WO2018054219A1 - 一种小区间协同调度方法、装置及基站 - Google Patents

一种小区间协同调度方法、装置及基站 Download PDF

Info

Publication number
WO2018054219A1
WO2018054219A1 PCT/CN2017/100702 CN2017100702W WO2018054219A1 WO 2018054219 A1 WO2018054219 A1 WO 2018054219A1 CN 2017100702 W CN2017100702 W CN 2017100702W WO 2018054219 A1 WO2018054219 A1 WO 2018054219A1
Authority
WO
WIPO (PCT)
Prior art keywords
cell
prb
downlink scheduling
interference neighboring
allocation
Prior art date
Application number
PCT/CN2017/100702
Other languages
English (en)
French (fr)
Inventor
王美英
李军
李刚
程巍
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2018054219A1 publication Critical patent/WO2018054219A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/14Spectrum sharing arrangements between different networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/0231Traffic management, e.g. flow control or congestion control based on communication conditions
    • H04W28/0236Traffic management, e.g. flow control or congestion control based on communication conditions radio quality, e.g. interference, losses or delay
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/04Error control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/53Allocation or scheduling criteria for wireless resources based on regulatory allocation policies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the present application relates to, but is not limited to, the field of mobile communication technologies, and in particular, to an inter-cell cooperative scheduling method, apparatus, and base station.
  • an evolved NodeB operates at a center frequency of 2 GHz when transmitting downlink signals, and has a bandwidth of 20 Mbps, and usually has a bandwidth of 20 Hz.
  • the resource block (Resource Block, RB for short) is also referred to as a physical resource block (Physical Resource Block, PRB for short), and each user equipment (User Equipment, UE for short) occupies several PRBs.
  • the UEs in the cell edge area are subject to the interference of the downlink signals sent by the cell base stations of the same frequency at the same time on the same PRB. In order to reduce the neighboring interference received by the UE, interference coordination between the cells is required.
  • MIMO Multiple InPut Multiple OutPut
  • LTE Long Term Evolution
  • Massive large scale MIMO technology
  • the point-to-point MIMO channel model is transformed into a multi-user MIMO channel model.
  • a large number of antenna arrays are configured on the base station side, so that the target user channel vector and the interfering user channel vector are progressively orthogonal, different users.
  • the channel between them has a very low correlation, and multiple users can be multiplexed at the same time without any interference between the multiplexed users.
  • Figure 1 shows a scenario of Massive MIMO, allowing UE1, UE2 or more UEs to occupy the same time-frequency resources.
  • the Inter Cell Interference Coordination (ICIC) method is generally used to reduce the neighboring cell interference received by the UE, that is, the central users of different cells can share the PRB resources, and the edge users of different cells stagger the PRB resources, but this method It will reduce the spectrum efficiency of the cell, and if the central user and the edge user are not well differentiated, the degree of interference reduction is limited.
  • the Inter Cell Interference Coordination (ICIC) method is generally used to reduce the neighboring cell interference received by the UE, that is, the central users of different cells can share the PRB resources, and the edge users of different cells stagger the PRB resources, but this method It will reduce the spectrum efficiency of the cell, and if the central user and the edge user are not well differentiated, the degree of interference reduction is limited.
  • Embodiments of the present invention provide an inter-cell cooperative scheduling method, apparatus, and base station, to reduce the degree of interference of a UE in a neighboring area.
  • the embodiment of the invention provides a method for inter-cell coordinated scheduling, which includes:
  • the co-frequency neighboring cell of the cell is used as an interference neighboring cell of the cell;
  • All the adjacent neighboring cells of the cell are used as the first target interference neighboring cell, and the cell is downlinked in a manner that avoids the downlink scheduling subframe usage conflict according to the occupancy condition of the downlink scheduling subframe of the first target interference neighboring cell.
  • the cell performs allocation of PRBs.
  • the method further includes: after performing downlink allocation subframe allocation on the cell,
  • the interference neighboring zone of the downlink scheduling subframe is shared with the cell after the downlink scheduling subframe allocation, the interference neighboring zone that shares the downlink scheduling subframe with the cell is used as the second target interference neighboring zone, according to the second The target interferes with the occupancy of the PRB in the neighboring cell, and the PRB is allocated to the cell in a manner avoiding the conflict of the PRB.
  • An interference neighboring cell that shares a downlink scheduling subframe with the cell includes: an interference neighboring cell that partially overlaps with a downlink scheduling subframe of the cell, or an interference neighboring zone that is identical to a downlink scheduling subframe of the cell .
  • the method further includes: after performing allocation of the PRB to the cell,
  • the interference neighboring cell of the PRB is shared with the cell after the allocation of the PRB, the interference neighboring zone that shares the PRB with the cell is used as the first target interference neighboring cell, and the downlink scheduling subroutine of the neighboring cell according to the first target For the occupation of the frame, the downlink scheduling subframe is allocated to the cell in a manner that avoids the conflict of the downlink scheduling subframe resource usage;
  • the interference neighboring zone that shares the PRB with the cell includes: an interference neighboring zone having the same initial allocation location as the cell when using the continuous PRB allocation mode; the initial allocation location includes: a starting frequency of the available bandwidth The highest frequency point of the available bandwidth or the random frequency point within the available bandwidth.
  • the downlink scheduling subframe is allocated to the cell according to the sufficiency of the downlink scheduling subframe of the first target interference neighboring cell, including:
  • any downlink scheduling subframe is allocated to the cell
  • the used cell is allocated an unused downlink scheduling subframe
  • the downlink scheduling subframe is allocated to the cell in a manner that shares the time domain resource with the first target interference neighboring cell.
  • the allocation of the PRB to the cell in a manner that avoids the PRB usage conflict, according to the occupancy of the physical resource block PRB of the second target interference neighboring area includes:
  • the initial allocation location is arbitrarily set for the cell
  • the unused allocation location is set for the cell.
  • An embodiment of the present invention further provides an inter-cell coordinated scheduling apparatus, including:
  • the interference determining module is configured to use, as for any cell, an intra-frequency neighboring cell of the cell as an interference neighboring cell of the cell;
  • the resource scheduling module is configured to use all the interference neighboring cells of the cell as the first target interference neighboring cell, and to avoid the downlink scheduling subframe usage conflict mode according to the occupancy situation of the downlink scheduling subframe of the first target interference neighboring cell. Allocating a downlink scheduling subframe to the cell; or using all the interference neighboring cells of the cell as the second target interference neighboring cell, and avoiding the PRB usage conflict according to the occupancy of the PRB of the second target interference neighboring cell Way of performing PRB on the cell Match.
  • the resource scheduling module is further configured to:
  • the interference neighboring zone of the downlink scheduling subframe is shared with the cell after the downlink scheduling subframe allocation, the interference neighboring zone that shares the downlink scheduling subframe with the cell is used as the second target interference neighboring zone, according to the second The target interferes with the occupancy of the PRB in the neighboring cell, and the PRB is allocated to the cell in a manner avoiding the conflict of the PRB.
  • An interference neighboring cell that shares a downlink scheduling subframe with the cell includes: an interference neighboring cell that partially overlaps with a downlink scheduling subframe of the cell, or an interference neighboring zone that is identical to a downlink scheduling subframe of the cell .
  • the resource scheduling module is further configured to: after performing PRB allocation on the cell,
  • the interference neighboring cell of the PRB is shared with the cell after the allocation of the PRB, the interference neighboring zone that shares the PRB with the cell is used as the first target interference neighboring cell, and the downlink scheduling subroutine of the neighboring cell according to the first target For the occupation of the frame, the downlink scheduling subframe is allocated to the cell in a manner that avoids the conflict of the downlink scheduling subframe resource usage;
  • the interference neighboring zone that shares the PRB with the cell includes: an interference neighboring zone having the same initial allocation location as the cell when using the continuous PRB allocation mode; the initial allocation location includes: a starting frequency of the available bandwidth The highest frequency point of the available bandwidth or the random frequency point within the available bandwidth.
  • the resource scheduling module is configured to:
  • any downlink scheduling subframe is allocated to the cell
  • the used cell is allocated an unused downlink scheduling subframe
  • the downlink scheduling subframe is allocated to the cell in a manner that shares the time domain resource with the first target interference neighboring cell.
  • the resource scheduling module is configured to:
  • the initial allocation location is arbitrarily set for the cell
  • the unused allocation location is set for the cell.
  • An embodiment of the present invention further provides a base station, including a processor and a memory storing the processor executable instructions. When the instructions are executed by the processor, the following operations are performed:
  • determining an intra-frequency neighboring cell of the cell as an interference neighboring cell of the cell For any cell, determining an intra-frequency neighboring cell of the cell as an interference neighboring cell of the cell;
  • All the adjacent neighboring cells of the cell are used as the first target interference neighboring cell, and the cell is downlinked in a manner that avoids the downlink scheduling subframe usage conflict according to the occupancy condition of the downlink scheduling subframe of the first target interference neighboring cell.
  • Scheduling the allocation of subframes; or, using all the interference neighboring cells of the cell as the second target interference neighboring cell, according to the occupancy situation of the PRB of the second target interference neighboring cell, avoiding the PRB usage conflict to the cell Perform the allocation of PRBs.
  • the operation performed by the processor further includes: after performing downlink allocation subframe allocation on the cell,
  • the interference neighboring zone of the downlink scheduling subframe is shared with the cell after the downlink scheduling subframe allocation, the interference neighboring zone that shares the downlink scheduling subframe with the cell is used as the second target interference neighboring zone, according to the second The target interferes with the occupancy of the PRB in the neighboring cell, and the PRB is allocated to the cell in a manner avoiding the conflict of the PRB.
  • An interference neighboring cell that shares a downlink scheduling subframe with the cell includes: an interference neighboring cell that partially overlaps with a downlink scheduling subframe of the cell, or an interference neighboring zone that is identical to a downlink scheduling subframe of the cell .
  • the operation performed by the processor further includes: after performing the PRB allocation on the cell,
  • the interference neighboring cell of the PRB is shared with the cell after the allocation of the PRB, the interference neighboring zone that shares the PRB with the cell is used as the first target interference neighboring cell, and the downlink scheduling subroutine of the neighboring cell according to the first target The occupation of the frame to avoid the conflict of the downlink scheduling subframe resource usage Assigning a downlink scheduling subframe to the cell;
  • the interference neighboring zone that shares the PRB with the cell includes: an interference neighboring zone having the same initial allocation location as the cell when using the continuous PRB allocation mode; the initial allocation location includes: a starting frequency of the available bandwidth The highest frequency point of the available bandwidth or the random frequency point within the available bandwidth.
  • the embodiment of the invention further provides a computer readable storage medium, which stores computer executable instructions, and the computer executable instructions are implemented by the processor to implement the inter-cell cooperative scheduling method.
  • the inter-cell cooperative scheduling method, apparatus, and base station according to the embodiments of the present invention can not only effectively shift time-frequency resources between cells, but also reduce interference of UEs in the same-frequency neighboring area in the time domain and the frequency domain, and improve UE throughput.
  • the rate can also make full use of time-frequency resources and improve the spectrum efficiency of the cell.
  • Figure 1 is a schematic diagram of a Massive MIMO scenario
