WO2018051682A1 - 弁体作動推定装置 - Google Patents

弁体作動推定装置 Download PDF

Info

Publication number
WO2018051682A1
WO2018051682A1 PCT/JP2017/028667 JP2017028667W WO2018051682A1 WO 2018051682 A1 WO2018051682 A1 WO 2018051682A1 JP 2017028667 W JP2017028667 W JP 2017028667W WO 2018051682 A1 WO2018051682 A1 WO 2018051682A1
Authority
WO
WIPO (PCT)
Prior art keywords
timing
valve
variation
waveform
value
Prior art date
Application number
PCT/JP2017/028667
Other languages
English (en)
French (fr)
Inventor
敬介 矢野東
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Priority to DE112017004604.1T priority Critical patent/DE112017004604B4/de
Publication of WO2018051682A1 publication Critical patent/WO2018051682A1/ja
Priority to US16/293,734 priority patent/US11060475B2/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/24Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means
    • F02D41/2406Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means using essentially read only memories
    • F02D41/2425Particular ways of programming the data
    • F02D41/2429Methods of calibrating or learning
    • F02D41/2451Methods of calibrating or learning characterised by what is learned or calibrated
    • F02D41/2464Characteristics of actuators
    • F02D41/2467Characteristics of actuators for injectors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B12/00Arrangements for controlling delivery; Arrangements for controlling the spray area
    • B05B12/004Arrangements for controlling delivery; Arrangements for controlling the spray area comprising sensors for monitoring the delivery, e.g. by displaying the sensed value or generating an alarm
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B12/00Arrangements for controlling delivery; Arrangements for controlling the spray area
    • B05B12/02Arrangements for controlling delivery; Arrangements for controlling the spray area for controlling time, or sequence, of delivery
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/20Output circuits, e.g. for controlling currents in command coils
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/32Controlling fuel injection of the low pressure type
    • F02D41/34Controlling fuel injection of the low pressure type with means for controlling injection timing or duration
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/38Controlling fuel injection of the high pressure type
    • F02D41/40Controlling fuel injection of the high pressure type with means for controlling injection timing or duration
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/38Controlling fuel injection of the high pressure type
    • F02D41/40Controlling fuel injection of the high pressure type with means for controlling injection timing or duration
    • F02D41/401Controlling injection timing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M51/00Fuel-injection apparatus characterised by being operated electrically
    • F02M51/06Injectors peculiar thereto with means directly operating the valve needle
    • F02M51/061Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M51/00Fuel-injection apparatus characterised by being operated electrically
    • F02M51/06Injectors peculiar thereto with means directly operating the valve needle
    • F02M51/061Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means
    • F02M51/0625Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means characterised by arrangement of mobile armatures
    • F02M51/0664Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means characterised by arrangement of mobile armatures having a cylindrically or partly cylindrically shaped armature, e.g. entering the winding; having a plate-shaped or undulated armature entering the winding
    • F02M51/0685Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means characterised by arrangement of mobile armatures having a cylindrically or partly cylindrically shaped armature, e.g. entering the winding; having a plate-shaped or undulated armature entering the winding the armature and the valve being allowed to move relatively to each other or not being attached to each other
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/20Output circuits, e.g. for controlling currents in command coils
    • F02D2041/202Output circuits, e.g. for controlling currents in command coils characterised by the control of the circuit
    • F02D2041/2055Output circuits, e.g. for controlling currents in command coils characterised by the control of the circuit with means for determining actual opening or closing time
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/38Controlling fuel injection of the high pressure type
    • F02D2041/389Controlling fuel injection of the high pressure type for injecting directly into the cylinder
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/06Fuel or fuel supply system parameters
    • F02D2200/0602Fuel pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/06Fuel or fuel supply system parameters
    • F02D2200/0618Actual fuel injection timing or delay, e.g. determined from fuel pressure drop
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/06Fuel or fuel supply system parameters
    • F02D2200/063Lift of the valve needle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/38Controlling fuel injection of the high pressure type
    • F02D41/3809Common rail control systems
    • F02D41/3818Common rail control systems for petrol engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M65/00Testing fuel-injection apparatus, e.g. testing injection timing ; Cleaning of fuel-injection apparatus
    • F02M65/005Measuring or detecting injection-valve lift, e.g. to determine injection timing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Definitions

