and reacting a solution of the quinazoline derivative in tetrahydrofuran and a solution of maleic acid in tetrahydrofuran, separating and drying the precipitated solid to obtain (the mixed).
  • the method and conditions may be conventional methods and conditions in the art.
  • the mixing is preferably carried out by dropwise adding a solution of maleic acid in tetrahydrofuran to a solution of the quinazoline derivative in tetrahydrofuran.
  • the concentration of the quinazoline derivative is preferably 12.5-25 mg/mL in a solution of tetrahydrofuran; the concentration of the maleic acid in a tetrahydrofuran solution of maleic acid Preferably, it is 12.56-25.32 mg/mL; the molar ratio of the quinazoline derivative and the maleic acid is preferably 1:1.1-1:3.3; the reaction time is preferably 0.5-24. hour).
  • the volume-to-mass ratio of the tetrahydrofuran to the quinazoline derivative may be 50 to 100 mL/g.
  • the salt formation temperature may be 10 to 30 °C.
  • the salt formation time may be from 0.5 to 24 hours.
  • the method (28) may include the steps of: mixing and reacting a solution of the quinazoline derivative in tetrahydrofuran and a solution of 1,5-naphthalenedisulfonic acid in tetrahydrofuran to separate and dry the precipitated solid.
  • the molar ratio of the quinazoline derivative to the 1,5-naphthalenedisulfonic acid is 1:1.1-1:1.5 (wherein the method and conditions of the mixing may be conventional methods in the art and
  • the mixing is preferably carried out by adding a solution of 1,5-naphthalenedisulfonic acid in tetrahydrofuran to a solution of the quinazoline derivative in tetrahydrofuran.
  • the quinazoline derivative and the 1, The molar ratio of 5-naphthalenedisulfonic acid is preferably 1:1.4.
  • the concentration of the quinazoline derivative in the tetrahydrofuran solution of the quinazoline derivative is preferably 12.5-25 mg/mL; 1,5 In the tetrahydrofuran solution of naphthalene disulfonic acid, the concentration of the 1,5-naphthalenedisulfonic acid is preferably from 39.3 to 78.6 mg/mL; the reaction time is preferably from 0.5 to 24 hours).
  • the volume-to-mass ratio of the dichloromethane to the quinazoline derivative may be from 150 to 300 mL/g.
  • the salt formation temperature may be 10 to 30 °C.
  • the salt formation time may be from 16 to 24 hours.
  • the method (29) may include the steps of: mixing and reacting a dichloromethane solution of the quinazoline derivative and a methylene chloride suspension of malonic acid, separating and drying the precipitated solid, ie,
  • the molar ratio of the quinazoline derivative to the malonic acid is 1:2.0-1:2.3 (wherein the mixing method and conditions can be conventional methods and conditions in the art.
  • the mixing Preferably, the dichloromethane solution of the quinazoline derivative is added dropwise to a methylene chloride suspension of malonic acid. The molar ratio of the quinazoline derivative and the malonic acid is better.
  • the ground is 1:2.2, wherein the concentration of the quinazoline derivative in the dichloromethane solution of the quinazoline derivative is preferably 5-10 mg/mL; the methylene chloride suspension of malonic acid In the liquid, the content of the malonic acid is preferably 3-5 mg/mL; the reaction time is preferably 16-24 hours).
  • the volume-to-mass ratio of the dichloromethane to the quinazoline derivative may be from 150 to 300 mL/g.
  • the salt formation temperature may be 10 to 30 °C.
  • the salt formation time may be 16 to 24 hours.
  • the method (30) may include the steps of: dissolving the quinazoline derivative in methylene chloride solution and malonic acid
  • the methylene chloride suspension is mixed and reacted, and the precipitated solid is separated and dried, and the molar ratio of the quinazoline derivative to the malonic acid is 1:3.0-1:3.4
  • the method and conditions for mixing may be the methods and conditions conventional in the art.
  • the mixing is preferably carried out by dropwise adding a dichloromethane solution of the quinazoline derivative to methylene chloride suspension of malonic acid.
  • the molar ratio of the quinazoline derivative and the malonic acid is preferably 1:3.3.
  • the concentration of the quinazoline derivative in the dichloromethane solution of the quinazoline derivative is higher.
  • the ratio is 5-10 mg/mL; in the methylene chloride suspension of malonic acid, the content of the malonic acid is preferably 5-10 mg/mL; and the reaction time is preferably 16-24. hour).
  • the volume-to-mass ratio of the tetrahydrofuran to the quinazoline derivative may be 60 to 120 mL/g.
  • the salt formation temperature may be 10 to 30 °C.
  • the salt formation time may be from 0.5 to 24 hours.
  • the method (31) may include the steps of: mixing and reacting a solution of the quinazoline derivative in tetrahydrofuran with a tetrahydrofuran solution of 1,5-naphthalene disulfonic acid, separating and drying the precipitated solid, thereby obtaining Wherein the molar ratio of the quinazoline derivative to the 1,5-naphthalene disulfonic acid is 1:2.2-1:3.3 (wherein the method and conditions of the mixing may be conventional methods in the art and The mixing is preferably carried out by adding a solution of 1,5-naphthalene disulfonic acid in tetrahydrofuran to the tetrahydrofuran solution of the quinazoline derivative.
  • the concentration of the quinazoline derivative is preferably 12.5-25 mg/mL; in the tetrahydrofuran solution of 1,5-naphthalene disulfonic acid, the concentration of the 1,5-naphthalene disulfonic acid is preferably 39.3- 78.6 mg/mL; the reaction time is preferably from 0.5 to 24 hours).
  • the volume-to-mass ratio of the dichloromethane to the quinazoline derivative may be from 150 to 300 mL/g.
  • the salt formation temperature may be 10 to 30 °C.
  • the salt formation time may be 16 to 24 hours.
  • the method (32) may include the steps of: mixing and reacting a dichloromethane solution of the quinazoline derivative and a methylene chloride suspension of succinic acid, separating and drying the precipitated solid, ie,
  • the molar ratio of the quinazoline derivative to the succinic acid is 1:2.2-1:3.3 (wherein the mixing method and conditions can be conventional methods and conditions in the art.
  • the mixing Preferably, the dichloromethane solution of the quinazoline derivative is added dropwise to a suspension of succinic acid in methylene chloride.
  • the quinazoline derivative is in a dichloromethane solution.
  • the concentration of the oxazoline derivative is preferably 5-10 mg/mL; in the dichloromethane suspension of succinic acid, the content of the succinic acid is preferably 5-10 mg/mL; the reaction time It is preferably 16-24 hours).
  • the volume-to-mass ratio of the tetrahydrofuran to the quinazoline derivative may be 60 to 120 mL/g.
  • the salt formation temperature may be 10 to 30 °C.
  • the salt formation time may be from 0.5 to 24 hours.
  • the method (33) may include the steps of: mixing and reacting a solution of the quinazoline derivative in tetrahydrofuran and a solution of ⁇ -ketoglutaric acid in tetrahydrofuran to separate and dry the precipitated solid;
  • the molar ratio of the quinazoline derivative to the ⁇ -ketoglutaric acid is 1:2.2-1:3.3 (wherein the method and conditions of the mixing may be conventional methods and conditions in the art.
  • the tetrahydrofuran solution of ⁇ -ketoglutaric acid is added dropwise to the tetrahydrofuran solution of the quinazoline derivative. In the tetrahydrofuran solution of the quinazoline derivative, the quinazoline derivative is used.
  • the concentration of the substance is preferably 12.5-25 mg/mL; in the tetrahydrofuran solution of ⁇ -ketoglutaric acid, the concentration of the ⁇ -ketoglutaric acid is preferably 15.95-31.9 mg/mL; the reaction time It is preferably from 0.5 to 24 hours).
  • the volume-to-mass ratio of the tetrahydrofuran to the quinazoline derivative may be 50 to 100 mL/g.
  • the molar ratio of the p-chlorobenzenesulfonate to the quinazoline derivative may be from 1 to 1.2.
  • the salt formation temperature may be 10 to 30 °C.
  • the salt formation time may be from 0.5 to 24 hours.
  • the method (34) may include the steps of: mixing and reacting a solution of the quinazoline derivative in tetrahydrofuran and a solution of p-chlorobenzenesulfonic acid in tetrahydrofuran, separating the precipitated solid, and drying, thereby obtaining (where
  • the method and conditions of the mixing may be conventional methods and conditions in the art.
  • the mixing is preferably carried out by dropwise adding a solution of p-chlorobenzenesulfonic acid in tetrahydrofuran to the tetrahydrofuran solution of the quinazoline derivative.
  • the concentration of the quinazoline derivative is preferably 12.5-25 mg/mL in the tetrahydrofuran solution of the quinazoline derivative; the concentration of the p-chlorobenzenesulfonic acid in the tetrahydrofuran solution of p-chlorobenzenesulfonic acid It is preferably 21-42 mg/mL; the reaction time is preferably 0.5 to 24 hours.
  • the molar ratio of the quinazoline derivative and the 1,5-naphthalenedisulfonic acid is preferably 1: 1-1: 1.2).
  • the present invention also provides a salt of the "quinazoline derivative of the formula 1" (the acid in the salt is an acid in the reaction raw material; it may further contain a solvent molecule not shown in the structural formula ⁇ It can be water or an organic solvent >), which is obtained by any of the following methods:
  • citrate 2 (for example, Form 1) is volatilized in a solvent to obtain a salt of a quinazoline derivative;
  • the solvent is an aqueous methanol solution, an aqueous ethanol solution or an aqueous solution of isopropanol ;
  • a citrate 2 for example, crystal form 1
  • the solvent is methanol, an aqueous solution of n-propanol, an aqueous solution of tetrahydrofuran or an aqueous solution of acetonitrile.
  • a citrate 2 (for example, Form 1) is slurried in a solvent to obtain a salt of a quinazoline derivative;
  • the solvent is methanol and ethanol, nitromethane and ethanol, or , acetonitrile and ethanol;
  • the quinazoline derivative and the sulfuric acid are subjected to a salt formation reaction in tetrahydrofuran to obtain a salt of the quinazoline derivative;
  • the molar ratio of the sulfuric acid to the quinazoline derivative may be 2.2. ⁇ 3.3;
  • a quinazoline derivative and malonic acid are subjected to a salt formation reaction in dichloromethane to obtain a salt of a quinazoline derivative; the malonic acid and the quinazoline derivative
  • the molar ratio is from 1 to 1.2;
  • a quinazoline derivative and 1,5-naphthalene disulfonic acid are subjected to a salt formation reaction in tetrahydrofuran to obtain a salt of a quinazoline derivative; the 1,5-naphthalene disulfonate
  • the molar ratio to the quinazoline derivative is 1.1 to 1.5
  • a quinazoline derivative and 1,5-naphthalenedisulfonic acid are subjected to a salt formation reaction in tetrahydrofuran to obtain a salt of a quinazoline derivative; the 1,5-naphthalene disulfonate
  • the molar ratio to the quinazoline derivative is 2.2 to 3.3
  • the volume-to-mass ratio of the tetrahydrofuran to the quinazoline derivative may be 45 to 50 mL/g, or may be 45 to 48 mL/g.
  • the molar ratio of the citric acid to the quinazoline derivative may be from 1 to 1.5.
  • the salt formation temperature may be 10 to 30 °C.
  • the salt formation time may be from 0.5 to 24 hours.
  • the operation of the salt-forming reaction may be a conventional operation in the art, for example, mixing a tetrahydrofuran solution of citric acid and a tetrahydrofuran solution of a quinazoline derivative (for example, a tetrahydrofuran solution of citric acid). Add to the tetrahydrofuran solution of the quinazoline derivative).
  • the concentration of the quinazoline derivative in tetrahydrofuran solution may be 25-50 mg/mL.
  • the concentration of the citric acid in tetrahydrofuran solution may be 50-100 mg/mL.
  • the post-treatment of the salt-forming reaction may be a conventional post-treatment of such a reaction in the art, such as filtration and drying.
  • the drying temperature may be 40 to 50 ° C or 40 to 45 ° C.
  • the drying can be vacuum drying.
  • the method (1) may include the steps of: mixing and reacting a solution of the quinazoline derivative in tetrahydrofuran with a tetrahydrofuran solution of citric acid, and separating and drying the precipitated solid to obtain (wherein the quinine)
  • the concentration of the quinazoline derivative is preferably 25-50 mg/mL
  • the concentration of the citric acid is preferably 50.8-101.6 mg/ ML
  • the quinazoline derivative and the citric acid The molar ratio is preferably from 1:1 to 1:1.5; the reaction time is preferably from 0.5 to 24 hours).
  • the volume-to-mass ratio of the ethanol to the monocitrate 2 (for example, the crystal form 1) may be 35 to 45 mL/g, or may be 40 to 45 mL/g.
  • the monocitrate 2 (for example, the crystal form 1) can be produced according to the method (1).
  • the beating temperature may be 55 to 65 ° C or 60 ° C.
  • the beating time may be 8-16 hours.
  • the method (2) may include the steps of: mixing the citrate 2 (for example, Form 1) and ethanol to form a suspension, and stirring at 55-65 ° C, wherein Preferably, the citrate 2 (e.g., Form 1) and ethanol are 10-50 mg/mL; the agitation time is preferably 8-16 hours; and the agitation temperature is preferably 60 °C. ).
  • the volume-to-mass ratio of the tetrahydrofuran to the monocitrate 2 (for example, the crystal form 1) may be 35 to 45 mL/g, or may be 40 to 45 mL/g.
  • the monocitrate 2 (for example, the crystal form 1) can be produced according to the method (1).
  • the beating temperature may be from 10 to 60 °C.
  • the beating time may be 8-16 hours.
  • the method (3) may include the steps of: mixing the monocitrate 2 (for example, Form 1) and tetrahydrofuran to form a suspension, and stirring at 10 to 60 ° C to obtain (wherein Preferably, the citrate 2 (e.g., Form 1) and tetrahydrofuran are 10-50 mg/mL; the agitation time is preferably 8-16 hours).
  • the volume-to-mass ratio of the 1,4-dioxane to the monocitrate 2 may be 80 to 120 mL/g, or may be 100 to 120 mL / g.
  • the monocitrate 2 (e.g., Form 1) can be obtained according to the method (1).
  • the recrystallization may be hot solution recrystallization and recrystallization, and the dissolution temperature may be 50-60 ° C, and the cooling target temperature may be 10-30 ° C.
  • the method (4) may include the steps of: mixing the citrate 2 (for example, Form 1) and dioxane to form a solution at a temperature of 60 ° C or higher, and naturally cooling under stirring. That is, (wherein the concentration of the monocitrate 2 (for example, Form 1) is preferably 8.3-16.7 mg/mL; the natural cooling means cooling at room temperature).
  • the volume-to-mass ratio of the water to the monocitrate 2 (for example, Form 1) may be 60 to 70 mL/g, or may be 66 to 70 mL/g.
  • the volume-to-mass ratio of the tetrahydrofuran to the monocitrate 2 (for example, the crystal form 1) may be 80 to 120 mL/g, or may be 100 to 120 mL/g.
  • the monocitrate 2 (for example, the crystal form 1) can be obtained according to the method (1).
  • the beating temperature may be from 10 to 60 °C.
  • the beating time may be 8-16 hours.
  • the method (5) may include the steps of: mixing the citrate 2 (for example, Form 1) and a solvent to form a suspension, and stirring at 10 to 60 ° C, the solvent is Water or n-butanol (wherein the citrate 2 (eg Form 1) is preferably present in a solvent with a solvent of from 5 to 40 mg/mL, more preferably from 10 to 20 mg/mL; It is preferably 5-16 hours).
  • the volume-to-mass ratio of the solvent to the monocitrate 2 (for example, Form 1) may be 20 to 200 mL/g.
  • the volume ratio of the alcohol solvent to water in the solvent may be 1.
  • the monocitrate 2 (for example, the crystal form 1) can be produced according to the method (1).
  • the volatilization temperature may be from 10 to 60 °C.
  • the method (5-1) may include the steps of: mixing the citrate 2 (for example, Form 1) and a solvent to form a solution, and volatilizing the solvent to dry at 10-60 ° C;
  • the solvent is an aqueous methanol solution, an aqueous ethanol solution or an aqueous isopropanol solution (wherein the concentration of the monocitrate 2 (for example, Form 1) is preferably 5 to 50 mg/mL).
  • the volume-mass ratio of the solvent to the monocitrate 2 (for example, the crystal form 1) may be 160 to 240 mL/g, or may be 200 to 240 mL/g.
  • the volume ratio of methanol to acetone may be 1.
  • the volume ratio of the 1,4-dioxane to acetone may be 1.
  • the monocitrate 2 (for example, the crystal form 1) can be produced according to the method (1).
  • the recrystallization may be a hot solution cold recrystallization, which may have a dissolution temperature of 50 to 60 ° C and a cooling target temperature of 10 to 30 ° C.
  • the volume-to-mass ratio of the chloroform to the monocitrate 2 (for example, the crystal form 1) may be 35 to 45 mL/g, or may be 40 to 45 mL/g.
  • the monocitrate 2 (e.g., Form 1) can be obtained according to the method (1).
  • the beating temperature may be 55 to 65 ° C or 60 ° C.
  • the beating time may be 8-16 hours.
  • the method (6) may include the steps of: mixing the citrate 2 (for example, Form 1) and chloroform to form a suspension, and stirring at room temperature to obtain (wherein the citric acid
  • the salt 2 (e.g., Form 1) and chloroform are 10-50 mg/mL; the agitation time is preferably 8-16 hours).
  • the volume-to-mass ratio of the chloroform to the monocitrate 2 (for example, Form 1) is It is 80 to 120 mL/g, and may be 100 to 120 mL/g.
  • the monocitrate 2 (for example, the crystal form 1) can be produced according to the method (1).
  • the beating temperature may be 10 to 30 °C.
  • the beating time may be 8-16 hours.
  • the method (7) may include the steps of: mixing the citrate 2 (for example, Form 1) and water to form a suspension, and stirring at room temperature to obtain (wherein the citric acid
  • the salt 2 (e.g., Form 1) and water are preferably present in an amount of 5-40 mg/mL, more preferably 10-20 mg/mL; the agitation time is preferably 8-16 hours).
  • the volume-to-mass ratio of the solvent to the monocitrate 2 (for example, Form 1) may be 100 to 200 mL/g.
  • the volume ratio of the nonaqueous solvent to water in the solvent may be 1.
  • the monocitrate 2 (e.g., Form 1) can be obtained according to the method (1).
  • the volatilization temperature may be 10 to 30 °C.
  • the method (8) may include the steps of: mixing the citrate 2 (for example, Form 1) and a solvent to form a solution, and naturally volatilizing at room temperature, thereby obtaining (wherein the citrate
  • the concentration of 2 (for example, Form 1) is preferably 5-10 mg/mL; the natural volatilization may be volatilization without capping or punching volatilization.
  • the volume of n-propanol and water in the aqueous solution of n-propanol More preferably, it is 1:1; in the aqueous tetrahydrofuran solution, the volume of tetrahydrofuran and water is preferably 1:1; in the aqueous acetonitrile solution, the volume of acetonitrile and water is preferably 1:1).
  • the volume-mass ratio of the solvent to the monocitrate 2 (for example, the crystal form 1) may be 200 to 600 mL/g, or may be 200 to 500 mL/g.
  • the monocitrate 2 (for example, the crystal form 1) can be produced according to the method (1).
  • the recrystallization may be hot solution recrystallization and recrystallization, and the dissolution temperature may be 50 to 60 ° C, and the cooling target temperature may be 10 to 30 ° C.
  • the method (9) may include the steps of: mixing the citrate 2 (for example, Form 1) and an organic solvent containing an alcohol to form a solution at a temperature of 60 ° C or higher, and naturally stirring under stirring conditions. Cooling, that is, (wherein the organic solvent containing alcohol is preferably a solution of n-propanol, isopropanol, methanol in ethanol, an ethanol solution of acetonitrile or an ethanol solution of nitromethane; the ethanol solution of methanol
  • the volume of methanol and ethanol is preferably 1:1; in the ethanol solution of acetonitrile, the volume of acetonitrile and ethanol is preferably 1:1; the nitromethane in ethanol solution, nitromethane and The volume of ethanol is preferably 1:1).
  • the volume-mass ratio of the solvent to the monocitrate 2 (for example, the crystal form 1) may be 160 to 240 mL/g, or may be 200 to 240 mL/g.
  • the volume ratio of the methanol to the ethanol may be 1.
  • the volume ratio of the nitromethane to the ethanol may be 1.
  • the volume ratio of the acetonitrile to the ethanol may be 1.
  • the monocitrate 2 (for example, the crystal form 1) can be produced according to the method (1).
  • the beating temperature may be 10 to 30 °C.
  • the beating time may be 8 to 16 hours.
  • the method (9-2) may include the steps of: mixing the citrate 2 (for example, Form 1) and an organic solvent containing an alcohol to form a suspension, and stirring at room temperature to obtain
  • the organic solvent containing an alcohol is preferably an ethanol solution of methanol, an ethanol solution of acetonitrile or an ethanol solution of nitromethane
  • in the ethanol solution of methanol the volume of methanol and ethanol is preferably 1: 1
  • in the ethanol solution of acetonitrile, the volume of acetonitrile and ethanol is preferably 1:1
  • in the ethanol solution of nitromethane, the volume of nitromethane and ethanol is preferably 1:1
  • the stirring time is preferably 8-16 hours).
  • the mass ratio of the n-butanol to the monocitrate 2 (for example, the crystal form 1) may be 200 to 300 mL/g, or may be 240 to 300 mL/g.
  • the monocitrate 2 (e.g., Form 1) can be obtained according to the method (1).
  • the recrystallization may be hot solution recrystallization and recrystallization, and the dissolution temperature may be 50-60 ° C, and the cooling target temperature may be 10-30 ° C.
  • the method (10) may include the steps of: mixing the citrate 2 (for example, Form 1) and n-butanol at 50-60 ° C to form a solution, and naturally cooling to room temperature under stirring, that is,
  • the concentration of the monocitrate 2 (e.g., Form 1) is preferably from 4.1 to 8.3 mg/mL.
  • the volume-mass ratio of the "water and acetonitrile" to the monocitrate 2 may be 100 to 200 mL/g.
  • the volume ratio of acetonitrile to water in the solvent may be 1.
  • the monocitrate 2 (for example, the crystal form 1) can be produced according to the method (1).
  • the volatilization temperature may be 50 to 60 °C.
  • the method (10-2) may include the steps of: mixing the citrate 2 (for example, Form 1), acetonitrile and water to form a solution at 55-65 ° C, and evaporating the solvent to dryness, that is, obtaining (wherein the concentration of the monocitrate 2 (e.g., Form 1) is preferably 5-50 mg/mL; the volume of the acetonitrile and water is preferably 1:1).
  • the volume-mass ratio of the "water and dimethyl sulfoxide" to the monocitrate 2 may be 200 to 300 mL/g, or may be 240 to 300 mL / g.
  • the volume ratio of water to dimethyl sulfoxide in the solvent may be 60.
  • the monocitrate 2 (for example, the crystal form 1) can be produced according to the method (1).
  • the recrystallization may be an anti-solvent recrystallization, for example, first dissolved in dimethyl sulfoxide and then mixed with water.
  • the method (11) may include the steps of: mixing the citrate 2 (for example, Form 1) and dimethyl sulfoxide to form a solution, adding the solution to water, and stirring at room temperature, that is, Wherein the concentration of the monocitrate 2 (e.g., Form 1) in the solution is preferably from 200 to 400 mg/mL; and the volume of the water and dimethyl sulfoxide is preferably from 5 to 10 The stirring time is preferably 5-30 minutes).
  • the volume-mass ratio of the "water and acetone" to the monocitrate 2 may be 110 to 200 mL/g.
  • the volume ratio of acetone to water in the solvent may be 1.
  • the monocitrate 2 (for example, the crystal form 1) can be produced according to the method (1).
  • the volatilization temperature may be 50 to 60 °C.
  • the volume-to-mass ratio of the tetrahydrofuran to the quinazoline derivative may be 20 to 100 mL/g.
  • the molar ratio of the ethanedisulfonic acid to the quinazoline derivative may be from 1.1 to 2.2.
  • the salt formation temperature may be 10 to 30 °C.
  • the salt formation time may be from 0.5 to 24 hours.
  • the operation of the salt-forming reaction may be a conventional operation in the art, for example, mixing a tetrahydrofuran solution of ethanedisulfonic acid and a tetrahydrofuran solution of a quinazoline derivative (for example, ethanedisulfonate)
  • a quinazoline derivative for example, ethanedisulfonate
  • An acid tetrahydrofuran solution is added to the tetrahydrofuran solution of the quinazoline derivative).
  • the concentration of the quinazoline derivative in tetrahydrofuran solution may be 12.5-25 mg/mL.
  • the concentration of the ethanedisulfonic acid in tetrahydrofuran solution may be 20.75-41.5 mg/mL.
  • the method (12) may include the steps of: mixing and reacting a solution of the quinazoline derivative in tetrahydrofuran and a solution of ethanedisulfonic acid in tetrahydrofuran, separating and drying the precipitated solid, thereby obtaining
  • the method and conditions for the mixing may be conventional methods and conditions in the art.
  • the mixing is preferably carried out by dropwise adding a solution of ethanedisulfonic acid in tetrahydrofuran to the tetrahydrofuran solution of the quinazoline derivative.
  • the concentration of the quinazoline derivative is preferably from 12.5 to 25 mg/mL; in the tetrahydrofuran solution of ethanedisulfonic acid, the concentration of the ethanedisulfonic acid is preferably from 20.75 to 41.5 mg/mL; the quinazoline
  • the molar ratio of the derivative to the ethanedisulfonic acid is preferably from 1:1.1 to 1:2.2; the reaction time is preferably from 0.5 to 24 hours).
  • the volume-to-mass ratio of the tetrahydrofuran to the quinazoline derivative may be 50 to 100 mL/g.
  • the sulfuric acid is used in the form of concentrated sulfuric acid.
  • the salt formation temperature may be 10 to 30 °C.
  • the salt formation time may be from 0.5 to 24 hours.
  • the operation of the salt-forming reaction may be a conventional operation in the art, for example, mixing a tetrahydrofuran solution of sulfuric acid and a tetrahydrofuran solution of a quinazoline derivative (for example, adding a tetrahydrofuran solution of sulfuric acid to the solution) a solution of a quinazoline derivative in tetrahydrofuran).
  • concentration of the quinazoline derivative in tetrahydrofuran solution may be 12.5-25 mg/mL.
  • the concentration of the sulfuric acid in tetrahydrofuran solution may be 9.75-19.5 mg/mL.
  • the method (13) may include the steps of: mixing and reacting a solution of the quinazoline derivative in tetrahydrofuran and a solution of sulfuric acid in tetrahydrofuran, separating and drying the precipitated solid, wherein the quinazoline is obtained;
  • the molar ratio of the morphological derivative to the sulfuric acid is 1:1 to 1:1.3 (wherein the mixing method and conditions may be conventional methods and conditions in the art.
  • the mixing is preferably: sulfuric acid a tetrahydrofuran solution is added dropwise to the tetrahydrofuran solution of the quinazoline derivative.
  • the concentration of the quinazoline derivative in the tetrahydrofuran solution of the quinazoline derivative is preferably 12.5-25 mg/mL; In the tetrahydrofuran solution, the concentration of the sulfuric acid is preferably from 9.75 to 199.5 mg/mL; the reaction time is preferably from 0.5 to 24 hours).
  • the volume-to-mass ratio of the tetrahydrofuran to the quinazoline derivative may be 50 to 100 mL/g.
  • the sulfuric acid is used in the form of concentrated sulfuric acid.
  • the salt formation temperature may be 10 to 30 °C.
  • the salt formation time may be from 0.5 to 24 hours.
  • the method (14) may include the steps of: mixing and reacting a solution of the quinazoline derivative in tetrahydrofuran with a tetrahydrofuran solution of sulfuric acid, separating and drying the precipitated solid, wherein the quinazoline is obtained;
  • the molar ratio of the morphological derivative to the sulfuric acid is 1:2.2-1:3.3 (wherein the mixing method and conditions can be conventional methods and conditions in the art.
  • the mixing is preferably: sulfuric acid a tetrahydrofuran solution is added dropwise to the tetrahydrofuran solution of the quinazoline derivative.
  • the concentration of the quinazoline derivative in the tetrahydrofuran solution of the quinazoline derivative is preferably 12.5-25 mg/mL;
  • the concentration of the sulfuric acid in the tetrahydrofuran solution is preferably 29.25-58.5 mg/mL;
  • the molar ratio of the quinazoline derivative and the sulfuric acid is preferably 1:3.3;
  • the reaction time is preferably 0.5-24 hours).
  • the volume-to-mass ratio of the tetrahydrofuran to the quinazoline derivative may be 50 to 100 mL/g.
  • the molar ratio of the benzenesulfonic acid to the quinazoline derivative may be from 1 to 1.3;
  • the salt formation temperature may be 10 to 30 °C.
  • the salt formation time may be from 0.5 to 24 hours.
  • the operation of the salt-forming reaction may be a conventional operation in the art, for example, by using benzenesulfonic acid
  • the tetrahydrofuran solution is mixed with a tetrahydrofuran solution of a quinazoline derivative (for example, a tetrahydrofuran solution of benzenesulfonic acid is added to a tetrahydrofuran solution of the quinazoline derivative).
  • the concentration of the quinazoline derivative in tetrahydrofuran solution may be 12.5-25 mg/mL.
  • the concentration of the benzenesulfonic acid in tetrahydrofuran solution may be from 15.7 to 31.4 mg/mL.
  • the method (15) may include the steps of: mixing and reacting a solution of the quinazoline derivative in tetrahydrofuran and a solution of benzenesulfonic acid in tetrahydrofuran, separating and drying the precipitated solid, wherein
  • the method and conditions of mixing may be conventional methods and conditions in the art.
  • the mixing is preferably carried out by dropwise adding a solution of benzenesulfonic acid in tetrahydrofuran to a solution of the quinazoline derivative in tetrahydrofuran.
  • the concentration of the quinazoline derivative is preferably from 12.5 to 25 mg/mL in the tetrahydrofuran solution of the oxoline derivative; and the concentration of the benzenesulfonic acid is preferably from 15.7 to 31.4 mg in the tetrahydrofuran solution of benzenesulfonic acid; /mL; the molar ratio of the quinazoline derivative and the benzenesulfonic acid is preferably from 1:1 to 1.3; the reaction time is preferably from 0.5 to 24 hours).
  • the volume-to-mass ratio of the tetrahydrofuran to the quinazoline derivative may be 50 to 100 mL/g.
  • the HCl may be used in the form of a concentrated hydrochloric acid (a saturated aqueous solution of HCl) with water.
  • the molar ratio of the HCl to the quinazoline derivative may be 1.1 to 3.3;
  • the salt formation temperature may be 10 to 30 °C.
  • the salt formation time may be from 0.5 to 24 hours.
  • the method (16) may include the steps of: mixing and reacting a solution of the quinazoline derivative in tetrahydrofuran and a solution of hydrochloric acid in tetrahydrofuran, separating and drying the precipitated solid, thereby obtaining the method and the method of mixing
  • the conditions may be conventional methods and conditions in the art.
  • the mixing is preferably carried out by dropwise adding a tetrahydrofuran solution of hydrochloric acid to the tetrahydrofuran solution of the quinazoline derivative.
  • the tetrahydrofuran solution of the quinazoline derivative The concentration of the quinazoline derivative is preferably from 12.5 to 25 mg/mL; in the tetrahydrofuran solution of hydrochloric acid, the concentration of the hydrochloric acid is preferably from 11 to 22 mg/mL; the quinazoline derivative and The molar ratio of the hydrochloric acid is preferably from 1:1.1 to 1:3.3; the reaction time is preferably from 0.5 to 24 hours).
  • the volume-to-mass ratio of the tetrahydrofuran to the quinazoline derivative may be 230 to 400 mL/g.
  • the molar ratio of the D-gluconic acid to the quinazoline derivative may be 1.1 to 3.3;
  • the salt formation temperature may be 10 to 30 °C.
  • the salt formation time may be from 0.5 to 24 hours.
  • the method (17) may include the steps of: mixing and reacting a dichloromethane solution of the quinazoline derivative and a dichloromethane suspension of D-gluconic acid, separating and drying the precipitated solid. That is, The methods and conditions can be routine methods and conditions in the art. The mixing is preferably carried out by dropwise adding a dichloromethane solution of the quinazoline derivative to a dichloromethane suspension of D-gluconic acid.
  • the concentration of the quinazoline derivative in the dichloromethane solution of the quinazoline derivative is preferably 5-10 mg/mL; in the dichloromethane suspension of D-gluconic acid, the D- The content of gluconic acid is preferably 3-5 mg/mL; the molar ratio of the quinazoline derivative and the D-gluconic acid is preferably 1:1.1-1:3.3; the reaction time is preferably For 16-24 hours).
  • the volume-to-mass ratio of the tetrahydrofuran to the quinazoline derivative may be 100 to 300 mL/g.
  • the molar ratio of the L-tartaric acid to the quinazoline derivative may be from 1 to 1.3;
  • the salt formation temperature may be 10 to 30 °C.
  • the salt formation time may be from 0.5 to 24 hours.
  • the method (18) may include the steps of: mixing and reacting a solution of the quinazoline derivative in tetrahydrofuran and a solution of L-tartaric acid in tetrahydrofuran, separating and drying the precipitated solid, wherein
  • the method and conditions of mixing may be conventional methods and conditions in the art.
  • the mixing is preferably carried out by dropwise adding a solution of L-tartaric acid in tetrahydrofuran to a solution of the quinazoline derivative in tetrahydrofuran.
  • the concentration of the quinazoline derivative is preferably from 12.5 to 25 mg/mL in the tetrahydrofuran solution of the oxoline derivative; and the concentration of the L-tartaric acid is preferably from 14.9 to 29.8 mg in the tetrahydrofuran solution of L-tartaric acid. /mL; the molar ratio of the quinazoline derivative and the L-tartaric acid is preferably from 1:1 to 1:1.3; the reaction time is preferably from 0.5 to 24 hours).
  • the recrystallization may be stirred and recrystallized.
  • the L-tartrate (Form 15) can be obtained according to the method (18).
  • the recrystallization time may be 6 to 12 hours.
  • the method (19) may include the steps of: dissolving the L-tartrate (form 15) with water, stirring until the solid is completely precipitated, separating the precipitated solid, and drying, thereby obtaining (where The agitation time is preferably from 6 to 12 hours).
  • the volume-to-mass ratio of the tetrahydrofuran to the quinazoline derivative may be 50 to 130 mL/g.
  • the phosphoric acid is used in the form of an 85% aqueous phosphoric acid solution.
  • the molar ratio of the phosphoric acid to the quinazoline derivative may be 1.1 to 3.3;
  • the salt formation temperature may be 10 to 30 °C.
  • the salt formation time may be from 0.5 to 24 hours.
  • the method (20) may include the steps of: mixing and reacting a solution of the quinazoline derivative in tetrahydrofuran and a solution of phosphoric acid in tetrahydrofuran, separating and drying the precipitated solid, wherein the mixed Methods and Conditions can be routine methods and conditions in the art.
  • the mixing is preferably carried out by dropwise adding a tetrahydrofuran solution of phosphoric acid to the tetrahydrofuran solution of the quinazoline derivative.
  • the concentration of the quinazoline derivative is preferably 12.5-25 mg/mL; in the tetrahydrofuran solution of phosphoric acid, the concentration of the phosphoric acid is preferably 7.75-15.5 mg. /mL; the molar ratio of the quinazoline derivative and the phosphoric acid is preferably from 1:1.1 to 1:3.3; the reaction time is preferably from 0.5 to 24 hours).
  • the volume-to-mass ratio of the tetrahydrofuran to the quinazoline derivative may be 65 to 130 mL/g.
  • the molar ratio of the palmitic acid to the quinazoline derivative may be from 1 to 1.3;
  • the salt formation temperature may be 10 to 30 °C.
  • the salt formation time may be 16 to 24 hours.
  • the method (21) may include the steps of: mixing and reacting a tetrahydrofuran solution of the quinazoline derivative and a tetrahydrofuran suspension of palmitic acid, separating and drying the precipitated solid, wherein
  • the method and conditions of the mixing may be conventional methods and conditions in the art.
  • the mixing is preferably carried out by dropwise adding a solution of the quinazoline derivative in tetrahydrofuran to a suspension of palmitic acid in tetrahydrofuran.
  • the concentration of the quinazoline derivative is preferably 12.5-25 mg/mL; in the tetrahydrofuran suspension of palmitic acid, the content of the palmitic acid is preferably The ground is 10-20 mg/mL; the molar ratio of the quinazoline derivative to the palmitic acid is preferably from 1:1 to 1:1.3; the reaction time is preferably from 16 to 24 hours).
  • the volume-to-mass ratio of the "chloroform and ethanol" to the quinazoline derivative may be 45 to 90 mL/g.
  • the volume ratio of the chloroform to the ethanol is 8 to 10.
  • the molar ratio of the p-toluenesulfonic acid to the quinazoline derivative may be from 1 to 1.3;
  • the salt formation temperature may be 10 to 30 °C.
  • the salt formation time may be 16 to 24 hours.
  • the method (22) may include the steps of: mixing and reacting a chloroform solution of the quinazoline derivative and an ethanol solution of p-toluenesulfonic acid, separating and drying the precipitated solid, thereby obtaining
  • the method and conditions for the mixing may be conventional methods and conditions in the art.
  • the mixing is preferably carried out by dropwise adding a solution of p-toluenesulfonic acid in ethanol to a solution of the quinazoline derivative in tetrahydrofuran.
  • the concentration of the quinazoline derivative is preferably from 12.5 to 25 mg/mL; and in the ethanol solution of p-toluenesulfonic acid, the concentration of the p-toluenesulfonic acid is preferably 41-82 mg/mL; the molar ratio of the quinazoline derivative and the p-toluenesulfonic acid is preferably 1:1.1-1:1.3; the reaction time is preferably 16-24 hours).
  • the volume-mass ratio of the dichloromethane to the quinazoline derivative may be 125 ⁇ 250mL / g.
  • the molar ratio of the glycolic acid to the quinazoline derivative may be 2.0 to 2.2;
  • the salt formation temperature may be 10 to 30 °C.
  • the salt formation time may be 16 to 24 hours.
  • the method (23) may include the steps of: mixing and reacting a dichloromethane solution of the quinazoline derivative and a dichloromethane suspension of glycolic acid, separating and drying the precipitated solid, thereby obtaining (wherein, the method and conditions of the mixing may be conventional methods and conditions in the art.
  • the mixing is preferably: adding a dichloromethane solution of the quinazoline derivative to dichloro of glycolic acid
  • concentration of the quinazoline derivative in the dichloromethane solution of the quinazoline derivative is preferably 5-10 mg/mL
  • concentration of the quinazoline derivative in the dichloromethane solution of the quinazoline derivative is preferably 5-10 mg/mL
  • the content of the glycolic acid is preferably 5-10 mg/mL
  • the molar ratio of the quinazoline derivative and the glycolic acid is preferably 1:2.0-1:2.2
  • the reaction time is preferably For 16-24 hours).
  • the volume-to-mass ratio of the dichloromethane to the quinazoline derivative may be from 125 to 250 mL/g.
  • the salt formation temperature may be 10 to 30 °C.
  • the salt formation time may be 16 to 24 hours.
  • the method (24) may include the steps of: mixing and reacting a dichloromethane solution of the quinazoline derivative and a methylene chloride suspension of malonic acid, separating and drying the precipitated solid, ie, Wherein the molar ratio of the quinazoline derivative to the malonic acid is 1:1 to 1:1.2 (wherein the method and conditions of the mixing may be conventional methods and conditions in the art.
  • the mixing is preferably carried out by dropwise adding a dichloromethane solution of the quinazoline derivative to a methylene chloride suspension of malonic acid.
  • the quinazoline derivative and the molar of the malonic acid More preferably 1:1.1.
  • the concentration of the quinazoline derivative is preferably 5-10 mg/mL in a dichloromethane solution of the quinazoline derivative; methylene chloride suspension of malonic acid In the liquid, the content of the malonic acid is preferably 3-5 mg/mL; the reaction time is preferably 16-24 hours).
  • the volume-to-mass ratio of the dichloromethane to the quinazoline derivative may be from 125 to 250 mL/g.
  • the salt formation temperature may be 10 to 30 °C.
  • the salt formation time may be 16 to 24 hours.
  • the method (25) may include the steps of: mixing and reacting a dichloromethane solution of the quinazoline derivative and a methylene chloride suspension of succinic acid, separating and drying the precipitated solid, ie,
  • the molar ratio of the quinazoline derivative to the succinic acid is 1:1 to 1:1.2 (wherein the method and conditions of the mixing may be conventional methods and conditions in the art.
  • the dichloromethane solution of the quinazoline derivative is added dropwise to the succinic acid In a suspension of methyl chloride.
  • the molar ratio of the quinazoline derivative and the succinic acid is preferably 1:1.1.
  • the concentration of the quinazoline derivative in the dichloromethane solution of the quinazoline derivative is preferably 5-10 mg/mL; in the methylene chloride suspension of succinic acid, the succinic acid The content is preferably 3-5 mg/mL; the reaction time is preferably 16-24 hours).
  • the volume-to-mass ratio of the tetrahydrofuran to the quinazoline derivative may be 50 to 100 mL/g.
  • the salt formation temperature may be 10 to 30 °C.
  • the salt formation time may be from 0.5 to 24 hours.
  • the method (26) may include the steps of: mixing and reacting a solution of the quinazoline derivative in tetrahydrofuran and a solution of ⁇ -ketoglutaric acid in tetrahydrofuran, separating and drying the precipitated solid;
  • the molar ratio of the quinazoline derivative to the ⁇ -ketoglutaric acid is 1:1 to 1:1.2 (wherein the method and conditions of the mixing may be conventional methods and conditions in the art.
  • the mixing is preferably carried out by dropwise adding a solution of ⁇ -ketoglutarate in tetrahydrofuran to a solution of the quinazoline derivative in tetrahydrofuran.
  • the quinazoline derivative and the ⁇ -ketoglutaric acid molar More preferably 1:1.1.
  • the concentration of the quinazoline derivative in the tetrahydrofuran solution of the quinazoline derivative is preferably 12.5-25 mg/mL; in the tetrahydrofuran solution of ⁇ -ketoglutaric acid, The concentration of the ⁇ -ketoglutaric acid is preferably from 15.95 to 31.9 mg/mL; the reaction time is preferably from 0.5 to 24 hours).
  • the volume-to-mass ratio of the tetrahydrofuran to the quinazoline derivative may be 60 to 120 mL/g.
  • the molar ratio of the maleic acid to the quinazoline derivative may be from 1.1 to 3.3.
  • the salt formation temperature may be 10 to 30 °C.
  • the salt formation time may be from 0.5 to 24 hours.
  • the method (27) may include the steps of: mixing and reacting a solution of the quinazoline derivative in tetrahydrofuran and a solution of maleic acid in tetrahydrofuran, separating and drying the precipitated solid to obtain (the mixed).
  • the method and conditions may be conventional methods and conditions in the art.
  • the mixing is preferably carried out by dropwise adding a solution of maleic acid in tetrahydrofuran to a solution of the quinazoline derivative in tetrahydrofuran.
  • the concentration of the quinazoline derivative is preferably 12.5-25 mg/mL in the tetrahydrofuran solution; the concentration of the maleic acid in the tetrahydrofuran solution of maleic acid is preferably 12.56-25.32 mg/mL.
  • the molar ratio of the quinazoline derivative to the maleic acid is preferably from 1:1.1 to 1:3.3; the reaction time is preferably from 0.5 to 24 hours).
  • the volume-to-mass ratio of the tetrahydrofuran to the quinazoline derivative may be 50 to 100 mL/g.
  • the salt formation temperature may be 10 to 30 °C.
  • the salt formation time may be from 0.5 to 24 hours.
  • the method (28) may include the steps of: mixing and reacting a solution of the quinazoline derivative in tetrahydrofuran and a solution of 1,5-naphthalenedisulfonic acid in tetrahydrofuran to separate and dry the precipitated solid.
  • the molar ratio of the quinazoline derivative to the 1,5-naphthalenedisulfonic acid is 1:1.1-1:1.5 (wherein the method and conditions of the mixing may be conventional methods in the art and
  • the mixing is preferably carried out by adding a solution of 1,5-naphthalenedisulfonic acid in tetrahydrofuran to a solution of the quinazoline derivative in tetrahydrofuran.
  • the quinazoline derivative and the 1, The molar ratio of 5-naphthalenedisulfonic acid is preferably 1:1.4.
  • the concentration of the quinazoline derivative in the tetrahydrofuran solution of the quinazoline derivative is preferably 12.5-25 mg/mL; 1,5 In the tetrahydrofuran solution of naphthalene disulfonic acid, the concentration of the 1,5-naphthalenedisulfonic acid is preferably from 39.3 to 78.6 mg/mL; the reaction time is preferably from 0.5 to 24 hours).
  • the volume-to-mass ratio of the dichloromethane to the quinazoline derivative may be from 150 to 300 mL/g.
  • the salt formation temperature may be 10 to 30 °C.
  • the salt formation time may be from 16 to 24 hours.
  • the method (29) may include the steps of: mixing and reacting a dichloromethane solution of the quinazoline derivative and a methylene chloride suspension of malonic acid, separating and drying the precipitated solid, ie,
  • the molar ratio of the quinazoline derivative to the malonic acid is 1:2.0-1:2.3 (wherein the mixing method and conditions can be conventional methods and conditions in the art.
  • the mixing Preferably, the dichloromethane solution of the quinazoline derivative is added dropwise to a methylene chloride suspension of malonic acid. The molar ratio of the quinazoline derivative and the malonic acid is better.
  • the ground is 1:2.2, wherein the concentration of the quinazoline derivative in the dichloromethane solution of the quinazoline derivative is preferably 5-10 mg/mL; the methylene chloride suspension of malonic acid In the liquid, the content of the malonic acid is preferably 3-5 mg/mL; the reaction time is preferably 16-24 hours).
  • the volume-to-mass ratio of the dichloromethane to the quinazoline derivative may be from 150 to 300 mL/g.
  • the salt formation temperature may be 10 to 30 °C.
  • the salt formation time may be 16 to 24 hours.
  • the method (30) may include the steps of: mixing and reacting a dichloromethane solution of the quinazoline derivative and a methylene chloride suspension of malonic acid, separating and drying the precipitated solid, ie,
  • the molar ratio of the quinazoline derivative to the malonic acid is 1:3.0-1:3.4 (wherein the mixing method and conditions can be conventional methods and conditions in the art.
  • the mixing Preferably, the dichloromethane solution of the quinazoline derivative is added dropwise to a methylene chloride suspension of malonic acid.
  • the molar ratio of the quinazoline derivative and the malonic acid is better.
  • the ground is 1:3.3.
  • the concentration of the quinazoline derivative in the dichloromethane solution of the quinazoline derivative is preferably 5-10 mg/mL; In the methyl chloride suspension, the malonate content is preferably 5-10 mg/mL; the reaction time is preferably 16-24 hours).
  • the volume-to-mass ratio of the tetrahydrofuran to the quinazoline derivative may be 60 to 120 mL/g.
  • the salt formation temperature may be 10 to 30 °C.
  • the salt formation time may be from 0.5 to 24 hours.
  • the method (31) may include the steps of: mixing and reacting a solution of the quinazoline derivative in tetrahydrofuran with a tetrahydrofuran solution of 1,5-naphthalene disulfonic acid, separating and drying the precipitated solid, thereby obtaining Wherein the molar ratio of the quinazoline derivative to the 1,5-naphthalene disulfonic acid is 1:2.2-1:3.3 (wherein the method and conditions of the mixing may be conventional methods in the art and The mixing is preferably carried out by adding a solution of 1,5-naphthalene disulfonic acid in tetrahydrofuran to the tetrahydrofuran solution of the quinazoline derivative.
  • the concentration of the quinazoline derivative is preferably 12.5-25 mg/mL; in the tetrahydrofuran solution of 1,5-naphthalene disulfonic acid, the concentration of the 1,5-naphthalene disulfonic acid is preferably 39.3- 78.6 mg/mL; the reaction time is preferably from 0.5 to 24 hours).
  • the volume-to-mass ratio of the dichloromethane to the quinazoline derivative may be from 150 to 300 mL/g.
  • the salt formation temperature may be 10 to 30 °C.
  • the salt formation time may be 16 to 24 hours.
  • the method (32) may include the steps of: mixing and reacting a dichloromethane solution of the quinazoline derivative and a methylene chloride suspension of succinic acid, separating and drying the precipitated solid, ie,
  • the molar ratio of the quinazoline derivative to the succinic acid is 1:2.2-1:3.3 (wherein the mixing method and conditions can be conventional methods and conditions in the art.
  • the mixing Preferably, the dichloromethane solution of the quinazoline derivative is added dropwise to a suspension of succinic acid in methylene chloride.
  • the quinazoline derivative is in a dichloromethane solution.
  • the concentration of the oxazoline derivative is preferably 5-10 mg/mL; in the dichloromethane suspension of succinic acid, the content of the succinic acid is preferably 5-10 mg/mL; the reaction time It is preferably 16-24 hours).
  • the volume-to-mass ratio of the tetrahydrofuran to the quinazoline derivative may be 60 to 120 mL/g.
  • the salt formation temperature may be 10 to 30 °C.
  • the salt formation time may be from 0.5 to 24 hours.
  • the method (33) may include the steps of: mixing and reacting a solution of the quinazoline derivative in tetrahydrofuran and a solution of ⁇ -ketoglutaric acid in tetrahydrofuran to separate and dry the precipitated solid; a molar ratio of the quinazoline derivative to the ⁇ -ketoglutaric acid of 1:2.2-1:3.3 (wherein the method and conditions of the mixing can be achieved Domain conventional methods and conditions.
  • the mixing is preferably carried out by dropwise adding a solution of ⁇ -ketoglutaric acid in tetrahydrofuran to the tetrahydrofuran solution of the quinazoline derivative.
  • the concentration of the quinazoline derivative is preferably 12.5-25 mg/mL; in the tetrahydrofuran solution of ⁇ -ketoglutaric acid, the ⁇ -ketoglutaric acid The concentration is preferably from 15.95 to 31.9 mg/mL; the reaction time is preferably from 0.5 to 24 hours).
  • the volume-to-mass ratio of the tetrahydrofuran to the quinazoline derivative may be 50 to 100 mL/g.
  • the molar ratio of the p-chlorobenzenesulfonate to the quinazoline derivative may be from 1 to 1.2.
  • the salt formation temperature may be 10 to 30 °C.
  • the salt formation time may be from 0.5 to 24 hours.
  • the method (34) may include the steps of: mixing and reacting a solution of the quinazoline derivative in tetrahydrofuran and a solution of p-chlorobenzenesulfonic acid in tetrahydrofuran, separating the precipitated solid, and drying, thereby obtaining (where
  • the method and conditions of the mixing may be conventional methods and conditions in the art.
  • the mixing is preferably carried out by dropwise adding a solution of p-chlorobenzenesulfonic acid in tetrahydrofuran to the tetrahydrofuran solution of the quinazoline derivative.
  • the concentration of the quinazoline derivative is preferably 12.5-25 mg/mL in the tetrahydrofuran solution of the quinazoline derivative; the concentration of the p-chlorobenzenesulfonic acid in the tetrahydrofuran solution of p-chlorobenzenesulfonic acid It is preferably 21-42 mg/mL; the reaction time is preferably 0.5 to 24 hours.
  • the molar ratio of the quinazoline derivative and the 1,5-naphthalenedisulfonic acid is preferably 1: 1-1: 1.2).
  • the present invention also provides a salt of the above quinazoline derivative for preparing an EGFR tyrosine kinase inhibitor, a HER2 tyrosine kinase inhibitor, a HER4 tyrosine kinase inhibitor, or a medicament for preventing or treating a tumor disease.
  • a salt of the above quinazoline derivative for preparing an EGFR tyrosine kinase inhibitor, a HER2 tyrosine kinase inhibitor, a HER4 tyrosine kinase inhibitor, or a medicament for preventing or treating a tumor disease.
  • the invention also provides a pharmaceutical composition
  • a pharmaceutical composition comprising a therapeutically and/or prophylactically effective amount of a salt of the above quinazoline derivative, and at least one pharmaceutically acceptable excipient.
  • the pharmaceutical composition may further comprise the quinazoline derivative, a solvate of the quinazoline derivative (including a hydrated organic solvate), and other quinazoline derivatives.
  • a pharmaceutically acceptable salt form and a solvate (including a hydrated organic solvate) of a pharmaceutically acceptable salt of the other quinazoline derivative.
  • the quinazoline derivative may be in any crystal form.
  • the solvate of the quinazoline derivative may be in any crystal form.
  • the pharmaceutically acceptable salt form of the other of the quinazoline derivatives may be in any crystal form.
  • the solvate of the other pharmaceutically acceptable salt of the quinazoline derivative may be in any crystal form.
  • the excipient can be an excipient which is conventionally used in the art.
  • the excipients can generally be selected from the group consisting of sugars, cellulose and its derivatives, starch or modified starch, solid inorganic materials such as calcium phosphate, dicalcium phosphate, hydroxyapatite, calcium sulfate, carbonic acid.
  • binders such as microcrystalline cellulose, ethyl cellulose, Hydroxymethylcellulose, hydroxypropylmethylcellulose, hydroxyethylcellulose, glidants such as colloidal silica, light anhydrous silicic acid, crystalline cellulose, talc or magnesium stearate, collapse Decomposing agents such as sodium starch glycolate, crospovidone, croscarmellose, sodium carboxymethylcellulose, dry cornstarch, lubricants such as stearic acid, magnesium stearate, stearyl fumarate Sodium, polyethylene glycol.
  • binders such as microcrystalline cellulose, ethyl cellulose, Hydroxymethylcellulose, hydroxypropylmethylcellulose, hydroxyethylcellulose, glidants such as colloidal silica, light anhydrous silicic acid, crystalline cellulose, talc or magnesium stearate
  • collapse Decomposing agents such as sodium starch glycolate, crospovidone, croscarmellose, sodium carboxymethylcellulose, dry
  • the pharmaceutical composition may be in a solid or liquid form, such as a solid oral dosage form, including tablets, granules, powders, pills, and capsules; liquid oral dosage forms including solutions, syrups, suspensions, dispersions, and emulsions; Injectable preparations, including solutions, dispersions, and lyophilizates.
  • the formulation may be adapted for rapid release, delayed release or modified release of the active ingredient. It may be a conventional, dispersible, chewable, orally dissolved or rapidly melted formulation. Routes of administration include oral, intravenous subcutaneous injection, injection into tissue, transdermal administration, rectal administration, intranasal administration, and the like.
  • the pharmaceutical composition can be prepared using methods well known to those skilled in the art.
  • the salt of the quinazoline derivative of the present invention or a crystalline form thereof is mixed with one or more pharmaceutically acceptable excipients, optionally with a pharmaceutically acceptable quinazoline
  • Other crystalline forms of the derivative, other amorphous or salt forms are mixed, optionally in admixture with one or more other active ingredients.
  • the solid preparation can be prepared by a process such as direct mixing, granulation, or the like.
  • the term “crystal form” is understood not only to mean “crystal type” or “crystal structure”; in the technical solution, “crystal form” is more understood as “substance having a specific crystal structure” or “crystal of a specific crystal type” ".
  • the crystalline form of the monobenzenesulfonate of the quinazoline derivative can be understood as “the monobenzenesulfonate of the quinazoline derivative having a specific crystal structure” or “the specific crystal type Crystals of monophenylsulfonate of quinazoline derivatives”.
  • the "crystalline form" is confirmed by the X-ray diffraction pattern characterization shown.
  • the experimental error therein depends on the conditions of the instrument, the preparation of the sample, and the purity of the sample.
  • the X-ray diffraction pattern will generally vary with the conditions of the instrument.
  • the experimental error of the peak angle is usually 5% or less, and the error of these angles should also be taken into account, and an error of ⁇ 0.2° is usually allowed.
  • the overall offset of the peak angle is caused, and a certain offset is usually allowed.
  • any crystal form having the same or similar features as the characteristic peaks in the map of the present invention is within the scope of the present invention.
  • the room temperature is room temperature in the conventional sense of the art, and is generally 10-30 °C.
  • the saturation concentration can be measured by the test at the operating temperature of the preparation method as commonly known in the art.
  • agitation may be carried out by a conventional method in the art, for example, agitation means including magnetic stirring, mechanical agitation, and the stirring speed is generally from 50 to 1800 rpm, preferably from 300 to 900 rpm.
  • the drying method and conditions can be conventional methods and conditions in the art. Such as blast drying, drying under reduced pressure, and the like.
  • the drying temperature is preferably from 20 to 60 ° C, more preferably from 30 to 50 ° C;
  • the drying time is preferably from 1 to 24 hours, more preferably from 5 to 18 hours, most preferably 5-10 hours.
  • the pressure is preferably less than 0.09 MPa.
  • the drying can be carried out in a fume hood, a forced air oven or a vacuum oven.
  • the methods and conditions for the separation can be conventional methods and conditions in the art.
  • the method of separation may be by filtration or centrifugation or the like.
  • the filtering operation is generally: vacuum filtration using a filter paper.
  • the centrifugation is generally carried out at a high rotational speed, and the centrifugation rate may be 6000 rpm.
  • the amount of water absorption obtained from the dynamic moisture adsorption map is a percentage by weight based on common knowledge in the art.
  • the reagents and starting materials used in the present invention are commercially available.
  • the positive progress of the present invention is that the salt of the quinazoline derivative of the present invention has a certain improvement in water solubility as compared with the known quinazoline derivative, wherein one citrate, monobenzenesulfonate and The ethanedisulfonate also has the advantages of good crystallinity and low moisture absorption.
  • Figure 1 is an XRPD pattern of the quinazoline derivative-citrate salt form 1 of the present invention.
  • Figure 3 is a DSC chart of the quinazoline derivative-citrate salt form 1 of the present invention.
  • Figure 4 is a DVS spectrum of the quinazoline derivative-citrate salt form 1 of the present invention.
  • Figure 5 is an XRPD pattern of the quinazoline derivative-citrate dihydrate form 5 of the present invention.
  • Figure 6 is a TGA pattern of the quinazoline derivative-citrate dihydrate form 5 of the present invention.
  • Figure 7 is a DSC chart of the quinazoline derivative-citrate dihydrate form 5 of the present invention.
  • Figure 8 is a DVS spectrum of the quinazoline derivative-citrate dihydrate form 5 of the present invention.
  • Figure 9 is an XRPD pattern of the quinazoline derivative-citrate salt form 13 of the present invention.
  • Figure 10 is a TGA pattern of the quinazoline derivative-citrate salt form 13 of the present invention.
  • Figure 11 is a DSC chart of the quinazoline derivative-citrate salt form 13 of the present invention.
  • Figure 12 is a DVS spectrum of the quinazoline derivative-citrate salt form 13 of the present invention.
  • Figure 13 is an XRPD pattern of the quinazoline derivative-citrate 2.5 hydrate form 14 of the present invention.
  • Figure 14 is a TGA pattern of the quinazoline derivative-citrate 2.5 hydrate form 14 of the present invention.
  • Figure 15 is a DCS spectrum of the quinazoline derivative-citrate 2.5 hydrate form 14 of the present invention.
  • Figure 16 is a DVS spectrum of the quinazoline derivative-citrate 2.5 hydrate form 14 of the present invention.
  • Figure 17 is an XRPD pattern of the quinazoline derivative-citrate dihydrate form 7 of the present invention.
  • Figure 18 is a TGA pattern of the quinazoline derivative-citrate dihydrate form 7 of the present invention.
  • Figure 19 is a DSC chart of the quinazoline derivative-citrate dihydrate form 7 of the present invention.
  • Figure 20 is a DVS spectrum of the quinazoline derivative-citrate dihydrate form 7 of the present invention.
  • Figure 21 is an XRPD pattern of the quinazoline derivative monocitrate trihydrate form 10 of the present invention.
  • Figure 22 is a TGA pattern of the quinazoline derivative-citrate trihydrate form 10 of the present invention.
  • Figure 23 is a DSC chart of the quinazoline derivative monocitrate trihydrate form 10 of the present invention.
  • Figure 24 is a DVS spectrum of the quinazoline derivative-citrate trihydrate form 10 of the present invention.
  • Figure 25 is an XRPD pattern of the quinazoline derivative-citrate dihydrate form 11 of the present invention.
  • Figure 26 is a TGA pattern of the quinazoline derivative-citrate dihydrate form 11 of the present invention.
  • Figure 27 is a DSC chart of the quinazoline derivative-citrate dihydrate form 11 of the present invention.
  • Figure 28 is a DVS spectrum of the quinazoline derivative-citrate dihydrate form 11 of the present invention.
  • Figure 29 is an XRPD pattern of the quinazoline derivative-citrate salt hemiethanolate form 2 of the present invention.
  • Figure 30 is a TGA pattern of the quinazoline derivative-citrate salt hemiethanolate form 2 of the present invention.
  • Figure 31 is a DCS spectrum of the quinazoline derivative-citrate salt hemiethanolate form 2 of the present invention.
  • Figure 32 is an XRPD pattern of the quinazoline derivative-citrate ditetrahydrofuran crystal form 3 of the present invention.
  • Figure 33 is a TGA pattern of the quinazoline derivative-citrate ditetrahydrofuran crystal form 3 of the present invention.
  • Figure 34 is an XRPD pattern of the quinazoline derivative- citrate half 1,4-dioxane crystal form 4 of the present invention.
  • Figure 35 is a TGA pattern of the quinazoline derivative-citrate salt half 1,4-dioxane form 4 of the present invention.
  • Figure 36 is an XRPD pattern of the quinazoline derivative-citrate semi-chloroform crystal form 6 of the present invention.
  • Figure 37 is a TGA pattern of the quinazoline derivative-citrate semi-chloroform crystal form 6 of the present invention.
  • Figure 38 is an XRPD pattern of the quinazoline derivative monoethanedisulfonate of the present invention.
  • Figure 39 is a TGA spectrum of the quinazoline derivative monoethanedisulfonate of the present invention.
  • Figure 40 is a DSC chart of the quinazoline derivative monoethanedisulfonate of the present invention.
  • Figure 41 is a DVS spectrum of the quinazoline derivative monoethanedisulfonate of the present invention.
  • Figure 42 is an XRPD pattern of the quinazoline derivative monosulfate of the present invention.
  • Figure 43 is a TGA chart of the quinazoline derivative monosulfate of the present invention.
  • Figure 44 is a DSC chart of the quinazoline derivative monosulfate of the present invention.
  • Figure 45 is a DVS spectrum of the quinazoline derivative monosulfate of the present invention.
  • Figure 46 is an XRPD pattern of the quinazoline derivative disulfate of the present invention.
  • Figure 47 is a TGA spectrum of the quinazoline derivative disulfate of the present invention.
  • Figure 48 is a DSC chart of the quinazoline derivative disulfate of the present invention.
  • Figure 49 is a DVS spectrum of the quinazoline derivative disulfate of the present invention.
  • Figure 50 is an XRPD pattern of the quinazoline derivative monobenzenesulfonate of the present invention.
  • Figure 51 is a TGA spectrum of the quinazoline derivative monobenzenesulfonate of the present invention.
  • Figure 52 is a DSC chart of the quinazoline derivative monobenzenesulfonate of the present invention.
  • Figure 53 is a DVS spectrum of the quinazoline derivative monobenzenesulfonate of the present invention.
  • Figure 54 is an XRPD pattern of the quinazoline derivative monohydrochloride monohydrate of the present invention.
  • Figure 55 is a TGA spectrum of the quinazoline derivative monohydrochloride monohydrate of the present invention.
  • Figure 56 is a DSC chart of the quinazoline derivative monohydrochloride monohydrate of the present invention.
  • Figure 57 is a DVS spectrum of the quinazoline derivative monohydrochloride monohydrate of the present invention.
  • Figure 58 is an XRPD pattern of the quinazoline derivative-D-gluconate of the present invention.
  • Figure 59 is a TGA spectrum of the quinazoline derivative-D-gluconate of the present invention.
  • Figure 60 is a DSC chart of the quinazoline derivative-D-gluconate of the present invention.
  • Figure 61 is a DVS spectrum of the quinazoline derivative-D-gluconate of the present invention.
  • Figure 62 is an XRPD pattern of the quinazoline derivative-L-tartrate salt of the present invention.
  • Figure 63 is a TGA spectrum of the quinazoline derivative-L-tartrate salt of the present invention.
  • Figure 64 is an XRPD pattern of the quinazoline derivative-L-tartrate tetrahydrate of the present invention.
  • Figure 65 is a TGA spectrum of the quinazoline derivative-L-tartrate tetrahydrate of the present invention.
  • Figure 66 is a DSC chart of the quinazoline derivative-L-tartrate tetrahydrate of the present invention.
  • Figure 67 is a DVS spectrum of the quinazoline derivative-L-tartrate tetrahydrate of the present invention.
  • Figure 68 is an XRPD pattern of the quinazoline derivative diphosphate of the present invention.
  • Figure 69 is a TGA spectrum of the quinazoline derivative diphosphate of the present invention.
  • Figure 70 is an XRPD pattern of the quinazoline derivative mono-pamoate of the present invention.
  • Figure 71 is an XRPD pattern of a pair of tosylate salts of the quinazoline derivative of the present invention.
  • Figure 72 is a TGA spectrum of a pair of tosylate salts of the quinazoline derivative of the present invention.
  • Figure 73 is an XRPD pattern of the quinazoline derivative diglycolate of the present invention.
  • Figure 74 is an XRPD pattern of the quinazoline derivative monomalonate of the present invention.
  • Figure 75 is a TGA spectrum of the quinazoline derivative monomalonate of the present invention.
  • Figure 76 is an XRPD pattern of the quinazoline derivative monosuccinate of the present invention.
  • Figure 77 is an XRPD pattern of the quinazoline derivative- ⁇ -ketoglutarate of the present invention.
  • Figure 78 is a TGA spectrum of the quinazoline derivative- ⁇ -ketoglutarate of the present invention.
  • Figure 79 is an XRPD pattern of the quinazoline derivative dimaleate salt of the present invention.
  • Figure 80 is a TGA spectrum of the quinazoline derivative dimaleate salt of the present invention.
  • Figure 81 is an XRPD pattern of the quinazoline derivative-1,5-naphthalene disulfonate of the present invention.
  • Figure 82 is an XRPD pattern of the quinazoline derivative dimalonate of the present invention.
  • Figure 83 is a TGA spectrum of the quinazoline derivative dipropionate of the present invention.
  • Figure 84 is an XRPD pattern of the quinazoline derivative tripropionate of the present invention.
  • Figure 85 is a TGA spectrum of the quinazoline derivative tripropionate of the present invention.
  • Figure 86 is an XRPD pattern of the quinazoline derivative di 1,5-naphthalene disulfonate of the present invention.
  • Figure 87 is a TGA chart of the quinazoline derivative di 1,5-naphthalene disulfonate of the present invention.
  • Figure 88 is an XRPD pattern of the quinazoline derivative succinate of the present invention.
  • Figure 89 is a TGA spectrum of the quinazoline derivative succinate of the present invention.
  • Figure 90 is an XRPD pattern of the quinazoline derivative bis-ketoglutarate of the present invention.
  • Figure 91 is a TGA spectrum of the quinazoline derivative di- ⁇ -ketoglutarate of the present invention.
  • Figure 92 is an XRPD pattern of a quinazoline derivative of the present invention, p-chlorobenzenesulfonate.
  • Figure 93 is a 1 H NMR spectrum of the quinazoline derivative monocitrate of the present invention.
  • Figure 94 is a 1 H NMR spectrum of the quinazoline derivative monobenzenesulfonate of the present invention.
  • Figure 95 is a 1 H NMR spectrum of the quinazoline derivative mono-pamoate of the present invention.
  • Figure 96 is a 1 H NMR spectrum of the quinazoline derivative diglycolate of the present invention.
  • Figure 97 is a 1 H NMR spectrum of the quinazoline derivative monomalonate of the present invention.
  • Figure 98 is a 1 H NMR spectrum of the quinazoline derivative monosuccinate of the present invention.
  • Figure 99 is a 1 H NMR spectrum of the quinazoline derivative-1,5-naphthalenedisulfonate of the present invention.
  • Figure 100 is a chart showing the time of the salt of each quinazoline derivative of the present invention.
  • the instrument used for X-ray powder diffraction is the Bruker D8 Advance Diffractometer, configured There are ⁇ -2 ⁇ goniometer, Mo monochromator, Lynxeye detector.
  • the acquisition software is Diffrac Plus XRD Commander and the analysis software is MDI Jade 5.0.
  • the instrument is calibrated with the standard (usually corundum) supplied with the instrument before use.
  • the detection conditions were: 2 ⁇ scanning angle range of 3 to 40°, step size of 0.02°, and speed of 0.2 second/step.
  • Detection process Ka X-rays with a copper target wavelength of 1.54 nm were used. Under the operating conditions of 40 kV and 40 mA, the samples were tested at room temperature, and the samples to be tested were placed on a non-reflecting plate. Samples were not ground prior to testing unless otherwise stated.
  • the differential thermal analysis (DSC) data was taken from the TA Instruments Q200MDSC, the instrument control software was Thermal Advantage, and the analysis software was Universal Analysis. Usually take 1 ⁇ 10 mg of the sample in an uncoated (unspecified) aluminum crucible, at a temperature increase rate of 10 ° C / min under 40 ml / min dry N 2 protection from room temperature to 250 °C, while the TA software records the change in heat during the temperature rise of the sample.
  • Thermogravimetric analysis (TGA) data was taken from the TA Instruments Q500TGA, the instrument control software was Thermal Advantage, and the analysis software was Universal Analysis. Usually 5 to 15 mg of the sample is placed in a platinum crucible, and the sample is raised from room temperature to 300 ° C under the protection of a dry N 2 at 40 ° C/min by a stepwise high-resolution detection at a heating rate of 10 ° C / min. At the same time, the TA software records the weight change of the sample during the heating process.
  • the isothermal adsorption analysis (DVS) data was taken from the TA Instruments Q5000TGA, the instrument control software was Thermal Advantage, and the analysis software was Universal Analysis.
  • a sample of 1-10 mg is usually placed in a platinum crucible, and the TA software records the change in weight of the sample during a change in relative humidity from 20% to 80%. Depending on the specifics of the sample, different adsorption and desorption steps are also applied to the sample.
  • HPLC detection conditions are as follows:
  • the flow rate was 0.3 mL/min; the column Eclipse Plus-C18 2.1 mm*50.0 mm*1.8 ⁇ m; the column temperature was 40 ° C; the wavelength was 254 nm.
  • the quinazoline derivative i.e., the compound of formula 1 used was obtained according to the method described in CN102898386.
  • the mixing and the reaction are accompanied by agitation, and the stirring speed is generally from 50 to 1800 rpm.
  • the "overnight" time is generally 12-24 hours.
  • the TGA spectrum is shown in Figure 2 and shows a decomposition temperature of 175 °C.
  • the DSC spectrum is shown in Figure 3 and shows a melting point of 165-169 °C.
  • the DVS spectrum is shown in Figure 4, which shows a 0.21% change in weight in the range of 20-80% RH.
  • the TGA spectrum is shown in Figure 6. It shows a decomposition temperature of 145 ° C and a weight loss of 5.3% before decomposition, containing two moles of water.
  • the DSC spectrum is shown in Figure 7, which shows an endothermic peak with dehydration before 123 °C.
  • the DVS spectrum is shown in Figure 8, with a weight change of 0.4% in the range of 0-80% RH.
  • Form 1 prepared in Example 1 30 mg was added, 3 mL of n-butanol was added, and the slurry was slurried at room temperature for 16 hours, centrifuged, and dried under vacuum at room temperature to obtain 24 mg of the dihydrate crystal form 5 in a molar yield of 76.1%.
  • Example 4 The "methanol” in Example 4 was replaced with “ethanol”, and the other operation was the same as in Example 4 to obtain the dihydrate crystal form 5.
  • Example 4 The "methanol” in Example 4 was replaced with “isopropyl alcohol", and the other operation was the same as in Example 4 to obtain the dihydrate crystal form 5.
  • Example 7 The "methanol” in Example 7 was replaced with “ethanol”, and the other operation was the same as in Example 7, to obtain the dihydrate crystal form 5.
  • Example 7 The "methanol” in Example 7 was replaced with “isopropyl alcohol", and the other operation was the same as in Example 7, to obtain the dihydrate crystal form 5.
  • Example 10 The "methanol” in Example 10 was replaced with “dioxane", and the other operation was the same as in Example 10 to obtain the dihydrate crystal form 5.
  • Example 3-11 had XRPD spectra and DSC spectra (not shown) similar to those of Example 2, indicating that the samples prepared in these examples were the same as in Example 2.
  • the TGA spectrum is shown in Figure 10 and shows a decomposition temperature of 144 °C.
  • the DSC spectrum is shown in Figure 11 and shows a melting point of 127-138 °C.
  • the DVS spectrum is shown in Figure 12 and shows a 0.2% change in weight over the 20-80% RH range.
  • Example 13 had an XRPD spectrum and a DSC spectrum (not shown) similar to those of Example 12, indicating that the samples prepared in these examples were the same as in Example 12.
  • the TGA spectrum is shown in Figure 14, which shows a decomposition temperature of 144 ° C, a loss of 6.3% before decomposition, and 2.5 moles of water.
  • the DSC spectrum is shown in Figure 15, which shows an endothermic peak with dehydration before 130 °C.
  • the DVS spectrum is shown in Fig. 16. It shows that the weight change is 0.7% in the range of 10-80% RH, and part of the crystal water is removed below 10%.
  • Example 15 had an XRPD spectrum and a DSC spectrum (not shown) similar to those of Example 14, indicating that the samples prepared in these examples were the same as in Example 14.
  • the TGA spectrum is shown in Figure 18. It shows a decomposition temperature of 145 ° C and a 4.7% weight loss before decomposition, including 2 moles. water.
  • the DSC spectrum is shown in Figure 19, showing two desorption endotherms between 79 °C and 115-117 °C.
  • the DVS spectrum is shown in Figure 20. It shows a weight change of 0.38% in the range of 10-80% RH. A relative humidity of 10% or less will remove a water molecule, and the removed water molecules will recombine at a relative humidity of 30%.
  • the XRPD pattern is shown in Figure 21.
  • the TGA spectrum is shown in Figure 22, which shows a decomposition temperature of 159 ° C and a 7.7% weight loss before decomposition, containing 3 moles of water.
  • the DSC spectrum is shown in Figure 23, showing an endothermic peak with dehydration before 117 °C.
  • the DVS spectrum is shown in Fig. 24. It shows that the relative humidity below 50% will remove 3.5% of the crystal water, but the hydrate is stable in the range of 50-80% relative humidity, and the weight changes by 1.1%.
  • Example 18 The "n-propanol” in Example 18 was replaced with "tetrahydrofuran", and the other operation was the same as in Example 18 to give the trihydrate crystal form 10.
  • Example 18 The "n-propanol” in Example 18 was replaced with "acetonitrile", and the other operation was the same as in Example 18 to obtain the trihydrate crystal form 10.
  • Example 18-20 had an XRPD spectrum and a DSC spectrum (not shown) similar to those of Example 17, indicating that the samples prepared in these examples were the same as in Example 17.
  • Form 1 prepared in Example 1, add 5 mL of isopropanol, stir in a water bath at 60 ° C for 5 minutes to ensure its dissolution, and naturally cool to room temperature in a water bath, precipitate the solid by centrifugation, and dry at room temperature under vacuum to obtain 7.5 mg.
  • the dihydrate crystal form 11 had a yield of 71.3%.
  • the XRPD pattern is shown in Figure 25.
  • the TGA spectrum is shown in Figure 26. It shows a decomposition temperature of 142 ° C and a weight loss of 4.8% before decomposition, containing 2 moles of water.
  • the DSC spectrum is shown in Figure 27, showing an endothermic peak with dehydration before 71 °C.
  • the DVS spectrum is shown in Figure 28. It shows that the hydrate is stable in the range of 50-80% relative humidity, the weight change is 5.3%, and the relative humidity below 50% will remove the crystal water.
  • Example 21 The "isopropanol” in Example 21 was replaced with "n-propanol", and the other operation was the same as in Example 21 to obtain the dihydrate crystal form 11.
  • Example 23 The "methanol” in Example 23 was replaced with "nitromethane", and the other operation was the same as in Example 23 to obtain the dihydrate crystal form 11.
  • Example 23 The "methanol” in Example 23 was replaced with "acetonitrile", and the other operation was the same as in Example 23 to obtain the dihydrate crystal form 11.
  • Form 1 prepared in Example 1, add 1 mL of methanol and 1 mL of ethanol, stir in a water bath at 60 ° C for 5 minutes to ensure that it is dissolved, and naturally cool to room temperature in a water bath, precipitate the solid by centrifugation, and dry at room temperature under vacuum to obtain 7 mg.
  • the dihydrate crystal form 11 had a yield of 66.6%.
  • Example 26 The "methanol” in Example 26 was replaced with "nitromethane", and the other operation was the same as in Example 26 to give the dihydrate crystal form 11.
  • Example 26 The "methanol” in Example 26 was replaced with "acetonitrile", and the other operation was the same as in Example 26 to give the dihydrate crystal form 11.
  • Example 22-28 had XRPD spectra and DSC spectra (not shown) similar to those of Example 21, indicating that the samples prepared in these examples were identical to Example 21.
  • the XRPD pattern is shown in Figure 29.
  • the TGA spectrum is shown in Figure 30, which shows a decomposition temperature of 142 ° C, a weight loss of 3.2% before decomposition, and 0.5 mole of ethanol.
  • the DSC spectrum is shown in Figure 31 and shows an endothermic peak with ethanol removed between 89 and 120 °C.
  • the XRPD pattern is shown in Figure 32.
  • the TGA spectrum is shown in Figure 33, which shows a decomposition temperature of 169 ° C and a weight loss of 17.3% before decomposition, containing 2 moles of tetrahydrofuran.
  • Example 31 had an XRPD spectrum similar to that of Example 30, indicating that the samples prepared in these examples were the same as in Example 30.
  • the XRPD pattern is shown in Figure 34.
  • the TGA spectrum is shown in Figure 35, which shows a decomposition temperature of 173 ° C, a 6.6% weight loss before decomposition, and 0.5 mole of dioxane.
  • the XRPD pattern is shown in Figure 36.
  • the TGA spectrum is shown in Figure 37, which shows a decomposition temperature of 173 ° C, a 7.3% weight loss before decomposition, and 0.5 moles of chloroform.
  • the XRPD pattern is shown in Figure 38.
  • the TGA spectrum is shown in Figure 39, which shows a decomposition temperature of 250 ° C and a weight loss of 1.2% before decomposition.
  • the actual content of the free base was determined by HPLC to be 74.2%, which is close to the theoretical value of 72.6%, so the acid-base molar ratio of the salt was 1:1.
  • the DSC spectrum is shown in Figure 40, which shows that the sample has no melting point.
  • the DVS spectrum is shown in Figure 41 and shows a weight change of 1.46% over a range of 20-80% relative humidity.
  • the XRPD pattern is shown in Figure 42.
  • the TGA spectrum is shown in Figure 43 and shows a decomposition temperature of 230 ° C and a 7.5% weight loss before decomposition.
  • the actual content of the free base was determined by HPLC to be 87.2%, which is close to the theoretical value of 83.6%, so the acid-base molar ratio of the salt was 1:1.
  • the DSC spectrum is shown in Figure 44, which shows that the sample has an endothermic peak before 124 ° C and the sample has a melting point of 165 ° C.
  • the DVS spectrum is shown in Figure 45 and shows a weight change of 11.68% over a range of 20-80% relative humidity.
  • a quinazoline derivative monosulfate having the same XRPD was still obtained by using 20 mg of the compound of the formula 1, containing H 2 SO 4 of 3.9 mg of concentrated sulfuric acid, and the other conditions were not changed.
  • the XRPD pattern is shown in Figure 46.
  • the TGA spectrum is shown in Figure 47, which shows a decomposition temperature of 250 ° C and a loss of weight of 3.0% before 130 ° C.
  • the actual content of the free base was determined by HPLC to be 76.7%, which is close to the theoretical value of 72.0%, so the acid-base molar ratio of the salt was 2:1.
  • the DSC spectrum is shown in Figure 48, which shows that the sample has an endothermic peak between 74 °C and 114-160 °C, and the sample has no melting peak within 200 °C.
  • the DVS spectrum is shown in Figure 49 and shows a weight change of 2.0% over a range of 20-80% relative humidity.
  • the XRPD pattern is shown in Figure 50.
  • the TGA spectrum is shown in Figure 51, which shows a decomposition temperature of 199 ° C and no significant weight loss before decomposition.
  • the DSC spectrum is shown in Figure 52, which shows that the sample has a melting point of 199 ° C and decomposes immediately after melting.
  • the DVS spectrum is shown in Figure 53 and shows a weight change of 0.3% over a range of 20-80% relative humidity.
  • the preparation was carried out by using 20 mg of the compound of the formula 1 and 6.28 mg of benzenesulfonic acid under the same conditions, and the obtained product was still a quinazoline derivative monobenzenesulfonate having the same XRPD.
  • the XRPD map is shown in Figure 54.
  • the TGA spectrum is shown in Fig. 55, which shows that the sample has a small amount of decomposition at 156 ° C, and a large amount of decomposition starts at 228 ° C, and there is a 3.3% weight loss before decomposition, containing 1 mole of water.
  • the actual content of the free base was determined by HPLC to be 93.4%, which is close to the theoretical value of 93.2%, so the acid-base molar ratio of the salt was 1:1.
  • the DSC spectrum is shown in Figure 56, which shows that the sample has no melting point.
  • the DVS spectrum is shown in Figure 57 and shows a weight change of 0.17% over a range of 20-80% relative humidity.
  • the XRPD pattern is shown in Figure 58.
  • the TGA spectrum is shown in Figure 59, which shows that the decomposition temperature is 180 ° C, and there is no significant weight loss before decomposition.
  • the actual content of the free base was determined by HPLC to be 64.5%, which is close to the theoretical value of 72.0%.
  • the DSC chart 60 indicates that the product contains a part of free D-gluconic acid (sucking at a melting point of 131 ° C of D-gluconic acid). The heat peak), so the acid-base molar ratio of the salt is 1:1.
  • the DSC spectrum is shown in Figure 60, which shows that the sample has a melting point of 193 ° C and the sample decomposes after melting.
  • the DVS spectrum is shown in Figure 61 and shows a weight change of 0.12% over a range of 20-80% relative humidity.
  • the XRPD pattern is shown in Figure 62.
  • the TGA spectrum is shown in Figure 63, which shows that the sample begins to decompose at 198 °C, with 8.1% weight loss before decomposition.
  • the actual content of the free base was determined by HPLC to be 72.0%, which is close to the theoretical value of 77.0%, so the acid-base molar ratio of the salt was 1:1.
  • the preparation was carried out using 20 mg of the compound of the formula 1, 5.96 mg of L-tartaric acid under the same conditions, and the obtained product was still a quinazoline derivative-L-tartrate (crystal form 15) having the same XRPD.
  • the XRPD pattern is shown in Figure 64.
  • the TGA spectrum is shown in Figure 65, which shows that the sample begins to decompose at 194 ° C and has a weight loss of 9.5% before decomposition.
  • the DSC spectrum is shown in Figure 66, which shows that the sample has an endothermic peak before 106 °C and the sample has no melting point.
  • the DVS spectrum is shown in Figure 67, showing a 0.8% change in weight over the 20-80% relative humidity range and rapid removal of large amounts of water at 10% relative humidity.
  • the XRPD pattern is shown in Figure 68.
  • the TGA spectrum is shown in Figure 69, which shows that the sample begins to decompose at 234 °C, with 7.1% weight loss before decomposition.
  • the actual content of the free base was determined by HPLC to be 73.3%, which is close to the theoretical value of 72.0%, so the acid-base molar ratio of the salt was 2:1.
  • the phosphoric acid containing 4.28 mg of 85% phosphoric acid was dissolved in 0.28 mL of tetrahydrofuran, and the other conditions were not changed.
  • the obtained product was still the quinazoline derivative diphosphate having the same XRPD.
  • the phosphoric acid containing 6.42 mg of 85% phosphoric acid was dissolved in 0.5 mL of tetrahydrofuran, and the other conditions were not changed.
  • the obtained product was still the quinazoline derivative diphosphate having the same XRPD.
  • the XRPD pattern is shown in Figure 70.
  • the preparation was carried out using 20 mg of the compound of the formula 1, 5 mg or 10 mg of palmitic acid, and the other conditions were the same, and the obtained product was still a quinazoline derivative-pamoate having the same XRPD.
  • the XRPD pattern is shown in Figure 71.
  • the TGA spectrum is shown in Figure 72, which shows that the sample begins to decompose at 245 °C and there is no weight loss before decomposition.
  • the actual content of the free base was determined by HPLC to be 77.4%, which is close to the theoretical value of 74.6%, so the acid-base molar ratio of the salt was 1:1.
  • the XRPD pattern is shown in Figure 73.
  • the preparation was carried out using 20 mg of the compound of the formula 1, 2.5 mg or 5 mg of glycolic acid under the same conditions, and the obtained product was still a quinazoline derivative diglycolate having the same XRPD.
  • the XRPD pattern is shown in Figure 74.
  • the TGA map is shown in Figure 75, which shows that the sample begins to decompose at 88 °C.
  • the preparation was carried out using 20 mg of the compound of the formula 1, 1.5 mg or 2.5 mg of malonic acid, and the other conditions were unchanged.
  • the obtained product was still a quinazoline derivative monomalonate having the same XRPD.
  • the XRPD pattern is shown in Figure 76.
  • the preparation was carried out using 20 mg of the compound of the formula 1, 1.5 mg or 2.5 mg of succinic acid under the same conditions, and the obtained product was still a quinazoline derivative monosuccinate having the same XRPD.
  • the XRPD pattern is shown in Figure 77.
  • the TGA spectrum is shown in Figure 78, which shows that the sample begins to decompose at 193 °C, with 9.8% weight loss before decomposition.
  • the actual content of the free base obtained by combining with HPLC was 82.1%, which was close to the theoretical value of 77.5%, so the acid-base molar ratio in the salt was 1:1.
  • the preparation was carried out by using 20 mg of the compound of the formula 1, 6.38 mg of ⁇ -ketoglutaric acid under the same conditions, and the obtained product was still a quinazoline derivative- ⁇ -ketoglutarate having the same XRPD.
  • the XRPD pattern is shown in Figure 79.
  • the TGA spectrum is shown in Figure 80, which shows that the sample has stage weight loss at 75 ° C and 136 ° C and decomposes at 167 ° C in large quantities.
  • the actual content of the free base was determined by HPLC to be 71.3%, which is close to the theoretical value of 68.5%, so the acid-base molar ratio of the salt was 2:1.
  • the preparation was carried out using 20 mg of the compound of the formula 1 under the same conditions, and the obtained product was still a quinazoline derivative maleate having the same XRPD.
  • the XRPD pattern is shown in Figure 81.
  • the preparation was carried out by using 20 mg of the compound of the formula 1 and 15.72 mg of 1,5-naphthalenedisulfonic acid under the same conditions, and the obtained product was still a quinazoline derivative-1,5-naphthalenedisulfonate having the same XRPD.
  • the XRPD pattern is shown in Figure 82.
  • the TGA spectrum is shown in Figure 83, which shows that the sample begins to decompose at 135 °C. It is combined with HPLC to obtain the free base. The actual content is 74.9%, which is close to the theoretical value of 70.8%, so the acid-base molar ratio of the salt is 2:1.
  • the XRPD pattern is shown in Figure 84.
  • the TGA spectrum is shown in Figure 85, which shows that the sample begins to decompose at 140 °C.
  • the actual content of the free base was determined by HPLC to be 61.8%, which is close to the theoretical value of 65.6%, so the acid-base molar ratio of the salt was 3:1.
  • the XRPD pattern is shown in Figure 86.
  • the TGA spectrum is shown in Figure 87, which shows that the sample begins to decompose at 223 °C, with a 3.4% slow weight loss before 150 °C.
  • the actual content of the free base was determined by HPLC to be 54.8%, which is close to the theoretical value of 59.3%, so the acid-base molar ratio of the salt was 1:1.
  • the TGA spectrum is shown in Figure 89, which shows that the sample begins to decompose at 173 °C. It is combined with HPLC to obtain the free base. The actual content is 58.7%, which is close to the theoretical value of 57.2%, so the acid-base molar ratio of the salt is 3:1.
  • the XRPD pattern is shown in Figure 90.
  • the TGA spectrum is shown in Figure 91, which shows that the sample begins to decompose at 140 °C, with 4.7% weight loss before decomposition.
  • the actual content of the free base was determined by HPLC to be 64.3%, which is close to the theoretical value of 63.3%, so the acid-base molar ratio of the salt was 1:1.
  • the XRPD pattern is shown in Figure 92.
  • High temperature and high humidity (40 ° C, 75% RH constant temperature and humidity chamber);
  • Illumination 25 ° C, 4500 ⁇ 500 lx light incubator
  • Oxidation (25 ° C, a closed container containing urea hydrogen peroxide).
  • test solvent 10% aqueous acetone solution, pH-4.0 B-R buffer, SGF, SIF
  • the sample was divided into four portions, placed in a clear glass vial, and sealed.
  • the samples were placed in different environments and sampled on day 0 and day 5.
  • the purity of each sample was determined by HPLC, and the number of impurities greater than 0.05% was calculated and compared with the day 0 sample.
  • the placement environment is:
  • the salt of the partial quinazoline derivative was subjected to 1 H NMR measurement and solubility determination by HPLC.
  • the solubility is determined by weighing a known amount of the sample, adding the solvent to the sample in portions, accelerating the dissolution by stirring or ultrasonication, visually checking until the sample is dissolved, and recording the amount of solvent consumed. If the sample is still not dissolved at a specific concentration, its solubility is expressed as a specific concentration of " ⁇ "; when the solubility of the sample is low, amplifying the solvent multiple, adding an excess sample and stirring overnight, taking a certain volume of the solution and filtering and concentrating, adding A certain volume of other good solvents is dissolved and subjected to HPLC detection to obtain accurate solubility data.
  • the solubility of the quinazoline derivative monohydrochloride monohydrate in water at 20 ° C was measured by HPLC method and found to be 51.5 ⁇ g / mL.
  • the solubility of the quinazoline derivative diphosphate in water at 20 ° C was measured by HPLC method and found to be 25.0 ⁇ g / mL.
  • Figure 95 is a 1 H NMR spectrum of the quinazoline derivative mono-pamoate of the present invention, and the result shows that the molar ratio of the palmitic acid to the compound of the formula 1 in the quinazoline derivative mono-pamoate is 1:1. .
  • the solubility of the quinazoline derivative mono-pamoate in water at 20 ° C was measured by HPLC, and the absorption peak was hardly detected on the HPLC spectrum, and as a result, it was almost insoluble.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Medicinal Chemistry (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Epidemiology (AREA)
  • Biochemistry (AREA)
  • Molecular Biology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

