WO2018051567A1 - Rotary compressor and refrigeration cycle device - Google Patents
Rotary compressor and refrigeration cycle device Download PDFInfo
- Publication number
- WO2018051567A1 WO2018051567A1 PCT/JP2017/015299 JP2017015299W WO2018051567A1 WO 2018051567 A1 WO2018051567 A1 WO 2018051567A1 JP 2017015299 W JP2017015299 W JP 2017015299W WO 2018051567 A1 WO2018051567 A1 WO 2018051567A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- sealed case
- rotary compressor
- cylinder
- discharge
- cylinder chamber
- Prior art date
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04C—ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
- F04C23/00—Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids
- F04C23/008—Hermetic pumps
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04C—ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
- F04C18/00—Rotary-piston pumps specially adapted for elastic fluids
- F04C18/30—Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members
- F04C18/34—Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members
- F04C18/356—Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the outer member
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04C—ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
- F04C23/00—Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids
- F04C23/001—Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids of similar working principle
- F04C23/003—Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids of similar working principle having complementary function
Definitions
- Embodiments of the present invention relate to a rotary compressor and a refrigeration cycle apparatus using the rotary compressor.
- An object of an embodiment of the present invention is to provide a rotary compressor having a small discharge capacity and a large discharge capacity, and a refrigeration cycle apparatus using the rotary compressor.
- a sealed case an electric motor having six or more poles accommodated in the upper part of the sealed case, and a rotary shaft accommodated in the lower part of the sealed case and connected to the electric motor And a discharge pipe provided at the top of the sealed case.
- the compression mechanism has two cylinders that are closed at both the upper and lower ends and in which a cylinder chamber is formed. Then, the roller fitted to the rotating shaft in the cylinder chamber rotates eccentrically to compress the working fluid, and the compressed working fluid in the cylinder chamber is discharged into the sealed case.
- the electric motor rotates integrally with the rotating shaft.
- a discharge passage for guiding the working fluid discharged from the cylinder chamber to the discharge pipe side is formed, and the maximum discharge pressure of the working fluid is 3 MPa or more.
- the inner diameter of the Linda chamber is D1
- the total height of the cylinder chambers of the two cylinders is H
- the distance from the upper end of the stator to the upper inner wall surface of the sealed case is L1
- the inner sectional area of the sealed case is Ac
- the discharge flow path The following relational expressions (1) to (3) are all satisfied, where Ad is the total cross-sectional area of T and T is the thickness of the stator core of the stator.
- a refrigeration cycle apparatus 1 includes a rotary compressor 2, a condenser 3 that is a radiator connected to the rotary compressor 2, an expansion device 4 connected to the condenser 3, And an evaporator 5 that is a heat absorber connected to the expansion device 4.
- the rotary compressor 2 is provided with an accumulator 6.
- the refrigerant that is the working fluid circulates while changing in phase between a gaseous gas refrigerant and a liquid liquid refrigerant, and is dissipated in the process of phase change from the gas refrigerant to the liquid refrigerant. Heat is absorbed during the phase change of the gas refrigerant, and heating, cooling, heating, cooling, and the like are performed using these heat dissipation and heat absorption.
- the gas refrigerant is compressed.
- the condenser 3 the compressed gas refrigerant is condensed into a liquid refrigerant.
- the expansion device 4 the condensed liquid refrigerant is decompressed.
- the evaporator 5 the decompressed liquid refrigerant evaporates to become a gas refrigerant.
- the accumulator 6 of the rotary compressor 2 when the liquid refrigerant is contained in the gas refrigerant evaporated in the evaporator 5, the liquid refrigerant is removed.
- the rotary compressor 2 has a cylindrical sealed case 7 that is closed at both upper and lower ends to be airtight.
- An electric motor 8 is accommodated in an upper portion of the sealed case 7, and a gas is disposed in a lower portion of the sealed case 7.
- the compression mechanism part 9 which is a part which compresses a refrigerant
- a rotating shaft 10 is connected to the electric motor 8, and the compression mechanism unit 9 is driven through the rotating shaft 10.
- the gas refrigerant compressed by the compression mechanism 9 is discharged into the sealed case 7, and the sealed case 7 is filled with high-pressure gas refrigerant.
- a discharge pipe 11 is provided in the upper part of the sealed case 7, and the high-pressure gas refrigerant in the sealed case 7 is guided to the condenser 3 through the discharge pipe 11.
- a lubricating oil 12 is stored at the bottom of the sealed case 7.
- the electric motor 8 includes a rotor 13 that is fixed to the rotating shaft 10 and rotates integrally with the rotating shaft 10, and a stator 14 that surrounds the outer periphery of the rotor 13, and has six or more poles. ing.
- the rotor 13 includes a rotor core 13a in which electromagnetic steel plates are laminated, and a plurality of permanent magnets 13b inserted into the rotor core 13a.
- the stator 14 has a stator core 14a in which electromagnetic steel plates are laminated, and a field winding 14b wound around the stator core 14a.
- the electric motor 8 includes a plurality of discharge passages 15, such as a rotor 13, that guide the gas refrigerant discharged from the compression mechanism 9 into the sealed case 7 to the discharge pipe 11 side, which is the upper side of the sealed case 7.
- a through hole formed so as to penetrate in the vertical direction, a gap between the inner peripheral surface of the sealing case 7 and the outer peripheral surface of the stator 14, and a gap between the outer peripheral surface of the rotor 13 and the inner peripheral surface of the stator 14 are formed.
- the compression mechanism unit 9 includes two cylinders 16a and 16b arranged in the vertical direction, a partition plate 17 arranged between the cylinders 16a and 16b and closing one end face of the cylinders 16a and 16b,
- the main bearing 18 which is one bearing which is disposed on the motor 8 side which is the upper side of the cylinder 16a and closes the upper end surface of the cylinder 16a and the motor 8 which is the lower side of the other cylinder 16b are opposite to the motor 8.
- the auxiliary bearing 19 is the other bearing that is disposed and closes the lower end face of the cylinder 16b.
- a cylinder chamber 20a is formed inside the cylinder 16a whose both end surfaces are closed by the main bearing 18 and the partition plate 17, and the cylinder chamber 20a is formed inside the cylinder 16b whose both end surfaces are closed by the partition plate 17 and the auxiliary bearing 19.
- a chamber 20b is formed.
- a rotary shaft 10 is inserted through the cylinders 16 a and 16 b, and the rotary shaft 10 is pivotally supported by a main bearing 18 and a sub bearing 19.
- the rotary shaft 10 is formed with two columnar eccentric portions 21a and 21b.
- One eccentric portion 21a is disposed in the cylinder chamber 20a, and the other eccentric portion 21b is disposed in the cylinder chamber 20b.
- a roller 22a is fitted to the eccentric portion 21a, and a roller 22b is fitted to the eccentric portion 21b.
- These rollers 22a and 22b are provided so as to be eccentrically rotated while the outer peripheral surface thereof is in sliding contact with the inner peripheral surfaces of the cylinder chambers 20a and 20b as the rotary shaft 10 rotates.
- the cylinder 16a is provided with a reciprocating blade 23a
- the cylinder 16b is provided with a reciprocating blade 23b.
- the cylinder chambers 20a and 20b are partitioned into a suction chamber for sucking in the low-pressure gas refrigerant and a compression chamber for compressing the sucked-in gas refrigerant.
- the main bearing 18 is provided with a discharge hole 24a and a discharge valve 25a for discharging the gas refrigerant compressed in the cylinder chamber 20a into the sealed case 7.
- the sub bearing 19 is provided with a discharge hole 24 b and a discharge valve 25 b for discharging the gas refrigerant compressed in the cylinder chamber 20 b into the sealed case 7.
- a muffler case 26a is attached to the main bearing 18 at a position surrounding the discharge valve 25a, and the gas refrigerant discharged by opening the discharge valve 25a is discharged into the muffler case 26a and then formed in the muffler case 26a.
- the discharge hole 27 is discharged into the sealed case 7.