  • the present disclosure relates to a valve element operation estimation device that estimates at least one of a valve closing start timing, a valve closing completion timing, a valve opening start timing, and a valve opening completion timing of a valve element that opens and closes a nozzle hole of a fuel injection valve. .
  • a conventional general fuel injection valve includes a body that forms an injection hole for injecting fuel, a valve body that opens and closes the injection hole by being seated on a seating surface of the body, and an electromagnetic as a valve opening force of the valve body. And an electromagnetic coil that generates an attractive force. Then, the valve element opens at the timing when the valve opening delay time has elapsed since the start of energization on of the electromagnetic coil, and the valve element closes at the timing when the valve closing delay time has elapsed since the start of deenergization. Therefore, it is necessary to set the energization time corresponding to the desired injection amount in consideration of these delay times.
  • Patent Document 1 discloses an estimation device that estimates the valve closing delay time onboard, and by setting the energization time using the estimation result, the injection amount can be controlled with high accuracy. I am trying to do that.
  • the voltage value of the electromagnetic coil temporarily increases by flyback when the energization is turned off, and then gradually decreases.
  • the valve element moves toward the seating surface as the power is turned off (closed valve operation)
  • an induced electromotive force is generated by the movement of the movable core that has been attracted by the electromagnetic force together with the valve element.
  • the voltage drop after turning off the current becomes slow.
  • the moving speed of the movable core is maximized immediately before the valve body is seated, but the moving speed is rapidly decreased simultaneously with the seating. That is, the moving speed of the movable core changes abruptly when the valve is closed.
  • the degree of slow voltage drop due to the induced electromotive force changes abruptly at the time of sitting, and an inflection point appears in the voltage waveform representing the time change of the voltage value of the electromagnetic coil.
  • the estimation device detects the voltage value of the electromagnetic coil to acquire the voltage waveform, and estimates the timing at which the fine movement waveform including the inflection point appears in the voltage waveform as the valve closing completion timing at which the valve body is seated. is doing.
  • the amount of change in voltage caused by the above-described change in induced electromotive force is minute, and the magnitude of the fine movement waveform described above is extremely small.
  • the valve body starts to close before the lift amount reaches the full lift, it is movable at the time of seating due to the small lift amount at the start of the valve closing operation. Since the movement speed change of the core becomes small, the fine movement waveform becomes particularly small. For this reason, it is difficult to accurately extract the fine movement waveform from the voltage waveform, and it is difficult to estimate the valve closing completion timing with high accuracy.
  • Patent Document 1 discloses that the valve closing completion timing is estimated by the following method. First, a smoothing process is performed on the voltage waveform so as to remove the fine movement waveform from the voltage waveform. The voltage waveform after the annealing process is called a reference waveform. Next, a differential waveform that is a difference between the voltage waveform and the reference waveform is calculated. A portion serving as an inflection point in the difference waveform is the appearance timing of the fine movement waveform, and can be estimated as the valve closing completion timing.
  • the annealing coefficient it is extremely difficult to set the annealing coefficient to an optimum value when performing the annealing process for calculating the reference waveform.
  • the voltage waveform at the time of valve closing varies greatly according to the difference in lift amount, so the optimum value of the smoothing coefficient also differs. Therefore, it is necessary to adapt the smoothing coefficient for each driving condition that affects the lift amount, and the adaptation work is extremely difficult.
  • An object of the present disclosure is to provide a valve element operation estimation device capable of estimating the operation timing of a valve element with high accuracy without using a reference waveform.
  • a valve element operation estimation device includes a body that forms an injection hole for injecting fuel, a valve element that opens and closes the injection hole by being seated on a seating surface of the body,
  • the present invention is applied to a fuel injection valve having an electromagnetic coil that generates an electromagnetic attractive force as a valve opening force.
  • the valve body operation estimation device is provided with a valve closing start timing at which the valve body starts to close when the energization of the electromagnetic coil is turned off, a valve closing completion timing at which the valve closing operation is completed, and an energization on start of the electromagnetic coil. At least one of a valve opening start timing at which the valve body starts the valve opening operation and a valve opening completion timing at which the valve opening operation is completed is estimated.
  • the valve body operation estimation device includes a sampling unit that acquires at least one of a voltage value and a current value of the electromagnetic coil as a sample value at a predetermined time interval in a sampling period that is set based on a predetermined reference timing, and a sampling period.
  • the variation calculation unit that calculates the variation degree of the acquired multiple sample values and the variation waveform that shows the variation of variation degree due to different reference timing, the variation degree decreases as the reference timing is delayed.
  • estimate at least one of the valve closing start timing, the valve closing completion timing, the valve opening start timing, and the valve opening completion timing based on the reference timing at the rising start point.
  • the degree of variation is calculated for at least one of the voltage value and the current value in the sampling period.
  • the valve closing start timing, the valve closing completion timing, the valve opening start timing, and the valve opening completion timing is determined. presume.
  • the present inventor has found that there is a correlation between these timings and the reference timing at the rising start point of the variation waveform, and the rising start point having such a correlation appears prominently in the variation waveform.
  • the saliency of the rising start point with respect to the variation waveform that is, the ease of extraction is higher than the saliency of the fine movement waveform with respect to the conventional voltage waveform.
  • the rising start point which appears in a variation waveform can be extracted with a sufficient precision, and the operation timing of a valve body can be estimated with a high precision by extension.
  • the reference waveform used in Patent Document 1 can be made unnecessary, it is possible to estimate the operation timing while making the adjustment coefficient adjustment work unnecessary.
  • a valve element operation estimation device includes a body that forms an injection hole for injecting fuel, a valve element that opens and closes the injection hole by being seated on a seating surface of the body, and a valve element
  • the present invention is applied to a fuel injection valve having an electromagnetic coil that generates an electromagnetic attractive force as a valve opening force.
  • the valve body operation estimation device is provided with a valve closing start timing at which the valve body starts to close when the energization of the electromagnetic coil is turned off, a valve closing completion timing at which the valve closing operation is completed, and an energization on start of the electromagnetic coil. At least one of a valve opening start timing at which the valve body starts the valve opening operation and a valve opening completion timing at which the valve opening operation is completed is estimated.
  • the valve body operation estimation device includes a sampling unit that acquires at least one of a voltage value and a current value of the electromagnetic coil as a sample value at a predetermined time interval in a sampling period that is set based on a predetermined reference timing, and a sampling period.
  • the variation calculation unit that calculates the variation degree of the acquired multiple sample values and the variation waveform that shows the variation of variation degree due to different reference timing, the variation degree decreases as the reference timing is delayed.
  • a timing estimation unit is used to estimate the variation degree of the acquired multiple sample values and the variation waveform that shows the variation of variation degree due to different reference timing.
  • the degree of variation is calculated for at least one of the voltage value and the current value in the sampling period. Then, based on the reference timing at the lowering stop point of the variation waveform representing the relationship between the reference timing and the variation degree, at least one of the valve closing start timing, the valve closing completion timing, the valve opening start timing, and the valve opening completion timing is determined. presume.
  • the present inventor has found that there is a correlation between these timings and the reference timing at the decrease stop point of the variation waveform, and the decrease stop point having such a correlation appears prominently in the variation waveform.
  • the saliency of the drop stop point with respect to the variation waveform that is, the ease of extraction is higher than the saliency of the fine movement waveform with respect to the conventional voltage waveform.
  • the fall stop point which appears in a variation waveform can be extracted with a sufficient precision, and the operation timing of a valve body can be estimated with a high precision by extension.
  • the reference waveform used in Patent Document 1 can be made unnecessary, it is possible to estimate the operation timing while making the adjustment coefficient adjustment work unnecessary.
  • FIG. 1 is a diagram illustrating a fuel injection system including a valve element operation estimation device according to a first embodiment of the present disclosure.
  • FIG. 2 is a cross-sectional view of the fuel injection valve shown in FIG.
  • FIG. 3 is a diagram illustrating a relationship between a waveform of a voltage sampled by the sampling unit in FIG. 1 and a variation waveform based on the voltage waveform.
  • FIG. 4 is a diagram illustrating a relationship between a sample value related to the voltage waveform of FIG. 3 and a degree of variation of the sample value.
  • FIG. 1 is a diagram illustrating a fuel injection system including a valve element operation estimation device according to a first embodiment of the present disclosure.
  • FIG. 2 is a cross-sectional view of the fuel injection valve shown in FIG.
  • FIG. 3 is a diagram illustrating a relationship between a waveform of a voltage sampled by the sampling unit in FIG. 1 and a variation waveform based on the voltage waveform.
  • FIG. 4 is a
  • FIG. 5 is a diagram illustrating a difference between a voltage waveform and a variation waveform according to the lift amount of the valve body illustrated in FIG. 2.
  • FIG. 6 is a diagram illustrating a relationship between a waveform of a current sampled by the sampling unit in FIG. 1 and a variation waveform based on the current waveform.
  • FIG. 7 is a flowchart showing a procedure of processing in which the drive IC of FIG. 1 estimates the valve closing timing and the valve opening timing.
  • FIG. 8 is a diagram for explaining a valve closing timing estimation method according to a comparative example with respect to the present disclosure. The figure which shows a waveform.
  • FIG. 9 is a diagram showing a difference in the difference waveform according to the difference between the reference waveform in FIG.
  • FIG. 10 is a flowchart illustrating a procedure of processing for estimating the valve closing timing and the valve opening timing by the valve body operation estimation device according to the second embodiment of the present disclosure.
  • FIG. 11 is a diagram illustrating a voltage waveform and a variation waveform by the valve element operation estimation device according to the third embodiment of the present disclosure.
  • FIG. 12 is a diagram illustrating a differential waveform according to the seventh embodiment of the present disclosure.
  • a fuel injection system 100 shown in FIG. 1 includes a plurality of fuel injection valves 10 and an electronic control unit (ECU 20).
  • the ECU 20 controls opening and closing of the plurality of fuel injection valves 10 and controls fuel injection into the combustion chamber 2 of the internal combustion engine E. Further, the ECU 20 also functions as a valve body operation estimation device that estimates the opening / closing valve timing of the fuel injection valve 10.
  • a plurality of fuel injection valves 10 are mounted on an ignition internal combustion engine E, for example, a gasoline engine, and directly inject fuel into each of the plurality of combustion chambers 2 of the internal combustion engine E.
  • the cylinder head 3 that forms the combustion chamber 2 is provided with a mounting hole 4 that is coaxial with the axis C of the cylinder. The fuel injection valve 10 is inserted and fixed in the mounting hole 4 so that the tip is exposed to the combustion chamber 2.
  • the fuel supplied to the fuel injection valve 10 is stored in a fuel tank (not shown).
  • the fuel in the fuel tank is pumped up by the low pressure pump 41, the fuel pressure is increased by the high pressure pump 40, and sent to the delivery pipe 30.
  • the high-pressure fuel in the delivery pipe 30 is distributed and supplied to the fuel injection valve 10 of each cylinder.
  • a spark plug 6 is attached to the cylinder head 3 at a position facing the combustion chamber 2. The spark plug 6 is disposed in the vicinity of the tip of the fuel injection valve 10.
  • the fuel injection valve 10 includes a body 11, a valve body 12, an electromagnetic coil 13, a fixed core 14, a movable core 15, and a housing 16.
  • the body 11 is made of a magnetic material.
  • a fuel passage 11 a is formed inside the body 11.
  • a valve body 12 is accommodated inside the body 11.
  • the valve body 12 is formed in a column shape as a whole by a metal material.
  • the valve body 12 can be reciprocally displaced in the axial direction inside the body 11.
  • the body 11 is configured to have a seating surface 17b on which a valve body 12 is seated at a tip portion and an injection hole body 17 in which an injection hole 17a for injecting fuel is formed.
  • a plurality of nozzle holes 17 a are provided radially from the inner side to the outer side of the body 11. High-pressure fuel is injected into the combustion chamber 2 through the injection hole 17a.
  • the main body of the valve body 12 has a cylindrical shape.
  • the distal end portion of the valve body 12 has a conical shape extending from the distal end of the main body portion toward the injection hole 17a.
  • a portion of the valve body 12 that is seated on the seating surface 17b is a seat surface 12a.
  • the seat surface 12 a is formed at the tip of the valve body 12.
  • valve body 12 When the valve body 12 is closed so that the seat surface 12a is seated on the seating surface 17b, the fuel passage 11a is closed and fuel injection from the injection hole 17a is stopped.
  • the valve body 12 When the valve body 12 is opened so that the seat surface 12a is separated from the seating surface 17b, the fuel passage 11a is opened and fuel is injected from the injection hole 17a.
  • the electromagnetic coil 13 biases the movable core 15 with a magnetic attractive force in the valve opening direction.
  • the electromagnetic coil 13 is configured by being wound around a resin bobbin 13a, and is sealed by a bobbin 13a and a resin material 13b. That is, the electromagnetic coil 13, the bobbin 13a, and the resin material 13b constitute a cylindrical coil body.
  • the fixed core 14 is formed of a magnetic material in a cylindrical shape and is fixed to the body 11.
  • a fuel passage 14 a is formed inside the cylinder of the fixed core 14.
  • the housing 16 is formed in a cylindrical shape from a metallic magnetic material.
  • a lid member 18 formed of a metal magnetic material is attached to the opening end of the housing 16. As a result, the coil body is surrounded by the body 11, the housing 16 and the lid member 18.
  • the movable core 15 is held by the valve body 12 so as to be relatively displaceable in the driving direction of the valve body 12.
  • the movable core 15 is formed in a disk shape from a metal magnetic material and is inserted into the inner peripheral surface of the body 11.
  • the body 11, the valve body 12, the coil body, the fixed core 14, the movable core 15, and the housing 16 are arranged so that their center lines coincide with each other.
  • the movable core 15 is disposed on the side of the injection hole 17a with respect to the fixed core 14, and is disposed opposite the fixed core 14 so as to have a predetermined gap with the fixed core 14 when the electromagnetic coil 13 is not energized. ing.
  • the body 11, the housing 16, the lid member 18, and the fixed core 14 that surround the coil body are formed of a magnetic material, and thus form a magnetic circuit serving as a path for magnetic flux generated by energization of the electromagnetic coil 13.
  • Components such as the fixed core 14, the movable core 15, and the electromagnetic coil 13 correspond to the electric actuator EA that opens the valve body 12.
  • a through-hole 15a is formed in the movable core 15, and the valve body 12 is slidably attached to the movable core 15 by being inserted and disposed in the through-hole 15a. ing.
  • the locking portion 12d moves while being locked to the movable core 15, so that the valve moves along with the upward movement of the movable core 15.
  • the body 12 also moves. Even when the movable core 15 is in contact with the fixed core 14, the valve element 12 can move relative to the movable core 15 and lift up.
  • a main spring SP1 is disposed on the side opposite to the injection hole of the valve body 12, and a sub spring SP2 is disposed on the injection hole 17a side of the movable core 15.
  • the elastic force of the main spring SP1 is applied to the valve body 12 as a reaction force from the adjustment pipe 101 in the valve closing direction on the lower side in FIG.
  • the elastic force of the subspring SP2 is applied to the movable core 15 in the suction direction as a reaction force from the recess 11b of the body 11.
  • the valve body 12 is sandwiched between the main spring SP1 and the seating surface 17b, and the movable core 15 is sandwiched between the sub spring SP2 and the locking portion 12d. Then, the elastic force of the sub spring SP2 is transmitted to the locking portion 12d through the movable core 15, and is given to the valve body 12 in the valve opening direction. Therefore, an elastic force obtained by subtracting the sub elastic force from the main elastic force is applied to the valve body 12 in the valve closing direction.
  • the fuel pressure in the fuel passage 11a acts on the entire surface of the valve body 12 in the valve open state, but the fuel pressure of the surface of the valve body 12 on the downstream side of the seat surface 12a is in the closed state. Does not work. And with valve opening, the pressure of the fuel which flows into a front-end
  • the ECU 20 includes a drive IC 21, a booster circuit 22, a voltage detection unit 23, a current detection unit 24, a switch unit 25, and a microcomputer.
  • the ECU 20 acquires information from various sensors. For example, as shown in FIG. 1, the fuel pressure supplied to the fuel injection valve 10 is detected by a fuel pressure sensor 31 attached to the delivery pipe 30, and the detection result is output to the ECU 20.
  • the ECU 20 controls the driving of the high-pressure pump 40 based on the detection result of the fuel pressure sensor 31.
  • the microcomputer 26 includes a processor, a non-volatile memory (ROM), a volatile memory (RAM), and the like, and calculates a required fuel injection amount and a required injection start timing based on the load of the internal combustion engine E and the engine speed. .
  • the drive IC 21 is a drive integrated circuit that controls the drive of the fuel injection valve 10. The drive IC 21 controls the operation of the booster circuit 22 and the switch unit 25 according to a command signal output from the microcomputer 26, whereby the electromagnetic coil 13. Controls the power supply status to.
  • the injection characteristic indicating the relationship between the energization time Ti to the electromagnetic coil 13 and the injection amount Q is tested in advance and stored in the ROM.
  • the microcomputer 26 outputs a pulse signal of the energization time Ti corresponding to the required injection amount to the drive IC 21 as an injection command signal according to the injection characteristics.
  • the drive IC 21 controls the injection amount Q by controlling the energization time Ti in accordance with the injection command signal. That is, the energization time to the electromagnetic coil 13 is controlled by the pulse-on period (pulse width) of the injection command signal.
  • the voltage detection unit 23 and the current detection unit 24 detect the value of the voltage and current applied to the electromagnetic coil 13 and output the detection result to the drive IC 21.
  • the voltage detector 23 detects a potential difference between the plus terminal and the minus terminal of the electromagnetic coil 13 as a coil voltage.
  • a flyback voltage is generated in the electromagnetic coil 13.
