WO2018051418A1 - 転送装置、パケット転送システムおよびパケット転送方法 - Google Patents
転送装置、パケット転送システムおよびパケット転送方法 Download PDFInfo
- Publication number
- WO2018051418A1 WO2018051418A1 PCT/JP2016/077013 JP2016077013W WO2018051418A1 WO 2018051418 A1 WO2018051418 A1 WO 2018051418A1 JP 2016077013 W JP2016077013 W JP 2016077013W WO 2018051418 A1 WO2018051418 A1 WO 2018051418A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- packet
- unit
- delay
- transmission
- output
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L47/00—Traffic control in data switching networks
- H04L47/10—Flow control; Congestion control
- H04L47/28—Flow control; Congestion control in relation to timing considerations
- H04L47/283—Flow control; Congestion control in relation to timing considerations in response to processing delays, e.g. caused by jitter or round trip time [RTT]
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L47/00—Traffic control in data switching networks
- H04L47/10—Flow control; Congestion control
- H04L47/32—Flow control; Congestion control by discarding or delaying data units, e.g. packets or frames
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L43/00—Arrangements for monitoring or testing data switching networks
- H04L43/08—Monitoring or testing based on specific metrics, e.g. QoS, energy consumption or environmental parameters
- H04L43/0852—Delays
Definitions
- the present invention relates to a transfer device, a packet transfer system, and a packet transfer method for transferring an input packet to an optical transmission line.
- Digital fiber radio is also called DROF (Digitized Radio on Fiber).
- DROF Digitized Radio on Fiber
- a wireless base station is separated into a master station device having a wireless modulation / demodulation function and a slave station device having a wireless transmission / reception function, and a wireless baseband signal or wireless signal is transmitted between these devices. Transmits radio signals such as intermediate frequency signals.
- the master station device and the slave station device are connected via an optical fiber network, and the master station device and the slave station device transmit a packet made of digitized data on the optical fiber network as a packet network.
- Patent Document 1 for example, Patent Document 1
- DROF wireless signals are transferred on a packet basis, so that existing packet-based network services can be used, and operation at low cost is possible.
- DROF it is possible to realize a cell radius such as several kilometers to several tens of kilometers to widen the radio access network.
- the delay fluctuation generated in the packet network needs to be 1 ⁇ s or less.
- Patent Document 1 in order to suppress delay fluctuation in the DROF, the master station apparatus and the slave station apparatus perform time synchronization using GPS (Global Positioning System) or time information acquired from the outside by the master station apparatus, and delay fluctuation is performed. A method for suppressing the above has been proposed.
- GPS Global Positioning System
- the present invention has been made in view of the above, and an object of the present invention is to obtain a transfer apparatus that can suppress delay fluctuation even when transferring packets transmitted from a plurality of different apparatuses.
- a transfer device receives a packet from each different packet transmission device, holds a received packet, and outputs a plurality of transmission units; A packet output control unit that instructs each of the transmission units to output the held packet.
- the transmission unit of the transfer device inserts delay time information indicating the time from when the packet is received until it is output into the packet as information used in the packet delay fluctuation suppressing process in the opposite device, and transmits the packet to the opposite device.
- the transfer device has an effect of suppressing delay fluctuation when transferring packets transmitted from a plurality of different devices.
- 1 is a diagram illustrating a configuration example of a packet transfer system according to a first embodiment.
- 1 is a diagram illustrating a configuration example of hardware that implements a multiplexing device and a separation device according to a first embodiment;
- 1 is a flowchart illustrating an operation example of a transmission unit of a multiplexing device according to a first embodiment;
- 3 is a flowchart illustrating an operation example of a receiving unit of the separation apparatus according to the first embodiment.
- FIG. The figure which shows the structural example of the hardware which implement
- 10 is a flowchart illustrating an operation example of the transmission unit of the multiplexing apparatus according to the second embodiment.
- 10 is a flowchart illustrating an operation example of the receiving unit of the separation apparatus according to the second embodiment.