- a muffler case 26b is attached to the auxiliary bearing 19 at a position surrounding the discharge valve 25b, and the gas refrigerant discharged by opening the discharge valve 25b is discharged into the muffler case 26b and then passes through a communication path (not shown). Then, it flows into the muffler case 26a and is discharged into the sealed case 7 from the discharge hole 27 of the muffler case 26a.
- the rotary compressor 2 is set so that the maximum discharge pressure of the gas refrigerant during operation is 3 megapascals (MPa) or more, and the dimensions of each part in the rotary compressor 2 are as follows. explain in detail.
- the cylinder chambers 20a and 20b have the same inner diameter, and the cylinder chambers 20a and 20b have an inner diameter D1.
- the height of one cylinder chamber 20a is H1
- the height of the other cylinder chamber 20b is H2
- the distance from the upper end of the stator 14 to the upper inner wall surface of the sealed case 7 is L1.
- the cross-sectional area of the space inside the sealed case 7 is Ac.
- the total cross-sectional area of the discharge channel 15 is Ad.
- the thickness of the stator core 14a of the stator 14 is T.
- the distance from the lower end of the rotor 13 of the electric motor 8 to the lower inner wall surface of the sealed case 7 is L2.
- the compressor 13 is driven by the rotation of the rotor 13 and the rotating shaft 10 by energization of the electric motor 8.
- the compression mechanism 9 By driving the compression mechanism 9, the low-pressure gas refrigerant passes through the accumulator 6 and is sucked into the cylinder chambers 20a and 20b. The sucked gas refrigerant is compressed in the cylinder chambers 20a and 20b.
- the gas refrigerant compressed to high pressure in the cylinder chamber 20a is discharged from the discharge valve 25a into the muffler case 26a and discharged into the sealed case 7 from the discharge hole 27 of the muffler case 26a.
- the gas refrigerant compressed to high pressure in the cylinder chamber 20b is discharged from the discharge valve 25b into the muffler case 26b and flows into the muffler case 26a through a communication path (not shown). It is discharged from the discharge hole 27 into the sealed case 7.
- the gas refrigerant discharged from the discharge hole 27 into the sealed case 7 is guided to the discharge pipe 11 side, which is the upper side of the sealed case 7, through the discharge flow path 15 formed in the electric motor 8. It is led to the condenser 3 through.
- FIG. 2 shows the inner diameter “D1” of the cylinder chambers 20a and 20b and the inner diameter of the sealed case 7 under rated conditions using a refrigerant (for example, R410A, R32, carbon dioxide) having a maximum discharge pressure of 3 MPa or more during operation.
- a refrigerant for example, R410A, R32, carbon dioxide
- COP coefficient of performance ratio (COP when using a 6-pole motor / 4 COP when using a 4-pole motor).
- FIG. 2 a case where a 6-pole motor is compared with a 4-pole motor is described as an example. However, the same effect can be obtained in a motor having 6 or more poles, for example, an 8-pole motor or a 10-pole motor. Is obtained.
- FIG. 3 shows that when 0.85 ⁇ D1 ⁇ H is satisfied and the distance L1 from the upper end of the stator 14 to the upper inner wall surface of the sealed case 7 is larger than the total height H of the cylinder chambers 20a and 20b ( The result of measuring the oil discharge amount of the lubricating oil 12 from the discharge pipe 11 with respect to Ad (total cross-sectional area of the discharge flow path 15) / Ac (cross-sectional area of the inner space portion of the sealed case 7) of H ⁇ L1) is shown. ing.
- the oil discharge amount is expressed as a weight ratio to the circulation amount of the gas refrigerant.
- the discharge flow path of the electric motor 8 is increased. Since the flow rate of the gas refrigerant at 15 increases, it becomes difficult for the lubricating oil to be separated from the gas refrigerant in the discharge flow path 15, and in particular, it is understood that the amount of discharged oil increases rapidly when Ad / Ac ⁇ 0.06.
- FIG. 4 shows the efficiency ratio of the 6-pole motor 8 with respect to Ad / Ac.
- Ad / Ac 0.13
- the space factor of the field winding 14 b and the cross-sectional area of the permanent magnet 13 b are decreased in order to secure the area of the discharge flow path 15. It can be seen that the efficiency of is significantly reduced. From these facts, by satisfying H ⁇ L1 and 0.06 ⁇ Ad / Ac ⁇ 0.13 (relational expression 2), it is possible to reduce the amount of oil discharged while suppressing the deterioration of the motor efficiency.
- FIG. 5 shows that T (thickness of the stator core 14a) / when satisfying 0.85 ⁇ D1 ⁇ H ⁇ L1 (relational expression 1) and 0.06 ⁇ Ad / Ac ⁇ 0.13 (relational expression 2).
- the efficiency ratio of the 6-pole motor 8 with respect to H (the total height of the cylinder chambers 20a and 20b) is shown.
- FIG. 6 shows the ratio (T / H) of the thickness T of the stator core 14a of the stator 14 to the total height H of the cylinder chambers 20a and 20b, and the gas in the discharge passage 15 of the electric motor 8 with respect to the compressor theoretical work Wth.
- coolant is shown.
- Wd / Wth increases rapidly. From these things, 1.2 ⁇ T / H ⁇ 1.5 (relational expression 3) can reduce the pressure loss of the discharge flow path 15 while suppressing the deterioration of the motor efficiency.
- the rotary compression has high pressure resistance, small size and light weight, large discharge capacity, high resource saving, and low oil discharge and high reliability.
- Machine 2 can be provided.
- D2 / H is the ratio of the inner diameter D2 of the main bearing 18 and the auxiliary bearing 19 to the total height H of the cylinder chambers 20a and 20b.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Applications Or Details Of Rotary Compressors (AREA)
Abstract
Provided are: a rotary compressor which is compact and has a large discharge capacity; and a refrigeration cycle device.
This rotary compressor 2 has a maximum operating fluid discharge pressure of 3 MPa or higher. If the inner diameter of cylinder chambers 20a, 20b is designated D1, the sum of the heights of the cylinder chambers 20a, 20b is designated H, the distance from the upper end of a stator 14 to the upper inner wall surface of an enclosed case 7 is designated L1, the inner cross-sectional area of the inner case 7 is designated Ac, the total cross-sectional area of a discharge flow passage 15 is designated Ad, and the thickness of the stator core 14a of the stator 14 is designated T, then all of the following expressions (1)-(3) are satisfied: (1) 0.85 × D1 < H < L1, (2) 0.06 < Ad/Ac < 0.13, and (3) 1.2 < T/H < 1.5.
Description
本発明の実施形態は、回転式圧縮機及びこの回転式圧縮機を用いた冷凍サイクル装置に関する。
Embodiments of the present invention relate to a rotary compressor and a refrigeration cycle apparatus using the rotary compressor.
密閉ケース内に電動機と、この電動機に連結された回転軸を介して駆動される圧縮機構部とを収容し、冷媒等の作動流体を圧縮する回転式圧縮機において、圧縮されて吐出される作動流体の吐出容量を増大させるために様々な対策が講じられており、例えば、下記特許文献1に記載されたような対策が講じられている。
Operation that is compressed and discharged in a rotary compressor that accommodates an electric motor and a compression mechanism that is driven via a rotary shaft connected to the electric motor in a sealed case and compresses a working fluid such as a refrigerant. Various measures have been taken to increase the fluid discharge capacity. For example, the measures described in Patent Document 1 below have been taken.
特許文献1に記載された回転式圧縮機では、シリンダ室の内径をD、シリンダ室の高さをHとしたとき、1シリンダ型ではH/D≦0.4、2シリンダ型ではH/D≦0.3としている。
In the rotary compressor described in Patent Document 1, when the inner diameter of the cylinder chamber is D and the height of the cylinder chamber is H, H / D ≦ 0.4 for the one cylinder type and H / D for the two cylinder type. ≦ 0.3.