一种喹唑啉衍生物 (N-[4-(3-氯-4-氟苯胺基)]-7-(3-吗啉丙醇基)-6-(2-氟丙烯酰胺基)-喹唑啉,其结构如式1所示的盐,与已知的喹唑啉衍生物相比,该喹唑啉衍生物的盐具有一种或多种的改进性能,至少具有更好的水溶性,其中一柠檬酸盐、一苯磺酸盐和一乙二磺酸盐还具有结晶性好,不易吸湿的优点。

Description

一种喹唑啉衍生物的盐、其制备方法及应用
本申请要求申请日为2016年9月23日的中国专利申请CN201610847951.1的优先权。本申请引用上述中国专利申请的全文。
技术领域
本发明涉及一种喹唑啉衍生物的盐、其制备方法及应用。
背景技术
一种喹唑啉衍生物,其化学名称为N-[4-(3-氯-4-氟苯胺基)]-7-(3-吗啉丙醇基)-6-(2-氟丙烯酰胺基)-喹唑啉,其分子式为C24H24ClF2N5O3,其结构式如下所示:
Figure PCTCN2017102998-appb-000001
US2014206687、WO2013013640、CN102898386以及JP2014521613公开了该喹唑啉衍生物(即式1化合物)及其制备方法。该式1化合物为淡黄色或类白色粉末状固体,水溶性较差。
发明内容
本发明所要解决的技术问题是现有的该喹唑啉衍生物水溶性差的缺陷,因而,本发明提供了一种喹唑啉衍生物的盐、其制备方法及应用。与已知的喹唑啉衍生物相比,所述的喹唑啉衍生物的盐具有一种或多种的改进性能,至少具有更好的水溶性。
本发明提供了一种喹唑啉衍生物的盐,其为如式2所示的一柠檬酸盐、如式2-1所示的一柠檬酸盐半乙醇合物、如式2-2所示的一柠檬酸盐二四氢呋喃合物、如式2-3所示的一柠檬酸盐半1,4-二氧六环合物、如式2-4所示的一柠檬酸盐二水合物、如式2-5所示的一柠檬酸盐半氯仿合物、如式2-6所示的一柠檬酸盐三水合物、如式2-7所示的一柠檬酸盐2.5水合物、如式3所示的一苯磺酸盐、如式4所示的一乙二磺酸盐、如式5所示的一L-酒石酸盐、如式5-1所示的一L-酒石酸盐四水合物、如式所示6的一盐酸盐一水合物、如式7所示的一硫酸盐、如式8所示的一D-葡萄糖酸盐、如式9所示的一α-酮戊二酸盐、如式10所示的二α-酮戊二酸盐、如式11所示的二磷酸盐、如式12所示的二马来 酸盐、如式13所示的一丁二酸盐、如式14所示的三丁二酸盐、如式15所示的二乙醇酸盐、如式16所示的一丙二酸盐、如式17所示的二丙二酸盐、如式18所示的三丙二酸盐、如式19所示的二硫酸盐、如式20所示的二1,5-萘二磺酸盐、如式21所示的一帕莫酸盐、如式22所示的一对甲苯磺酸盐、如式23所示的一1,5-萘二磺酸盐、或、如式24所示的一对氯苯磺酸盐;
Figure PCTCN2017102998-appb-000002
Figure PCTCN2017102998-appb-000003
Figure PCTCN2017102998-appb-000004
Figure PCTCN2017102998-appb-000005
Figure PCTCN2017102998-appb-000006
Figure PCTCN2017102998-appb-000007
所述的一柠檬酸盐2、一柠檬酸盐半乙醇合物2-1、一柠檬酸盐二四氢呋喃合物2-2、一柠檬酸盐半1,4-二氧六环合物2-3、一柠檬酸盐二水合物2-4、一柠檬酸盐半氯仿合物2-5、一柠檬酸盐三水合物2-6、一柠檬酸盐2.5水合物2-7、一苯磺酸盐3、一乙二磺酸盐4、一L-酒石酸盐四水合物5-1、一盐酸盐一水合物6、一硫酸盐7、一D-葡萄糖酸盐8、三丁二酸盐14、三丙二酸盐18和一对甲苯磺酸盐22的结构式表示其仅由结构式中示明的喹唑啉衍生物和酸组成、或者、其仅由结构式中示明的喹唑啉衍生物、酸和溶剂分子组成。
所述的二α-酮戊二酸盐10、二马来酸盐12、一丁二酸盐13、二乙醇酸盐15、二丙二酸盐17、二硫酸盐19、二1,5-萘二磺酸盐20、一帕莫酸盐21、一1,5-萘二磺酸盐23、和、一对氯苯磺酸盐24的结构式表示其包括结构式中示明的喹唑啉衍生物和酸(也即, 其可能还含有结构式中未示明的溶剂分子<可为水或有机溶剂>)。某一方案中,它们的结构式表示其仅由结构式中示明的喹唑啉衍生物和酸组成。
所述的一L-酒石酸盐5、一α-酮戊二酸盐9、二磷酸盐11和一丙二酸盐16的结构式表示其包括结构式中示明的喹唑啉衍生物和酸(也即,其可能还含有结构式中未示明的溶剂分子<可为水或有机溶剂>)。某一方案中,它们的结构式表示其仅由结构式中示明的喹唑啉衍生物、酸和水组成。
如式2所示的一柠檬酸盐还可具备下述参数:①其X射线粉末衍射图在衍射角2θ为8.280±0.2°、8.720±0.2°、16.962±0.2°、19.124±0.2°、19.742±0.2°和25.222±0.2°(又可为8.280±0.2°、8.720±0.2°、13.621±0.2°、14.043±0.2°、16.522±0.2°、16.962±0.2°、19.124±0.2°、19.742±0.2°、21.367±0.2°、23.439±0.2°、25.222±0.2°和26.842±0.2°;还可为5.278±0.2°、8.280±0.2°、8.720±0.2°、9.862±0.2°、10.740±0.2°、11.564±0.2°、13.621±0.2°、14.043±0.2°、14.853±0.2°、16.522±0.2°、16.962±0.2°、19.124±0.2°、19.742±0.2°、20.501±0.2°、20.802±0.2°、21.367±0.2°、23.439±0.2°、23.799±0.2°、25.222±0.2°、26.359±0.2°、26.842±0.2°、27.494±0.2°、28.919±0.2°、32.383±0.2°和32.764±0.2°;更可为8.280±0.2°、8.720±0.2°、9.862±0.2°、10.740±0.2°、11.564±0.2°、13.621±0.2°、14.043±0.2°、16.522±0.2°、16.962±0.2°、19.124±0.2°、19.742±0.2°、20.802±0.2°、21.367±0.2°、23.439±0.2°和25.222±0.2°)处有特征峰(即晶型1);或者,②其X射线粉末衍射图在衍射角2θ为6.757±0.2°、11.521±0.2°、15.926±0.2°、18.400±0.2°、21.520±0.2°、22.942±0.2°、24.584±0.2°和26.943±0.2°(又可为6.757±0.2°、10.441±0.2°、11.521±0.2°、13.084±0.2°、13.406±0.2°、15.926±0.2°、17.540±0.2°、18.400±0.2°、21.520±0.2°、22.942±0.2°、24.584±0.2°和26.943±0.2°;还可为6.757±0.2°、10.441±0.2°、11.521±0.2°、13.084±0.2°、13.406±0.2°、14.003±0.2°、14.594±0.2°、15.097±0.2°、15.926±0.2°、17.540±0.2°、18.400±0.2°、20.898±0.2°、21.520±0.2°、22.942±0.2°、23.562±0.2°、24.584±0.2°和26.943±0.2°)处有特征峰(即晶型13)。
如式2-1所示的一柠檬酸盐半乙醇合物还可具备下述参数:其X射线粉末衍射图在衍射角2θ为4.700±0.2°、7.400±0.2°、7.801±0.2°、11.340±0.2°、13.298±0.2°、13.799±0.2°、18.464±0.2°和22.618±0.2°(又可为4.700±0.2°、7.400±0.2°、7.801±0.2°、11.340±0.2°、13.298±0.2°、13.799±0.2°、14.397±0.2°、15.719±0.2°、18.464±0.2°、20.036±0.2°、22.618±0.2°、31.385±0.2°和31.604±0.2°)处有特征峰(即晶型2)。
如式2-2所示的一柠檬酸盐二四氢呋喃合物还可具备下述参数:其X射线粉末衍射图在衍射角2θ为:6.939±0.2°、7.462±0.2°、18.603±0.2°、19.183±0.2°、24.803±0.2°和25.983±0.2°(又可为6.939±0.2°、7.462±0.2°、15.181±0.2°、15.976±0.2°、18.603±0.2°、 19.183±0.2°、20.861±0.2°、21.444±0.2°、22.321±0.2°、23.040±0.2°、24.803±0.2°和25.983±0.2°;还可为6.939±0.2°、7.462±0.2°、13.042±0.2°、15.181±0.2°、15.976±0.2°、16.502±0.2°、17.318±0.2°、18.603±0.2°、19.183±0.2°、20.861±0.2°、21.444±0.2°、22.321±0.2°、23.040±0.2°、24.803±0.2°、25.983±0.2°、27.106±0.2°、28.244±0.2°和29.713±0.2°;更可为6.939±0.2°、7.462±0.2°、13.042±0.2°、15.181±0.2°、15.976±0.2°、16.502±0.2°、17.076±0.2°、17.318±0.2°、18.603±0.2°、19.183±0.2°、20.498±0.2°、20.861±0.2°、21.444±0.2°、22.321±0.2°、23.040±0.2°、24.803±0.2°、25.983±0.2°、27.106±0.2°、28.244±0.2°和29.713±0.2°)处有特征峰(即晶型3)。
如式2-3所示的一柠檬酸盐半1,4-二氧六环合物还可具备下述参数:其X射线粉末衍射图在衍射角2θ为6.962±0.2°、7.821±0.2°、8.560±0.2°、8.999±0.2°、17.262±0.2°和19.441±0.2°(又可为6.962±0.2°、7.821±0.2°、8.560±0.2°、8.999±0.2°、15.712±0.2°、17.262±0.2°、19.441±0.2°、20.037±0.2°、20.754±0.2°、24.062±0.2°和25.407±0.2°;还可为6.962±0.2°、7.821±0.2°、8.560±0.2°、8.999±0.2°、15.712±0.2°、17.262±0.2°、19.441±0.2°、20.037±0.2°、20.754±0.2°、21.540±0.2°、24.062±0.2°和25.407±0.2°)处有特征峰(即晶型4)。
如式2-4所示的一柠檬酸盐二水合物还可具备下述参数:①其X射线粉末衍射图在衍射角2θ为6.443±0.2°、10.780±0.2°、12.808±0.2°、16.230±0.2°、18.683±0.2°、19.262±0.2°、24.519±0.2°、25.885±0.2°和28.743±0.2°(又可为6.443±0.2°、7.801±0.2°、10.780±0.2°、12.808±0.2°、13.211±0.2°、14.221±0.2°、16.230±0.2°、18.683±0.2°、19.262±0.2°、19.744±0.2°、21.042±0.2°、21.540±0.2°、24.519±0.2°、25.885±0.2°和28.743±0.2°;还可为6.443±0.2°、7.801±0.2°、8.140±0.2°、10.780±0.2°、12.808±0.2°、13.211±0.2°、14.221±0.2°、16.230±0.2°、16.543±0.2°、18.683±0.2°、19.262±0.2°、24.519±0.2°、25.886±0.2°和28.743±0.2°;更可为6.443±0.2°、7.801±0.2°、8.140±0.2°、10.780±0.2°、11.202±0.2°、12.808±0.2°、12.564±0.2°、13.211±0.2°、14.221±0.2°、16.230±0.2°、16.543±0.2°、17.176±0.2°、18.237±0.2°、18.683±0.2°、19.262±0.2°、19.744±0.2°、20.205±0.2°、21.042±0.2°、21.540±0.2°、24.519±0.2°、25.601±0.2°、25.886±0.2°、26.888±0.2°、和28.743±0.2°)处有特征峰(即晶型5);或者,②其X射线粉末衍射图在衍射角2θ为8.542±0.2°、12.659±0.2°、13.843±0.2°、18.638±0.2°、19.822±0.2°和25.300±0.2°(又可为8.542±0.2°、12.659±0.2°、13.843±0.2°、18.120±0.2°、18.638±0.2°、18.916±0.2°、19.822±0.2°、20.637±0.2°、23.763±0.2°、24.157±0.2°、24.528±0.2°、25.300±0.2°和25.659±0.2°;还可为8.261±0.2°、8.542±0.2°、10.920±0.2°、12.659±0.2°、13.024±0.2°、13.843±0.2°、14.713±0.2°、15.986±0.2°、16.980±0.2°、18.120±0.2°、18.638±0.2°、18.916±0.2°、 19.822±0.2°、20.637±0.2°、23.763±0.2°、24.157±0.2°、24.528±0.2°、25.300±0.2°、25.659±0.2°、28.241±0.2°、28.802±0.2°、32.263±0.2°、32.782±0.2°、33.743±0.2°和35.629±0.2°)处有特征峰(即晶型7);或者,③其X射线粉末衍射图在衍射角2θ为4.602±0.2°、7.641±0.2°、13.651±0.2°、15.264±0.2°、19.182±0.2°和23.321±0.2°处有特征峰(即晶型11)。
如式2-5所示的一柠檬酸盐半氯仿合物还可具备下述参数:其X射线粉末衍射图在衍射角2θ为7.682±0.2°、19.122±0.2°和26.044±0.2°(又可为7.682±0.2°、8.101±0.2°、16.705±0.2°、17.138±0.2°、19.122±0.2°和26.044±0.2°)处有特征峰(即晶型6)。
如式2-6所示的一柠檬酸盐三水合物还可具备下述参数:其X射线粉末衍射图在衍射角2θ为5.659±0.2°、5.920±0.2°、9.064±0.2°、11.760±0.2°、17.600±0.2°、27.103±0.2°和27.623±0.2°(又可为5.659±0.2°、5.920±0.2°、8.107±0.2°、9.064±0.2°、11.760±0.2°、12.795±0.2°、13.047±0.2°、13.454±0.2°、17.600±0.2°、18.705±0.2°、19.161±0.2°、20.039±0.2°、22.182±0.2°、27.103±0.2°和27.623±0.2°;还可为5.659±0.2°、5.920±0.2°、8.107±0.2°、9.064±0.2°、11.760±0.2°、13.047±0.2°、13.454±0.2°、17.016±0.2°、17.600±0.2°、18.705±0.2°、19.161±0.2°、20.039±0.2°、22.182±0.2°、23.831±0.2°、25.723±0.2°、27.103±0.2°和27.623±0.2°;更可为5.659±0.2°、5.920±0.2°、8.107±0.2°、9.064±0.2°、11.760±0.2°、13.047±0.2°、13.454±0.2°、17.016±0.2°、17.600±0.2°、12.795±0.2°、18.705±0.2°、19.161±0.2°、20.039±0.2°、22.182±0.2°、23.831±0.2°、24.304±0.2°、25.723±0.2°、27.103±0.2°、27.623±0.2°和27.936±0.2°)处有特征峰(即晶型10)。
如式2-7所示的一柠檬酸盐2.5水合物还可具备下述参数:其X射线粉末衍射图在衍射角2θ为7.852±0.2°、14.859±0.2°、15.605±0.2°、19.448±0.2°、23.439±0.2°和25.604±0.2°(又可为7.852±0.2°、14.128±0.2°、14.859±0.2°、15.605±0.2°、16.580±0.2°、19.448±0.2°、20.221±0.2°、23.439±0.2°和25.604±0.2°)处有特征峰(即晶型14)。
如式3所示的一苯磺酸盐还可具备下述参数:其X射线粉末衍射图在衍射角2θ为7.642±0.2°、13.639±0.2°、14.861±0.2°、15.445±0.2°、16.182±0.2°、16.904±0.2°、17.542±0.2°、18.821±0.2°、19.160±0.2°、20.563±0.2°、21.643±0.2°、22.843±0.2°、23.542±0.2°、25.252±0.2°和26.201±0.2°处有特征峰。
如式4所示的一乙二磺酸盐还可具备下述参数:其X射线粉末衍射图在衍射角2θ为5.447±0.2°、8.286±0.2°、13.734±0.2°、18.614±0.2°、20.686±0.2°、22.596±0.2°、24.179±0.2°、24.908±0.2°和29.606±0.2°处有特征峰。
如式5所示的一L-酒石酸盐还可具备下述参数:其X射线粉末衍射图在衍射角2θ为5.738±0.2°、7.332±0.2°、8.817±0.2°、11.084±0.2°、13.060±0.2°、17.063±0.2°、17.814±0.2°、 19.841±0.2°、20.469±0.2°、21.844±0.2°和24.123±0.2°处有特征峰(即晶型15)。
如式5-1所示的一L-酒石酸盐四水合物还可具备下述参数:其X射线粉末衍射图在衍射角2θ为7.357±0.2°、8.696±0.2°、9.437±0.2°、12.725±0.2°、16.543±0.2°、17.444±0.2°、18.959±0.2°、21.847±0.2°、22.101±0.2°、24.819±0.2°、29.444±0.2°和33.501±0.2°处有特征峰(即晶型16)。
如式所示6的一盐酸盐一水合物还可具备下述参数:其X射线粉末衍射图在衍射角2θ为8.862±0.2°、13.860±0.2°、17.127±0.2°、17.516±0.2°、21.452±0.2°、23.545±0.2°、25.421±0.2°和27.985±0.2°处有特征峰。
如式7所示的一硫酸盐还可具备下述参数:其X射线粉末衍射图在衍射角2θ为6.102±0.2°、6.982±0.2°、13.336±0.2°、14.340±0.2°、14.857±0.2°、21.585±0.2°、23.009±0.2°、24.254±0.2°和25.783±0.2°处有特征峰。
如式8所示的一D-葡萄糖酸盐还可具备下述参数:其X射线粉末衍射图在衍射角2θ为6.280±0.2°、7.901±0.2°、12.403±0.2°、15.719±0.2°、16.106±0.2°、18.001±0.2°、19.581±0.2°、21.601±0.2°、22.760±0.2°、23.980±0.2°、24.461±0.2°、25.140±0.2°、26.764±0.2°、27.419±0.2°和28.902±0.2°处有特征峰。
如式9所示的一α-酮戊二酸盐还可具备下述参数:其X射线粉末衍射图在衍射角2θ为5.349±0.2°、7.186±0.2°、7.818±0.2°、8.446±0.2°、9.259±0.2°、11.114±0.2°、15.968±0.2°、16.851±0.2°、17.411±0.2°、20.408±0.2°、22.381±0.2°、23.943±0.2°和24.198±0.2°处有特征峰。
如式10所示的二α-酮戊二酸盐还可具备下述参数:其X射线粉末衍射图在衍射角2θ为5.738±0.2°、7.003±0.2°、9.537±0.2°、12.779±0.2°、14.379±0.2°、15.815±0.2°、17.042±0.2°、17.765±0.2°、19.121±0.2°、23.343±0.2°、24.722±0.2°、25.821±0.2°、26.379±0.2°、27.162±0.2°和36.062±0.2°处有特征峰。
如式11所示的二磷酸盐还可具备下述参数:其X射线粉末衍射图在衍射角2θ为5.080±0.2°、14.304±0.2°、15.552±0.2°、19.781±0.2°、22.580±0.2°和24.720±0.2°处有特征峰。
如式12所示的二马来酸盐还可具备下述参数:其X射线粉末衍射图在衍射角2θ为4.777±0.2°、6.094±0.2°、9.750±0.2°、10.397±0.2°、12.279±0.2°、15.573±0.2°、16.264±0.2°、17.230±0.2°、18.594±0.2°、18.928±0.2°、19.662±0.2°、20.505±0.2°、21.751±0.2°、24.098±0.2°、25.698±0.2°、26.314±0.2°、27.871±0.2°、28.759±0.2°和29.767±0.2°处有特征峰。
如式13所示的一丁二酸盐还可具备下述参数:其X射线粉末衍射图在衍射角2θ为 4.060±0.2°、7.998±0.2°、13.866±0.2°、19.763±0.2°、21.820±0.2°、22.543±0.2°、25.667±0.2°、27.851±0.2°和31.700±0.2°处有特征峰。
如式14所示的三丁二酸盐还可具备下述参数:其X射线粉末衍射图在衍射角2θ为4.920±0.2°、8.941±0.2°、16.988±0.2°、20.302±0.2°、23.799±0.2°、26.384±0.2°、27.862±0.2°和31.802±0.2°处有特征峰。
如式15所示的二乙醇酸盐还可具备下述参数:其X射线粉末衍射图在衍射角2θ为10.121±0.2°、11.700±0.2°、13.863±0.2°、14.360±0.2°、15.116±0.2°、15.977±0.2°、16.421±0.2°、17.484±0.2°、18.642±0.2°、20.341±0.2°、21.163±0.2°、21.822±0.2°、22.622±0.2°、23.401±0.2°、24.481±0.2°、26.405±0.2°、27.083±0.2°、27.865±0.2°、28.682±0.2°和30.023±0.2°处有特征峰。
如式16所示的一丙二酸盐还可具备下述参数:其X射线粉末衍射图在衍射角2θ为7.018±0.2°、13.866±0.2°、17.541±0.2°、19.127±0.2°、20.342±0.2°、21.184±0.2°、23.183±0.2°、24.981±0.2°、27.852±0.2°和28.444±0.2°处有特征峰。
如式17所示的二丙二酸盐还可具备下述参数:其X射线粉末衍射图在衍射角2θ为5.180±0.2°、7.141±0.2°、13.876±0.2°、14.742±0.2°、16.424±0.2°、16.840±0.2°、18.485±0.2°、19.299±0.2°、20.024±0.2°、21.940±0.2°、23.845±0.2°、25.003±0.2°、26.962±0.2°和27.847±0.2°处有特征峰。
如式18所示的三丙二酸盐还可具备下述参数:其X射线粉末衍射图在衍射角2θ为5.062±0.2°、7.181±0.2°、13.843±0.2°、14.731±0.2°、15.700±0.2°、16.158±0.2°、16.841±0.2°、17.923±0.2°、19.042±0.2°、19.722±0.2°、22.123±0.2°、23.303±0.2°、26.621±0.2°和27.480±0.2°处有特征峰。
如式19所示的二硫酸盐还可具备下述参数:其X射线粉末衍射图在衍射角2θ为6.896±0.2°、13.362±0.2°、14.516±0.2°、14.981±0.2°、18.179±0.2°、18.622±0.2°、19.806±0.2°、20.983±0.2°、22.801±0.2°、24.062±0.2°、24.783±0.2°、25.662±0.2°、26.503±0.2°、27.543±0.2°和28.143±0.2°处有特征峰。
如式20所示的二1,5-萘二磺酸盐还可具备下述参数:其X射线粉末衍射图在衍射角2θ为6.740±0.2°、7.660±0.2°、8.821±0.2°、10.582±0.2°、11.921±0.2°、13.420±0.2°、16.200±0.2°、17.061±0.2°、17.481±0.2°、18.024±0.2°、18.520±0.2°、19.003±0.2°、20.905±0.2°、21.603±0.2°、22.518±0.2°、22.921±0.2°、23.841±0.2°、24.722±0.2°、26.339±0.2°和26.902±0.2°处有特征峰。
如式21所示的一帕莫酸盐还可具备下述参数:其X射线粉末衍射图在衍射角2θ为 4.861±0.2°、7.501±0.2°、8.220±0.2°、9.119±0.2°、12.723±0.2°、14.203±0.2°、15.821±0.2°、16.960±0.2°、19.382±0.2°、21.661±0.2°、23.082±0.2°、23.461±0.2°和27.343±0.2°处有特征峰。
如式22所示的一对甲苯磺酸盐还可具备下述参数:其X射线粉末衍射图在衍射角2θ为7.560±0.2°、15.224±0.2°、16.002±0.2°、16.903±0.2°、17.421±0.2°、18.857±0.2°、20.141±0.2°、21.143±0.2°、22.564±0.2°、23.023±0.2°、29.621±0.2°和31.325±0.2°处有特征峰。
如式23所示的一1,5-萘二磺酸盐还可具备下述参数:其X射线粉末衍射图在衍射角2θ为5.566±0.2°、7.363±0.2°、7.914±0.2°、8.784±0.2°、9.354±0.2°、10.617±0.2°、12.534±0.2°、15.926±0.2°、17.584±0.2°、18.004±0.2°、19.779±0.2°、20.506±0.2°、20.725±0.2°、22.798±0.2°、24.138±0.2°和25.541±0.2°处有特征峰。
如式24所示的一对氯苯磺酸盐还可具备下述参数:其X射线粉末衍射图在衍射角2θ为7.623±0.2°、15.244±0.2°、15.994±0.2°、17.046±0.2°、17.487±0.2°、18.885±0.2°、20.197±0.2°、21.267±0.2°、21.487±0.2°、22.501±0.2°、23.154±0.2°、23.423±0.2°、24.662±0.2°和29.617±0.2°处有特征峰。
非限制性地,所述一柠檬酸盐晶型1的一个典型实例具有如图1所示的X-射线粉末衍射图。进一步地,所述一柠檬酸盐晶型1具有如图2所示的热重分析(TGA)图谱,显示所述一柠檬酸盐晶型1为无水物。进一步地,所述一柠檬酸盐晶型1具有如图3所示的差式扫描量热图(DSC),显示其熔点为165-169℃,熔融伴随分解。进一步地,所述一柠檬酸盐晶型1具有如图4所示的动态水分吸附图(DVS),显示所述一柠檬酸盐晶型1在20-80%相对湿度范围内吸水0.21%。
非限制性地,所述半乙醇合物晶型2的一个典型实例具有如图29所示的X-射线粉末衍射图。进一步地,所述半乙醇合物晶型2具有如图30所示的热重分析(TGA)图谱,显示所述半乙醇合物晶型2的分解温度为142℃,分解前有3.2%的失重,含0.5摩尔乙醇。进一步地,所述半乙醇合物晶型2具有如图31所示的差式扫描量热图(DSC),显示所述半乙醇合物晶型2在89-120℃之间有脱去乙醇的吸热峰。
非限制性地,所述二四氢呋喃合物晶型3的一个典型实例具有如图32所示的X-射线粉末衍射图。进一步地,所述二四氢呋喃合物晶型3具有如图33所示的热重分析(TGA)图谱,显示所述二四氢呋喃合物晶型3的分解温度为169℃,分解前有17.3%的失重,含2摩尔四氢呋喃。
非限制性地,所述半1,4-二氧六环合物晶型4的一个典型实例具有如图34所示的 X-射线粉末衍射图。进一步地,所述半1,4-二氧六环合物晶型4具有如图35所示的热重分析(TGA)图谱,显示所述半1,4-二氧六环合物晶型4的分解温度为173℃,分解前有6.6%的失重,含0.5摩尔二氧六环。
非限制性地,所述二水合物晶型5的一个典型实例具有如图5所示的X-射线粉末衍射图。进一步地,所述二水合物晶型5具有如图6所示的热重分析(TGA)图谱,显示所述二水合物晶型5为水合物,所述二水合物晶型5的分解温度为145℃,分解前有5.3%的失重,约合2摩尔水。进一步地,所述二水合物晶型5具有如图7所示的差式扫描量热图(DSC),显示所述二水合物晶型5在123℃前有脱去结晶水的吸热峰。进一步地,所述二水合物晶型5具有如图8所示的动态水分吸附图(DVS),显示所述二水合物晶型5在0-80%相对湿度范围内吸水0.4%。
非限制性地,所述半氯仿合物晶型6的一个典型实例具有如图36所示的X-射线粉末衍射图。进一步地,所述半氯仿合物晶型6具有如图37所示的热重分析(TGA)图谱,显示所述半氯仿合物晶型6的分解温度为173℃,分解前有7.3%的失重,含0.5摩尔氯仿。
非限制性地,所述二水合物晶型7的一个典型实例具有如图17所示的X-射线粉末衍射图。进一步地,所述二水合物晶型7具有如图18所示的热重分析(TGA)图谱,显示所述二水合物晶型7的分解温度为145℃,分解前有4.7%的失重,含2摩尔水。进一步地,所述二水合物晶型7具有如图19所示的差式扫描量热图(DSC),显示所述二水合物晶型7在79℃前及115-117℃之间有两个脱水的吸热峰。进一步地,所述二水合物晶型7具有如图20所示的动态水分吸附图(DVS),显示所述二水合物晶型7在10-80%相对湿度范围内吸水0.38%,相对湿度10%以下会脱去一个水分子,脱去的水分子在相对湿度30%时会重新结合。
非限制性地,所述三水合物晶型10的一个典型实例具有如图21所示的X-射线粉末衍射图。进一步地,所述三水合物晶型10具有如图22所示的热重分析(TGA)图谱,显示所述三水合物晶型10的分解温度为159℃,分解前有7.7%的失重,含3摩尔水。进一步地,所述三水合物晶型10具有如图23所示的差式扫描量热图(DSC),显示所述三水合物晶型10在117℃前有脱水的吸热峰。进一步地,所述三水合物晶型10具有如图24所示的动态水分吸附图(DVS),显示所述三水合物晶型10在相对湿度50%以下会脱去3.5%结晶水,但在50-80%相对湿度范围内水合物稳定,吸水1.1%。
非限制性地,所述二水合物晶型11的一个典型实例具有如图25所示的X-射线粉末衍射图。进一步地,所述二水合物晶型11具有如图26所示的热重分析(TGA)图谱, 显示所述二水合物晶型11的分解温度为142℃,分解前有4.8%的失重,含2摩尔水。进一步地,所述二水合物晶型11具有如图27所示的差式扫描量热图(DSC),显示所述二水合物晶型11在71℃前有脱水的吸热峰。进一步地,所述晶型11具有如图28所示的动态水分吸附图(DVS),显示所述二水合物晶型11在50-80%相对湿度范围内水合物稳定存在,吸水5.3%,相对湿度50%以下会脱去结晶水。
非限制性地,所述一柠檬酸盐晶型13的一个典型实例具有如图9所示的X-射线粉末衍射图。进一步地,所述一柠檬酸盐晶型13具有如图10所示的热重分析(TGA)图谱,显示所述一柠檬酸盐晶型13的分解温度为144℃,所述一柠檬酸盐晶型13为无水物。进一步地,所述一柠檬酸盐晶型13具有如图11所示的差式扫描量热图(DSC),显示所述一柠檬酸盐晶型13的熔点为127-138℃。进一步地,所述一柠檬酸盐晶型13具有如图12所示的动态水分吸附图(DVS),显示所述一柠檬酸盐晶型13在20-80%相对湿度范围内吸水0.2%。
非限制性地,所述2.5水合物晶型14的一个典型实例具有如图13所示的X-射线粉末衍射图。进一步地,所述2.5水合物晶型14具有如图14所示的热重分析(TGA)图谱,显示所述2.5水合物晶型14的分解温度为144℃,分解前有6.3%的失重,含2.5摩尔水。进一步地,所述2.5水合物晶型14具有如图15所示的差式扫描量热图(DSC),显示所述2.5水合物晶型14在130℃前有脱水的吸热峰。进一步地,所述2.5水合物晶型14具有如图16所示的动态水分吸附图(DVS),显示所述2.5水合物晶型14在10-80%相对湿度范围内吸水0.7%,相对湿度10%以下会脱去部分结晶水。
非限制性地,所述喹唑啉衍生物的一苯磺酸盐的一个典型实例具有如图50所示的X-射线粉末衍射图。进一步地,所述喹唑啉衍生物的一苯磺酸盐具有如图51所示的热重分析(TGA)图谱,显示所述喹唑啉衍生物的一苯磺酸盐在分解前没有明显失重,为无水物,分解温度为199℃。进一步地,所述喹唑啉衍生物的一苯磺酸盐具有如图52所示的差式扫描量热图(DSC),显示所述喹唑啉衍生物的一苯磺酸盐的熔点为199℃,熔融后立即分解。进一步地,所述喹唑啉衍生物的一苯磺酸盐具有如图53所示的动态水分吸附图(DVS),显示所述喹唑啉衍生物的一苯磺酸盐在20-80%相对湿度范围内重量变化约为0.3%。
非限制性地,所述喹唑啉衍生物的一乙二磺酸盐的一个典型实例具有如图38所示的X-射线粉末衍射图。进一步地,所述喹唑啉衍生物的一乙二磺酸盐具有如图39所示的热重分析(TGA)图谱,显示所述喹唑啉衍生物的一乙二磺酸盐在250℃以上开始分解,分解前有1.2%的缓慢失重。进一步地,所述喹唑啉衍生物的一乙二磺酸盐具有如图40 所示的差式扫描量热图(DSC),显示所述喹唑啉衍生物的一乙二磺酸盐没有熔点。进一步地,所述喹唑啉衍生物的一乙二磺酸盐具有如图41所示的动态水分吸附图(DVS),显示所述喹唑啉衍生物的一乙二磺酸盐在20-80%相对湿度范围内重量变化约为1.46%。
非限制性地,所述一L-酒石酸盐(晶型15)的一个典型实例具有如图62所示的X-射线粉末衍射图。进一步地,所述一L-酒石酸盐(晶型15)具有如图63所示的热重分析(TGA)图谱,显示所述一L-酒石酸盐(晶型15)在198℃开始分解,分解前有8.1%的失重,可能对应于脱溶剂或脱水。
非限制性地,所述一L-酒石酸盐四水合物(晶型16)的一个典型实例具有如图64所示的X-射线粉末衍射图。进一步地,所述一L-酒石酸盐四水合物(晶型16)具有如图65所示的热重分析(TGA)图谱,显示所述一L-酒石酸盐四水合物(晶型16)在190℃开始分解,分解前有9.5%的失重,含4摩尔水。进一步地,所述一L-酒石酸盐四水合物(晶型16)具有如图66所示的差式扫描量热图(DSC),显示所述一L-酒石酸盐四水合物(晶型16)在106℃前有脱溶剂的吸热峰,样品没有熔点。进一步地,所述一L-酒石酸盐四水合物(晶型16)具有如图67所示的动态水分吸附图(DVS),显示所述一L-酒石酸盐四水合物(晶型16)在20-80%相对湿度范围内重量变化约为0.8%,在10%相对湿度快速脱去大量水。
非限制性地,所述喹唑啉衍生物的一盐酸盐一水合物的一个典型实例具有如图54所示的X-射线粉末衍射图。进一步地,所述喹唑啉衍生物的一盐酸盐一水合物具有如图55所示的热重分析(TGA)图谱,显示所述喹唑啉衍生物的一盐酸盐一水合物在156℃有少量分解,228℃开始大量分解,分解前有3.3%的失重,含1摩尔水。进一步地,所述喹唑啉衍生物的一盐酸盐一水合物具有如图56所示的差式扫描量热图(DSC),显示所述喹唑啉衍生物的一盐酸盐一水合物没有熔点,220℃开始的热量变化是分解导致。进一步地,所述喹唑啉衍生物的一盐酸盐一水合物具有如图57所示的动态水分吸附图(DVS),显示所述喹唑啉衍生物的一盐酸盐一水合物在20-80%相对湿度范围内重量变化约为0.17%。
非限制性地,所述喹唑啉衍生物的一硫酸盐的一个典型实例具有如图42所示的X-射线粉末衍射图。进一步地,所述喹唑啉衍生物的一硫酸盐具有如图43所示的热重分析(TGA)图谱,显示所述喹唑啉衍生物的一硫酸盐在230℃以上开始分解,分解前有7.5%的失重。进一步地,所述喹唑啉衍生物的一硫酸盐具有如图44所示的差式扫描量热图(DSC),显示所述喹唑啉衍生物的一硫酸盐的熔点为165℃。进一步地,所述喹唑啉衍生物的一硫酸盐具有如图45所示的动态水分吸附图(DVS),显示所述喹唑啉衍生物的 一硫酸盐在20-80%相对湿度范围内重量变化约为11.68%,较易吸湿。
非限制性地,所述喹唑啉衍生物的一D-葡萄糖酸盐的一个典型实例具有如图58所示的X-射线粉末衍射图。进一步地,所述喹唑啉衍生物的一D-葡萄糖酸盐具有如图59所示的热重分析(TGA)图谱,显示所述喹唑啉衍生物的一D-葡萄糖酸盐在180℃开始分解,分解前没有失重。进一步地,所述喹唑啉衍生物的一D-葡萄糖酸盐具有如图60所示的差式扫描量热图(DSC),显示193℃的吸热峰为所述喹唑啉衍生物的一D-葡萄糖酸盐的熔点,熔融后样品分解。进一步地,所述喹唑啉衍生物的一D-葡萄糖酸盐具有如图61所示的动态水分吸附图(DVS),显示所述喹唑啉衍生物的一D-葡萄糖酸盐在20-80%相对湿度范围内重量变化约为0.12%。
非限制性地,所述喹唑啉衍生物的一α-酮戊二酸盐的一个典型实例具有如图77所示的X-射线粉末衍射图。进一步地,所述喹唑啉衍生物的一α-酮戊二酸盐具有如图78所示的热重分析(TGA)图谱,显示所述喹唑啉衍生物的一α-酮戊二酸盐在193℃开始分解,分解前有9.8%的失重。
非限制性地,所述喹唑啉衍生物的二α-酮戊二酸盐的一个典型实例具有如图90所示的X-射线粉末衍射图。进一步地,所述喹唑啉衍生物的二α-酮戊二酸盐具有如图91所示的热重分析(TGA)图谱,显示所述喹唑啉衍生物的二α-酮戊二酸盐在140℃开始分解,分解前有4.7%的失重。
非限制性地,所述喹唑啉衍生物的二磷酸盐一个典型实例具有如图68所示的X-射线粉末衍射图。进一步地,所述喹唑啉衍生物的二磷酸盐具有如图69所示的热重分析(TGA)图谱,显示所述喹唑啉衍生物的二磷酸盐在234℃开始分解,分解前有7.1%失重。
非限制性地,所述喹唑啉衍生物的二马来酸盐的一个典型实例具有如图79所示的X-射线粉末衍射图。进一步地,所述喹唑啉衍生物的二马来酸盐具有如图80所示的热重分析(TGA)图谱,显示所述喹唑啉衍生物的二马来酸盐在75℃和136℃有阶段式失重,在167℃大量分解。
非限制性地,所述喹唑啉衍生物的一丁二酸盐的一个典型实例具有如图76所示的X-射线粉末衍射图。
非限制性地,所述喹唑啉衍生物的三丁二酸盐的一个典型实例具有如图88所示的X-射线粉末衍射图。进一步地,所述喹唑啉衍生物的三丁二酸盐具有如图89所示的热重分析(TGA)图谱,显示所述喹唑啉衍生物的三丁二酸盐在173℃开始分解。
非限制性地,所述喹唑啉衍生物的二乙醇酸盐的一个典型实例具有如图73所示的 X-射线粉末衍射图。
非限制性地,所述喹唑啉衍生物的一丙二酸盐的一个典型实例具有如图74所示的X-射线粉末衍射图。进一步地,所述喹唑啉衍生物的一丙二酸盐具有如图75所示的热重分析(TGA)图谱,显示所述喹唑啉衍生物的一丙二酸盐在88℃开始分解。
非限制性地,所述喹唑啉衍生物的二丙二酸盐的一个典型实例具有如图82所示的X-射线粉末衍射图。进一步地,所述喹唑啉衍生物的二丙二酸盐具有如图83所示的热重分析(TGA)图谱,显示所述喹唑啉衍生物的二丙二酸盐在135℃开始分解。
非限制性地,所述喹唑啉衍生物的三丙二酸盐的一个典型实例具有如图84所示的X-射线粉末衍射图。进一步地,所述喹唑啉衍生物的三丙二酸盐具有如图85所示的热重分析(TGA)图谱,显示所述喹唑啉衍生物的三丙二酸盐在140℃开始分解。
非限制性地,所述喹唑啉衍生物的二硫酸盐的一个典型实例具有如图46所示的X-射线粉末衍射图。进一步地,所述喹唑啉衍生物的二硫酸盐具有如图47所示的热重分析(TGA)图谱,显示所述喹唑啉衍生物的二硫酸盐的分解温度为250℃,150℃前有3%的失重。进一步地,所述喹唑啉衍生物的二硫酸盐具有如图48所示的差式扫描量热图(DSC),显示所述喹唑啉衍生物的二硫酸盐在74℃前和114-160℃之间有吸热峰,可能为脱溶剂,在200℃之内未见熔融峰。进一步地,所述喹唑啉衍生物的二硫酸盐具有如图49所示的动态水分吸附图(DVS),显示所述喹唑啉衍生物的二硫酸盐在20-80%相对湿度范围内重量变化约为2%。
非限制性地,所述喹唑啉衍生物的二1,5-萘二磺酸盐的一个典型实例具有如图86所示的X-射线粉末衍射图。进一步地,所述喹唑啉衍生物的二1,5-萘二磺酸盐具有如图87所示的热重分析(TGA)图谱,显示所述喹唑啉衍生物的二1,5-萘二磺酸盐在223℃开始分解。
非限制性地,所述喹唑啉衍生物的一帕莫酸盐的一个典型实例具有如图70所示的X-射线粉末衍射图。
非限制性地,所述喹唑啉衍生物的一对甲苯磺酸盐的一个典型实例具有如图71所示的X-射线粉末衍射图。进一步地,所述喹唑啉衍生物的一对甲苯磺酸盐具有如图72所示的热重分析(TGA)图谱,显示所述喹唑啉衍生物的一对甲苯磺酸盐在245℃开始分解,分解前没有失重。
非限制性地,所述喹唑啉衍生物的一1,5-萘二磺酸盐的一个典型实例具有如图81所示的X-射线粉末衍射图。
非限制性地,所述喹唑啉衍生物的一对氯苯磺酸盐的一个典型实例具有如图92所示 的X-射线粉末衍射图。
本发明还提供了一种如上所述的喹唑啉衍生物的盐的制备方法:
(1)当所述的盐为一柠檬酸盐2(例如晶型1)时,其包括下述步骤:在四氢呋喃中,将喹唑啉衍生物和柠檬酸进行成盐反应,得到一柠檬酸盐2(例如晶型1)即可;
(2)当所述的盐为一柠檬酸盐半乙醇合物2-1(例如晶型2)时,其包括下述步骤:将一柠檬酸盐2(例如晶型1)在乙醇中打浆,得到一柠檬酸盐半乙醇合物2-1(例如晶型2)即可;
(3)当所述的盐为一柠檬酸盐二四氢呋喃合物2-2(例如晶型3)时,其包括下述步骤:将一柠檬酸盐2(例如晶型1)在四氢呋喃中打浆,得到一柠檬酸盐二四氢呋喃合物2-2(例如晶型3)即可;
(4)当所述的盐为一柠檬酸盐半1,4-二氧六环合物2-3(例如晶型4)时,其包括下述步骤:在1,4-二氧六环中,将一柠檬酸盐2(例如晶型1)重结晶,得到一柠檬酸盐半1,4-二氧六环合物2-3(例如晶型4)即可;
(5)当所述的盐为一柠檬酸盐二水合物2-4(例如晶型5)时,其包括下述步骤:将一柠檬酸盐2(例如晶型1)在正丁醇或水中打浆,得到一柠檬酸盐二水合物2-4(例如晶型5)即可;
(5-1)当所述的盐为一柠檬酸盐二水合物2-4(例如晶型5)时,其包括下述步骤:将一柠檬酸盐2(例如晶型1)在溶剂中进行挥发析晶,得到一柠檬酸盐二水合物2-4(例如晶型5)即可;所述溶剂为甲醇水溶液、乙醇水溶液或异丙醇水溶液;
(5-2)当所述的盐为一柠檬酸盐二水合物2-4(例如晶型5)时,其包括下述步骤:在溶剂中,将一柠檬酸盐2(例如晶型1)重结晶,得到一柠檬酸盐二水合物2-4(例如晶型5)即可;所述的溶剂为甲醇和丙酮、或、1,4-二氧六环和丙酮;
(6)当所述的盐为一柠檬酸盐半氯仿合物2-5(例如晶型6)时,其包括下述步骤:将一柠檬酸盐2(例如晶型1)在氯仿中打浆,得到一柠檬酸盐半氯仿合物2-5(例如晶型6)即可;
(7)当所述的盐为一柠檬酸盐二水合物2-4(例如晶型7)时,其包括下述步骤:将一柠檬酸盐2(例如晶型1)在氯仿中打浆,得到一柠檬酸盐二水合物2-4(例如晶型7)即可;
(8)当所述的盐为三水合物2-6(例如晶型10)时,其包括下述步骤:将一柠檬酸盐2(例如晶型1)在溶剂中进行挥发析晶,得到三水合物2-6(例如晶型10)即可;所述溶剂为甲醇、正丙醇水溶液、四氢呋喃水溶液或乙腈水溶液;
(9)当所述的盐为一柠檬酸盐二水合物2-4(例如晶型11)时,其包括下述步骤:在溶剂中,将一柠檬酸盐2(例如晶型1)重结晶,得到一柠檬酸盐二水合物2-4(例如晶型11)即可;所述的溶剂为甲醇和乙醇、硝基甲烷和乙醇、乙腈和乙醇、正丙醇、或、异丙醇;