  • FIG. 2 is a flowchart of a method for inter-cell cooperative scheduling according to a first embodiment of the present invention
  • FIG. 3 is a flowchart of step S102 of the second embodiment of the present invention.
  • FIG. 4 is a flowchart of step S102 of the third embodiment of the present invention.
  • FIG. 5 is a schematic structural diagram of a structure of an inter-cell cooperative scheduling apparatus according to a fourth embodiment of the present invention.
  • FIG. 6 is a schematic structural diagram of a resource scheduling module according to a fifth embodiment of the present invention.
  • FIG. 7 is a schematic structural diagram of a resource scheduling module according to a sixth embodiment of the present invention.
  • FIG. 8 is a schematic diagram of a cell distribution scenario of Application Example 1 of the present invention.
  • FIG. 10 is a flowchart of an implementation method of the Massive MIMO technology of the application example 1 of the present invention.
  • FIG. 11 is a schematic diagram of a cell distribution scenario of Application Example 2 of the present invention.
  • a first embodiment of the present invention includes the following steps:
  • Step S101 For any cell, use an intra-frequency neighboring cell of the cell as an interference neighboring cell of the cell;
  • Step S102 Perform resource allocation on the cell in a manner that avoids a resource usage conflict according to the resource usage of the interference neighboring cell of the cell, where the resource includes: a downlink scheduling subframe in a time domain resource, and/or , PRB in the frequency domain resource.
  • step S102 includes:
  • All the adjacent neighboring cells of the cell are used as the first target interference neighboring cell, and the cell is downlinked in a manner that avoids the downlink scheduling subframe usage conflict according to the occupancy condition of the downlink scheduling subframe of the first target interference neighboring cell. Scheduling the allocation of subframes.
  • step S102 includes:
  • All the neighboring areas of the cell are used as the second target interference neighboring area, and the PRB is allocated to the cell in a manner that avoids the PRB usage conflict according to the occupancy situation of the PRB of the second target interference neighboring area.
  • step S102 includes: downlink scheduling subframe and frequency domain in a time domain resource of an interference neighboring cell of the cell
  • the PRB usage in the resource, the time-frequency resource allocation is performed on the cell in a manner avoiding the conflict of time domain resource usage.
  • a second embodiment of the present invention is an inter-cell cooperative scheduling method.
  • the method in this embodiment is substantially the same as the first embodiment.
  • the difference is that the resource includes a downlink scheduling subframe and a frequency domain resource in a time domain resource.
  • step S102 of the method of this embodiment includes the following steps:
  • Step A1 All the adjacent neighboring cells of the cell are used as the first target interference neighboring cell, and the downlink scheduling subframe is used according to the occupancy of the downlink scheduling subframe of the first target interference neighboring zone. Dissecting the allocation of the downlink scheduling subframe to the cell;
  • step A1 all the interference neighboring cells of the cell are used as the first target interference neighboring cell, and the occupation of the downlink scheduling subframe according to the first target interference neighboring cell includes:
  • any downlink scheduling subframe is allocated to the cell
  • the used cell is allocated an unused downlink scheduling subframe
  • the downlink scheduling subframe is allocated to the cell in a manner that shares the time domain resource with the first target interference neighboring cell.
  • the downlink scheduling subframe is allocated to the cell in a manner that the time domain resource is the least shared by the first target interference neighboring cell, including:
  • a downlink scheduling subframe used by any interference neighboring cell in the first target interference neighboring cell is allocated to the cell. If the downlink scheduling subframe allocated to the cell relates to a downlink scheduling subframe used by two interference neighboring cells in the first target interference neighboring cell, that is, a part of the downlink scheduling subframe allocated to the cell and the two One of the interfering neighboring cells overlaps, and the other part coincides with the other of the two interfering neighboring cells.
  • the inter-cell interference cannot be completely avoided by the manner of time domain resource allocation, and the cell is subsequently frequency-transmitted.
  • the frequency domain usage of the two interfering neighboring cells needs to be considered at the same time, and the frequency domain usage of the two interfering neighboring cells is different as much as possible to avoid inter-cell interference. If the downlink scheduling subframe allocated to the cell in the embodiment of the present invention only relates to a downlink scheduling subframe used by one interference neighboring cell in the first target interference neighboring cell, then the frequency domain resource allocation is performed on the subsequent cell. The frequency domain usage mode of the cell and the neighboring cell that has interference in the time domain may be used.
  • Step A2 If the interference neighboring zone of the downlink scheduling subframe is shared with the cell after the downlink scheduling subframe allocation, the interference neighboring zone that shares the downlink scheduling subframe with the cell is used as the second target interference neighboring zone. According to the occupancy situation of the PRB of the neighboring cell in the neighboring cell, the PRB is allocated to the cell in a manner avoiding the conflict of the PRB.
  • the interference neighboring cell that shares the time domain resource with the cell includes: an interference neighboring cell that partially overlaps with the downlink scheduling subframe of the cell, or completes with a downlink scheduling subframe of the cell All the same interference neighbors.
  • step A2 according to the occupancy situation of the PRB of the second target interference neighboring cell, the PRB is allocated to the cell in a manner that avoids the PRB usage conflict, including:
  • the initial allocation location is arbitrarily set for the cell
  • the unused allocation location is set for the cell.
  • the initial allocation location when using the continuous PRB allocation mode includes the following three types: a starting frequency point of the available bandwidth, a highest frequency point of the available bandwidth, or a random frequency point within the available bandwidth.
  • the PRB is allocated to the cell in a manner that avoids the PRB usage conflict, and the method further includes:
  • the UEs that need to be scheduled in the cell are allocated different PRBs by the Massive MIMO method. Determining the correlation between the UEs in the UEs that need to be scheduled in the cell; determining the pair of unrelated UEs and the remaining UEs, starting from the actual allocation position of the available bandwidth for each UE set and remaining Each UE allocates different PRB resources, and each UE in the UE set shares the same PRB resource.
  • a third embodiment of the present invention is an inter-cell cooperative scheduling method.
  • the method in this embodiment is substantially the same as the first embodiment.
  • the difference is that the resource includes a downlink scheduling subframe and a frequency domain resource in a time domain resource.
  • step S102 of the method in this embodiment includes the following steps:
  • Step B1 All the adjacent neighboring cells of the cell are used as the second target interference neighboring cell, and according to the occupancy situation of the PRB of the second target interference neighboring cell, the PRB is allocated to the cell in a manner avoiding the PRB use conflict;
  • the PRB is allocated to the cell in a manner that avoids the conflict of the PRB, including:
  • the initial allocation location is arbitrarily set for the cell
  • the unused allocation location is set for the cell.
  • the frequency domain resource allocation of the cell is performed in a manner that avoids the frequency domain resource usage conflict according to the frequency domain resource usage of the second target interference neighboring area, and further includes:
  • the UEs that need to be scheduled in the cell are allocated different PRB resources by the Massive MIMO method. Determining the correlation between the UEs in the UEs that need to be scheduled in the cell; determining the pair of unrelated UEs and the remaining UEs, starting from the actual allocation position of the available bandwidth for each UE set and remaining Each UE allocates different PRB resources, and each UE in the UE set shares the same PRB resource.
  • Step B2 If the interference neighboring zone of the PRB is shared with the cell after the allocation of the PRB, the interference neighboring zone that shares the PRB with the cell is used as the first target interference neighboring zone, and the neighboring zone is interfered according to the first target.
  • the downlink scheduling subframe For the occupation of the downlink scheduling subframe, the downlink scheduling subframe is allocated to the cell in a manner that avoids the collision of the downlink scheduling subframe resource usage.
  • the interference neighboring zone that shares the frequency domain resource with the cell includes: an interference neighboring zone that has the same initial allocation location as the cell when using the continuous PRB allocation mode resource; the initial allocated location includes: available bandwidth The starting frequency, the highest frequency of the available bandwidth, or the random frequency within the available bandwidth.
  • this embodiment introduces an inter-cell coordinated scheduling apparatus, as shown in FIG. 5, including the following components:
  • the interference determining module 501 is configured to use, as for any cell, an intra-frequency neighboring cell of the cell as an interference neighboring cell of the cell;
  • the resource scheduling module 502 is configured to allocate resources to the cell in a manner that avoids resource usage conflicts according to resource usage of the interference neighboring cell of the cell, where the resource includes: downlink scheduling in a time domain resource. Subframes, and/or PRBs in frequency domain resources.
  • the resource scheduling module 502 is configured to:
  • All the adjacent neighboring cells of the cell are used as the first target interference neighboring cell, and the cell is downlinked in a manner that avoids the downlink scheduling subframe usage conflict according to the occupancy condition of the downlink scheduling subframe of the first target interference neighboring cell. Scheduling the allocation of subframes.
  • the resource scheduling module 502 is configured to:
  • All the neighboring areas of the cell are used as the second target interference neighboring area, and the PRB is allocated to the cell in a manner that avoids the PRB usage conflict according to the occupancy situation of the PRB of the second target interference neighboring area.
  • the resource scheduling module 502 is configured to:
  • the time-frequency resource allocation of the cell in the downlink scheduling subframe and the frequency domain resource in the time domain resource of the interference neighboring cell of the cell is performed in a manner avoiding the collision of the time domain resource usage.
  • a fifth embodiment of the present invention is an inter-cell cooperative scheduling apparatus.
  • the apparatus in this embodiment is substantially the same as the first embodiment, except that the resource includes a downlink scheduling subframe and a frequency domain resource in a time domain resource.
  • the resource scheduling module of this embodiment includes:
  • the first time domain resource scheduling module 601 is configured to use all the interference neighboring cells of the cell as the first target interference neighboring cell, and avoid the downlink according to the occupation situation of the downlink scheduling subframe of the first target interference neighboring cell.
  • the scheduling subframe performs the allocation of the downlink scheduling subframe to the cell in a conflicting manner;
  • the first time domain resource scheduling module 601 is configured to:
  • any downlink scheduling subframe is allocated to the cell
  • the cell is divided into Equipped with unused downlink scheduling subframes
  • the downlink scheduling subframe is allocated to the cell in a manner that shares the time domain resource with the first target interference neighboring cell.
  • the first time domain resource scheduling module 601 is configured to:
  • a downlink scheduling subframe used by any interference neighboring cell in the first target interference neighboring cell is allocated to the cell.
  • the first frequency domain resource scheduling module 602 is configured to share the interference of the downlink scheduling subframe with the cell if the interference neighboring zone of the downlink scheduling subframe is still shared with the cell after the downlink scheduling subframe is allocated.
  • the neighboring area serves as the second target interference neighboring area, and according to the occupancy situation of the PRB of the second target interference neighboring area, the PRB is allocated to the cell in a manner avoiding the PRB usage conflict.
  • the interference neighboring zone that shares the time domain resource with the cell includes: an interference neighboring zone that partially overlaps with the downlink scheduling subframe of the cell, or an interference neighbor that is identical to the downlink scheduling subframe of the cell. Area.
  • a sixth embodiment of the present invention is an inter-cell coordinated scheduling apparatus.
  • the apparatus in this embodiment is substantially the same as the first embodiment. The difference is that, in the case that the resource includes a time domain resource and a frequency domain resource, As shown in FIG. 7, the resource scheduling module of this embodiment includes:
  • the second frequency domain resource scheduling module 701 is configured to use all the interference neighboring cells of the cell as the second target interference neighboring zone, and to avoid the PRB use conflict according to the occupancy situation of the PRB of the neighboring zone in the second target. The manner of performing PRB allocation on the cell;
  • the second frequency domain resource scheduling module 701 is configured to:
  • the initial allocation location is arbitrarily set for the cell
  • the unused allocation location is set for the cell.
  • the second frequency domain resource scheduling module 701 is further configured to:
  • the UEs that need to be scheduled in the cell are allocated different PRB resources by the Massive MIMO method.
  • the second time domain resource scheduling module 702 is configured to: if there is still an interference neighboring zone that shares the PRB with the cell after the allocation of the PRB, the interference neighboring zone that shares the PRB with the cell is used as the first target interference neighbor.
  • the area is allocated to the downlink scheduling subframe in the manner that the downlink scheduling subframe resource usage conflict is avoided according to the occupancy of the downlink scheduling subframe of the first target interference neighboring cell.
  • the interference neighboring zone that shares the frequency domain resource with the cell includes: an interference neighboring zone that has the same initial allocation location as the cell when using the continuous PRB allocation mode resource; the initial allocated location includes: available bandwidth The starting frequency, the highest frequency of the available bandwidth, or the random frequency within the available bandwidth.
  • a base station which can be understood as a physical device, includes a processor and a memory storing the processor-executable instructions, and when the instructions are executed by the processor, performing the following operations:
  • determining an intra-frequency neighboring cell of the cell as an interference neighboring cell of the cell For any cell, determining an intra-frequency neighboring cell of the cell as an interference neighboring cell of the cell;
  • All the adjacent neighboring cells of the cell are used as the first target interference neighboring cell, and the cell is downlinked in a manner that avoids the downlink scheduling subframe usage conflict according to the occupancy condition of the downlink scheduling subframe of the first target interference neighboring cell.
  • Scheduling the allocation of subframes; or, using all the interference neighboring cells of the cell as the second target interference neighboring cell, according to the occupancy situation of the PRB of the second target interference neighboring cell, avoiding the PRB usage conflict to the cell Perform the allocation of PRBs.
  • the operation performed by the processor further includes: after performing downlink allocation subframe allocation on the cell,
  • the interference neighboring zone of the downlink scheduling subframe is shared with the cell after the downlink scheduling subframe allocation, the interference neighboring zone that shares the downlink scheduling subframe with the cell is used as the second target interference neighboring zone, according to the second The target interferes with the occupancy of the PRB in the neighboring cell, and the PRB is allocated to the cell in a manner avoiding the conflict of the PRB.
  • An interference neighboring cell that shares a downlink scheduling subframe with the cell includes: an interference neighboring cell that partially overlaps with a downlink scheduling subframe of the cell, or an interference neighboring zone that is identical to a downlink scheduling subframe of the cell .
  • the operation performed by the processor further includes: after the allocation of the PRB to the cell, if there is still an interference neighboring zone that shares the PRB with the cell after the allocation of the PRB, The interference neighboring area of the PRB is used as the first target interference neighboring area, and the downlink scheduling of the downlink scheduling subframe is avoided according to the occupation of the downlink scheduling subframe of the first target interference neighboring area. Subframe allocation;
  • the interference neighboring zone that shares the PRB with the cell includes: an interference neighboring zone having the same initial allocation location as the cell when using the continuous PRB allocation mode; the initial allocation location includes: a starting frequency of the available bandwidth The highest frequency point of the available bandwidth or the random frequency point within the available bandwidth.
  • the eighth embodiment of the present invention is based on the above embodiment, and an application example of the present invention is described with reference to Figs.
  • eNB1 has two cells for cell 11 and cell 12
  • eNB2 has one cell for cell 21
  • eNB3 has one cell for Cell 31.
  • These cells are all intra-frequency cells, that is, the interference neighboring cells of cell 12 are cell 11, cell 21 and cell 31.
  • the implementation method of the application example 1 of the present invention is illustrated by using the cell 12 as an example, as shown in FIG.
  • Step 1 The cell 12 acquires the time domain resource usage of the neighboring cell, that is, the subframe that can be used for scheduling in the neighboring cell configuration.
  • the subframes that can be used for downlink scheduling are subframes 0, 1, 3, 4, 5, 6, 8, and 9.
  • Step 2 The cell 12 determines a subframe that the cell can use for scheduling.
  • the subframes that can be used for scheduling configured by the cell 11 are subframes 0 and 1
  • the subframes that can be used for scheduling configured by the cell 21 are subframes 3 and 8
  • the subframes that can be used for scheduling configured by the cell 31 are subframes 4 with 9.
  • the cell 12 determines that the subframes that the cell can use for scheduling are subframes 5 and 6.
  • Step 3 The cell 12 determines the PRB resources available to the UE in the cell according to the usage of the PRB resource in the neighboring cell.
  • Random values start with three configurations. Since the interference neighboring cell of the cell 12 in the embodiment is relatively small, the configuration of the subframe that can be used for scheduling can already avoid interference in the time domain, so there is no requirement for the frequency domain, that is, the starting position of the PRB of the cell 12 can be It is any of low frequency, high frequency and random value.
  • Step 4 Cell 12 uses Massive MIMO technology to determine which UEs can use the same PRB resource and which UEs cannot use the same PRB resource.
  • An implementation method of Massive MIMO technology is shown in FIG.
  • the cell 12 has 6 UEs (numbered UE1, UE2, ..., UE6) in subframe 5 that need to be scheduled. It is determined by Massive MIMO technology that UE1, UE2 and UE3 can use the same PRB resource, UE4 and UE6 can use the same PRB resource, and UE5 needs to use a separate PRB resource.
  • the cell 12 starts from the configured PRB resource allocation start position, and allocates the PRB resource to the UE of the local cell according to the resource multiplexing result determined by the Massive MIMO technology.
  • the PRB resource allocation initiated by the cell 12 starts with a low frequency. Except for the RB occupied by the control channel and some other channels, the starting position of the low frequency is 5, and the cell 12 starts from the PRB resource position 5, firstly, the same PRB resource can be used. These users allocate PRB resources and then allocate PRB resources to other users. It is assumed that UE1, UE2, and UE3 need 8 PRBs, UE4 and UE6 need 12 PRBs, and UE5 needs 4 PRBs. Then, the PRB resource positions occupied by UE1, UE2, and UE3 are 5-12, and the PRB resource positions occupied by UE4 and UE6 are 13-24. The location of the PRB resource occupied by UE5 is 25-28.
  • Step 5 The cell 12 completes the scheduling of the UE in the cell.
  • Figure 10 shows an implementation of Massive MIMO technology, as shown in Figure 10:
  • Step a Sort the UEs by priority to obtain a priority queue.
  • the UE queues sorted by priority of 6 UEs are UE1, UE2, ..., UE6.
  • Step b Calculate the correlation between the UEs and obtain a correlation table.
  • Step c The UE with the highest priority in the priority queue is used as the root node to find two or two unrelated UEs, and these UEs can use the same PRB resource.
  • UE1 As the root node and finding that the two unrelated UEs are UE1, UE2, and UE3, UE1, UE2, and UE3 can use the same PRB resource.
  • Step d Delete two or two unrelated UEs from the queue to obtain a new priority queue, and update the correlation table.
  • UE1, UE2, and UE3 are deleted, and the new priority queues are obtained as UE4, UE5, and UE6, and the correlation table between the UEs is updated.
  • the updated relevance table is shown in Table 2.
  • Step e Determine whether the number of priority queue UEs is greater than one. If the number of UEs is greater than one, repeat steps c and d, and vice versa, step f ends the process.
  • the priority queues are UE4, UE5, and UE6. If the number of UEs is greater than one, then UE4 is the root node. If the UEs that are not related are found to be UE4 and UE6, UE4 and UE6 can use the same PRB resource. The UE4 and the UE6 are deleted, the new priority queue is obtained as the UE5, and the correlation table between the UEs is updated. The updated relevance table is shown in Table 3.
  • Step f End.
  • the priority queue is UE5, and the number of UEs is 1. The process ends.
  • steps a to f it can be determined that UE1, UE2 and UE3 can use the same PRB resource, UE4 and UE6 can use the same PRB resource, and UE5 needs to use a separate PRB resource.
  • eNB1 has three cells for cell 11, cell 12, and cell 13, and eNB2 has two cells for cell 21 and cell 22.
  • eNB3 has one cell as cell 31.
  • These cells are all intra-frequency cells, that is, the interference neighboring cells of the cell 12 are the cell 11, the cell 13, the cell 21, the cell 22, and the cell 31.
  • the cell 12 is taken as an example to illustrate how the implementation method of the application example 2 according to the present invention avoids interference under the condition of more interference neighboring cells is as follows:
  • Step 1 The cell 12 determines a subframe that the cell can use for scheduling.
  • the subframes that can be used for downlink scheduling are subframes 0, 1, 3, 4, 5, 6, 8, and 9.
  • the subframes that can be used for scheduling configured by the cell 11 are subframes 0 and 1
  • the subframes that can be used for scheduling configured by the cell 13 are subframes 3 and 8
  • the subframes that can be used for scheduling configured by the cell 21 are subframes 4 and 9.
  • the subframes that can be used for scheduling configured by the cell 22 are subframes 5 and 6, and the cell
  • the subframes configured for scheduling by 31 are subframes 3 and 8.
  • the subframes that can be used for scheduling configured by the cell 12 try to select fewer subframes for the neighboring cell, that is, do not select the subframe 3 and 8. Determine that the subframes that the cell can use for scheduling are subframes 5 and 6.
  • Step 2 The cell 12 determines the PRB resources available to the UE in the cell according to the usage of the PRB resource in the neighboring cell.
  • Random values start with three configurations. It is assumed that the PRB resource allocation start position of the cell 11 is a low frequency, the PRB resource allocation start position of the cell 13 is a random value, the PRB resource allocation start position of the cell 21 is a low frequency, and the PRB resource allocation start position of the cell 22 is random.
  • the PRB resource allocation start position of the cell 31 is a high frequency.
  • the cell 12 determines that the PRB resource allocation starting position of the current cell is a high frequency.
  • Step 3 The cell 12 starts to allocate the PRB resource according to the resource multiplexing result determined by the Massive MIMO technology, starting from the configured PRB resource allocation starting position.
  • the cell 12 starts from the high frequency, and allocates PRB resources to the UEs of the cell according to the resource multiplexing result determined by the Massive MIMO technology in the subframes 5 and 6, avoiding the interference between the cells.
  • a voice service with a relatively high real-time requirement and a File Transfer Protocol (FTP) service with a relatively large amount of data may be not affected by the cell.
  • FTP File Transfer Protocol
  • the configured limit that can be used to schedule subframes, that is, these services can be scheduled in any downlink subframe.
  • the UEs of one cell are concentrated in a specific subframe, and the time domain resources between the cells are staggered to avoid interference in the time domain.
  • the Massive MIMO technology is used to concentrate the UEs of one cell on a specific PRB resource, and the frequency domain resources between the cells are staggered to avoid interference in the frequency domain.
  • the embodiment of the invention further provides a computer readable storage medium, which stores a computer executable finger
  • a computer readable storage medium which stores a computer executable finger
  • the flow of the inter-cell cooperative scheduling method in the base station of this embodiment is the same as that in the first, second or third embodiment, except that in engineering implementation, the embodiment can add necessary general hardware by means of software.
  • the method of the embodiments of the present invention may be embodied in the form of a computer software product stored in a storage medium (such as a ROM/RAM, a magnetic disk, an optical disk), including a plurality of instructions.
  • a device (which may be a network device such as a base station) is caused to perform the method described in the embodiments of the present invention.
  • the embodiments of the present invention can not only effectively offset the time-frequency resources between cells, but also reduce the interference of the UE in the same-frequency neighboring area in the time domain and the frequency domain, improve the throughput rate of the UE, and fully utilize the time-frequency resources and improve the cell. Spectral efficiency.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