しかしながら、特許文献1に記載された回転式圧縮機では、吐出容量を増大させるためには、シリンダ室の内径を大きくする必要があり、それに伴い、密閉ケースの内径も大きくなるので耐圧性が低下する。特に、吐出圧力が高い場合には、密閉ケースの肉厚を厚くすることが必要となり、回転式圧縮機の大型化、重量増大、省資源性の悪化を招いている。そのため、H/Dを大きくし、密閉ケースの内径を大きくすることなく吐出容量を大きくすることが考えられるが、その場合、電動機の径を大きくできないことから、従来一般に用いられている4極電動機では圧縮負荷トルクが過大になり、圧縮機効率が低下していた。
However, in the rotary compressor described in Patent Document 1, in order to increase the discharge capacity, it is necessary to increase the inner diameter of the cylinder chamber, and accordingly, the inner diameter of the sealed case also increases, so the pressure resistance decreases. To do. In particular, when the discharge pressure is high, it is necessary to increase the thickness of the sealed case, resulting in an increase in the size, weight, and resource saving of the rotary compressor. For this reason, it is conceivable to increase the discharge capacity without increasing the H / D and without increasing the inner diameter of the sealed case. In this case, however, the diameter of the motor cannot be increased. Then, the compression load torque was excessive, and the compressor efficiency was reduced.
本発明の実施形態の目的は、小型でありながら吐出容量が大きい回転式圧縮機及びこの回転式圧縮機を用いた冷凍サイクル装置を提供することである。
An object of an embodiment of the present invention is to provide a rotary compressor having a small discharge capacity and a large discharge capacity, and a refrigeration cycle apparatus using the rotary compressor.
実施形態の回転式圧縮機によれば、密閉ケースと、密閉ケース内の上部に収容された極数が6極以上の電動機と、密閉ケース内の下部に収容されて電動機に連結された回転軸を介して駆動される圧縮機構部と、密閉ケースの上部に設けられた吐出管とを有し、圧縮機構部は、上下両端が閉塞されて内部にシリンダ室が形成された2つのシリンダを有し、シリンダ室内で回転軸に嵌合されたローラが偏心回転することにより作動流体を圧縮し、シリンダ室内で圧縮された作動流体を密閉ケース内に吐出し、電動機は、回転軸と一体に回転する回転子とこの回転子の外周を囲む固定子とを有し、シリンダ室内から吐出された作動流体を吐出管側に導く吐出流路が形成され、作動流体の最大吐出圧力が3MPa以上となる回転式圧縮機において、シリンダ室の内径をD1、2つのシリンダのシリンダ室の合計高さをH、固定子の上端部から密閉ケースの上部内壁面までの距離をL1、密閉ケースの内側断面積をAc、吐出流路の総断面積をAd、固定子の固定子鉄心の厚みをTとしたとき、下記関係式(1)~(3)が全て成り立つことを特徴とする。
According to the rotary compressor of the embodiment, a sealed case, an electric motor having six or more poles accommodated in the upper part of the sealed case, and a rotary shaft accommodated in the lower part of the sealed case and connected to the electric motor And a discharge pipe provided at the top of the sealed case. The compression mechanism has two cylinders that are closed at both the upper and lower ends and in which a cylinder chamber is formed. Then, the roller fitted to the rotating shaft in the cylinder chamber rotates eccentrically to compress the working fluid, and the compressed working fluid in the cylinder chamber is discharged into the sealed case. The electric motor rotates integrally with the rotating shaft. A discharge passage for guiding the working fluid discharged from the cylinder chamber to the discharge pipe side is formed, and the maximum discharge pressure of the working fluid is 3 MPa or more. In rotary compressor, The inner diameter of the Linda chamber is D1, the total height of the cylinder chambers of the two cylinders is H, the distance from the upper end of the stator to the upper inner wall surface of the sealed case is L1, the inner sectional area of the sealed case is Ac, and the discharge flow path The following relational expressions (1) to (3) are all satisfied, where Ad is the total cross-sectional area of T and T is the thickness of the stator core of the stator.
(1)0.85×D1<H<L1
(2)0.06<Ad/Ac<0.13
(3)1.2<T/H<1.5 (1) 0.85 × D1 <H <L1
(2) 0.06 <Ad / Ac <0.13
(3) 1.2 <T / H <1.5
(2)0.06<Ad/Ac<0.13
(3)1.2<T/H<1.5 (1) 0.85 × D1 <H <L1
(2) 0.06 <Ad / Ac <0.13
(3) 1.2 <T / H <1.5
これにより、小型でありながら吐出容量が大きい回転式圧縮機及びこの回転式圧縮機を用いた冷凍サイクル装置を得ることができる。
Thereby, it is possible to obtain a rotary compressor having a small discharge capacity and a large discharge capacity, and a refrigeration cycle apparatus using the rotary compressor.
実施形態の冷凍サイクル装置の概略について、図1に基づいて説明する。図1に示すように、冷凍サイクル装置1は、回転式圧縮機2と、回転式圧縮機2に接続された放熱器である凝縮器3と、凝縮器3に接続された膨張装置4と、膨張装置4に接続された吸熱器である蒸発器5とを有している。回転式圧縮機2にはアキュムレータ6が設けられている。この冷凍サイクル装置1では、作動流体である冷媒が気体状のガス冷媒と液体状の液冷媒とに相変化しながら循環し、ガス冷媒から液冷媒に相変化する過程で放熱され、液冷媒からガス冷媒に相変化する過程で吸熱され、これらの放熱や吸熱を利用して暖房、冷房、加熱、冷却等が行われる。
An outline of the refrigeration cycle apparatus of the embodiment will be described with reference to FIG. As shown in FIG. 1, a refrigeration cycle apparatus 1 includes a rotary compressor 2, a condenser 3 that is a radiator connected to the rotary compressor 2, an expansion device 4 connected to the condenser 3, And an evaporator 5 that is a heat absorber connected to the expansion device 4. The rotary compressor 2 is provided with an accumulator 6. In this refrigeration cycle apparatus 1, the refrigerant that is the working fluid circulates while changing in phase between a gaseous gas refrigerant and a liquid liquid refrigerant, and is dissipated in the process of phase change from the gas refrigerant to the liquid refrigerant. Heat is absorbed during the phase change of the gas refrigerant, and heating, cooling, heating, cooling, and the like are performed using these heat dissipation and heat absorption.
なお、回転式圧縮機2では、ガス冷媒の圧縮が行われる。凝縮器3では、圧縮されたガス冷媒が凝縮されて液冷媒となる。膨張装置4では、凝縮された液冷媒が減圧される。蒸発器5では、減圧された液冷媒が蒸発してガス冷媒となる。回転式圧縮機2のアキュムレータ6では、蒸発器5で蒸発したガス冷媒中に液冷媒が含まれていた場合、その液冷媒が除去される。
In the rotary compressor 2, the gas refrigerant is compressed. In the condenser 3, the compressed gas refrigerant is condensed into a liquid refrigerant. In the expansion device 4, the condensed liquid refrigerant is decompressed. In the evaporator 5, the decompressed liquid refrigerant evaporates to become a gas refrigerant. In the accumulator 6 of the rotary compressor 2, when the liquid refrigerant is contained in the gas refrigerant evaporated in the evaporator 5, the liquid refrigerant is removed.
回転式圧縮機2は、上下両端が閉塞されて気密状態とされる円筒状の密閉ケース7を有し、この密閉ケース7内の上部に電動機8が収容され、密閉ケース7内の下部にガス冷媒を圧縮する部分である圧縮機構部9が収容されている。電動機8には回転軸10が連結され、この回転軸10を介して圧縮機構部9が駆動されるようになっている。圧縮機構部9で圧縮されたガス冷媒は密閉ケース7内に吐出され、密閉ケース7内は高圧のガス冷媒で満たされる。密閉ケース7の上部には吐出管11が設けられ、密閉ケース7内の高圧のガス冷媒は吐出管11内を通って凝縮器3に導かれるようになっている。また、密閉ケース7内の底部には潤滑油12が貯留されている。
The rotary compressor 2 has a cylindrical sealed case 7 that is closed at both upper and lower ends to be airtight. An electric motor 8 is accommodated in an upper portion of the sealed case 7, and a gas is disposed in a lower portion of the sealed case 7. The compression mechanism part 9 which is a part which compresses a refrigerant | coolant is accommodated. A rotating shaft 10 is connected to the electric motor 8, and the compression mechanism unit 9 is driven through the rotating shaft 10. The gas refrigerant compressed by the compression mechanism 9 is discharged into the sealed case 7, and the sealed case 7 is filled with high-pressure gas refrigerant. A discharge pipe 11 is provided in the upper part of the sealed case 7, and the high-pressure gas refrigerant in the sealed case 7 is guided to the condenser 3 through the discharge pipe 11. A lubricating oil 12 is stored at the bottom of the sealed case 7.