(9-2)当所述的盐为一柠檬酸盐二水合物2-4(例如晶型11)时,其包括下述步骤:在溶剂中,将一柠檬酸盐2(例如晶型1)打浆,得到一柠檬酸盐二水合物2-4(例如晶型11)即可;所述的溶剂为甲醇和乙醇、硝基甲烷和乙醇、或、乙腈和乙醇;
(10)当所述的盐为一柠檬酸盐2(例如晶型13)时,其包括下述步骤:在正丁醇中,将一柠檬酸盐2(例如晶型1)重结晶,得到一柠檬酸盐2(例如晶型13)即可;
(10-2)当所述的盐为一柠檬酸盐2(例如晶型13)时,其包括下述步骤:将一柠檬酸盐2(例如晶型1)在水和乙腈中进行挥发析晶,得到一柠檬酸盐2(例如晶型13)即可;
(11)当所述的盐为2.5水合物2-7(例如晶型14)时,其包括下述步骤:在水和二甲亚砜中,将一柠檬酸盐2(例如晶型1)重结晶,得到2.5水合物2-7(例如晶型14)即可;
(11-2)当所述的盐为2.5水合物2-7(例如晶型14)时,其包括下述步骤:将一柠檬酸盐2(例如晶型1)在水和丙酮中进行挥发析晶,得到2.5水合物2-7(例如晶型14)即可;
(12)当所述的盐为一乙二磺酸盐时,其包括下述步骤:在四氢呋喃中,将喹唑啉衍生物和乙二磺酸进行成盐反应,得到一乙二磺酸盐即可;
(13)当所述的盐为一硫酸盐时,其包括下述步骤:在四氢呋喃中,将喹唑啉衍生物和硫酸进行成盐反应,得到一硫酸盐即可;所述的硫酸与所述的喹唑啉衍生物的摩尔比值为1~1.3;
(14)当所述的盐为二硫酸盐时,其包括下述步骤:在四氢呋喃中,将喹唑啉衍生物和硫酸进行成盐反应,得到二硫酸盐即可;所述的硫酸与所述的喹唑啉衍生物的摩尔比值可为2.2~3.3;
(15)当所述的盐为一苯磺酸盐时,其包括下述步骤:在四氢呋喃中,将喹唑啉衍生物和苯磺酸进行成盐反应,得到一苯磺酸盐即可;
(16)当所述的盐为一盐酸盐一水合物时,其包括下述步骤:在四氢呋喃和水中,将喹唑啉衍生物和HCl进行成盐反应,得到一盐酸盐一水合物即可;
(17)当所述的盐为一D-葡萄糖酸盐时,其包括下述步骤:在二氯甲烷中,将喹唑 啉衍生物和D-葡萄糖酸进行成盐反应,得到一D-葡萄糖酸盐即可;
(18)当所述的盐为一L-酒石酸盐(晶型15)时,其包括下述步骤:在四氢呋喃中,将喹唑啉衍生物和L-酒石酸进行成盐反应,得到一L-酒石酸盐(晶型15)即可;
(19)当所述的盐为一L-酒石酸盐四水合物(晶型16)时,其包括下述步骤:在水中,将一L-酒石酸盐(晶型15)重结晶,得到一L-酒石酸盐四水合物(晶型16)即可;
(20)当所述的盐为二磷酸盐时,其包括下述步骤:在四氢呋喃中,将喹唑啉衍生物和磷酸进行成盐反应,得到二磷酸盐即可;
(21)当所述的盐为一帕莫酸盐时,其包括下述步骤:在四氢呋喃中,将喹唑啉衍生物和帕莫酸进行成盐反应,得到一帕莫酸即可;
(22)当所述的盐为一对甲苯磺酸盐时,其包括下述步骤:在氯仿和乙醇中,将喹唑啉衍生物和对甲苯磺酸进行成盐反应,得到一对甲苯磺酸盐即可;
(23)当所述的盐为二乙醇酸盐时,其包括下述步骤:在二氯甲烷中,将喹唑啉衍生物和乙醇酸进行成盐反应,得到二乙醇酸即可;
(24)当所述的盐为一丙二酸盐时,其包括下述步骤:在二氯甲烷中,将喹唑啉衍生物和丙二酸进行成盐反应,得到一丙二酸盐即可;所述的丙二酸与所述的喹唑啉衍生物的摩尔比值为1~1.2;
(25)当所述的盐为一丁二酸盐时,其包括下述步骤:在二氯甲烷中,将喹唑啉衍生物和丁二酸进行成盐反应,得到一丁二酸盐即可;所述的丁二酸与所述的喹唑啉衍生物的摩尔比值为1~1.2;
(26)当所述的盐为一α-酮戊二酸盐时,其包括下述步骤:在四氢呋喃中,将喹唑啉衍生物和α-酮戊二酸进行成盐反应,得到一α-酮戊二酸即可;所述的α-酮戊二酸与所述的喹唑啉衍生物的摩尔比值为1~1.2;
(27)当所述的盐为二马来酸盐时,其包括下述步骤:在四氢呋喃中,将喹唑啉衍生物和马来酸进行成盐反应,得到二马来酸盐即可;
(28)当所述的盐为一1,5-萘二磺酸盐时,其包括下述步骤:在四氢呋喃中,将喹唑啉衍生物和1,5-萘二磺酸进行成盐反应,得到一1,5-萘二磺酸盐即可;所述的1,5-萘二磺酸盐与所述的喹唑啉衍生物的摩尔比值为1.1~1.5
(29)当所述的盐为二丙二酸盐时,其包括下述步骤:在二氯甲烷中,将喹唑啉衍生物和丙二酸进行成盐反应,得到二丙二酸盐即可;所述的丙二酸与所述的喹唑啉衍生物的摩尔比值为2.0~2.3;
(30)当所述的盐为三丙二酸盐时,其包括下述步骤:在二氯甲烷中,将喹唑啉衍 生物和丙二酸进行成盐反应,得到三丙二酸盐即可;所述的丙二酸与所述的喹唑啉衍生物的摩尔比值为3.0~3.4;
(31)当所述的盐为二1,5-萘二磺酸盐时,其包括下述步骤:在四氢呋喃中,将喹唑啉衍生物和1,5-萘二磺酸进行成盐反应,得到一1,5-萘二磺酸盐即可;所述的1,5-萘二磺酸盐与所述的喹唑啉衍生物的摩尔比值为2.2~3.3
(32)当所述的盐为三丁二酸盐时,其包括下述步骤:在二氯甲烷中,将喹唑啉衍生物和丁二酸进行成盐反应,得到三丁二酸盐即可;所述的丁二酸与所述的喹唑啉衍生物的摩尔比值为2.2~3.3;
(33)当所述的盐为二α-酮戊二酸盐时,其包括下述步骤:在四氢呋喃中,将喹唑啉衍生物和α-酮戊二酸进行成盐反应,得到二α-酮戊二酸即可;所述的α-酮戊二酸与所述的喹唑啉衍生物的摩尔比值为2.2~3.3;
(34)当所述的盐为对一对氯苯磺酸盐时,其包括下述步骤:在四氢呋喃中,将喹唑啉衍生物和对氯苯磺酸进行成盐反应,得到一对氯苯磺酸盐即可;
其中,所述喹唑啉衍生物的结构如式
Figure PCTCN2017102998-appb-000008
所示。
在所述的方法中,所述的喹唑啉衍生物可为任意晶型或无定型,例如按照CN102898386中记载的方法制得的喹唑啉衍生物。
在方法(1)中,所述的四氢呋喃与所述的喹唑啉衍生物的体积质量比可为25~50mL/g,又可为26~48mL/g。
在方法(1)中,所述的柠檬酸与所述的喹唑啉衍生物的摩尔比值可为1~1.5。
在方法(1)中,所述的成盐温度可为10-30℃。
在方法(1)中,所述的成盐时间可为0.5-24小时。
在方法(1)中,所述的成盐反应的操作可为本领域常规的操作,例如:将柠檬酸的四氢呋喃溶液和喹唑啉衍生物的四氢呋喃溶液混合(例如,将柠檬酸的四氢呋喃溶液加至喹唑啉衍生物的四氢呋喃溶液)。所述的喹唑啉衍生物的四氢呋喃溶液的浓度可为25-50mg/mL。所述的柠檬酸的四氢呋喃溶液的浓度可为50-100mg/mL。
在方法(1)中,所述的成盐反应的后处理可为本领域该类反应常规的后处理,例如过滤、干燥。所述的干燥的温度可为40~50℃,又可为40~45℃。所述的干燥可为真空干 燥。
所述的方法(1)可包括下述步骤:将所述喹唑啉衍生物的四氢呋喃溶液和柠檬酸的四氢呋喃溶液混合、反应,将析出的固体分离、干燥,即得(其中,所述喹唑啉衍生物的四氢呋喃溶液中,所述喹唑啉衍生物的浓度较佳地为25-50mg/mL;柠檬酸的四氢呋喃溶液中,所述柠檬酸的浓度较佳地为50.8-101.6mg/mL;所述喹唑啉衍生物和所述柠檬酸的摩尔比较佳地为1:1-1:1.5;所述反应的时间较佳地为0.5-24小时)。
在方法(2)中,所述的乙醇与所述的一柠檬酸盐2(例如晶型1)的体积质量比可为35~45mL/g,又可为40~45mL/g。
在方法(2)中,所述的一柠檬酸盐2(例如晶型1)的可按照方法(1)制得。
在方法(2)中,所述的打浆温度可为55-65℃,又可为60℃。
在方法(2)中,所述的打浆时间可为8-16小时。
所述的方法(2)可包括下述步骤:将所述一柠檬酸盐2(例如晶型1)和乙醇混合形成混悬液,于55-65℃下搅拌,即得(其中,所述一柠檬酸盐2(例如晶型1)和乙醇的配比较佳地为10-50mg/mL;所述搅拌的时间较佳地为8-16小时;所述搅拌的温度较佳地为60℃)。
在方法(3)中,所述的四氢呋喃与所述的一柠檬酸盐2(例如晶型1)的体积质量比可为35~45mL/g,又可为40~45mL/g。
在方法(3)中,所述的一柠檬酸盐2(例如晶型1)的可按照方法(1)制得。
在方法(3)中,所述的打浆温度可为10-60℃。
在方法(3)中,所述的打浆时间可为8-16小时。
所述的方法(3)可包括下述步骤:将所述一柠檬酸盐2(例如晶型1)和四氢呋喃混合形成混悬液,于10-60℃下搅拌,即得(其中,所述一柠檬酸盐2(例如晶型1)和四氢呋喃的配比较佳地为10-50mg/mL;所述搅拌的时间较佳地为8-16小时)。
在方法(4)中,所述的1,4-二氧六环与所述的一柠檬酸盐2(例如晶型1)的体积质量比可为80~120mL/g,又可为100~120mL/g。
在方法(4)中,所述的一柠檬酸盐2(例如晶型1)的可按照方法(1)制得。
在方法(4)中,所述的重结晶可为热溶冷析重结晶,其溶解温度可为50-60℃,其冷却目标温度可为10-30℃。
所述的方法(4)可包括下述步骤:于60℃以上的温度下将所述一柠檬酸盐2(例如晶型1)和二氧六环混合形成溶液,在搅拌条件下自然降温,即得(其中,所述一柠檬酸盐2(例如晶型1)的浓度较佳地为8.3-16.7mg/mL;所述自然降温是指在室温下进行冷 却)。
在方法(5)中,所述的水与所述的一柠檬酸盐2(例如晶型1)的体积质量比可为60~70mL/g,又可为66~70mL/g。
在方法(5)中,所述的四氢呋喃与所述的一柠檬酸盐2(例如晶型1)的体积质量比可为80~120mL/g,又可为100~120mL/g。
在方法(5)中,所述的一柠檬酸盐2(例如晶型1)的可按照方法(1)制得。
在方法(5)中,所述的打浆温度可为10-60℃。
在方法(5)中,所述的打浆时间可为8-16小时。
所述的方法(5)可包括下述步骤:将所述一柠檬酸盐2(例如晶型1)和溶剂混合形成混悬液,于10-60℃下搅拌,即得;所述溶剂为水或正丁醇(其中,所述一柠檬酸盐2(例如晶型1)与溶剂的配比较佳地为5-40mg/mL,更佳地为10-20mg/mL;所述搅拌的时间较佳地为5-16小时)。
在方法(5-1)中,所述的溶剂与所述的一柠檬酸盐2(例如晶型1)的体积质量比可为20~200mL/g。
在方法(5-1)中,所述溶剂中的醇类溶剂与水的体积比值可为1。
在方法(5-1)中,所述的一柠檬酸盐2(例如晶型1)的可按照方法(1)制得。
在方法(5-1)中,所述的挥发温度可为10-60℃。
所述的方法(5-1)可包括下述步骤:将所述一柠檬酸盐2(例如晶型1)和溶剂混合形成溶液,于10-60℃下挥发溶剂至干,即得;所述溶剂为甲醇水溶液、乙醇水溶液或异丙醇水溶液(其中,所述一柠檬酸盐2(例如晶型1)的浓度较佳地为5-50mg/mL)。
在方法(5-2)中,所述的溶剂与所述的一柠檬酸盐2(例如晶型1)的体积质量比可为160~240mL/g,又可为200~240mL/g。
在方法(5-2)中,所述的甲醇和丙酮的体积比值可为1。
在方法(5-2)中,所述的1,4-二氧六环和丙酮的体积比值可为1。
在方法(5-2)中,所述的一柠檬酸盐2(例如晶型1)的可按照方法(1)制得。
在方法(5-2)中,所述的重结晶可为热溶冷析重结晶,其溶解温度可为50-60℃,其冷却目标温度可为10-30℃。
在方法(6)中,所述的氯仿与所述的一柠檬酸盐2(例如晶型1)的体积质量比可为35~45mL/g,又可为40~45mL/g。
在方法(6)中,所述的一柠檬酸盐2(例如晶型1)的可按照方法(1)制得。
在方法(6)中,所述的打浆温度可为55-65℃,又可为60℃。
在方法(6)中,所述的打浆时间可为8-16小时。
所述的方法(6)可包括下述步骤:将所述一柠檬酸盐2(例如晶型1)和氯仿混合形成混悬液,于室温下搅拌,即得(其中,所述一柠檬酸盐2(例如晶型1)和氯仿的配比较佳地为10-50mg/mL;所述搅拌的时间较佳地为8-16小时)。
在方法(7)中,所述的氯仿与所述的一柠檬酸盐2(例如晶型1)的体积质量比可为80~120mL/g,又可为100~120mL/g。
在方法(7)中,所述的一柠檬酸盐2(例如晶型1)的可按照方法(1)制得。
在方法(7)中,所述的打浆温度可为10-30℃。
在方法(7)中,所述的打浆时间可为8-16小时。
所述的方法(7)可包括下述步骤:将所述一柠檬酸盐2(例如晶型1)和水混合形成混悬液,于室温下搅拌,即得(其中,所述一柠檬酸盐2(例如晶型1)和水的配比较佳地为5-40mg/mL,更佳地为10-20mg/mL;所述搅拌的时间较佳地为8-16小时)。
在方法(8)中,所述的溶剂与所述的一柠檬酸盐2(例如晶型1)的体积质量比可为100~200mL/g。
在方法(8)中,所述溶剂中的非水溶剂与水的体积比值可为1。
在方法(8)中,所述的一柠檬酸盐2(例如晶型1)的可按照方法(1)制得。
在方法(8)中,所述的挥发温度可为10-30℃。
所述的方法(8)可包括下述步骤:将所述一柠檬酸盐2(例如晶型1)和溶剂混合形成溶液,于室温下自然挥发,即得(其中,所述一柠檬酸盐2(例如晶型1)的浓度较佳地为5-10mg/mL;所述自然挥发可以是不加盖挥发或加盖打孔挥发。所述正丙醇水溶液中,正丙醇和水的体积比较佳地为1:1;所述四氢呋喃水溶液中,四氢呋喃和水的体积比较佳地为1:1;所述乙腈水溶液中,乙腈和水的体积比较佳地为1:1)。
在方法(9)中,所述的溶剂与所述的一柠檬酸盐2(例如晶型1)的体积质量比可为200~600mL/g,又可为200~500mL/g。
在方法(9)中,所述的一柠檬酸盐2(例如晶型1)的可按照方法(1)制得。
在方法(9)中,所述的重结晶可为热溶冷析重结晶,其溶解温度可为50-60℃,其冷却目标温度可为10-30℃。
所述的方法(9)可包括下述步骤:于60℃以上的温度下将所述一柠檬酸盐2(例如晶型1)和含有醇类的有机溶剂混合形成溶液,在搅拌条件下自然降温,即得(其中,所述含有醇类的有机溶剂较佳地为正丙醇、异丙醇、甲醇的乙醇溶液、乙腈的乙醇溶液或硝基甲烷的乙醇溶液;所述甲醇的乙醇溶液中,甲醇和乙醇的体积比较佳地为1:1;所述 乙腈的乙醇溶液中,乙腈和乙醇的体积比较佳地为1:1;所述硝基甲烷的乙醇溶液中,硝基甲烷和乙醇的体积比较佳地为1:1)。
在方法(9-2)中,所述的溶剂与所述的一柠檬酸盐2(例如晶型1)的体积质量比可为160~240mL/g,又可为200~240mL/g。
在方法(9-2)中,所述的溶剂中,所述的甲醇和乙醇的体积比值可为1。
在方法(9-2)中,所述的溶剂中,所述的硝基甲烷和乙醇的体积比值可为1。
在方法(9-2)中,所述的溶剂中,所述的乙腈和乙醇的体积比值可为1。
在方法(9-2)中,所述的一柠檬酸盐2(例如晶型1)的可按照方法(1)制得。
在方法(9-2)中,所述的打浆温度可为10-30℃。
在方法(9-2)中,所述的打浆时间可为8-16小时。
所述的方法(9-2)可包括下述步骤:将所述一柠檬酸盐2(例如晶型1)和含有醇类的有机溶剂混合形成混悬液,于室温下搅拌,即得(其中,所述含有醇类的有机溶剂较佳地为甲醇的乙醇溶液、乙腈的乙醇溶液或硝基甲烷的乙醇溶液;所述甲醇的乙醇溶液中,甲醇和乙醇的体积比较佳地为1:1;所述乙腈的乙醇溶液中,乙腈和乙醇的体积比较佳地为1:1;所述硝基甲烷的乙醇溶液中,硝基甲烷和乙醇的体积比较佳地为1:1;所述搅拌的时间较佳地为8-16小时)。
在方法(10)中,所述的正丁醇与所述的一柠檬酸盐2(例如晶型1)的体积质量比可为200~300mL/g,又可为240~300mL/g。
在方法(10)中,所述的一柠檬酸盐2(例如晶型1)的可按照方法(1)制得。
在方法(10)中,所述的重结晶可为热溶冷析重结晶,其溶解温度可为50-60℃,其冷却目标温度可为10-30℃。
所述的方法(10)可包括下述步骤:在50-60℃下将所述一柠檬酸盐2(例如晶型1)和正丁醇混合形成溶液,在搅拌条件下自然降温至室温,即得(其中所述一柠檬酸盐2(例如晶型1)的浓度较佳地为4.1-8.3mg/mL)。
在方法(10-2)中,所述的“水和乙腈”与所述的一柠檬酸盐2(例如晶型1)的体积质量比可为100~200mL/g。
在方法(10-2)中,所述溶剂中的乙腈与水的体积比值可为1。
在方法(10-2)中,所述的一柠檬酸盐2(例如晶型1)的可按照方法(1)制得。
在方法(10-2)中,所述的挥发温度可为50-60℃。
所述的方法(10-2)可包括下述步骤:在55-65℃下将所述一柠檬酸盐2(例如晶型1)、乙腈和水混合形成溶液,挥发溶剂至干,即得(其中,所述一柠檬酸盐2(例如晶型 1)的浓度较佳地为5-50mg/mL;所述乙腈和水的体积比较佳地为1:1)。
在方法(11)中,所述的“水和二甲亚砜”与所述的一柠檬酸盐2(例如晶型1)的体积质量比可为200~300mL/g,又可为240~300mL/g。
在方法(11-2)中,所述溶剂中的水与二甲亚砜的体积比值可为60。
在方法(11)中,所述的一柠檬酸盐2(例如晶型1)的可按照方法(1)制得。
在方法(11)中,所述的重结晶可为反溶剂重结晶,例如先用二甲亚砜溶解,再与水混合。
所述的方法(11)可包括下述步骤:将所述一柠檬酸盐2(例如晶型1)和二甲基亚砜混合形成溶液,将所述溶液加入水中,于室温下搅拌,即得(其中,所述一柠檬酸盐2(例如晶型1)在溶液中的浓度较佳地为200-400mg/mL;所述水和二甲基亚砜的体积比较佳地为5-10;所述搅拌的时间较佳地为5-30分钟)。
在方法(11-2)中,所述的“水和丙酮”与所述的一柠檬酸盐2(例如晶型1)的体积质量比可为110~200mL/g。
在方法(11-2)中,所述溶剂中的丙酮与水的体积比值可为1。
在方法(11-2)中,所述的一柠檬酸盐2(例如晶型1)的可按照方法(1)制得。
在方法(11-2)中,所述的挥发温度可为50-60℃。
在方法(12)中,所述的四氢呋喃与所述的喹唑啉衍生物的体积质量比可为20~100mL/g。
在方法(12)中,所述的乙二磺酸与所述的喹唑啉衍生物的摩尔比值可为1.1~2.2。
在方法(12)中,所述的成盐温度可为10-30℃。
在方法(12)中,所述的成盐时间可为0.5-24小时。
在方法(12)中,所述的成盐反应的操作可为本领域常规的操作,例如:将乙二磺酸的四氢呋喃溶液和喹唑啉衍生物的四氢呋喃溶液混合(例如,将乙二磺酸的四氢呋喃溶液加至喹唑啉衍生物的四氢呋喃溶液)。所述的喹唑啉衍生物的四氢呋喃溶液的浓度可为12.5-25mg/mL。所述的乙二磺酸的四氢呋喃溶液的浓度可为20.75-41.5mg/mL。
所述的方法(12)可包括下述步骤:将所述喹唑啉衍生物的四氢呋喃溶液和乙二磺酸的四氢呋喃溶液混合、反应,将析出的固体分离、干燥,即得(其中,所述混合的方法和条件可为本领域常规的方法和条件。所述的混合较佳地为:将乙二磺酸的四氢呋喃溶液滴加到所述喹唑啉衍生物的四氢呋喃溶液中。所述喹唑啉衍生物的浓度较佳地为12.5-25mg/mL;乙二磺酸的四氢呋喃溶液中,所述乙二磺酸的浓度较佳地为20.75-41.5mg/mL;所述喹唑啉衍生物和所述乙二磺酸的摩尔比较佳地为1:1.1-1:2.2;所述反应的时 间较佳地为0.5-24小时)。
在方法(13)中,所述的四氢呋喃与所述的喹唑啉衍生物的体积质量比可为50~100mL/g。
在方法(13)中,所述的硫酸以浓硫酸的形式使用。
在方法(13)中,所述的成盐温度可为10-30℃。
在方法(13)中,所述的成盐时间可为0.5-24小时。
在方法(13)中,所述的成盐反应的操作可为本领域常规的操作,例如:将硫酸的四氢呋喃溶液和喹唑啉衍生物的四氢呋喃溶液混合(例如,将硫酸的四氢呋喃溶液加至喹唑啉衍生物的四氢呋喃溶液)。所述的喹唑啉衍生物的四氢呋喃溶液的浓度可为12.5-25mg/mL。所述的硫酸的四氢呋喃溶液的浓度可为9.75-19.5mg/mL。
所述的方法(13)可包括下述步骤:将所述喹唑啉衍生物的四氢呋喃溶液和硫酸的四氢呋喃溶液混合、反应,将析出的固体分离、干燥,即得;其中,所述喹唑啉衍生物和所述硫酸的摩尔比为1:1-1:1.3(其中,所述混合的方法和条件可为本领域常规的方法和条件。所述的混合较佳地为:将硫酸的四氢呋喃溶液滴加到所述喹唑啉衍生物的四氢呋喃溶液中。所述喹唑啉衍生物的四氢呋喃溶液中,所述喹唑啉衍生物的浓度较佳地为12.5-25mg/mL;硫酸的四氢呋喃溶液中,所述硫酸的浓度较佳地为9.75-19.5mg/mL;所述反应的时间较佳地为0.5-24小时)。
在方法(14)中,所述的四氢呋喃与所述的喹唑啉衍生物的体积质量比可为50~100mL/g。
在方法(14)中,所述的硫酸以浓硫酸的形式使用。
在方法(14)中,所述的成盐温度可为10-30℃。
在方法(14)中,所述的成盐时间可为0.5-24小时。
所述的方法(14)可包括下述步骤:将所述喹唑啉衍生物的四氢呋喃溶液和硫酸的四氢呋喃溶液混合、反应,将析出的固体分离、干燥,即得;其中,所述喹唑啉衍生物和所述硫酸的摩尔比为1:2.2-1:3.3(其中,所述混合的方法和条件可为本领域常规的方法和条件。所述的混合较佳地为:将硫酸的四氢呋喃溶液滴加到所述喹唑啉衍生物的四氢呋喃溶液中。所述喹唑啉衍生物的四氢呋喃溶液中,所述喹唑啉衍生物的浓度较佳地为12.5-25mg/mL;硫酸的四氢呋喃溶液中,所述硫酸的浓度较佳地为29.25-58.5mg/mL;所述喹唑啉衍生物和所述硫酸的摩尔比较佳地为1:3.3;所述反应的时间较佳地为0.5-24小时)。
在方法(15)中,所述的四氢呋喃与所述的喹唑啉衍生物的体积质量比可为 50~100mL/g。
在方法(15)中,所述的苯磺酸与所述的喹唑啉衍生物的摩尔比值可为1~1.3;
在方法(15)中,所述的成盐温度可为10-30℃。
在方法(15)中,所述的成盐时间可为0.5-24小时。
在方法(15)中,所述的成盐反应的操作可为本领域常规的操作,例如:将苯磺酸的四氢呋喃溶液和喹唑啉衍生物的四氢呋喃溶液混合(例如,将苯磺酸的四氢呋喃溶液加至喹唑啉衍生物的四氢呋喃溶液)。所述的喹唑啉衍生物的四氢呋喃溶液的浓度可为12.5-25mg/mL。所述的苯磺酸的四氢呋喃溶液的浓度可为15.7-31.4mg/mL。
所述的方法(15)可包括下述步骤:将所述喹唑啉衍生物的四氢呋喃溶液和苯磺酸的四氢呋喃溶液混合、反应,将析出的固体分离、干燥,即得(其中,所述混合的方法和条件可为本领域常规的方法和条件。所述的混合较佳地为:将苯磺酸的四氢呋喃溶液滴加到所述喹唑啉衍生物的四氢呋喃溶液中。所述喹唑啉衍生物的四氢呋喃溶液中,所述喹唑啉衍生物的浓度较佳地为12.5-25mg/mL;苯磺酸的四氢呋喃溶液中,所述苯磺酸的浓度较佳地为15.7-31.4mg/mL;所述喹唑啉衍生物和所述苯磺酸的摩尔比较佳地为1:1-1.3;所述反应的时间较佳地为0.5-24小时)。
在方法(16)中,所述的四氢呋喃与所述的喹唑啉衍生物的体积质量比可为50~100mL/g。
在方法(16)中,所述的HCl可与所述的水以浓盐酸(HCl的饱和水溶液)的形式使用。
在方法(16)中,所述的HCl与所述的喹唑啉衍生物的摩尔比值可为1.1~3.3;
在方法(16)中,所述的成盐温度可为10-30℃。
在方法(16)中,所述的成盐时间可为0.5-24小时。
所述的方法(16)可包括下述步骤:将所述喹唑啉衍生物的四氢呋喃溶液和盐酸的四氢呋喃溶液混合、反应,将析出的固体分离、干燥,即得(所述混合的方法和条件可为本领域常规的方法和条件。所述的混合较佳地为:将盐酸的四氢呋喃溶液滴加到所述喹唑啉衍生物的四氢呋喃溶液中。所述喹唑啉衍生物的四氢呋喃溶液中,所述喹唑啉衍生物的浓度较佳地为12.5-25mg/mL;盐酸的四氢呋喃溶液中,所述盐酸的浓度较佳地为11-22mg/mL;所述喹唑啉衍生物和所述盐酸的摩尔比较佳地为1:1.1-1:3.3;所述反应的时间较佳地为0.5-24小时)。
在方法(17)中,所述的四氢呋喃与所述的喹唑啉衍生物的体积质量比可为230~400mL/g。
在方法(17)中,所述的D-葡萄糖酸与所述的喹唑啉衍生物的摩尔比值可为1.1~3.3;
在方法(17)中,所述的成盐温度可为10-30℃。
在方法(17)中,所述的成盐时间可为0.5-24小时。
所述的方法(17)可包括下述步骤:将所述喹唑啉衍生物的二氯甲烷溶液和D-葡萄糖酸的二氯甲烷混悬液混合、反应,将析出的固体分离、干燥,即得(其中,所述混合的方法和条件可为本领域常规的方法和条件。所述的混合较佳地为:将所述喹唑啉衍生物的二氯甲烷溶液滴加到D-葡萄糖酸的二氯甲烷混悬液中。所述喹唑啉衍生物的二氯甲烷溶液中,所述喹唑啉衍生物的浓度较佳地为5-10mg/mL;D-葡萄糖酸的二氯甲烷混悬液中,所述D-葡萄糖酸的含量较佳地为3-5mg/mL;所述喹唑啉衍生物和所述D-葡萄糖酸的摩尔比较佳地为1:1.1-1:3.3;所述反应的时间较佳地为16-24小时)。
在方法(18)中,所述的四氢呋喃与所述的喹唑啉衍生物的体积质量比可为100~300mL/g。
在方法(18)中,所述的L-酒石酸与所述的喹唑啉衍生物的摩尔比值可为1~1.3;
在方法(18)中,所述的成盐温度可为10-30℃。
在方法(18)中,所述的成盐时间可为0.5-24小时。
所述的方法(18)可包括下述步骤:将所述喹唑啉衍生物的四氢呋喃溶液和L-酒石酸的四氢呋喃溶液混合、反应,将析出的固体分离、干燥,即得(其中,所述混合的方法和条件可为本领域常规的方法和条件。所述的混合较佳地为:将L-酒石酸的四氢呋喃溶液滴加到所述喹唑啉衍生物的四氢呋喃溶液中。所述喹唑啉衍生物的四氢呋喃溶液中,所述喹唑啉衍生物的浓度较佳地为12.5-25mg/mL;L-酒石酸的四氢呋喃溶液中,所述L-酒石酸的浓度较佳地为14.9-29.8mg/mL;所述喹唑啉衍生物和所述L-酒石酸的摩尔比较佳地为1:1-1:1.3;所述反应的时间较佳地为0.5-24小时)。
在方法(19)中,所述的重结晶可为搅拌重结晶。
在方法(19)中,所述的一L-酒石酸盐(晶型15)可按照方法(18)制得。
在方法(19)中,所述的重结晶时间可为6~12小时。
所述的方法(19)可包括下述步骤:所述一L-酒石酸盐(晶型15)与水混合溶清,搅拌至固体完全析出,将析出的固体分离、干燥,即得(其中,所述搅拌的时间较佳地为6-12小时)。
在方法(20)中,所述的四氢呋喃与所述的喹唑啉衍生物的体积质量比可为50~130mL/g。
在方法(20)中,所述的磷酸以85%磷酸水溶液的形式使用。
在方法(20)中,所述的磷酸与所述的喹唑啉衍生物的摩尔比值可为1.1~3.3;
在方法(20)中,所述的成盐温度可为10-30℃。
在方法(20)中,所述的成盐时间可为0.5-24小时。
所述的方法(20)可包括下述步骤:将所述喹唑啉衍生物的四氢呋喃溶液和磷酸的四氢呋喃溶液混合、反应,将析出的固体分离、干燥,即得(其中,所述混合的方法和条件可为本领域常规的方法和条件。所述的混合较佳地为:将磷酸的四氢呋喃溶液滴加到所述喹唑啉衍生物的四氢呋喃溶液中。所述喹唑啉衍生物的四氢呋喃溶液中,所述喹唑啉衍生物的浓度较佳地为12.5-25mg/mL;磷酸的四氢呋喃溶液中,所述磷酸的浓度较佳地为7.75-15.5mg/mL;所述喹唑啉衍生物和所述磷酸的摩尔比较佳地为1:1.1-1:3.3;所述反应的时间较佳地为0.5-24小时)。
在方法(21)中,所述的四氢呋喃与所述的喹唑啉衍生物的体积质量比可为65~130mL/g。
在方法(21)中,所述的帕莫酸与所述的喹唑啉衍生物的摩尔比值可为1~1.3;
在方法(21)中,所述的成盐温度可为10-30℃。
在方法(21)中,所述的成盐时间可为16~24小时。
所述的方法(21)可包括下述步骤:将所述喹唑啉衍生物的四氢呋喃溶液和帕莫酸的四氢呋喃混悬液混合、反应,将析出的固体分离、干燥,即得(其中,所述混合的方法和条件可为本领域常规的方法和条件。所述的混合较佳地为:将所述喹唑啉衍生物的四氢呋喃溶液滴加到帕莫酸的四氢呋喃混悬液中。所述喹唑啉衍生物的四氢呋喃溶液中,所述喹唑啉衍生物的浓度较佳地为12.5-25mg/mL;帕莫酸的四氢呋喃混悬液中,所述帕莫酸的含量较佳地为10-20mg/mL;所述喹唑啉衍生物和所述帕莫酸的摩尔比较佳地为1:1-1:1.3;所述反应的时间较佳地为16-24小时)。
在方法(22)中,所述的“氯仿和乙醇”与所述的喹唑啉衍生物的体积质量比可为45~90mL/g。
在方法(22)中,所述的氯仿和乙醇的体积比值为8~10。
在方法(22)中,所述的对甲苯磺酸与所述的喹唑啉衍生物的摩尔比值可为1~1.3;
在方法(22)中,所述的成盐温度可为10-30℃。
在方法(22)中,所述的成盐时间可为16~24小时。
所述的方法(22)可包括下述步骤:将所述喹唑啉衍生物的氯仿溶液和对甲苯磺酸的乙醇溶液混合、反应,将析出的固体分离、干燥,即得(其中,所述混合的方法和条件可为本领域常规的方法和条件。所述的混合较佳地为:将对甲苯磺酸的乙醇溶液滴加 到所述喹唑啉衍生物的四氢呋喃溶液中。所述喹唑啉衍生物的氯仿溶液中,所述喹唑啉衍生物的浓度较佳地为12.5-25mg/mL;对甲苯磺酸的乙醇溶液中,所述对甲苯磺酸的浓度较佳地为41-82mg/mL;所述喹唑啉衍生物和所述对甲苯磺酸的摩尔比较佳地为1:1.1-1:1.3;所述反应的时间较佳地为16-24小时)。
在方法(23)中,所述的二氯甲烷与所述的喹唑啉衍生物的体积质量比可为125~250mL/g。
在方法(23)中,所述的乙醇酸与所述的喹唑啉衍生物的摩尔比值可为2.0~2.2;
在方法(23)中,所述的成盐温度可为10-30℃。
在方法(23)中,所述的成盐时间可为16~24小时。
所述的方法(23)可包括下述步骤:将所述喹唑啉衍生物的二氯甲烷溶液和乙醇酸的二氯甲烷混悬液混合、反应,将析出的固体分离、干燥,即得(其中,所述混合的方法和条件可为本领域常规的方法和条件。所述的混合较佳地为:将所述喹唑啉衍生物的二氯甲烷溶液滴加到乙醇酸的二氯甲烷混悬液中。所述喹唑啉衍生物的二氯甲烷溶液中,所述喹唑啉衍生物的浓度较佳地为5-10mg/mL;乙醇酸的二氯甲烷混悬液中,所述乙醇酸的含量较佳地为5-10mg/mL;所述喹唑啉衍生物和所述乙醇酸的摩尔比较佳地为1:2.0-1:2.2;所述反应的时间较佳地为16-24小时)。
在方法(24)中,所述的二氯甲烷与所述的喹唑啉衍生物的体积质量比可为125~250mL/g。
在方法(24)中,所述的成盐温度可为10-30℃。
在方法(24)中,所述的成盐时间可为16~24小时。
所述的方法(24)可包括下述步骤:将所述喹唑啉衍生物的二氯甲烷溶液和丙二酸的二氯甲烷混悬液混合、反应,将析出的固体分离、干燥,即得;其中,所述喹唑啉衍生物和所述丙二酸的摩尔比为1:1-1:1.2(其中,所述混合的方法和条件可为本领域常规的方法和条件。所述的混合较佳地为:将所述喹唑啉衍生物的二氯甲烷溶液滴加到丙二酸的二氯甲烷混悬液中。所述喹唑啉衍生物和所述丙二酸的摩尔比较佳地为1:1.1。所述喹唑啉衍生物的二氯甲烷溶液中,所述喹唑啉衍生物的浓度较佳地为5-10mg/mL;丙二酸的二氯甲烷混悬液中,所述丙二酸的含量较佳地为3-5mg/mL;所述反应的时间较佳地为16-24小时)。
在方法(25)中,所述的二氯甲烷与所述的喹唑啉衍生物的体积质量比可为125~250mL/g。
在方法(25)中,所述的成盐温度可为10-30℃。
在方法(25)中,所述的成盐时间可为16~24小时。
所述的方法(25)可包括下述步骤:将所述喹唑啉衍生物的二氯甲烷溶液和丁二酸的二氯甲烷混悬液混合、反应,将析出的固体分离、干燥,即得;所述喹唑啉衍生物和所述丁二酸的摩尔比为1:1-1:1.2(其中,所述混合的方法和条件可为本领域常规的方法和条件。所述的混合较佳地为:将所述喹唑啉衍生物的二氯甲烷溶液滴加到丁二酸的二氯甲烷混悬液中。所述喹唑啉衍生物和所述丁二酸的摩尔比较佳地为1:1.1。所述喹唑啉衍生物的二氯甲烷溶液中,所述喹唑啉衍生物的浓度较佳地为5-10mg/mL;丁二酸的二氯甲烷混悬液中,所述丁二酸的含量较佳地为3-5mg/mL;所述反应的时间较佳地为16-24小时)。
在方法(26)中,所述的四氢呋喃与所述的喹唑啉衍生物的体积质量比可为50~100mL/g。
在方法(26)中,所述的成盐温度可为10-30℃。
在方法(26)中,所述的成盐时间可为0.5-24小时。
所述的方法(26)可包括下述步骤:将所述喹唑啉衍生物的四氢呋喃溶液和α-酮戊二酸的四氢呋喃溶液混合、反应,将析出的固体分离、干燥,即得;其中,所述喹唑啉衍生物和所述α-酮戊二酸的摩尔比为1:1-1:1.2(其中,所述混合的方法和条件可为本领域常规的方法和条件。所述的混合较佳地为:将α-酮戊二酸的四氢呋喃溶液滴加到所述喹唑啉衍生物的四氢呋喃溶液中。所述喹唑啉衍生物和所述α-酮戊二酸的摩尔比较佳地为1:1.1。所述喹唑啉衍生物的四氢呋喃溶液中,所述喹唑啉衍生物的浓度较佳地为12.5-25mg/mL;α-酮戊二酸的四氢呋喃溶液中,所述α-酮戊二酸的浓度较佳地为15.95-31.9mg/mL;所述反应的时间较佳地为0.5-24小时)。
在方法(27)中,所述的四氢呋喃与所述的喹唑啉衍生物的体积质量比可为60~120mL/g。
在方法(27)中,所述的马来酸与所述的喹唑啉衍生物的摩尔比值可为1.1~3.3。
在方法(27)中,所述的成盐温度可为10-30℃。
在方法(27)中,所述的成盐时间可为0.5-24小时。
所述的方法(27)可包括下述步骤:将所述喹唑啉衍生物的四氢呋喃溶液和马来酸的四氢呋喃溶液混合、反应,将析出的固体分离、干燥,即得(所述混合的方法和条件可为本领域常规的方法和条件。所述的混合较佳地为:将马来酸的四氢呋喃溶液滴加到所述喹唑啉衍生物的四氢呋喃溶液中。所述喹唑啉衍生物的四氢呋喃溶液中,所述喹唑啉衍生物的浓度较佳地为12.5-25mg/mL;马来酸的四氢呋喃溶液中,所述马来酸的浓度 较佳地为12.56-25.32mg/mL;所述喹唑啉衍生物和所述马来酸的摩尔比较佳地为1:1.1-1:3.3;所述反应的时间较佳地为0.5-24小时)。
在方法(28)中,所述的四氢呋喃与所述的喹唑啉衍生物的体积质量比可为50~100mL/g。
在方法(28)中,所述的成盐温度可为10-30℃。
在方法(28)中,所述的成盐时间可为0.5-24小时。
所述的方法(28)可包括下述步骤:将所述喹唑啉衍生物的四氢呋喃溶液和1,5-萘二磺酸的四氢呋喃溶液混合、反应,将析出的固体分离、干燥,即得;其中,所述喹唑啉衍生物和所述1,5-萘二磺酸的摩尔比为1:1.1-1:1.5(其中,所述混合的方法和条件可为本领域常规的方法和条件。所述的混合较佳地为:将1,5-萘二磺酸的四氢呋喃溶液滴加到所述喹唑啉衍生物的四氢呋喃溶液中。所述喹唑啉衍生物和所述1,5-萘二磺酸的摩尔比较佳地为1:1.4。所述喹唑啉衍生物的四氢呋喃溶液中,所述喹唑啉衍生物的浓度较佳地为12.5-25mg/mL;1,5-萘二磺酸的四氢呋喃溶液中,所述1,5-萘二磺酸的浓度较佳地为39.3-78.6mg/mL;所述反应的时间较佳地为0.5-24小时)。
在方法(29)中,所述的二氯甲烷与所述的喹唑啉衍生物的体积质量比可为150~300mL/g。
在方法(29)中,所述的成盐温度可为10-30℃。
在方法(29)中,所述的成盐时间可为16~24小时。
所述的方法(29)可包括下述步骤:将所述喹唑啉衍生物的二氯甲烷溶液和丙二酸的二氯甲烷混悬液混合、反应,将析出的固体分离、干燥,即得;所述喹唑啉衍生物和所述丙二酸的摩尔比为1:2.0-1:2.3(其中,所述混合的方法和条件可为本领域常规的方法和条件。所述的混合较佳地为:将所述喹唑啉衍生物的二氯甲烷溶液滴加到丙二酸的二氯甲烷混悬液中。所述喹唑啉衍生物和所述丙二酸的摩尔比较佳地为1:2.2。其中,所述喹唑啉衍生物的二氯甲烷溶液中,所述喹唑啉衍生物的浓度较佳地为5-10mg/mL;丙二酸的二氯甲烷混悬液中,所述丙二酸的含量较佳地为3-5mg/mL;所述反应的时间较佳地为16-24小时)。
在方法(30)中,所述的二氯甲烷与所述的喹唑啉衍生物的体积质量比可为150~300mL/g。
在方法(30)中,所述的成盐温度可为10-30℃。
在方法(30)中,所述的成盐时间可为16~24小时。
所述的方法(30)可包括下述步骤:将所述喹唑啉衍生物的二氯甲烷溶液和丙二酸 的二氯甲烷混悬液混合、反应,将析出的固体分离、干燥,即得;所述喹唑啉衍生物和所述丙二酸的摩尔比为1:3.0-1:3.4(其中,所述混合的方法和条件可为本领域常规的方法和条件。所述的混合较佳地为:将所述喹唑啉衍生物的二氯甲烷溶液滴加到丙二酸的二氯甲烷混悬液中。所述喹唑啉衍生物和所述丙二酸的摩尔比较佳地为1:3.3。所述喹唑啉衍生物的二氯甲烷溶液中,所述喹唑啉衍生物的浓度较佳地为5-10mg/mL;丙二酸的二氯甲烷混悬液中,所述丙二酸的含量较佳地为5-10mg/mL;所述反应的时间较佳地为16-24小时)。
在方法(31)中,所述的四氢呋喃与所述的喹唑啉衍生物的体积质量比可为60~120mL/g。
在方法(31)中,所述的成盐温度可为10-30℃。
在方法(31)中,所述的成盐时间可为0.5-24小时。
所述的方法(31)可包括下述步骤:将所述喹唑啉衍生物的四氢呋喃溶液和1,5-萘二磺酸的四氢呋喃溶液混合、反应,将析出的固体分离、干燥,即得;其中,所述喹唑啉衍生物和所述1,5-萘二磺酸的摩尔比为1:2.2-1:3.3(其中,所述混合的方法和条件可为本领域常规的方法和条件。所述的混合较佳地为:将1,5-萘二磺酸的四氢呋喃溶液滴加到所述喹唑啉衍生物的四氢呋喃溶液中。所述喹唑啉衍生物的四氢呋喃溶液中,所述喹唑啉衍生物的浓度较佳地为12.5-25mg/mL;1,5-萘二磺酸的四氢呋喃溶液中,所述1,5-萘二磺酸的浓度较佳地为39.3-78.6mg/mL;所述反应的时间较佳地为0.5-24小时)。
在方法(32)中,所述的二氯甲烷与所述的喹唑啉衍生物的体积质量比可为150~300mL/g。
在方法(32)中,所述的成盐温度可为10-30℃。
在方法(32)中,所述的成盐时间可为16~24小时。
所述的方法(32)可包括下述步骤:将所述喹唑啉衍生物的二氯甲烷溶液和丁二酸的二氯甲烷混悬液混合、反应,将析出的固体分离、干燥,即得;所述喹唑啉衍生物和所述丁二酸的摩尔比为1:2.2-1:3.3(其中,所述混合的方法和条件可为本领域常规的方法和条件。所述的混合较佳地为:将所述喹唑啉衍生物的二氯甲烷溶液滴加到丁二酸的二氯甲烷混悬液中。所述喹唑啉衍生物的二氯甲烷溶液中,所述喹唑啉衍生物的浓度较佳地为5-10mg/mL;丁二酸的二氯甲烷混悬液中,所述丁二酸的含量较佳地为5-10mg/mL;所述反应的时间较佳地为16-24小时)。
在方法(33)中,所述的四氢呋喃与所述的喹唑啉衍生物的体积质量比可为60~120mL/g。
在方法(33)中,所述的成盐温度可为10-30℃。
在方法(33)中,所述的成盐时间可为0.5-24小时。
所述的方法(33)可包括下述步骤:将所述喹唑啉衍生物的四氢呋喃溶液和α-酮戊二酸的四氢呋喃溶液混合、反应,将析出的固体分离、干燥,即得;其中,所述喹唑啉衍生物和所述α-酮戊二酸的摩尔比为1:2.2-1:3.3(其中,所述混合的方法和条件可为本领域常规的方法和条件。所述的混合较佳地为:将α-酮戊二酸的四氢呋喃溶液滴加到所述喹唑啉衍生物的四氢呋喃溶液中。所述喹唑啉衍生物的四氢呋喃溶液中,所述喹唑啉衍生物的浓度较佳地为12.5-25mg/mL;α-酮戊二酸的四氢呋喃溶液中,所述α-酮戊二酸的浓度较佳地为15.95-31.9mg/mL;所述反应的时间较佳地为0.5-24小时)。
在方法(34)中,所述的四氢呋喃与所述的喹唑啉衍生物的体积质量比可为50~100mL/g。
在方法(34)中,所述的对氯苯磺酸盐与所述的喹唑啉衍生物的摩尔比值可为1~1.2。
在方法(34)中,所述的成盐温度可为10-30℃。
在方法(34)中,所述的成盐时间可为0.5-24小时。
所述的方法(34)可包括下述步骤:将所述喹唑啉衍生物的四氢呋喃溶液和对氯苯磺酸的四氢呋喃溶液混合、反应,将析出的固体分离,干燥,即得(其中,所述混合的方法和条件可为本领域常规的方法和条件。所述的混合较佳地为:将对氯苯磺酸的四氢呋喃溶液滴加到所述喹唑啉衍生物的四氢呋喃溶液中。所述喹唑啉衍生物的四氢呋喃溶液中,所述喹唑啉衍生物的浓度较佳地为12.5-25mg/mL;对氯苯磺酸的四氢呋喃溶液中,所述对氯苯磺酸的浓度较佳地为21-42mg/mL;所述反应的时间较佳地为0.5-24小时。所述喹唑啉衍生物和所述1,5-萘二磺酸的摩尔比较佳地为1:1-1:1.2)。
本发明还提供了一种“如式1所示的喹唑啉衍生物”的盐(所述的盐中的酸为反应原料中的酸;其可能还含有结构式中未示明的溶剂分子<可为水或有机溶剂>),其按照下述任一方法制得:
Figure PCTCN2017102998-appb-000009
(1)在四氢呋喃中,将喹唑啉衍生物和柠檬酸进行成盐反应,得到喹唑啉衍生物的盐即可;
(2)将一柠檬酸盐2(例如晶型1)在乙醇中打浆,得到喹唑啉衍生物的盐即可;
(3)将一柠檬酸盐2(例如晶型1)在四氢呋喃中打浆,得到喹唑啉衍生物的盐即可;
(4)在1,4-二氧六环中,将一柠檬酸盐2(例如晶型1)重结晶,得到喹唑啉衍生物的盐即可;
(5)将一柠檬酸盐2(例如晶型1)在正丁醇或水中打浆,得到喹唑啉衍生物的盐即可;
(5-1)将一柠檬酸盐2(例如晶型1)在溶剂中进行挥发析晶,得到喹唑啉衍生物的盐即可;所述溶剂为甲醇水溶液、乙醇水溶液或异丙醇水溶液;
(5-2)在溶剂中,将一柠檬酸盐2(例如晶型1)重结晶,得到喹唑啉衍生物的盐即可;所述的溶剂为甲醇和丙酮、或、1,4-二氧六环和丙酮;
(6)将一柠檬酸盐2(例如晶型1)在氯仿中打浆,得到喹唑啉衍生物的盐即可;
(7)将一柠檬酸盐2(例如晶型1)在氯仿中打浆,得到喹唑啉衍生物的盐即可;
(8)将一柠檬酸盐2(例如晶型1)在溶剂中进行挥发析晶,得到喹唑啉衍生物的盐即可;所述溶剂为甲醇、正丙醇水溶液、四氢呋喃水溶液或乙腈水溶液;
(9)在溶剂中,将一柠檬酸盐2(例如晶型1)重结晶,得到喹唑啉衍生物的盐即可;所述的溶剂为甲醇和乙醇、硝基甲烷和乙醇、乙腈和乙醇、正丙醇、或、异丙醇;
(9-2)在溶剂中,将一柠檬酸盐2(例如晶型1)打浆,得到喹唑啉衍生物的盐即可;所述的溶剂为甲醇和乙醇、硝基甲烷和乙醇、或、乙腈和乙醇;
(10)在正丁醇中,将一柠檬酸盐2(例如晶型1)重结晶,得到喹唑啉衍生物的盐即可;
(10-2)将一柠檬酸盐2(例如晶型1)在水和乙腈中进行挥发析晶,得到喹唑啉衍生物的盐即可;
(11)在水和二甲亚砜中,将一柠檬酸盐2(例如晶型1)重结晶,得到喹唑啉衍生物的盐即可;
(11-2)将一柠檬酸盐2(例如晶型1)在水和丙酮中进行挥发析晶,得到喹唑啉衍生物的盐即可;
(12)在四氢呋喃中,将喹唑啉衍生物和乙二磺酸进行成盐反应,得到喹唑啉衍生物的盐即可;
(13)在四氢呋喃中,将喹唑啉衍生物和硫酸进行成盐反应,得到喹唑啉衍生物的盐即可;所述的硫酸与所述的喹唑啉衍生物的摩尔比值为1~1.3;
(14)在四氢呋喃中,将喹唑啉衍生物和硫酸进行成盐反应,得到喹唑啉衍生物的盐即可;所述的硫酸与所述的喹唑啉衍生物的摩尔比值可为2.2~3.3;
(15)在四氢呋喃中,将喹唑啉衍生物和苯磺酸进行成盐反应,得到喹唑啉衍生物的盐即可;
(16)在四氢呋喃和水中,将喹唑啉衍生物和HCl进行成盐反应,得到喹唑啉衍生物的盐即可;
(17)在二氯甲烷中,将喹唑啉衍生物和D-葡萄糖酸进行成盐反应,得到喹唑啉衍生物的盐即可;
(18)在四氢呋喃中,将喹唑啉衍生物和L-酒石酸进行成盐反应,得到喹唑啉衍生物的盐即可;
(19)在水中,将一L-酒石酸盐(晶型15)重结晶,得到喹唑啉衍生物的盐即可;
(20)在四氢呋喃中,将喹唑啉衍生物和磷酸进行成盐反应,得到喹唑啉衍生物的盐即可;
(21)在四氢呋喃中,将喹唑啉衍生物和帕莫酸进行成盐反应,得到喹唑啉衍生物的盐即可;
(22)在氯仿和乙醇中,将喹唑啉衍生物和对甲苯磺酸进行成盐反应,得到喹唑啉衍生物的盐即可;
(23)在二氯甲烷中,将喹唑啉衍生物和乙醇酸进行成盐反应,得到喹唑啉衍生物的盐即可;
(24)在二氯甲烷中,将喹唑啉衍生物和丙二酸进行成盐反应,得到喹唑啉衍生物的盐即可;所述的丙二酸与所述的喹唑啉衍生物的摩尔比值为1~1.2;
(25)在二氯甲烷中,将喹唑啉衍生物和丁二酸进行成盐反应,得到喹唑啉衍生物的盐即可;所述的丁二酸与所述的喹唑啉衍生物的摩尔比值为1~1.2;
(26)在四氢呋喃中,将喹唑啉衍生物和α-酮戊二酸进行成盐反应,得到喹唑啉衍生物的盐即可;所述的α-酮戊二酸与所述的喹唑啉衍生物的摩尔比值为1~1.2;
(27)在四氢呋喃中,将喹唑啉衍生物和马来酸进行成盐反应,得到二马来酸盐即可;