一种小区间协同调度方法、装置及基站,该方法包括:针对任一小区,将所述小区的同频邻区作为所述小区的干扰邻区;将所述小区的所有干扰邻区作为第一目标干扰邻区,根据第一目标干扰邻区的下行调度子帧的占用情况,以避开下行调度子帧使用冲突的方式对所述小区进行下行调度子帧的分配;或者,将所述小区的所有干扰邻区作为第二目标干扰邻区,根据第二目标干扰邻区的物理资源块PRB的占用情况,以避开PRB使用冲突的方式对所述小区进行PRB的分配。

Description

一种小区间协同调度方法、装置及基站 技术领域
本申请涉及但不限于移动通信技术领域,尤指一种小区间协同调度方法、装置及基站。
背景技术
在无线网络中,相邻的基站若工作在同一个中心频点上,则会引起同频干扰。例如在长期演进(Long Term Evolution,简称LTE)网络中,演进型基站(evolved NodeB,简称eNB)发送下行信号时工作在2G Hz的中心频点上,带宽为20M Hz,通常会将20M Hz带宽进一步划分成资源块(Resource Block,简称RB),又称物理资源块(Physical Resource Block,简称PRB),每个用户设备(User Equipment,简称UE)占用其中的几个PRB。处于小区边缘区域的UE会受到来自邻区同频的小区基站在同一时间相同PRB上发送的下行信号的干扰,为了降低UE受到的邻区干扰,需要在小区间进行干扰协调。
多入多出(Multiple InPut Multiple OutPut,简称MIMO)作为LTE的关键技术,与空分多址技术结合后,发展出Massive(大规模)MIMO技术。通过Massive MIMO技术,点对点MIMO信道模型转变成了多用户MIMO信道模型,此时在基站侧配置数目巨大的天线阵列,可以使得目标用户信道矢量和干扰用户信道的矢量是渐进正交的,不同用户之间的信道具有非常低的相关性,可以在同一时间复用多个用户,复用的用户之间无任何干扰。图1给出了一个Massive MIMO的场景示意,允许UE1、UE2或者更多的UE占用相同的时频资源。
目前常用小区间干扰协调(Inter Cell Interference Coordination,简称ICIC)的方法来降低UE受到的邻区干扰,即不同小区的中心用户可以共用PRB资源,不同小区的边缘用户错开PRB资源,但是这种方法会降低小区的频谱效率,而且如果中心用户和边缘用户区分不好,降低干扰的程度有限。
发明概述
以下是对本文详细描述的主题的概述。本概述并非是为了限制权利要求的保护范围。
本发明实施例提供一种小区间协同调度方法、装置及基站,以降低UE受到邻区干扰的程度。
本发明实施例提供一种小区间协同调度方法,包括:
针对任一小区,将所述小区的同频邻区作为所述小区的干扰邻区;
将所述小区的所有干扰邻区作为第一目标干扰邻区,根据第一目标干扰邻区的下行调度子帧的占用情况,以避开下行调度子帧使用冲突的方式对所述小区进行下行调度子帧的分配;或者,将所述小区的所有干扰邻区作为第二目标干扰邻区,根据第二目标干扰邻区的物理资源块PRB的占用情况,以避开PRB使用冲突的方式对所述小区进行PRB的分配。
在一实施方式中,所述方法,还包括:对所述小区进行下行调度子帧的分配之后,
若通过下行调度子帧分配后仍存在与所述小区共用下行调度子帧的干扰邻区,则将与所述小区共用下行调度子帧的干扰邻区作为第二目标干扰邻区,根据第二目标干扰邻区的PRB的占用情况,以避开PRB使用冲突的方式对所述小区进行PRB的分配;
与所述小区共用下行调度子帧的干扰邻区,包括:与所述小区的下行调度子帧有部分重合的干扰邻区,或者,与所述小区的下行调度子帧完全相同的干扰邻区。
在一实施方式中,所述方法,还包括:对所述小区进行PRB的分配之后,
若通过PRB的分配后仍存在与所述小区共用PRB的干扰邻区,则将与所述小区共用PRB的干扰邻区作为第一目标干扰邻区,根据第一目标干扰邻区的下行调度子帧的占用情况,以避开下行调度子帧资源使用冲突的方式对所述小区进行下行调度子帧的分配;
与所述小区共用PRB的干扰邻区,包括:在使用连续PRB分配方式时与所述小区具有相同起始分配位置的干扰邻区;所述起始分配位置包括:可用带宽的起始频点、可用带宽的最高频点或者可用带宽内的随机频点。
在一实施方式中,根据第一目标干扰邻区的下行调度子帧的占用情况,以避开下行调度子帧使用冲突的方式对所述小区进行下行调度子帧的分配,包括:
若无任何下行调度子帧被第一目标干扰邻区使用,则任意为所述小区分配下行调度子帧;
若已有部分下行调度子帧被第一目标干扰邻区使用,则为所述小区分配未被使用的下行调度子帧;
若全部下行调度子帧被第一目标干扰邻区使用,则以与第一目标干扰邻区共用时域资源最少的方式为所述小区分配下行调度子帧。
在一实施方式中,根据第二目标干扰邻区的物理资源块PRB的占用情况,以避开PRB使用冲突的方式对所述小区进行PRB的分配,包括:
在使用连续PRB分配方式时:
若无任何起始分配位置被第二目标干扰邻区使用或者全部起始分配位置被第二目标干扰邻区使用,则任意为所述小区设置起始分配位置;
若已有部分起始分配位置被第二目标干扰邻区使用,则为所述小区设置未被使用的起始分配位置。
本发明实施例还提供一种小区间协同调度装置,包括:
干扰确定模块,设置为针对任一小区,将所述小区的同频邻区作为所述小区的干扰邻区;
资源调度模块,设置为将所述小区的所有干扰邻区作为第一目标干扰邻区,根据第一目标干扰邻区的下行调度子帧的占用情况,以避开下行调度子帧使用冲突的方式对所述小区进行下行调度子帧的分配;或者,将所述小区的所有干扰邻区作为第二目标干扰邻区,根据第二目标干扰邻区的PRB的占用情况,以避开PRB使用冲突的方式对所述小区进行PRB的分 配。
在一实施方式中,所述资源调度模块,还设置为:
对所述小区进行下行调度子帧的分配之后,
若通过下行调度子帧分配后仍存在与所述小区共用下行调度子帧的干扰邻区,则将与所述小区共用下行调度子帧的干扰邻区作为第二目标干扰邻区,根据第二目标干扰邻区的PRB的占用情况,以避开PRB使用冲突的方式对所述小区进行PRB的分配;
与所述小区共用下行调度子帧的干扰邻区,包括:与所述小区的下行调度子帧有部分重合的干扰邻区,或者,与所述小区的下行调度子帧完全相同的干扰邻区。
在一实施方式中,所述资源调度模块,还设置为:对所述小区进行PRB的分配之后,
若通过PRB的分配后仍存在与所述小区共用PRB的干扰邻区,则将与所述小区共用PRB的干扰邻区作为第一目标干扰邻区,根据第一目标干扰邻区的下行调度子帧的占用情况,以避开下行调度子帧资源使用冲突的方式对所述小区进行下行调度子帧的分配;
与所述小区共用PRB的干扰邻区,包括:在使用连续PRB分配方式时与所述小区具有相同起始分配位置的干扰邻区;所述起始分配位置包括:可用带宽的起始频点、可用带宽的最高频点或者可用带宽内的随机频点。
在一实施方式中,所述资源调度模块,设置为:
若无任何下行调度子帧被第一目标干扰邻区使用,则任意为所述小区分配下行调度子帧;
若已有部分下行调度子帧被第一目标干扰邻区使用,则为所述小区分配未被使用的下行调度子帧;
若全部下行调度子帧被第一目标干扰邻区使用,则以与第一目标干扰邻区共用时域资源最少的方式为所述小区分配下行调度子帧。
在一实施方式中,所述资源调度模块,设置为:
在使用连续PRB分配方式时:
若无任何起始分配位置被第二目标干扰邻区使用或者全部起始分配位置被第二目标干扰邻区使用,则任意为所述小区设置起始分配位置;
若已有部分起始分配位置被第二目标干扰邻区使用,则为所述小区设置未被使用的起始分配位置。
本发明实施例还提供一种基站,包括处理器以及存储有所述处理器可执行指令的存储器,当所述指令被处理器执行时,执行如下操作:
针对任一小区,将所述小区的同频邻区确定为所述小区的干扰邻区;
将所述小区的所有干扰邻区作为第一目标干扰邻区,根据第一目标干扰邻区的下行调度子帧的占用情况,以避开下行调度子帧使用冲突的方式对所述小区进行下行调度子帧的分配;或者,将所述小区的所有干扰邻区作为第二目标干扰邻区,根据第二目标干扰邻区的PRB的占用情况,以避开PRB使用冲突的方式对所述小区进行PRB的分配。
在一实施方式中,所述处理器执行的操作还包括:对所述小区进行下行调度子帧的分配之后,
若通过下行调度子帧分配后仍存在与所述小区共用下行调度子帧的干扰邻区,则将与所述小区共用下行调度子帧的干扰邻区作为第二目标干扰邻区,根据第二目标干扰邻区的PRB的占用情况,以避开PRB使用冲突的方式对所述小区进行PRB的分配;
与所述小区共用下行调度子帧的干扰邻区,包括:与所述小区的下行调度子帧有部分重合的干扰邻区,或者,与所述小区的下行调度子帧完全相同的干扰邻区。
在一实施方式中,所述处理器执行的操作还包括:对所述小区进行PRB的分配之后,
若通过PRB的分配后仍存在与所述小区共用PRB的干扰邻区,则将与所述小区共用PRB的干扰邻区作为第一目标干扰邻区,根据第一目标干扰邻区的下行调度子帧的占用情况,以避开下行调度子帧资源使用冲突的方 式对所述小区进行下行调度子帧的分配;
与所述小区共用PRB的干扰邻区,包括:在使用连续PRB分配方式时与所述小区具有相同起始分配位置的干扰邻区;所述起始分配位置包括:可用带宽的起始频点、可用带宽的最高频点或者可用带宽内的随机频点。
本发明实施例还提供一种计算机可读存储介质,存储有计算机可执行指令,所述计算机可执行指令被处理器执行时实现上述小区间协同调度方法。
本发明实施例所述小区间协同调度方法、装置及基站,不仅能够有效地错开小区间的时频资源,同时在时域和频域上降低UE受到同频邻区的干扰,提高UE的吞吐率,还可以充分利用时频资源、提高小区的频谱效率。
在阅读并理解了附图和详细描述后,可以明白其他方面。
附图概述
图1为一个Massive MIMO的场景示意图;
图2为本发明第一实施例的小区间协同调度方法流程图;
图3为本发明第二实施例的步骤S102的流程图;
图4为本发明第三实施例的步骤S102的流程图;
图5为本发明第四实施例的小区间协同调度装置组成结构示意图;
图6为本发明第五实施例的资源调度模块的组成结构示意图;
图7为本发明第六实施例的资源调度模块的组成结构示意图;
图8为本发明应用实例1的小区分布场景示意图;
图9为本发明应用实例1的小区间协同调度方法流程图;
图10为本发明应用实例1的Massive MIMO技术的一种实施方法流程图;
图11为本发明应用实例2的小区分布场景示意图。
详述