電動機8は、回転軸10に固定されて回転軸10と一体に回転する回転子13と、この回転子13の外周を囲む固定子14とを有しており、極数が6極以上とされている。回転子13は、電磁鋼板を積層した回転子鉄心13aと、回転子鉄心13aの内部に挿入された複数の永久磁石13bとを有している。固定子14は、電磁鋼板を積層した固定子鉄心14aと、固定子鉄心14aに巻回された界磁巻線14bとを有している。また、電動機8には、圧縮機構部9から密閉ケース7内に吐出されたガス冷媒を密閉ケース7内の上部側である吐出管11側に導く複数の吐出流路15、例えば、回転子13に上下方向に貫通して形成された貫通孔、密閉ケース7の内周面と固定子14の外周面間の隙間及び回転子13外周面と固定子14の内周面間の隙間等が形成されている。
The electric motor 8 includes a rotor 13 that is fixed to the rotating shaft 10 and rotates integrally with the rotating shaft 10, and a stator 14 that surrounds the outer periphery of the rotor 13, and has six or more poles. ing. The rotor 13 includes a rotor core 13a in which electromagnetic steel plates are laminated, and a plurality of permanent magnets 13b inserted into the rotor core 13a. The stator 14 has a stator core 14a in which electromagnetic steel plates are laminated, and a field winding 14b wound around the stator core 14a. In addition, the electric motor 8 includes a plurality of discharge passages 15, such as a rotor 13, that guide the gas refrigerant discharged from the compression mechanism 9 into the sealed case 7 to the discharge pipe 11 side, which is the upper side of the sealed case 7. A through hole formed so as to penetrate in the vertical direction, a gap between the inner peripheral surface of the sealing case 7 and the outer peripheral surface of the stator 14, and a gap between the outer peripheral surface of the rotor 13 and the inner peripheral surface of the stator 14 are formed. Has been.
圧縮機構部9は、上下方向に配置された2つのシリンダ16a、16bと、シリンダ16a、16bの間に配置されてそれらのシリンダ16a、16bの一方の端面を閉塞する仕切板17と、一方のシリンダ16aの上方側である電動機8側に配置されてこのシリンダ16aの上方側の端面を閉塞する一方の軸受である主軸受18と、他方のシリンダ16bの下方側である電動機8の反対側に配置されてこのシリンダ16bの下方側の端面を閉塞する他方の軸受である副軸受19とを有している。そして、両端面を主軸受18と仕切板17とにより閉塞されたシリンダ16aの内部にシリンダ室20aが形成され、両端面を仕切板17と副軸受19とにより閉塞されたシリンダ16bの内部にシリンダ室20bが形成されている。これらのシリンダ16a、16bには回転軸10が挿通されており、この回転軸10は主軸受18と副軸受19とにより軸支されている。
The compression mechanism unit 9 includes two cylinders 16a and 16b arranged in the vertical direction, a partition plate 17 arranged between the cylinders 16a and 16b and closing one end face of the cylinders 16a and 16b, The main bearing 18 which is one bearing which is disposed on the motor 8 side which is the upper side of the cylinder 16a and closes the upper end surface of the cylinder 16a and the motor 8 which is the lower side of the other cylinder 16b are opposite to the motor 8. The auxiliary bearing 19 is the other bearing that is disposed and closes the lower end face of the cylinder 16b. A cylinder chamber 20a is formed inside the cylinder 16a whose both end surfaces are closed by the main bearing 18 and the partition plate 17, and the cylinder chamber 20a is formed inside the cylinder 16b whose both end surfaces are closed by the partition plate 17 and the auxiliary bearing 19. A chamber 20b is formed. A rotary shaft 10 is inserted through the cylinders 16 a and 16 b, and the rotary shaft 10 is pivotally supported by a main bearing 18 and a sub bearing 19.
回転軸10には、円柱状の2つの偏心部21a、21bが形成されており、一方の偏心部21aはシリンダ室20a内に配置され、他方の偏心部21bはシリンダ室20b内に配置されている。偏心部21aにはローラ22aが嵌合され、偏心部21bにはローラ22bが嵌合されている。これらのローラ22a、22bは、回転軸10の回転に伴い外周面をシリンダ室20a、20bの内周面に摺接させながら偏心回転するように設けられている。また、シリンダ16aには往復摺動可能なブレード23aが設けられ、シリンダ16bには往復摺動可能なブレード23bが設けられ、これらのブレード23a、23bは先端部をローラ22a、22bの外周面に当接させることによりシリンダ室20a、20b内を、低圧のガス冷媒を吸込む吸込室と吸込んだガス冷媒を圧縮する圧縮室とに区画している。
The rotary shaft 10 is formed with two columnar eccentric portions 21a and 21b. One eccentric portion 21a is disposed in the cylinder chamber 20a, and the other eccentric portion 21b is disposed in the cylinder chamber 20b. Yes. A roller 22a is fitted to the eccentric portion 21a, and a roller 22b is fitted to the eccentric portion 21b. These rollers 22a and 22b are provided so as to be eccentrically rotated while the outer peripheral surface thereof is in sliding contact with the inner peripheral surfaces of the cylinder chambers 20a and 20b as the rotary shaft 10 rotates. The cylinder 16a is provided with a reciprocating blade 23a, and the cylinder 16b is provided with a reciprocating blade 23b. These blades 23a, 23b have tips at the outer peripheral surfaces of the rollers 22a, 22b. The cylinder chambers 20a and 20b are partitioned into a suction chamber for sucking in the low-pressure gas refrigerant and a compression chamber for compressing the sucked-in gas refrigerant.
主軸受18には、シリンダ室20a内で圧縮されたガス冷媒を密閉ケース7内に吐出させるための吐出孔24aと吐出弁25aとが設けられている。副軸受19には、シリンダ室20b内で圧縮されたガス冷媒を密閉ケース7内に吐出させるための吐出孔24bと吐出弁25bとが設けられている。
The main bearing 18 is provided with a discharge hole 24a and a discharge valve 25a for discharging the gas refrigerant compressed in the cylinder chamber 20a into the sealed case 7. The sub bearing 19 is provided with a discharge hole 24 b and a discharge valve 25 b for discharging the gas refrigerant compressed in the cylinder chamber 20 b into the sealed case 7.
また、主軸受18には、吐出弁25aを囲む位置にマフラケース26aが取付けられ、吐出弁25aを開弁して吐出したガス冷媒はマフラケース26a内に吐出された後、マフラケース26aに形成された吐出孔27から密閉ケース7内に吐出されるようになっている。副軸受19には、吐出弁25bを囲む位置にマフラケース26bが取付けられ、吐出弁25bを開弁して吐出されたガス冷媒はマフラケース26b内に吐出された後、図示しない連通路を通ってマフラケース26a内に流入し、マフラケース26aの吐出孔27から密閉ケース7内に吐出されるようになっている。
A muffler case 26a is attached to the main bearing 18 at a position surrounding the discharge valve 25a, and the gas refrigerant discharged by opening the discharge valve 25a is discharged into the muffler case 26a and then formed in the muffler case 26a. The discharge hole 27 is discharged into the sealed case 7. A muffler case 26b is attached to the auxiliary bearing 19 at a position surrounding the discharge valve 25b, and the gas refrigerant discharged by opening the discharge valve 25b is discharged into the muffler case 26b and then passes through a communication path (not shown). Then, it flows into the muffler case 26a and is discharged into the sealed case 7 from the discharge hole 27 of the muffler case 26a.