  • an induced electromotive force is generated in the electromagnetic coil 13 by interrupting the current and displacing the valve body 12 and the movable core 15 in the valve closing direction. Accordingly, a voltage in which the voltage due to the induced electromotive force and the decreasing flyback voltage are superimposed is generated in the electromagnetic coil 13 as the energization of the electromagnetic coil 13 is turned off.
  • the voltage detection unit 23 detects the change in the induced electromotive force as a voltage value by interrupting the current supplied to the electromagnetic coil 13 and displacing the valve body 12 and the movable core 15 in the valve closing direction. I can say that. Furthermore, the voltage detection unit 23 also detects a change in induced electromotive force as a voltage value due to the relative displacement of the movable core 15 with respect to the valve body 12 after the seating surface 17b and the valve body 12 contact each other.
  • the drive IC 21 estimates the valve closing completion timing and the valve opening completion timing of the valve body 12.
  • the valve closing completion timing is the timing at which the valve body 12 starts to close when energization of the electromagnetic coil 13 is started and the valve closing operation is completed, that is, the timing at which the seat surface 12a contacts the seating surface 17b. It is.
  • the valve opening completion timing is the timing at which the valve element 12 starts to open when energization of the electromagnetic coil 13 is started, that is, the timing at which the valve opening operation is completed, that is, the movable core 15 contacts the fixed core 14 and both This is the timing when the gap between the cores is minimized.
  • the drive IC 21 includes a charge control unit 51, a discharge control unit 52, a current control unit 53, a sampling unit 61, a sample value holding unit 62, a variation calculation unit 63, and a timing estimation unit 64.
  • the booster circuit 22 and the switch unit 25 operate based on the drive command signal output from the drive IC 21.
  • the drive command signal is a signal that commands the energization state of the electromagnetic coil 13 of the fuel injection valve 10, and is set based on the above-described injection command signal output from the microcomputer 26.
  • the booster circuit 22 applies the boosted boost voltage to the electromagnetic coil 13.
  • the booster circuit 22 includes a booster coil, a capacitor, and a switching element, and the battery voltage applied from the battery terminal of the battery 102 is boosted by the booster coil and stored in the capacitor.
  • the voltage of the electric power boosted and stored in this way corresponds to the boost voltage.
  • the discharge controller 52 applies a boost voltage to the electromagnetic coil 13 of the fuel injection valve 10 when a predetermined switching element is turned on so that the booster circuit 22 is discharged.
  • the discharge controller 52 turns off a predetermined switching element of the booster circuit 22 when stopping the voltage application to the electromagnetic coil 13.
  • the current control unit 53 controls the current flowing through the electromagnetic coil 13 by controlling on / off of the switch unit 25 using the detection result of the current detection unit 24.
  • the switch unit 25 applies a boost voltage or a battery voltage to the electromagnetic coil 13 when turned on, and stops voltage application when turned off.
  • the current control unit 53 starts energization by turning on the switch unit 25 and applying a boost voltage, for example, at a voltage application start time commanded by a drive command signal. Then, the coil current increases with the start of energization.
  • the current detection unit 24 detects that the increased coil current has reached the first target value, the current control unit 53 turns off the energization.
  • the current control unit 53 switches from the boost voltage to the battery voltage, and performs control so that the coil current is maintained at the second target value set to a value lower than the first target value.
  • the coil current is controlled to increase to the first target value by applying the boost voltage by the first energization, and then the coil current is held at the second target value.
  • the 3A is a voltage waveform Wa indicating a change in the coil voltage detected by the voltage detection unit 23.
  • the voltage waveform Wa is a waveform in a state where noise is removed by performing an annealing process on the actually detected voltage waveform.
  • the coil voltage rises due to the flyback voltage at the end of energization Toff, which is the end timing of the energization time Ti, and then gradually decreases and converges to zero.
  • the movable core 15 starts moving together with the valve body 12 at the valve closing start timing Tcl when the response delay time has elapsed since the end of energization Toff.
  • the voltage waveform Wa does not decrease like the virtual waveform Wx indicated by the dotted line, and becomes a waveform obtained by adding the induced electromotive force to the virtual waveform Wx.
  • the moving speed of the movable core 15 becomes maximum immediately before the valve body 12 is seated, but the moving speed of the movable core 15 rapidly decreases at the valve closing completion timing Tcl when the valve body 12 is seated. That is, at the time of seating, the moving speed of the movable core 15 changes abruptly, and the induced electromotive force also changes abruptly with the change.
  • the degree of slow voltage drop due to the induced electromotive force changes abruptly at the time of sitting, and an inflection point appears in the voltage waveform Wa at the valve closing completion timing Tcl.
  • the dielectric electromotive force starts to occur at the valve closing start timing Tcl shown in FIG. Moreover, since the movable core 15 is assembled so as to be movable relative to the valve body 12, the movable core 15 continues to move after the valve closing completion timing Tcl and the dielectric electromotive force continues to be generated. However, after the valve closing completion timing Tcl, the elastic force of the sub spring SP2 acts on the movable core 15, so that the moving speed of the movable core 15 is rapidly reduced and the dielectric electromotive force is also rapidly reduced.
  • the sampling unit 61 acquires the value of the coil voltage at intervals of a predetermined time L (see FIG. 4) in a predetermined period La after the end of energization Toff.
  • the predetermined time L interval is 1 ⁇ sec, for example, and is set to a time shorter than the calculation cycle of the microcomputer 26.
  • the sample value holding unit 62 temporarily stores and holds a plurality of voltage values acquired by the sampling unit 61. Specifically, the memory is erased until the voltage value in the predetermined period La related to the next fuel injection is acquired. For example, the next voltage value is overwritten on the current voltage value.
  • a reference timing Tx is arbitrarily set in a predetermined period La, and a voltage value acquired in a sampling period Ls set with the reference timing Tx as a reference is set as a sample value. Specifically, the voltage value included in the sampling period Ls before the reference timing Tx is set as the sample value.
  • the sampling period Ls is set so that eight sample values D0, D1, D2, D3, D4, D5, D6, and D7 are obtained.
  • the variation calculation unit 63 calculates the variation degree of the plurality of sample values D0 to D7 in the sampling period Ls. Specifically, the variance of the plurality of sample values D0 to D7 is calculated as the degree of variation. More specifically, an average value of a plurality of sample values D0 to D7 is calculated, a deviation between the average value and each sample value is calculated, and a value obtained by adding the square of each deviation is calculated as the number of samples (eight samples). ) To calculate the variance value.
  • FIG. 4B visualizes the degree of variation of the plurality of sample values D0 to D7.
  • Each of the symbols Wa1, Wa2, Wa3, Wa4, Wa5, Wa6, and Wa7 in the figure is shown in FIG.
  • the pseudo waveforms Wa1 to Wa7 are waveforms obtained by shifting the voltage waveform Wa detected by the voltage detection unit 23 by a predetermined time L.
  • the voltage value at the reference timing Tx corresponds to the sample values D0 to D7. Therefore, if the reference timing Tx is shifted, the sample values D0 to D7 change and the variation degree also changes.
  • FIG. 3 (c) shows a variation waveform Wb representing a change in the dispersion value caused by making the reference timing Tx different.
  • the variation waveform Wb corresponding to the predetermined period La the dispersion value decreases as the reference timing Tx is delayed, and the decrease stops, and the increase starts after the decrease stops.
  • a starting point Pb is included.
  • the variation waveform Wb illustrated in FIG. 3 has a shape having a minimum point.
  • the timing estimation unit 64 estimates the valve closing completion timing Tcl based on the reference timing Tx at the rising start point Pb. Considering that the reference timing Tx at the rising start point Pb is highly correlated with the valve closing completion timing Tcl, the timing estimation unit 64 estimates the reference timing Tx at the rising start point Pb as the valve closing completion timing Tcl. Specifically, as shown in FIG. 3 (d), the timing estimation unit 64 has a decrease point Pb1 where the variance value has decreased to a threshold value TH1 or less, and a variance value has increased to a threshold value TH1 or more after the decrease point Pb1. The ascending point Pb2 is extracted.
  • the reference timing Tx at the rising start point Pb that is, the valve closing completion timing Tcl is calculated. For example, a timing obtained by subtracting a predetermined time set in advance from the reference timing Tx at the rising point Pb2 is calculated as the valve closing completion timing Tcl. Alternatively, a timing obtained by multiplying the reference timing Tx at the rising point Pb2 by a preset coefficient is calculated as the valve closing completion timing Tcl.
  • the injection characteristic map showing the relationship between the energization time Ti and the injection amount is divided into a full lift region where the energization time Ti is relatively long and a partial lift region where the energization time Ti is relatively short.
  • the valve body 12 is opened until the lift amount of the valve body 12 reaches the full lift position, that is, the position where the movable core 15 hits the fixed core 14, and the valve closing operation is started from the hit position.
  • the valve body 12 is opened to the partial lift state where the lift amount of the valve body 12 does not reach the full lift position, that is, the position just before the movable core 15 hits the fixed core 14, and the valve body 12 is closed from the partial lift position. Start valve operation.
  • the voltage waveform Wa illustrated in FIG. 3 is a waveform acquired at the time of injection in the partial lift region
  • the voltage waveform Wa40 illustrated in FIG. 5A is a waveform acquired at the time of injection in the full lift region.
  • voltage waveforms Wa10, Wa20, and Wa30 are waveforms acquired at the time of injection in the partial lift region.
  • the energization time Ti becomes shorter in the order of the voltage waveforms Wa30, Wa20, and Wa10, and the lift amount of the valve body 12 becomes smaller.
  • Each of the variation waveforms Wb10, Wb20, Wb30, and Wb40 shown in FIG. 5B corresponds to each of the voltage waveforms Wa10, Wa20, Wa30, and Wa40.
  • the waveform Wb40 in the full lift region unlike the waveform having the minimum, the waveform includes a portion where the state where the decrease is stopped continues.
  • the variation waveform Wb40 when the reference timing Tx is delayed, the dispersion value decreases and the point at which the decrease stops is set as a decrease stop point Pby, and when the reference timing Tx is further delayed, the dispersion value increases.
  • the changing point that rolls is set as the rising start point Pbx.
  • the timing estimation unit 64 estimates the reference timing Tx at the rising start point Pbx as the valve closing completion timing Tcl.
  • the specific estimation method is the same as the method described with reference to FIG. 3D, and the drop point Pb1 when the variance value has decreased to the threshold value TH1 or less, and the variance value after the decrease point Pb1 becomes greater than or equal to the threshold value TH1.
  • the ascending point Pb2 that has risen up to is extracted. Since the rising point Pb2 and the rising start point Pbx are highly correlated, the valve closing completion timing Tcl is calculated based on the reference timing Tx at the rising point Pb2.
  • the driving IC 21 In addition to estimating the valve closing completion timing Tcl by the method shown in FIGS. 3 to 5, the driving IC 21 also estimates the valve opening completion timing Top by the method described below. That is, the drive IC 21 performs switching between estimation of the valve closing timing and estimation of the valve opening timing.
  • the solid line shown in FIG. 6A is a current waveform Wc indicating a change of the coil current detected by the current detection unit 24 with respect to the elapsed time.
  • This current waveform Wc is a waveform in a state where noise is removed by subjecting the actually detected current waveform to a smoothing process.
  • the coil current rises with the start-up time Ton that is the start timing of the energization time Ti. Thereafter, when the coil current reaches the first target value I1, the boost voltage is switched to the battery voltage, and the coil current is held at the second target value I2.
  • the valve opening completion timing Top appears during this current holding period.
  • the valve opening start timing Topa appears during the current holding period in the example of FIG. 6, but may also appear during the current rising period up to the first target value I1.
  • the pseudo waveforms Wc1 to Wc7 shown in FIG. 6B are waveforms obtained by shifting the current waveform Wc detected by the current detection unit 24 by a predetermined time L.
  • FIG. 6C shows a variation waveform Wd representing a change in the dispersion value caused by making the reference timing Tx different.
  • the variation waveform Wd of the portion corresponding to the predetermined period Lc includes a rising start point Pd where the variance value decreases as the reference timing Tx becomes late and then starts to rise.
  • the variation waveform Wd illustrated in FIG. 6 has a shape having a minimum value, and this minimum value corresponds to the dispersion value at the rising start point Pd of the variation waveform Wd.
  • the sampling unit 61 at the time of valve opening timing obtains the coil current value, not the coil voltage. Specifically, as shown in FIG. 6, the coil current value is acquired at predetermined time intervals L (for example, 1 ⁇ sec) in a predetermined period Lc after the energization start time Ton.
  • the reference timing Tx is arbitrarily set in the predetermined period Lc, and the current value acquired in the sampling period Ls set with the reference timing Tx as a reference is used as the sample value. Specifically, the current value included in the sampling period Ls before the reference timing Tx is set as the sample value.
  • the variation calculation unit 63 at the time of valve opening timing calculation calculates the degree of variation of a plurality of sample values in the sampling period Ls in the same manner as at the time of valve closing timing estimation. Specifically, the variance of a plurality of sample values is calculated as the degree of variation.
  • the timing estimation unit 64 at the time of valve opening timing estimation estimates the valve opening completion timing Top based on the reference timing Tx at the rising start point Pd. Considering that the reference timing Tx at the rising start point Pd is highly correlated with the valve opening completion timing Top, the timing estimation unit 64 estimates the reference timing Tx at the rising start point Pd as the valve opening completion timing Top. Specifically, the timing estimation unit 64 extracts a decrease point Pd1 at which the variance value has decreased to a threshold value TH2 or less and an increase point Pd2 at which the variance value has increased to a threshold value TH2 or more after the decrease point Pd1.
  • the reference timing Tx at the rising start point Pd that is, the valve opening completion timing Top is calculated.
  • a timing obtained by subtracting a predetermined time set in advance from the reference timing Tx at the rising point Pd2 is calculated as the valve opening completion timing Top.
  • a timing obtained by multiplying the reference timing Tx at the rising point Pd2 by a preset coefficient is calculated as the valve opening completion timing Top.
  • the drive IC 21 includes a memory that stores a predetermined program and a processor that performs arithmetic processing according to the program, and the processor executes the processing of FIG.
  • step S10 of FIG. 7 the voltage detection mode for detecting the voltage waveform Wa and the current detection mode for detecting the current waveform Wc are switched.
  • the frequency detection mode is switched so as to be executed more frequently than the current detection mode.
  • the valve opening timing is not greatly affected by the difference in the length of the energizing time Ti, whereas the valve closing timing is greatly influenced by the difference in the length of the energizing time Ti, and therefore can be estimated with high frequency. This is desirable.
  • step S20 voltage waveform Wa or current waveform Wc is acquired in accordance with the detection mode set in step S10.
  • the drive IC 21 when executing the process of step S20 corresponds to the sampling unit 61, and acquires the voltage waveform Wa or the current waveform Wc by acquiring the voltage value or the current value by high-speed processing such as an interval of 1 ⁇ sec, for example.
  • the execution condition is a condition that has a small effect on the relationship between the energization time Ti and the injection amount.
  • the execution condition is that the physical quantity variation exemplified below is within a predetermined range. Examples of the physical quantity include the pressure of the fuel supplied to the fuel injection valve 10, the rotational speed of the internal combustion engine E, the load of the internal combustion engine E, the fuel injection amount, and the like.
  • step S40 a plurality of voltage values constituting the voltage waveform Wa acquired in step S20 or a plurality of current values constituting the current waveform Wc are stored in a memory included in the drive IC 21.
  • This memory corresponds to the sample value holding unit 62 shown in FIG.
  • the current value is written over the previous value and stored.
  • an average value of a plurality of sample values in the above-described sampling period Ls is calculated. Specifically, a value included in the sampling period Ls corresponding to an arbitrary reference timing Tx is extracted from a plurality of voltage values or current values stored in the memory, and an average value of the extracted values is calculated. calculate. The plurality of extracted values correspond to the sample values D0 to D7 described above. Then, the reference timing Tx is shifted by a predetermined time L to shift the sampling period Ls, and an average value corresponding to each sampling period Ls is calculated.
  • step S60 using the average value calculated in step S50, a variance value of a plurality of sample values D0 to D7 extracted for each sampling period Ls is calculated. Specifically, the deviation between the average value calculated in step S50 and each sample value D0 to D7 is calculated, and the variance value is calculated by dividing the value obtained by adding the square of each deviation by the number of samples. The variance value is calculated for each sampling period Ls.
  • the drive IC 21 when executing the processes of steps S50 and S60 corresponds to the variation calculation unit 63, and the variance value calculated in step S60 corresponds to the variation degree.
  • step S70 ascending points Pb2 and Pd2 at which the variance value rises from less than the threshold values TH1 and TH2 to the threshold values TH1 and TH2 are calculated in the variation waveforms Wb and Wd representing the relationship between the reference timing Tx and the variance value.
  • the rising point Pb2 is calculated using the threshold value TH1 based on the voltage waveform Wa.
  • the threshold value based on the current waveform Wc is calculated.
  • the rising point Pd2 is calculated using TH2.
  • step S80 when the voltage detection mode is switched in step S10, the valve closing completion timing Tcl is estimated based on the rising point Pb2 calculated in step S70.
  • the valve opening completion timing Top is estimated based on the rising point Pd2 calculated in step S70. Specifically, a timing obtained by subtracting a predetermined time or multiplying a predetermined coefficient with respect to the reference timing Tx at the rising point Pd2 is calculated as the valve opening completion timing Top.
  • the drive IC 21 when executing the processes of steps S70 and S80 corresponds to the timing estimation unit 64.
  • valve closing completion timing Tcl and the valve opening completion timing Top estimated as described above are used to correct a map value indicating the relationship between the energization time Ti and the injection amount. Since this map is used to set the energization time Ti for the target injection amount, the injection amount can be controlled with high accuracy by correcting the map based on the on-off valve timing estimated on-board.
  • the variance value indicating the degree of voltage value variation in the sampling period Ls is calculated.
  • the valve closing completion timing Tcl is estimated based on the reference timing Tx at the rising start point Pb of the variation waveform Wb representing the relationship between the reference timing Tx and the variance value.