以下结合附图,对本发明实施例进行详细说明如后。
本发明第一实施例,一种小区间协同调度方法,如图2所示,包括以下步骤:
步骤S101,针对任一小区,将所述小区的同频邻区作为所述小区的干扰邻区;
步骤S102,根据所述小区的干扰邻区的资源使用情况,以避开资源使用冲突的方式对所述小区进行资源分配,所述资源包括:时域资源中的下行调度子帧,和/或,频域资源中的PRB。
其中,在所述资源为时域资源中的下行调度子帧的情况下,步骤S102包括:
将所述小区的所有干扰邻区作为第一目标干扰邻区,根据第一目标干扰邻区的下行调度子帧的占用情况,以避开下行调度子帧使用冲突的方式对所述小区进行下行调度子帧的分配。
在所述资源为频域资源中的PRB的情况下,步骤S102包括:
将所述小区的所有干扰邻区作为第二目标干扰邻区,根据第二目标干扰邻区的PRB的占用情况,以避开PRB使用冲突的方式对所述小区进行PRB的分配。
在所述资源包括时域资源中的下行调度子帧和频域资源中的PRB的情况下,步骤S102包括:将所述小区的干扰邻区的时域资源中的下行调度子帧和频域资源中的PRB使用情况,以避开时域资源使用冲突的方式对所述小区进行时频资源分配。
本发明第二实施例,一种小区间协同调度方法,本实施例所述方法与第一实施例大致相同,区别在于,在所述资源包括时域资源中的下行调度子帧和频域资源中的PRB的情况下,如图3所示,本实施例的所述方法的步骤S102,包括以下步骤:
步骤A1:将所述小区的所有干扰邻区作为第一目标干扰邻区,根据第一目标干扰邻区的下行调度子帧的占用情况,以避开下行调度子帧使用冲 突的方式对所述小区进行下行调度子帧的分配;
其中,在步骤A1中,将所述小区的所有干扰邻区作为第一目标干扰邻区,根据第一目标干扰邻区的下行调度子帧的占用情况,包括:
若无任何下行调度子帧被第一目标干扰邻区使用,则任意为所述小区分配下行调度子帧;
若已有部分下行调度子帧被第一目标干扰邻区使用,则为所述小区分配未被使用的下行调度子帧;
若全部下行调度子帧被第一目标干扰邻区使用,则以与第一目标干扰邻区共用时域资源最少的方式为所述小区分配下行调度子帧。
在一实施方式中,以与第一目标干扰邻区共用时域资源最少的方式为所述小区分配下行调度子帧,包括:
将第一目标干扰邻区中的任一干扰邻区使用的下行调度子帧分配给所述小区。若分配给所述小区的下行调度子帧涉及第一目标干扰邻区中的两个干扰邻区使用的下行调度子帧,即分配给所述小区的下行调度子帧中的一部分与所述两个干扰邻区中的一个重合,另一部分与所述两个干扰邻区中的另一个重合,则通过时域资源分配的方式不能完全避免小区间的干扰,而且在后续对所述小区进行频域资源分配时需要同时考虑所述两个干扰邻区的频域使用情况,尽量做到与所述两个干扰邻区的频域使用方式不同才能避免小区间的干扰。若本发明实施例分配给所述小区的下行调度子帧仅涉及第一目标干扰邻区中的一个干扰邻区使用的下行调度子帧,那么在后续对所述小区进行频域资源分配时使所述小区与上述那一个在时域上有干扰的邻区的频域使用方式即可。
步骤A2:若通过下行调度子帧分配后仍存在与所述小区共用下行调度子帧的干扰邻区,则将与所述小区共用下行调度子帧的干扰邻区作为第二目标干扰邻区,根据第二目标干扰邻区的PRB的占用情况,以避开PRB使用冲突的方式对所述小区进行PRB的分配。
其中,与所述小区共用时域资源的干扰邻区,包括:与所述小区的下行调度子帧有部分重合的干扰邻区,或者,与所述小区的下行调度子帧完 全相同的干扰邻区。
在步骤A2中,根据第二目标干扰邻区的PRB的占用情况,以避开PRB使用冲突的方式对所述小区进行PRB的分配,包括:
在使用连续PRB分配方式资源时:
若无任何起始分配位置被第二目标干扰邻区使用或者全部起始分配位置被第二目标干扰邻区使用,则任意为所述小区设置起始分配位置;
若已有部分起始分配位置被第二目标干扰邻区使用,则为所述小区设置未被使用的起始分配位置。
在本发明实施例中,使用连续PRB分配方式时的起始分配位置包括以下三种:可用带宽的起始频点、可用带宽的最高频点或者可用带宽内的随机频点。
在一实施方式中,根据第二目标干扰邻区的PRB的占用情况,以避开PRB使用冲突的方式对所述小区进行PRB的分配,还包括:
通过Massive MIMO方法为所述小区内需要调度的UE分配不同的PRB。其中,在所述小区内需要调度的UE中确定UE两两之间的相关性;确定两两不相关的UE集合及剩余的UE,从可用带宽的其实分配位置开始为各UE集合及剩余的每个UE分别分配不同的PRB资源,任一UE集合内各UE之间共用相同的PRB资源。
本发明第三实施例,一种小区间协同调度方法,本实施例所述方法与第一实施例大致相同,区别在于,在所述资源包括时域资源中的下行调度子帧和频域资源中的PRB的情况下,如图4所示,本实施例的所述方法的步骤S102,包括以下步骤:
步骤B1:将所述小区的所有干扰邻区作为第二目标干扰邻区,根据第二目标干扰邻区的PRB的占用情况,以避开PRB使用冲突的方式对所述小区进行PRB的分配;
其中,在步骤B1中,根据第二目标干扰邻区的PRB的占用情况,以避开PRB使用冲突的方式对所述小区进行PRB的分配,包括:
在使用连续PRB分配方式资源时:
若无任何起始分配位置被第二目标干扰邻区使用或者全部起始分配位置被第二目标干扰邻区使用,则任意为所述小区设置起始分配位置;
若已有部分起始分配位置被第二目标干扰邻区使用,则为所述小区设置未被使用的起始分配位置。
在一实施方式中,根据第二目标干扰邻区的频域资源使用情况,以避开频域资源使用冲突的方式对所述小区进行频域资源分配,还包括:
通过Massive MIMO方法为所述小区内需要调度的UE分配不同的PRB资源。其中,在所述小区内需要调度的UE中确定UE两两之间的相关性;确定两两不相关的UE集合及剩余的UE,从可用带宽的其实分配位置开始为各UE集合及剩余的每个UE分别分配不同的PRB资源,任一UE集合内各UE之间共用相同的PRB资源。
步骤B2:若通过PRB的分配后仍存在与所述小区共用PRB的干扰邻区,则将与所述小区共用PRB的干扰邻区作为第一目标干扰邻区,根据第一目标干扰邻区的下行调度子帧的占用情况,以避开下行调度子帧资源使用冲突的方式对所述小区进行下行调度子帧的分配。
其中,与所述小区共用频域资源的干扰邻区,包括:在使用连续PRB分配方式资源时与所述小区具有相同起始分配位置的干扰邻区;所述起始分配位置包括:可用带宽的起始频点、可用带宽的最高频点或者可用带宽内的随机频点。
本发明第四实施例,与第一实施例对应,本实施例介绍一种小区间协同调度装置,如图5所示,包括以下组成部分:
1)干扰确定模块501,设置为针对任一小区,将所述小区的同频邻区作为所述小区的干扰邻区;
2)资源调度模块502,设置为根据所述小区的干扰邻区的资源使用情况,以避开资源使用冲突的方式对所述小区进行资源分配,所述资源包括:时域资源中的下行调度子帧,和/或,频域资源中的PRB。
其中,在所述资源为时域资源中的下行调度子帧的情况下,资源调度模块502设置为:
将所述小区的所有干扰邻区作为第一目标干扰邻区,根据第一目标干扰邻区的下行调度子帧的占用情况,以避开下行调度子帧使用冲突的方式对所述小区进行下行调度子帧的分配。
在所述资源为频域资源中的PRB的情况下,资源调度模块502设置为:
将所述小区的所有干扰邻区作为第二目标干扰邻区,根据第二目标干扰邻区的PRB的占用情况,以避开PRB使用冲突的方式对所述小区进行PRB的分配。
在所述资源包括时域资源中的下行调度子帧和频域资源中的PRB的情况下,资源调度模块502设置为:
将所述小区的干扰邻区的时域资源中的下行调度子帧和频域资源中的PRB使用情况,以避开时域资源使用冲突的方式对所述小区进行时频资源分配。
本发明第五实施例,一种小区间协同调度装置,本实施例所述装置与第一实施例大致相同,区别在于,在所述资源包括时域资源中的下行调度子帧和频域资源中的PRB的情况下,如图6所示,本实施例的资源调度模块,包括:
1)第一时域资源调度模块601,设置为将所述小区的所有干扰邻区作为第一目标干扰邻区,根据第一目标干扰邻区的下行调度子帧的占用情况,以避开下行调度子帧使用冲突的方式对所述小区进行下行调度子帧的分配;
其中,第一时域资源调度模块601设置为:
若无任何下行调度子帧被第一目标干扰邻区使用,则任意为所述小区分配下行调度子帧;
若已有部分下行调度子帧被第一目标干扰邻区使用,则为所述小区分 配未被使用的下行调度子帧;
若全部下行调度子帧被第一目标干扰邻区使用,则以与第一目标干扰邻区共用时域资源最少的方式为所述小区分配下行调度子帧。
在一实施方式中,第一时域资源调度模块601设置为:
将第一目标干扰邻区中的任一干扰邻区使用的下行调度子帧分配给所述小区。
2)第一频域资源调度模块602,设置为若通过下行调度子帧分配后仍存在与所述小区共用下行调度子帧的干扰邻区,则将与所述小区共用下行调度子帧的干扰邻区作为第二目标干扰邻区,根据第二目标干扰邻区的PRB的占用情况,以避开PRB使用冲突的方式对所述小区进行PRB的分配。
其中,与所述小区共用时域资源的干扰邻区,包括:与所述小区的下行调度子帧有部分重合的干扰邻区,或者,与所述小区的下行调度子帧完全相同的干扰邻区。
本发明第六实施例,一种小区间协同调度装置,本实施例所述装置与第一实施例大致相同,区别在于,在所述资源包括时域资源和频域资源的情况下,如图7所示,本实施例的资源调度模块,包括:
1)第二频域资源调度模块701,设置为将所述小区的所有干扰邻区作为第二目标干扰邻区,根据第二目标干扰邻区的PRB的占用情况,以避开PRB使用冲突的方式对所述小区进行PRB的分配;
其中,第二频域资源调度模块701,设置为:
在使用连续PRB分配方式资源时:
若无任何起始分配位置被第二目标干扰邻区使用或者全部起始分配位置被第二目标干扰邻区使用,则任意为所述小区设置起始分配位置;
若已有部分起始分配位置被第二目标干扰邻区使用,则为所述小区设置未被使用的起始分配位置。
在一实施方式中,第二频域资源调度模块701,还设置为:
通过Massive MIMO方法为所述小区内需要调度的UE分配不同的PRB资源。
2)第二时域资源调度模块702,设置为若通过PRB的分配后仍存在与所述小区共用PRB的干扰邻区,则将与所述小区共用PRB的干扰邻区作为第一目标干扰邻区,根据第一目标干扰邻区的下行调度子帧的占用情况,以避开下行调度子帧资源使用冲突的方式对所述小区进行下行调度子帧的分配。