ここで、この回転式圧縮機2は、作動時におけるガス冷媒の最大吐出圧力が3メガパスカル(MPa)以上となるように設定されており、この回転式圧縮機2における各部の寸法について以下に詳しく説明する。
Here, the rotary compressor 2 is set so that the maximum discharge pressure of the gas refrigerant during operation is 3 megapascals (MPa) or more, and the dimensions of each part in the rotary compressor 2 are as follows. explain in detail.
シリンダ室20a、20bの内径は同じ寸法であり、これらのシリンダ室20a、20bの内径はD1とされている。
The cylinder chambers 20a and 20b have the same inner diameter, and the cylinder chambers 20a and 20b have an inner diameter D1.
一方のシリンダ室20aの高さはH1、他方のシリンダ室20bの高さはH2であり、2つのシリンダ室20a、20bの合計高さHが、(H=H1+H2)とされている。
The height of one cylinder chamber 20a is H1, the height of the other cylinder chamber 20b is H2, and the total height H of the two cylinder chambers 20a and 20b is (H = H1 + H2).
固定子14の上端部から密閉ケース7の上部内壁面までの距離は、L1とされている。
The distance from the upper end of the stator 14 to the upper inner wall surface of the sealed case 7 is L1.
密閉ケース7の内側の空間部分における断面積は、Acとされている。
The cross-sectional area of the space inside the sealed case 7 is Ac.
吐出流路15の総断面積は、Adとされている。
The total cross-sectional area of the discharge channel 15 is Ad.
固定子14の固定子鉄心14aの厚みは、Tとされている。
The thickness of the stator core 14a of the stator 14 is T.
以上説明した各寸法は、下記の関係式(1)~(3)が全て成り立つように設定されている。
The dimensions described above are set so that the following relational expressions (1) to (3) are all satisfied.
(1)0.85×D1<H<L1
(2)0.06<Ad/Ac<0.13
(3)1.2<T/H<1.5
つぎに、密閉ケース7内のシリンダ16a、16bの位置における水平断面において、シリンダ室20a、20bの外側に形成されて上下方向及び周方向に伸びる空間Sの平均断面積は、Avとされている。 (1) 0.85 × D1 <H <L1
(2) 0.06 <Ad / Ac <0.13
(3) 1.2 <T / H <1.5
Next, in the horizontal cross section at the position of the cylinders 16a and 16b in the sealed case 7, the average cross-sectional area of the space S formed outside the cylinder chambers 20a and 20b and extending in the vertical and circumferential directions is Av. .
(2)0.06<Ad/Ac<0.13
(3)1.2<T/H<1.5
つぎに、密閉ケース7内のシリンダ16a、16bの位置における水平断面において、シリンダ室20a、20bの外側に形成されて上下方向及び周方向に伸びる空間Sの平均断面積は、Avとされている。 (1) 0.85 × D1 <H <L1
(2) 0.06 <Ad / Ac <0.13
(3) 1.2 <T / H <1.5
Next, in the horizontal cross section at the position of the
また、電動機8の回転子13の下端部から密閉ケース7の下部内壁面までの距離はL2とされている。
Further, the distance from the lower end of the rotor 13 of the electric motor 8 to the lower inner wall surface of the sealed case 7 is L2.
そして以上説明した各寸法は、下記の関係式(4)及び(5)が成り立つように設定されている。
The dimensions described above are set so that the following relational expressions (4) and (5) are established.
(4)Av/Ac>0.1
(5)H<L2/2
つぎに、主軸受18と副軸受19との内径は、D2とされている。 (4) Av / Ac> 0.1
(5) H <L2 / 2
Next, the inner diameter of themain bearing 18 and the auxiliary bearing 19 is D2.
(5)H<L2/2
つぎに、主軸受18と副軸受19との内径は、D2とされている。 (4) Av / Ac> 0.1
(5) H <L2 / 2
Next, the inner diameter of the
そして、以上説明した各寸法は、下記の関係式(6)が成り立つように設定されている。
The dimensions described above are set so that the following relational expression (6) is established.
(6)0.3<D2/H<0.4
このような構成において、電動機8への通電により回転子13と回転軸10とが回転することにより圧縮機構部9が駆動される。圧縮機構部9の駆動により、低圧のガス冷媒がアキュムレータ6を通過してシリンダ室20a、20b内に吸込まれ、吸込まれたガス冷媒はシリンダ室20a、20b内で圧縮される。 (6) 0.3 <D2 / H <0.4
In such a configuration, thecompressor 13 is driven by the rotation of the rotor 13 and the rotating shaft 10 by energization of the electric motor 8. By driving the compression mechanism 9, the low-pressure gas refrigerant passes through the accumulator 6 and is sucked into the cylinder chambers 20a and 20b. The sucked gas refrigerant is compressed in the cylinder chambers 20a and 20b.
このような構成において、電動機8への通電により回転子13と回転軸10とが回転することにより圧縮機構部9が駆動される。圧縮機構部9の駆動により、低圧のガス冷媒がアキュムレータ6を通過してシリンダ室20a、20b内に吸込まれ、吸込まれたガス冷媒はシリンダ室20a、20b内で圧縮される。 (6) 0.3 <D2 / H <0.4
In such a configuration, the
シリンダ室20a内で圧縮されて高圧になったガス冷媒は、吐出弁25aからマフラケース26a内に吐出され、マフラケース26aの吐出孔27から密閉ケース7内に吐出される。また、シリンダ室20b内で圧縮されて高圧になったガス冷媒は、吐出弁25bからマフラケース26b内に吐出され、図示しない連通路を通ってマフラケース26a内に流入した後、マフラケース26aの吐出孔27から密閉ケース7内に吐出される。吐出孔27から密閉ケース7内に吐出されたガス冷媒は、電動機8に形成された吐出流路15を通って密閉ケース7内の上部側である吐出管11側に導かれ、吐出管11を通って凝縮器3に導かれる。
The gas refrigerant compressed to high pressure in the cylinder chamber 20a is discharged from the discharge valve 25a into the muffler case 26a and discharged into the sealed case 7 from the discharge hole 27 of the muffler case 26a. The gas refrigerant compressed to high pressure in the cylinder chamber 20b is discharged from the discharge valve 25b into the muffler case 26b and flows into the muffler case 26a through a communication path (not shown). It is discharged from the discharge hole 27 into the sealed case 7. The gas refrigerant discharged from the discharge hole 27 into the sealed case 7 is guided to the discharge pipe 11 side, which is the upper side of the sealed case 7, through the discharge flow path 15 formed in the electric motor 8. It is led to the condenser 3 through.
図2は、作動時の最大吐出圧力が3MPa以上となる冷媒(例えば、R410A、R32、二酸化炭素)を用いた定格条件において、シリンダ室20a、20bの内径“D1”、密閉ケース7の内径を同一にしたまま、シリンダ室20a、20bの合計高さ“H”を大きくしてガス冷媒の吐出容量を増大した場合の、“H/D1”と、4極電動機使用時と6極電動機使用時とのCOP(成績係数)比(6極電動機使用時のCOP/4極電動機使用時のCOP)の関係を示している。
FIG. 2 shows the inner diameter “D1” of the cylinder chambers 20a and 20b and the inner diameter of the sealed case 7 under rated conditions using a refrigerant (for example, R410A, R32, carbon dioxide) having a maximum discharge pressure of 3 MPa or more during operation. “H / D1”, when using a 4-pole motor, and when using a 6-pole motor when the total height “H” of the cylinder chambers 20a and 20b is increased to increase the gas refrigerant discharge capacity. COP (coefficient of performance) ratio (COP when using a 6-pole motor / 4 COP when using a 4-pole motor).