(28)在四氢呋喃中,将喹唑啉衍生物和1,5-萘二磺酸进行成盐反应,得到喹唑啉衍生物的盐即可;所述的1,5-萘二磺酸盐与所述的喹唑啉衍生物的摩尔比值为1.1~1.5
(29)在二氯甲烷中,将喹唑啉衍生物和丙二酸进行成盐反应,得到喹唑啉衍生物的盐即可;所述的丙二酸与所述的喹唑啉衍生物的摩尔比值为2.0~2.3;
(30)在二氯甲烷中,将喹唑啉衍生物和丙二酸进行成盐反应,得到喹唑啉衍生物的盐即可;所述的丙二酸与所述的喹唑啉衍生物的摩尔比值为3.0~3.4;
(31)在四氢呋喃中,将喹唑啉衍生物和1,5-萘二磺酸进行成盐反应,得到喹唑啉衍生物的盐即可;所述的1,5-萘二磺酸盐与所述的喹唑啉衍生物的摩尔比值为2.2~3.3
(32)在二氯甲烷中,将喹唑啉衍生物和丁二酸进行成盐反应,得到喹唑啉衍生物的盐即可;所述的丁二酸与所述的喹唑啉衍生物的摩尔比值为2.2~3.3;
(33)在四氢呋喃中,将喹唑啉衍生物和α-酮戊二酸进行成盐反应,得到喹唑啉衍生物的盐即可;所述的α-酮戊二酸与所述的喹唑啉衍生物的摩尔比值为2.2~3.3;
(34)在四氢呋喃中,将喹唑啉衍生物和对氯苯磺酸进行成盐反应,得到喹唑啉衍生物的盐即可;
其中,所述喹唑啉衍生物的结构如式
Figure PCTCN2017102998-appb-000010
所示。
在方法(1)中,所述的四氢呋喃与所述的喹唑啉衍生物的体积质量比可为45~50mL/g,又可为45~48mL/g。
在方法(1)中,所述的柠檬酸与所述的喹唑啉衍生物的摩尔比值可为1~1.5。
在方法(1)中,所述的成盐温度可为10-30℃。
在方法(1)中,所述的成盐时间可为0.5-24小时。
在方法(1)中,所述的成盐反应的操作可为本领域常规的操作,例如:将柠檬酸的四氢呋喃溶液和喹唑啉衍生物的四氢呋喃溶液混合(例如,将柠檬酸的四氢呋喃溶液加至喹唑啉衍生物的四氢呋喃溶液)。所述的喹唑啉衍生物的四氢呋喃溶液的的浓度可为25-50mg/mL。所述的柠檬酸的四氢呋喃溶液的的浓度可为50-100mg/mL。
在方法(1)中,所述的成盐反应的后处理可为本领域该类反应常规的后处理,例如过滤、干燥。所述的干燥的温度可为40~50℃,又可为40~45℃。所述的干燥可为真空干燥。
所述的方法(1)可包括下述步骤:将所述喹唑啉衍生物的四氢呋喃溶液和柠檬酸的四氢呋喃溶液混合、反应,将析出的固体分离、干燥,即得(其中,所述喹唑啉衍生物的四氢呋喃溶液中,所述喹唑啉衍生物的浓度较佳地为25-50mg/mL;柠檬酸的四氢呋喃溶液中,所述柠檬酸的浓度较佳地为50.8-101.6mg/mL;所述喹唑啉衍生物和所述柠檬酸 的摩尔比较佳地为1:1-1:1.5;所述反应的时间较佳地为0.5-24小时)。
在方法(2)中,所述的乙醇与所述的一柠檬酸盐2(例如晶型1)的体积质量比可为35~45mL/g,又可为40~45mL/g。
在方法(2)中,所述的一柠檬酸盐2(例如晶型1)的可按照方法(1)制得。
在方法(2)中,所述的打浆温度可为55-65℃,又可为60℃。
在方法(2)中,所述的打浆时间可为8-16小时。
所述的方法(2)可包括下述步骤:将所述一柠檬酸盐2(例如晶型1)和乙醇混合形成混悬液,于55-65℃下搅拌,即得(其中,所述一柠檬酸盐2(例如晶型1)和乙醇的配比较佳地为10-50mg/mL;所述搅拌的时间较佳地为8-16小时;所述搅拌的温度较佳地为60℃)。
在方法(3)中,所述的四氢呋喃与所述的一柠檬酸盐2(例如晶型1)的体积质量比可为35~45mL/g,又可为40~45mL/g。
在方法(3)中,所述的一柠檬酸盐2(例如晶型1)的可按照方法(1)制得。
在方法(3)中,所述的打浆温度可为10-60℃。
在方法(3)中,所述的打浆时间可为8-16小时。
所述的方法(3)可包括下述步骤:将所述一柠檬酸盐2(例如晶型1)和四氢呋喃混合形成混悬液,于10-60℃下搅拌,即得(其中,所述一柠檬酸盐2(例如晶型1)和四氢呋喃的配比较佳地为10-50mg/mL;所述搅拌的时间较佳地为8-16小时)。
在方法(4)中,所述的1,4-二氧六环与所述的一柠檬酸盐2(例如晶型1)的体积质量比可为80~120mL/g,又可为100~120mL/g。
在方法(4)中,所述的一柠檬酸盐2(例如晶型1)的可按照方法(1)制得。
在方法(4)中,所述的重结晶可为热溶冷析重结晶,其溶解温度可为50-60℃,其冷却目标温度可为10-30℃。
所述的方法(4)可包括下述步骤:于60℃以上的温度下将所述一柠檬酸盐2(例如晶型1)和二氧六环混合形成溶液,在搅拌条件下自然降温,即得(其中,所述一柠檬酸盐2(例如晶型1)的浓度较佳地为8.3-16.7mg/mL;所述自然降温是指在室温下进行冷却)。
在方法(5)中,所述的水与所述的一柠檬酸盐2(例如晶型1)的体积质量比可为60~70mL/g,又可为66~70mL/g。
在方法(5)中,所述的四氢呋喃与所述的一柠檬酸盐2(例如晶型1)的体积质量比可为80~120mL/g,又可为100~120mL/g。
在方法(5)中,所述的一柠檬酸盐2(例如晶型1)的可按照方法(1)制得。
在方法(5)中,所述的打浆温度可为10-60℃。
在方法(5)中,所述的打浆时间可为8-16小时。
所述的方法(5)可包括下述步骤:将所述一柠檬酸盐2(例如晶型1)和溶剂混合形成混悬液,于10-60℃下搅拌,即得;所述溶剂为水或正丁醇(其中,所述一柠檬酸盐2(例如晶型1)与溶剂的配比较佳地为5-40mg/mL,更佳地为10-20mg/mL;所述搅拌的时间较佳地为5-16小时)。
在方法(5-1)中,所述的溶剂与所述的一柠檬酸盐2(例如晶型1)的体积质量比可为20~200mL/g。
在方法(5-1)中,所述溶剂中的醇类溶剂与水的体积比值可为1。
在方法(5-1)中,所述的一柠檬酸盐2(例如晶型1)的可按照方法(1)制得。
在方法(5-1)中,所述的挥发温度可为10-60℃。
所述的方法(5-1)可包括下述步骤:将所述一柠檬酸盐2(例如晶型1)和溶剂混合形成溶液,于10-60℃下挥发溶剂至干,即得;所述溶剂为甲醇水溶液、乙醇水溶液或异丙醇水溶液(其中,所述一柠檬酸盐2(例如晶型1)的浓度较佳地为5-50mg/mL)。
在方法(5-2)中,所述的溶剂与所述的一柠檬酸盐2(例如晶型1)的体积质量比可为160~240mL/g,又可为200~240mL/g。
在方法(5-2)中,所述的甲醇和丙酮的体积比值可为1。
在方法(5-2)中,所述的1,4-二氧六环和丙酮的体积比值可为1。
在方法(5-2)中,所述的一柠檬酸盐2(例如晶型1)的可按照方法(1)制得。
在方法(5-2)中,所述的重结晶可为热溶冷析重结晶,其溶解温度可为50-60℃,其冷却目标温度可为10-30℃。
在方法(6)中,所述的氯仿与所述的一柠檬酸盐2(例如晶型1)的体积质量比可为35~45mL/g,又可为40~45mL/g。
在方法(6)中,所述的一柠檬酸盐2(例如晶型1)的可按照方法(1)制得。
在方法(6)中,所述的打浆温度可为55-65℃,又可为60℃。
在方法(6)中,所述的打浆时间可为8-16小时。
所述的方法(6)可包括下述步骤:将所述一柠檬酸盐2(例如晶型1)和氯仿混合形成混悬液,于室温下搅拌,即得(其中,所述一柠檬酸盐2(例如晶型1)和氯仿的配比较佳地为10-50mg/mL;所述搅拌的时间较佳地为8-16小时)。
在方法(7)中,所述的氯仿与所述的一柠檬酸盐2(例如晶型1)的体积质量比可 为80~120mL/g,又可为100~120mL/g。
在方法(7)中,所述的一柠檬酸盐2(例如晶型1)的可按照方法(1)制得。
在方法(7)中,所述的打浆温度可为10-30℃。
在方法(7)中,所述的打浆时间可为8-16小时。
所述的方法(7)可包括下述步骤:将所述一柠檬酸盐2(例如晶型1)和水混合形成混悬液,于室温下搅拌,即得(其中,所述一柠檬酸盐2(例如晶型1)和水的配比较佳地为5-40mg/mL,更佳地为10-20mg/mL;所述搅拌的时间较佳地为8-16小时)。
在方法(8)中,所述的溶剂与所述的一柠檬酸盐2(例如晶型1)的体积质量比可为100~200mL/g。
在方法(8)中,所述溶剂中的非水溶剂与水的体积比值可为1。
在方法(8)中,所述的一柠檬酸盐2(例如晶型1)的可按照方法(1)制得。
在方法(8)中,所述的挥发温度可为10-30℃。
所述的方法(8)可包括下述步骤:将所述一柠檬酸盐2(例如晶型1)和溶剂混合形成溶液,于室温下自然挥发,即得(其中,所述一柠檬酸盐2(例如晶型1)的浓度较佳地为5-10mg/mL;所述自然挥发可以是不加盖挥发或加盖打孔挥发。所述正丙醇水溶液中,正丙醇和水的体积比较佳地为1:1;所述四氢呋喃水溶液中,四氢呋喃和水的体积比较佳地为1:1;所述乙腈水溶液中,乙腈和水的体积比较佳地为1:1)。
在方法(9)中,所述的溶剂与所述的一柠檬酸盐2(例如晶型1)的体积质量比可为200~600mL/g,又可为200~500mL/g。
在方法(9)中,所述的一柠檬酸盐2(例如晶型1)的可按照方法(1)制得。
在方法(9)中,所述的重结晶可为热溶冷析重结晶,其溶解温度可为50-60℃,其冷却目标温度可为10-30℃。
所述的方法(9)可包括下述步骤:于60℃以上的温度下将所述一柠檬酸盐2(例如晶型1)和含有醇类的有机溶剂混合形成溶液,在搅拌条件下自然降温,即得(其中,所述含有醇类的有机溶剂较佳地为正丙醇、异丙醇、甲醇的乙醇溶液、乙腈的乙醇溶液或硝基甲烷的乙醇溶液;所述甲醇的乙醇溶液中,甲醇和乙醇的体积比较佳地为1:1;所述乙腈的乙醇溶液中,乙腈和乙醇的体积比较佳地为1:1;所述硝基甲烷的乙醇溶液中,硝基甲烷和乙醇的体积比较佳地为1:1)。
在方法(9-2)中,所述的溶剂与所述的一柠檬酸盐2(例如晶型1)的体积质量比可为160~240mL/g,又可为200~240mL/g。
在方法(9-2)中,所述的溶剂中,所述的甲醇和乙醇的体积比值可为1。
在方法(9-2)中,所述的溶剂中,所述的硝基甲烷和乙醇的体积比值可为1。
在方法(9-2)中,所述的溶剂中,所述的乙腈和乙醇的体积比值可为1。
在方法(9-2)中,所述的一柠檬酸盐2(例如晶型1)的可按照方法(1)制得。
在方法(9-2)中,所述的打浆温度可为10-30℃。
在方法(9-2)中,所述的打浆时间可为8-16小时。
所述的方法(9-2)可包括下述步骤:将所述一柠檬酸盐2(例如晶型1)和含有醇类的有机溶剂混合形成混悬液,于室温下搅拌,即得(其中,所述含有醇类的有机溶剂较佳地为甲醇的乙醇溶液、乙腈的乙醇溶液或硝基甲烷的乙醇溶液;所述甲醇的乙醇溶液中,甲醇和乙醇的体积比较佳地为1:1;所述乙腈的乙醇溶液中,乙腈和乙醇的体积比较佳地为1:1;所述硝基甲烷的乙醇溶液中,硝基甲烷和乙醇的体积比较佳地为1:1;所述搅拌的时间较佳地为8-16小时)。
在方法(10)中,所述的正丁醇与所述的一柠檬酸盐2(例如晶型1)的体积质量比可为200~300mL/g,又可为240~300mL/g。
在方法(10)中,所述的一柠檬酸盐2(例如晶型1)的可按照方法(1)制得。
在方法(10)中,所述的重结晶可为热溶冷析重结晶,其溶解温度可为50-60℃,其冷却目标温度可为10-30℃。
所述的方法(10)可包括下述步骤:在50-60℃下将所述一柠檬酸盐2(例如晶型1)和正丁醇混合形成溶液,在搅拌条件下自然降温至室温,即得(其中所述一柠檬酸盐2(例如晶型1)的浓度较佳地为4.1-8.3mg/mL)。
在方法(10-2)中,所述的“水和乙腈”与所述的一柠檬酸盐2(例如晶型1)的体积质量比可为100~200mL/g。
在方法(10-2)中,所述溶剂中的乙腈与水的体积比值可为1。
在方法(10-2)中,所述的一柠檬酸盐2(例如晶型1)的可按照方法(1)制得。
在方法(10-2)中,所述的挥发温度可为50-60℃。
所述的方法(10-2)可包括下述步骤:在55-65℃下将所述一柠檬酸盐2(例如晶型1)、乙腈和水混合形成溶液,挥发溶剂至干,即得(其中,所述一柠檬酸盐2(例如晶型1)的浓度较佳地为5-50mg/mL;所述乙腈和水的体积比较佳地为1:1)。
在方法(11)中,所述的“水和二甲亚砜”与所述的一柠檬酸盐2(例如晶型1)的体积质量比可为200~300mL/g,又可为240~300mL/g。
在方法(11-2)中,所述溶剂中的水与二甲亚砜的体积比值可为60。
在方法(11)中,所述的一柠檬酸盐2(例如晶型1)的可按照方法(1)制得。
在方法(11)中,所述的重结晶可为反溶剂重结晶,例如先用二甲亚砜溶解,再与水混合。
所述的方法(11)可包括下述步骤:将所述一柠檬酸盐2(例如晶型1)和二甲基亚砜混合形成溶液,将所述溶液加入水中,于室温下搅拌,即得(其中,所述一柠檬酸盐2(例如晶型1)在溶液中的浓度较佳地为200-400mg/mL;所述水和二甲基亚砜的体积比较佳地为5-10;所述搅拌的时间较佳地为5-30分钟)。
在方法(11-2)中,所述的“水和丙酮”与所述的一柠檬酸盐2(例如晶型1)的体积质量比可为110~200mL/g。
在方法(11-2)中,所述溶剂中的丙酮与水的体积比值可为1。
在方法(11-2)中,所述的一柠檬酸盐2(例如晶型1)的可按照方法(1)制得。
在方法(11-2)中,所述的挥发温度可为50-60℃。
在方法(12)中,所述的四氢呋喃与所述的喹唑啉衍生物的体积质量比可为20~100mL/g。
在方法(12)中,所述的乙二磺酸与所述的喹唑啉衍生物的摩尔比值可为1.1~2.2。
在方法(12)中,所述的成盐温度可为10-30℃。
在方法(12)中,所述的成盐时间可为0.5-24小时。
在方法(12)中,所述的成盐反应的操作可为本领域常规的操作,例如:将乙二磺酸的四氢呋喃溶液和喹唑啉衍生物的四氢呋喃溶液混合(例如,将乙二磺酸的四氢呋喃溶液加至喹唑啉衍生物的四氢呋喃溶液)。所述的喹唑啉衍生物的四氢呋喃溶液的浓度可为12.5-25mg/mL。所述的乙二磺酸的四氢呋喃溶液的浓度可为20.75-41.5mg/mL。
所述的方法(12)可包括下述步骤:将所述喹唑啉衍生物的四氢呋喃溶液和乙二磺酸的四氢呋喃溶液混合、反应,将析出的固体分离、干燥,即得(其中,所述混合的方法和条件可为本领域常规的方法和条件。所述的混合较佳地为:将乙二磺酸的四氢呋喃溶液滴加到所述喹唑啉衍生物的四氢呋喃溶液中。所述喹唑啉衍生物的浓度较佳地为12.5-25mg/mL;乙二磺酸的四氢呋喃溶液中,所述乙二磺酸的浓度较佳地为20.75-41.5mg/mL;所述喹唑啉衍生物和所述乙二磺酸的摩尔比较佳地为1:1.1-1:2.2;所述反应的时间较佳地为0.5-24小时)。
在方法(13)中,所述的四氢呋喃与所述的喹唑啉衍生物的体积质量比可为50~100mL/g。
在方法(13)中,所述的硫酸以浓硫酸的形式使用。
在方法(13)中,所述的成盐温度可为10-30℃。
在方法(13)中,所述的成盐时间可为0.5-24小时。
在方法(13)中,所述的成盐反应的操作可为本领域常规的操作,例如:将硫酸的四氢呋喃溶液和喹唑啉衍生物的四氢呋喃溶液混合(例如,将硫酸的四氢呋喃溶液加至喹唑啉衍生物的四氢呋喃溶液)。所述的喹唑啉衍生物的四氢呋喃溶液的浓度可为12.5-25mg/mL。所述的硫酸的四氢呋喃溶液的浓度可为9.75-19.5mg/mL。
所述的方法(13)可包括下述步骤:将所述喹唑啉衍生物的四氢呋喃溶液和硫酸的四氢呋喃溶液混合、反应,将析出的固体分离、干燥,即得;其中,所述喹唑啉衍生物和所述硫酸的摩尔比为1:1-1:1.3(其中,所述混合的方法和条件可为本领域常规的方法和条件。所述的混合较佳地为:将硫酸的四氢呋喃溶液滴加到所述喹唑啉衍生物的四氢呋喃溶液中。所述喹唑啉衍生物的四氢呋喃溶液中,所述喹唑啉衍生物的浓度较佳地为12.5-25mg/mL;硫酸的四氢呋喃溶液中,所述硫酸的浓度较佳地为9.75-19.5mg/mL;所述反应的时间较佳地为0.5-24小时)。
在方法(14)中,所述的四氢呋喃与所述的喹唑啉衍生物的体积质量比可为50~100mL/g。
在方法(14)中,所述的硫酸以浓硫酸的形式使用。
在方法(14)中,所述的成盐温度可为10-30℃。
在方法(14)中,所述的成盐时间可为0.5-24小时。
所述的方法(14)可包括下述步骤:将所述喹唑啉衍生物的四氢呋喃溶液和硫酸的四氢呋喃溶液混合、反应,将析出的固体分离、干燥,即得;其中,所述喹唑啉衍生物和所述硫酸的摩尔比为1:2.2-1:3.3(其中,所述混合的方法和条件可为本领域常规的方法和条件。所述的混合较佳地为:将硫酸的四氢呋喃溶液滴加到所述喹唑啉衍生物的四氢呋喃溶液中。所述喹唑啉衍生物的四氢呋喃溶液中,所述喹唑啉衍生物的浓度较佳地为12.5-25mg/mL;硫酸的四氢呋喃溶液中,所述硫酸的浓度较佳地为29.25-58.5mg/mL;所述喹唑啉衍生物和所述硫酸的摩尔比较佳地为1:3.3;所述反应的时间较佳地为0.5-24小时)。
在方法(15)中,所述的四氢呋喃与所述的喹唑啉衍生物的体积质量比可为50~100mL/g。
在方法(15)中,所述的苯磺酸与所述的喹唑啉衍生物的摩尔比值可为1~1.3;
在方法(15)中,所述的成盐温度可为10-30℃。
在方法(15)中,所述的成盐时间可为0.5-24小时。
在方法(15)中,所述的成盐反应的操作可为本领域常规的操作,例如:将苯磺酸 的四氢呋喃溶液和喹唑啉衍生物的四氢呋喃溶液混合(例如,将苯磺酸的四氢呋喃溶液加至喹唑啉衍生物的四氢呋喃溶液)。所述的喹唑啉衍生物的四氢呋喃溶液的浓度可为12.5-25mg/mL。所述的苯磺酸的四氢呋喃溶液的浓度可为15.7-31.4mg/mL。
所述的方法(15)可包括下述步骤:将所述喹唑啉衍生物的四氢呋喃溶液和苯磺酸的四氢呋喃溶液混合、反应,将析出的固体分离、干燥,即得(其中,所述混合的方法和条件可为本领域常规的方法和条件。所述的混合较佳地为:将苯磺酸的四氢呋喃溶液滴加到所述喹唑啉衍生物的四氢呋喃溶液中。所述喹唑啉衍生物的四氢呋喃溶液中,所述喹唑啉衍生物的浓度较佳地为12.5-25mg/mL;苯磺酸的四氢呋喃溶液中,所述苯磺酸的浓度较佳地为15.7-31.4mg/mL;所述喹唑啉衍生物和所述苯磺酸的摩尔比较佳地为1:1-1.3;所述反应的时间较佳地为0.5-24小时)。
在方法(16)中,所述的四氢呋喃与所述的喹唑啉衍生物的体积质量比可为50~100mL/g。
在方法(16)中,所述的HCl可与所述的水以浓盐酸(HCl的饱和水溶液)的形式使用。
在方法(16)中,所述的HCl与所述的喹唑啉衍生物的摩尔比值可为1.1~3.3;
在方法(16)中,所述的成盐温度可为10-30℃。
在方法(16)中,所述的成盐时间可为0.5-24小时。
所述的方法(16)可包括下述步骤:将所述喹唑啉衍生物的四氢呋喃溶液和盐酸的四氢呋喃溶液混合、反应,将析出的固体分离、干燥,即得(所述混合的方法和条件可为本领域常规的方法和条件。所述的混合较佳地为:将盐酸的四氢呋喃溶液滴加到所述喹唑啉衍生物的四氢呋喃溶液中。所述喹唑啉衍生物的四氢呋喃溶液中,所述喹唑啉衍生物的浓度较佳地为12.5-25mg/mL;盐酸的四氢呋喃溶液中,所述盐酸的浓度较佳地为11-22mg/mL;所述喹唑啉衍生物和所述盐酸的摩尔比较佳地为1:1.1-1:3.3;所述反应的时间较佳地为0.5-24小时)。
在方法(17)中,所述的四氢呋喃与所述的喹唑啉衍生物的体积质量比可为230~400mL/g。
在方法(17)中,所述的D-葡萄糖酸与所述的喹唑啉衍生物的摩尔比值可为1.1~3.3;
在方法(17)中,所述的成盐温度可为10-30℃。
在方法(17)中,所述的成盐时间可为0.5-24小时。
所述的方法(17)可包括下述步骤:将所述喹唑啉衍生物的二氯甲烷溶液和D-葡萄糖酸的二氯甲烷混悬液混合、反应,将析出的固体分离、干燥,即得(其中,所述混合 的方法和条件可为本领域常规的方法和条件。所述的混合较佳地为:将所述喹唑啉衍生物的二氯甲烷溶液滴加到D-葡萄糖酸的二氯甲烷混悬液中。所述喹唑啉衍生物的二氯甲烷溶液中,所述喹唑啉衍生物的浓度较佳地为5-10mg/mL;D-葡萄糖酸的二氯甲烷混悬液中,所述D-葡萄糖酸的含量较佳地为3-5mg/mL;所述喹唑啉衍生物和所述D-葡萄糖酸的摩尔比较佳地为1:1.1-1:3.3;所述反应的时间较佳地为16-24小时)。
在方法(18)中,所述的四氢呋喃与所述的喹唑啉衍生物的体积质量比可为100~300mL/g。
在方法(18)中,所述的L-酒石酸与所述的喹唑啉衍生物的摩尔比值可为1~1.3;
在方法(18)中,所述的成盐温度可为10-30℃。
在方法(18)中,所述的成盐时间可为0.5-24小时。
所述的方法(18)可包括下述步骤:将所述喹唑啉衍生物的四氢呋喃溶液和L-酒石酸的四氢呋喃溶液混合、反应,将析出的固体分离、干燥,即得(其中,所述混合的方法和条件可为本领域常规的方法和条件。所述的混合较佳地为:将L-酒石酸的四氢呋喃溶液滴加到所述喹唑啉衍生物的四氢呋喃溶液中。所述喹唑啉衍生物的四氢呋喃溶液中,所述喹唑啉衍生物的浓度较佳地为12.5-25mg/mL;L-酒石酸的四氢呋喃溶液中,所述L-酒石酸的浓度较佳地为14.9-29.8mg/mL;所述喹唑啉衍生物和所述L-酒石酸的摩尔比较佳地为1:1-1:1.3;所述反应的时间较佳地为0.5-24小时)。
在方法(19)中,所述的重结晶可为搅拌重结晶。
在方法(19)中,所述的一L-酒石酸盐(晶型15)可按照方法(18)制得。
在方法(19)中,所述的重结晶时间可为6~12小时。
所述的方法(19)可包括下述步骤:所述一L-酒石酸盐(晶型15)与水混合溶清,搅拌至固体完全析出,将析出的固体分离、干燥,即得(其中,所述搅拌的时间较佳地为6-12小时)。
在方法(20)中,所述的四氢呋喃与所述的喹唑啉衍生物的体积质量比可为50~130mL/g。
在方法(20)中,所述的磷酸以85%磷酸水溶液的形式使用。
在方法(20)中,所述的磷酸与所述的喹唑啉衍生物的摩尔比值可为1.1~3.3;
在方法(20)中,所述的成盐温度可为10-30℃。
在方法(20)中,所述的成盐时间可为0.5-24小时。
所述的方法(20)可包括下述步骤:将所述喹唑啉衍生物的四氢呋喃溶液和磷酸的四氢呋喃溶液混合、反应,将析出的固体分离、干燥,即得(其中,所述混合的方法和 条件可为本领域常规的方法和条件。所述的混合较佳地为:将磷酸的四氢呋喃溶液滴加到所述喹唑啉衍生物的四氢呋喃溶液中。所述喹唑啉衍生物的四氢呋喃溶液中,所述喹唑啉衍生物的浓度较佳地为12.5-25mg/mL;磷酸的四氢呋喃溶液中,所述磷酸的浓度较佳地为7.75-15.5mg/mL;所述喹唑啉衍生物和所述磷酸的摩尔比较佳地为1:1.1-1:3.3;所述反应的时间较佳地为0.5-24小时)。
在方法(21)中,所述的四氢呋喃与所述的喹唑啉衍生物的体积质量比可为65~130mL/g。
在方法(21)中,所述的帕莫酸与所述的喹唑啉衍生物的摩尔比值可为1~1.3;
在方法(21)中,所述的成盐温度可为10-30℃。
在方法(21)中,所述的成盐时间可为16~24小时。
所述的方法(21)可包括下述步骤:将所述喹唑啉衍生物的四氢呋喃溶液和帕莫酸的四氢呋喃混悬液混合、反应,将析出的固体分离、干燥,即得(其中,所述混合的方法和条件可为本领域常规的方法和条件。所述的混合较佳地为:将所述喹唑啉衍生物的四氢呋喃溶液滴加到帕莫酸的四氢呋喃混悬液中。所述喹唑啉衍生物的四氢呋喃溶液中,所述喹唑啉衍生物的浓度较佳地为12.5-25mg/mL;帕莫酸的四氢呋喃混悬液中,所述帕莫酸的含量较佳地为10-20mg/mL;所述喹唑啉衍生物和所述帕莫酸的摩尔比较佳地为1:1-1:1.3;所述反应的时间较佳地为16-24小时)。
在方法(22)中,所述的“氯仿和乙醇”与所述的喹唑啉衍生物的体积质量比可为45~90mL/g。
在方法(22)中,所述的氯仿和乙醇的体积比值为8~10。
在方法(22)中,所述的对甲苯磺酸与所述的喹唑啉衍生物的摩尔比值可为1~1.3;
在方法(22)中,所述的成盐温度可为10-30℃。
在方法(22)中,所述的成盐时间可为16~24小时。
所述的方法(22)可包括下述步骤:将所述喹唑啉衍生物的氯仿溶液和对甲苯磺酸的乙醇溶液混合、反应,将析出的固体分离、干燥,即得(其中,所述混合的方法和条件可为本领域常规的方法和条件。所述的混合较佳地为:将对甲苯磺酸的乙醇溶液滴加到所述喹唑啉衍生物的四氢呋喃溶液中。所述喹唑啉衍生物的氯仿溶液中,所述喹唑啉衍生物的浓度较佳地为12.5-25mg/mL;对甲苯磺酸的乙醇溶液中,所述对甲苯磺酸的浓度较佳地为41-82mg/mL;所述喹唑啉衍生物和所述对甲苯磺酸的摩尔比较佳地为1:1.1-1:1.3;所述反应的时间较佳地为16-24小时)。
在方法(23)中,所述的二氯甲烷与所述的喹唑啉衍生物的体积质量比可为 125~250mL/g。
在方法(23)中,所述的乙醇酸与所述的喹唑啉衍生物的摩尔比值可为2.0~2.2;
在方法(23)中,所述的成盐温度可为10-30℃。
在方法(23)中,所述的成盐时间可为16~24小时。
所述的方法(23)可包括下述步骤:将所述喹唑啉衍生物的二氯甲烷溶液和乙醇酸的二氯甲烷混悬液混合、反应,将析出的固体分离、干燥,即得(其中,所述混合的方法和条件可为本领域常规的方法和条件。所述的混合较佳地为:将所述喹唑啉衍生物的二氯甲烷溶液滴加到乙醇酸的二氯甲烷混悬液中。所述喹唑啉衍生物的二氯甲烷溶液中,所述喹唑啉衍生物的浓度较佳地为5-10mg/mL;乙醇酸的二氯甲烷混悬液中,所述乙醇酸的含量较佳地为5-10mg/mL;所述喹唑啉衍生物和所述乙醇酸的摩尔比较佳地为1:2.0-1:2.2;所述反应的时间较佳地为16-24小时)。
在方法(24)中,所述的二氯甲烷与所述的喹唑啉衍生物的体积质量比可为125~250mL/g。
在方法(24)中,所述的成盐温度可为10-30℃。
在方法(24)中,所述的成盐时间可为16~24小时。
所述的方法(24)可包括下述步骤:将所述喹唑啉衍生物的二氯甲烷溶液和丙二酸的二氯甲烷混悬液混合、反应,将析出的固体分离、干燥,即得;其中,所述喹唑啉衍生物和所述丙二酸的摩尔比为1:1-1:1.2(其中,所述混合的方法和条件可为本领域常规的方法和条件。所述的混合较佳地为:将所述喹唑啉衍生物的二氯甲烷溶液滴加到丙二酸的二氯甲烷混悬液中。所述喹唑啉衍生物和所述丙二酸的摩尔比较佳地为1:1.1。所述喹唑啉衍生物的二氯甲烷溶液中,所述喹唑啉衍生物的浓度较佳地为5-10mg/mL;丙二酸的二氯甲烷混悬液中,所述丙二酸的含量较佳地为3-5mg/mL;所述反应的时间较佳地为16-24小时)。
在方法(25)中,所述的二氯甲烷与所述的喹唑啉衍生物的体积质量比可为125~250mL/g。
在方法(25)中,所述的成盐温度可为10-30℃。
在方法(25)中,所述的成盐时间可为16~24小时。
所述的方法(25)可包括下述步骤:将所述喹唑啉衍生物的二氯甲烷溶液和丁二酸的二氯甲烷混悬液混合、反应,将析出的固体分离、干燥,即得;所述喹唑啉衍生物和所述丁二酸的摩尔比为1:1-1:1.2(其中,所述混合的方法和条件可为本领域常规的方法和条件。所述的混合较佳地为:将所述喹唑啉衍生物的二氯甲烷溶液滴加到丁二酸的二 氯甲烷混悬液中。所述喹唑啉衍生物和所述丁二酸的摩尔比较佳地为1:1.1。所述喹唑啉衍生物的二氯甲烷溶液中,所述喹唑啉衍生物的浓度较佳地为5-10mg/mL;丁二酸的二氯甲烷混悬液中,所述丁二酸的含量较佳地为3-5mg/mL;所述反应的时间较佳地为16-24小时)。
在方法(26)中,所述的四氢呋喃与所述的喹唑啉衍生物的体积质量比可为50~100mL/g。
在方法(26)中,所述的成盐温度可为10-30℃。
在方法(26)中,所述的成盐时间可为0.5-24小时。
所述的方法(26)可包括下述步骤:将所述喹唑啉衍生物的四氢呋喃溶液和α-酮戊二酸的四氢呋喃溶液混合、反应,将析出的固体分离、干燥,即得;其中,所述喹唑啉衍生物和所述α-酮戊二酸的摩尔比为1:1-1:1.2(其中,所述混合的方法和条件可为本领域常规的方法和条件。所述的混合较佳地为:将α-酮戊二酸的四氢呋喃溶液滴加到所述喹唑啉衍生物的四氢呋喃溶液中。所述喹唑啉衍生物和所述α-酮戊二酸的摩尔比较佳地为1:1.1。所述喹唑啉衍生物的四氢呋喃溶液中,所述喹唑啉衍生物的浓度较佳地为12.5-25mg/mL;α-酮戊二酸的四氢呋喃溶液中,所述α-酮戊二酸的浓度较佳地为15.95-31.9mg/mL;所述反应的时间较佳地为0.5-24小时)。
在方法(27)中,所述的四氢呋喃与所述的喹唑啉衍生物的体积质量比可为60~120mL/g。
在方法(27)中,所述的马来酸与所述的喹唑啉衍生物的摩尔比值可为1.1~3.3。
在方法(27)中,所述的成盐温度可为10-30℃。
在方法(27)中,所述的成盐时间可为0.5-24小时。
所述的方法(27)可包括下述步骤:将所述喹唑啉衍生物的四氢呋喃溶液和马来酸的四氢呋喃溶液混合、反应,将析出的固体分离、干燥,即得(所述混合的方法和条件可为本领域常规的方法和条件。所述的混合较佳地为:将马来酸的四氢呋喃溶液滴加到所述喹唑啉衍生物的四氢呋喃溶液中。所述喹唑啉衍生物的四氢呋喃溶液中,所述喹唑啉衍生物的浓度较佳地为12.5-25mg/mL;马来酸的四氢呋喃溶液中,所述马来酸的浓度较佳地为12.56-25.32mg/mL;所述喹唑啉衍生物和所述马来酸的摩尔比较佳地为1:1.1-1:3.3;所述反应的时间较佳地为0.5-24小时)。
在方法(28)中,所述的四氢呋喃与所述的喹唑啉衍生物的体积质量比可为50~100mL/g。
在方法(28)中,所述的成盐温度可为10-30℃。
在方法(28)中,所述的成盐时间可为0.5-24小时。
所述的方法(28)可包括下述步骤:将所述喹唑啉衍生物的四氢呋喃溶液和1,5-萘二磺酸的四氢呋喃溶液混合、反应,将析出的固体分离、干燥,即得;其中,所述喹唑啉衍生物和所述1,5-萘二磺酸的摩尔比为1:1.1-1:1.5(其中,所述混合的方法和条件可为本领域常规的方法和条件。所述的混合较佳地为:将1,5-萘二磺酸的四氢呋喃溶液滴加到所述喹唑啉衍生物的四氢呋喃溶液中。所述喹唑啉衍生物和所述1,5-萘二磺酸的摩尔比较佳地为1:1.4。所述喹唑啉衍生物的四氢呋喃溶液中,所述喹唑啉衍生物的浓度较佳地为12.5-25mg/mL;1,5-萘二磺酸的四氢呋喃溶液中,所述1,5-萘二磺酸的浓度较佳地为39.3-78.6mg/mL;所述反应的时间较佳地为0.5-24小时)。
在方法(29)中,所述的二氯甲烷与所述的喹唑啉衍生物的体积质量比可为150~300mL/g。
在方法(29)中,所述的成盐温度可为10-30℃。
在方法(29)中,所述的成盐时间可为16~24小时。
所述的方法(29)可包括下述步骤:将所述喹唑啉衍生物的二氯甲烷溶液和丙二酸的二氯甲烷混悬液混合、反应,将析出的固体分离、干燥,即得;所述喹唑啉衍生物和所述丙二酸的摩尔比为1:2.0-1:2.3(其中,所述混合的方法和条件可为本领域常规的方法和条件。所述的混合较佳地为:将所述喹唑啉衍生物的二氯甲烷溶液滴加到丙二酸的二氯甲烷混悬液中。所述喹唑啉衍生物和所述丙二酸的摩尔比较佳地为1:2.2。其中,所述喹唑啉衍生物的二氯甲烷溶液中,所述喹唑啉衍生物的浓度较佳地为5-10mg/mL;丙二酸的二氯甲烷混悬液中,所述丙二酸的含量较佳地为3-5mg/mL;所述反应的时间较佳地为16-24小时)。
在方法(30)中,所述的二氯甲烷与所述的喹唑啉衍生物的体积质量比可为150~300mL/g。
在方法(30)中,所述的成盐温度可为10-30℃。
在方法(30)中,所述的成盐时间可为16~24小时。
所述的方法(30)可包括下述步骤:将所述喹唑啉衍生物的二氯甲烷溶液和丙二酸的二氯甲烷混悬液混合、反应,将析出的固体分离、干燥,即得;所述喹唑啉衍生物和所述丙二酸的摩尔比为1:3.0-1:3.4(其中,所述混合的方法和条件可为本领域常规的方法和条件。所述的混合较佳地为:将所述喹唑啉衍生物的二氯甲烷溶液滴加到丙二酸的二氯甲烷混悬液中。所述喹唑啉衍生物和所述丙二酸的摩尔比较佳地为1:3.3。所述喹唑啉衍生物的二氯甲烷溶液中,所述喹唑啉衍生物的浓度较佳地为5-10mg/mL;丙二酸的二 氯甲烷混悬液中,所述丙二酸的含量较佳地为5-10mg/mL;所述反应的时间较佳地为16-24小时)。
在方法(31)中,所述的四氢呋喃与所述的喹唑啉衍生物的体积质量比可为60~120mL/g。
在方法(31)中,所述的成盐温度可为10-30℃。
在方法(31)中,所述的成盐时间可为0.5-24小时。
所述的方法(31)可包括下述步骤:将所述喹唑啉衍生物的四氢呋喃溶液和1,5-萘二磺酸的四氢呋喃溶液混合、反应,将析出的固体分离、干燥,即得;其中,所述喹唑啉衍生物和所述1,5-萘二磺酸的摩尔比为1:2.2-1:3.3(其中,所述混合的方法和条件可为本领域常规的方法和条件。所述的混合较佳地为:将1,5-萘二磺酸的四氢呋喃溶液滴加到所述喹唑啉衍生物的四氢呋喃溶液中。所述喹唑啉衍生物的四氢呋喃溶液中,所述喹唑啉衍生物的浓度较佳地为12.5-25mg/mL;1,5-萘二磺酸的四氢呋喃溶液中,所述1,5-萘二磺酸的浓度较佳地为39.3-78.6mg/mL;所述反应的时间较佳地为0.5-24小时)。
在方法(32)中,所述的二氯甲烷与所述的喹唑啉衍生物的体积质量比可为150~300mL/g。
在方法(32)中,所述的成盐温度可为10-30℃。
在方法(32)中,所述的成盐时间可为16~24小时。
所述的方法(32)可包括下述步骤:将所述喹唑啉衍生物的二氯甲烷溶液和丁二酸的二氯甲烷混悬液混合、反应,将析出的固体分离、干燥,即得;所述喹唑啉衍生物和所述丁二酸的摩尔比为1:2.2-1:3.3(其中,所述混合的方法和条件可为本领域常规的方法和条件。所述的混合较佳地为:将所述喹唑啉衍生物的二氯甲烷溶液滴加到丁二酸的二氯甲烷混悬液中。所述喹唑啉衍生物的二氯甲烷溶液中,所述喹唑啉衍生物的浓度较佳地为5-10mg/mL;丁二酸的二氯甲烷混悬液中,所述丁二酸的含量较佳地为5-10mg/mL;所述反应的时间较佳地为16-24小时)。
在方法(33)中,所述的四氢呋喃与所述的喹唑啉衍生物的体积质量比可为60~120mL/g。
在方法(33)中,所述的成盐温度可为10-30℃。
在方法(33)中,所述的成盐时间可为0.5-24小时。
所述的方法(33)可包括下述步骤:将所述喹唑啉衍生物的四氢呋喃溶液和α-酮戊二酸的四氢呋喃溶液混合、反应,将析出的固体分离、干燥,即得;其中,所述喹唑啉衍生物和所述α-酮戊二酸的摩尔比为1:2.2-1:3.3(其中,所述混合的方法和条件可为本领 域常规的方法和条件。所述的混合较佳地为:将α-酮戊二酸的四氢呋喃溶液滴加到所述喹唑啉衍生物的四氢呋喃溶液中。所述喹唑啉衍生物的四氢呋喃溶液中,所述喹唑啉衍生物的浓度较佳地为12.5-25mg/mL;α-酮戊二酸的四氢呋喃溶液中,所述α-酮戊二酸的浓度较佳地为15.95-31.9mg/mL;所述反应的时间较佳地为0.5-24小时)。
在方法(34)中,所述的四氢呋喃与所述的喹唑啉衍生物的体积质量比可为50~100mL/g。
在方法(34)中,所述的对氯苯磺酸盐与所述的喹唑啉衍生物的摩尔比值可为1~1.2。
在方法(34)中,所述的成盐温度可为10-30℃。
在方法(34)中,所述的成盐时间可为0.5-24小时。
所述的方法(34)可包括下述步骤:将所述喹唑啉衍生物的四氢呋喃溶液和对氯苯磺酸的四氢呋喃溶液混合、反应,将析出的固体分离,干燥,即得(其中,所述混合的方法和条件可为本领域常规的方法和条件。所述的混合较佳地为:将对氯苯磺酸的四氢呋喃溶液滴加到所述喹唑啉衍生物的四氢呋喃溶液中。所述喹唑啉衍生物的四氢呋喃溶液中,所述喹唑啉衍生物的浓度较佳地为12.5-25mg/mL;对氯苯磺酸的四氢呋喃溶液中,所述对氯苯磺酸的浓度较佳地为21-42mg/mL;所述反应的时间较佳地为0.5-24小时。所述喹唑啉衍生物和所述1,5-萘二磺酸的摩尔比较佳地为1:1-1:1.2)。
本发明还提供了一种上述喹唑啉衍生物的盐在制备EGFR络氨酸激酶抑制剂、HER2络氨酸激酶抑制剂、HER4络氨酸激酶抑制剂、或者、预防或治疗肿瘤疾病的药物中的应用。
本发明还提供了一种药物组合物,其包含治疗和/或预防有效量的上述喹唑啉衍生物的盐,以及至少一种药学上可接受的赋形剂。
所述的药物组合物还可以包含所述喹唑啉衍生物、所述喹唑啉衍生物的溶剂合物(包括水合物合有机溶剂合物)、其他的所述喹唑啉衍生物的可药用的盐型、和、其他的所述喹唑啉衍生物的可药用的盐的溶剂合物(包括水合物合有机溶剂合物)中的一种或多种。
所述的喹唑啉衍生物可为任意晶型。
所述的所述喹唑啉衍生物的溶剂合物可为任意晶型。
所述的其他的所述喹唑啉衍生物的可药用的盐型可为任意晶型。
所述的其他的所述喹唑啉衍生物的可药用的盐的溶剂合物可为任意晶型。
其中,所述赋形剂可为本领域常规使用的赋形剂。所述赋形剂一般可选自下述物质:糖类,纤维素及其衍生物,淀粉或改性淀粉,固体无机物如磷酸钙、磷酸氢二钙、羟基磷灰石、硫酸钙、碳酸钙,半固体如脂质或石蜡,粘合剂如微晶纤维素、乙基纤维素、 羟甲基纤维素、羟丙基甲基纤维素、羟乙基纤维素,助流剂如胶态二氧化硅、轻质无水硅酸、结晶纤维素、滑石粉或硬脂酸镁,崩解剂如乙醇酸淀粉钠、交聚维酮、交联羧甲基纤维素、羧甲基纤维素钠、干玉米淀粉,润滑剂如硬脂酸、硬脂酸镁、硬脂酰富马酸钠、聚乙二醇。
所述药物组合物可为固态或液态,例如固体口服剂型,包括片剂、颗粒剂、散剂、丸剂和胶囊剂;液体口服剂型,包括溶液剂、糖浆剂、混悬剂、分散剂和乳剂;可注射制剂,包括溶液剂、分散剂和冻干剂。配方可适于活性成分的快速释放、延迟释放或调节释放。可以是常规的、可分散的、可咀嚼的、口腔溶解的或快速熔化的制剂。给药途径包括口服、静脉皮下注射、注射入组织给药、透皮给药、直肠给药、滴鼻给药等。
所述药物组合物可以使用本领域技术人员公知的方法来制备。制备所述药物组合物时,本发明的喹唑啉衍生物的盐或其晶型与一种或多种药学上可接受的赋形剂相混合,任选地与可药用的喹唑啉衍生物的其它晶型、其它无定形或盐型相混合,任选地与一种或多种其他的活性成分相混合。固体制剂可以通过直接混合、制粒等工艺来制备。
本发明中,“晶型”一词不仅理解为“晶体类型”或“晶体结构”;在技术方案中,“晶型”更理解为“具有特定晶体结构的物质”或“特定晶体类型的晶体”。例如,在技术方案中,“喹唑啉衍生物的一苯磺酸盐的晶型”可以理解为“具有特定晶体结构的喹唑啉衍生物的一苯磺酸盐”或“特定晶体类型的喹唑啉衍生物的一苯磺酸盐的晶体”。
本发明中,所有的X射线粉末衍射图均使用Cu靶的Kα谱线测得。
本发明中,所述“晶型”均被所示的X射线衍射图表征所证实。本领域技术人员能够理解,其中的实验误差取决于仪器的条件、样品的准备和样品的纯度。特别是,本领域技术人员公知,X射线衍射图通常会随着仪器的条件而有所改变。另外,峰角度的实验误差通常在5%或更少,这些角度的误差也应该被考虑进去,通常允许有±0.2°的误差。另外,由于样品高度等实验因素的影响,会造成峰角度的整体偏移,通常允许一定的偏移。因而,本领域技术人员可以理解的是,任何具有和本发明图谱中的特征峰相同或相似的图的晶型均属于本发明的范畴之内。
本发明中,所述室温为本领域常规意义上的室温,一般为10-30℃。
本发明中,饱和浓度均可按本领域常识,在制备方法的操作温度下进行试验测得。
本发明中,按本领域常识,在混合和反应过程中可以伴随搅拌的操作。所述搅拌可以采用本领域的常规方法,例如搅拌方式包括磁力搅拌、机械搅拌,所述搅拌的速度一般为50-1800转/分钟,较佳地为300-900转/分钟。
本发明中,按本领域常识,所述干燥的方法和条件可为本领域常规的方法和条件, 如鼓风干燥、减压干燥等。所述干燥的温度较佳地为20-60℃,更佳地为30-50℃;所述干燥的时间较佳地为1-24小时,更佳地为5-18小时,最佳地为5-10小时。当采用减压干燥时,压力较佳地小于0.09MPa。所述干燥可以在通风橱、鼓风烘箱或真空烘箱里进行。
本发明中,所述的分离的方法和条件可为本领域常规的方法和条件。所述分离的方法可以是过滤或离心等方式。所述过滤的操作一般为:用滤纸进行减压抽滤。所述离心一般采用高转速进行,离心速率可以是6000转/分。
本发明中,按本领域常识,根据动态水分吸附图(DVS)所得出的吸水量,其百分比为重量百分比。
在不违背本领域常识的基础上,上述各优选条件,可任意组合,即得本发明各较佳实例。
本发明所用试剂和原料均市售可得。
本发明的积极进步效果在于:与已知的喹唑啉衍生物相比,本发明的喹唑啉衍生物的盐对水溶性有一定的改善,其中一柠檬酸盐、一苯磺酸盐和一乙二磺酸盐还具有结晶性好,不易吸湿的优点。
附图说明
图1为本发明喹唑啉衍生物一柠檬酸盐晶型1的XRPD图谱。
图2为本发明喹唑啉衍生物一柠檬酸盐晶型1的TGA图谱。
图3为本发明喹唑啉衍生物一柠檬酸盐晶型1的DSC图谱。
图4为本发明喹唑啉衍生物一柠檬酸盐晶型1的DVS图谱。
图5为本发明喹唑啉衍生物一柠檬酸盐二水合物晶型5的XRPD图谱。
图6为本发明喹唑啉衍生物一柠檬酸盐二水合物晶型5的TGA图谱。
图7为本发明喹唑啉衍生物一柠檬酸盐二水合物晶型5的DSC图谱。
图8为本发明喹唑啉衍生物一柠檬酸盐二水合物晶型5的DVS图谱。
图9为本发明喹唑啉衍生物一柠檬酸盐晶型13的XRPD图谱。
图10为本发明喹唑啉衍生物一柠檬酸盐晶型13的TGA图谱。
图11为本发明喹唑啉衍生物一柠檬酸盐晶型13的DSC图谱。
图12为本发明喹唑啉衍生物一柠檬酸盐晶型13的DVS图谱。
图13为本发明喹唑啉衍生物一柠檬酸盐2.5水合物晶型14的XRPD图谱。
图14为本发明喹唑啉衍生物一柠檬酸盐2.5水合物晶型14的TGA图谱。
图15为本发明喹唑啉衍生物一柠檬酸盐2.5水合物晶型14的DCS图谱。
图16为本发明喹唑啉衍生物一柠檬酸盐2.5水合物晶型14的DVS图谱。
图17为本发明喹唑啉衍生物一柠檬酸盐二水合物晶型7的XRPD图谱。
图18为本发明喹唑啉衍生物一柠檬酸盐二水合物晶型7的TGA图谱。
图19为本发明喹唑啉衍生物一柠檬酸盐二水合物晶型7的DSC图谱。
图20为本发明喹唑啉衍生物一柠檬酸盐二水合物晶型7的DVS图谱。
图21为本发明喹唑啉衍生物一柠檬酸盐三水合物晶型10的XRPD图谱。
图22为本发明喹唑啉衍生物一柠檬酸盐三水合物晶型10的TGA图谱。
图23为本发明喹唑啉衍生物一柠檬酸盐三水合物晶型10的DSC图谱。
图24为本发明喹唑啉衍生物一柠檬酸盐三水合物晶型10的DVS图谱。
图25为本发明喹唑啉衍生物一柠檬酸盐二水合物晶型11的XRPD图谱。
图26为本发明喹唑啉衍生物一柠檬酸盐二水合物晶型11的TGA图谱。
图27为本发明喹唑啉衍生物一柠檬酸盐二水合物晶型11的DSC图谱。
图28为本发明喹唑啉衍生物一柠檬酸盐二水合物晶型11的DVS图谱。
图29为本发明喹唑啉衍生物一柠檬酸盐半乙醇合物晶型2的XRPD图谱。
图30为本发明喹唑啉衍生物一柠檬酸盐半乙醇合物晶型2的TGA图谱。
图31为本发明喹唑啉衍生物一柠檬酸盐半乙醇合物晶型2的DCS图谱。
图32为本发明喹唑啉衍生物一柠檬酸盐二四氢呋喃合物晶型3的XRPD图谱。
图33为本发明喹唑啉衍生物一柠檬酸盐二四氢呋喃合物晶型3的TGA图谱。
图34为本发明喹唑啉衍生物一柠檬酸盐半1,4-二氧六环合物晶型4的XRPD图谱。
图35为本发明喹唑啉衍生物一柠檬酸盐半1,4-二氧六环合物晶型4的TGA图谱。
图36为本发明喹唑啉衍生物一柠檬酸盐半氯仿合物晶型6的XRPD图谱。
图37为本发明喹唑啉衍生物一柠檬酸盐半氯仿合物晶型6的TGA图谱。
图38为本发明喹唑啉衍生物一乙二磺酸盐的XRPD图谱。
图39为本发明喹唑啉衍生物一乙二磺酸盐的TGA图谱。
图40为本发明喹唑啉衍生物一乙二磺酸盐的DSC图谱。
图41为本发明喹唑啉衍生物一乙二磺酸盐的DVS图谱。
图42为本发明喹唑啉衍生物一硫酸盐的XRPD图谱。
图43为本发明喹唑啉衍生物一硫酸盐的TGA图谱。
图44为本发明喹唑啉衍生物一硫酸盐的DSC图谱。
图45为本发明喹唑啉衍生物一硫酸盐的DVS图谱。
图46为本发明喹唑啉衍生物二硫酸盐的XRPD图谱。
图47为本发明喹唑啉衍生物二硫酸盐的TGA图谱。
图48为本发明喹唑啉衍生物二硫酸盐的DSC图谱。
图49为本发明喹唑啉衍生物二硫酸盐的DVS图谱。
图50为本发明喹唑啉衍生物一苯磺酸盐的XRPD图谱。
图51为本发明喹唑啉衍生物一苯磺酸盐的TGA图谱。
图52为本发明喹唑啉衍生物一苯磺酸盐的DSC图谱。
图53为本发明喹唑啉衍生物一苯磺酸盐的DVS图谱。
图54为本发明喹唑啉衍生物一盐酸盐一水合物的XRPD图谱。
图55为本发明喹唑啉衍生物一盐酸盐一水合物的TGA图谱。