其中,与所述小区共用频域资源的干扰邻区,包括:在使用连续PRB分配方式资源时与所述小区具有相同起始分配位置的干扰邻区;所述起始分配位置包括:可用带宽的起始频点、可用带宽的最高频点或者可用带宽内的随机频点。
本发明第七实施例,一种基站,可以作为实体装置来理解,包括处理器以及存储有所述处理器可执行指令的存储器,当所述指令被处理器执行时,执行如下操作:
针对任一小区,将所述小区的同频邻区确定为所述小区的干扰邻区;
将所述小区的所有干扰邻区作为第一目标干扰邻区,根据第一目标干扰邻区的下行调度子帧的占用情况,以避开下行调度子帧使用冲突的方式对所述小区进行下行调度子帧的分配;或者,将所述小区的所有干扰邻区作为第二目标干扰邻区,根据第二目标干扰邻区的PRB的占用情况,以避开PRB使用冲突的方式对所述小区进行PRB的分配。
在一实施方式中,所述处理器执行的操作还包括:对所述小区进行下行调度子帧的分配之后,
若通过下行调度子帧分配后仍存在与所述小区共用下行调度子帧的干扰邻区,则将与所述小区共用下行调度子帧的干扰邻区作为第二目标干扰邻区,根据第二目标干扰邻区的PRB的占用情况,以避开PRB使用冲突的方式对所述小区进行PRB的分配;
与所述小区共用下行调度子帧的干扰邻区,包括:与所述小区的下行调度子帧有部分重合的干扰邻区,或者,与所述小区的下行调度子帧完全相同的干扰邻区。
在一实施方式中,所述处理器执行的操作还包括:对所述小区进行PRB的分配之后,若通过PRB的分配后仍存在与所述小区共用PRB的干扰邻区,则将与所述小区共用PRB的干扰邻区作为第一目标干扰邻区,根据第一目标干扰邻区的下行调度子帧的占用情况,以避开下行调度子帧资源使用冲突的方式对所述小区进行下行调度子帧的分配;
与所述小区共用PRB的干扰邻区,包括:在使用连续PRB分配方式时与所述小区具有相同起始分配位置的干扰邻区;所述起始分配位置包括:可用带宽的起始频点、可用带宽的最高频点或者可用带宽内的随机频点。
本发明第八实施例,本实施例是在上述实施例的基础上,结合附图8~11介绍一个本发明的应用实例。
应用实例1
如图8所示,在一个LTE网络中,有三个eNB,分别为eNB1、eNB2和eNB3,其中eNB1有两个小区为小区11和小区12,eNB2有一个小区为小区21,eNB3有一个小区为小区31。这几个小区都是同频小区,即小区12的干扰邻区为小区11、小区21和小区31.
在图8的场景下,以小区12为例,说明本发明应用实例1的实施方法,如图9所示:
步骤1:小区12获取干扰邻区的时域资源使用情况,即邻区配置的可用于调度的子帧。
假设所有小区的子帧配比均为2,即可用于下行调度的子帧为子帧0、1、3、4、5、6、8、9。
步骤2:小区12确定本小区可用于调度的子帧。
假设小区11配置的可用于调度的子帧为子帧0和1,小区21配置的可用于调度的子帧为子帧3和8,小区,31配置的可用于调度的子帧为子帧4和 9。那么小区12确定本小区可用于调度的子帧为子帧5和6。
步骤3:小区12根据干扰邻区PRB资源的使用情况确定本小区UE可用的PRB资源
假设所有小区的带宽为20M,即小区可用的PRB资源个数为100,小区PRB资源的分配类型为PRB随机化分配,即PRB的起始位置是随机的,有从低频开始、高频开始、随机值开始三种配置。由于本实施例中小区12的干扰邻区比较少,通过可用于调度的子帧的配置就已经可以在时域上避免干扰,故对频域没有要求,即小区12的PRB的起始位置可以是低频、高频和随机值中的任意一种。
步骤4:小区12使用Massive MIMO技术确定哪些UE可以使用相同的PRB资源,哪些UE不能使用相同的PRB资源。Massive MIMO技术的一种实施方法如图10所示。
假设小区12在子帧5有6个UE(编号为UE1,UE2,…,UE6)需要调度。通过Massive MIMO技术确定UE1、UE2和UE3可以使用相同的PRB资源,UE4和UE6可以使用相同的PRB资源,UE5需要使用单独的PRB资源。
小区12从配置的PRB资源分配起始位置开始,给本小区UE根据Massive MIMO技术确定的资源复用结果分配PRB资源。
假设小区12配置的PRB资源分配起始为低频,除去控制信道以及一些其他信道占用的RB,低频的起始位置为5,则小区12从PRB资源位置5开始,首先给可以使用相同PRB资源的这些用户分配PRB资源,然后再给其他用户分配PRB资源。假设UE1、UE2和UE3需要8个PRB,UE4和UE6需要12个PRB,UE5需要4个PRB,那么UE1、UE2和UE3占用的PRB资源位置为5-12,UE4和UE6占用的PRB资源位置为13-24,UE5占用的PRB资源位置为25-28。
步骤5:小区12完成本小区UE的调度。
图10为Massive MIMO技术的一种实施方法,如图10所示:
步骤a:把UE按优先级排序得到优先级队列,
假设6个UE按优先级排序后的UE队列为UE1,UE2,…,UE6。
步骤b:计算UE两两之间的相关性,得到相关性表格。
假设有6个UE需要调度,计算这6个UE两两之间的相关性,并记录。记录的结果如表格1所示,相关的用1表示,不相关的用0表示。
表1
Figure PCTCN2017100702-appb-000001
步骤c:以优先级队列中优先级最高的UE为根节点,找出两两不相关的UE,这些UE可以使用相同的PRB资源。
以UE1为根节点,找到两两不相关的UE为UE1、UE2和UE3,则UE1、UE2和UE3可以使用相同的PRB资源。
步骤d:将两两不相关的UE从队列中删除得到新的优先级队列,并更新相关性表格。
删除UE1、UE2和UE3,得到新的优先级队列为UE4、UE5、UE6,并更新UE之间的相关性表格。更新后的相关性表格如表2所示
表2
  UE4 UE5 UE6
UE4 - 1 0
UE5 1 - 1
UE6 0 1 -
步骤e:判断优先级队列UE的个数是否大于1个,如果UE个数大于1个,重复步骤c和步骤d,反之调转步骤f结束流程。
优先级队列为UE4、UE5、UE6,UE个数大于1个,则以UE4为根节点,找到两两不相关的UE为UE4和UE6,则UE4和UE6可以使用相同的PRB资源。删除UE4和UE6,得到新的优先级队列为UE5,并更新UE之间的相关性表格。更新后的相关性表格如表3所示。
表3
  UE5
UE5 -
步骤f:结束。
优先级队列为UE5,UE个数为1,结束流程。
根据步骤a~f,,可以确定UE1、UE2和UE3可以使用相同的PRB资源,UE4和UE6可以使用相同的PRB资源,UE5需要使用单独的PRB资源。
应用实例2
如图11所示,在一个LTE网络中,有三个eNB,分别为eNB1、eNB2和eNB3,其中eNB1有三个小区为小区11、小区12和小区13,eNB2有两个小区为小区21和小区22,eNB3有一个小区为小区31。这几个小区都是同频小区,即小区12的干扰邻区为小区11、小区13、小区21、小区22和小区31。
在图11的场景下,以小区12为例,说明根据本发明应用实例2的实施方法如何在较多干扰邻区条件下避开干扰的过程如下:
步骤1:小区12确定本小区可用于调度的子帧
假设所有小区的子帧配比均为2,即可用于下行调度的子帧为子帧0、1、3、4、5、6、8、9。小区11配置的可用于调度的子帧为子帧0和1,小区13配置的可用于调度的子帧为子帧3和8,小区21配置的可用于调度的子帧为子帧4和9,小区22配置的可用于调度的子帧为子帧5和6,小区 31配置的可用于调度的子帧为子帧3和8。由于这时候有较多的干扰邻区,通过子帧配置无法错开干扰,那么小区12配置的可用于调度的子帧尽量选择干扰邻区用的比较少的子帧,即不要选择子帧3和8,确定本小区可用于调度的子帧为子帧5和6。
步骤2:小区12根据干扰邻区PRB资源的使用情况确定本小区UE可用的PRB资源
假设所有小区的带宽为20M,即小区可用的PRB资源个数为100,小区PRB资源的分配类型为PRB随机化分配,即PRB的起始位置是随机的,有从低频开始、高频开始、随机值开始三种配置。假设小区11的PRB资源分配起始位置为低频,小区13的PRB资源分配起始位置为随机值,小区21的PRB资源分配起始位置为低频,小区22的PRB资源分配起始位置为随机,小区31的PRB资源分配起始位置为高频。由于小区12配置的可用于调度的子帧与小区22配置的可用于调度的子帧一致,那么就要在频域上避免干扰,即小区12的PRB资源分配起始位置不能为随机。小区12确定本小区的PRB资源分配起始位置为高频。
步骤3:小区12从配置的PRB资源分配起始位置开始,给本小区UE根据Massive MIMO技术确定的资源复用结果分配PRB资源。
小区12从高频开始,在子帧5和6,根据Massive MIMO技术确定的资源复用结果给本小区的UE分配PRB资源,避开小区间的干扰。
按照本发明实施例提供的方法,对于一些特定业务,例如重传业务,实时性要求比较高的语音业务、数据量比较大的FTP(File Transfer Protocol,文件传输协议)业务等可以不受本小区配置的可用于调度子帧的限制,即这些业务可在任意的下行子帧调度。
本发明实施例中,将一个小区的UE集中在特定的子帧内调度,错开小区间的时域资源,在时域上避免干扰。通过Massive MIMO技术把一个小区的UE集中在特定的PRB资源上调度,错开小区间的频域资源,在频域上避免干扰。
本发明实施例还提供一种计算机可读存储介质,存储有计算机可执行指 令,所述计算机可执行指令被处理器执行时实现上述小区间协同调度方法。
本发明第九实施例,本实施例的基站对小区间协同调度方法的流程与第一、二或三实施例相同,区别在于,在工程实现上,本实施例可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本发明实施例的所述方法可以以计算机软件产品的形式体现出来,该计算机软件产品存储在一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台设备(可以是基站等网络设备)执行本发明实施例所述的方法。
通过实施方式的说明,应当可对本发明实施例为达成预定目的所采取的技术手段及功效得以更加深入的了解,然而所附图示仅是提供参考与说明之用,并非用来对本申请加以限制。
工业实用性
本发明实施例不仅能够有效地错开小区间的时频资源,同时在时域和频域上降低UE受到同频邻区的干扰,提高UE的吞吐率,还可以充分利用时频资源、提高小区的频谱效率。