  • the reference timing Tx at the rising start point Pb has a correlation with the valve closing completion timing Tcl, and the rising start point Pb having such a correlation appears remarkably in the variation waveform Wb. Therefore, according to this embodiment, the rising start point Pb appearing in the variation waveform Wb can be extracted with high accuracy, and the valve closing completion timing Tcl can be estimated with high accuracy.
  • a voltage waveform Wa is acquired as shown in FIG. Since the appearance timing of the fine movement waveform included in the voltage waveform Wa is the valve closing completion timing Tcl, the valve closing completion timing Tcl can be estimated if the appearance timing of the fine movement waveform can be extracted. Therefore, first, a reference waveform Wn (see FIG. 8B) obtained by performing an annealing process on the voltage waveform Wa so as to remove the fine movement waveform from the voltage waveform Wa is calculated. Next, a differential waveform WD1 (see FIG. 8B) that is a difference between the voltage waveform Wa and the reference waveform Wn is calculated. It can be said that the place where the difference is the largest is the appearance timing of the fine movement waveform. That is, it can be said that the point where the difference waveform WD1 is the extreme value is the appearance timing of the fine movement waveform and the valve closing completion timing Tcl.
  • the following processing is further performed in order to accurately extract points that are extreme values of the differential waveform WD1. That is, the reference waveform WD1n (see FIG. 8C) obtained by performing the smoothing process on the differential waveform WD1 is calculated. Next, a difference waveform WD2 (see FIG. 8C) that is a difference between the difference waveform WD1 and the reference waveform WD1n is calculated. It can be said that the point where the difference is largest is a point F (see FIG. 8D) where the difference waveform WD1 becomes the extreme value.
  • the point F that is the extreme value of the differential waveform WD2 is the timing at which the differential waveform WD1 becomes the extreme value, the timing is the appearance timing of the fine movement waveform, and the valve closing completion timing Tcl.
  • voltage waveforms Wa10, Wa20, Wa30, and Wa40 shown in FIG. 9A are the same waveforms as in FIG.
  • the shapes of the generated reference waveforms Wn and WD1n are different between the case where the first smoothing coefficient is used for these voltage waveforms and the case where the second smoothing coefficient is used.
  • the extreme value F1 appears remarkably at the time of low lift, so the valve closing is completed.
  • the timing Tcl can be estimated with high accuracy.
  • the extreme value F2 does not appear remarkably, so the valve closing completion timing Tcl cannot be estimated with high accuracy.
  • the extreme value F3 appears remarkably at the time of high lift, so the valve closing is completed.
  • the timing Tcl can be estimated with high accuracy.
  • the extreme value F4 does not appear remarkably, so the valve closing completion timing Tcl cannot be estimated with high accuracy.
  • the valve closing completion timing Tcl cannot be estimated with high accuracy in the partial lift region.
  • the present embodiment which is estimated based on the variation waveform Wb, as shown in FIG. 5, even when the lift amount is different, a significant rise start point Pb or a fall stop point Pby appears in the variation waveforms Wb10 to Wb40. Therefore, even in the partial lift region, the valve closing completion timing Tcl can be estimated with high accuracy.
  • the reference waveforms Wn and WD1n can be made unnecessary, the above timing estimation can be realized while making the adjustment coefficient adjustment work unnecessary.
  • a variance value indicating the degree of variation in current value in the sampling period Ls is calculated.
  • the valve opening completion timing Top is estimated based on the reference timing Tx at the rising start point Pd of the variation waveform Wd representing the relationship between the reference timing Tx and the variance value.
  • the reference timing Tx at the rising start point Pd has a correlation with the valve opening completion timing Top, and the rising start point Pd having such a correlation appears remarkably in the variation waveform Wd. Therefore, according to the present embodiment, the rising start point Pd appearing in the variation waveform Wd can be extracted with high accuracy, and the valve opening completion timing Top can be estimated with high accuracy.
  • the negative terminal of the electromagnetic coil 13 during the valve closing operation immediately after the energization is turned off is in a state where the electrical connection with the ground is disconnected, and the electric circuit including the electromagnetic coil 13 is disconnected from the ground. Therefore, the current hardly changes immediately after the energization is turned off, and the voltage is more likely to change than the current. Therefore, the change that occurs in the voltage waveform Wa accompanying the closing of the valve appears significantly compared to the change that occurs in the current waveform Wc.
  • the sampling unit 61 acquires a voltage value as a sample value
  • the timing estimation unit 64 estimates the valve closing completion timing Tcl using the sample value. Specifically, the valve closing completion timing Tcl is estimated in the voltage detection mode. Therefore, the estimation accuracy can be improved as compared with the case where the valve closing completion timing Tcl is estimated using the current waveform Wc using the current as a sample value.
  • the negative terminal of the electromagnetic coil 13 during the valve opening operation immediately after energization is electrically connected to the ground, and the electric circuit including the electromagnetic coil 13 is electrically connected to the ground and the power source. Therefore, immediately after energization is turned on, the voltage is likely to be stabilized at the power supply voltage, and the coil current corresponding to the inductance of the electromagnetic coil 13 is more likely to change than the voltage. Therefore, the change that occurs in the current waveform Wc due to the opening of the valve appears more significantly than the change that occurs in the voltage waveform Wa.
  • the sampling unit 61 acquires a current value as a sample value, and the timing estimation unit 64 estimates the valve opening completion timing Top using the sample value. Specifically, the valve opening completion timing Top is estimated in the current detection mode. Therefore, the estimation accuracy can be improved as compared with the case where the valve opening completion timing Top is estimated using the voltage waveform Wa using the voltage as a sample value.
  • the variation calculation unit 63 calculates the variation degree based on the deviation between the average value of the plurality of sample values D0 to D7 acquired during the sampling period Ls and the respective sample values D0 to D7. According to this, since the variation degree is calculated using the average value, for example, an average value is used such that a representative value is selected from the sample values D0 to D7 and the variation degree is calculated based on a deviation from the representative value. The degree of variation can be calculated with high accuracy compared to the case where the calculation is not performed. In particular, the robustness against noise can be improved by using the average value.
  • step S21 both the voltage waveform Wa and the current waveform Wc are acquired.
  • the drive IC 21 when executing the processing of step S21 corresponds to the sampling unit 61, and acquires both the voltage value and the current value by high-speed processing such as an interval of 1 ⁇ sec, for example, thereby acquiring the voltage waveform Wa and the current waveform Wc. To do.
  • the drive IC 21 shown in FIG. 1 has one AD converter that converts an analog signal output from the voltage detection unit 23 and the current detection unit 24 into a digital signal.
  • the drive IC according to the present embodiment has an AD converter for each of the voltage detection unit 23 and the current detection unit 24.
  • both the plurality of voltage values constituting the voltage waveform Wa acquired in step S21 and the plurality of current values constituting the current waveform Wc are stored in a memory included in the drive IC 21.
  • This memory corresponds to the sample value holding unit 62 shown in FIG.
  • an average value of a plurality of sample values in the sampling period Ls is calculated. Specifically, a voltage value included in the sampling period Ls corresponding to an arbitrary reference timing Tx is extracted from a plurality of voltage values stored in the memory, and an average value of the extracted plurality of voltage values is calculated. To do. Similarly, a current value included in the sampling period Ls corresponding to an arbitrary reference timing Tx is extracted from a plurality of current values stored in the memory, and an average value of the extracted plurality of current values is calculated. . Then, the reference timing Tx is shifted by the predetermined time L to shift the sampling period Ls, and the average of the voltage value and the average of the current value corresponding to each sampling period Ls is calculated.
  • step S61 using the average value of the voltage value and the current value calculated in step S51, a variance value of a plurality of sample values extracted for each sampling period Ls is calculated.
  • the variance value is calculated for each sampling period Ls.
  • the drive IC 21 when executing the processing of steps S51 and S61 corresponds to the variation calculation unit 63, and the variance value of the voltage value and the current value calculated in step S61 corresponds to the variation degree.
  • step S71 rising points Pb2 and Pd2 at which the dispersion value rises from less than the threshold values TH1 and TH2 to the threshold values TH1 and TH2 are calculated in the variation waveforms Wb and Wd representing the relationship between the reference timing Tx and the dispersion value.
  • step S81 the valve closing completion timing Tcl is estimated based on the rising point Pb2 calculated in step S71, and the valve opening completion timing Top is estimated based on the rising point Pd2 calculated in step S71.
  • the voltage waveform Wa and the current waveform Wc can be acquired simultaneously, and the valve closing completion timing Tcl and the valve opening completion timing Top can be estimated at the same time, so that the estimation frequency can be improved. Moreover, since the opening / closing valve timing for one injection can be estimated, the valve closing completion timing Tcl and the valve opening completion timing Top can be estimated for the same injection. Therefore, the above-mentioned map showing the relationship between the energization time Ti and the injection amount can be corrected with high accuracy.
  • the variation waveforms Wb10 to Wb40 (see FIG. 5) according to the first embodiment are corrected so that the variance value at the rising start point Pb is zero (see FIG. 11). Then, the valve closing completion timing Tcl and the valve opening completion timing Top are estimated using the corrected variation waveforms Wb10 to Wb40.
  • the timing estimation unit 64 estimates the valve closing start timing Tcl based on the reference timing Tx of the rising start point Pb of the variation waveform Wb generated from the voltage waveform Wa.
  • the timing estimation unit 64 acquires the variation waveform Wb40 (see FIG. 5) at the time of high lift, the timing estimation unit 64 closes based on the reference timing Tx of the decrease stop point Pby of the variation waveform Wb.
  • the valve completion timing Tcl is estimated. For example, a timing obtained by subtracting a predetermined time from the reference timing Tx or multiplying by a preset coefficient is calculated as the valve closing completion timing Tcl.
  • the timing estimation unit 64 estimates the valve closing completion timing Tcl based on the variation waveform Wb generated from the voltage waveform Wa.
  • the timing estimation unit 64 according to the present embodiment estimates the valve closing start timing Tcl (see FIGS. 3 and 5) based on the variation waveform Wb.
  • the valve closing start timing Tcl is a timing at which the valve body 12 starts a valve closing operation with the start of turning off the energization of the electromagnetic coil 13.
  • the timing estimation unit 64 calculates a timing obtained by subtracting a preset predetermined time from the reference timing Tx at the rising point Pb2 of the variation waveform Wb as the valve closing start timing Tcl. Alternatively, a timing obtained by multiplying the reference timing Tx at the rising point Pb2 by a preset coefficient is calculated as the valve closing start timing Tcl.
  • the timing estimation unit 64 sets the valve closing start timing Tcl based on the reference timing Tx of the rising start point Pb as described above. presume.
  • the valve closing start timing Tcl is estimated based on the reference timing Tx of the lowering stop point Pby. For example, a timing obtained by subtracting a predetermined time set beforehand from these reference timings Tx or multiplying by a preset coefficient is calculated as the valve closing start timing Tcl.
  • the timing estimation unit 64 estimates the valve opening completion timing Top based on the variation waveform Wd generated from the current waveform Wc. In contrast, the timing estimation unit 64 according to the present embodiment estimates the valve opening start timing Topa (see FIG. 6) based on the variation waveform Wd.
  • the valve opening start timing Topa is a timing at which the valve body 12 starts the valve opening operation with the start of energization of the electromagnetic coil 13.
  • the timing estimation unit 64 calculates, as the fourth embodiment, a timing obtained by subtracting a predetermined time from the reference timing Tx at the rising point of the variation waveform Wd as a valve opening start timing Topa. To do. Alternatively, a timing obtained by multiplying the reference timing Tx at the rising point of the variation waveform Wd by a preset coefficient is calculated as the valve opening start timing Topa.
  • the timing estimation unit 64 estimates the valve opening start timing Topa based on the reference timing Tx of the rising start point as described above.
  • the valve opening start timing Topa is estimated based on the reference timing Tx of the decrease stop point of the variation waveform Wd. For example, a timing obtained by subtracting a predetermined time from these reference timings Tx or multiplying by a preset coefficient is calculated as the valve opening start timing Topa.
  • FIGS. 12 (a), 12 (b), and 12 (c) illustrating the present embodiment are the same as FIGS. 3 (a), 3 (b), and 3 (c), and FIG. A differential waveform ⁇ Wb obtained by differentiating the variation waveform Wb shown in FIG. Note that the negative value is deleted from the differential waveform ⁇ Wb shown in FIG.
  • the timing estimation unit 64 differentiates the acquired variation waveform Wb to calculate a differential waveform ⁇ Wb.
  • the differential waveform ⁇ Wb after the energization end Toff, when the reference timing Tx is delayed, the differential value of the deviation increases and reaches a predetermined threshold value TH3, and is calculated as the slope increase point Pc. Then, the valve closing completion timing Tcl is estimated based on the calculated inclination increasing point Pc.
  • the slope increasing point Pc appears at a timing slightly delayed from the rising start point Pb, and has a correlation with the rising start point Pb. That is, the reference timing Tx at the inclination increasing point Pc has a correlation with the valve closing completion timing Tcl.
  • the timing estimation unit 64 detects the inclination increase point Pc from the differential waveform ⁇ Wb, and estimates the valve closing completion timing Tcl based on the reference timing Tx at the inclination increase point Pc. For example, a timing obtained by subtracting a predetermined time set in advance from the reference timing Tx at the inclination increasing point Pc is calculated as the valve closing completion timing Tcl. Alternatively, a timing obtained by multiplying the reference timing Tx at the inclination increasing point Pc by a preset coefficient is calculated as the valve closing completion timing Tcl.
  • a waveform obtained by differentiating the variation waveform Wb may be used as it is, or a waveform obtained by performing an annealing process on the waveform obtained by differentiating the variation waveform Wb may be used. Good.
  • the differential waveform ⁇ Wb of the variation waveform Wb calculated from the voltage waveform Wa is calculated, and the valve closing completion timing Tcl is estimated using the differential waveform ⁇ Wb.
  • the differential waveform is calculated by differentiating the value of the variation waveform Wd calculated from the current waveform Wc shown in FIG. 6, the slope increasing point that has risen to a predetermined threshold is calculated, and the calculated slope is calculated.
  • the valve opening completion timing Top is estimated based on the reference timing at the increase point.
  • the gradients (differentiation) of the variation waveforms Wb and Wd are estimated. Waveform).
  • the variation calculation unit 63 uses variance as the variation degree of the plurality of sample values D0 to D7, but the variation degree is not limited to the variance. For example, the deviation between the average value and each sample value D0 to D7 is calculated, the absolute value of each deviation is added, the added value is divided by a predetermined value, and the value obtained by squaring the divided value is The degree of variation may be calculated.
  • the valve closing timing is estimated in the voltage detection mode, but the valve opening timing may be estimated in the voltage detection mode. Specifically, the valve opening timing may be estimated based on the variation waveform Wb generated from the voltage waveform Wa. In the example shown in FIG. 7, the valve opening timing is estimated in the current detection mode, but the valve closing timing may be estimated in the current detection mode. Specifically, the valve closing timing may be estimated based on a variation waveform Wd generated from the current waveform Wc.
  • valve closing completion timing Tcl and the valve opening completion timing Top are estimated from the gradients (differential waveforms) of the variation waveforms Wb and Wd.
  • the valve closing start timing Tcl and the valve opening start timing Topa may be similarly estimated from the gradients (differential waveforms) of the variation waveforms Wb and Wd.
  • the detection mode is switched so that the frequency of executing the voltage detection mode is higher than the frequency of executing the current detection mode.
  • the detection mode may be switched every time fuel injection by the fuel injection valve 10 is performed, or may be switched every time a predetermined number of injections are performed.
  • the detection mode may be switched according to the operating state of the internal combustion engine E, may be switched according to the length of the energization time Ti, or may be switched according to the pressure of the fuel supplied to the fuel injection valve 10. May be.
  • the coil current is raised to the first target value I1 by the current rise period by the boost voltage
  • the coil current is held at the second target value I2 by the current holding period by the battery voltage.
  • the second boost voltage may be applied and held at the second target value I2.
  • the boost voltage during the current rising period may be set as the first boost voltage
  • the second boost voltage may be set to a value smaller than the first boost voltage
  • the second boost voltage may be set to the same value as the first boost voltage. May be set.
  • the coil current is held at the second target value I2 while the voltage is not turned off and is continuously controlled to be in the on state in the current holding period.
  • the coil current may be held at the second target value I2 by duty-controlling the voltage application.
  • the valve opening completion timing or the valve opening start timing is estimated using the current value as a sampling value, it is desirable to abolish the duty control and continuously turn on the voltage application during the current holding period.
  • the valve body 12 and the movable core 15 are configured separately, but the valve body 12 and the movable core 15 may be configured integrally.
  • the valve body 12 When it is integral, when the movable core 15 is sucked, the valve body 12 is also displaced together with the movable core 15 in the valve opening direction to open. Further, the fuel injection valve 10 shown in FIG. 2 is configured so that the valve body 12 also starts moving simultaneously with the start of movement of the movable core 15, but is not limited to such a configuration. For example, even if the movement of the movable core 15 is started, the valve body 12 does not start opening, and when the movable core 15 moves a predetermined amount, the movable core 15 engages with the valve body 12 and starts valve opening. It may be.
  • the voltage detector 23 shown in FIG. 1 may detect the negative terminal voltage of the electromagnetic coil 13, may detect the positive terminal voltage, or may detect the voltage between the positive terminal and the negative terminal. Also good.
  • the means and / or functions provided by the ECU 20 can be provided by software recorded in a substantial storage medium and a computer that executes the software, only software, only hardware, or a combination thereof.
  • the controller is provided by an electronic circuit that is hardware, it can be provided by a digital circuit including a number of logic circuits, or an analog circuit.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Analytical Chemistry (AREA)
  • Fuel-Injection Apparatus (AREA)
  • Magnetically Actuated Valves (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