图56为本发明喹唑啉衍生物一盐酸盐一水合物的DSC图谱。
图57为本发明喹唑啉衍生物一盐酸盐一水合物的DVS图谱。
图58为本发明喹唑啉衍生物一D-葡萄糖酸盐的XRPD图谱。
图59为本发明喹唑啉衍生物一D-葡萄糖酸盐的TGA图谱。
图60为本发明喹唑啉衍生物一D-葡萄糖酸盐的DSC图谱。
图61为本发明喹唑啉衍生物一D-葡萄糖酸盐的DVS图谱。
图62为本发明喹唑啉衍生物一L-酒石酸盐的XRPD图谱。
图63为本发明喹唑啉衍生物一L-酒石酸盐的TGA图谱。
图64为本发明喹唑啉衍生物一L-酒石酸盐四水合物的XRPD图谱。
图65为本发明喹唑啉衍生物一L-酒石酸盐四水合物的TGA图谱。
图66为本发明喹唑啉衍生物一L-酒石酸盐四水合物的DSC图谱。
图67为本发明喹唑啉衍生物一L-酒石酸盐四水合物的DVS图谱。
图68为本发明喹唑啉衍生物二磷酸盐的XRPD图谱。
图69为本发明喹唑啉衍生物二磷酸盐的TGA图谱。
图70为本发明喹唑啉衍生物一帕莫酸盐的XRPD图谱。
图71为本发明喹唑啉衍生物一对甲苯磺酸盐的XRPD图谱。
图72为本发明喹唑啉衍生物一对甲苯磺酸盐的TGA图谱。
图73为本发明喹唑啉衍生物二乙醇酸盐的XRPD图谱。
图74为本发明喹唑啉衍生物一丙二酸盐的XRPD图谱。
图75为本发明喹唑啉衍生物一丙二酸盐的TGA图谱。
图76为本发明喹唑啉衍生物一丁二酸盐的XRPD图谱。
图77为本发明喹唑啉衍生物一α-酮戊二酸盐的XRPD图谱。
图78为本发明喹唑啉衍生物一α-酮戊二酸盐的TGA图谱。
图79为本发明喹唑啉衍生物二马来酸盐的XRPD图谱。
图80为本发明喹唑啉衍生物二马来酸盐的TGA图谱。
图81为本发明喹唑啉衍生物一1,5-萘二磺酸盐的XRPD图谱。
图82为本发明喹唑啉衍生物二丙二酸盐的XRPD图谱。
图83为本发明喹唑啉衍生物二丙二酸盐的TGA图谱。
图84为本发明喹唑啉衍生物三丙二酸盐的XRPD图谱。
图85为本发明喹唑啉衍生物三丙二酸盐的TGA图谱。
图86为本发明喹唑啉衍生物二1,5-萘二磺酸盐的XRPD图谱。
图87为本发明喹唑啉衍生物二1,5-萘二磺酸盐的TGA图谱。
图88为本发明喹唑啉衍生物三丁二酸盐的XRPD图谱。
图89为本发明喹唑啉衍生物三丁二酸盐的TGA图谱。
图90为本发明喹唑啉衍生物二α-酮戊二酸盐的XRPD图谱。
图91为本发明喹唑啉衍生物二α-酮戊二酸盐的TGA图谱。
图92为本发明喹唑啉衍生物一对氯苯磺酸盐的XRPD图谱。
图93为本发明喹唑啉衍生物一柠檬酸盐的1H NMR图谱。
图94为本发明喹唑啉衍生物一苯磺酸盐的1H NMR图谱。
图95为本发明喹唑啉衍生物一帕莫酸盐的1H NMR图谱。
图96为本发明喹唑啉衍生物二乙醇酸盐的1H NMR图谱。
图97为本发明喹唑啉衍生物一丙二酸盐的1H NMR图谱。
图98为本发明喹唑啉衍生物一丁二酸盐的1H NMR图谱。
图99为本发明喹唑啉衍生物一1,5-萘二磺酸盐的1H NMR图谱。
图100为本发明各喹唑啉衍生物的盐的药时曲线图。
具体实施方式
下面通过实施例的方式进一步说明本发明,但并不因此将本发明限制在所述的实施例范围之中。下列实施例中未注明具体条件的实验方法,按照常规方法和条件,或按照商品说明书选择。
检测仪器及方法:
X射线粉末衍射(XRPD)所使用的仪器为Bruker D8 Advance Diffractometer,配置 有θ-2θ测角仪、Mo单色仪、Lynxeye探测器。采集软件是Diffrac Plus XRD Commander,分析软件是MDI Jade 5.0。仪器在使用前用仪器自带的标准品(一般为刚玉)校准。检测条件为:2θ扫描角度范围3~40°,步长0.02°,速度0.2秒/步。检测过程:采用铜靶波长为1.54nm的Ka X-射线,在40kV和40mA的操作条件下,样品在室温条件下测试,把需要检测的样品放在无反射板上。除非特别说明,样品在检测前未经研磨。
差热分析(DSC)数据采自于TA Instruments Q200MDSC,仪器控制软件是Thermal Advantage,分析软件是Universal Analysis。通常取1~10毫克的样品放置于未加盖(除非特别说明)的铝坩埚内,以10℃/分钟的升温速度在40毫升/分钟干燥N2的保护下将样品从室温升至250℃,同时TA软件记录样品在升温过程中的热量变化。
热重分析(TGA)数据采自于TA Instruments Q500TGA,仪器控制软件是Thermal Advantage,分析软件是Universal Analysis。通常取5~15mg的样品放置于白金坩埚内,采用分段高分辨检测的方式,以10℃/分钟的升温速度在40毫升/分钟干燥N2的保护下将样品从室温升至300℃,同时TA软件记录样品在升温过程中的重量变化。
等温吸附分析(DVS)数据采自于TA Instruments Q5000TGA,仪器控制软件是Thermal Advantage,分析软件是Universal Analysis。通常取1-10mg的样品放置于白金坩埚内,TA软件记录样品在相对湿度从20%到80%变化过程中的重量变化。根据样品的具体情况,也会对样品采用不同的吸附和脱吸附步骤。
1H NMR检测使用Bruker Ascend TM500,通常采用全频激发,单脉冲,30°角激发,扫描16次,数字化正交检测,控温298K,氘代试剂采用DMSO。
HPLC检测条件如下:
流动相A,甲酸∶水=0.1∶99.9;
流动相B,甲酸∶乙腈=0.1∶99.9;
洗脱梯度:
Figure PCTCN2017102998-appb-000011
流速0.3mL/min;色谱柱Eclipse Plus-C18 2.1mm*50.0mm*1.8μm;柱温40℃;波长254nm。
如无特别说明,实施例均在室温条件下操作。
如无特别说明,实施例中所用的各种试剂均为市售购买。
下述实施例中,所用的喹唑啉衍生物(即式1化合物)按照CN102898386中记载的方法制得。混合和反应过程中伴随搅拌操作,搅拌的速度一般在50-1800转/分钟。“过夜”的时间一般为12-24小时。
实施例1 喹唑啉衍生物一柠檬酸盐晶型1的制备
2g式1化合物溶于80mL四氢呋喃,0.762g柠檬酸溶于15mL四氢呋喃,将酸溶液滴加至碱溶液中,室温搅拌0.5小时析出固体,搅拌过夜,过滤洗涤,45℃真空干燥箱干燥,得2.466g喹唑啉衍生物一柠檬酸盐晶型1,收率为89.3%。
XRPD图谱如图1所示。
TGA图谱如图2所示,显示分解温度为175℃。
DSC图谱如图3所示,显示熔点为165-169℃。
DVS图谱如图4所示,显示样品在20-80%RH范围内重量变化0.21%。
采用4g式1化合物溶于80mL四氢呋喃,2.288g柠檬酸溶于22.5mL四氢呋喃,其他条件不变进行制备,所得产物仍为晶型1。
实施例2 喹唑啉衍生物一柠檬酸盐二水合物晶型5的制备
取30mg实施例1中制备的晶型1,加入2mL水,于60℃晶浆16小时,离心,室温真空干燥,得到26mg喹唑啉衍生物一柠檬酸盐二水合物晶型5,摩尔收率为82.4%。
XRPD图谱如图5所示。
TGA图谱如图6所示,显示分解温度为145℃,分解前有5.3%的失重,含两摩尔水。
DSC图谱如图7所示,显示123℃前有脱水的吸热峰。
DVS图谱如图8所示,0-80%RH范围内重量变化为0.4%。
实施例3 喹唑啉衍生物一柠檬酸盐二水合物晶型5的制备
取30mg实施例1中制备的晶型1,加入3mL正丁醇,于室温下晶浆16小时,离心,室温真空干燥,得到24mg所述二水合物晶型5,摩尔收率为76.1%。
实施例4 喹唑啉衍生物一柠檬酸盐二水合物晶型5的制备
取10mg实施例1中制备的晶型1,加入1mL水和1mL甲醇,于室温下,敞口挥发至干,得到7mg所述二水合物晶型5,摩尔收率为66.7%。
采用100mg实施例1中制备的晶型1,加入1mL水和1mL甲醇,其他条件不变进行制备,所得产物仍为二水合物晶型5。
实施例5 喹唑啉衍生物一柠檬酸盐二水合物晶型5的制备
将实施例4中的“甲醇”替换为“乙醇”,其它操作同实施例4,得到所述二水合物晶型5。
实施例6 喹唑啉衍生物一柠檬酸盐二水合物晶型5的制备
将实施例4中的“甲醇”替换为“异丙醇”,其它操作同实施例4,得到所述二水合物晶型5。
实施例7 喹唑啉衍生物一柠檬酸盐二水合物晶型5的制备
取10mg实施例1中制备的晶型1,加入1mL水和1mL甲醇,于60℃敞口挥发至干,得到8mg所述二水合物晶型5,摩尔收率为76.1%。
实施例8 喹唑啉衍生物一柠檬酸盐二水合物晶型5的制备
将实施例7中的“甲醇”替换为“乙醇”,其它操作同实施例7,得到所述二水合物晶型5。
实施例9 喹唑啉衍生物一柠檬酸盐二水合物晶型5的制备
将实施例7中的“甲醇”替换为“异丙醇”,其它操作同实施例7,得到所述二水合物晶型5。
实施例10 喹唑啉衍生物一柠檬酸盐二水合物晶型5的制备
取10mg实施例1中制备的晶型1,加入1mL甲醇和1mL丙酮,于60℃水浴中搅拌5分钟保证其溶清,并在水浴中自然冷却至室温,析出固体离心,室温真空干燥,得到6mg所述二水合物晶型5,摩尔收率为57.0%。
实施例11 喹唑啉衍生物一柠檬酸盐二水合物晶型5的制备
将实施例10中的“甲醇”替换为“二氧六环”,其它操作同实施例10,得到所述二水合物晶型5。
实施例3-11制备的样品具有与实施例2相似的XRPD谱图和DSC谱图(未示出),说明这些实施例制备的样品与实施例2相同。
实施例12 喹唑啉衍生物一柠檬酸盐晶型13的制备
取10mg实施例1制备的晶型1,加入2.4mL正丁醇,于60℃水浴中搅拌5分钟保证其溶清,并在水浴中自然冷却至室温,析出固体离心,室温真空干燥,得到8mg所述晶型13,收率为80%。
XRPD图谱如图9所示。
TGA图谱如图10所示,显示分解温度为144℃。
DSC图谱如图11所示,显示熔点为127-138℃。
DVS图谱如图12所示,显示20-80%RH范围内重量变化0.2%。
采用20mg实施例1中制备的晶型1,其他条件不变进行制备,所得产物仍为晶型13。
实施例13 喹唑啉衍生物一柠檬酸盐晶型13的制备
取10mg实施例1中制备的晶型1,加入1mL水和1mL乙腈,于60℃敞口挥发至干,得到7mg所述晶型13,收率为70%。
实施例13制备的样品具有与实施例12相似的XRPD谱图和DSC谱图(未示出),说明这些实施例制备的样品与实施例12相同。
采用100mg实施例1中制备的晶型1,其他条件不变进行制备,所得产物仍为晶型13。
实施例14 喹唑啉衍生物一柠檬酸盐2.5水合物晶型14的制备
取10mg实施例1制备的晶型1,加入0.05mL二甲基亚砜,超声保证其溶清,并将该溶液快速加入含3mL水的反应瓶中,并搅拌5分钟,离心,室温真空干燥,得到8.3mg所述2.5水合物晶型14,摩尔收率为78.0%。
XRPD图谱如图13所示。
TGA图谱如图14所示,显示分解温度为144℃,分解前有6.3%的失重,含2.5摩尔水。
DSC图谱如图15所示,显示130℃前有脱水的吸热峰。
DVS图谱如图16所示,显示在10-80%RH范围内重量变化0.7%,10%以下脱去部分结晶水。
采用20mg实施例1中制备的晶型1,其他条件不变进行制备,所得产物仍为2.5水合物晶型14。
实施例15 喹唑啉衍生物一柠檬酸盐2.5水合物晶型14的制备
取10mg实施例1制备的晶型1,加入1ml丙酮和1mL水,于60℃敞口挥发溶剂至干,得到8mg所述2.5水合物晶型14,摩尔收率为75.1%。
实施例15制备的样品具有与实施例14相似的XRPD谱图和DSC谱图(未示出),说明这些实施例制备的样品与实施例14相同。
实施例16 喹唑啉衍生物一柠檬酸盐二水合物晶型7的制备
取10mg实施例1制备的晶型1,加入1mL水,于室温下晶浆16小时,离心,室温真空干燥,得到9mg所述二水合物晶型7,摩尔收率为85.6%。
XRPD图谱如图17所示。
TGA图谱如图18所示,显示分解温度为145℃,分解前有4.7%的失重,含2摩尔 水。
DSC图谱如图19所示,显示79℃前及115-117℃之间有两个脱水的吸热峰。
DVS图谱如图20所示,显示在10-80%RH范围内重量变化0.38%,相对湿度10%以下会脱去一个水分子,脱去的水分子在相对湿度30%时会重新结合。
实施例17 喹唑啉衍生物一柠檬酸盐三水合物晶型10的制备
取10mg实施例1制备的晶型1,加入2mL甲醇,于室温下敞口挥发溶剂至干,得到8mg所述三水合物晶型10,摩尔收率为74.2%。
XRPD图谱如图21所示。
TGA图谱如图22所示,显示分解温度为159℃,分解前有7.7%的失重,含3摩尔水。
DSC图谱如图23所示,显示117℃前有脱水的吸热峰。
DVS图谱如图24所示,显示相对湿度50%以下会脱去3.5%结晶水,但在50-80%相对湿度范围内水合物稳定,重量变化1.1%。
实施例18 喹唑啉衍生物一柠檬酸盐三水合物晶型10的制备
取10mg实施例1制备的晶型1,加入1mL水和1mL正丙醇,于室温下敞口挥发溶剂至干,得到8mg所述三水合物晶型10,摩尔收率为74.2%。
采用20mg实施例1中制备的晶型1,其他条件不变进行制备,所得产物仍为三水合物晶型10。
实施例19 喹唑啉衍生物一柠檬酸盐三水合物晶型10的制备
将实施例18中的“正丙醇”替换为“四氢呋喃”,其它操作同实施例18,得到所述三水合物晶型10。
实施例20 喹唑啉衍生物一柠檬酸盐三水合物晶型10的制备
将实施例18中的“正丙醇”替换为“乙腈”,其它操作同实施例18,得到所述三水合物晶型10。
实施例18-20制备的样品具有与实施例17相似的XRPD谱图和DSC谱图(未示出),说明这些实施例制备的样品与实施例17相同。
实施例21 喹唑啉衍生物一柠檬酸盐二水合物晶型11的制备
取10mg实施例1制备的晶型1,加入5mL异丙醇,于60℃水浴中搅拌5分钟保证其溶清,并在水浴中自然冷却至室温,析出固体离心,室温真空干燥,得到7.5mg所述二水合物晶型11,收率为71.3%。
XRPD图谱如图25所示。
TGA图谱如图26所示,显示分解温度为142℃,分解前有4.8%的失重,含2摩尔水。
DSC图谱如图27所示,显示71℃前有脱水的吸热峰。
DVS图谱如图28所示,显示在50-80%相对湿度范围内水合物稳定存在,重量变化5.3%,相对湿度50%以下会脱去结晶水。
实施例22 喹唑啉衍生物一柠檬酸盐二水合物晶型11的制备
将实施例21中的“异丙醇”替换为“正丙醇”,其它操作同实施例21,得到所述二水合物晶型11。
实施例23 喹唑啉衍生物一柠檬酸盐二水合物晶型11的制备
取10mg实施例1制备的晶型1,加1mL甲醇和1mL乙醇,于室温下晶浆16小时,离心,室温真空干燥,得到6.8mg所述二水合物晶型11,收率为64.7%。
实施例24 喹唑啉衍生物一柠檬酸盐二水合物晶型11的制备
将实施例23中的“甲醇”替换为“硝基甲烷”,其它操作同实施例23,得到所述二水合物晶型11。
实施例25 喹唑啉衍生物一柠檬酸盐二水合物晶型11的制备
将实施例23中的“甲醇”替换为“乙腈”,其它操作同实施例23,得到所述二水合物晶型11。
实施例26 喹唑啉衍生物一柠檬酸盐二水合物晶型11的制备
取10mg实施例1制备的晶型1,加1mL甲醇和1mL乙醇,于60℃水浴中搅拌5分钟保证其溶清,并在水浴中自然冷却至室温,析出固体离心,室温真空干燥,得到7mg所述二水合物晶型11,收率为66.6%。
实施例27 喹唑啉衍生物一柠檬酸盐二水合物晶型11的制备
将实施例26中的“甲醇”替换为“硝基甲烷”,其它操作同实施例26,得到所述二水合物晶型11。
实施例28 喹唑啉衍生物一柠檬酸盐二水合物晶型11的制备
将实施例26中的“甲醇”替换为“乙腈”,其它操作同实施例26,得到所述二水合物晶型11。
实施例22-28制备的样品具有与实施例21相似的XRPD谱图和DSC谱图(未示出),说明这些实施例制备的样品与实施例21相同。
实施例29 喹唑啉衍生物一柠檬酸盐半乙醇合物晶型2的制备
取10mg实施例1制备的晶型1,加入0.4mL乙醇,于60℃搅拌16小时,离心, 室温真空干燥,得到8mg所述半乙醇合物晶型2,摩尔收率为77.4%。
XRPD图谱如图29所示。
TGA图谱如图30所示,显示分解温度为142℃,分解前有3.2%的失重,含0.5摩尔乙醇。
DSC图谱如图31所示,显示89-120℃之间有脱去乙醇的吸热峰。
实施例30 喹唑啉衍生物一柠檬酸盐二四氢呋喃合物晶型3的制备
取10mg实施例1制备的晶型1,加入0.4mL四氢呋喃,于室温搅拌16小时,离心,室温真空干燥,得到9mg所述二四氢呋喃合物晶型3,摩尔收率为73.7%。
XRPD图谱如图32所示。
TGA图谱如图33所示,显示分解温度为169℃,分解前有17.3%的失重,含2摩尔四氢呋喃。
实施例31 喹唑啉衍生物一柠檬酸盐二四氢呋喃合物晶型3的制备
取10mg实施例1制备的晶型1,加入0.4mL四氢呋喃,于60℃搅拌16小时,离心,室温真空干燥,得到所述二四氢呋喃合物晶型3。
实施例31制备的样品具有与实施例30相似的XRPD谱图,说明这些实施例制备的样品与实施例30相同。
实施例32 喹唑啉衍生物一柠檬酸盐半1,4-二氧六环合物晶型4的制备
取10mg实施例1制备的晶型1,加1.2mL二氧六环,于60℃水浴中搅拌5分钟保证其溶清,并在水浴中自然冷却至室温,析出固体离心,室温真空干燥,得到6mg所述半1,4-二氧六环合物晶型4,收率为56.4%。
XRPD图谱如图34所示。
TGA图谱如图35所示,显示分解温度为173℃,分解前有6.6%的失重,含0.5摩尔二氧六环。
采用20mg实施例1制备的晶型1,加1.2mL二氧六环,其他条件不变进行制备,所得产物仍为半1,4-二氧六环合物晶型4。
实施例33 喹唑啉衍生物一柠檬酸盐半氯仿合物晶型6的制备
取10mg实施例1制备的晶型1,加0.4mL氯仿,于室温下搅拌16小时,离心,室温真空干燥,得到7mg所述半氯仿合物晶型6,收率为64.4%。
XRPD图谱如图36所示。
TGA图谱如图37所示,显示分解温度为173℃,分解前有7.3%的失重,含0.5摩尔氯仿。
实施例34 喹唑啉衍生物一乙二磺酸盐的制备
10mg式1化合物溶于0.8mL四氢呋喃,4.15mg乙二磺酸溶于0.2mL四氢呋喃,将乙二磺酸的四氢呋喃溶液缓慢滴加至式1化合物的四氢呋喃溶液中,滴加过程中有固体析出,搅拌过夜,离心洗涤烘干得到该盐。
XRPD图谱如图38所示。
TGA图谱如图39所示,显示分解温度为250℃,分解前有1.2%的失重。其结合HPLC定量得到游离碱的实际含量为74.2%,与理论值72.6%接近,故该盐中酸碱摩尔比为1∶1。
DSC图谱如图40所示,显示样品没有熔点。
DVS图谱如图41所示,显示在20-80%相对湿度范围内重量变化1.46%。
采用20mg式1化合物,16.6mg乙二磺酸溶于0.4mL四氢呋喃,其他条件不变进行制备,所得产物仍为具有相同XRPD的喹唑啉衍生物一乙二磺酸盐。
实施例35 喹唑啉衍生物一硫酸盐的制备
10mg式1化合物溶于0.8mL四氢呋喃,含H2SO4 1.95mg的浓硫酸溶于0.2mL四氢呋喃,将硫酸的四氢呋喃溶液缓慢滴加至式1化合物的四氢呋喃溶液中,即有浑浊产生,搅拌过夜,离心洗涤烘干得到该盐。
XRPD图谱如图42所示。
TGA图谱如图43所示,显示分解温度为230℃,分解前有7.5%的失重。其结合HPLC定量得到游离碱的实际含量为87.2%,与理论值83.6%接近,故该盐中酸碱摩尔比为1∶1。
DSC图谱如图44所示,显示样品在124℃前有一吸热峰,样品熔点为165℃。
DVS图谱如图45所示,显示在20-80%相对湿度范围内重量变化11.68%。
采用20mg式1化合物,含H2SO4 3.9mg的浓硫酸,其他条件不变进行制备,所得产物仍为具有相同XRPD的喹唑啉衍生物一硫酸盐。
采用20mg式1化合物,含H2SO4 5.06mg的浓硫酸溶于0.26mL四氢呋喃,其他条件不变进行制备,所得产物仍为具有相同XRPD的喹唑啉衍生物一硫酸盐。
实施例36 喹唑啉衍生物二硫酸盐的制备
10mg式1化合物溶于0.8mL四氢呋喃,含H2SO4 5.85mg的浓硫酸溶于0.2mL四氢呋喃,将式1化合物的四氢呋喃溶液缓慢滴加至硫酸的四氢呋喃溶液中,即有浑浊产生,搅拌过夜,离心洗涤烘干得到该盐。
XRPD图谱如图46所示。
TGA图谱如图47所示,显示分解温度为250℃,130℃前有3.0%的失重。其结合HPLC定量得到游离碱的实际含量为76.7%,与理论值72.0%接近,故该盐中酸碱摩尔比为2∶1。
DSC图谱如图48所示,显示样品在74℃前和114-160℃之间有吸热峰,样品在200℃之内未见熔融峰。
DVS图谱如图49所示,显示在20-80%相对湿度范围内重量变化2.0%。
采用20mg式1化合物,含H2SO4 8.56mg的浓硫酸溶于0.15mL四氢呋喃,其他条件不变进行制备,所得产物仍为具有相同XRPD的喹唑啉衍生物二硫酸盐。
采用10mg式1化合物,含H2SO4 6.42mg的浓硫酸溶于0.2mL四氢呋喃,其他条件不变进行制备,所得产物仍为具有相同XRPD的喹唑啉衍生物二硫酸盐。
实施例37 喹唑啉衍生物一苯磺酸盐的制备
10mg式1化合物溶于0.8mL四氢呋喃,3.14mg苯磺酸溶于0.2mL四氢呋喃,将苯磺酸的四氢呋喃溶液缓慢滴加至式1化合物的四氢呋喃溶液中,搅拌过夜有固体析出,离心洗涤烘干得到该盐。
XRPD图谱如图50所示。
TGA图谱如图51所示,显示分解温度为199℃,分解前没有明显失重。
DSC图谱如图52所示,显示样品熔点为199℃,熔融后立即分解。
DVS图谱如图53所示,显示在20-80%相对湿度范围内重量变化0.3%。
采用20mg式1化合物,6.28mg苯磺酸,其他条件不变进行制备,所得产物仍为具有相同XRPD的喹唑啉衍生物一苯磺酸盐。
采用20mg式1化合物,8.17mg苯磺酸溶于0.26mL四氢呋喃,其他条件不变进行制备,所得产物仍为具有相同XRPD的喹唑啉衍生物一苯磺酸盐。
实施例38 喹唑啉衍生物一盐酸盐一水合物的制备
10mg式1化合物溶于0.8mL四氢呋喃,含HCl 2.2mg的浓盐酸溶于0.2mL四氢呋喃,将盐酸的四氢呋喃溶液缓慢滴加至式1化合物的四氢呋喃溶液中,有固体析出,搅拌过夜,离心洗涤烘干得到该盐。
XRPD图谱如图54所示。
TGA图谱如图55所示,显示样品在156℃有少量分解,228℃开始大量分解,分解前有3.3%的失重,含1摩尔水。其结合HPLC定量得到游离碱的实际含量为93.4%,与理论值93.2%接近,故该盐中酸碱摩尔比为1∶1。
DSC图谱如图56所示,显示样品没有熔点。
DVS图谱如图57所示,显示在20-80%相对湿度范围内重量变化0.17%。
采用20mg式1化合物,含HCl 1.59mg的浓盐酸溶于0.072mL四氢呋喃,其他条件不变进行制备,所得产物仍为具有相同XRPD的喹唑啉衍生物一盐酸盐一水合物。
采用10mg式1化合物,含HCl 2.39mg的浓盐酸溶于0.21mL四氢呋喃,其他条件不变进行制备,所得产物仍为具有相同XRPD的喹唑啉衍生物一盐酸盐一水合物。
实施例39 喹唑啉衍生物一D-葡萄糖酸盐的制备
10mg式1化合物溶于2mL二氯甲烷,3.89mg D-葡萄糖酸加入1mL二氯甲烷形成混悬液,将式1化合物的二氯甲烷溶液缓慢滴加至D-葡萄糖酸的二氯甲烷溶液中,搅拌过夜有固体析出,离心洗涤烘干得到该盐。
XRPD图谱如图58所示。
TGA图谱如图59所示,显示分解温度为180℃,分解前没有明显失重。其结合HPLC定量得到游离碱的实际含量为64.5%,与理论值72.0%接近,同时,DSC图60表明该产物中含有部分游离D-葡萄糖酸(于D-葡萄糖酸的熔点131℃处有吸热峰),故该盐中酸碱摩尔比为1∶1。
DSC图谱如图60所示,显示样品熔点为193℃,熔融后样品分解。
DVS图谱如图61所示,显示在20-80%相对湿度范围内重量变化0.12%。
采用20mg式1化合物,23.62mg D-葡萄糖酸加入7.87mL二氯甲烷或者4.72mL二氯甲烷形成混悬液,其他条件不变进行制备,所得产物仍为具有相同XRPD的喹唑啉衍生物一D-葡萄糖酸盐。
实施例40 喹唑啉衍生物一L-酒石酸盐(晶型15)的制备
10mg式1化合物溶于0.8mL四氢呋喃,2.98mgL-酒石酸溶于0.2mL四氢呋喃,将L-酒石酸的四氢呋喃溶液缓慢滴加至式1化合物的四氢呋喃溶液中,搅拌过夜有固体析出,离心洗涤烘干得到该盐。
XRPD图谱如图62所示。
TGA图谱如图63所示,显示样品198℃开始分解,分解前有8.1%的失重。其结合HPLC定量得到游离碱的实际含量为72.0%,与理论值77.0%接近,故该盐中酸碱摩尔比为1∶1。
采用20mg式1化合物,5.96mgL-酒石酸,其他条件不变进行制备,所得产物仍为具有相同XRPD的喹唑啉衍生物一L-酒石酸盐(晶型15)。
实施例41 喹唑啉衍生物一L-酒石酸盐四水合物(晶型16)的制备
30mg式1化合物溶于2.5mL四氢呋喃,17.87mgL-酒石酸溶于1mL四氢呋喃,将 式1化合物的四氢呋喃溶液缓慢滴加至L-酒石酸的四氢呋喃溶液中,搅拌过夜有固体析出,离心洗涤,加水溶清搅拌6小时至固体完全析出,离心除去残留水得到该盐。
XRPD图谱如图64所示。
TGA图谱如图65所示,显示样品194℃开始分解,分解前有9.5%的失重。
DSC图谱如图66所示,显示样品在106℃前有吸热峰,样品没有熔点。
DVS图谱如图67所示,显示在20-80%相对湿度范围内重量变化0.8%,在10%相对湿度快速脱去大量水。
实施例42 喹唑啉衍生物二磷酸盐的制备
10mg式1化合物溶于0.8mL四氢呋喃,4.56mg 85%磷酸溶于0.5mL四氢呋喃,将磷酸的四氢呋喃溶液缓慢滴加至式1化合物的四氢呋喃溶液中,立即析出固体,搅拌过夜,离心洗涤烘干得到该盐。
XRPD图谱如图68所示。
TGA图谱如图69所示,显示样品234℃开始分解,分解前有7.1%的失重。其结合HPLC定量得到游离碱的实际含量为73.3%,与理论值72.0%接近,故该盐中酸碱摩尔比为2∶1。
采用20mg式1化合物,含磷酸4.28mg的85%磷酸溶于0.28mL四氢呋喃,其他条件不变进行制备,所得产物仍为具有相同XRPD的喹唑啉衍生物二磷酸盐。
采用10mg式1化合物,含磷酸6.42mg的85%磷酸溶于0.5mL四氢呋喃,其他条件不变进行制备,所得产物仍为具有相同XRPD的喹唑啉衍生物二磷酸盐。
实施例43 喹唑啉衍生物一帕莫酸盐的制备
10mg式1化合物溶于0.8mL四氢呋喃,7.71mg帕莫酸加入0.5mL四氢呋喃中形成混悬液,将式1化合物的四氢呋喃溶液缓慢滴加至帕莫酸的四氢呋喃混悬液中,帕莫酸逐渐溶解,搅拌1小时后有固体析出,搅拌过夜,离心洗涤烘干得到该盐。
XRPD图谱如图70所示。
采用20mg式1化合物,5mg或10mg帕莫酸,其他条件不变进行制备,所得产物仍为具有相同XRPD的喹唑啉衍生物一帕莫酸盐。
实施例44 喹唑啉衍生物一对甲苯磺酸盐的制备
10mg式1化合物溶于0.8mL氯仿,4.53mg对甲苯磺酸一水合物溶于0.1mL乙醇,将对甲苯磺酸的乙醇溶液缓慢滴加至式1化合物的氯仿溶液中,搅拌过夜后有固体析出,离心洗涤烘干得到该盐。
XRPD图谱如图71所示。
TGA图谱如图72所示,显示样品245℃开始分解,分解前没有失重。其结合HPLC定量得到游离碱的实际含量为77.4%,与理论值74.6%接近,故该盐中酸碱摩尔比为1∶1。
采用20mg式1化合物,9.06mg对甲苯磺酸一水合物,其他条件不变进行制备,所得产物仍为具有相同XRPD的喹唑啉衍生物甲苯磺酸盐。
实施例45 喹唑啉衍生物二乙醇酸盐的制备
10mg式1化合物溶于2mL二氯甲烷,3.1mg乙醇酸加入0.5mL二氯甲烷中形成混悬液,将式1化合物的二氯甲烷溶液缓慢滴加至乙醇酸的二氯甲烷混悬液中,搅拌过夜有固体析出,离心洗涤烘干得到该盐。
XRPD图谱如图73所示。
采用20mg式1化合物,2.5mg或者5mg乙醇酸,其他条件不变进行制备,所得产物仍为具有相同XRPD的喹唑啉衍生物二乙醇酸盐。
实施例46 喹唑啉衍生物一丙二酸盐的制备
10mg式1化合物溶于2mL二氯甲烷,2.06mg丙二酸加入0.5mL二氯甲烷中形成混悬液,将式1化合物的二氯甲烷溶液缓慢滴加至丙二酸的二氯甲烷混悬液中,搅拌过夜,离心洗涤烘干得到该盐。
XRPD图谱如图74所示。
TGA图谱如图75所示,显示样品88℃开始分解。
采用20mg式1化合物,1.5mg或者2.5mg丙二酸,其他条件不变进行制备,所得产物仍为具有相同XRPD的喹唑啉衍生物一丙二酸盐。
实施例47 喹唑啉衍生物一丁二酸盐的制备
10mg式1化合物溶于2mL二氯甲烷,2.34mg丁二酸加入0.5mL二氯甲烷中形成混悬液,将式1化合物的二氯甲烷溶液缓慢滴加至丁二酸的二氯甲烷混悬液中,搅拌过夜,离心洗涤烘干得到该盐。
XRPD图谱如图76所示。
采用20mg式1化合物,1.5mg或者2.5mg丁二酸,其他条件不变进行制备,所得产物仍为具有相同XRPD的喹唑啉衍生物一丁二酸盐。
实施例48 喹唑啉衍生物一α-酮戊二酸盐的制备
10mg式1化合物溶于0.8mL四氢呋喃,3.19mgα-酮戊二酸溶于0.2mL四氢呋喃,将α-酮戊二酸的四氢呋喃溶液缓慢滴加至式1化合物的四氢呋喃溶液中,立即析出固体,离心洗涤烘干得到该盐。
XRPD图谱如图77所示。
TGA图谱如图78所示,显示样品193℃开始分解,分解前有9.8%的失重。其结合HPLC定量得到游离碱的实际含量为82.1%,与理论值77.5%接近,故该盐中酸碱摩尔比为1∶1。
采用20mg式1化合物,6.38mgα-酮戊二酸,其他条件不变进行制备,所得产物仍为具有相同XRPD的喹唑啉衍生物一α-酮戊二酸盐。
实施例49 喹唑啉衍生物二马来酸盐的制备
10mg式1化合物溶于0.8mL四氢呋喃,5.06mg马来酸溶于0.4mL四氢呋喃,将马来酸的四氢呋喃溶液缓慢滴加至式1化合物的四氢呋喃溶液中,立即析出固体,离心洗涤烘干得到该盐。
XRPD图谱如图79所示。
TGA图谱如图80所示,显示样品在75℃和136℃有阶段式失重,在167℃大量分解。其结合HPLC定量得到游离碱的实际含量为71.3%,与理论值68.5%接近,故该盐中酸碱摩尔比为2∶1。
采用20mg式1化合物,其他条件不变进行制备,所得产物仍为具有相同XRPD的喹唑啉衍生物马来酸盐。
采用10mg式1化合物,7.59mg马来酸溶于0.3mL四氢呋喃,其他条件不变进行制备,所得产物仍为具有相同XRPD的喹唑啉衍生物马来酸盐。
实施例50 喹唑啉衍生物一1,5-萘二磺酸盐的制备
10mg式1化合物溶于0.8mL四氢呋喃,7.86mg 1,5-萘二磺酸溶于0.2mL四氢呋喃,将1,5-萘二磺酸的四氢呋喃溶液缓慢滴加至式1化合物的四氢呋喃溶液中,立即析出固体,搅拌过夜,离心洗涤烘干得到该盐。
XRPD图谱如图81所示。
采用20mg式1化合物,15.72mg 1,5-萘二磺酸,其他条件不变进行制备,所得产物仍为具有相同XRPD的喹唑啉衍生物一1,5-萘二磺酸盐。
实施例51 喹唑啉衍生物二丙二酸盐的制备
10mg式1化合物溶于2mL二氯甲烷,4.13mg丙二酸加入1mL二氯甲烷中形成混悬液,将式1化合物的二氯甲烷溶液缓慢滴加至丙二酸的二氯甲烷混悬液中,搅拌过夜,离心洗涤烘干得到该盐。
XRPD图谱如图82所示。
TGA图谱如图83所示,显示样品135℃开始分解。其结合HPLC定量得到游离碱 的实际含量为74.9%,与理论值70.8%接近,故该盐中酸碱摩尔比为2∶1。
采用20mg式1化合物,3mg/mL或5mg/mL的丙二酸的二氯甲烷混悬液,以式1化合物与丙二酸的摩尔比为1:2.2的比例进行反应,其他条件不变进行制备,所得产物仍为具有相同XRPD的喹唑啉衍生物二丙二酸盐。
实施例52 喹唑啉衍生物三丙二酸盐的制备
10mg式1化合物溶于2mL二氯甲烷,6.19mg丙二酸加入1mL二氯甲烷中形成混悬液,将式1化合物的二氯甲烷溶液缓慢滴加至丙二酸的二氯甲烷混悬液中,搅拌过夜,离心洗涤烘干得到该盐。
XRPD图谱如图84所示。
TGA图谱如图85所示,显示样品140℃开始分解。其结合HPLC定量得到游离碱的实际含量为61.8%,与理论值65.6%接近,故该盐中酸碱摩尔比为3∶1。
采用20mg式1化合物,5mg/mL或10mg/mL的丙二酸的二氯甲烷混悬液,以式1化合物与丙二酸的摩尔比为1:3.3的比例进行反应,其他条件不变进行制备,所得产物仍为具有相同XRPD的喹唑啉衍生物三丙二酸盐。
实施例53 喹唑啉衍生物二1,5-萘二磺酸盐的制备
10mg式1化合物溶于0.8mL四氢呋喃,15.72mg 1,5-萘二磺酸溶于0.4mL四氢呋喃,将式1化合物的四氢呋喃溶液缓慢滴加至1,5-萘二磺酸的四氢呋喃溶液中,立即析出固体,搅拌过夜,离心洗涤烘干得到该盐。
XRPD图谱如图86所示。
TGA图谱如图87所示,显示样品223℃开始分解,150℃之前有3.4%的缓慢失重。其结合HPLC定量得到游离碱的实际含量为54.8%,与理论值59.3%接近,故该盐中酸碱摩尔比为1∶1。
采用20mg式1化合物,25.17mg 1,5-萘二磺酸溶于0.32mL四氢呋喃,其他条件不变进行制备,所得产物仍为具有相同XRPD的喹唑啉衍生物二1,5-萘二磺酸盐。
采用10mg式1化合物,18.88mg 1,5-萘二磺酸溶于0.32mL四氢呋喃,其他条件不变进行制备,所得产物仍为具有相同XRPD的喹唑啉衍生物二1,5-萘二磺酸盐。
实施例54 喹唑啉衍生物三丁二酸盐的制备
10mg式1化合物溶于2mL二氯甲烷,7.03mg丁二酸加入1mL二氯甲烷中形成混悬液,将式1化合物的二氯甲烷溶液缓慢滴加至丙二酸的二氯甲烷混悬液中,搅拌过夜,离心洗涤烘干得到该盐。XRPD图谱如图88所示。
TGA图谱如图89所示,显示样品173℃开始分解。其结合HPLC定量得到游离碱 的实际含量为58.7%,与理论值57.2%接近,故该盐中酸碱摩尔比为3∶1。
采用20mg式1化合物,5mg/mL的丁二酸的二氯甲烷混悬液,以式1化合物与丁二酸的摩尔比为1:2.2的比例进行反应,其他条件不变进行制备,所得产物仍为具有相同XRPD的喹唑啉衍生物三丁二酸盐。
采用10mg式1化合物,10mg/mL的丁二酸的二氯甲烷混悬液,以式1化合物与丁二酸的摩尔比为1:3.3的比例进行反应,其他条件不变进行制备,所得产物仍为具有相同XRPD的喹唑啉衍生物三丁二酸盐。
实施例55 喹唑啉衍生物二α-酮戊二酸盐的制备
10mg式1化合物溶于0.8mL四氢呋喃,6.38mgα-酮戊二酸溶于0.4mL四氢呋喃,将式1化合物的四氢呋喃溶液缓慢滴加至α-酮戊二酸的四氢呋喃溶液中,立即析出固体,离心洗涤烘干得到该盐。
XRPD图谱如图90所示。
TGA图谱如图91所示,显示样品140℃开始分解,分解前有4.7%的失重。其结合HPLC定量得到游离碱的实际含量为64.3%,与理论值63.3%接近,故该盐中酸碱摩尔比为1∶1。
采用20mg式1化合物,19.14mgα-酮戊二酸溶于0.6mL四氢呋喃,其他条件不变进行制备,所得产物仍为具有相同XRPD的喹唑啉衍生物二α-酮戊二酸盐。
实施例56 喹唑啉衍生物一对氯苯磺酸盐的制备
10mg式1化合物溶于0.8mL四氢呋喃,4.2mg对氯苯磺酸溶于0.2mL四氢呋喃,将对氯苯磺酸的四氢呋喃溶液缓慢滴加至式1化合物的四氢呋喃溶液中,搅拌过夜,将析出固体离心洗涤,烘干得到该盐。
XRPD图谱如图92所示。
采用20mg式1化合物,8.4mg对氯苯磺酸,其他条件不变进行制备,所得产物仍为具有相同XRPD的喹唑啉衍生物一对氯苯磺酸盐。
效果实施例1 固态稳定性测试
取原料药适量置于表面皿中,铺成3-5毫米厚度,分别置于高温、高温高湿、光照与氧化条件放置10天,做固态表征。HPLC测定供试品的纯度与杂质(≥0.05%)数量,与第0天样品比较。放置条件分别为:
高温(T=60℃烘箱);
高温高湿(40℃,75%RH的恒温恒湿箱);
光照(25℃,4500±500lx的光照培养箱);
氧化(25℃,盛有过氧化氢脲的密闭容器)。
结果见表1。
表1
Figure PCTCN2017102998-appb-000012
效果实施例2 溶液稳定性测试
精密称取样品约15mg,用测试溶剂(10%丙酮水溶液、pH=4.0的B-R缓冲液,SGF、SIF)25ml超声溶解20min,并将溶液分为四份,置于透明玻璃小瓶中,封口。分置于不同环境中,于第0天、第5天取样。HPLC测定各样品的纯度,并计算杂质大于0.05%的个数,并与第0天样品比较。放置环境分别为:
常温避光试验,25℃;
高温避光试验,60℃;
光照实验(4500±500lx),25℃;
氧化实验(3%v/v双氧水),25℃。
结果见表2。
表2
Figure PCTCN2017102998-appb-000013
Figure PCTCN2017102998-appb-000014
Figure PCTCN2017102998-appb-000015
效果实施例3 喹唑啉衍生物的盐的1H NMR测定和HPLC法溶解度测定
对于部分喹唑啉衍生物的盐进行了1H NMR测定和HPLC法的溶解度测定。
其中溶解度的测定方法如下:称取已知量的样品,分次添加溶剂于样品中,用搅拌或者超声加速溶解,目测直至样品溶清,记录消耗的溶剂量。如果样品在特定浓度下仍未溶清,它的溶解度则以“<”特定浓度来表示;当样品溶解度较低时,采用放大溶剂倍数,加入过量样品搅拌过夜,取一定体积溶液过滤浓缩,加入一定体积其他良溶剂溶清后进行HPLC检测获得精确的溶解度数据。
具体检测结果如下:
图93为本发明喹唑啉衍生物一柠檬酸盐(包括其晶型1、晶型13)的1H NMR图谱(具体数据为1H NMR(500MHz,DMSO)δ9.82(s,1H),9.78(s,1H),8.71(s,1H),8.58(s,1H),8.16(dd,J=6.5,2.5Hz,1H),7.81(ddd,J=9.0,4.2,2.7Hz,1H),7.43(t,J=9.0Hz,1H),7.33(s,1H),5.77(dd,J=48.0,3.5Hz,1H),5.52(dd,J=16.0,3.5Hz,1H),4.27(t,J=6.0Hz,2H),3.64(s,4H),2.73-2.69(m,4H),2.63-2.60(m,5H),2.05-1.99(m,2H));结果显示该喹唑啉衍生物一柠檬酸盐中,柠檬酸与式1化合物的摩尔比为1:1。通过HPLC法测定该喹唑啉衍生物一柠檬酸盐的晶型1在20℃下水中的溶解度,结果为84.3μg/mL。
图94为本发明喹唑啉衍生物一苯磺酸盐的1H NMR图谱(具体数据为1H NMR(500MHz,DMSO)δ9.89(s,2H),9.55(s,1H),8.71(s,1H),8.61(s,1H),8.17(dd,J=6.8,2.5Hz,1H),7.81(ddd,J=8.8,4.2,2.7Hz,1H),7.60(d,J=2.0Hz,1H),7.58(d,J=1.5Hz,1H),7.45(t,J=9.0Hz,1H),7.36(s,1H),7.34-7.27(m,2H),5.79(dd,J=48.0,3.5Hz,1H),5.53(dd,J=15.5,4.0Hz,1H),4.32(t,J=5.5Hz,2H),4.02-3.99(m,2H),3.66(t,J=12.0Hz,2H),3.49-3.47(m,2H),3.10m,2H),2.21(m,2H)),结果显示该喹唑啉衍生物一苯磺酸盐中,苯磺酸与式1化合物的摩尔比为1:1。通过HPLC法测定该喹唑啉衍生物一苯磺酸盐在20℃下水中的溶解度,结果为60.4μg/mL。
通过HPLC法测定该喹唑啉衍生物一盐酸盐一水合物在20℃下水中的溶解度,结果为51.5μg/mL。
通过HPLC法测定该喹唑啉衍生物一D-葡萄糖酸盐在20℃下水中的溶解度,结果为 51.4μg/mL。
通过HPLC法测定该喹唑啉衍生物二磷酸盐在20℃下水中的溶解度,结果为25.0μg/mL。
图95为本发明喹唑啉衍生物一帕莫酸盐的1H NMR图谱,结果显示该喹唑啉衍生物一帕莫酸盐中,帕莫酸与式1化合物的摩尔比为1:1。通过HPLC法测定该喹唑啉衍生物一帕莫酸盐在20℃下水中的溶解度,HPLC图谱上基本无法检测到其吸收峰,结果为几乎不溶。
图96为本发明喹唑啉衍生物二乙醇酸盐的1H NMR图谱,结果显示该喹唑啉衍生物二乙醇酸盐中,乙醇酸与式1化合物的摩尔比为2:1。通过HPLC法测定该喹唑啉衍生物二乙醇酸盐在20℃下水中的溶解度,结果为24.2μg/mL。
图97为本发明喹唑啉衍生物一丙二酸盐的1H NMR图谱,结果显示该喹唑啉衍生物一丙二酸盐中,丙二酸与式1化合物的摩尔比为1:1。通过HPLC法测定该喹唑啉衍生物一丙二酸盐在20℃下水中的溶解度,结果为41μg/mL。
图98为本发明喹唑啉衍生物一丁二酸盐的1H NMR图谱,结果显示该喹唑啉衍生物一丁二酸盐中,丁二酸与式1化合物的摩尔比为1:1。通过HPLC法测定该喹唑啉衍生物一丁二酸盐在20℃下水中的溶解度,结果为32μg/mL。
通过HPLC法测定该喹唑啉衍生物二马来酸盐在20℃下水中的溶解度,结果为25.7μg/mL。
图99为本发明喹唑啉衍生物一1,5-萘二磺酸盐的1H NMR图谱,结果显示该喹唑啉衍生物一1,5-萘二磺酸盐中,1,5-萘二磺酸与式1化合物的摩尔比为1:1。通过HPLC法测定该喹唑啉衍生物一1,5-萘二磺酸盐在20℃下水中的溶解度,HPLC图谱上基本无法检测到其吸收峰,结果为几乎不溶。
通过HPLC法测定该喹唑啉衍生物三丁二酸盐在20℃下水中的溶解度,结果为8.6μg/mL。
表3为通过HPLC法测定的晶型1在20℃下的不同溶剂中的溶解度。
表3
缩写 溶解度mg/mL
MeOH 5-12.5
EtOH <1
IPA <1
BtOH <1
H2O <1
THF <1
二氧六环 1-2.5
ACN <1
CH2Cl2 <1
CHCl3 <1
DMSO 100-200
此外,通过目测法测定的溶解度结果如下:
(1)该喹唑啉衍生物一乙二磺酸盐:该盐在室温时在水中的目测溶解度为1-2mg/mL。
(2)该喹唑啉衍生物一硫酸盐:20℃时样品在水中的目测溶解度为1-2mg/mL。
(3)该喹唑啉衍生物二硫酸盐:20℃时样品在水中的目测溶解度为0.91-1mg/mL。
(4)该喹唑啉衍生物一L-酒石酸盐四水合物:该水合物在室温时水中的目测溶解度为0.625-0.667mg/mL。
(5)该喹唑啉衍生物二丙二酸盐:样品在室温时水中的目测溶解度为2-2.5mg/mL。
(6)该喹唑啉衍生物三丙二酸盐:样品在室温时水中的目测溶解度为1.67-2mg/mL。
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本领域的技术人员在本发明所揭露的技术范围内,可不经过创造性劳动想到的变化或替换,都应涵盖在本发明的保护范围之内。
效果实施例4 游离碱和盐型给药后大鼠体内吸收比较
SD大鼠21只,分为7组,分别灌胃给予20μmol/kg的上述的喹唑啉衍生物式1化合物的游离碱和6个盐型(8mL/kg,2.5mM)(见表4),分别于给药前和给药后5、15、30、60、90、120、240、360、480、1440min于大鼠眼底静脉丛取血0.4mL。血样于8000rpm离心5min,分离上层血浆,血浆样品50μL,加入200μL含内标的乙腈(Ponatinib,0.25μM)沉淀蛋白,涡旋10min,6000g离心10min,取200μL上清6000g再次离心10min,取上清50μL于96孔板中,在LC/MS/MS中进行检测得到血浆药物浓度,再计算相应的药代参数,见表5及图100。
表4 动物分组及给药情况
Figure PCTCN2017102998-appb-000016
Figure PCTCN2017102998-appb-000017
表5 游离碱和游离碱和各盐型给药后的药代参数
Figure PCTCN2017102998-appb-000018
Figure PCTCN2017102998-appb-000019
经比较,同等剂量下,游离碱和6个盐型经大鼠口服给药后,一柠檬酸盐、一苯磺酸盐和一硫酸盐吸收较好,而一盐酸盐一水合物、一D-葡萄糖酸盐和一乙二磺酸盐的AUC(0-t)和Cmax偏低。其中,一柠檬酸盐的AUC(0-t)和Cmax均为最高。
虽然以上描述了本发明的具体实施方式,但是本领域的技术人员应当理解,这些仅是举例说明,在不背离本发明的原理和实质的前提下,可以对这些实施方式做出多种变更或修改。因此,本发明的保护范围由所附权利要求书限定。