Claims (14)

  1. 一种小区间协同调度方法,包括:
    针对任一小区,将所述小区的同频邻区作为所述小区的干扰邻区;
    将所述小区的所有干扰邻区作为第一目标干扰邻区,根据第一目标干扰邻区的下行调度子帧的占用情况,以避开下行调度子帧使用冲突的方式对所述小区进行下行调度子帧的分配;或者,将所述小区的所有干扰邻区作为第二目标干扰邻区,根据第二目标干扰邻区的物理资源块PRB的占用情况,以避开PRB使用冲突的方式对所述小区进行PRB的分配。
  2. 根据权利要求1所述的小区间协同调度方法,所述方法,还包括:对所述小区进行下行调度子帧的分配之后,
    若通过下行调度子帧分配后仍存在与所述小区共用下行调度子帧的干扰邻区,则将与所述小区共用下行调度子帧的干扰邻区作为第二目标干扰邻区,根据第二目标干扰邻区的PRB的占用情况,以避开PRB使用冲突的方式对所述小区进行PRB的分配;
    与所述小区共用下行调度子帧的干扰邻区,包括:与所述小区的下行调度子帧有部分重合的干扰邻区,或者,与所述小区的下行调度子帧完全相同的干扰邻区。
  3. 根据权利要求1所述的小区间协同调度方法,所述方法,还包括:对所述小区进行PRB的分配之后,
    若通过PRB的分配后仍存在与所述小区共用PRB的干扰邻区,则将与所述小区共用PRB的干扰邻区作为第一目标干扰邻区,根据第一目标干扰邻区的下行调度子帧的占用情况,以避开下行调度子帧资源使用冲突的方式对所述小区进行下行调度子帧的分配;
    与所述小区共用PRB的干扰邻区,包括:在使用连续PRB分配方式时与所述小区具有相同起始分配位置的干扰邻区;所述起始分配位置包括:可用带宽的起始频点、可用带宽的最高频点或者可用带宽内的随机频点。
  4. 根据权利要求1所述的小区间协同调度方法,其中,根据第一目标干扰邻区的下行调度子帧的占用情况,以避开下行调度子帧使用冲突的方式 对所述小区进行下行调度子帧的分配,包括:
    若无任何下行调度子帧被第一目标干扰邻区使用,则任意为所述小区分配下行调度子帧;
    若已有部分下行调度子帧被第一目标干扰邻区使用,则为所述小区分配未被使用的下行调度子帧;
    若全部下行调度子帧被第一目标干扰邻区使用,则以与第一目标干扰邻区共用时域资源最少的方式为所述小区分配下行调度子帧。
  5. 根据权利要求1所述的小区间协同调度方法,其中,根据第二目标干扰邻区的PRB的占用情况,以避开PRB使用冲突的方式对所述小区进行PRB的分配,包括:
    在使用连续PRB分配方式时:
    若无任何起始分配位置被第二目标干扰邻区使用或者全部起始分配位置被第二目标干扰邻区使用,则任意为所述小区设置起始分配位置;
    若已有部分起始分配位置被第二目标干扰邻区使用,则为所述小区设置未被使用的起始分配位置。
  6. 一种小区间协同调度装置,包括:
    干扰确定模块,设置为针对任一小区,将所述小区的同频邻区作为所述小区的干扰邻区;
    资源调度模块,设置为将所述小区的所有干扰邻区作为第一目标干扰邻区,根据第一目标干扰邻区的下行调度子帧的占用情况,以避开下行调度子帧使用冲突的方式对所述小区进行下行调度子帧的分配;或者,将所述小区的所有干扰邻区作为第二目标干扰邻区,根据第二目标干扰邻区的PRB的占用情况,以避开PRB使用冲突的方式对所述小区进行PRB的分配。
  7. 根据权利要求6所述的小区间协同调度装置,其中,所述资源调度模块,还设置为:对所述小区进行下行调度子帧的分配之后,
    若通过下行调度子帧分配后仍存在与所述小区共用下行调度子帧的干扰邻区,则将与所述小区共用下行调度子帧的干扰邻区作为第二目标干扰邻区,根据第二目标干扰邻区的PRB的占用情况,以避开PRB使用冲突的方 式对所述小区进行PRB的分配;
    与所述小区共用下行调度子帧的干扰邻区,包括:与所述小区的下行调度子帧有部分重合的干扰邻区,或者,与所述小区的下行调度子帧完全相同的干扰邻区。
  8. 根据权利要求6所述的小区间协同调度装置,其中,所述资源调度模块,还设置为:对所述小区进行PRB的分配之后,
    若通过PRB的分配后仍存在与所述小区共用PRB的干扰邻区,则将与所述小区共用PRB的干扰邻区作为第一目标干扰邻区,根据第一目标干扰邻区的下行调度子帧的占用情况,以避开下行调度子帧资源使用冲突的方式对所述小区进行下行调度子帧的分配;
    与所述小区共用PRB的干扰邻区,包括:在使用连续PRB分配方式时与所述小区具有相同起始分配位置的干扰邻区;所述起始分配位置包括:可用带宽的起始频点、可用带宽的最高频点或者可用带宽内的随机频点。
  9. 根据权利要求6所述的小区间协同调度装置,其中,所述资源调度模块,设置为:
    若无任何下行调度子帧被第一目标干扰邻区使用,则任意为所述小区分配下行调度子帧;
    若已有部分下行调度子帧被第一目标干扰邻区使用,则为所述小区分配未被使用的下行调度子帧;
    若全部下行调度子帧被第一目标干扰邻区使用,则以与第一目标干扰邻区共用时域资源最少的方式为所述小区分配下行调度子帧。
  10. 根据权利要求6所述的小区间协同调度装置,其中,所述资源调度模块,设置为:
    在使用连续PRB分配方式时:
    若无任何起始分配位置被第二目标干扰邻区使用或者全部起始分配位置被第二目标干扰邻区使用,则任意为所述小区设置起始分配位置;
    若已有部分起始分配位置被第二目标干扰邻区使用,则为所述小区设置未被使用的起始分配位置。
  11. 一种基站,包括处理器以及存储有所述处理器可执行指令的存储器,当所述指令被处理器执行时,执行如下操作:
    针对任一小区,将所述小区的同频邻区确定为所述小区的干扰邻区;
    将所述小区的所有干扰邻区作为第一目标干扰邻区,根据第一目标干扰邻区的下行调度子帧的占用情况,以避开下行调度子帧使用冲突的方式对所述小区进行下行调度子帧的分配;或者,将所述小区的所有干扰邻区作为第二目标干扰邻区,根据第二目标干扰邻区的PRB的占用情况,以避开PRB使用冲突的方式对所述小区进行PRB的分配。
  12. 根据权利要求11所述的基站,其中,所述处理器执行的操作还包括:对所述小区进行下行调度子帧的分配之后,
    若通过下行调度子帧分配后仍存在与所述小区共用下行调度子帧的干扰邻区,则将与所述小区共用下行调度子帧的干扰邻区作为第二目标干扰邻区,根据第二目标干扰邻区的PRB的占用情况,以避开PRB使用冲突的方式对所述小区进行PRB的分配;
    与所述小区共用下行调度子帧的干扰邻区,包括:与所述小区的下行调度子帧有部分重合的干扰邻区,或者,与所述小区的下行调度子帧完全相同的干扰邻区。
  13. 根据权利要求11所述的基站,其中,所述处理器执行的操作还包括:对所述小区进行PRB的分配之后,
    若通过PRB的分配后仍存在与所述小区共用PRB的干扰邻区,则将与所述小区共用PRB的干扰邻区作为第一目标干扰邻区,根据第一目标干扰邻区的下行调度子帧的占用情况,以避开下行调度子帧资源使用冲突的方式对所述小区进行下行调度子帧的分配;
    与所述小区共用PRB的干扰邻区,包括:在使用连续PRB分配方式时与所述小区具有相同起始分配位置的干扰邻区;所述起始分配位置包括:可用带宽的起始频点、可用带宽的最高频点或者可用带宽内的随机频点。
  14. 一种计算机可读存储介质,存储有计算机可执行指令,所述计算机可执行指令用于执行权利要求1-5任一项的小区间协同调度方法。
PCT/CN2017/100702 2016-09-20 2017-09-06 一种小区间协同调度方法、装置及基站 WO2018054219A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610836055.5A CN107846687B (zh) 2016-09-20 2016-09-20 一种小区间协同调度方法、装置及基站
CN201610836055.5 2016-09-20