この図2から、0.85<H/D1の領域、即ち、圧縮負荷トルクが大きい領域になると、COP比が1以上となり、6極電動機のほうが、大電流時における銅損抑制効果や鉄心間ピーク磁束減による鉄損低減効果により効率が高くなることが分かる。よって、0.85×D1<Hの場合には、6極電動機を使用することにより、密閉ケース7の細径化、吐出容量の増大、高効率化を両立することができ、高耐圧であり、小型軽量で吐出容量が大きく、省資源性の高い回転式圧縮機2を提供することができる。
From FIG. 2, in the region of 0.85 <H / D1, that is, in the region where the compression load torque is large, the COP ratio becomes 1 or more, and the 6-pole motor is more effective in suppressing the copper loss and the distance between the iron cores at a large current. It turns out that efficiency becomes high by the iron loss reduction effect by peak magnetic flux reduction. Therefore, in the case of 0.85 × D1 <H, by using a 6-pole motor, it is possible to achieve both a reduction in the diameter of the sealed case 7, an increase in discharge capacity, and an increase in efficiency, and a high breakdown voltage. Thus, it is possible to provide a rotary compressor 2 that is small and light, has a large discharge capacity, and is highly resource-saving.
なお、図2では4極電動機に対して6極電動機を比較した場合を例に挙げて説明しているが、6極以上の電動機、例えば、8極電動機や10極電動機等においても同様の効果が得られる。
In FIG. 2, a case where a 6-pole motor is compared with a 4-pole motor is described as an example. However, the same effect can be obtained in a motor having 6 or more poles, for example, an 8-pole motor or a 10-pole motor. Is obtained.
図3は、0.85×D1<Hを満たし、かつ、固定子14の上端部から密閉ケース7の上部内壁面までの距離L1をシリンダ室20a、20bの合計高さHより大きくしたとき(H<L1)の、Ad(吐出流路15の総断面積)/Ac(密閉ケース7の内側空間部分の断面積)に対する吐出管11からの潤滑油12の吐油量を計測した結果を示している。
FIG. 3 shows that when 0.85 × D1 <H is satisfied and the distance L1 from the upper end of the stator 14 to the upper inner wall surface of the sealed case 7 is larger than the total height H of the cylinder chambers 20a and 20b ( The result of measuring the oil discharge amount of the lubricating oil 12 from the discharge pipe 11 with respect to Ad (total cross-sectional area of the discharge flow path 15) / Ac (cross-sectional area of the inner space portion of the sealed case 7) of H <L1) is shown. ing.
吐油量は、ガス冷媒の循環量に対する重量比で表している。シリンダ室20a、20bの内径、密閉ケース7の内径を変えずにシリンダ室20a、20bの合計高さ“H”を変えてガス冷媒の吐出容量を増大していくと、電動機8の吐出流路15におけるガス冷媒の流速が大きくなるため、吐出流路15においてガス冷媒から潤滑油が分離しにくくなり、特に、Ad/Ac<0.06においては吐油量が急増することが分かる。
The oil discharge amount is expressed as a weight ratio to the circulation amount of the gas refrigerant. When the total height “H” of the cylinder chambers 20a and 20b is changed without changing the inner diameters of the cylinder chambers 20a and 20b and the inner diameter of the sealed case 7, the discharge flow path of the electric motor 8 is increased. Since the flow rate of the gas refrigerant at 15 increases, it becomes difficult for the lubricating oil to be separated from the gas refrigerant in the discharge flow path 15, and in particular, it is understood that the amount of discharged oil increases rapidly when Ad / Ac <0.06.
図4は、Ad/Acに対する6極の電動機8の効率比を示している。電動機8の効率比は、Ad/Ac=0.13における電動機効率に対する比で表している。この図4から、Ad/Ac>0.13においては、吐出流路15の面積を確保するために界磁巻線14bの占積率低下や永久磁石13bの断面積低下等を招き、電動機8の効率が大幅に低下することが分かる。これらのことから、H<L1と、0.06<Ad/Ac<0.13(関係式2)とを満たすことにより、電動機効率の悪化を抑制しつつ吐油量を少なくすることができる。
FIG. 4 shows the efficiency ratio of the 6-pole motor 8 with respect to Ad / Ac. The efficiency ratio of the electric motor 8 is expressed as a ratio to the electric motor efficiency when Ad / Ac = 0.13. From FIG. 4, when Ad / Ac> 0.13, the space factor of the field winding 14 b and the cross-sectional area of the permanent magnet 13 b are decreased in order to secure the area of the discharge flow path 15. It can be seen that the efficiency of is significantly reduced. From these facts, by satisfying H <L1 and 0.06 <Ad / Ac <0.13 (relational expression 2), it is possible to reduce the amount of oil discharged while suppressing the deterioration of the motor efficiency.
図5は、0.85×D1<H<L1(関係式1)、0.06<Ad/Ac<0.13(関係式2)を満たすときの、T(固定子鉄心14aの厚み)/H(シリンダ室20a、20bの合計高さ)に対する6極の電動機8の効率比を示している。電動機8の効率比は、T/H=1.2における電動機効率に対する比で表している。T/H<1.2においては、圧縮負荷トルクに対し固定子鉄心14aの厚み“T”が小さく、電動機8の効率低下を招いていることが分かる。
FIG. 5 shows that T (thickness of the stator core 14a) / when satisfying 0.85 × D1 <H <L1 (relational expression 1) and 0.06 <Ad / Ac <0.13 (relational expression 2). The efficiency ratio of the 6-pole motor 8 with respect to H (the total height of the cylinder chambers 20a and 20b) is shown. The efficiency ratio of the motor 8 is expressed as a ratio to the motor efficiency at T / H = 1.2. It can be seen that when T / H <1.2, the thickness “T” of the stator core 14a is small with respect to the compression load torque, leading to a reduction in efficiency of the electric motor 8.
図6は、シリンダ室20a、20bの合計高さHに対する固定子14の固定子鉄心14aの厚みTの割合(T/H)と、圧縮機理論仕事Wthに対する電動機8の吐出流路15におけるガス冷媒の圧力損失Wdの割合との関係を示している。1.5<T/Hにおいては、Wd/Wthが急増する。これらのことから、1.2<T/H<1.5(関係式3)により、電動機効率の悪化を抑制しながら吐出流路15の圧力損失を低減することができる。
FIG. 6 shows the ratio (T / H) of the thickness T of the stator core 14a of the stator 14 to the total height H of the cylinder chambers 20a and 20b, and the gas in the discharge passage 15 of the electric motor 8 with respect to the compressor theoretical work Wth. The relationship with the ratio of the pressure loss Wd of a refrigerant | coolant is shown. When 1.5 <T / H, Wd / Wth increases rapidly. From these things, 1.2 <T / H <1.5 (relational expression 3) can reduce the pressure loss of the discharge flow path 15 while suppressing the deterioration of the motor efficiency.
したがって、以上の関係式1~関係式3を全て満たすことにより、高耐圧であり、小型軽量で吐出容量が大きく、省資源性が高く、しかも、吐油量が少なく信頼性の高い回転式圧縮機2を提供することができる。
Therefore, by satisfying all of the relational expressions 1 to 3, the rotary compression has high pressure resistance, small size and light weight, large discharge capacity, high resource saving, and low oil discharge and high reliability. Machine 2 can be provided.
また、密閉ケース7の細径化と吐出容量の増大化とを図った場合、Av/Ac>0.1(関係式4)、かつ、H<L2(回転子13の下端部から密閉ケース7の下部内壁面までの距離)/2(関係式5)とすることにより、密閉ケース7の底部に十分な量の潤滑油12を貯留することができ、潤滑油12が吐油された場合においても密閉ケース7内における潤滑油12の油面の急激な低下を防止することができ、より信頼性の高い回転式圧縮機2を提供することができる。
図7は、主軸受18と副軸受19との内径D2と、シリンダ室20a、20bの合計高さHの比であるD2/Hに対する定格条件におけるCOP比を示している。COP比は、D2/H=0.3のときのCOPに対する比で表している。D2/H<0.3の領域では、Hを大きくすることで主軸間距離が大きくなるのに対し、回転軸10の剛性が不十分となり、回転軸10のたわみが過大になることによりCOPが大きく低下する。一方、D2/H>0.4の領域では、圧縮負荷トルクに対して回転軸10の径が必要以上に大きくなり、軸摺動損失の増大を招いてCOPが低下する。これらのことから、0.3<D2/H<0.4(関係式6)とすることにより、より一層高効率となる回転式圧縮機2を提供することができる。 Further, when reducing the diameter of the sealedcase 7 and increasing the discharge capacity, Av / Ac> 0.1 (relational expression 4) and H <L2 (from the lower end of the rotor 13 to the sealed case 7 When the lubricating oil 12 is discharged, a sufficient amount of the lubricating oil 12 can be stored at the bottom of the sealed case 7 by setting the distance to the lower inner wall surface) / 2 (relational expression 5). In addition, it is possible to prevent the oil level of the lubricating oil 12 in the sealed case 7 from being rapidly lowered, and to provide a more reliable rotary compressor 2.