弁体作動推定装置としてのECU(20)は、サンプリング部(61)、バラツキ演算部(63)およびタイミング推定部(64)を備える。サンプリング部(61)は、所定の基準タイミングを基準に設定されるサンプリング期間に、電磁コイルの電圧値および電流値の少なくとも一方を、所定時間間隔でサンプル値として取得する。バラツキ演算部(63)は、サンプリング期間に取得された複数のサンプル値のバラツキ度合を演算する。タイミング推定部(64)は、基準タイミングを異ならせることに伴うバラツキ度合の変化を表わすバラツキ波形のうち、基準タイミングを遅くしていくとバラツキ度合が低下していきその後上昇に転ずる点を上昇開始点とし、上昇開始点での基準タイミングに基づき、弁体の作動タイミングを推定する。

Description

弁体作動推定装置 関連出願の相互参照
 本出願は、2016年9月13日に出願された日本特許出願番号2016-178770号に基づくもので、ここにその記載内容を援用する。
 本開示は、燃料噴射弁の噴孔を開閉させる弁体の、閉弁開始タイミング、閉弁完了タイミング、開弁開始タイミング、及び開弁完了タイミングの少なくとも1つを推定する弁体作動推定装置に関する。
 従来の一般的な燃料噴射弁は、燃料を噴射する噴孔を形成するボデーと、ボデーの着座面に離着座することで噴孔を開閉させる弁体と、弁体の開弁力としての電磁吸引力を生じさせる電磁コイルと、を有する。そして、電磁コイルへの通電オン開始から開弁遅れ時間が経過したタイミングで弁体は開弁し、通電オフ開始から閉弁遅れ時間が経過したタイミングで弁体は閉弁する。したがって、これらの遅れ時間を考慮して、所望する噴射量に対応する通電時間を設定することを要する。
 但し、上記遅れ時間は、燃料噴射弁の経年劣化、環境、駆動回路のバラツキ、個体バラツキ等の影響で変化する。そこで特許文献1には、閉弁遅れ時間をオンボードで推定する推定装置が開示されており、その推定結果を用いて通電時間を設定することで、高精度で噴射量を制御できるようにすることを図っている。
 上記推定の手法を以下に説明する。電磁コイルへの通電をオフさせると、電磁コイルの電圧値は、通電オフ時のフライバックで一時的に増大し、その後、徐々に低下していく。但し、通電オフに伴い弁体が着座面に向けて移動(閉弁作動)する際に、電磁力で吸引されていた可動コアが弁体とともに移動することによって誘導起電力が生じ、その影響により通電オフ後の電圧低下は緩慢になる。そして、弁体が着座する直前では可動コアの移動速度が最大になるが、着座と同時に移動速度が急激に小さくなる。つまり、閉弁作動の着座時点で可動コアの移動速度が急激に変化する。その結果、誘導起電力の影響で電圧低下が緩慢になる度合いが着座時点で急激に変化し、電磁コイルの電圧値の時間変化を表した電圧波形に変曲点が現れる。
 そこで上記推定装置は、電磁コイルの電圧値を検出して上記電圧波形を取得し、上記変曲点を含む微動波形が電圧波形に出現したタイミングを、弁体が着座する閉弁完了タイミングとして推定している。
 しかしながら、先述した誘導起電力の変化によって生じる電圧の変化量は微小であり、上述した微動波形の大きさは極めて小さい。また、弁体のリフト量がフルリフトに達する前に弁体が閉弁作動を開始するパーシャルリフト噴射の場合には、閉弁作動開始時のリフト量が小さいことに起因して着座時点での可動コアの移動速度変化が小さくなるので、微動波形は特に小さくなる。そのため、電圧波形から微動波形を精度良く抽出することは困難であり、閉弁完了タイミングを高精度で推定することは困難である。
 開弁タイミングを推定する場合についても同様であり、弁体の開弁作動が完了するタイミングで微動波形が出現するが、その微動波形は極めて小さい。したがって、弁体の作動に伴い出現する微動波形を精度良く抽出して、弁体の作動タイミングを高精度で推定することは困難である。
 特許文献1には、閉弁完了タイミングを以下の手法で推定する旨が開示されている。先ず、電圧波形から微動波形を除去するように電圧波形になまし処理を施す。なまし処理後の電圧波形を基準波形と呼ぶ。次に、電圧波形と基準波形との差分である差分波形を算出する。差分波形のうち変曲点となる箇所が、微動波形の出現タイミングであり、閉弁完了タイミングとして推定できる。
 しかしながら、基準波形を算出するためのなまし処理を施すにあたり、なまし係数を最適な値に設定することは極めて困難である。特に、先述したパーシャルリフト噴射の場合とフルリフト噴射の場合とでは、リフト量の違いに応じて閉弁時の電圧波形が大きく異なってくるので、なまし係数の最適値も異なってくる。そのため、リフト量に影響する駆動条件毎になまし係数を適合する必要があり、その適合作業は極めて困難である。
特開2015-96720号公報
本開示は、基準波形を用いることなく弁体の作動タイミングを高精度で推定可能な、弁体作動推定装置を提供することを目的とする。
 本開示の一態様によれば、弁体作動推定装置は、燃料を噴射する噴孔を形成するボデーと、ボデーの着座面に離着座することで噴孔を開閉させる弁体と、弁体の開弁力としての電磁吸引力を生じさせる電磁コイルと、を有する燃料噴射弁に適用される。
 弁体作動推定装置は、電磁コイルへの通電オフ開始に伴い弁体が閉弁作動を開始する閉弁開始タイミング、閉弁作動が完了する閉弁完了タイミング、電磁コイルへの通電オン開始に伴い弁体が開弁作動を開始する開弁開始タイミング、及び開弁作動が完了する開弁完了タイミングの少なくとも1つを推定する。
 弁体作動推定装置は、所定の基準タイミングを基準に設定されるサンプリング期間に、電磁コイルの電圧値および電流値の少なくとも一方を、所定時間間隔でサンプル値として取得するサンプリング部と、サンプリング期間に取得された複数のサンプル値のバラツキ度合を演算するバラツキ演算部と、基準タイミングを異ならせることに伴うバラツキ度合の変化を表わすバラツキ波形のうち、基準タイミングを遅くしていくとバラツキ度合が低下していきその後上昇に転ずる点を上昇開始点とし、上昇開始点での基準タイミングに基づき、閉弁開始タイミング、閉弁完了タイミング、開弁開始タイミング、及び開弁完了タイミングの少なくとも1つを推定するタイミング推定部と、を備える。
 上記の態様によれば、サンプリング期間における電圧値および電流値の少なくとも一方についてバラツキ度合を演算する。そして、基準タイミングとバラツキ度合との関係を表わすバラツキ波形の上昇開始点での基準タイミングに基づき、閉弁開始タイミング、閉弁完了タイミング、開弁開始タイミング、及び開弁完了タイミングの少なくとも1つを推定する。本発明者は、これらのタイミングと、バラツキ波形の上昇開始点における基準タイミングとは相関があることを見出しており、このような相関を持つ上昇開始点はバラツキ波形の中で顕著に現れる。そして、バラツキ波形に対する上昇開始点の顕著性つまり抽出容易性は、従来の電圧波形に対する微動波形の顕著性に比べて高い。よって、上記の態様によれば、バラツキ波形に出現する上昇開始点を精度良く抽出でき、ひいては、弁体の作動タイミングを高精度で推定できる。しかも、特許文献1で用いる基準波形を不要にできるので、なまし係数の適合作業を不要にしつつ、上記作動タイミングの推定を実現できる。
 本開示の他の態様によれば、弁体作動推定装置は、燃料を噴射する噴孔を形成するボデーと、ボデーの着座面に離着座することで噴孔を開閉させる弁体と、弁体の開弁力としての電磁吸引力を生じさせる電磁コイルと、を有する燃料噴射弁に適用される。
 弁体作動推定装置は、電磁コイルへの通電オフ開始に伴い弁体が閉弁作動を開始する閉弁開始タイミング、閉弁作動が完了する閉弁完了タイミング、電磁コイルへの通電オン開始に伴い弁体が開弁作動を開始する開弁開始タイミング、及び開弁作動が完了する開弁完了タイミングの少なくとも1つを推定する。
 弁体作動推定装置は、所定の基準タイミングを基準に設定されるサンプリング期間に、電磁コイルの電圧値および電流値の少なくとも一方を、所定時間間隔でサンプル値として取得するサンプリング部と、サンプリング期間に取得された複数のサンプル値のバラツキ度合を演算するバラツキ演算部と、基準タイミングを異ならせることに伴うバラツキ度合の変化を表わすバラツキ波形のうち、基準タイミングを遅くしていくとバラツキ度合が低下していきその低下が停止する点を低下停止点とし、低下停止点での基準タイミングに基づき、閉弁開始タイミング、閉弁完了タイミング、開弁開始タイミング、及び開弁完了タイミングの少なくとも1つを推定するタイミング推定部と、を備える。
 上記の態様によれば、サンプリング期間における電圧値および電流値の少なくとも一方についてバラツキ度合を演算する。そして、基準タイミングとバラツキ度合との関係を表わすバラツキ波形の低下停止点での基準タイミングに基づき、閉弁開始タイミング、閉弁完了タイミング、開弁開始タイミング、及び開弁完了タイミングの少なくとも1つを推定する。本発明者は、これらのタイミングと、バラツキ波形の低下停止点における基準タイミングとは相関があることを見出しており、このような相関を持つ低下停止点はバラツキ波形の中で顕著に現れる。そして、バラツキ波形に対する低下停止点の顕著性つまり抽出容易性は、従来の電圧波形に対する微動波形の顕著性に比べて高い。よって、上記態様によれば、バラツキ波形に出現する低下停止点を精度良く抽出でき、ひいては、弁体の作動タイミングを高精度で推定できる。しかも、特許文献1で用いる基準波形を不要にできるので、なまし係数の適合作業を不要にしつつ、上記作動タイミングの推定を実現できる。
 本開示についての上記目的およびその他の目的、特徴や利点は、添付の図面を参照しながら下記の詳細な記述により、より明確になる。
図1は、本開示の第1実施形態に係る弁体作動推定装置を備えた燃料噴射システムを示す図。 図2は、図1に示す燃料噴射弁の断面図。 図3は、図1のサンプリング部によりサンプリングされた電圧の波形と、その電圧波形に基づくバラツキ波形との関係を示す図。 図4は、図3の電圧波形に係るサンプル値と、サンプル値のバラツキ度合との関係を示す図。 図5は、図2に示す弁体のリフト量に応じた、電圧波形およびバラツキ波形の違いを示す図。 図6は、図1のサンプリング部によりサンプリングされた電流の波形と、その電流波形に基づくバラツキ波形との関係を示す図。 図7は、図1の駆動ICが閉弁タイミングおよび開弁タイミングを推定する処理の手順を示すフローチャート。 図8は、本開示に対する比較例による閉弁タイミングの推定手法を説明するための図であって、電圧波形、電圧波形をなました基準波形、および電圧波形と基準波形との差分である差分波形を示す図。 図9は、図8の基準波形および弁体のリフト量が異なることに応じた、差分波形の違いを示す図。 図10は、本開示の第2実施形態に係る弁体作動推定装置による、閉弁タイミングおよび開弁タイミングを推定する処理の手順を示すフローチャート。 図11は、本開示の第3実施形態に係る弁体作動推定装置による、電圧波形およびバラツキ波形を示す図。 図12は、本開示の第7実施形態に係る微分波形を示す図。
 以下、図面を参照しながら本開示の複数の形態を説明する。各形態において、先行する形態で説明した事項に対応する部分には同一の参照符号を付して重複する説明を省略する場合がある。各形態において、構成の一部のみを説明している場合は、構成の他の部分については先行して説明した他の形態を参照し適用することができる。
 (第1実施形態)
 図1に示す燃料噴射システム100は、複数の燃料噴射弁10、及び電子制御装置(ECU20)を含んで構成される。ECU20は、複数の燃料噴射弁10の開閉を制御し、内燃機関Eの燃焼室2への燃料噴射を制御する。さらにECU20は、燃料噴射弁10の開閉弁タイミングを推定する弁体作動推定装置としても機能する。燃料噴射弁10は、点火式の内燃機関E、たとえばガソリンエンジンに複数搭載されており、内燃機関Eの複数の燃焼室2のそれぞれに直接燃料を噴射する。燃焼室2を形成するシリンダヘッド3には、シリンダの軸線Cと同軸の貫通する取付け穴4が形成されている。燃料噴射弁10は、先端が燃焼室2に露出するように取付け穴4に挿入されて固定されている。
 燃料噴射弁10へ供給される燃料は、図示しない燃料タンクに貯蔵されている。燃料タンク内の燃料は、低圧ポンプ41によりくみ上げられ、高圧ポンプ40により燃圧が高められてデリバリパイプ30へ送られる。デリバリパイプ30内の高圧燃料は、各気筒の燃料噴射弁10へ分配して供給される。シリンダヘッド3うち、燃焼室2に臨む位置に点火プラグ6が取り付けられている。また点火プラグ6は、燃料噴射弁10の先端の近傍に配置されている。
 次に、燃料噴射弁10の構成に関して、図2を用いて説明する。図2に示すように、燃料噴射弁10は、ボデー11、弁体12、電磁コイル13、固定コア14、可動コア15、およびハウジング16を含んで構成される。ボデー11は、磁性材料で形成されている。ボデー11の内部には、燃料通路11aが形成されている。
 またボデー11の内部には、弁体12が収容されている。弁体12は、金属材料によって全体として円柱状に形成されている。弁体12は、ボデー11の内部で軸方向に往復変位可能である。ボデー11は、先端部に弁体12が着座する着座面17b、および燃料を噴射する噴孔17aが形成された噴孔体17を有して構成されている。噴孔17aは、ボデー11の内側から外側に向けて放射状に複数設けられている。噴孔17aを通じて、高圧の燃料が燃焼室2内に噴射される。
 弁体12の本体部は、円柱形状である。弁体12の先端部は、本体部の噴孔17a側先端から噴孔17aに向けて延びる円錐形状である。弁体12のうち着座面17bに着座する部分がシート面12aである。シート面12aは、弁体12の先端部に形成されている。
 シート面12aを着座面17bに着座させるよう弁体12を閉弁作動させると、燃料通路11aが閉鎖されて噴孔17aからの燃料噴射が停止される。シート面12aを着座面17bから離座させるよう弁体12を開弁作動させると、燃料通路11aが開放されて噴孔17aから燃料が噴射される。
 電磁コイル13は、可動コア15に開弁方向の磁気吸引力を付勢する。電磁コイル13は、樹脂製のボビン13aに巻き回して構成され、ボビン13aと樹脂材13bにより封止されている。つまり、電磁コイル13、ボビン13aおよび樹脂材13bにより、円筒形状のコイル体が構成されている。固定コア14は、磁性材料にて円筒形状に形成され、ボデー11に固定されている。固定コア14の円筒内部には、燃料通路14aが形成されている。
 さらに、電磁コイル13を封止する樹脂材13bの外周面は、ハウジング16により覆われている。ハウジング16は、金属製の磁性材料にて円筒形状に形成されている。ハウジング16の開口端部には、金属製の磁性材料にて形成される蓋部材18が取り付けられている。これにより、コイル体は、ボデー11、ハウジング16および蓋部材18により取り囲まれることとなる。
 可動コア15は、弁体12の駆動方向に相対変位可能に弁体12に保持される。可動コア15は、金属製の磁性材料にて円盤形状に形成され、ボデー11の内周面に挿入されている。ボデー11、弁体12、コイル体、固定コア14、可動コア15およびハウジング16は、各々の中心線が一致するように配置されている。そして、可動コア15は、固定コア14に対して噴孔17aの側に配置されており、電磁コイル13への非通電時には固定コア14と所定のギャップを有するよう、固定コア14に対向配置されている。
 前述のように、コイル体を取り囲むボデー11、ハウジング16、蓋部材18および固定コア14は、磁性材料により形成されるため、電磁コイル13への通電により生じた磁束の通路となる磁気回路を形成することとなる。固定コア14、可動コア15および電磁コイル13等の部品は、弁体12を開弁作動させる電気アクチュエータEAに相当する。
 可動コア15には貫通孔15aが形成されており、この貫通孔15aに弁体12が挿入配置されることで、弁体12は可動コア15に対して摺動して相対移動可能に組み付けられている。弁体12の図2の上方側である反噴孔側端部には、本体部から拡径した係止部12dが形成されている。可動コア15が固定コア14に吸引されて上方側に移動する際には、係止部12dが可動コア15に係止された状態で移動するので、可動コア15の上方への移動に伴い弁体12も移動する。可動コア15が固定コア14に接触した状態であっても、弁体12は可動コア15に対して相対移動してリフトアップすることが可能である。
 弁体12の反噴孔側にはメインスプリングSP1が配置され、可動コア15の噴孔17a側にはサブスプリングSP2が配置されている。メインスプリングSP1の弾性力は、調整パイプ101からの反力として弁体12へ図2の下方側である閉弁方向に付与される。サブスプリングSP2の弾性力は、ボデー11の凹部11bからの反力として可動コア15へ吸引方向に付与される。
 弁体12は、メインスプリングSP1と着座面17bとの間に挟まれており、可動コア15は、サブスプリングSP2と係止部12dとの間に挟まれている。そして、サブスプリングSP2の弾性力は、可動コア15を介して係止部12dに伝達され、弁体12へ開弁方向に付与されることとなる。したがって、メイン弾性力からサブ弾性力を差し引いた弾性力が、弁体12へ閉弁方向に付与されている。
 燃料通路11a内の燃料の圧力は開弁状態では弁体12の表面全体に作用しているが、弁体12のうちシート面12aよりも下流側部分の面については、閉弁状態では燃圧が作用しない。そして、開弁とともに、先端部に流れ込む燃料の圧力が徐々に上昇して、先端部を開弁側に押す力が増大する。したがって、開弁とともに先端部近傍の燃圧が上昇し、その結果、燃圧閉弁力が低下していく。以上の理由により、燃圧閉弁力の大きさは、閉弁状態で最大であり、弁体12の開弁移動量が大きくなるに連れて徐々に小さくなっていく。
 次に電磁コイル13への通電による挙動について説明する。電磁コイル13へ通電して固定コア14に電磁吸引力を生じさせると、この電磁吸引力により可動コア15が固定コア14に引き寄せられる。その結果、可動コア15に連結されている弁体12は、メインスプリングSP1の弾性力および燃圧閉弁力に抗して開弁作動する。一方、電磁コイル13への通電を停止させると、メインスプリングSP1の弾性力により、弁体12は可動コア15とともに閉弁作動する。
 次に、ECU20の構成について説明する。ECU20は、駆動IC21、昇圧回路22、電圧検出部23、電流検出部24、スイッチ部25、およびマイクロコンピュータを有する。ECU20は各種のセンサからの情報を取得する。たとえば燃料噴射弁10への供給燃圧は、図1に示すように、デリバリパイプ30に取り付けられた燃圧センサ31により検出され、ECU20に検出結果が出力される。ECU20は、燃圧センサ31の検出結果に基づいて高圧ポンプ40の駆動を制御する。
 マイクロコンピュータ26は、プロセッサ、不揮発性メモリ(ROM)および揮発性メモリ(RAM)等を有し、内燃機関Eの負荷および機関回転速度に基づき、燃料の要求噴射量および要求噴射開始時期を算出する。駆動IC21は、燃料噴射弁10の駆動を制御する駆動用の集積回路であり、マイクロコンピュータ26から出力された指令信号にしたがって昇圧回路22およびスイッチ部25の作動を制御することで、電磁コイル13への電力供給状態を制御する。
 具体的には、電磁コイル13への通電時間Tiと噴射量Qとの関係を示す噴射特性を予め試験してROMに記憶させておく。マイクロコンピュータ26は、その噴射特性にしたがって、要求噴射量に対応する通電時間Tiのパルス信号を、噴射指令信号として駆動IC21へ出力する。駆動IC21は、噴射指令信号にしたがって通電時間Tiを制御することで噴射量Qを制御する。つまり、噴射指令信号のパルスオン期間(パルス幅)により、電磁コイル13への通電時間が制御される。
 電圧検出部23および電流検出部24は、電磁コイル13に印加された電圧および電流の値を検出し、検出結果を駆動IC21へ出力する。電圧検出部23は、電磁コイル13のプラス端子とマイナス端子との電位差をコイル電圧として検出する。電磁コイル13に供給される電流を遮断すると、電磁コイル13にフライバック電圧が生じる。さらに電磁コイル13には、電流を遮断して弁体12および可動コア15が閉弁方向に変位することによる誘導起電力が生じる。したがって、電磁コイル13への通電オフに伴い、誘導起電力による電圧と低下していくフライバック電圧とが重畳した電圧が、電磁コイル13に生じる。よって、電圧検出部23は、電磁コイル13に供給される電流を遮断して弁体12および可動コア15が閉弁方向に変位することによる誘導起電力の変化を電圧値として検出していると言える。さらに電圧検出部23は、着座面17bと弁体12とが接触してから可動コア15が弁体12に対して相対変位することによる誘導起電力の変化についても電圧値として検出する。