Claims (17)

  1. 一种喹唑啉衍生物的盐,其为如式2所示的一柠檬酸盐、如式2-1所示的一柠檬酸盐半乙醇合物、如式2-2所示的一柠檬酸盐二四氢呋喃合物、如式2-3所示的一柠檬酸盐半1,4-二氧六环合物、如式2-4所示的一柠檬酸盐二水合物、如式2-5所示的一柠檬酸盐半氯仿合物、如式2-6所示的一柠檬酸盐三水合物、如式2-7所示的一柠檬酸盐2.5水合物、如式3所示的一苯磺酸盐、如式4所示的一乙二磺酸盐、如式5所示的一L-酒石酸盐、如式5-1所示的一L-酒石酸盐四水合物、如式所示6的一盐酸盐一水合物、如式7所示的一硫酸盐、如式8所示的一D-葡萄糖酸盐、如式9所示的一α-酮戊二酸盐、如式10所示的二α-酮戊二酸盐、如式11所示的二磷酸盐、如式12所示的二马来酸盐、如式13所示的一丁二酸盐、如式14所示的三丁二酸盐、如式15所示的二乙醇酸盐、如式16所示的一丙二酸盐、如式17所示的二丙二酸盐、如式18所示的三丙二酸盐、如式19所示的二硫酸盐、如式20所示的二1,5-萘二磺酸盐、如式21所示的一帕莫酸盐、如式22所示的一对甲苯磺酸盐、如式23所示的一1,5-萘二磺酸盐、或、如式24所示的一对氯苯磺酸盐;
    Figure PCTCN2017102998-appb-100001
    Figure PCTCN2017102998-appb-100002
    Figure PCTCN2017102998-appb-100003
    Figure PCTCN2017102998-appb-100004
    Figure PCTCN2017102998-appb-100005
    Figure PCTCN2017102998-appb-100006
    Figure PCTCN2017102998-appb-100007
  2. 如权利要求1所述的一种喹唑啉衍生物的盐,其特征在于,所述的一柠檬酸盐2、一柠檬酸盐半乙醇合物2-1、一柠檬酸盐二四氢呋喃合物2-2、一柠檬酸盐半1,4-二氧六环合物2-3、一柠檬酸盐二水合物2-4、一柠檬酸盐半氯仿合物2-5、一柠檬酸盐三水合物2-6、一柠檬酸盐2.5水合物2-7、一苯磺酸盐3、一乙二磺酸盐4、一L-酒石酸盐四水合物5-1、一盐酸盐一水合物6、一硫酸盐7、一D-葡萄糖酸盐8、三丁二酸盐14、三丙二酸盐18和一对甲苯磺酸盐22的结构式表示其仅由结构式中示明的喹唑啉衍生物和酸组成、或者、其仅由结构式中示明的喹唑啉衍生物、酸和溶剂分子组成;
    和/或,所述的二α-酮戊二酸盐10、二马来酸盐12、一丁二酸盐13、二乙醇酸盐15、二丙二酸盐17、二硫酸盐19、二1,5-萘二磺酸盐20、一帕莫酸盐21、一1,5-萘二磺酸盐23、和、一对氯苯磺酸盐24的结构式表示其仅由结构式中示明的喹唑啉衍生物和酸组成;
    和/或,所述的一L-酒石酸盐5、一α-酮戊二酸盐9、二磷酸盐11和一丙二酸盐16的结构式表示其仅由结构式中示明的喹唑啉衍生物、酸和水组成;
    和/或,如式2所示的一柠檬酸盐还具备下述参数:晶型1,其X射线粉末衍射图在衍射角2θ为8.280±0.2°、8.720±0.2°、16.962±0.2°、19.124±0.2°、19.742±0.2°和25.222±0.2°处有特征峰;或者,晶型13,其X射线粉末衍射图在衍射角2θ为6.757±0.2°、11.521±0.2°、15.926±0.2°、18.400±0.2°、21.520±0.2°、22.942±0.2°、24.584±0.2°和26.943±0.2°处有特征峰;
    和/或,如式2-1所示的一柠檬酸盐半乙醇合物还具备下述参数:晶型2,其X射线粉末衍射图在衍射角2θ为4.700±0.2°、7.400±0.2°、7.801±0.2°、11.340±0.2°、13.298±0.2°、13.799±0.2°、18.464±0.2°和22.618±0.2处有特征峰;
    和/或,如式2-2所示的一柠檬酸盐二四氢呋喃合物还具备下述参数:晶型3,其X 射线粉末衍射图在衍射角2θ为:6.939±0.2°、7.462±0.2°、18.603±0.2°、19.183±0.2°、24.803±0.2°和25.983±0.2°处有特征峰;
    和/或,如式2-3所示的一柠檬酸盐半1,4-二氧六环合物还具备下述参数:晶型4,其X射线粉末衍射图在衍射角2θ为6.962±0.2°、7.821±0.2°、8.560±0.2°、8.999±0.2°、17.262±0.2°和19.441±0.2°处有特征峰;
    和/或,如式2-4所示的一柠檬酸盐二水合物还具备下述参数:晶型5,其X射线粉末衍射图在衍射角2θ为6.443±0.2°、10.780±0.2°、12.808±0.2°、16.230±0.2°、18.683±0.2°、19.262±0.2°、24.519±0.2°、25.885±0.2°和28.743±0.2°处有特征峰;或者,晶型7,其X射线粉末衍射图在衍射角2θ为8.542±0.2°、12.659±0.2°、13.843±0.2°、18.638±0.2°、19.822±0.2°和25.300±0.2°处有特征峰;或者,晶型11,其X射线粉末衍射图在衍射角2θ为4.602±0.2°、7.641±0.2°、13.651±0.2°、15.264±0.2°、19.182±0.2°和23.321±0.2°处有特征峰;
    和/或,如式2-5所示的一柠檬酸盐半氯仿合物还具备下述参数:晶型6,其X射线粉末衍射图在衍射角2θ为7.682±0.2°、19.122±0.2°和26.044±0.2°处有特征峰;
    和/或,如式2-6所示的一柠檬酸盐三水合物还具备下述参数:晶型10,其X射线粉末衍射图在衍射角2θ为5.659±0.2°、5.920±0.2°、9.064±0.2°、11.760±0.2°、17.600±0.2°、27.103±0.2°和27.623±0.2处有特征峰;
    和/或,如式2-7所示的一柠檬酸盐2.5水合物还具备下述参数:晶型14,其X射线粉末衍射图在衍射角2θ为7.852±0.2°、14.859±0.2°、15.605±0.2°、19.448±0.2°、23.439±0.2°和25.604±0.2°处有特征峰;
    和/或,如式3所示的一苯磺酸盐还具备下述参数:其X射线粉末衍射图在衍射角2θ为7.642±0.2°、13.639±0.2°、14.861±0.2°、15.445±0.2°、16.182±0.2°、16.904±0.2°、17.542±0.2°、18.821±0.2°、19.160±0.2°、20.563±0.2°、21.643±0.2°、22.843±0.2°、23.542±0.2°、25.252±0.2°和26.201±0.2°处有特征峰;
    和/或,如式4所示的一乙二磺酸盐还具备下述参数:其X射线粉末衍射图在衍射角2θ为5.447±0.2°、8.286±0.2°、13.734±0.2°、18.614±0.2°、20.686±0.2°、22.596±0.2°、24.179±0.2°、24.908±0.2°和29.606±0.2°处有特征峰;
    和/或,如式5所示的一L-酒石酸盐还具备下述参数:晶型15,其X射线粉末衍射图在衍射角2θ为5.738±0.2°、7.332±0.2°、8.817±0.2°、11.084±0.2°、13.060±0.2°、17.063±0.2°、17.814±0.2°、19.841±0.2°、20.469±0.2°、21.844±0.2°和24.123±0.2°处有特征峰;
    和/或,如式5-1所示的一L-酒石酸盐四水合物还具备下述参数:晶型16,其X射线粉末衍射图在衍射角2θ为7.357±0.2°、8.696±0.2°、9.437±0.2°、12.725±0.2°、16.543±0.2°、 17.444±0.2°、18.959±0.2°、21.847±0.2°、22.101±0.2°、24.819±0.2°、29.444±0.2°和33.501±0.2°处有特征峰;
    和/或,如式所示6的一盐酸盐一水合物还具备下述参数:其X射线粉末衍射图在衍射角2θ为8.862±0.2°、13.860±0.2°、17.127±0.2°、17.516±0.2°、21.452±0.2°、23.545±0.2°、25.421±0.2°和27.985±0.2°处有特征峰;
    和/或,如式7所示的一硫酸盐还具备下述参数:其X射线粉末衍射图在衍射角2θ为6.102±0.2°、6.982±0.2°、13.336±0.2°、14.340±0.2°、14.857±0.2°、21.585±0.2°、23.009±0.2°、24.254±0.2°和25.783±0.2°处有特征峰;
    和/或,如式8所示的一D-葡萄糖酸盐还具备下述参数:其X射线粉末衍射图在衍射角2θ为6.280±0.2°、7.901±0.2°、12.403±0.2°、15.719±0.2°、16.106±0.2°、18.001±0.2°、19.581±0.2°、21.601±0.2°、22.760±0.2°、23.980±0.2°、24.461±0.2°、25.140±0.2°、26.764±0.2°、27.419±0.2°和28.902±0.2°处有特征峰;
    和/或,如式9所示的一α-酮戊二酸盐还具备下述参数:其X射线粉末衍射图在衍射角2θ为5.349±0.2°、7.186±0.2°、7.818±0.2°、8.446±0.2°、9.259±0.2°、11.114±0.2°、15.968±0.2°、16.851±0.2°、17.411±0.2°、20.408±0.2°、22.381±0.2°、23.943±0.2°和24.198±0.2°处有特征峰;
    和/或,如式10所示的二α-酮戊二酸盐还具备下述参数:其X射线粉末衍射图在衍射角2θ为5.738±0.2°、7.003±0.2°、9.537±0.2°、12.779±0.2°、14.379±0.2°、15.815±0.2°、17.042±0.2°、17.765±0.2°、19.121±0.2°、23.343±0.2°、24.722±0.2°、25.821±0.2°、26.379±0.2°、27.162±0.2°和36.062±0.2°处有特征峰;
    和/或,如式11所示的二磷酸盐还具备下述参数:其X射线粉末衍射图在衍射角2θ为5.080±0.2°、14.304±0.2°、15.552±0.2°、19.781±0.2°、22.580±0.2°和24.720±0.2°处有特征峰;
    和/或,如式12所示的二马来酸盐还具备下述参数:其X射线粉末衍射图在衍射角2θ为4.777±0.2°、6.094±0.2°、9.750±0.2°、10.397±0.2°、12.279±0.2°、15.573±0.2°、16.264±0.2°、17.230±0.2°、18.594±0.2°、18.928±0.2°、19.662±0.2°、20.505±0.2°、21.751±0.2°、24.098±0.2°、25.698±0.2°、26.314±0.2°、27.871±0.2°、28.759±0.2°和29.767±0.2°处有特征峰;
    和/或,如式13所示的一丁二酸盐还具备下述参数:其X射线粉末衍射图在衍射角2θ为4.060±0.2°、7.998±0.2°、13.866±0.2°、19.763±0.2°、21.820±0.2°、22.543±0.2°、25.667±0.2°、27.851±0.2°和31.700±0.2°处有特征峰;
    和/或,如式14所示的三丁二酸盐还具备下述参数:其X射线粉末衍射图在衍射角2θ 为4.920±0.2°、8.941±0.2°、16.988±0.2°、20.302±0.2°、23.799±0.2°、26.384±0.2°、27.862±0.2°和31.802±0.2°处有特征峰;
    和/或,如式15所示的二乙醇酸盐还具备下述参数:其X射线粉末衍射图在衍射角2θ为10.121±0.2°、11.700±0.2°、13.863±0.2°、14.360±0.2°、15.116±0.2°、15.977±0.2°、16.421±0.2°、17.484±0.2°、18.642±0.2°、20.341±0.2°、21.163±0.2°、21.822±0.2°、22.622±0.2°、23.401±0.2°、24.481±0.2°、26.405±0.2°、27.083±0.2°、27.865±0.2°、28.682±0.2°和30.023±0.2°处有特征峰;
    和/或,如式16所示的一丙二酸盐还具备下述参数:其X射线粉末衍射图在衍射角2θ为7.018±0.2°、13.866±0.2°、17.541±0.2°、19.127±0.2°、20.342±0.2°、21.184±0.2°、23.183±0.2°、24.981±0.2°、27.852±0.2°和28.444±0.2°处有特征峰;
    和/或,如式17所示的二丙二酸盐还具备下述参数:其X射线粉末衍射图在衍射角2θ为5.180±0.2°、7.141±0.2°、13.876±0.2°、14.742±0.2°、16.424±0.2°、16.840±0.2°、18.485±0.2°、19.299±0.2°、20.024±0.2°、21.940±0.2°、23.845±0.2°、25.003±0.2°、26.962±0.2°和27.847±0.2°处有特征峰;
    和/或,如式18所示的三丙二酸盐还具备下述参数:其X射线粉末衍射图在衍射角2θ为5.062±0.2°、7.181±0.2°、13.843±0.2°、14.731±0.2°、15.700±0.2°、16.158±0.2°、16.841±0.2°、17.923±0.2°、19.042±0.2°、19.722±0.2°、22.123±0.2°、23.303±0.2°、26.621±0.2°和27.480±0.2°处有特征峰;
    和/或,如式19所示的二硫酸盐还具备下述参数:其X射线粉末衍射图在衍射角2θ为6.896±0.2°、13.362±0.2°、14.516±0.2°、14.981±0.2°、18.179±0.2°、18.622±0.2°、19.806±0.2°、20.983±0.2°、22.801±0.2°、24.062±0.2°、24.783±0.2°、25.662±0.2°、26.503±0.2°、27.543±0.2°和28.143±0.2°处有特征峰;
    和/或,如式20所示的二1,5-萘二磺酸盐还具备下述参数:其X射线粉末衍射图在衍射角2θ为6.740±0.2°、7.660±0.2°、8.821±0.2°、10.582±0.2°、11.921±0.2°、13.420±0.2°、16.200±0.2°、17.061±0.2°、17.481±0.2°、18.024±0.2°、18.520±0.2°、19.003±0.2°、20.905±0.2°、21.603±0.2°、22.518±0.2°、22.921±0.2°、23.841±0.2°、24.722±0.2°、26.339±0.2°和26.902±0.2°处有特征峰;
    和/或,如式21所示的一帕莫酸盐还具备下述参数:其X射线粉末衍射图在衍射角2θ为4.861±0.2°、7.501±0.2°、8.220±0.2°、9.119±0.2°、12.723±0.2°、14.203±0.2°、15.821±0.2°、16.960±0.2°、19.382±0.2°、21.661±0.2°、23.082±0.2°、23.461±0.2°和27.343±0.2°处有特征峰;
    和/或,如式22所示的一对甲苯磺酸盐还具备下述参数:其X射线粉末衍射图在衍射角2θ为7.560±0.2°、15.224±0.2°、16.002±0.2°、16.903±0.2°、17.421±0.2°、18.857±0.2°、20.141±0.2°、21.143±0.2°、22.564±0.2°、23.023±0.2°、29.621±0.2°和31.325±0.2°处有特征峰;
    和/或,如式23所示的一1,5-萘二磺酸盐还具备下述参数:其X射线粉末衍射图在衍射角2θ为5.566±0.2°、7.363±0.2°、7.914±0.2°、8.784±0.2°、9.354±0.2°、10.617±0.2°、12.534±0.2°、15.926±0.2°、17.584±0.2°、18.004±0.2°、19.779±0.2°、20.506±0.2°、20.725±0.2°、22.798±0.2°、24.138±0.2°和25.541±0.2°处有特征峰;
    和/或,如式24所示的一对氯苯磺酸盐还具备下述参数:其X射线粉末衍射图在衍射角2θ为7.623±0.2°、15.244±0.2°、15.994±0.2°、17.046±0.2°、17.487±0.2°、18.885±0.2°、20.197±0.2°、21.267±0.2°、21.487±0.2°、22.501±0.2°、23.154±0.2°、23.423±0.2°、24.662±0.2°和29.617±0.2°处有特征峰。
  3. 如权利要求1所述的一种喹唑啉衍生物的盐,其特征在于,如式2所示的一柠檬酸盐还具备下述参数:晶型1,其X射线粉末衍射图在衍射角2θ为8.280±0.2°、8.720±0.2°、13.621±0.2°、14.043±0.2°、16.522±0.2°、16.962±0.2°、19.124±0.2°、19.742±0.2°、21.367±0.2°、23.439±0.2°、25.222±0.2°和26.842±0.2°处有特征峰;或者,晶型13,其X射线粉末衍射图在衍射角2θ为6.757±0.2°、10.441±0.2°、11.521±0.2°、13.084±0.2°、13.406±0.2°、15.926±0.2°、17.540±0.2°、18.400±0.2°、21.520±0.2°、22.942±0.2°、24.584±0.2°和26.943±0.2°处有特征峰;
    和/或,如式2-1所示的一柠檬酸盐半乙醇合物还具备下述参数:晶型2,其X射线粉末衍射图在衍射角2θ为4.700±0.2°、7.400±0.2°、7.801±0.2°、11.340±0.2°、13.298±0.2°、13.799±0.2°、14.397±0.2°、15.719±0.2°、18.464±0.2°、20.036±0.2°、22.618±0.2°、31.385±0.2°和31.604±0.2°处有特征峰;
    和/或,如式2-2所示的一柠檬酸盐二四氢呋喃合物还具备下述参数:晶型3,其X射线粉末衍射图在衍射角2θ为:6.939±0.2°、7.462±0.2°、15.181±0.2°、15.976±0.2°、18.603±0.2°、19.183±0.2°、20.861±0.2°、21.444±0.2°、22.321±0.2°、23.040±0.2°、24.803±0.2°和25.983±0.2°处有特征峰;
    和/或,如式2-3所示的一柠檬酸盐半1,4-二氧六环合物还具备下述参数:晶型4,其X射线粉末衍射图在衍射角2θ为6.962±0.2°、7.821±0.2°、8.560±0.2°、8.999±0.2°、15.712±0.2°、17.262±0.2°、19.441±0.2°、20.037±0.2°、20.754±0.2°、24.062±0.2°和25.407±0.2°处有特征峰;
    和/或,如式2-4所示的一柠檬酸盐二水合物还具备下述参数:晶型5,其X射线粉末衍射图在衍射角2θ为6.443±0.2°、7.801±0.2°、10.780±0.2°、12.808±0.2°、13.211±0.2°、14.221±0.2°、16.230±0.2°、18.683±0.2°、19.262±0.2°、19.744±0.2°、21.042±0.2°、21.540±0.2°、24.519±0.2°、25.885±0.2°和28.743±0.2°处有特征峰;或者,晶型7,其X射线粉末衍射图在衍射角2θ为8.542±0.2°、12.659±0.2°、13.843±0.2°、18.120±0.2°、18.638±0.2°、18.916±0.2°、19.822±0.2°、20.637±0.2°、23.763±0.2°、24.157±0.2°、24.528±0.2°、25.300±0.2°和25.659±0.2°处有特征峰;
    和/或,如式2-5所示的一柠檬酸盐半氯仿合物还具备下述参数:晶型6,其X射线粉末衍射图在衍射角2θ为7.682±0.2°、8.101±0.2°、16.705±0.2°、17.138±0.2°、19.122±0.2°和26.044±0.2°处有特征峰;
    和/或,如式2-6所示的一柠檬酸盐三水合物还具备下述参数:晶型10,其X射线粉末衍射图在衍射角2θ为5.659±0.2°、5.920±0.2°、8.107±0.2°、9.064±0.2°、11.760±0.2°、12.795±0.2°、13.047±0.2°、13.454±0.2°、17.600±0.2°、18.705±0.2°、19.161±0.2°、20.039±0.2°、22.182±0.2°、27.103±0.2°和27.623±0.2°处有特征峰;
    和/或,如式2-7所示的一柠檬酸盐2.5水合物还具备下述参数:晶型14,其X射线粉末衍射图在衍射角2θ为7.852±0.2°、14.128±0.2°、14.859±0.2°、15.605±0.2°、16.580±0.2°、19.448±0.2°、20.221±0.2°、23.439±0.2°和25.604±0.2°处有特征峰。
  4. 如权利要求1所述的一种喹唑啉衍生物的盐,其特征在于,如式2所示的一柠檬酸盐还具备下述参数:晶型1,其X射线粉末衍射图在衍射角2θ为5.278±0.2°、8.280±0.2°、8.720±0.2°、9.862±0.2°、10.740±0.2°、11.564±0.2°、13.621±0.2°、14.043±0.2°、14.853±0.2°、16.522±0.2°、16.962±0.2°、19.124±0.2°、19.742±0.2°、20.501±0.2°、20.802±0.2°、21.367±0.2°、23.439±0.2°、23.799±0.2°、25.222±0.2°、26.359±0.2°、26.842±0.2°、27.494±0.2°、28.919±0.2°、32.383±0.2°和32.764±0.2°处有特征峰;或者,晶型13,其X射线粉末衍射图在衍射角2θ为6.757±0.2°、10.441±0.2°、11.521±0.2°、13.084±0.2°、13.406±0.2°、14.003±0.2°、14.594±0.2°、15.097±0.2°、15.926±0.2°、17.540±0.2°、18.400±0.2°、20.898±0.2°、21.520±0.2°、22.942±0.2°、23.562±0.2°、24.584±0.2°和26.943±0.2°处有特征峰;
    和/或,如式2-2所示的一柠檬酸盐二四氢呋喃合物还具备下述参数:晶型3,其X射线粉末衍射图在衍射角2θ为:6.939±0.2°、7.462±0.2°、13.042±0.2°、15.181±0.2°、15.976±0.2°、16.502±0.2°、17.318±0.2°、18.603±0.2°、19.183±0.2°、20.861±0.2°、21.444±0.2°、22.321±0.2°、23.040±0.2°、24.803±0.2°、25.983±0.2°、27.106±0.2°、28.244±0.2°和29.713±0.2°处有特征峰;
    和/或,如式2-3所示的一柠檬酸盐半1,4-二氧六环合物还具备下述参数:晶型4,其X射线粉末衍射图在衍射角2θ为6.962±0.2°、7.821±0.2°、8.560±0.2°、8.999±0.2°、15.712±0.2°、17.262±0.2°、19.441±0.2°、20.037±0.2°、20.754±0.2°、21.540±0.2°、24.062±0.2°和25.407±0.2°处有特征峰;
    和/或,如式2-4所示的一柠檬酸盐二水合物还具备下述参数:晶型5,其X射线粉末衍射图在衍射角2θ为6.443±0.2°、7.801±0.2°、8.140±0.2°、10.780±0.2°、12.808±0.2°、13.211±0.2°、14.221±0.2°、16.230±0.2°、16.543±0.2°、18.683±0.2°、19.262±0.2°、24.519±0.2°、25.886±0.2°和28.743±0.2°处有特征峰;或者,晶型7,其X射线粉末衍射图在衍射角2θ为8.261±0.2°、8.542±0.2°、10.920±0.2°、12.659±0.2°、13.024±0.2°、13.843±0.2°、14.713±0.2°、15.986±0.2°、16.980±0.2°、18.120±0.2°、18.638±0.2°、18.916±0.2°、19.822±0.2°、20.637±0.2°、23.763±0.2°、24.157±0.2°、24.528±0.2°、25.300±0.2°、25.659±0.2°、28.241±0.2°、28.802±0.2°、32.263±0.2°、32.782±0.2°、33.743±0.2°和35.629±0.2°处有特征峰;
    和/或,如式2-6所示的一柠檬酸盐三水合物还具备下述参数:晶型10,其X射线粉末衍射图在衍射角2θ为5.659±0.2°、5.920±0.2°、8.107±0.2°、9.064±0.2°、11.760±0.2°、13.047±0.2°、13.454±0.2°、17.016±0.2°、17.600±0.2°、18.705±0.2°、19.161±0.2°、20.039±0.2°、22.182±0.2°、23.831±0.2°、25.723±0.2°、27.103±0.2°和27.623±0.2°处有特征峰。
  5. 如权利要求1所述的一种喹唑啉衍生物的盐,其特征在于,如式2所示的一柠檬酸盐还具备下述参数:晶型1,其X射线粉末衍射图在衍射角2θ为8.280±0.2°、8.720±0.2°、9.862±0.2°、10.740±0.2°、11.564±0.2°、13.621±0.2°、14.043±0.2°、16.522±0.2°、16.962±0.2°、19.124±0.2°、19.742±0.2°、20.802±0.2°、21.367±0.2°、23.439±0.2°和25.222±0.2°处有特征峰;
    和/或,如式2-2所示的一柠檬酸盐二四氢呋喃合物还具备下述参数:晶型3,其X射线粉末衍射图在衍射角2θ为:6.939±0.2°、7.462±0.2°、13.042±0.2°、15.181±0.2°、15.976±0.2°、16.502±0.2°、17.076±0.2°、17.318±0.2°、18.603±0.2°、19.183±0.2°、20.498±0.2°、20.861±0.2°、21.444±0.2°、22.321±0.2°、23.040±0.2°、24.803±0.2°、25.983±0.2°、27.106±0.2°、28.244±0.2°和29.713±0.2°处有特征峰;
    和/或,如式2-4所示的一柠檬酸盐二水合物还具备下述参数:晶型5,其X射线粉末衍射图在衍射角2θ为6.443±0.2°、7.801±0.2°、8.140±0.2°、10.780±0.2°、11.202±0.2°、12.808±0.2°、12.564±0.2°、13.211±0.2°、14.221±0.2°、16.230±0.2°、16.543±0.2°、17.176±0.2°、18.237±0.2°、18.683±0.2°、19.262±0.2°、19.744±0.2°、20.205±0.2°、21.042±0.2°、21.540±0.2°、24.519±0.2°、25.601±0.2°、25.886±0.2°、26.888±0.2°、和28.743±0.2°处有特征峰;
    和/或,如式2-6所示的一柠檬酸盐三水合物还具备下述参数:晶型10,其X射线粉末衍射图在衍射角2θ为5.659±0.2°、5.920±0.2°、8.107±0.2°、9.064±0.2°、11.760±0.2°、13.047±0.2°、13.454±0.2°、17.016±0.2°、17.600±0.2°、12.795±0.2°、18.705±0.2°、19.161±0.2°、20.039±0.2°、22.182±0.2°、23.831±0.2°、24.304±0.2°、25.723±0.2°、27.103±0.2°、27.623±0.2°和27.936±0.2°处有特征峰。
  6. 如权利要求1所述的一种喹唑啉衍生物的盐,其特征在于,所述的一柠檬酸盐2还具备下述参数中的一种或多种:如图1所示的X-射线粉末衍射图、如图2所示的热重分析图谱、如图3所示的差式扫描量热图和如图4所示的动态水分吸附图;
    和/或,所述的一柠檬酸盐半乙醇合物2-1还具备下述参数中的一种或多种:如图29所示的X-射线粉末衍射图、如图30所示的热重分析图谱和如图31所示的差式扫描量热图;
    和/或,所述的一柠檬酸盐二四氢呋喃合物2-2还具备下述参数中的一种或多种:如图32所示的X-射线粉末衍射图和如图33所示的热重分析图谱;
    和/或,所述的一柠檬酸盐半1,4-二氧六环合物2-3还具备下述参数中的一种或多种:如图34所示的X-射线粉末衍射图和如图35所示的热重分析图谱;
    和/或,所述的一柠檬酸盐二水合物2-4还具备下述参数中的一种或多种:如图5所示的X-射线粉末衍射图、如图6所示的热重分析图谱、如图7所示的差式扫描量热图和如图8所示的动态水分吸附图;
    和/或,所述的一柠檬酸盐半氯仿合物2-5还具备下述参数中的一种或多种:如图36所示的X-射线粉末衍射图和如图37所示的热重分析图谱;
    和/或,所述的一柠檬酸盐三水合物2-6还具备下述参数中的一种或多种:如图21所示的X-射线粉末衍射图、如图22所示的热重分析图谱、如图23所示的差式扫描量热图和如图24所示的动态水分吸附图;
    和/或,所述的一柠檬酸盐2.5水合物2-7还具备下述参数中的一种或多种:如图13所示的X-射线粉末衍射图、如图14所示的热重分析图谱、如图15所示的差式扫描量热图和如图16所示的动态水分吸附图;
    和/或,所述的一苯磺酸盐3还具备下述参数中的一种或多种:如图50所示的X-射线粉末衍射图、如图51所示的热重分析图谱、如图52所示的差式扫描量热图和如图53所示的动态水分吸附图;
    和/或,所述的一乙二磺酸盐4还具备下述参数中的一种或多种:如图38所示的X-射线粉末衍射图、如图39所示的热重分析图谱、如图40所示的差式扫描量热图和如图 41所示的动态水分吸附图;
    和/或,所述的一L-酒石酸盐5还具备下述参数中的一种或多种:如图62所示的X-射线粉末衍射图和如图63所示的热重分析图谱;
    和/或,所述的一L-酒石酸盐四水合物5-1还具备下述参数中的一种或多种:如图64所示的X-射线粉末衍射图、如图65所示的热重分析图谱、如图66所示的差式扫描量热图和如图67所示的动态水分吸附图;
    和/或,所述的一盐酸盐一水合物6还具备下述参数中的一种或多种:如图54所示的X-射线粉末衍射图、如图55所示的热重分析图谱、如图56所示的差式扫描量热图和如图57所示的动态水分吸附图;
    和/或,所述的一硫酸盐7还具备下述参数中的一种或多种:如图42所示的X-射线粉末衍射图、如图43所示的热重分析图谱、如图44所示的差式扫描量热图和如图45所示的动态水分吸附图;
    和/或,所述的一D-葡萄糖酸盐8还具备下述参数中的一种或多种:如图58所示的X-射线粉末衍射图、如图59所示的热重分析图谱、如图60所示的差式扫描量热图和如图61所示的动态水分吸附图;
    和/或,所述的一α-酮戊二酸盐9还具备下述参数中的一种或多种:如图77所示的X-射线粉末衍射图和如图78所示的热重分析图谱;
    和/或,所述的二α-酮戊二酸盐10还具备下述参数中的一种或多种:如图90所示的X-射线粉末衍射图和如图91所示的热重分析图谱;
    和/或,所述的二磷酸盐11还具备下述参数中的一种或多种:如图68所示的X-射线粉末衍射图和如图69所示的热重分析图谱;
    和/或,所述的二马来酸盐12还具备下述参数中的一种或多种:如图79所示的X-射线粉末衍射图和如图80所示的热重分析图谱;
    和/或,所述的一丁二酸盐13还具备下述参数:如图76所示的X-射线粉末衍射图;
    和/或,所述的三丁二酸盐14还具备下述参数中的一种或多种:如图88所示的X-射线粉末衍射图和如图89所示的热重分析图谱;
    和/或,所述的二乙醇酸盐15还具备下述参数:如图73所示的X-射线粉末衍射图;
    和/或,所述的一丙二酸盐16还具备下述参数中的一种或多种:如图74所示的X-射线粉末衍射图和如图75所示的热重分析图谱;
    和/或,所述的二丙二酸盐17还具备下述参数中的一种或多种:如图82所示的X-射线粉末衍射图和如图83所示的热重分析图谱;
    和/或,所述的三丙二酸盐18还具备下述参数中的一种或多种:如图84所示的X-射线粉末衍射图和如图85所示的热重分析图谱;
    和/或,所述的二硫酸盐19还具备下述参数中的一种或多种:如图46所示的X-射线粉末衍射图、如图47所示的热重分析图谱、如图48所示的差式扫描量热图和如图49所示的动态水分吸附图;
    和/或,所述的二1,5-萘二磺酸盐20还具备下述参数中的一种或多种:如图86所示的X-射线粉末衍射图和如图87所示的热重分析图谱;
    和/或,所述的一帕莫酸盐21还具备下述参数:如图70所示的X-射线粉末衍射图;
    和/或,所述的一对甲苯磺酸盐22还具备下述参数中的一种或多种:如图71所示的X-射线粉末衍射图和如图72所示的热重分析图谱;
    和/或,所述的一1,5-萘二磺酸盐23还具备下述参数:如图81所示的X-射线粉末衍射图;
    和/或,所述的一对氯苯磺酸盐24还具备下述参数:如图92所示的X-射线粉末衍射图。
  7. 如权利要求1所述的一种喹唑啉衍生物的盐,其特征在于,所述的一柠檬酸盐2还具备下述参数中的一种或多种:如图9所示的X-射线粉末衍射图、如图10所示的热重分析图谱、如图11所示的差式扫描量热图和如图12所示的动态水分吸附图;
    和/或,所述的一柠檬酸盐二水合物2-4还具备下述参数中的一种或多种:如图17所示的X-射线粉末衍射图、如图18所示的热重分析图谱、如图19所示的差式扫描量热图和如图20所示的动态水分吸附图。
  8. 如权利要求1所述的一种喹唑啉衍生物的盐,其特征在于,所述的一柠檬酸盐二水合物2-4还具备下述参数中的一种或多种:如图25所示的X-射线粉末衍射图、如图26所示的热重分析图谱、如图27所示的差式扫描量热图和如图28所示的动态水分吸附图。
  9. 如权利要求2所述的一种喹唑啉衍生物的盐,其特征在于,所述晶型1的熔点为165-169℃;
    和/或,所述晶型1在20-80%相对湿度范围内吸水0.21%;
    和/或,所述晶型2的分解温度为142℃;
    和/或,所述晶型2的差式扫描量热图在89-120℃之间有脱去乙醇的吸热峰;
    和/或,所述晶型3的分解温度为169℃;
    和/或,所述晶型4的分解温度为173℃;
    和/或,所述晶型5的分解温度为145℃;
    和/或,所述晶型5的差式扫描量热图在123℃前有脱去结晶水的吸热峰;
    和/或,所述晶型5在0-80%相对湿度范围内吸水0.4%;
    和/或,所述晶型6的分解温度为173℃;
    和/或,所述晶型7的分解温度为145℃;
    和/或,所述晶型7的差式扫描量热图在79℃前及115-117℃之间有两个脱水的吸热峰;
    和/或,所述晶型7在10-80%相对湿度范围内吸水0.38%;
    和/或,所述晶型10的分解温度为159℃;
    和/或,所述晶型10的差式扫描量热图在117℃前有脱水的吸热峰;
    和/或,所述晶型10在50-80%相对湿度范围内吸水1.1%;
    和/或,所述晶型11的分解温度为142℃;
    和/或,所述晶型11的差式扫描量热图在71℃前有脱水的吸热峰;
    和/或,所述晶型11在50-80%相对湿度范围内吸水5.3%;
    和/或,所述晶型13的分解温度为144℃;
    和/或,所述晶型13的熔点为127-138℃;
    和/或,所述晶型13在20-80%相对湿度范围内吸水0.2%;
    和/或,所述晶型14的分解温度为144℃;
    和/或,所述晶型14的差式扫描量热图在130℃前有脱水的吸热峰;
    和/或,所述晶型14在10-80%相对湿度范围内吸水0.7%;
    和/或,所述喹唑啉衍生物的一乙二磺酸盐的晶型在20-80%相对湿度范围内重量变化为1.46%;
    和/或,所述喹唑啉衍生物的一硫酸盐的晶型的熔点为165℃;
    和/或,所述喹唑啉衍生物的一硫酸盐的晶型在20-80%相对湿度范围内重量变化为11.68%;
    和/或,所述喹唑啉衍生物的二硫酸盐的晶型的分解温度为250℃;
    和/或,所述喹唑啉衍生物的二硫酸盐的晶型的差式扫描量热图在74℃前和114-160℃之间有吸热峰;
    和/或,所述喹唑啉衍生物的二硫酸盐的晶型在20-80%相对湿度范围内重量变化为2%;
    和/或,所述喹唑啉衍生物的一苯磺酸盐的晶型的分解温度为199℃;
    和/或,所述喹唑啉衍生物的一苯磺酸盐的晶型的熔点为199℃;
    和/或,所述喹唑啉衍生物的一苯磺酸盐的晶型在20-80%相对湿度范围内重量变化为0.3%;
    和/或,所述喹唑啉衍生物的一盐酸盐一水合物的晶型在20-80%相对湿度范围内重量变化为0.17%;
    和/或,所述喹唑啉衍生物的一D-葡萄糖酸盐的晶型的分解温度为180℃;
    和/或,所述喹唑啉衍生物的一D-葡萄糖酸盐的晶型的熔点为193℃;
    和/或,所述喹唑啉衍生物的一D-葡萄糖酸盐的晶型在20-80%相对湿度范围内重量变化为0.12%;
    和/或,所述晶型15的分解温度为198℃;
    和/或,所述晶型16的分解温度为190℃;
    和/或,所述晶型16的差式扫描量热图在106℃前有脱溶剂的吸热峰;
    和/或,所述晶型16在20-80%相对湿度范围内重量变化为0.8%;
    和/或,所述喹唑啉衍生物的二磷酸盐的晶型的分解温度为234℃;
    和/或,所述喹唑啉衍生物的一对甲苯磺酸盐的晶型的分解温度为245℃;
    和/或,所述喹唑啉衍生物的一丙二酸盐的晶型的分解温度为88℃;
    和/或,所述喹唑啉衍生物的一α-酮戊二酸盐的晶型的分解温度为193℃;
    和/或,所述喹唑啉衍生物的二马来酸盐的晶型的热重分析图谱在75℃和136℃有阶段式失重;
    和/或,所述喹唑啉衍生物的二丙二酸盐的晶型的分解温度为135℃;
    和/或,所述喹唑啉衍生物的三丙二酸盐的晶型的分解温度为140℃;
    和/或,所述喹唑啉衍生物的二1,5-萘二磺酸盐的晶型的分解温度为223℃;
    和/或,所述喹唑啉衍生物的三丁二酸盐的晶型的分解温度为173℃;
    和/或,所述喹唑啉衍生物的二α-酮戊二酸盐的晶型的分解温度为140℃。
  10. 一种如权利要求1~9中至少一项所述的喹唑啉衍生物的盐的制备方法:
    (1)当所述的盐为一柠檬酸盐2时,其包括下述步骤:在四氢呋喃中,将喹唑啉衍生物和柠檬酸进行成盐反应,得到一柠檬酸盐2即可;
    (2)当所述的盐为一柠檬酸盐半乙醇合物2-1时,其包括下述步骤:将一柠檬酸盐2在乙醇中打浆,得到一柠檬酸盐半乙醇合物2-1即可;
    (3)当所述的盐为一柠檬酸盐二四氢呋喃合物2-2时,其包括下述步骤:将一柠檬酸盐2在四氢呋喃中打浆,得到一柠檬酸盐二四氢呋喃合物2-2即可;
    (4)当所述的盐为一柠檬酸盐半1,4-二氧六环合物2-3时,其包括下述步骤:在1,4-二氧六环中,将一柠檬酸盐2重结晶,得到一柠檬酸盐半1,4-二氧六环合物2-3即可;
    (5)当所述的盐为一柠檬酸盐二水合物2-4时,其包括下述步骤:将一柠檬酸盐2在正丁醇或水中打浆,得到一柠檬酸盐二水合物2-4即可;
    (5-1)当所述的盐为一柠檬酸盐二水合物2-4时,其包括下述步骤:将一柠檬酸盐2在溶剂中进行挥发析晶,得到一柠檬酸盐二水合物2-4即可;所述溶剂为甲醇水溶液、乙醇水溶液或异丙醇水溶液;
    (5-2)当所述的盐为一柠檬酸盐二水合物2-4时,其包括下述步骤:在溶剂中,将一柠檬酸盐2重结晶,得到一柠檬酸盐二水合物2-4即可;所述的溶剂为甲醇和丙酮、或、1,4-二氧六环和丙酮;
    (6)当所述的盐为一柠檬酸盐半氯仿合物2-5时,其包括下述步骤:将一柠檬酸盐2在氯仿中打浆,得到一柠檬酸盐半氯仿合物2-5即可;
    (7)当所述的盐为一柠檬酸盐二水合物2-4时,其包括下述步骤:将一柠檬酸盐2在氯仿中打浆,得到一柠檬酸盐二水合物2-4即可;
    (8)当所述的盐为三水合物2-6时,其包括下述步骤:将一柠檬酸盐2在溶剂中进行挥发析晶,得到三水合物2-6即可;所述溶剂为甲醇、正丙醇水溶液、四氢呋喃水溶液或乙腈水溶液;
    (9)当所述的盐为一柠檬酸盐二水合物2-4时,其包括下述步骤:在溶剂中,将一柠檬酸盐2重结晶,得到一柠檬酸盐二水合物2-4即可;所述的溶剂为甲醇和乙醇、硝基甲烷和乙醇、乙腈和乙醇、正丙醇、或、异丙醇;
    (9-2)当所述的盐为一柠檬酸盐二水合物2-4时,其包括下述步骤:在溶剂中,将一柠檬酸盐2打浆,得到一柠檬酸盐二水合物2-4即可;所述的溶剂为甲醇和乙醇、硝基甲烷和乙醇、或、乙腈和乙醇;
    (10)当所述的盐为一柠檬酸盐2时,其包括下述步骤:在正丁醇中,将一柠檬酸盐2重结晶,得到一柠檬酸盐2即可;
    (10-2)当所述的盐为一柠檬酸盐2时,其包括下述步骤:将一柠檬酸盐2在水和乙腈中进行挥发析晶,得到一柠檬酸盐2即可;
    (11)当所述的盐为2.5水合物晶型2-7时,其包括下述步骤:在水和二甲亚砜中,将一柠檬酸盐2重结晶,得到2.5水合物晶型2-7即可;
    (11-2)当所述的盐为2.5水合物晶型2-7时,其包括下述步骤:将一柠檬酸盐2在水和丙酮中进行挥发析晶,得到2.5水合物晶型2-7即可;
    (12)当所述的盐为一乙二磺酸盐时,其包括下述步骤:在四氢呋喃中,将喹唑啉衍生物和乙二磺酸进行成盐反应,得到一乙二磺酸盐即可;
    (13)当所述的盐为一硫酸盐时,其包括下述步骤:在四氢呋喃中,将喹唑啉衍生物和硫酸进行成盐反应,得到一硫酸盐即可;所述的硫酸与所述的喹唑啉衍生物的摩尔比值为1~1.3;
    (14)当所述的盐为二硫酸盐时,其包括下述步骤:在四氢呋喃中,将喹唑啉衍生物和硫酸进行成盐反应,得到二硫酸盐即可;所述的硫酸与所述的喹唑啉衍生物的摩尔比值为2.2~3.3;
    (15)当所述的盐为一苯磺酸盐时,其包括下述步骤:在四氢呋喃中,将喹唑啉衍生物和苯磺酸进行成盐反应,得到一苯磺酸盐即可;
    (16)当所述的盐为一盐酸盐一水合物时,其包括下述步骤:在四氢呋喃和水中,将喹唑啉衍生物和HCl进行成盐反应,得到一盐酸盐一水合物即可;
    (17)当所述的盐为一D-葡萄糖酸盐时,其包括下述步骤:在二氯甲烷中,将喹唑啉衍生物和D-葡萄糖酸进行成盐反应,得到一D-葡萄糖酸盐即可;
    (18)当所述的盐为一L-酒石酸盐时,其包括下述步骤:在四氢呋喃中,将喹唑啉衍生物和L-酒石酸进行成盐反应,得到一L-酒石酸盐即可;
    (19)当所述的盐为一L-酒石酸盐四水合物时,其包括下述步骤:在水中,将一L-酒石酸盐重结晶,得到一L-酒石酸盐四水合物即可;
    (20)当所述的盐为二磷酸盐时,其包括下述步骤:在四氢呋喃中,将喹唑啉衍生物和磷酸进行成盐反应,得到二磷酸盐即可;
    (21)当所述的盐为一帕莫酸盐时,其包括下述步骤:在四氢呋喃中,将喹唑啉衍生物和帕莫酸进行成盐反应,得到一帕莫酸即可;
    (22)当所述的盐为一对甲苯磺酸盐时,其包括下述步骤:在氯仿和乙醇中,将喹唑啉衍生物和对甲苯磺酸进行成盐反应,得到一对甲苯磺酸盐即可;
    (23)当所述的盐为二乙醇酸盐时,其包括下述步骤:在二氯甲烷中,将喹唑啉衍生物和乙醇酸进行成盐反应,得到二乙醇酸即可;
    (24)当所述的盐为一丙二酸盐时,其包括下述步骤:在二氯甲烷中,将喹唑啉衍生物和丙二酸进行成盐反应,得到一丙二酸盐即可;所述的丙二酸与所述的喹唑啉衍生物的摩尔比值为1~1.2;
    (25)当所述的盐为一丁二酸盐时,其包括下述步骤:在二氯甲烷中,将喹唑啉衍生物和丁二酸进行成盐反应,得到一丁二酸盐即可;所述的丁二酸与所述的喹唑啉衍生 物的摩尔比值为1~1.2;
    (26)当所述的盐为一α-酮戊二酸盐时,其包括下述步骤:在四氢呋喃中,将喹唑啉衍生物和α-酮戊二酸进行成盐反应,得到一α-酮戊二酸即可;所述的α-酮戊二酸与所述的喹唑啉衍生物的摩尔比值为1~1.2;
    (27)当所述的盐为二马来酸盐时,其包括下述步骤:在四氢呋喃中,将喹唑啉衍生物和马来酸进行成盐反应,得到二马来酸盐即可;
    (28)当所述的盐为一1,5-萘二磺酸盐时,其包括下述步骤:在四氢呋喃中,将喹唑啉衍生物和1,5-萘二磺酸进行成盐反应,得到一1,5-萘二磺酸盐即可;所述的1,5-萘二磺酸盐与所述的喹唑啉衍生物的摩尔比值为1.1~1.5
    (29)当所述的盐为二丙二酸盐时,其包括下述步骤:在二氯甲烷中,将喹唑啉衍生物和丙二酸进行成盐反应,得到二丙二酸盐即可;所述的丙二酸与所述的喹唑啉衍生物的摩尔比值为2.0~2.3;
    (30)当所述的盐为三丙二酸盐时,其包括下述步骤:在二氯甲烷中,将喹唑啉衍生物和丙二酸进行成盐反应,得到三丙二酸盐即可;所述的丙二酸与所述的喹唑啉衍生物的摩尔比值为3.0~3.4;
    (31)当所述的盐为二1,5-萘二磺酸盐时,其包括下述步骤:在四氢呋喃中,将喹唑啉衍生物和1,5-萘二磺酸进行成盐反应,得到一1,5-萘二磺酸盐即可;所述的1,5-萘二磺酸盐与所述的喹唑啉衍生物的摩尔比值为2.2~3.3
    (32)当所述的盐为三丁二酸盐时,其包括下述步骤:在二氯甲烷中,将喹唑啉衍生物和丁二酸进行成盐反应,得到三丁二酸盐即可;所述的丁二酸与所述的喹唑啉衍生物的摩尔比值为2.2~3.3;
    (33)当所述的盐为二α-酮戊二酸盐时,其包括下述步骤:在四氢呋喃中,将喹唑啉衍生物和α-酮戊二酸进行成盐反应,得到二α-酮戊二酸即可;所述的α-酮戊二酸与所述的喹唑啉衍生物的摩尔比值为2.2~3.3;
    (34)当所述的盐为对一对氯苯磺酸盐时,其包括下述步骤:在四氢呋喃中,将喹唑啉衍生物和对氯苯磺酸进行成盐反应,得到一对氯苯磺酸盐即可;
    其中,所述喹唑啉衍生物的结构如式
    Figure PCTCN2017102998-appb-100008
    所示。
  11. 如权利要求10所述的制备方法,其特征在于,在方法(1)中,所述的四氢呋喃与所述的喹唑啉衍生物的体积质量比为25~50mL/g;
    和/或,在方法(1)中,所述的柠檬酸与所述的喹唑啉衍生物的摩尔比值为1~1.5;
    和/或,在方法(1)中,所述的成盐温度为10-30℃;
    和/或,在方法(1)中,所述的成盐时间为0.5-24小时;
    和/或,在方法(1)中,所述的成盐反应的操作为:将柠檬酸的四氢呋喃溶液和喹唑啉衍生物的四氢呋喃溶液混合;
    和/或,在方法(1)中,所述的成盐反应的后处理为:过滤、干燥;
    和/或,所述的方法(1)包括下述步骤:将所述喹唑啉衍生物的四氢呋喃溶液和柠檬酸的四氢呋喃溶液混合、反应,将析出的固体分离、干燥,即得;
    和/或,在方法(2)中,所述的乙醇与所述的一柠檬酸盐2的体积质量比为35~45mL/g;
    和/或,在方法(2)中,所述的一柠檬酸盐2为晶型1;
    和/或,在方法(2)中,所述的一柠檬酸盐2的按照方法(1)制得;
    和/或,在方法(2)中,所述的打浆温度为55-65℃;
    和/或,在方法(2)中,所述的打浆时间为8-16小时;
    和/或,所述的方法(2)包括下述步骤:将所述一柠檬酸盐2和乙醇混合形成混悬液,于55-65℃下搅拌,即得;
    和/或,在方法(3)中,所述的四氢呋喃与所述的一柠檬酸盐的体积质量比为35~45mL/g;
    和/或,在方法(3)中,所述的一柠檬酸盐2为晶型1;
    和/或,在方法(3)中,所述的一柠檬酸盐2的按照方法(1)制得;
    和/或,在方法(3)中,所述的打浆温度为10-60℃;
    和/或,在方法(3)中,所述的打浆时间为8-16小时;
    和/或,所述的方法(3)包括下述步骤:将所述一柠檬酸盐2和四氢呋喃混合形成混悬液,于10-60℃下搅拌,即得;
    和/或,在方法(4)中,所述的1,4-二氧六环与所述的一柠檬酸盐2的体积质量比为80~120mL/g;
    和/或,在方法(4)中,所述的一柠檬酸盐2为晶型1;
    和/或,在方法(4)中,所述的一柠檬酸盐2的按照方法(1)制得;
    和/或,在方法(4)中,所述的重结晶为热溶冷析重结晶;
    和/或,所述的方法(4)包括下述步骤:于60℃以上的温度下将所述一柠檬酸盐2 和二氧六环混合形成溶液,在搅拌条件下自然降温,即得;
    和/或,在方法(5)中,所述的水与所述的一柠檬酸盐2的体积质量比为60~70mL/g;
    和/或,在方法(5)中,所述的四氢呋喃与所述的一柠檬酸盐2的体积质量比为80~120mL/g;
    和/或,在方法(5)中,所述的一柠檬酸盐2为晶型1;
    和/或,在方法(5)中,所述的一柠檬酸盐2的按照方法(1)制得;
    和/或,在方法(5)中,所述的打浆温度为10-60℃;
    和/或,在方法(5)中,所述的打浆时间为8-16小时;
    和/或,所述的方法(5)包括下述步骤:将所述一柠檬酸盐2和溶剂混合形成混悬液,于10-60℃下搅拌,即得;所述溶剂为水或正丁醇;
    和/或,在方法(5-1)中,所述的溶剂与所述的一柠檬酸盐2的体积质量比为20~200mL/g;
    和/或,在方法(5-1)中,所述溶剂中的醇类溶剂与水的体积比值为1;
    和/或,在方法(5-1)中,所述的一柠檬酸盐2为晶型1;
    和/或,在方法(5-1)中,所述的一柠檬酸盐2的按照方法(1)制得;
    和/或,在方法(5-1)中,所述的挥发温度为10-60℃;
    和/或,所述的方法(5-1)包括下述步骤:将所述一柠檬酸盐2和溶剂混合形成溶液,于10-60℃下挥发溶剂至干,即得;所述溶剂为甲醇水溶液、乙醇水溶液或异丙醇水溶液;
    和/或,在方法(5-2)中,所述的溶剂与所述的一柠檬酸盐2的体积质量比为160~240mL/g;
    和/或,在方法(5-2)中,所述的甲醇和丙酮的体积比值为1;
    和/或,在方法(5-2)中,所述的1,4-二氧六环和丙酮的体积比值为1;
    和/或,在方法(5-2)中,所述的一柠檬酸盐2的按照方法(1)制得;
    和/或,在方法(5-2)中,所述的重结晶为热溶冷析重结晶;
    和/或,在方法(6)中,所述的氯仿与所述的一柠檬酸盐2的体积质量比为35~45mL/g;
    和/或,在方法(6)中,所述的一柠檬酸盐2为晶型1;
    和/或,在方法(6)中,所述的一柠檬酸盐2的按照方法(1)制得;
    和/或,在方法(6)中,所述的打浆温度为55-65℃;
    和/或,在方法(6)中,所述的打浆时间为8-16小时;
    和/或,所述的方法(6)包括下述步骤:将所述一柠檬酸盐2和氯仿混合形成混悬液,于室温下搅拌,即得;
    和/或,在方法(7)中,所述的氯仿与所述的一柠檬酸盐2的体积质量比为80~120mL/g;
    和/或,在方法(7)中,所述的一柠檬酸盐2为晶型1;
    和/或,在方法(7)中,所述的一柠檬酸盐2的按照方法(1)制得;
    和/或,在方法(7)中,所述的打浆温度为10-30℃;
    和/或,在方法(7)中,所述的打浆时间为8-16小时;
    和/或,所述的方法(7)包括下述步骤:将所述一柠檬酸盐2和水混合形成混悬液,于室温下搅拌,即得;
    和/或,在方法(8)中,所述的溶剂与所述的一柠檬酸盐2的体积质量比为100~200mL/g;
    和/或,在方法(8)中,所述溶剂中的非水溶剂与水的体积比值为1;
    和/或,在方法(8)中,所述的一柠檬酸盐2为晶型1;
    和/或,在方法(8)中,所述的一柠檬酸盐2的按照方法(1)制得;
    和/或,在方法(8)中,所述的挥发温度为10-30℃;
    和/或,所述的方法(8)包括下述步骤:将所述一柠檬酸盐2和溶剂混合形成溶液,于室温下自然挥发,即得;
    和/或,在方法(9)中,所述的溶剂与所述的一柠檬酸盐2的体积质量比为200~600mL/g;
    和/或,在方法(9)中,所述的一柠檬酸盐2为晶型1;
    和/或,在方法(9)中,所述的一柠檬酸盐2的按照方法(1)制得;
    和/或,在方法(9)中,所述的重结晶为热溶冷析重结晶;