- 10 is a flowchart illustrating an operation example of a transmission delay measurement unit included in a multiplexing unit of the multiplexing device according to the third embodiment;
- 10 is a flowchart illustrating an operation example of a measurement packet termination unit included in the separation apparatus according to the third embodiment.
- 10 is a flowchart illustrating an operation example of a delay amount measurement unit included in the multiplexing device according to the third embodiment;
- FIG. 1 is a diagram illustrating a configuration example of a packet transfer system according to the first exemplary embodiment of the present invention.
- the packet transfer system 100 according to the first exemplary embodiment is transmitted from packet transmitting apparatuses 3-1 and 3-2 that transmit packets and packet transmitting apparatuses 3-1 and 3-2.
- Multiplexer 1 that multiplexes and transmits packets
- separator 2 that receives packets transmitted from multiplexer 1 and outputs the packets according to the destination
- packet reception that receives packets output from separator 2 Devices 4-1 and 4-2.
- the multiplexer 1 and the separator 2 are connected via an optical transmission line such as an optical fiber.
- the multiplexing device 1 and the separation device 2 are transfer devices that transfer packets transmitted and received between the packet transmission devices 3-1 and 3-2 and the packet reception devices 4-1 and 4-2.
- the multiplexing device 1 is a transfer device on the packet transmission device side
- the separation device 2 is a transfer device on the packet reception device side.
- the packet transmission devices 3-1 and 3-2 can exemplify the above-described base station device of the radio base station, and the packet reception devices 4-1 and 4-2 include the above-described sub-station devices of the radio base station. It can be illustrated. In the present embodiment, it is assumed that the packet receiver 4-1 receives the packet transmitted by the packet transmitter 3-1 and the packet receiver 4-2 receives the packet transmitted by the packet transmitter 3-2. I do. Note that the packet transmission devices 3-1 and 3-2 may be general transmission devices that generate and transmit packets. Similarly, the packet receiving devices 4-1 and 4-2 may be general receiving devices that receive packets. Further, the number of packet transmitting devices and the number of packet receiving devices are not limited to those shown in FIG.
- the multiplexing apparatus 1 includes transmission units 10 1 and 10 2 , a packet output control unit 15, a packet multiplexing unit 16, and an optical interface (IF: Inter Face) 17.
- Transmission unit 10 1 receives the packet output from the packet transmission device 3-1, to retain the packet output control unit 15 until an output instruction.
- Transmission unit 10 1 when receiving an instruction from the packet output control unit 15 outputs the packet that holds the packet multiplexing unit 16. At this time, the transmission unit 10 1, and outputs the inserted delay time information indicating a time that held the packet to the packet.
- Transmission unit 10 2 receives the packet output from the packet transmission device 3-2, to retain the packet output control section 15 until instructed.
- the transmitter 10 2 outputs the held packet to the packet multiplexer 16. At this time, the transmitter 10 2 inserts delay time information indicating the time during which the packet has been held into the packet and outputs it.
- the delay time information is information used by the separation apparatus 2 as the opposite apparatus in the delay fluctuation suppressing process for the packet received from the multiplexing apparatus 1. The delay fluctuation suppressing process will be described later.
- the transmission unit has two configurations, that is, a configuration including the transmission units 10 1 and 10 2 , but the number of transmission units may be three or more. Since the transmission units 10 1 and 10 2 have the same configuration and execute the same processing, in the present embodiment, the transmission unit 10 1 will be described, and a detailed description of the transmission unit 10 2 will be omitted.
- the transmission unit 10 1 includes a packet buffer 11 1 , a delay measurement unit 12 1 , a footer insertion unit 13 1, and a footer generation unit 14 1 .
- Packet buffer 11 1 receives holds a packet from the packet transmitting unit 3-1. Further, when the packet buffer 11 1 recognizes the arrival of the packet, the packet buffer 11 1 outputs a head detection signal indicating that to the delay measuring unit 12 1 . The packet buffer 11 1 outputs the held buffer to the footer insertion unit 13 1 in accordance with an instruction from the packet output control unit 15.