 駆動IC21は、弁体12の閉弁完了タイミング並びに開弁完了タイミングを推定する。閉弁完了タイミングとは、電磁コイル13への通電オフ開始に伴い弁体12が閉弁作動を開始し、その閉弁作動が完了したタイミング、つまりシート面12aが着座面17bに当接したタイミングである。開弁完了タイミングとは、電磁コイル13への通電オン開始に伴い弁体12が開弁作動を開始し、その開弁作動が完了したタイミング、つまり可動コア15が固定コア14に当接して両コア間のギャップが最小になったタイミングである。これらのタイミングの推定手法については、後に詳述する。
 駆動IC21は、充電制御部51、放電制御部52、電流制御部53、サンプリング部61、サンプル値保持部62、バラツキ演算部63およびタイミング推定部64を有する。昇圧回路22およびスイッチ部25は、駆動IC21から出力された駆動指令信号に基づき作動する。駆動指令信号は、燃料噴射弁10の電磁コイル13への通電状態を指令する信号であり、マイクロコンピュータ26から出力された先述の噴射指令信号に基づき設定される。
 昇圧回路22は、昇圧したブースト電圧を電磁コイル13に印加する。昇圧回路22は、昇圧コイル、コンデンサおよびスイッチング素子を備え、バッテリ102のバッテリ端子から印加されるバッテリ電圧が昇圧コイルにより昇圧されて、コンデンサに蓄電される。このように昇圧されて蓄電された電力の電圧がブースト電圧に相当する。
 放電制御部52は、昇圧回路22が放電するように所定のスイッチング素子をオン作動させると、燃料噴射弁10の電磁コイル13へブースト電圧が印加される。放電制御部52は、電磁コイル13への電圧印加を停止させる場合には、昇圧回路22の所定のスイッチング素子をオフ作動させる。
 電流制御部53は、電流検出部24の検出結果を用いて、スイッチ部25のオンオフを制御して、電磁コイル13に流れる電流を制御する。スイッチ部25は、オン状態になるとブースト電圧またはバッテリ電圧を電磁コイル13に印加し、オフ状態になると電圧印加を停止する。電流制御部53は、たとえば駆動指令信号により指令される電圧印加開始時期に、スイッチ部25をオンにしてブースト電圧を印加して通電を開始する。すると、通電開始に伴いコイル電流が上昇する。上昇したコイル電流が第1目標値に達したことを電流検出部24が検出すると、電流制御部53は通電をオフさせる。その後、電流制御部53は、ブースト電圧からバッテリ電圧に切り替え、第1目標値よりも低い値に設定された第2目標値にコイル電流が維持されるように制御する。要するに、初回の通電によるブースト電圧印加により、第1目標値までコイル電流を上昇させるように制御し、その後、第2目標値にコイル電流を保持させる。
 図3(a)に示す実線は、電圧検出部23により検出されたコイル電圧の変化を示す電圧波形Waである。この電圧波形Waは、実際に検出された電圧波形になまし処理を施してノイズを除去した状態の波形である。図示されるように、通電時間Tiの終了タイミングである通電終了時Toffに、フライバック電圧によりコイル電圧は上昇し、その後、徐々に低下してゼロに収束する。このように電圧低下する期間において、通電終了時Toffから応答遅れ時間が経過した閉弁開始タイミングTclaで、弁体12とともに可動コア15が移動を開始する。すると、可動コア15が移動することによって誘導起電力が生じ、その影響により通電オフ後の電圧低下は緩慢になる。つまり、電圧波形Waは、点線に示す仮想波形Wxのようには低下せず、その仮想波形Wxに誘導起電力を加算した波形となる。そして、弁体12が着座する直前では可動コア15の移動速度が最大になるが、弁体12が着座した閉弁完了タイミングTclで、可動コア15の移動速度は急激に小さくなる。つまり着座時点で、可動コア15の移動速度が急激に変化して、その変化に伴い誘導起電力も急激に変化する。その結果、誘導起電力の影響で電圧低下が緩慢になる度合いが着座時点で急激に変化し、閉弁完了タイミングTclで電圧波形Waに変曲点が現れる。
 なお、上記誘電起電力は、図3中に示す閉弁開始タイミングTclaで生じ始める。また、可動コア15は弁体12に対して相対移動可能に組み付けられているので、閉弁完了タイミングTcl以降も可動コア15は移動を続け誘電起電力は生じ続ける。但し、閉弁完了タイミングTcl以降では、サブスプリングSP2の弾性力が可動コア15に作用することで、可動コア15の移動速度は急激に低減し、誘電起電力も急激に減少していく。
 サンプリング部61は、通電終了時Toffの後の所定期間Laにおいて、コイル電圧の値を所定時間L(図4参照)間隔で取得する。この所定時間L間隔は、例えば1μsecであり、マイクロコンピュータ26の演算周期よりも短い時間に設定されている。
 サンプル値保持部62は、サンプリング部61で取得した複数の電圧値を一時的に記憶保持する。具体的には、次回の燃料噴射に係る所定期間Laでの電圧値を取得するまでには記憶を消去させる。例えば、次回の電圧値を今回の電圧値に上書きしていく。図4(a)に示すように、所定期間Laの中で基準タイミングTxを任意に設定し、その基準タイミングTxを基準に設定されるサンプリング期間Lsに取得された電圧値をサンプル値とする。具体的には、基準タイミングTx以前のサンプリング期間Lsに含まれる電圧値をサンプル値とする。図4の例では、8個のサンプル値D0、D1、D2、D3、D4、D5、D6、D7が得られるようにサンプリング期間Lsが設定されている。
 バラツキ演算部63は、サンプリング期間Lsでの複数のサンプル値D0~D7のバラツキ度合を演算する。具体的には、複数のサンプル値D0~D7の分散を、バラツキ度合として演算する。より具体的には、複数のサンプル値D0~D7の平均値を演算し、その平均値と各々のサンプル値との偏差を演算し、各々の偏差の二乗を加算した値をサンプル数(8個)で除算して、上記分散の値を演算する。
 図4(b)は、複数のサンプル値D0~D7のバラツキ度合を可視化したものであり、図中の符号Wa1、Wa2、Wa3、Wa4、Wa5、Wa6、Wa7の各々は、図3(b)に示す擬似波形Wa1~Wa7を拡大したものである。擬似波形Wa1~Wa7は、電圧検出部23により検出された電圧波形Waを所定時間Lずつずらした波形である。これらの擬似波形Wa1~Wa7および電圧波形Waのうち、基準タイミングTxでの電圧値がサンプル値D0~D7に相当する。したがって、基準タイミングTxをずらしていけば、サンプル値D0~D7が変化してバラツキ度合も変化する。
 図3(c)は、基準タイミングTxを異ならせることに伴う分散値の変化を表わすバラツキ波形Wbを示す。所定期間Laに対応する部分のバラツキ波形Wbには、基準タイミングTxが遅くなるにつれ分散値が低下していきその低下が停止する点であって、その低下停止の後に上昇に転ずる点である上昇開始点Pbが含まれている。要するに、図3に例示するバラツキ波形Wbは極小点を有する形状である。
 タイミング推定部64は、上昇開始点Pbでの基準タイミングTxに基づき、閉弁完了タイミングTclを推定する。上昇開始点Pbでの基準タイミングTxは閉弁完了タイミングTclと相関が高いことに鑑み、タイミング推定部64は、上昇開始点Pbでの基準タイミングTxを閉弁完了タイミングTclとみなして推定する。具体的には、図3(d)に示すように、タイミング推定部64は、分散値が閾値TH1以下にまで低下した低下点Pb1と、低下点Pb1以降に分散値が閾値TH1以上にまで上昇した上昇点Pb2とを抽出する。そして、上昇点Pb2での基準タイミングTxに基づき、上昇開始点Pbでの基準タイミングTxつまり閉弁完了タイミングTclを算出する。例えば、上昇点Pb2での基準タイミングTxから予め設定した所定時間だけ減算したタイミングを、閉弁完了タイミングTclとして算出する。或いは、上昇点Pb2での基準タイミングTxに予め設定した係数を乗算したタイミングを、閉弁完了タイミングTclとして算出する。
 通電時間Tiと噴射量との関係を表わす噴射特性マップは、通電時間Tiが比較的長くなるフルリフト領域と、通電時間Tiが比較的短くなるパーシャルリフト領域とに区分される。フルリフト領域では、弁体12のリフト量がフルリフト位置、すなわち可動コア15が固定コア14に突き当たる位置に到達するまで弁体12が開弁作動し、その突き当たった位置から閉弁作動を開始する。しかしパーシャルリフト領域では、弁体12のリフト量がフルリフト位置に到達しないパーシャルリフト状態、すなわち可動コア15が固定コア14に突き当たる手前の位置まで弁体12が開弁作動し、パーシャルリフト位置から閉弁作動を開始する。
 図3に例示する電圧波形Waが、パーシャルリフト領域での噴射時に取得した波形であるのに対し、図5(a)に示す電圧波形Wa40は、フルリフト領域での噴射時に取得した波形である。また、電圧波形Wa10、Wa20、Wa30は、パーシャルリフト領域での噴射時に取得した波形である。電圧波形Wa30、Wa20、Wa10の順に通電時間Tiが短くなり弁体12のリフト量が小さくなっている。図5(b)に示すバラツキ波形Wb10、Wb20、Wb30、Wb40の各々は、電圧波形Wa10、Wa20、Wa30、Wa40の各々に対応する。
 パーシャルリフト領域でのバラツキ波形Wb10、Wb20、Wb30を比較して分かるように、リフト量が大きいほど、極小となる上昇開始点Pb近傍での波形の傾きが緩やかになる。そして、フルリフト領域でのバラツキ波形Wb40では、極小を有する波形とは異なり、低下が停止した状態が継続する部分を含む波形となる。バラツキ波形Wb40の場合、基準タイミングTxを遅くしていくと分散値が低下していきその低下が停止する点を低下停止点Pbyとし、基準タイミングTxをさらに遅くしていくと分散値が上昇に転ずる変化点を上昇開始点Pbxとする。
 上昇開始点Pbxでの基準タイミングTxは閉弁完了タイミングTclと相関が高いことに鑑み、タイミング推定部64は、上昇開始点Pbxでの基準タイミングTxを閉弁完了タイミングTclとみなして推定する。具体的な推定手法は、図3(d)を用いて説明した手法と同じであり、分散値が閾値TH1以下にまで低下した低下点Pb1と、低下点Pb1以降に分散値が閾値TH1以上にまで上昇した上昇点Pb2とを抽出する。この上昇点Pb2と上昇開始点Pbxとは相関が高いため、上昇点Pb2での基準タイミングTxに基づき閉弁完了タイミングTclを算出する。
 駆動IC21は、図3~図5に示す手法で閉弁完了タイミングTclを推定することに加え、以下に説明する手法で開弁完了タイミングTopも推定する。つまり、駆動IC21は、閉弁タイミングの推定と開弁タイミングの推定とを切り替えて実行する。
 図6(a)に示す実線は、電流検出部24により検出されたコイル電流の、経過時間に対する変化を示す電流波形Wcである。この電流波形Wcは、実際に検出された電流波形になまし処理を施してノイズを除去した状態の波形である。図示されるように、通電時間Tiの開始タイミングである通電開始時Tonとともにコイル電流は上昇する。その後、コイル電流が先述した第1目標値I1に達すると、ブースト電圧からバッテリ電圧に切り替えられて先述した第2目標値I2にコイル電流は保持される。この電流保持の期間中に開弁完了タイミングTopが現れる。なお、開弁開始タイミングTopaについては、図6の例では電流保持の期間中に現れているが、第1目標値I1までの電流上昇期間中に現れる場合もある。
 図6(b)に示す擬似波形Wc1~Wc7は、電流検出部24により検出された電流波形Wcを所定時間Lずつずらした波形である。図6(c)は、基準タイミングTxを異ならせることに伴う分散値の変化を表わすバラツキ波形Wdを示す。所定期間Lcに対応する部分のバラツキ波形Wdには、基準タイミングTxが遅くなるにつれ分散値が低下し、その後上昇に転ずる上昇開始点Pdが含まれている。要するに、図6に例示するバラツキ波形Wdは極小値を有する形状であり、この極小値がバラツキ波形Wdの上昇開始点Pdでの分散値に相当する。
 開弁タイミング推定時のサンプリング部61は、コイル電圧ではなく、コイル電流の値を取得する。具体的には、図6に示すように、通電開始時Tonの後の所定期間Lcにおいて、コイル電流の値を所定時間L間隔(例えば1μsec)で取得する。
 開弁タイミング推定時のサンプル値保持部62は、サンプリング部61で取得した複数の電流値を一時的に記憶保持する。具体的には、次回の燃料噴射に係る所定期間Lcでの電流値を取得するまでには記憶を消去させる。例えば、次回の電流値を今回の電流値に上書きしていく。図4(a)と同様にして、所定期間Lcの中で基準タイミングTxを任意に設定し、その基準タイミングTxを基準に設定されるサンプリング期間Lsに取得された電流値をサンプル値とする。具体的には、基準タイミングTx以前のサンプリング期間Lsに含まれる電流値をサンプル値とする。
 開弁タイミング推定時のバラツキ演算部63は、サンプリング期間Lsでの複数のサンプル値のバラツキ度合を、閉弁タイミング推定時と同様にして演算する。具体的には、複数のサンプル値の分散をバラツキ度合として演算する。
 開弁タイミング推定時のタイミング推定部64は、上昇開始点Pdでの基準タイミングTxに基づき、開弁完了タイミングTopを推定する。上昇開始点Pdでの基準タイミングTxは開弁完了タイミングTopと相関が高いことに鑑み、タイミング推定部64は、上昇開始点Pdでの基準タイミングTxを開弁完了タイミングTopとみなして推定する。具体的には、タイミング推定部64は、分散値が閾値TH2以下にまで低下した低下点Pd1と、低下点Pd1以降に分散値が閾値TH2以上にまで上昇した上昇点Pd2とを抽出する。そして、上昇点Pd2での基準タイミングTxに基づき、上昇開始点Pdでの基準タイミングTxつまり開弁完了タイミングTopを算出する。例えば、上昇点Pd2での基準タイミングTxから予め設定した所定時間だけ減算したタイミングを、開弁完了タイミングTopとして算出する。或いは、上昇点Pd2での基準タイミングTxに予め設定した係数を乗算したタイミングを、開弁完了タイミングTopとして算出する。
 次に、閉弁完了タイミングTclおよび開弁完了タイミングTopを駆動IC21が推定する処理の手順を、図7を用いて説明する。駆動IC21は、所定のプログラムを記憶するメモリと、そのプログラムに従って演算処理するプロセッサとを有しており、このプロセッサが図7の処理を実行する。
 先ず、図7のステップS10において、電圧波形Waを検出する電圧検出モードと、電流波形Wcを検出する電流検出モードとを切り替える。本実施形態では、電圧検出モードを実行する頻度が電流検出モードを実行する頻度よりも多くなるように切り替えている。開弁タイミングは、通電時間Tiの長さの違いの影響を大きく受けないのに対し、閉弁タイミングは、通電時間Tiの長さの違いの影響を大きく受けるので、高頻度で推定することが望ましいからである。
 続くステップS20では、ステップS10で設定された検出モードにしたがって、電圧波形Waまたは電流波形Wcを取得する。ステップS20の処理を実行している時の駆動IC21はサンプリング部61に相当し、例えば1μsec間隔といった高速処理により電圧値または電流値を取得することで、電圧波形Waまたは電流波形Wcを取得する。
 続くステップS30では、タイミング推定の実行条件を満たしているか否かを判定する。実行条件とは、通電時間Tiと噴射量との関係に与える影響が小さい条件であり、例えば、以下に例示する物理量の変動が所定範囲内であることを実行条件とする。上記物理量には、燃料噴射弁10へ供給される燃料の圧力、内燃機関Eの回転速度、内燃機関Eの負荷、燃料噴射量等が挙げられる。
 続くステップS40では、ステップS20で取得した電圧波形Waを構成する複数の電圧値、または電流波形Wcを構成する複数の電流値を、駆動IC21が有するメモリに記憶する。このメモリは、図1に示すサンプル値保持部62に相当する。前回の噴射に係る電圧値または電流値がメモリに記憶されている場合には、今回値を前回値に上書きして記憶する。
 続くステップS50では、先述したサンプリング期間Lsにおける複数のサンプル値の平均値を算出する。具体的には、メモリに記憶された複数の電圧値または電流値の中から、任意の基準タイミングTxに対応するサンプリング期間Lsに含まれる値を抽出し、抽出された複数の値の平均値を算出する。抽出された複数の値は、先述したサンプル値D0~D7に相当する。そして、基準タイミングTxを所定時間Lだけずらしてサンプリング期間Lsをずらしていき、各々のサンプリング期間Lsに対応する平均値を算出する。
 続くステップS60では、ステップS50で算出した平均値を用いて、サンプリング期間Ls毎に抽出された複数のサンプル値D0~D7の分散値を算出する。具体的には、ステップS50で算出された平均値と各々のサンプル値D0~D7との偏差を演算し、各々の偏差の二乗を加算した値をサンプル数で除算して分散値を算出する。分散値の算出は、各々のサンプリング期間Lsに対して行われる。ステップS50、S60の処理を実行している時の駆動IC21はバラツキ演算部63に相当し、ステップS60で算出された分散値はバラツキ度合に相当する。
 続くステップS70では、基準タイミングTxと分散値との関係を表したバラツキ波形Wb、Wdにおいて、分散値が閾値TH1、TH2未満から閾値TH1、TH2以上に上昇する上昇点Pb2、Pd2を算出する。ステップS10で電圧検出モードに切り替えられている場合には、電圧波形Waに基づく閾値TH1を用いて上昇点Pb2を算出し、電流検出モードに切り替えられている場合には、電流波形Wcに基づく閾値TH2を用いて上昇点Pd2を算出する。
 続くステップS80では、ステップS10で電圧検出モードに切り替えられている場合には、ステップS70で算出した上昇点Pb2に基づき、閉弁完了タイミングTclを推定する。一方、ステップS10で電流検出モードに切り替えられている場合には、ステップS70で算出した上昇点Pd2に基づき、開弁完了タイミングTopを推定する。具体的には、上昇点Pd2での基準タイミングTxに対して所定時間を減算または所定係数を乗算したタイミングを、開弁完了タイミングTopとして算出する。ステップS70、S80の処理を実行している時の駆動IC21はタイミング推定部64に相当する。
 なお、上述の如く推定された閉弁完了タイミングTclおよび開弁完了タイミングTopは、通電時間Tiと噴射量との関係を示すマップの値を補正することに用いられる。このマップは、目標噴射量に対する通電時間Tiの設定に用いられるので、オンボードで推定された開閉弁タイミングに基づきマップを補正することで、噴射量を高精度で制御できるようになる。
 以上により、本実施形態によれば、サンプリング期間Lsにおける電圧値のバラツキ度合を示す分散値を演算する。そして、基準タイミングTxと分散値との関係を表わすバラツキ波形Wbの上昇開始点Pbでの基準タイミングTxに基づき、閉弁完了タイミングTclを推定する。上記上昇開始点Pbにおける基準タイミングTxは閉弁完了タイミングTclと相関があり、このような相関を持つ上昇開始点Pbはバラツキ波形Wbの中で顕著に現れる。よって、本実施形態によれば、バラツキ波形Wbに出現する上昇開始点Pbを精度良く抽出でき、ひいては、閉弁完了タイミングTclを高精度で推定できる。
 ここで、パーシャルリフト領域での噴射の場合には、通電時間Tiに応じてリフト量が変化し、リフト量の変化に応じて閉弁時の電圧波形Waが大きく異なってくる。そのため、以下に説明する比較例としての推定装置では、閉弁完了タイミングを精度良く推定することが極めて困難となっていた。
 上記比較例に係る推定装置では、先ず図8(a)に示すように電圧波形Waを取得する。電圧波形Waに含まれる微動波形の出現タイミングが閉弁完了タイミングTclであるため、微動波形の出現タイミングを抽出できれば閉弁完了タイミングTclを推定できることとなる。そこで先ず、電圧波形Waから微動波形を除去するように電圧波形Waになまし処理を施した基準波形Wn(図8(b)参照)を算出する。次に、電圧波形Waと基準波形Wnとの差分である差分波形WD1(図8(b)参照)を算出する。上記差分が最も大きい箇所が、微動波形の出現タイミングと言える。つまり、差分波形WD1の極値となる点が微動波形の出現タイミングであり、閉弁完了タイミングTclであると言える。