FIG. 7 shows the COP ratio under rated conditions with respect to D2 / H, which is the ratio of the inner diameter D2 of themain bearing 18 and the auxiliary bearing 19 to the total height H of the cylinder chambers 20a and 20b. The COP ratio is expressed as a ratio to COP when D2 / H = 0.3. In the region of D2 / H <0.3, increasing the distance H increases the distance between the main shafts. However, the rigidity of the rotating shaft 10 becomes insufficient, and the deflection of the rotating shaft 10 becomes excessive, resulting in an increase in COP. Decrease significantly. On the other hand, in the region of D2 / H> 0.4, the diameter of the rotating shaft 10 becomes larger than necessary with respect to the compression load torque, leading to an increase in shaft sliding loss and a decrease in COP. From these facts, by setting 0.3 <D2 / H <0.4 (relational expression 6), it is possible to provide the rotary compressor 2 with even higher efficiency.
図7は、主軸受18と副軸受19との内径D2と、シリンダ室20a、20bの合計高さHの比であるD2/Hに対する定格条件におけるCOP比を示している。COP比は、D2/H=0.3のときのCOPに対する比で表している。D2/H<0.3の領域では、Hを大きくすることで主軸間距離が大きくなるのに対し、回転軸10の剛性が不十分となり、回転軸10のたわみが過大になることによりCOPが大きく低下する。一方、D2/H>0.4の領域では、圧縮負荷トルクに対して回転軸10の径が必要以上に大きくなり、軸摺動損失の増大を招いてCOPが低下する。これらのことから、0.3<D2/H<0.4(関係式6)とすることにより、より一層高効率となる回転式圧縮機2を提供することができる。 Further, when reducing the diameter of the sealed
FIG. 7 shows the COP ratio under rated conditions with respect to D2 / H, which is the ratio of the inner diameter D2 of the
以上、本発明の実施形態を説明したが、この実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。この新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、様々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。
As mentioned above, although embodiment of this invention was described, this embodiment is shown as an example and is not intending limiting the range of invention. The novel embodiment can be implemented in various other forms, and various omissions, replacements, and changes can be made without departing from the spirit of the invention. These embodiments and modifications thereof are included in the scope and gist of the invention, and are included in the invention described in the claims and the equivalents thereof.
1…冷凍サイクル装置
2…回転式圧縮機
3…凝縮器(放熱器)
4…膨張装置
5…蒸発器(吸熱器)
8…電動機
9…圧縮機構部
10…回転軸
11…吐出管
13…回転子
14…固定子
14a…固定子鉄心
15…吐出流路
16a、16b…シリンダ
18、19…軸受
20a、20b…シリンダ室
22a、22b…ローラ DESCRIPTION OFSYMBOLS 1 ... Refrigeration cycle apparatus 2 ... Rotary compressor 3 ... Condenser (radiator)
4 ...Expansion device 5 ... Evaporator (heat absorber)
DESCRIPTION OF SYMBOLS 8 ... Electric motor 9 ...Compression mechanism part 10 ... Rotating shaft 11 ... Discharge pipe 13 ... Rotor 14 ... Stator 14a ... Stator iron core 15 ... Discharge flow path 16a, 16b ... Cylinder 18, 19 ... Bearing 20a, 20b ... Cylinder chamber 22a, 22b ... Roller
2…回転式圧縮機
3…凝縮器(放熱器)
4…膨張装置
5…蒸発器(吸熱器)
8…電動機
9…圧縮機構部
10…回転軸
11…吐出管
13…回転子
14…固定子
14a…固定子鉄心
15…吐出流路
16a、16b…シリンダ
18、19…軸受
20a、20b…シリンダ室
22a、22b…ローラ DESCRIPTION OF
4 ...
DESCRIPTION OF SYMBOLS 8 ... Electric motor 9 ...
Claims (4)
- 密閉ケースと、前記密閉ケース内の上部に収容された極数が6極以上の電動機と、前記密閉ケース内の下部に収容されて前記電動機に連結された回転軸を介して駆動される圧縮機構部と、前記密閉ケースの上部に設けられた吐出管とを有し、前記圧縮機構部は、上下両端が閉塞されて内部にシリンダ室が形成された2つのシリンダを有し、前記シリンダ室内で前記回転軸に嵌合されたローラが偏心回転することにより作動流体を圧縮し、前記シリンダ室内で圧縮された作動流体を前記密閉ケース内に吐出し、前記電動機は、前記回転軸と一体に回転する回転子とこの回転子の外周を囲む固定子とを有し、前記シリンダ室内から吐出された作動流体を前記吐出管側に導く吐出流路が形成され、作動流体の最大吐出圧力が3MPa以上となる回転式圧縮機において、前記シリンダ室の内径をD1、前記2つのシリンダのシリンダ室の合計高さをH、前記固定子の上端部から前記密閉ケースの上部内壁面までの距離をL1、前記密閉ケースの内側断面積をAc、前記吐出流路の総断面積をAd、前記固定子の固定子鉄心の厚みをTとしたとき、下記関係式(1)~(3)が全て成り立つことを特徴とする回転式圧縮機。
(1)0.85×D1<H<L1
(2)0.06<Ad/Ac<0.13
(3)1.2<T/H<1.5 A sealed case, a motor having 6 or more poles housed in the upper part of the sealed case, and a compression mechanism that is driven through a rotating shaft housed in the lower part of the sealed case and connected to the motor And a discharge pipe provided at an upper portion of the sealed case, and the compression mechanism portion includes two cylinders in which upper and lower ends are closed and a cylinder chamber is formed in the cylinder chamber. The roller fitted to the rotating shaft rotates eccentrically to compress the working fluid, discharge the working fluid compressed in the cylinder chamber into the sealed case, and the electric motor rotates integrally with the rotating shaft. A discharge passage for guiding the working fluid discharged from the cylinder chamber to the discharge pipe side is formed, and the maximum discharge pressure of the working fluid is 3 MPa or more. Rotation to become In the compressor, the inner diameter of the cylinder chamber is D1, the total height of the cylinder chambers of the two cylinders is H, the distance from the upper end of the stator to the upper inner wall surface of the hermetic case is L1, and When the inner cross-sectional area is Ac, the total cross-sectional area of the discharge flow path is Ad, and the thickness of the stator core of the stator is T, the following relational expressions (1) to (3) are all satisfied. Rotary compressor.
(1) 0.85 × D1 <H <L1
(2) 0.06 <Ad / Ac <0.13
(3) 1.2 <T / H <1.5 - 前記密閉ケース内の前記シリンダの位置における水平断面において、前記シリンダ室の外側に形成されて上下方向に伸びる空間の平均断面積をAv、前記電動機の前記回転子の下端部から前記密閉ケースの下部内壁面までの距離をL2としたとき、下記関係式(4)及び(5)が更に成り立つことを特徴とする請求項1記載の回転式圧縮機。
(4)Av/Ac>0.1
(5)H<L2/2 In a horizontal cross section at the position of the cylinder in the sealed case, Av represents an average cross-sectional area of the space formed outside the cylinder chamber and extending in the vertical direction, from the lower end of the rotor of the motor to the lower part of the sealed case The rotary compressor according to claim 1, wherein the following relational expressions (4) and (5) further hold when the distance to the inner wall surface is L2.