- Delay measuring section 12 1 on the basis from the packet buffer 11 Timing and packet buffers 11 1 packet arrives to 1 timing packet is output to measure the delay time of a packet.
- the packet delay time is the time from when the packet arrives at the packet buffer 11 1 until it is output, that is, the time that the packet buffer 11 1 holds the packet.
- a packet output instruction output from the packet output control unit 15 to the packet buffer 11 1 is input to the delay measurement unit 12 1 . Therefore, the delay measuring unit 12 1 can grasp the timing when the packet is output from the packet buffer 11 1 .
- the delay measurement unit 12 1 outputs delay time information indicating the measurement result to the footer generation unit 14 1 .
- the footer insertion unit 13 1 receives the packet output from the packet buffer 11 1 , inserts the footer information generated by the footer generation unit 14 1 into the received packet, and outputs the packet to the packet multiplexing unit 16.
- the footer generation unit 14 1 generates footer information based on the delay time information output from the delay measurement unit 12 1 and outputs the footer information to the footer insertion unit 13 1 .
- the footer information includes at least delay time information.
- the packet output control unit 15 instructs the transmission units 10 1 and 10 2 to output the held packets.
- the packet output control unit 15 determines in accordance with a predetermined procedure which packet output instruction is to be given to which transmission unit. As an example, the packet output control unit 15 monitors whether or not each transmission unit holds a packet, and the size of the held packet. Based on the monitoring result, the packet output control unit 15 rounds the packet from each transmission unit. A packet output instruction is given to each transmission unit so that it is output.
- the packet multiplexing unit 16 multiplexes the packet output from the transmission unit 10 1 and the packet output from the transmission unit 10 2 and outputs the multiplexed packet to the optical interface 17.
- the optical interface 17 converts the packet output from the packet multiplexing unit 16 from an electrical signal to an optical signal and outputs it to the optical transmission line.
- the separation device 2 includes reception units 20 1 and 20 2 , an optical interface (IF) 24, and a packet separation unit 25.
- IF optical interface
- the optical interface 24 converts the packet from an optical signal to an electrical signal and outputs the packet to the packet separator 25.
- the packet separator 25 outputs the packet input from the optical interface 24 to the receiver 20 1 or 20 2 .
- the packet separating unit 25, packet or packet reception device 4-1 transmitted from the packet transmission device 3-1 outputs a packet of the destination, to the reception unit 20 1.
- the packet separating unit 25, packet or packet reception device 4-2 transmitted from the packet transmission device 3-2 outputs a packet of the destination, the receiving unit 20 2.
- the packet separation unit 25 determines the output destination of the packet based on information stored in the packet header.
- the packet separation unit 25 may determine the output destination by another method.
- Reception unit 20 1 receives the packet of the packet reception device destined 4-1 via the optical interface 24 and the packet separating unit 25, a delay is inserted in the received packet the time information of the packets transmitted from the multiplexer 1 The packet is held for a time determined based on the above, and then output to the packet receiving device 4-1.
- Receiving unit 20 2 receives the packet of the packet reception device destined 4-2 via the optical interface 24 and the packet separating unit 25, a delay is inserted in the received packet the time information of the packets transmitted from the multiplexer 1 The packet is held for a time determined based on the above, and then output to the packet receiver 4-2.
- Reception unit 20 1 and 20 2 are processed to be executed on the received packets, specifically, the processing of outputting after holding packets over determined time based on the delay time information inserted in the received packet This corresponds to delay fluctuation suppression processing.
- the receiving unit has two configurations, that is, a configuration including the receiving units 20 1 and 20 2 , but the number of receiving units may be three or more.
- Configuration of the receiving unit 20 1 and 20 2 are identical, for performing similar processing, in this embodiment performs the described receiver 20 1, detailed description of the receiver 20 2 is omitted.
- the reception unit 20 1 includes a footer extraction unit 21 1 , a packet delay unit 22 1, and a delay calculation unit 23 1 .