 図8の例では、差分波形WD1の極値となる点を精度良く抽出するために、以下の処理をさらに施している。すなわち、差分波形WD1になまし処理を施した基準波形WD1n(図8(c)参照)を算出する。次に、差分波形WD1と基準波形WD1nとの差分である差分波形WD2(図8(c)参照)を算出する。上記差分が最も大きい箇所が、差分波形WD1の極値となる点F(図8(d)参照)と言える。つまり、差分波形WD2の極値となる点Fが差分波形WD1の極値となるタイミングであり、そのタイミングは微動波形の出現タイミングであり、閉弁完了タイミングTclであると言える。
 但し、この比較例に係る推定装置では、基準波形Wn、WD1nを算出するためのなまし処理を施すにあたり、なまし係数を最適な値に設定することが困難である。特に、先述したようにリフト量の変化に応じて閉弁時の電圧波形Waは大きく異なってくるので、リフト量に応じてなまし係数の最適値も異なってくるので、なまし係数の設定は極めて困難である。
 例えば、図9(a)に示す電圧波形Wa10、Wa20、Wa30、Wa40は、図5(a)と同様の波形である。しかし、これらの電圧波形に対して第1なまし係数を用いた場合と第2なまし係数を用いた場合とで、生成される基準波形Wn、WD1nの形状は異なる。
 そして、第1なまし係数を用いた基準波形Wn、WD1nによる差分波形WD10~WD40の場合、図9(b)に示すように、低リフト時においては極値F1が顕著に現れるので閉弁完了タイミングTclを高精度で推定できる。しかし、高リフト時においては、極値F2が顕著に現れないので閉弁完了タイミングTclを高精度で推定できない。
 一方、第2なまし係数を用いた基準波形Wn、WD1nによる差分波形WD10~WD40の場合、図9(c)に示すように、高リフト時においては極値F3が顕著に現れるので閉弁完了タイミングTclを高精度で推定できる。しかし、低リフト時においては、極値F4が顕著に現れないので閉弁完了タイミングTclを高精度で推定できない。
 以上に説明した通り、比較例に係る推定装置では、リフト量に応じた最適な値になまし係数を設定することは困難であり、パーシャルリフト領域では閉弁完了タイミングTclを高精度で推定できないといった問題がある。この問題に対し、バラツキ波形Wbに基づき推定する本実施形態では、図5に示した通り、リフト量が異なってもバラツキ波形Wb10~Wb40に顕著な上昇開始点Pbまたは低下停止点Pbyが現れる。よって、パーシャルリフト領域であっても、閉弁完了タイミングTclを高精度で推定できる。しかも、基準波形Wn、WD1nを不要にできるので、なまし係数の適合作業を不要にしつつ、上記タイミングの推定を実現できる。
 さらに本実施形態では、サンプリング期間Lsにおける電流値のバラツキ度合を示す分散値を演算する。そして、基準タイミングTxと分散値との関係を表わすバラツキ波形Wdの上昇開始点Pdでの基準タイミングTxに基づき、開弁完了タイミングTopを推定する。上記上昇開始点Pdにおける基準タイミングTxは開弁完了タイミングTopと相関があり、このような相関を持つ上昇開始点Pdはバラツキ波形Wdの中で顕著に現れる。よって、本実施形態によれば、バラツキ波形Wdに出現する上昇開始点Pdを精度良く抽出でき、ひいては、開弁完了タイミングTopを高精度で推定できる。
 ここで、通電オフ直後の閉弁作動時における電磁コイル13のマイナス端子は、グランドとの電気接続が切り離された状態になっており、電磁コイル13を含む電気回路はグランドから切り離されている。そのため、通電オフ直後には電流は殆ど変化せず、電流に比べると電圧の方が変化しやすい。したがって、閉弁に伴い電圧波形Waに生じる変化は、電流波形Wcに生じる変化に比べて顕著に現れる。この点を鑑みた本実施形態では、サンプリング部61は電圧値をサンプル値として取得し、そのサンプル値を用いてタイミング推定部64は閉弁完了タイミングTclを推定する。具体的には、電圧検出モードの場合に閉弁完了タイミングTclを推定する。そのため、電流をサンプル値とした電流波形Wcを用いて閉弁完了タイミングTclを推定する場合に比べて、推定精度を向上できる。
 一方、通電オン直後の開弁作動時における電磁コイル13のマイナス端子は、グランドと電気接続された状態になっており、電磁コイル13を含む電気回路はグランドおよび電源に電気接続されている。そのため、通電オン直後には電圧は電源の電圧で安定しやすく、電磁コイル13のインダクタンスに応じたコイル電流の方が、電圧に比べると変化しやすい。したがって、開弁に伴い電流波形Wcに生じる変化は、電圧波形Waに生じる変化に比べて顕著に現れる。この点を鑑みた本実施形態では、サンプリング部61は電流値をサンプル値として取得し、そのサンプル値を用いてタイミング推定部64は開弁完了タイミングTopを推定する。具体的には、電流検出モードの場合に開弁完了タイミングTopを推定する。そのため、電圧をサンプル値とした電圧波形Waを用いて開弁完了タイミングTopを推定する場合に比べて、推定精度を向上できる。
 さらに本実施形態では、バラツキ演算部63は、サンプリング期間Lsに取得された複数のサンプル値D0~D7の平均値と各々のサンプル値D0~D7との偏差に基づき、バラツキ度合を演算する。これによれば、平均値を用いてバラツキ度合を演算するので、例えばサンプル値D0~D7の中から代表値を選び、代表値との偏差に基づきバラツキ度合を演算するといった、平均値を用いることなく演算する場合に比べて、バラツキ度合を高精度で演算できる。特に、平均値を用いることによりノイズに対するロバスト性を向上できる。
 (第2実施形態)
 上記第1実施形態では、図7のステップS10において、電圧検出モードと電流検出モードとに切り替えている。これに対し本実施形態では、電圧検出モードと電流検出モードとを平行して同時に実行する。具体的には、図10に示すように、先ずステップS21において、電圧波形Waおよび電流波形Wcの両方を取得する。ステップS21の処理を実行している時の駆動IC21はサンプリング部61に相当し、例えば1μsec間隔といった高速処理により電圧値および電流値の両方を取得することで、電圧波形Waおよび電流波形Wcを取得する。
 要するに、図1に示す駆動IC21は、電圧検出部23および電流検出部24から出力されるアナログ信号をデジタル信号に変換するAD変換器を1つ有している。これに対し本実施形態に係る駆動ICは、電圧検出部23および電流検出部24の各々に対してAD変換器を有している。
 続くステップS30では、図7と同様にしてタイミング推定の実行条件を満たしているか否かを判定する。続くステップS41では、ステップS21で取得した電圧波形Waを構成する複数の電圧値、および電流波形Wcを構成する複数の電流値の両方を、駆動IC21が有するメモリに記憶する。このメモリは、図1に示すサンプル値保持部62に相当する。
 続くステップS51では、サンプリング期間Lsにおける複数のサンプル値の平均値を算出する。具体的には、メモリに記憶された複数の電圧値の中から、任意の基準タイミングTxに対応するサンプリング期間Lsに含まれる電圧値を抽出し、抽出された複数の電圧値の平均値を算出する。同様にして、メモリに記憶された複数の電流値の中から、任意の基準タイミングTxに対応するサンプリング期間Lsに含まれる電流値を抽出し、抽出された複数の電流値の平均値を算出する。そして、基準タイミングTxを所定時間Lだけずらしてサンプリング期間Lsをずらしていき、各々のサンプリング期間Lsに対応する電圧値の平均および電流値の平均を算出する。
 続くステップS61では、ステップS51で算出した電圧値および電流値の平均値を用いて、サンプリング期間Ls毎に抽出された複数のサンプル値の分散値を算出する。分散値の算出は、各々のサンプリング期間Lsに対して行われる。ステップS51、S61の処理を実行している時の駆動IC21はバラツキ演算部63に相当し、ステップS61で算出された電圧値および電流値の分散値はバラツキ度合に相当する。
 続くステップS71では、基準タイミングTxと分散値との関係を表したバラツキ波形Wb、Wdにおいて、分散値が閾値TH1、TH2未満から閾値TH1、TH2以上に上昇する上昇点Pb2、Pd2を算出する。続くステップS81では、ステップS71で算出した上昇点Pb2に基づき閉弁完了タイミングTclを推定するとともに、ステップS71で算出した上昇点Pd2に基づき開弁完了タイミングTopを推定する。
 以上により、本実施形態によれば、電圧波形Waおよび電流波形Wcを同時に取得して、閉弁完了タイミングTclおよび開弁完了タイミングTopを同時に推定できるので、推定頻度を向上できる。また、1回の噴射に対する開閉弁タイミングを推定できるので、同じ噴射に対して閉弁完了タイミングTclおよび開弁完了タイミングTopを推定できる。よって、通電時間Tiと噴射量との関係を示す先述のマップを高精度で補正できる。
 (第3実施形態)
 本実施形態では、上記第1実施形態に係るバラツキ波形Wb10~Wb40(図5参照)を、上昇開始点Pbの分散値をゼロにするように補正する(図11参照)。そして、補正後のバラツキ波形Wb10~Wb40を用いて、閉弁完了タイミングTclおよび開弁完了タイミングTopを推定する。
 これによれば、補正後のバラツキ波形Wb10~Wb40に、上昇開始点Pb、および低下停止点Pbyがより一層顕著に現れるようになるので、閉弁完了タイミングTclおよび開弁完了タイミングTopの推定精度を向上できる。
 (第4実施形態)
 上記第1実施形態に係るタイミング推定部64は、電圧波形Waから生成されるバラツキ波形Wbの上昇開始点Pbの基準タイミングTxに基づき閉弁開始タイミングTclaを推定している。これに対し、本実施形態に係るタイミング推定部64は、高リフト時のバラツキ波形Wb40(図5参照)を取得した場合には、上記バラツキ波形Wbの低下停止点Pbyの基準タイミングTxに基づき閉弁完了タイミングTclを推定する。例えば、これらの基準タイミングTxから予め設定した所定時間だけ減算、或いは、予め設定した係数を乗算したタイミングを、閉弁完了タイミングTclとして算出する。
 (第5実施形態)
 上記第1実施形態に係るタイミング推定部64は、電圧波形Waから生成されるバラツキ波形Wbに基づき閉弁完了タイミングTclを推定している。これに対し、本実施形態に係るタイミング推定部64は、上記バラツキ波形Wbに基づき閉弁開始タイミングTcla(図3および図5参照)を推定する。閉弁開始タイミングTclaとは、電磁コイル13への通電オフ開始に伴い弁体12が閉弁作動を開始するタイミングのことである。
 具体的には、タイミング推定部64は、バラツキ波形Wbの上昇点Pb2での基準タイミングTxから予め設定した所定時間だけ減算したタイミングを、閉弁開始タイミングTclaとして算出する。或いは、上昇点Pb2での基準タイミングTxに予め設定した係数を乗算したタイミングを、閉弁開始タイミングTclaとして算出する。
 また、タイミング推定部64は、図5(b)に示す低リフト時のバラツキ波形Wb10、Wb20、Wb30の場合には、上述の如く上昇開始点Pbの基準タイミングTxに基づき閉弁開始タイミングTclaを推定する。一方、高リフト時のバラツキ波形Wb40の場合には、低下停止点Pbyの基準タイミングTxに基づき閉弁開始タイミングTclaを推定する。例えば、これらの基準タイミングTxから予め設定した所定時間だけ減算、或いは、予め設定した係数を乗算したタイミングを、閉弁開始タイミングTclaとして算出する。
 (第6実施形態)
 上記第1実施形態に係るタイミング推定部64は、電流波形Wcから生成されるバラツキ波形Wdに基づき開弁完了タイミングTopを推定している。これに対し、本実施形態に係るタイミング推定部64は、上記バラツキ波形Wdに基づき開弁開始タイミングTopa(図6参照)を推定する。開弁開始タイミングTopaとは、電磁コイル13への通電オン開始に伴い弁体12が開弁作動を開始するタイミングのことである。
 具体的には、タイミング推定部64は、第4実施形態と同様にして、バラツキ波形Wdの上昇点での基準タイミングTxから予め設定した所定時間だけ減算したタイミングを、開弁開始タイミングTopaとして算出する。或いは、バラツキ波形Wdの上昇点での基準タイミングTxに予め設定した係数を乗算したタイミングを、開弁開始タイミングTopaとして算出する。
 また、タイミング推定部64は、低リフト時のバラツキ波形Wdの場合には、上述の如く上昇開始点の基準タイミングTxに基づき開弁開始タイミングTopaを推定する。一方、高リフト時のバラツキ波形Wdの場合には、バラツキ波形Wdの低下停止点の基準タイミングTxに基づき開弁開始タイミングTopaを推定する。例えば、これらの基準タイミングTxから予め設定した所定時間だけ減算、或いは、予め設定した係数を乗算したタイミングを、開弁開始タイミングTopaとして算出する。
 (第7実施形態)
 上記第1実施形態では、図7のステップS70において、バラツキ波形Wb、Wdにおける分散値が閾値TH1、TH2未満から閾値TH1、TH2以上に上昇する上昇点Pb2、Pd2を算出する(図3および図6参照)。そして、算出した上昇点Pb2、Pd2に基づき、閉弁完了タイミングTclおよび開弁完了タイミングTopを推定する。これに対し、本実施形態では、バラツキ波形Wb、Wdの傾きを演算し、その傾きの値が上昇して所定の閾値に達した点での基準タイミングTxに基づき、閉弁完了タイミングTclおよび開弁完了タイミングTopを推定する。
 本実施形態を説明する図12(a)、12(b)、12(c)は、図3(a)、3(b)、3(c)と同一であり、図12(d)は、図12(c)に示すバラツキ波形Wbを微分した微分波形ΔWbを示す。なお、図12(d)に示す微分波形ΔWbではマイナスの値が削除されている。
 そして、本実施形態に係るタイミング推定部64は、取得したバラツキ波形Wbを微分して微分波形ΔWbを演算する。微分波形ΔWbのうち、通電終了時Toff以降において、基準タイミングTxを遅くしていくと偏差の微分値が上昇していき所定の閾値TH3に達する点を傾き増大点Pcとして算出する。そして、算出した傾き増大点Pcに基づき、閉弁完了タイミングTclを推定する。
 傾き増大点Pcは、上昇開始点Pbの僅かに遅れたタイミングで出現し、上昇開始点Pbとの相関がある。つまり、傾き増大点Pcでの基準タイミングTxは閉弁完了タイミングTclと相関がある。この点を鑑み、タイミング推定部64は、微分波形ΔWbから傾き増大点Pcを検出し、傾き増大点Pcでの基準タイミングTxに基づき、閉弁完了タイミングTclを推定する。例えば、傾き増大点Pcでの基準タイミングTxから予め設定した所定時間だけ減算したタイミングを、閉弁完了タイミングTclとして算出する。或いは、傾き増大点Pcでの基準タイミングTxに予め設定した係数を乗算したタイミングを、閉弁完了タイミングTclとして算出する。
 なお、傾き増大点Pcの算出に用いる微分波形ΔWbには、バラツキ波形Wbを微分した波形をそのまま用いてもよいし、バラツキ波形Wbを微分した波形になまし処理を施した波形を用いてもよい。
 上記説明では、電圧波形Waから算出したバラツキ波形Wbの微分波形ΔWbを演算し、その微分波形ΔWbを用いて閉弁完了タイミングTclを推定しているが、開弁完了タイミングTopの推定についても同様に推定する。すなわち、図6に示す電流波形Wcから算出したバラツキ波形Wdの値を微分して微分波形を演算し、その微分波形のうち所定の閾値にまで上昇した傾き増大点を算出し、算出された傾き増大点での基準タイミングに基づき開弁完了タイミングTopを推定する。
 要するに本実施形態では、バラツキ波形Wb、Wdの上昇開始点Pb、Pdでの基準タイミングTxに基づき閉弁完了タイミングTclおよび開弁完了タイミングTopを推定するにあたり、バラツキ波形Wb、Wdの傾き(微分波形)から推定する。
 (他の実施形態)
 以上、本開示の好ましい実施形態について説明したが、本開示は上述した実施形態に何ら制限されることなく、以下に例示するように種々変形して実施することが可能である。各実施形態で具体的に組合せが可能であることを明示している部分同士の組合せばかりではなく、特に組合せに支障が生じなければ、明示してなくとも実施形態同士を部分的に組み合せることも可能である。
 上記第1実施形態に係るバラツキ演算部63は、複数のサンプル値D0~D7のバラツキ度合として分散を用いているが、バラツキ度合は分散に限るものではない。例えば、平均値と各々のサンプル値D0~D7との偏差を演算し、各々の偏差の絶対値を加算し、その加算した値を所定値で除算し、その除算した値を二乗した値を、バラツキ度合として算出してもよい。
 図7に示す例では、電圧検出モード時に閉弁タイミングを推定しているが、電圧検出モード時に開弁タイミングを推定してもよい。具体的には、電圧波形Waから生成されるバラツキ波形Wbに基づき開弁タイミングを推定してもよい。また、図7に示す例では、電流検出モード時に開弁タイミングを推定しているが、電流検出モード時に閉弁タイミングを推定してもよい。具体的には、電流波形Wcから生成されるバラツキ波形Wdに基づき閉弁タイミングを推定してもよい。
 上記第7実施形態では、バラツキ波形Wb、Wdの傾き(微分波形)から閉弁完了タイミングTclおよび開弁完了タイミングTopを推定している。これに対し、閉弁開始タイミングTclaおよび開弁開始タイミングTopaについても同様にして、バラツキ波形Wb、Wdの傾き(微分波形)から推定してもよい。
 図7のステップS10では、検出モードの切り替えを、電圧検出モードを実行する頻度が電流検出モードを実行する頻度よりも多くなるように切り替えている。これに対し、同じ頻度となるように切り替えてもよい。例えば、燃料噴射弁10による燃料噴射が1回為される毎に検出モードを切り替えてもよいし、所定回数噴射が為される毎に切り替えてもよい。また、内燃機関Eの運転状態に応じて検出モードを切り替えてもよいし、通電時間Tiの長さに応じて切り替えてもよいし、燃料噴射弁10へ供給される燃料の圧力に応じて切り替えてもよい。
 上記第1実施形態では、ブースト電圧による電流上昇期間によりコイル電流を第1目標値I1にまで上昇させた後、バッテリ電圧による電流保持期間によりコイル電流を第2目標値I2に保持させている。これに対し、電流保持期間では第2ブースト電圧を印加して第2目標値I2に保持させてもよい。この場合、電流上昇期間でのブースト電圧を第1ブースト電圧とし、第2ブースト電圧を第1ブースト電圧よりも小さい値に設定してもよいし、第2ブースト電圧を第1ブースト電圧と同じ値に設定してもよい。
 上記第1実施形態では、電流保持期間において、電圧印加をオフさせることなく継続してオン状態に制御しつつ、コイル電流を第2目標値I2に保持させることを実現させている。これに対し、電流保持期間において、電圧印加をデューティ制御することでコイル電流を第2目標値I2に保持させてもよい。但し、電流値をサンプリング値として開弁完了タイミングまたは開弁開始タイミングを推定する場合には、上記デューティ制御を廃止して、電流保持期間では電圧印加を継続してオンさせることが望ましい。図2に示す燃料噴射弁10は、弁体12と可動コア15とが別体の構成であったが、弁体12と可動コア15とが一体に構成であってもよい。一体であると、可動コア15が吸引されると、弁体12も可動コア15と一緒に開弁方向に変位して開弁する。また、図2に示す燃料噴射弁10は、可動コア15の移動開始と同時に弁体12も移動を開始するように構成されているがこのような構成に限るものではない。たとえば可動コア15の移動を開始しても弁体12は開弁を開始せず、可動コア15が所定量移動した時点で可動コア15が弁体12に係合して開弁を開始する構成であってもよい。
 図1に示す電圧検出部23は、電磁コイル13のマイナス端子電圧を検出してもよいし、プラス端子電圧を検出してもよいし、プラス端子とマイナス端子との端子間電圧を検出してもよい。
 ECU20が提供する手段および/または機能は、実体的な記憶媒体に記録されたソフトウェアおよびそれを実行するコンピュータ、ソフトウェアのみ、ハードウェアのみ、あるいはそれらの組合せによって提供することができる。例えば、制御装置がハードウェアである電子回路によって提供される場合、それは多数の論理回路を含むデジタル回路、またはアナログ回路によって提供することができる。