(4) Av / Ac> 0.1
(5) H <L2 / 2 - 前記回転軸は、一方の前記シリンダの前記電動機側の端面側に設けられた一方の軸受と、他方の前記シリンダの前記電動機と反対側の端面側に設けられた他方の軸受とにより軸支され、前記軸受の内径をD2としたとき、下記関係式(6)が更に成り立つことを特徴とする請求項1又は2記載の回転式圧縮機。
(6)0.3<D2/H<0.4 The rotating shaft is pivotally supported by one bearing provided on the end face side of the one cylinder on the electric motor side and the other bearing provided on the end face side of the other cylinder opposite to the electric motor. The rotary compressor according to claim 1 or 2, wherein the following relational expression (6) further holds when the inner diameter of the bearing is D2.
(6) 0.3 <D2 / H <0.4 - 請求項1ないし3のいずれか一項に記載の回転式圧縮機と、前記回転式圧縮機に接続される放熱器と、前記放熱器に接続される膨張装置と、前記膨張装置と前記回転式圧縮機との間に接続される吸熱器とを備えた冷凍サイクル装置。 The rotary compressor according to any one of claims 1 to 3, a radiator connected to the rotary compressor, an expansion device connected to the radiator, the expansion device, and the rotary type A refrigeration cycle apparatus comprising a heat absorber connected between the compressor and the compressor.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP17850474.2A EP3514391B1 (en) | 2016-09-14 | 2017-04-14 | Rotary compressor and refrigeration cycle device |
CN201780023665.6A CN109072917B (en) | 2016-09-14 | 2017-04-14 | Rotary compressor and refrigeration cycle device |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016179607A JP6703921B2 (en) | 2016-09-14 | 2016-09-14 | Rotary compressor and refrigeration cycle device |
JP2016-179607 | 2016-09-14 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018051567A1 true WO2018051567A1 (en) | 2018-03-22 |
Family
ID=61619108
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2017/015299 WO2018051567A1 (en) | 2016-09-14 | 2017-04-14 | Rotary compressor and refrigeration cycle device |
Country Status (4)
Country | Link |
---|---|
EP (1) | EP3514391B1 (en) |
JP (1) | JP6703921B2 (en) |
CN (1) | CN109072917B (en) |
WO (1) | WO2018051567A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2023142560A1 (en) * | 2022-01-26 | 2023-08-03 | 珠海格力电器股份有限公司 | Self-starting synchronous reluctance compressor and refrigeration device system |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109058109B (en) * | 2018-10-10 | 2024-02-27 | 珠海凌达压缩机有限公司 | Compressor and air conditioner |
CN114026329B (en) * | 2019-08-23 | 2023-09-01 | 东芝开利株式会社 | Compressor and refrigeration cycle device |
CN111608913B (en) * | 2020-05-29 | 2022-04-12 | 广东美芝精密制造有限公司 | Compressor and air conditioning system |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006177225A (en) * | 2004-12-22 | 2006-07-06 | Hitachi Home & Life Solutions Inc | Rotary compressor |
JP2008014150A (en) * | 2006-07-03 | 2008-01-24 | Toshiba Kyaria Kk | Rotary compressor and refrigeration cycle device using the same |
WO2013065706A1 (en) * | 2011-10-31 | 2013-05-10 | 東芝キヤリア株式会社 | Sealed rotary compressor and refrigeration cycle device |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4909597B2 (en) * | 2006-01-27 | 2012-04-04 | 東芝キヤリア株式会社 | Hermetic rotary compressor and refrigeration cycle apparatus |
JP5068719B2 (en) * | 2008-09-22 | 2012-11-07 | 東芝キヤリア株式会社 | Rotary compressor and refrigeration cycle equipment |
JP5564617B2 (en) * | 2011-06-08 | 2014-07-30 | 東芝キヤリア株式会社 | Hermetic compressor and refrigeration cycle apparatus |
CN103541902A (en) * | 2012-07-10 | 2014-01-29 | 广东美芝制冷设备有限公司 | Rotary type compressor with low-back-pressure shell |
CN203655642U (en) * | 2013-12-26 | 2014-06-18 | 广东美芝精密制造有限公司 | Rotary compressor, air cylinder thereof, refrigerating system and air conditioner |
WO2016056065A1 (en) * | 2014-10-07 | 2016-04-14 | 三菱電機株式会社 | Embedded-permanent-magnet-type electric motor, compressor, and refrigeration and air conditioning apparatus |
-
2016
- 2016-09-14 JP JP2016179607A patent/JP6703921B2/en active Active
-
2017
- 2017-04-14 CN CN201780023665.6A patent/CN109072917B/en active Active
- 2017-04-14 WO PCT/JP2017/015299 patent/WO2018051567A1/en unknown
- 2017-04-14 EP EP17850474.2A patent/EP3514391B1/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006177225A (en) * | 2004-12-22 | 2006-07-06 | Hitachi Home & Life Solutions Inc | Rotary compressor |
JP2008014150A (en) * | 2006-07-03 | 2008-01-24 | Toshiba Kyaria Kk | Rotary compressor and refrigeration cycle device using the same |
WO2013065706A1 (en) * | 2011-10-31 | 2013-05-10 | 東芝キヤリア株式会社 | Sealed rotary compressor and refrigeration cycle device |
Non-Patent Citations (1)
Title |
---|
See also references of EP3514391A4 * |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2023142560A1 (en) * | 2022-01-26 | 2023-08-03 | 珠海格力电器股份有限公司 | Self-starting synchronous reluctance compressor and refrigeration device system |
Also Published As
Publication number | Publication date |
---|---|
CN109072917A (en) | 2018-12-21 |
EP3514391B1 (en) | 2024-05-29 |
EP3514391A1 (en) | 2019-07-24 |
JP6703921B2 (en) | 2020-06-03 |
EP3514391A4 (en) | 2020-01-22 |
CN109072917B (en) | 2020-03-17 |
JP2018044489A (en) | 2018-03-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11437877B2 (en) | Rotor, motor, compressor, and air conditioner | |
WO2018051567A1 (en) | Rotary compressor and refrigeration cycle device | |
KR101449788B1 (en) | Induction motor, compressor and refrigerating cycle apparatus | |
JP5490251B2 (en) | Induction motor rotor, induction motor, compressor, blower and air conditioner | |
JP2013072429A (en) | Vane rotary compressor | |
KR20180113564A (en) | Electric motors, compressors, and refrigeration cycle units | |
JP6328342B2 (en) | Rotor, electric motor, compressor and refrigeration air conditioner | |
JP4172514B2 (en) | Compressor | |
WO2013114541A1 (en) | Embedded permanent magnet electric motor and compressor | |
JP5991958B2 (en) | Rotary compressor | |
WO2021070353A1 (en) | Rotor, electric motor, compressor, and air conditioner | |
JP5135779B2 (en) | Compressor | |
JP2008138591A5 (en) | ||
JP2008141805A (en) | Compressor | |
JP7344969B2 (en) | Compressor and refrigeration cycle equipment | |
WO2023175670A1 (en) | Stator for electric motor, compressor, and refrigeration air conditioning device | |
US20240305150A1 (en) | Rotor, electric motor, compressor, refrigeration cycle device, and air conditioner | |
US11952989B2 (en) | Linear compressor | |
JP6091575B2 (en) | Hermetic compressor and refrigeration cycle apparatus provided with the hermetic compressor | |
JP5738213B2 (en) | Compressor and refrigeration cycle apparatus provided with the compressor | |
JP2013200061A (en) | Rotary compressor and freezing cycle device | |
KR20230147336A (en) | Driving unit and linear compressor including the same | |
JP2013231442A (en) | Hermetic compressor and refrigeration cycle apparatus including the hermetic compressor | |
KR101406521B1 (en) | Motor and compressor with it | |
JP5688903B2 (en) | Refrigeration cycle equipment |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17850474 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2017850474 Country of ref document: EP Effective date: 20190415 |