- the footer extraction unit 21 1 When the footer extraction unit 21 1 receives a packet from the packet separation unit 25, the footer extraction unit 21 1 extracts footer information from the received packet, outputs the footer information to the delay calculation unit 23 1, and outputs the packet to the packet delay unit 22 1 .
- the packet output by the footer extraction unit 21 1 to the packet delay unit 22 1 is a packet that does not include footer information, that is, the same packet as the packet before the footer information is inserted in the transmission unit 10 1 of the multiplexing device 1. is there.
- the packet delay unit 22 1 holds the packet received from the footer extraction unit 21 1 for the time indicated by the delay correction value calculated by the delay calculation unit 23 1 described later, and then outputs the packet to the packet reception device 4-1.
- the delay calculation unit 23 1 calculates a delay correction value indicating the time during which the packet delay unit 22 1 continues to hold a packet. .
- the delay calculation unit 23 1 outputs the calculated delay correction value to the packet delay unit 22 1 .
- FIG. 2 is a diagram illustrating a configuration example of hardware for realizing the multiplexing device 1 and the separation device 2 according to the first embodiment.
- the packet transmission device 3 is the packet transmission device 3-1 or 3-2 shown in FIG.
- the packet receiving device 4 is the packet receiving device 4-1 or 4-2 shown in FIG.
- the multiplexing apparatus 1 is realized by a packet interface (IF) 101, a packet buffer 102, a buffer counter circuit 103, a buffer reading circuit 104, a packet generation circuit 105, and an electro-optical interface (IF) 106.
- IF packet interface
- a packet buffer 102 a packet buffer 102
- a buffer counter circuit 103 a buffer reading circuit 104
- a packet generation circuit 105 a packet generation circuit 105
- IF electro-optical interface
- the packet interface 101 is a receiving device that receives a packet output from the packet transmitting device 3.
- the packet buffer 102 is a buffer that stores packets received by the packet interface 101.
- the buffer counter circuit 103 is a counter that starts counting when a packet is stored in the packet buffer 102.
- the buffer read circuit 104 is an electronic circuit that reads a packet stored in the packet buffer 102.
- the packet generation circuit 105 is an electronic circuit that generates a packet to be transmitted to the separation device 2 by adding footer information to the packet read from the packet buffer 102 by the buffer reading circuit 104.
- the electro-optical interface 106 is an optical transmitter that converts an input electric signal into an optical signal and outputs the optical signal.
- the buffer read circuit 104 and the packet generation circuit 105 may be a single circuit, a composite circuit, a programmed processor, a parallel programmed processor, an ASIC (Application Specific Integrated Circuit), an FPGA (Field Programmable Gate Array), or these. It is a processing circuit of a combined configuration.
- the packet buffer 11 1 and the packet buffer 11 2 are realized by the packet buffer 102.
- the delay measuring units 12 1 and 12 2 are realized by the packet interface 101, the buffer counter circuit 103, and the buffer read circuit 104. That is, the buffer counter circuit 103 starts counting when the packet interface 101 receives a packet and stores the packet in the packet buffer 102, and stops counting when the buffer reading circuit 104 reads the packet from the packet buffer 102. .
- the footer insertion units 13 1 and 13 2 are realized by the buffer read circuit 104 and the packet generation circuit 105.
- the footer generation units 14 1 and 14 2 are realized by the packet generation circuit 105. That is, when the buffer reading circuit 104 reads a packet from the packet buffer 102, the packet generation circuit 105 generates footer information based on the count value of the buffer counter circuit 103, and inserts the footer information into the packet, thereby separating the separation device 2 Generate a packet to send to.
- the packet output control unit 15 is realized by the buffer read circuit 104.
- the packet multiplexing unit 16 is realized by the packet generation circuit 105.
- the optical interface 17 is realized by the electro-optical interface 106.
- the separation device 2 includes an electro-optical interface (IF) 201, a packet buffer 202, a packet analysis circuit 203, a buffer counter circuit 204, a buffer reading circuit 205, a CPU (Central Processing Unit) 206, a memory 207, and a packet interface (IF) 208. And an external setting interface (IF) 209.