 

Claims (5)

  1.  燃料を噴射する噴孔(17a)を形成するボデー(11)と、前記ボデーの着座面(17b)に離着座することで前記噴孔を開閉させる弁体(12)と、前記弁体の開弁力としての電磁吸引力を生じさせる電磁コイル(13)と、を有する燃料噴射弁(10)に適用された弁体作動推定装置であって、
     前記電磁コイルへの通電オフ開始に伴い前記弁体が閉弁作動を開始する閉弁開始タイミング(Tcla)、前記閉弁作動が完了する閉弁完了タイミング(Tcl)、前記電磁コイルへの通電オン開始に伴い前記弁体が開弁作動を開始する開弁開始タイミング(Topa)、及び前記開弁作動が完了する開弁完了タイミング(Top)の少なくとも1つを推定する弁体作動推定装置において、
     所定の基準タイミング(Tx)を基準に設定されるサンプリング期間(Ls)に、前記電磁コイルの電圧値および電流値の少なくとも一方を、所定時間(L)間隔でサンプル値(D0、D1、D2、D3、D4、D5、D6、D7)として取得するサンプリング部(61)と、
     前記サンプリング期間に取得された複数の前記サンプル値のバラツキ度合を演算するバラツキ演算部(63)と、
     前記基準タイミングを異ならせることに伴う前記バラツキ度合の変化を表わすバラツキ波形(Wb、Wd)のうち、前記基準タイミングを遅くしていくと前記バラツキ度合が低下していきその後上昇に転ずる点を上昇開始点(Pb、Pbx、Pd)とし、前記上昇開始点での前記基準タイミングに基づき、前記閉弁開始タイミング、前記閉弁完了タイミング、前記開弁開始タイミング、及び前記開弁完了タイミングの少なくとも1つを推定するタイミング推定部(64)と、
    を備える弁体作動推定装置。
  2.  燃料を噴射する噴孔(17a)を形成するボデー(11)と、前記ボデーの着座面(17b)に離着座することで前記噴孔を開閉させる弁体(12)と、前記弁体の開弁力としての電磁吸引力を生じさせる電磁コイル(13)と、を有する燃料噴射弁(10)に適用された弁体作動推定装置であって、
     前記電磁コイルへの通電オフ開始に伴い前記弁体が閉弁作動を開始する閉弁開始タイミング(Tcla)、前記閉弁作動が完了する閉弁完了タイミング(Tcl)、前記電磁コイルへの通電オン開始に伴い前記弁体が開弁作動を開始する開弁開始タイミング(Topa)、及び前記開弁作動が完了する開弁完了タイミング(Top)の少なくとも1つを推定する弁体作動推定装置において、
     所定の基準タイミング(Tx)を基準に設定されるサンプリング期間(Ls)に、前記電磁コイルの電圧値および電流値の少なくとも一方を、所定時間(L)間隔でサンプル値(D0、D1、D2、D3、D4、D5、D6、D7)として取得するサンプリング部(61)と、
     前記サンプリング期間に取得された複数の前記サンプル値のバラツキ度合を演算するバラツキ演算部(63)と、
     前記基準タイミングを異ならせることに伴う前記バラツキ度合の変化を表わすバラツキ波形(Wb、Wd)のうち、前記基準タイミングを遅くしていくと前記バラツキ度合が低下していきその低下が停止する点を低下停止点(Pby)とし、前記低下停止点での前記基準タイミングに基づき、前記閉弁開始タイミング、前記閉弁完了タイミング、前記開弁開始タイミング、及び前記開弁完了タイミングの少なくとも1つを推定するタイミング推定部(64)と、
    を備える弁体作動推定装置。
  3.  前記サンプリング部は、前記電圧値を前記サンプル値として取得し、
     前記タイミング推定部は、前記閉弁開始タイミング及び前記閉弁完了タイミングの少なくとも1つを推定する請求項1または2に記載の弁体作動推定装置。
  4.  前記サンプリング部は、前記電流値を前記サンプル値として取得し、
     前記タイミング推定部は、前記開弁開始タイミング及び前記開弁完了タイミングの少なくとも1つを推定する請求項1~3のいずれか1つに記載の弁体作動推定装置。
  5.  前記バラツキ演算部は、前記サンプリング期間に取得された複数の前記サンプル値の平均値と各々の前記サンプル値との偏差に基づき、前記バラツキ度合を演算する請求項1~4のいずれか1つに記載の弁体作動推定装置。

     
PCT/JP2017/028667 2016-09-13 2017-08-08 弁体作動推定装置 WO2018051682A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
DE112017004604.1T DE112017004604B4 (de) 2016-09-13 2017-08-08 Schätzvorrichtung für den Ventilkörperbetrieb
US16/293,734 US11060475B2 (en) 2016-09-13 2019-03-06 Valve body operation estimation device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016178770A JP6597535B2 (ja) 2016-09-13 2016-09-13 弁体作動推定装置
JP2016-178770 2016-09-13

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/293,734 Continuation US11060475B2 (en) 2016-09-13 2019-03-06 Valve body operation estimation device

Publications (1)

Publication Number Publication Date
WO2018051682A1 true WO2018051682A1 (ja) 2018-03-22

Family

ID=61619562

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/028667 WO2018051682A1 (ja) 2016-09-13 2017-08-08 弁体作動推定装置

Country Status (4)

Country Link
US (1) US11060475B2 (ja)
JP (1) JP6597535B2 (ja)
DE (1) DE112017004604B4 (ja)
WO (1) WO2018051682A1 (ja)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB201511007D0 (en) * 2015-06-23 2015-08-05 Delphi Int Operations Lux Srl Nozzle assembly with adaptive closed signal
JP6720935B2 (ja) * 2017-07-28 2020-07-08 株式会社Soken 燃料噴射制御装置及び燃料噴射制御方法
JP6981366B2 (ja) 2018-05-25 2021-12-15 株式会社デンソー 燃料噴射弁の制御装置およびその方法
CN112352095B (zh) * 2018-07-03 2022-11-08 日立安斯泰莫株式会社 负载驱动电路、负载驱动系统
JP7172681B2 (ja) 2019-02-06 2022-11-16 株式会社デンソー 燃料噴射制御装置
JP7283418B2 (ja) 2020-02-25 2023-05-30 株式会社デンソー 内燃機関の燃料噴射制御装置
JP7247135B2 (ja) * 2020-03-18 2023-03-28 日立Astemo株式会社 検知装置
JP7424240B2 (ja) * 2020-07-29 2024-01-30 株式会社デンソー 噴射制御装置
JP2022026130A (ja) * 2020-07-30 2022-02-10 日立Astemo株式会社 制御装置
JP7444004B2 (ja) * 2020-09-15 2024-03-06 株式会社デンソー 噴射制御装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013191267A1 (ja) * 2012-06-21 2013-12-27 日立オートモティブシステムズ株式会社 内燃機関の制御装置
US20140014072A1 (en) * 2012-07-13 2014-01-16 Delphi Automative Systems Luxembourg Sa Fuel injection control in an internal combustion engine
JP2014214837A (ja) * 2013-04-26 2014-11-17 日立オートモティブシステムズ株式会社 電磁弁の制御装置及びそれを用いた内燃機関の制御装置
WO2015015541A1 (ja) * 2013-07-29 2015-02-05 日立オートモティブシステムズ株式会社 燃料噴射装置の駆動装置および燃料噴射システム
JP2015063928A (ja) * 2013-09-25 2015-04-09 日立オートモティブシステムズ株式会社 燃料噴射装置の駆動装置
JP2015096720A (ja) * 2013-10-11 2015-05-21 株式会社デンソー 内燃機関の燃料噴射制御装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE60027224T2 (de) * 1999-06-23 2006-08-31 Nissan Motor Co., Ltd., Yokohama Vorrichtung zur Steuerung der Ansaugluftmenge eines Verbrennungsmotors mit variabler Ventilsteuerungseinrichtung
JP4394318B2 (ja) * 2001-10-12 2010-01-06 株式会社デンソー 内燃機関のバルブタイミング制御装置
JP4148127B2 (ja) * 2003-12-12 2008-09-10 株式会社デンソー 燃料噴射装置
JP4603867B2 (ja) * 2004-12-07 2010-12-22 日立オートモティブシステムズ株式会社 可変容量式燃料ポンプの制御装置及び燃料供給システム
JP5831502B2 (ja) * 2013-06-07 2015-12-09 トヨタ自動車株式会社 燃料噴射弁の制御装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013191267A1 (ja) * 2012-06-21 2013-12-27 日立オートモティブシステムズ株式会社 内燃機関の制御装置
US20140014072A1 (en) * 2012-07-13 2014-01-16 Delphi Automative Systems Luxembourg Sa Fuel injection control in an internal combustion engine
JP2014214837A (ja) * 2013-04-26 2014-11-17 日立オートモティブシステムズ株式会社 電磁弁の制御装置及びそれを用いた内燃機関の制御装置
WO2015015541A1 (ja) * 2013-07-29 2015-02-05 日立オートモティブシステムズ株式会社 燃料噴射装置の駆動装置および燃料噴射システム
JP2015063928A (ja) * 2013-09-25 2015-04-09 日立オートモティブシステムズ株式会社 燃料噴射装置の駆動装置
JP2015096720A (ja) * 2013-10-11 2015-05-21 株式会社デンソー 内燃機関の燃料噴射制御装置

Also Published As

Publication number Publication date
US20190203687A1 (en) 2019-07-04
DE112017004604B4 (de) 2024-06-13
US11060475B2 (en) 2021-07-13
DE112017004604T5 (de) 2019-08-29
JP6597535B2 (ja) 2019-10-30
JP2018044473A (ja) 2018-03-22

Similar Documents

Publication Publication Date Title
WO2018051682A1 (ja) 弁体作動推定装置
US10598114B2 (en) Fuel injection controller and fuel injection system
JP6520814B2 (ja) 燃料噴射制御装置
CN109328262B (zh) 燃料喷射控制装置
CN109328261B (zh) 燃料喷射控制装置
KR101887345B1 (ko) 전기자가 멈춤부에 닿는 시간을 결정하기 위한 액추에이터의 변형된 전기적 작동
US9970376B2 (en) Fuel injection controller and fuel injection system
CN109328265B (zh) 燃料喷射控制装置
CN109072808B (zh) 燃料喷射控制装置
US10711727B2 (en) Fuel injection control device
US20160237935A1 (en) Fuel injection control unit
US10458359B2 (en) Detecting a predetermined opening state of a fuel injector having a solenoid drive
CN107076046B (zh) 用于对至少一个能够开关的阀进行控制的装置
US9194345B2 (en) Fuel injection device
JP7444004B2 (ja) 噴射制御装置
WO2017090320A1 (ja) 燃料噴射制御装置および燃料噴射システム
US11359569B2 (en) Control unit of fuel injection device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17850588

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17850588

Country of ref document: EP

Kind code of ref document: A1