    和/或,所述的方法(9)包括下述步骤:于60℃以上的温度下将所述一柠檬酸盐2和含有醇类的有机溶剂混合形成溶液,在搅拌条件下自然降温,即得;
    和/或,在方法(9-2)中,所述的溶剂与所述的一柠檬酸盐2的体积质量比为160~240mL/g;
    和/或,在方法(9-2)中,所述的溶剂中,所述的甲醇和乙醇的体积比值为1;
    和/或,在方法(9-2)中,所述的溶剂中,所述的硝基甲烷和乙醇的体积比值为1;
    和/或,在方法(9-2)中,所述的溶剂中,所述的乙腈和乙醇的体积比值为1;
    和/或,在方法(9-2)中,所述的一柠檬酸盐2为晶型1;
    和/或,在方法(9-2)中,所述的一柠檬酸盐2的按照方法(1)制得;
    和/或,在方法(9-2)中,所述的打浆温度为10-30℃;
    和/或,在方法(9-2)中,所述的打浆时间为8-16小时;
    和/或,所述的方法(9-2)包括下述步骤:将所述一柠檬酸盐2和含有醇类的有机溶剂混合形成混悬液,于室温下搅拌,即得;
    和/或,在方法(10)中,所述的正丁醇与所述的一柠檬酸盐2的体积质量比为200~300mL/g;
    和/或,在方法(10)中,所述的一柠檬酸盐2为晶型1;
    和/或,在方法(10)中,所述的一柠檬酸盐2的按照方法(1)制得;
    和/或,在方法(10)中,所述的重结晶为热溶冷析重结晶;
    和/或,所述的方法(10)包括下述步骤:在50-60℃下将所述一柠檬酸盐2和正丁醇混合形成溶液,在搅拌条件下自然降温至室温,即得;
    和/或,在方法(10-2)中,所述的“水和乙腈”与所述的一柠檬酸盐2的体积质量比为100~200mL/g;
    和/或,在方法(10-2)中,所述溶剂中的乙腈与水的体积比值为1;
    和/或,在方法(10-2)中,所述的一柠檬酸盐2为晶型1;
    和/或,在方法(10-2)中,所述的一柠檬酸盐2的按照方法(1)制得;
    和/或,在方法(10-2)中,所述的挥发温度为50-60℃;
    和/或,所述的方法(10-2)包括下述步骤:在55-65℃下将所述一柠檬酸盐2、乙腈和水混合形成溶液,挥发溶剂至干,即得;
    和/或,在方法(11)中,所述的“水和二甲亚砜”与所述的一柠檬酸盐2的体积质量比为200~300mL/g;
    和/或,在方法(11-2)中,所述溶剂中的水与二甲亚砜的体积比值为60;
    和/或,在方法(11)中,所述的一柠檬酸盐2为晶型1;
    和/或,在方法(11)中,所述的一柠檬酸盐2的按照方法(1)制得;
    和/或,在方法(11)中,所述的重结晶为反溶剂重结晶;
    和/或,所述的方法(11)包括下述步骤:将所述一柠檬酸盐2和二甲基亚砜混合形成溶液,将所述溶液加入水中,于室温下搅拌,即得;
    和/或,在方法(11-2)中,所述的“水和丙酮”与所述的一柠檬酸盐2的体积质量比为110~200mL/g;
    和/或,在方法(11-2)中,所述溶剂中的丙酮与水的体积比值为1;
    和/或,在方法(11-2)中,所述的一柠檬酸盐2为晶型1;
    和/或,在方法(11-2)中,所述的一柠檬酸盐2的按照方法(1)制得;
    和/或,在方法(11-2)中,所述的挥发温度为50-60℃;
    和/或,在方法(12)中,所述的四氢呋喃与所述的喹唑啉衍生物的体积质量比为20~100mL/g;
    和/或,在方法(12)中,所述的乙二磺酸与所述的喹唑啉衍生物的摩尔比值为1.1~2.2;
    和/或,在方法(12)中,所述的成盐温度为10-30℃;
    和/或,在方法(12)中,所述的成盐时间为0.5-24小时;
    和/或,在方法(12)中,所述的成盐反应的操作为:将乙二磺酸的四氢呋喃溶液和喹唑啉衍生物的四氢呋喃溶液混合;
    和/或,所述的方法(12)包括下述步骤:将所述喹唑啉衍生物的四氢呋喃溶液和乙二磺酸的四氢呋喃溶液混合、反应,将析出的固体分离、干燥,即得;
    和/或,在方法(13)中,所述的四氢呋喃与所述的喹唑啉衍生物的体积质量比为50~100mL/g;
    和/或,在方法(13)中,所述的硫酸以浓硫酸的形式使用;
    和/或,在方法(13)中,所述的成盐温度为10-30℃;
    和/或,在方法(13)中,所述的成盐时间为0.5-24小时;
    和/或,在方法(13)中,所述的成盐反应的操作为:将硫磺酸的四氢呋喃溶液和喹唑啉衍生物的四氢呋喃溶液混合;
    和/或,所述的方法(13)包括下述步骤:将所述喹唑啉衍生物的四氢呋喃溶液和硫酸的四氢呋喃溶液混合、反应,将析出的固体分离、干燥,即得;其中,所述喹唑啉衍生物和所述硫酸的摩尔比为1:1-1:1.3;
    和/或,在方法(14)中,所述的四氢呋喃与所述的喹唑啉衍生物的体积质量比为50~100mL/g;
    和/或,在方法(14)中,所述的硫酸以浓硫酸的形式使用;
    和/或,在方法(14)中,所述的成盐温度为10-30℃;
    和/或,在方法(14)中,所述的成盐时间为0.5-24小时;
    和/或,所述的方法(14)包括下述步骤:将所述喹唑啉衍生物的四氢呋喃溶液和硫酸的四氢呋喃溶液混合、反应,将析出的固体分离、干燥,即得;其中,所述喹唑啉衍生物和所述硫酸的摩尔比为1:2.2-1:3.3;
    和/或,在方法(15)中,所述的四氢呋喃与所述的喹唑啉衍生物的体积质量比为50~100mL/g;
    和/或,在方法(15)中,所述的苯磺酸与所述的喹唑啉衍生物的摩尔比值为1~1.3;
    和/或,在方法(15)中,所述的成盐温度为10-30℃;
    和/或,在方法(15)中,所述的成盐时间为0.5-24小时;
    和/或,在方法(15)中,所述的成盐反应的操作为:将苯磺酸的四氢呋喃溶液和喹唑啉衍生物的四氢呋喃溶液混合;
    和/或,所述的方法(15)包括下述步骤:将所述喹唑啉衍生物的四氢呋喃溶液和苯磺酸的四氢呋喃溶液混合、反应,将析出的固体分离、干燥,即得;
    和/或,在方法(16)中,所述的四氢呋喃与所述的喹唑啉衍生物的体积质量比为50~100mL/g;
    和/或,在方法(16)中,所述的HCl与所述的水以浓盐酸的形式使用;
    和/或,在方法(16)中,所述的HCl与所述的喹唑啉衍生物的摩尔比值为1.1~3.3;
    和/或,在方法(16)中,所述的成盐温度为10-30℃;
    和/或,在方法(16)中,所述的成盐时间为0.5-24小时;
    和/或,所述的方法(16)包括下述步骤:将所述喹唑啉衍生物的四氢呋喃溶液和盐酸的四氢呋喃溶液混合、反应,将析出的固体分离、干燥,即得;
    和/或,在方法(17)中,所述的四氢呋喃与所述的喹唑啉衍生物的体积质量比为230~400mL/g;
    和/或,在方法(17)中,所述的D-葡萄糖酸与所述的喹唑啉衍生物的摩尔比值为1.1~3.3;
    和/或,在方法(17)中,所述的成盐温度为10-30℃;
    和/或,在方法(17)中,所述的成盐时间为0.5-24小时;
    和/或,所述的方法(17)包括下述步骤:将所述喹唑啉衍生物的二氯甲烷溶液和D-葡萄糖酸的二氯甲烷混悬液混合、反应,将析出的固体分离、干燥,即得;
    和/或,在方法(18)中,所述的四氢呋喃与所述的喹唑啉衍生物的体积质量比为100~300mL/g;
    和/或,在方法(18)中,所述的L-酒石酸与所述的喹唑啉衍生物的摩尔比值为1~1.3;
    和/或,在方法(18)中,所述的成盐温度为10-30℃;
    和/或,在方法(18)中,所述的成盐时间为0.5-24小时;
    和/或,所述的方法(18)包括下述步骤:将所述喹唑啉衍生物的四氢呋喃溶液和L-酒石酸的四氢呋喃溶液混合、反应,将析出的固体分离、干燥,即得;
    和/或,在方法(19)中,所述的重结晶为搅拌重结晶;
    和/或,在方法(19)中,所述的一L-酒石酸盐为晶型15;
    和/或,在方法(19)中,所述的一L-酒石酸盐按照方法(18)制得;
    和/或,在方法(19)中,所述的重结晶时间为6~12小时;
    和/或,所述的方法(19)包括下述步骤:所述一L-酒石酸盐与水混合溶清,搅拌至固体完全析出,将析出的固体分离、干燥,即得;
    和/或,在方法(20)中,所述的四氢呋喃与所述的喹唑啉衍生物的体积质量比为50~130mL/g;
    和/或,在方法(20)中,所述的磷酸以85%磷酸水溶液的形式使用;
    和/或,在方法(20)中,所述的磷酸与所述的喹唑啉衍生物的摩尔比值为1.1~3.3;
    和/或,在方法(20)中,所述的成盐温度为10-30℃;
    和/或,在方法(20)中,所述的成盐时间为0.5-24小时;
    和/或,所述的方法(20)包括下述步骤:将所述喹唑啉衍生物的四氢呋喃溶液和磷酸的四氢呋喃溶液混合、反应,将析出的固体分离、干燥,即得;
    和/或,在方法(21)中,所述的四氢呋喃与所述的喹唑啉衍生物的体积质量比为65~130mL/g;
    和/或,在方法(21)中,所述的帕莫酸与所述的喹唑啉衍生物的摩尔比值为1~1.3;
    和/或,在方法(21)中,所述的成盐温度为10-30℃;
    和/或,在方法(21)中,所述的成盐时间为16~24小时;
    和/或,所述的方法(21)包括下述步骤:将所述喹唑啉衍生物的四氢呋喃溶液和帕莫酸的四氢呋喃混悬液混合、反应,将析出的固体分离、干燥,即得;
    和/或,在方法(22)中,所述的“氯仿和乙醇”与所述的喹唑啉衍生物的体积质量比为45~90mL/g;
    和/或,在方法(22)中,所述的氯仿和乙醇的体积比值为8~10;
    和/或,在方法(22)中,所述的对甲苯磺酸与所述的喹唑啉衍生物的摩尔比值为1~1.3;
    和/或,在方法(22)中,所述的成盐温度为10-30℃;
    和/或,在方法(22)中,所述的成盐时间为16~24小时;
    和/或,所述的方法(22)包括下述步骤:将所述喹唑啉衍生物的氯仿溶液和对甲苯磺酸的乙醇溶液混合、反应,将析出的固体分离、干燥,即得;
    和/或,在方法(23)中,所述的二氯甲烷与所述的喹唑啉衍生物的体积质量比为125~250mL/g;
    和/或,在方法(23)中,所述的乙醇酸与所述的喹唑啉衍生物的摩尔比值为2.0~2.2;
    和/或,在方法(23)中,所述的成盐温度为10-30℃;
    和/或,在方法(23)中,所述的成盐时间为16~24小时;
    和/或,所述的方法(23)包括下述步骤:将所述喹唑啉衍生物的二氯甲烷溶液和乙醇酸的二氯甲烷混悬液混合、反应,将析出的固体分离、干燥,即得;
    和/或,在方法(24)中,所述的二氯甲烷与所述的喹唑啉衍生物的体积质量比为125~250mL/g;
    和/或,在方法(24)中,所述的成盐温度为10-30℃;
    和/或,在方法(24)中,所述的成盐时间为16~24小时;
    和/或,所述的方法(24)包括下述步骤:将所述喹唑啉衍生物的二氯甲烷溶液和丙二酸的二氯甲烷混悬液混合、反应,将析出的固体分离、干燥,即得;其中,所述喹唑啉衍生物和所述丙二酸的摩尔比为1:1-1:1.2;
    和/或,在方法(25)中,所述的二氯甲烷与所述的喹唑啉衍生物的体积质量比为125~250mL/g;
    和/或,在方法(25)中,所述的成盐温度为10-30℃;
    和/或,在方法(25)中,所述的成盐时间为16~24小时;
    和/或,所述的方法(25)包括下述步骤:将所述喹唑啉衍生物的二氯甲烷溶液和丁二酸的二氯甲烷混悬液混合、反应,将析出的固体分离、干燥,即得;所述喹唑啉衍生物和所述丁二酸的摩尔比为1:1-1:1.2;
    和/或,在方法(26)中,所述的四氢呋喃与所述的喹唑啉衍生物的体积质量比为50~100mL/g;
    和/或,在方法(26)中,所述的成盐温度为10-30℃;
    和/或,在方法(26)中,所述的成盐时间为0.5-24小时;
    和/或,所述的方法(26)包括下述步骤:将所述喹唑啉衍生物的四氢呋喃溶液和α-酮戊二酸的四氢呋喃溶液混合、反应,将析出的固体分离、干燥,即得;其中,所述喹唑啉衍生物和所述α-酮戊二酸的摩尔比为1:1-1:1.2;
    和/或,在方法(27)中,所述的四氢呋喃与所述的喹唑啉衍生物的体积质量比为60~120mL/g;
    和/或,在方法(27)中,所述的马来酸与所述的喹唑啉衍生物的摩尔比值为1.1~3.3;
    和/或,在方法(27)中,所述的成盐温度为10-30℃;
    和/或,在方法(27)中,所述的成盐时间为0.5-24小时;
    和/或,所述的方法(27)包括下述步骤:将所述喹唑啉衍生物的四氢呋喃溶液和马来酸的四氢呋喃溶液混合、反应,将析出的固体分离、干燥,即得;
    和/或,在方法(28)中,所述的四氢呋喃与所述的喹唑啉衍生物的体积质量比为50~100mL/g;
    和/或,在方法(28)中,所述的成盐温度为10-30℃;
    和/或,在方法(28)中,所述的成盐时间为0.5-24小时;
    和/或,所述的方法(28)包括下述步骤:将所述喹唑啉衍生物的四氢呋喃溶液和1,5-萘二磺酸的四氢呋喃溶液混合、反应,将析出的固体分离、干燥,即得;其中,所述喹唑啉衍生物和所述1,5-萘二磺酸的摩尔比为1:1.1-1:1.5;
    和/或,在方法(29)中,所述的二氯甲烷与所述的喹唑啉衍生物的体积质量比为150~300mL/g;
    和/或,在方法(29)中,所述的成盐温度为10-30℃;
    和/或,在方法(29)中,所述的成盐时间为16~24小时;
    和/或,所述的方法(29)包括下述步骤:将所述喹唑啉衍生物的二氯甲烷溶液和丙二酸的二氯甲烷混悬液混合、反应,将析出的固体分离、干燥,即得;所述喹唑啉衍生物和所述丙二酸的摩尔比为1:2.0-1:2.3;
    和/或,在方法(30)中,所述的二氯甲烷与所述的喹唑啉衍生物的体积质量比为150~300mL/g;
    和/或,在方法(30)中,所述的成盐温度为10-30℃;
    和/或,在方法(30)中,所述的成盐时间为16~24小时;
    和/或,所述的方法(30)包括下述步骤:将所述喹唑啉衍生物的二氯甲烷溶液和丙二酸的二氯甲烷混悬液混合、反应,将析出的固体分离、干燥,即得;所述喹唑啉衍生物和所述丙二酸的摩尔比为1:3.0-1:3.4;
    和/或,在方法(31)中,所述的四氢呋喃与所述的喹唑啉衍生物的体积质量比为60~120mL/g;
    和/或,在方法(31)中,所述的成盐温度为10-30℃;
    和/或,在方法(31)中,所述的成盐时间为0.5-24小时;
    和/或,所述的方法(31)包括下述步骤:将所述喹唑啉衍生物的四氢呋喃溶液和1,5-萘二磺酸的四氢呋喃溶液混合、反应,将析出的固体分离、干燥,即得;其中,所述喹唑啉衍生物和所述1,5-萘二磺酸的摩尔比为1:2.2-1:3.3;
    和/或,在方法(32)中,所述的二氯甲烷与所述的喹唑啉衍生物的体积质量比为150~300mL/g;
    和/或,在方法(32)中,所述的成盐温度为10-30℃;
    和/或,在方法(32)中,所述的成盐时间为16~24小时;
    和/或,所述的方法(32)包括下述步骤:将所述喹唑啉衍生物的二氯甲烷溶液和丁二酸的二氯甲烷混悬液混合、反应,将析出的固体分离、干燥,即得;所述喹唑啉衍生物和所述丁二酸的摩尔比为1:2.2-1:3.3;
    和/或,在方法(33)中,所述的四氢呋喃与所述的喹唑啉衍生物的体积质量比为60~120mL/g;
    和/或,在方法(33)中,所述的成盐温度为10-30℃;
    和/或,在方法(33)中,所述的成盐时间为0.5-24小时;
    和/或,所述的方法(33)包括下述步骤:将所述喹唑啉衍生物的四氢呋喃溶液和α-酮戊二酸的四氢呋喃溶液混合、反应,将析出的固体分离、干燥,即得;其中,所述喹唑啉衍生物和所述α-酮戊二酸的摩尔比为1:2.2-1:3.3;
    和/或,在方法(34)中,所述的四氢呋喃与所述的喹唑啉衍生物的体积质量比为50~100mL/g;
    和/或,在方法(34)中,所述的对氯苯磺酸盐与所述的喹唑啉衍生物的摩尔比值为1~1.2;
    和/或,在方法(34)中,所述的成盐温度为10-30℃;
    和/或,在方法(34)中,所述的成盐时间为0.5-24小时;
    和/或,所述的方法(34)包括下述步骤:将所述喹唑啉衍生物的四氢呋喃溶液和对氯苯磺酸的四氢呋喃溶液混合、反应,将析出的固体分离,干燥,即得。
  12. 如权利要求11所述的制备方法,其特征在于,在方法(1)中,所述的四氢呋喃与所述的喹唑啉衍生物的体积质量比为26~48mL/g;
    和/或,在方法(1)中,所述的成盐反应的操作为:将柠檬酸的四氢呋喃溶液加至喹唑啉衍生物的四氢呋喃溶液混合;所述的喹唑啉衍生物的四氢呋喃溶液的浓度为25-50mg/mL,所述的柠檬酸的四氢呋喃溶液的浓度为50-100mg/mL;
    和/或,在方法(1)中,所述的成盐反应的后处理为:过滤、干燥;
    和/或,所述的方法(1)包括下述步骤:将所述喹唑啉衍生物的四氢呋喃溶液和柠檬酸的四氢呋喃溶液混合、反应,将析出的固体分离、干燥,即得;所述的干燥的温度为40~45℃,所述的干燥为真空干燥;
    和/或,在方法(2)中,所述的乙醇与所述的一柠檬酸盐2的体积质量比为40~45mL/g;
    和/或,在方法(2)中,所述的打浆温度为60℃;
    和/或,在方法(3)中,所述的四氢呋喃与所述的一柠檬酸盐的体积质量比为 40~45mL/g;
    和/或,在方法(4)中,所述的1,4-二氧六环与所述的一柠檬酸盐2的体积质量比为100~120mL/g;
    和/或,在方法(4)中,所述的重结晶为热溶冷析重结晶,其溶解温度为50-60℃,其冷却目标温度为10-30℃;
    和/或,在方法(5)中,所述的水与所述的一柠檬酸盐2的体积质量比为66~70mL/g;
    和/或,在方法(5)中,所述的四氢呋喃与所述的一柠檬酸盐2的体积质量比为100~120mL/g;
    和/或,在方法(5-2)中,所述的溶剂与所述的一柠檬酸盐2的体积质量比为200~240mL/g;
    和/或,在方法(5-2)中,所述的重结晶为热溶冷析重结晶,其溶解温度为50-60℃,其冷却目标温度为10-30℃;
    和/或,在方法(6)中,所述的氯仿与所述的一柠檬酸盐2的体积质量比为40~45mL/g;
    和/或,在方法(6)中,所述的打浆温度为60℃;
    和/或,在方法(7)中,所述的氯仿与所述的一柠檬酸盐2的体积质量比为100~120mL/g;
    和/或,在方法(9)中,所述的溶剂与所述的一柠檬酸盐2的体积质量比为200~500mL/g;
    和/或,在方法(9)中,所述的重结晶为热溶冷析重结晶,其溶解温度为50-60℃,其冷却目标温度为10-30℃;
    和/或,在方法(9-2)中,所述的溶剂与所述的一柠檬酸盐2的体积质量比为200~240mL/g;
    和/或,在方法(10)中,所述的正丁醇与所述的一柠檬酸盐2的体积质量比为240~300mL/g;
    和/或,在方法(10)中,所述的重结晶为热溶冷析重结晶,其溶解温度为50-60℃,其冷却目标温度为10-30℃;
    和/或,在方法(11)中,所述的“水和二甲亚砜”与所述的一柠檬酸盐2的体积质量比为240~300mL/g;
    和/或,在方法(11)中,所述的重结晶为反溶剂重结晶:先用二甲亚砜溶解,再与水混合;
    和/或,在方法(12)中,所述的成盐反应的操作为:将乙二磺酸的四氢呋喃溶液加 至喹唑啉衍生物的四氢呋喃溶液;所述的喹唑啉衍生物的四氢呋喃溶液的浓度为12.5-25mg/mL,所述的柠檬酸的四氢呋喃溶液的浓度为20.75-41.5mg/mL;
    和/或,在方法(13)中,所述的成盐反应的操作为:将硫酸的四氢呋喃溶液加至喹唑啉衍生物的四氢呋喃溶液;所述的喹唑啉衍生物的四氢呋喃溶液的浓度为12.5-25mg/mL,所述的柠檬酸的四氢呋喃溶液的浓度为9.75-19.5mg/mL;
    和/或,在方法(15)中,所述的成盐反应的操作为:将苯磺酸的四氢呋喃溶液加至喹唑啉衍生物的四氢呋喃溶液;所述的喹唑啉衍生物的四氢呋喃溶液的浓度为12.5-25mg/mL,所述的柠檬酸的四氢呋喃溶液的浓度为15.7-31.4mg/mL。
  13. 一种、如式1所示的喹唑啉衍生物、的盐,其按照下述任一方法制得:
    Figure PCTCN2017102998-appb-100009
    (1)在四氢呋喃中,将喹唑啉衍生物和柠檬酸进行成盐反应,得到喹唑啉衍生物的盐即可;
    (2)将一柠檬酸盐2在乙醇中打浆,得到喹唑啉衍生物的盐即可;
    (3)将一柠檬酸盐2在四氢呋喃中打浆,得到喹唑啉衍生物的盐即可;
    (4)在1,4-二氧六环中,将一柠檬酸盐2重结晶,得到喹唑啉衍生物的盐即可;
    (5)将一柠檬酸盐2在正丁醇或水中打浆,得到喹唑啉衍生物的盐即可;
    (5-1)将一柠檬酸盐2在溶剂中进行挥发析晶,得到喹唑啉衍生物的盐即可;所述溶剂为甲醇水溶液、乙醇水溶液或异丙醇水溶液;
    (5-2)在溶剂中,将一柠檬酸盐2重结晶,得到喹唑啉衍生物的盐即可;所述的溶剂为甲醇和丙酮、或、1,4-二氧六环和丙酮;
    (6)将一柠檬酸盐2在氯仿中打浆,得到喹唑啉衍生物的盐即可;
    (7)将一柠檬酸盐2在氯仿中打浆,得到喹唑啉衍生物的盐即可;
    (8)将一柠檬酸盐2在溶剂中进行挥发析晶,得到喹唑啉衍生物的盐即可;所述溶剂为甲醇、正丙醇水溶液、四氢呋喃水溶液或乙腈水溶液;
    (9)在溶剂中,将一柠檬酸盐2重结晶,得到喹唑啉衍生物的盐即可;所述的溶剂为甲醇和乙醇、硝基甲烷和乙醇、乙腈和乙醇、正丙醇、或、异丙醇;
    (9-2)在溶剂中,将一柠檬酸盐2打浆,得到喹唑啉衍生物的盐即可;所述的溶剂 为甲醇和乙醇、硝基甲烷和乙醇、或、乙腈和乙醇;
    (10)在正丁醇中,将一柠檬酸盐2重结晶,得到喹唑啉衍生物的盐即可;
    (10-2)将一柠檬酸盐2在水和乙腈中进行挥发析晶,得到喹唑啉衍生物的盐即可;
    (11)在水和二甲亚砜中,将一柠檬酸盐2重结晶,得到喹唑啉衍生物的盐即可;
    (11-2)将一柠檬酸盐2在水和丙酮中进行挥发析晶,得到喹唑啉衍生物的盐即可;
    (12)在四氢呋喃中,将喹唑啉衍生物和乙二磺酸进行成盐反应,得到喹唑啉衍生物的盐即可;
    (13)在四氢呋喃中,将喹唑啉衍生物和硫酸进行成盐反应,得到喹唑啉衍生物的盐即可;所述的硫酸与所述的喹唑啉衍生物的摩尔比值为1~1.3;
    (14)在四氢呋喃中,将喹唑啉衍生物和硫酸进行成盐反应,得到喹唑啉衍生物的盐即可;所述的硫酸与所述的喹唑啉衍生物的摩尔比值可为2.2~3.3;
    (15)在四氢呋喃中,将喹唑啉衍生物和苯磺酸进行成盐反应,得到喹唑啉衍生物的盐即可;
    (16)在四氢呋喃和水中,将喹唑啉衍生物和HCl进行成盐反应,得到喹唑啉衍生物的盐即可;
    (17)在二氯甲烷中,将喹唑啉衍生物和D-葡萄糖酸进行成盐反应,得到喹唑啉衍生物的盐即可;
    (18)在四氢呋喃中,将喹唑啉衍生物和L-酒石酸进行成盐反应,得到喹唑啉衍生物的盐即可;
    (19)在水中,将一L-酒石酸盐重结晶,得到喹唑啉衍生物的盐即可;
    (20)在四氢呋喃中,将喹唑啉衍生物和磷酸进行成盐反应,得到喹唑啉衍生物的盐即可;
    (21)在四氢呋喃中,将喹唑啉衍生物和帕莫酸进行成盐反应,得到喹唑啉衍生物的盐即可;
    (22)在氯仿和乙醇中,将喹唑啉衍生物和对甲苯磺酸进行成盐反应,得到喹唑啉衍生物的盐即可;
    (23)在二氯甲烷中,将喹唑啉衍生物和乙醇酸进行成盐反应,得到喹唑啉衍生物的盐即可;
    (24)在二氯甲烷中,将喹唑啉衍生物和丙二酸进行成盐反应,得到喹唑啉衍生物的盐即可;所述的丙二酸与所述的喹唑啉衍生物的摩尔比值为1~1.2;
    (25)在二氯甲烷中,将喹唑啉衍生物和丁二酸进行成盐反应,得到喹唑啉衍生物 的盐即可;所述的丁二酸与所述的喹唑啉衍生物的摩尔比值为1~1.2;
    (26)在四氢呋喃中,将喹唑啉衍生物和α-酮戊二酸进行成盐反应,得到喹唑啉衍生物的盐即可;所述的α-酮戊二酸与所述的喹唑啉衍生物的摩尔比值为1~1.2;
    (27)在四氢呋喃中,将喹唑啉衍生物和马来酸进行成盐反应,得到二马来酸盐即可;
    (28)在四氢呋喃中,将喹唑啉衍生物和1,5-萘二磺酸进行成盐反应,得到喹唑啉衍生物的盐即可;所述的1,5-萘二磺酸盐与所述的喹唑啉衍生物的摩尔比值为1.1~1.5
    (29)在二氯甲烷中,将喹唑啉衍生物和丙二酸进行成盐反应,得到喹唑啉衍生物的盐即可;所述的丙二酸与所述的喹唑啉衍生物的摩尔比值为2.0~2.3;
    (30)在二氯甲烷中,将喹唑啉衍生物和丙二酸进行成盐反应,得到喹唑啉衍生物的盐即可;所述的丙二酸与所述的喹唑啉衍生物的摩尔比值为3.0~3.4;
    (31)在四氢呋喃中,将喹唑啉衍生物和1,5-萘二磺酸进行成盐反应,得到喹唑啉衍生物的盐即可;所述的1,5-萘二磺酸盐与所述的喹唑啉衍生物的摩尔比值为2.2~3.3
    (32)在二氯甲烷中,将喹唑啉衍生物和丁二酸进行成盐反应,得到喹唑啉衍生物的盐即可;所述的丁二酸与所述的喹唑啉衍生物的摩尔比值为2.2~3.3;
    (33)在四氢呋喃中,将喹唑啉衍生物和α-酮戊二酸进行成盐反应,得到喹唑啉衍生物的盐即可;所述的α-酮戊二酸与所述的喹唑啉衍生物的摩尔比值为2.2~3.3;
    (34)在四氢呋喃中,将喹唑啉衍生物和对氯苯磺酸进行成盐反应,得到喹唑啉衍生物的盐即可;
    其中,所述喹唑啉衍生物的结构如式
    Figure PCTCN2017102998-appb-100010
    所示。
  14. 一种如权利要求13所述的如式1所示的喹唑啉衍生物的盐,其特征在于,在方法(1)中,所述的四氢呋喃与所述的喹唑啉衍生物的体积质量比为25~50mL/g;
    和/或,在方法(1)中,所述的柠檬酸与所述的喹唑啉衍生物的摩尔比值为1~1.5;
    和/或,在方法(1)中,所述的成盐温度为10-30℃;
    和/或,在方法(1)中,所述的成盐时间为0.5-24小时;
    和/或,在方法(1)中,所述的成盐反应的操作为:将柠檬酸的四氢呋喃溶液和喹唑啉衍生物的四氢呋喃溶液混合;
    和/或,在方法(1)中,所述的成盐反应的后处理为:过滤、干燥;
    和/或,所述的方法(1)包括下述步骤:将所述喹唑啉衍生物的四氢呋喃溶液和柠檬酸的四氢呋喃溶液混合、反应,将析出的固体分离、干燥,即得;
    和/或,在方法(2)中,所述的乙醇与所述的一柠檬酸盐2的体积质量比为35~45mL/g;
    和/或,在方法(2)中,所述的一柠檬酸盐2的按照方法(1)制得;
    和/或,在方法(2)中,所述的打浆温度为55-65℃;
    和/或,在方法(2)中,所述的打浆时间为8-16小时;
    和/或,所述的方法(2)包括下述步骤:将所述一柠檬酸盐2和乙醇混合形成混悬液,于55-65℃下搅拌,即得;
    和/或,在方法(3)中,所述的四氢呋喃与所述的一柠檬酸盐的体积质量比为35~45mL/g;
    和/或,在方法(3)中,所述的一柠檬酸盐2的按照方法(1)制得;
    和/或,在方法(3)中,所述的打浆温度为10-60℃;
    和/或,在方法(3)中,所述的打浆时间为8-16小时;
    和/或,所述的方法(3)包括下述步骤:将所述一柠檬酸盐2和四氢呋喃混合形成混悬液,于10-60℃下搅拌,即得;
    和/或,在方法(4)中,所述的1,4-二氧六环与所述的一柠檬酸盐2的体积质量比为80~120mL/g;
    和/或,在方法(4)中,所述的一柠檬酸盐2的按照方法(1)制得;
    和/或,在方法(4)中,所述的重结晶为热溶冷析重结晶;
    和/或,所述的方法(4)包括下述步骤:于60℃以上的温度下将所述一柠檬酸盐2和二氧六环混合形成溶液,在搅拌条件下自然降温,即得;
    和/或,在方法(5)中,所述的水与所述的一柠檬酸盐2的体积质量比为60~70mL/g;
    和/或,在方法(5)中,所述的四氢呋喃与所述的一柠檬酸盐2的体积质量比为80~120mL/g;
    和/或,在方法(5)中,所述的一柠檬酸盐2的按照方法(1)制得;
    和/或,在方法(5)中,所述的打浆温度为10-60℃;
    和/或,在方法(5)中,所述的打浆时间为8-16小时;
    和/或,所述的方法(5)包括下述步骤:将所述一柠檬酸盐2和溶剂混合形成混悬液,于10-60℃下搅拌,即得;所述溶剂为水或正丁醇;
    和/或,在方法(5-1)中,所述的溶剂与所述的一柠檬酸盐2的体积质量比为 20~200mL/g;
    和/或,在方法(5-1)中,所述溶剂中的醇类溶剂与水的体积比值为1;
    和/或,在方法(5-1)中,所述的一柠檬酸盐2的按照方法(1)制得;
    和/或,在方法(5-1)中,所述的挥发温度为10-60℃;
    和/或,所述的方法(5-1)包括下述步骤:将所述一柠檬酸盐2和溶剂混合形成溶液,于10-60℃下挥发溶剂至干,即得;所述溶剂为甲醇水溶液、乙醇水溶液或异丙醇水溶液;
    和/或,在方法(5-2)中,所述的溶剂与所述的一柠檬酸盐2的体积质量比为160~240mL/g;
    和/或,在方法(5-2)中,所述的甲醇和丙酮的体积比值为1;
    和/或,在方法(5-2)中,所述的1,4-二氧六环和丙酮的体积比值为1;
    和/或,在方法(5-2)中,所述的一柠檬酸盐2的按照方法(1)制得;
    和/或,在方法(5-2)中,所述的重结晶为热溶冷析重结晶;
    和/或,在方法(6)中,所述的氯仿与所述的一柠檬酸盐2的体积质量比为35~45mL/g;
    和/或,在方法(6)中,所述的一柠檬酸盐2的按照方法(1)制得;
    和/或,在方法(6)中,所述的打浆温度为55-65℃;
    和/或,在方法(6)中,所述的打浆时间为8-16小时;
    和/或,所述的方法(6)包括下述步骤:将所述一柠檬酸盐2和氯仿混合形成混悬液,于室温下搅拌,即得;
    和/或,在方法(7)中,所述的氯仿与所述的一柠檬酸盐2的体积质量比为80~120mL/g;
    和/或,在方法(7)中,所述的一柠檬酸盐2的按照方法(1)制得;
    和/或,在方法(7)中,所述的打浆温度为10-30℃;
    和/或,在方法(7)中,所述的打浆时间为8-16小时;
    和/或,所述的方法(7)包括下述步骤:将所述一柠檬酸盐2和水混合形成混悬液,于室温下搅拌,即得;
    和/或,在方法(8)中,所述的溶剂与所述的一柠檬酸盐2的体积质量比为100~200mL/g;
    和/或,在方法(8)中,所述溶剂中的非水溶剂与水的体积比值为1;
    和/或,在方法(8)中,所述的一柠檬酸盐2的按照方法(1)制得;
    和/或,在方法(8)中,所述的挥发温度为10-30℃;
    和/或,所述的方法(8)包括下述步骤:将所述一柠檬酸盐2和溶剂混合形成溶液, 于室温下自然挥发,即得;
    和/或,在方法(9)中,所述的溶剂与所述的一柠檬酸盐2的体积质量比为200~600mL/g;
    和/或,在方法(9)中,所述的一柠檬酸盐2的按照方法(1)制得;
    和/或,在方法(9)中,所述的重结晶为热溶冷析重结晶;
    和/或,所述的方法(9)包括下述步骤:于60℃以上的温度下将所述一柠檬酸盐2和含有醇类的有机溶剂混合形成溶液,在搅拌条件下自然降温,即得;
    和/或,在方法(9-2)中,所述的溶剂与所述的一柠檬酸盐2的体积质量比为160~240mL/g;
    和/或,在方法(9-2)中,所述的溶剂中,所述的甲醇和乙醇的体积比值为1;
    和/或,在方法(9-2)中,所述的溶剂中,所述的硝基甲烷和乙醇的体积比值为1;
    和/或,在方法(9-2)中,所述的溶剂中,所述的乙腈和乙醇的体积比值为1;
    和/或,在方法(9-2)中,所述的一柠檬酸盐2的按照方法(1)制得;
    和/或,在方法(9-2)中,所述的打浆温度为10-30℃;
    和/或,在方法(9-2)中,所述的打浆时间为8-16小时;
    和/或,所述的方法(9-2)包括下述步骤:将所述一柠檬酸盐2和含有醇类的有机溶剂混合形成混悬液,于室温下搅拌,即得;
    和/或,在方法(10)中,所述的正丁醇与所述的一柠檬酸盐2的体积质量比为200~300mL/g;
    和/或,在方法(10)中,所述的一柠檬酸盐2的按照方法(1)制得;
    和/或,在方法(10)中,所述的重结晶为热溶冷析重结晶;
    和/或,所述的方法(10)包括下述步骤:在50-60℃下将所述一柠檬酸盐2和正丁醇混合形成溶液,在搅拌条件下自然降温至室温,即得;
    和/或,在方法(10-2)中,所述的“水和乙腈”与所述的一柠檬酸盐2的体积质量比为100~200mL/g;
    和/或,在方法(10-2)中,所述溶剂中的乙腈与水的体积比值为1;
    和/或,在方法(10-2)中,所述的一柠檬酸盐2的按照方法(1)制得;
    和/或,在方法(10-2)中,所述的挥发温度为50-60℃;
    和/或,所述的方法(10-2)包括下述步骤:在55-65℃下将所述一柠檬酸盐2、乙腈和水混合形成溶液,挥发溶剂至干,即得;
    和/或,在方法(11)中,所述的“水和二甲亚砜”与所述的一柠檬酸盐2的体积质 量比为200~300mL/g;
    和/或,在方法(11-2)中,所述溶剂中的水与二甲亚砜的体积比值为60;
    和/或,在方法(11)中,所述的一柠檬酸盐2的按照方法(1)制得;
    和/或,在方法(11)中,所述的重结晶为反溶剂重结晶;
    和/或,所述的方法(11)包括下述步骤:将所述一柠檬酸盐2和二甲基亚砜混合形成溶液,将所述溶液加入水中,于室温下搅拌,即得;
    和/或,在方法(11-2)中,所述的“水和丙酮”与所述的一柠檬酸盐2的体积质量比为110~200mL/g;
    和/或,在方法(11-2)中,所述溶剂中的丙酮与水的体积比值为1;
    和/或,在方法(11-2)中,所述的一柠檬酸盐2的按照方法(1)制得;
    和/或,在方法(11-2)中,所述的挥发温度为50-60℃;
    和/或,在方法(12)中,所述的四氢呋喃与所述的喹唑啉衍生物的体积质量比为20~100mL/g;
    和/或,在方法(12)中,所述的乙二磺酸与所述的喹唑啉衍生物的摩尔比值为1.1~2.2;
    和/或,在方法(12)中,所述的成盐温度为10-30℃;
    和/或,在方法(12)中,所述的成盐时间为0.5-24小时;
    和/或,在方法(12)中,所述的成盐反应的操作为:将乙二磺酸的四氢呋喃溶液和喹唑啉衍生物的四氢呋喃溶液混合;
    和/或,所述的方法(12)包括下述步骤:将所述喹唑啉衍生物的四氢呋喃溶液和乙二磺酸的四氢呋喃溶液混合、反应,将析出的固体分离、干燥,即得;
    和/或,在方法(13)中,所述的四氢呋喃与所述的喹唑啉衍生物的体积质量比为50~100mL/g;
    和/或,在方法(13)中,所述的硫酸以浓硫酸的形式使用;
    和/或,在方法(13)中,所述的成盐温度为10-30℃;
    和/或,在方法(13)中,所述的成盐时间为0.5-24小时;
    和/或,在方法(13)中,所述的成盐反应的操作为:将硫磺酸的四氢呋喃溶液和喹唑啉衍生物的四氢呋喃溶液混合;
    和/或,所述的方法(13)包括下述步骤:将所述喹唑啉衍生物的四氢呋喃溶液和硫酸的四氢呋喃溶液混合、反应,将析出的固体分离、干燥,即得;其中,所述喹唑啉衍生物和所述硫酸的摩尔比为1:1-1:1.3;
    和/或,在方法(14)中,所述的四氢呋喃与所述的喹唑啉衍生物的体积质量比为 50~100mL/g;
    和/或,在方法(14)中,所述的硫酸以浓硫酸的形式使用;
    和/或,在方法(14)中,所述的成盐温度为10-30℃;
    和/或,在方法(14)中,所述的成盐时间为0.5-24小时;
    和/或,所述的方法(14)包括下述步骤:将所述喹唑啉衍生物的四氢呋喃溶液和硫酸的四氢呋喃溶液混合、反应,将析出的固体分离、干燥,即得;其中,所述喹唑啉衍生物和所述硫酸的摩尔比为1:2.2-1:3.3;
    和/或,在方法(15)中,所述的四氢呋喃与所述的喹唑啉衍生物的体积质量比为50~100mL/g;
    和/或,在方法(15)中,所述的苯磺酸与所述的喹唑啉衍生物的摩尔比值为1~1.3;
    和/或,在方法(15)中,所述的成盐温度为10-30℃;
    和/或,在方法(15)中,所述的成盐时间为0.5-24小时;
    和/或,在方法(15)中,所述的成盐反应的操作为:将苯磺酸的四氢呋喃溶液和喹唑啉衍生物的四氢呋喃溶液混合;
    和/或,所述的方法(15)包括下述步骤:将所述喹唑啉衍生物的四氢呋喃溶液和苯磺酸的四氢呋喃溶液混合、反应,将析出的固体分离、干燥,即得;
    和/或,在方法(16)中,所述的四氢呋喃与所述的喹唑啉衍生物的体积质量比为50~100mL/g;
    和/或,在方法(16)中,所述的HCl与所述的水以浓盐酸的形式使用;
    和/或,在方法(16)中,所述的HCl与所述的喹唑啉衍生物的摩尔比值为1.1~3.3;
    和/或,在方法(16)中,所述的成盐温度为10-30℃;
    和/或,在方法(16)中,所述的成盐时间为0.5-24小时;
    和/或,所述的方法(16)包括下述步骤:将所述喹唑啉衍生物的四氢呋喃溶液和盐酸的四氢呋喃溶液混合、反应,将析出的固体分离、干燥,即得;
    和/或,在方法(17)中,所述的四氢呋喃与所述的喹唑啉衍生物的体积质量比为230~400mL/g;
    和/或,在方法(17)中,所述的D-葡萄糖酸与所述的喹唑啉衍生物的摩尔比值为1.1~3.3;
    和/或,在方法(17)中,所述的成盐温度为10-30℃;
    和/或,在方法(17)中,所述的成盐时间为0.5-24小时;
    和/或,所述的方法(17)包括下述步骤:将所述喹唑啉衍生物的二氯甲烷溶液和D- 葡萄糖酸的二氯甲烷混悬液混合、反应,将析出的固体分离、干燥,即得;
    和/或,在方法(18)中,所述的四氢呋喃与所述的喹唑啉衍生物的体积质量比为100~300mL/g;
    和/或,在方法(18)中,所述的L-酒石酸与所述的喹唑啉衍生物的摩尔比值为1~1.3;
    和/或,在方法(18)中,所述的成盐温度为10-30℃;
    和/或,在方法(18)中,所述的成盐时间为0.5-24小时;
    和/或,所述的方法(18)包括下述步骤:将所述喹唑啉衍生物的四氢呋喃溶液和L-酒石酸的四氢呋喃溶液混合、反应,将析出的固体分离、干燥,即得;
    和/或,在方法(19)中,所述的重结晶为搅拌重结晶;
    和/或,在方法(19)中,所述的一L-酒石酸盐按照方法(18)制得;
    和/或,在方法(19)中,所述的重结晶时间为6~12小时;
    和/或,所述的方法(19)包括下述步骤:所述一L-酒石酸盐与水混合溶清,搅拌至固体完全析出,将析出的固体分离、干燥,即得;
    和/或,在方法(20)中,所述的四氢呋喃与所述的喹唑啉衍生物的体积质量比为50~130mL/g;
    和/或,在方法(20)中,所述的磷酸以85%磷酸水溶液的形式使用;
    和/或,在方法(20)中,所述的磷酸与所述的喹唑啉衍生物的摩尔比值为1.1~3.3;
    和/或,在方法(20)中,所述的成盐温度为10-30℃;
    和/或,在方法(20)中,所述的成盐时间为0.5-24小时;
    和/或,所述的方法(20)包括下述步骤:将所述喹唑啉衍生物的四氢呋喃溶液和磷酸的四氢呋喃溶液混合、反应,将析出的固体分离、干燥,即得;
    和/或,在方法(21)中,所述的四氢呋喃与所述的喹唑啉衍生物的体积质量比为65~130mL/g;
    和/或,在方法(21)中,所述的帕莫酸与所述的喹唑啉衍生物的摩尔比值为1~1.3;
    和/或,在方法(21)中,所述的成盐温度为10-30℃;
    和/或,在方法(21)中,所述的成盐时间为16~24小时;
    和/或,所述的方法(21)包括下述步骤:将所述喹唑啉衍生物的四氢呋喃溶液和帕莫酸的四氢呋喃混悬液混合、反应,将析出的固体分离、干燥,即得;
    和/或,在方法(22)中,所述的“氯仿和乙醇”与所述的喹唑啉衍生物的体积质量比为45~90mL/g;
    和/或,在方法(22)中,所述的氯仿和乙醇的体积比值为8~10;
    和/或,在方法(22)中,所述的对甲苯磺酸与所述的喹唑啉衍生物的摩尔比值为1~1.3;
    和/或,在方法(22)中,所述的成盐温度为10-30℃;
    和/或,在方法(22)中,所述的成盐时间为16~24小时;
    和/或,所述的方法(22)包括下述步骤:将所述喹唑啉衍生物的氯仿溶液和对甲苯磺酸的乙醇溶液混合、反应,将析出的固体分离、干燥,即得;
    和/或,在方法(23)中,所述的二氯甲烷与所述的喹唑啉衍生物的体积质量比为125~250mL/g;
    和/或,在方法(23)中,所述的乙醇酸与所述的喹唑啉衍生物的摩尔比值为2.0~2.2;
    和/或,在方法(23)中,所述的成盐温度为10-30℃;
    和/或,在方法(23)中,所述的成盐时间为16~24小时;
    和/或,所述的方法(23)包括下述步骤:将所述喹唑啉衍生物的二氯甲烷溶液和乙醇酸的二氯甲烷混悬液混合、反应,将析出的固体分离、干燥,即得;
    和/或,在方法(24)中,所述的二氯甲烷与所述的喹唑啉衍生物的体积质量比为125~250mL/g;
    和/或,在方法(24)中,所述的成盐温度为10-30℃;
    和/或,在方法(24)中,所述的成盐时间为16~24小时;
    和/或,所述的方法(24)包括下述步骤:将所述喹唑啉衍生物的二氯甲烷溶液和丙二酸的二氯甲烷混悬液混合、反应,将析出的固体分离、干燥,即得;其中,所述喹唑啉衍生物和所述丙二酸的摩尔比为1:1-1:1.2;
    和/或,在方法(25)中,所述的二氯甲烷与所述的喹唑啉衍生物的体积质量比为125~250mL/g;
    和/或,在方法(25)中,所述的成盐温度为10-30℃;
    和/或,在方法(25)中,所述的成盐时间为16~24小时;
    和/或,所述的方法(25)包括下述步骤:将所述喹唑啉衍生物的二氯甲烷溶液和丁二酸的二氯甲烷混悬液混合、反应,将析出的固体分离、干燥,即得;所述喹唑啉衍生物和所述丁二酸的摩尔比为1:1-1:1.2;
    和/或,在方法(26)中,所述的四氢呋喃与所述的喹唑啉衍生物的体积质量比为50~100mL/g;
    和/或,在方法(26)中,所述的成盐温度为10-30℃;
    和/或,在方法(26)中,所述的成盐时间为0.5-24小时;
    和/或,所述的方法(26)包括下述步骤:将所述喹唑啉衍生物的四氢呋喃溶液和α- 酮戊二酸的四氢呋喃溶液混合、反应,将析出的固体分离、干燥,即得;其中,所述喹唑啉衍生物和所述α-酮戊二酸的摩尔比为1:1-1:1.2;
    和/或,在方法(27)中,所述的四氢呋喃与所述的喹唑啉衍生物的体积质量比为60~120mL/g;
    和/或,在方法(27)中,所述的马来酸与所述的喹唑啉衍生物的摩尔比值为1.1~3.3;
    和/或,在方法(27)中,所述的成盐温度为10-30℃;
    和/或,在方法(27)中,所述的成盐时间为0.5-24小时;
    和/或,所述的方法(27)包括下述步骤:将所述喹唑啉衍生物的四氢呋喃溶液和马来酸的四氢呋喃溶液混合、反应,将析出的固体分离、干燥,即得;
    和/或,在方法(28)中,所述的四氢呋喃与所述的喹唑啉衍生物的体积质量比为50~100mL/g;
    和/或,在方法(28)中,所述的成盐温度为10-30℃;
    和/或,在方法(28)中,所述的成盐时间为0.5-24小时;
    和/或,所述的方法(28)包括下述步骤:将所述喹唑啉衍生物的四氢呋喃溶液和1,5-萘二磺酸的四氢呋喃溶液混合、反应,将析出的固体分离、干燥,即得;其中,所述喹唑啉衍生物和所述1,5-萘二磺酸的摩尔比为1:1.1-1:1.5;
    和/或,在方法(29)中,所述的二氯甲烷与所述的喹唑啉衍生物的体积质量比为150~300mL/g;
    和/或,在方法(29)中,所述的成盐温度为10-30℃;
    和/或,在方法(29)中,所述的成盐时间为16~24小时;
    和/或,所述的方法(29)包括下述步骤:将所述喹唑啉衍生物的二氯甲烷溶液和丙二酸的二氯甲烷混悬液混合、反应,将析出的固体分离、干燥,即得;所述喹唑啉衍生物和所述丙二酸的摩尔比为1:2.0-1:2.3;
    和/或,在方法(30)中,所述的二氯甲烷与所述的喹唑啉衍生物的体积质量比为150~300mL/g;
    和/或,在方法(30)中,所述的成盐温度为10-30℃;
    和/或,在方法(30)中,所述的成盐时间为16~24小时;
    和/或,所述的方法(30)包括下述步骤:将所述喹唑啉衍生物的二氯甲烷溶液和丙二酸的二氯甲烷混悬液混合、反应,将析出的固体分离、干燥,即得;所述喹唑啉衍生物和所述丙二酸的摩尔比为1:3.0-1:3.4;
    和/或,在方法(31)中,所述的四氢呋喃与所述的喹唑啉衍生物的体积质量比为 60~120mL/g;
    和/或,在方法(31)中,所述的成盐温度为10-30℃;
    和/或,在方法(31)中,所述的成盐时间为0.5-24小时;
    和/或,所述的方法(31)包括下述步骤:将所述喹唑啉衍生物的四氢呋喃溶液和1,5-萘二磺酸的四氢呋喃溶液混合、反应,将析出的固体分离、干燥,即得;其中,所述喹唑啉衍生物和所述1,5-萘二磺酸的摩尔比为1:2.2-1:3.3;
    和/或,在方法(32)中,所述的二氯甲烷与所述的喹唑啉衍生物的体积质量比为150~300mL/g;
    和/或,在方法(32)中,所述的成盐温度为10-30℃;
    和/或,在方法(32)中,所述的成盐时间为16~24小时;
    和/或,所述的方法(32)包括下述步骤:将所述喹唑啉衍生物的二氯甲烷溶液和丁二酸的二氯甲烷混悬液混合、反应,将析出的固体分离、干燥,即得;所述喹唑啉衍生物和所述丁二酸的摩尔比为1:2.2-1:3.3;
    和/或,在方法(33)中,所述的四氢呋喃与所述的喹唑啉衍生物的体积质量比为60~120mL/g;
    和/或,在方法(33)中,所述的成盐温度为10-30℃;
    和/或,在方法(33)中,所述的成盐时间为0.5-24小时;
    和/或,所述的方法(33)包括下述步骤:将所述喹唑啉衍生物的四氢呋喃溶液和α-酮戊二酸的四氢呋喃溶液混合、反应,将析出的固体分离、干燥,即得;其中,所述喹唑啉衍生物和所述α-酮戊二酸的摩尔比为1:2.2-1:3.3;
    和/或,在方法(34)中,所述的四氢呋喃与所述的喹唑啉衍生物的体积质量比为50~100mL/g;
    和/或,在方法(34)中,所述的对氯苯磺酸盐与所述的喹唑啉衍生物的摩尔比值为1~1.2;
    和/或,在方法(34)中,所述的成盐温度为10-30℃;
    和/或,在方法(34)中,所述的成盐时间为0.5-24小时;
    和/或,所述的方法(34)包括下述步骤:将所述喹唑啉衍生物的四氢呋喃溶液和对氯苯磺酸的四氢呋喃溶液混合、反应,将析出的固体分离,干燥,即得。
  15. 如权利要求14所述的制备方法,其特征在于,在方法(1)中,所述的四氢呋喃与所述的喹唑啉衍生物的体积质量比为26~48mL/g;
    和/或,在方法(1)中,所述的成盐反应的操作为:将柠檬酸的四氢呋喃溶液加至 喹唑啉衍生物的四氢呋喃溶液混合;所述的喹唑啉衍生物的四氢呋喃溶液的浓度为25-50mg/mL,所述的柠檬酸的四氢呋喃溶液的浓度为50-100mg/mL;
    和/或,在方法(1)中,所述的成盐反应的后处理为:过滤、干燥;
    和/或,所述的方法(1)包括下述步骤:将所述喹唑啉衍生物的四氢呋喃溶液和柠檬酸的四氢呋喃溶液混合、反应,将析出的固体分离、干燥,即得;所述的干燥的温度为40~45℃,所述的干燥为真空干燥;
    和/或,在方法(2)中,所述的乙醇与所述的一柠檬酸盐2的体积质量比为40~45mL/g;
    和/或,在方法(2)中,所述的打浆温度为60℃;
    和/或,在方法(3)中,所述的四氢呋喃与所述的一柠檬酸盐的体积质量比为40~45mL/g;
    和/或,在方法(4)中,所述的1,4-二氧六环与所述的一柠檬酸盐2的体积质量比为100~120mL/g;
    和/或,在方法(4)中,所述的重结晶为热溶冷析重结晶,其溶解温度为50-60℃,其冷却目标温度为10-30℃;
    和/或,在方法(5)中,所述的水与所述的一柠檬酸盐2的体积质量比为66~70mL/g;
    和/或,在方法(5)中,所述的四氢呋喃与所述的一柠檬酸盐2的体积质量比为100~120mL/g;
    和/或,在方法(5-2)中,所述的溶剂与所述的一柠檬酸盐2的体积质量比为200~240mL/g;
    和/或,在方法(5-2)中,所述的重结晶为热溶冷析重结晶,其溶解温度为50-60℃,其冷却目标温度为10-30℃;
    和/或,在方法(6)中,所述的氯仿与所述的一柠檬酸盐2的体积质量比为40~45mL/g;
    和/或,在方法(6)中,所述的打浆温度为60℃;
    和/或,在方法(7)中,所述的氯仿与所述的一柠檬酸盐2的体积质量比为100~120mL/g;
    和/或,在方法(9)中,所述的溶剂与所述的一柠檬酸盐2的体积质量比为200~500mL/g;
    和/或,在方法(9)中,所述的重结晶为热溶冷析重结晶,其溶解温度为50-60℃,其冷却目标温度为10-30℃;
    和/或,在方法(9-2)中,所述的溶剂与所述的一柠檬酸盐2的体积质量比为200~240mL/g;
    和/或,在方法(10)中,所述的正丁醇与所述的一柠檬酸盐2的体积质量比为240~300mL/g;
    和/或,在方法(10)中,所述的重结晶为热溶冷析重结晶,其溶解温度为50-60℃,其冷却目标温度为10-30℃;
    和/或,在方法(11)中,所述的“水和二甲亚砜”与所述的一柠檬酸盐2的体积质量比为240~300mL/g;
    和/或,在方法(11)中,所述的重结晶为反溶剂重结晶:先用二甲亚砜溶解,再与水混合;
    和/或,在方法(12)中,所述的成盐反应的操作为:将乙二磺酸的四氢呋喃溶液加至喹唑啉衍生物的四氢呋喃溶液;所述的喹唑啉衍生物的四氢呋喃溶液的浓度为12.5-25mg/mL,所述的柠檬酸的四氢呋喃溶液的浓度为20.75-41.5mg/mL;
    和/或,在方法(13)中,所述的成盐反应的操作为:将硫酸的四氢呋喃溶液加至喹唑啉衍生物的四氢呋喃溶液;所述的喹唑啉衍生物的四氢呋喃溶液的浓度为12.5-25mg/mL,所述的柠檬酸的四氢呋喃溶液的浓度为9.75-19.5mg/mL;
    和/或,在方法(15)中,所述的成盐反应的操作为:将苯磺酸的四氢呋喃溶液加至喹唑啉衍生物的四氢呋喃溶液;所述的喹唑啉衍生物的四氢呋喃溶液的浓度为12.5-25mg/mL,所述的柠檬酸的四氢呋喃溶液的浓度为15.7-31.4mg/mL。
  16. 一种如权利要求1~9和13~15中至少一项所述的喹唑啉衍生物的盐在制备EGFR络氨酸激酶抑制剂、HER2络氨酸激酶抑制剂、HER4络氨酸激酶抑制剂、或者、预防或治疗肿瘤疾病的药物中的应用。
  17. 一种药物组合物,其包含治疗和/或预防有效量的、如权利要求1~9和13~15中至少一项所述的喹唑啉衍生物的盐,以及至少一种药学上可接受的赋形剂。
PCT/CN2017/102998 2016-09-23 2017-09-22 一种喹唑啉衍生物的盐、其制备方法及应用 WO2018054359A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP17852427.8A EP3517529B1 (en) 2016-09-23 2017-09-22 Salt of quinazoline derivative, preparation method therefor and application thereof
US16/335,622 US10870627B2 (en) 2016-09-23 2017-09-22 Salt of quinazoline derivative, preparation method therefor and application thereof
KR1020197011745A KR102355955B1 (ko) 2016-09-23 2017-09-22 퀴나졸린 유도체의 염, 이의 제조 방법 및 응용
JP2019516127A JP7068280B2 (ja) 2016-09-23 2017-09-22 キナゾリン誘導体の塩、その製造方法および使用