Publications (1)

Publication Number Publication Date
WO2018054219A1 true WO2018054219A1 (zh) 2018-03-29

Family

ID=61656971

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/100702 WO2018054219A1 (zh) 2016-09-20 2017-09-06 一种小区间协同调度方法、装置及基站

Country Status (2)

Country Link
CN (1) CN107846687B (zh)
WO (1) WO2018054219A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109874177A (zh) * 2019-04-01 2019-06-11 海能达通信股份有限公司 一种小区间干扰协调方法、装置及服务器
CN114710219A (zh) * 2022-03-21 2022-07-05 深圳市佳贤通信设备有限公司 适用于新型数字室分系统的基带单元内干扰协调方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020199071A1 (zh) * 2019-04-01 2020-10-08 海能达通信股份有限公司 一种小区间干扰协调方法、装置及服务器
CN113453342A (zh) * 2020-03-25 2021-09-28 索尼公司 电子设备、电子设备中的方法以及计算机可读存储介质
CN113473605A (zh) * 2020-03-30 2021-10-01 维沃移动通信有限公司 一种冲突资源确定方法和终端

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060073833A1 (en) * 2004-10-01 2006-04-06 Nokia Corporation Frequency allocation in communication network
CN101242640A (zh) * 2007-02-08 2008-08-13 鼎桥通信技术有限公司 小区间干扰抑制方法、基站及用于抑制小区间干扰的系统
CN102025461A (zh) * 2010-12-06 2011-04-20 大唐移动通信设备有限公司 频域调度方法与装置
CN103052079A (zh) * 2013-01-17 2013-04-17 中兴通讯股份有限公司 一种在lte集群通信系统中进行干扰协调的方法及基站

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102088735B (zh) * 2010-03-24 2014-12-03 电信科学技术研究院 子帧间的业务负荷均衡处理及小区间干扰处理方法及设备
CN102711258B (zh) * 2011-03-28 2014-12-24 华为技术有限公司 避免小区间干扰的方法和装置
CN102149099B (zh) * 2011-04-08 2014-02-12 电信科学技术研究院 一种进行小区间干扰协调的方法及装置
US9225485B2 (en) * 2011-10-26 2015-12-29 Lg Electronics Inc. Method and apparatus for controlling inter-cell interference in wireless communication system
US9398548B2 (en) * 2012-10-26 2016-07-19 Lg Electronics Inc. Interference control method in wireless communication system and apparatus for the same
EP2982062B1 (en) * 2013-04-05 2019-12-18 Huawei Technologies Co., Ltd. Method for inter-cell interference coordination

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060073833A1 (en) * 2004-10-01 2006-04-06 Nokia Corporation Frequency allocation in communication network
CN101242640A (zh) * 2007-02-08 2008-08-13 鼎桥通信技术有限公司 小区间干扰抑制方法、基站及用于抑制小区间干扰的系统
CN102025461A (zh) * 2010-12-06 2011-04-20 大唐移动通信设备有限公司 频域调度方法与装置
CN103052079A (zh) * 2013-01-17 2013-04-17 中兴通讯股份有限公司 一种在lte集群通信系统中进行干扰协调的方法及基站

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109874177A (zh) * 2019-04-01 2019-06-11 海能达通信股份有限公司 一种小区间干扰协调方法、装置及服务器
CN109874177B (zh) * 2019-04-01 2023-02-10 海能达通信股份有限公司 一种小区间干扰协调方法、装置及服务器
CN114710219A (zh) * 2022-03-21 2022-07-05 深圳市佳贤通信设备有限公司 适用于新型数字室分系统的基带单元内干扰协调方法
CN114710219B (zh) * 2022-03-21 2024-01-12 深圳市佳贤通信科技股份有限公司 适用于新型数字室分系统的基带单元内干扰协调方法

Also Published As

Publication number Publication date
CN107846687A (zh) 2018-03-27
CN107846687B (zh) 2023-04-18

Similar Documents

Publication Publication Date Title
WO2018054219A1 (zh) 一种小区间协同调度方法、装置及基站
US8797988B2 (en) Resource allocation methods and use thereof for sounding reference signals in uplink
US10548071B2 (en) System and method for communicating traffic over licensed or un-licensed spectrums based on quality of service (QoS) constraints of the traffic
Tsolkas et al. A graph-coloring secondary resource allocation for D2D communications in LTE networks
RU2656716C1 (ru) Система и способ для динамического выделения ресурсов в лицензированном и нелицензированном спектрах
EP2850863B1 (en) Reuse of legacy radio access technology
JP2023002658A (ja) リソース場所を示し、それを受信するための方法、デバイス、装置、および記憶媒体
CN109417783B (zh) 资源分配的方法和设备
JP6879737B2 (ja) セル間干渉制御を用いたヘテロジニアスネットワークにおける干渉を緩和する方法及び装置
US20150305027A1 (en) Method And Apparatus For Configuring SRS Resource For Cooperating Cells
CN112544101B (zh) 调度方法、装置、存储介质及通信系统
CN108141764A (zh) 一种干扰指示方法及装置
JP2019506085A (ja) Ul/dl伝送リソースの割り当て方法及び装置
CN103731837A (zh) 一种频谱资源分配方法和装置
JP6051319B2 (ja) クロスサブフレーム干渉調整のための方法、装置およびプログラム
CN105764150B (zh) 一种资源分配的方法及装置
CN107404763B (zh) 超级小区的下行控制信道空分多址接入方法、装置及基站
Fan et al. A clustering-based downlink resource allocation algorithm for small cell networks
Bansal et al. Opportunistic channel sharingin cognitive radio networks
JP6270148B2 (ja) 無線通信方法、無線通信システム及び無線通信プログラム
CN106851830B (zh) 一种用于lte-a异构网络的资源分配方法和装置
CN102523586A (zh) 一种基于控制信道的小区干扰抑制方法和设备
WO2012174912A1 (zh) 一种干扰协调请求的发送方法和设备
Gupta et al. Complexity analysis, potential game characterization and algorithms for the inter-cell interference coordination with fixed transmit power problem
Ghosh et al. Resource allocation using link state propagation in OFDMA femto networks

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17852287

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17852287

Country of ref document: EP

Kind code of ref document: A1