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610847951.1 2016-09-23
CN201610847951 2016-09-23

Publications (1)

Publication Number Publication Date
WO2018054359A1 true WO2018054359A1 (zh) 2018-03-29

Family

ID=61689355

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/102998 WO2018054359A1 (zh) 2016-09-23 2017-09-22 一种喹唑啉衍生物的盐、其制备方法及应用

Country Status (6)

Country Link
US (1) US10870627B2 (zh)
EP (1) EP3517529B1 (zh)
JP (1) JP7068280B2 (zh)
KR (1) KR102355955B1 (zh)
CN (2) CN107868059B (zh)
WO (1) WO2018054359A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1745073A (zh) * 2003-02-05 2006-03-08 沃纳-兰伯特公司 取代的喹唑啉的制备
CN102020639A (zh) * 2009-09-14 2011-04-20 上海恒瑞医药有限公司 6-氨基喹唑啉或3-氰基喹啉类衍生物、其制备方法及其在医药上的应用
CN102898386A (zh) * 2011-07-27 2013-01-30 上海医药集团股份有限公司 喹唑啉衍生物、其制备方法、中间体、组合物及其应用
CN103965120A (zh) * 2013-01-25 2014-08-06 上海医药集团股份有限公司 喹啉及喹唑啉衍生物、制备方法、中间体、组合物及应用
CN104109166A (zh) * 2013-04-17 2014-10-22 上海医药集团股份有限公司 喹啉类化合物、其制备方法、中间体、药物组合物和应用

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1662876A4 (en) * 2003-09-02 2009-01-14 Merck & Co Inc NOVEL CRYSTALLINE FORMS OF A PHOSPHORIC ACID SALT OF A DIPEPTIDYL PEPTIDASE-IV INHIBITOR
AU2005289635A1 (en) * 2004-09-27 2006-04-06 Acadia Pharmaceuticals Inc. Salts of N-(4-fluorobenzyl)-N-(1-methylpiperidin-4-yl)-N'-(4-(2-methylpropyloxy)phenylmethyl) carbamide and their preparation
CN104109186A (zh) 2014-06-12 2014-10-22 广西众益生物科技有限公司 一种剑麻皂素粗品的提纯方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1745073A (zh) * 2003-02-05 2006-03-08 沃纳-兰伯特公司 取代的喹唑啉的制备
CN102020639A (zh) * 2009-09-14 2011-04-20 上海恒瑞医药有限公司 6-氨基喹唑啉或3-氰基喹啉类衍生物、其制备方法及其在医药上的应用
CN102898386A (zh) * 2011-07-27 2013-01-30 上海医药集团股份有限公司 喹唑啉衍生物、其制备方法、中间体、组合物及其应用
CN103965120A (zh) * 2013-01-25 2014-08-06 上海医药集团股份有限公司 喹啉及喹唑啉衍生物、制备方法、中间体、组合物及应用
CN104109166A (zh) * 2013-04-17 2014-10-22 上海医药集团股份有限公司 喹啉类化合物、其制备方法、中间体、药物组合物和应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3517529A4 *

Also Published As

Publication number Publication date
US20190300491A1 (en) 2019-10-03
CN107868059B (zh) 2022-07-19
EP3517529A1 (en) 2019-07-31
US10870627B2 (en) 2020-12-22
JP7068280B2 (ja) 2022-05-16
CN107868058A (zh) 2018-04-03
EP3517529B1 (en) 2022-03-23
CN107868059A (zh) 2018-04-03
KR20190084250A (ko) 2019-07-16
JP2019529465A (ja) 2019-10-17
KR102355955B1 (ko) 2022-01-25
CN107868058B (zh) 2023-02-14
EP3517529A4 (en) 2020-06-03

Similar Documents

Publication Publication Date Title
US11028100B2 (en) Polymorphs and solid forms of (s)-2-((2-((s)-4-(difluoromethyl)-2-oxooxazolidin-3-yl)-5,6-dihydrobenzo[f]imidazo[1,2-d][1,4]oxazepin-9-yl)amino)propanamide, and methods of production
CA2963581C (en) Crystal form of bisulfate of jak inhibitor and preparation method therefor
WO2018184185A1 (zh) 奥扎莫德加成盐晶型、制备方法及药物组合物和用途
JP6537591B2 (ja) c−Met阻害剤の結晶性フリー塩基またはそれらの結晶性酸性塩、およびそれらの製造方法および用途
JP6851572B2 (ja) Jakキナーゼ阻害剤の硫酸水素塩の結晶形およびその製造方法
CN106279127B (zh) 阿法替尼酸加成盐及其晶型、其制备方法及药物组合物
IL291855B2 (en) Solid forms of [(1S)-1-[(2S,4R,5R)-5-(5-amino-2-oxo-thiazolo[5,4-D]pyrimidin-3-yl)-4-hydroxy-tetrahydrofuran -2-yl]propyl]acetate
WO2018054359A1 (zh) 一种喹唑啉衍生物的盐、其制备方法及应用
WO2017114456A1 (zh) 吗啉衍生物的盐及其晶型、其制备方法及药物组合物、用途
CN109516975B (zh) 取代嘧啶类pi3k抑制剂的可药用盐及其制备方法
AU2020240301A1 (en) Crystalline and amorphous forms of N-(5-((4-ethylpiperazin-1-yl)methyl)pyridine-2-yl)-5-fluoro-4-(3-isopropyl-2-methyl-2H-indazol-5-yl)pyrimidin-2-amine and its salts, and preparation methods and therapeutic uses thereof
US10561667B2 (en) Orbit azine-fumarate, hydrate, crystal form and preparation method therefor
WO2015096119A1 (zh) 氯卡色林盐及其晶体、其制备方法和用途
WO2023165501A1 (zh) Azd5305的晶型及其制备方法和用途
WO2022253261A1 (zh) Lazertinib甲磺酸盐的水合物晶型及其制备方法和用途
CN106188012A (zh) 一种阿利沙坦酯结晶及其制备方法及含有该结晶的药物组合物
WO2018049634A1 (zh) Abt-199加成盐及其晶型、其制备方法和药物组合物
BR112018001225B1 (pt) Forma cristalina eta de bilastina hidratada, métodos de preparação da mesma, composição farmacêutica compreendendo dita forma cristalina e uso desta para tratar processos de doença mediados por histamina e reações alérgicas

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17852427

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019516127

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20197011745

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2017852427

Country of ref document: EP

Effective date: 20190423