- IF electro-optical interface
- the electrical-optical interface 201 is an optical receiver that converts an input optical signal into an electrical signal and outputs the electrical signal.
- the packet buffer 202 is a buffer that stores packets received by the electro-optical interface 201.
- the packet analysis circuit 203 is an electronic circuit that analyzes a packet received by the electro-optical interface 201.
- the buffer counter circuit 204 is a counter that starts counting when a packet is stored in the packet buffer 202.
- the buffer read circuit 205 is an electronic circuit that reads a packet stored in the packet buffer 202.
- the CPU 206 implements some functions of the separation device 2 by executing a program stored in the memory 207.
- the memory 207 includes RAM (Random Access Memory), ROM (Read Only Memory), flash memory, EPROM (Erasable Programmable Read Only Memory), EEPROM (Electrically Erasable Programmable Read Only Memory), and the like.
- the packet interface 208 is a transmitting device that transmits the packet read from the packet buffer 202 by the buffer reading circuit 205 to the packet receiving device 4.
- the external setting interface 209 is an electronic circuit for connecting an external personal computer (PC: Personal Computer) to the separation device 2, and acquires information such as a fixed delay amount described later from the personal computer.
- the packet analysis circuit 203 and the buffer read circuit 205 are a single circuit, a composite circuit, a programmed processor, a parallel programmed processor, an ASIC, an FPGA, or a processing circuit having a combination thereof.
- the optical interface 24 is realized by the electro-optical interface 201.
- the packet separator 25 is realized by the packet analysis circuit 203 and the packet buffer 202. That is, the packet analysis circuit 203 analyzes the packet received by the electro-optical interface 201, determines the output destination of the packet, and stores the packet in the packet buffer 202.
- the footer extraction units 21 1 and 21 2 are realized by the packet analysis circuit 203. That is, the packet analysis circuit 203 analyzes the packet and extracts footer information from the packet.
- the packet delay units 22 1 and 22 2 are realized by the packet buffer 202, the buffer counter circuit 204, the buffer read circuit 205, and the packet interface 208. That is, the buffer counter circuit 204 counts the elapsed time since the packet is stored in the packet buffer 202, and the buffer read circuit 205 determines that the packet buffer 202 is in the case where the count value of the buffer counter circuit 204 matches the delay correction value. Read packet from. The packet interface 208 outputs the packet read by the buffer reading circuit 205 to the packet receiving device 4.
- the delay calculation units 23 1 and 23 2 are realized by the CPU 206, the memory 207, and the external setting interface 209. That is, the CPU 206 executes processing according to the program stored in the memory 207, and based on the delay time information included in the footer information extracted from the packet and the fixed delay amount information acquired from the outside by the external setting interface 209. , the time each packet delay unit 22 1 and 22 2 continues to hold the packet, i.e., each packet delay unit 22 1 and 22 2 calculates a delay correction value that indicates the time until the output of receiving the packet.
- the overall operation of the packet transfer system according to the present embodiment that is, the operation in which the multiplexing device 1 transfers the packets received from the packet transmission devices 3-1 and 3-2 to the separation device 2 will be described.
- the multiplexing device 1 transfers the packet received from the packet transmission device 3-1, to the separation device 2, and the separation device 2 outputs the packet to the packet separation device 4-1.
- the operation when the packet output from the packet transmission device 3-2 is transferred from the multiplexing device 1 to the separation device 2 is the same.
- the transmission unit 10 1 of the multiplexer 1 receives this. That is, the packet output from the packet transmission device 3-1 is stored in the packet buffer 11 1 constituting the transmission unit 10 1 of the multiplexing device 1.
- Packet buffer 11 1 is configured to accumulate by detecting the head of the packet, and notifies the packet head timing indicates the detection of the head of the packet to the delay measurement unit 12 1. Detection of the head of the packet corresponds to detection of a preamble if the packet is an Ethernet (registered trademark) frame.
- the packet buffer 11 1 stores the packet in consideration of the footer information inserted into the packet by the subsequent footer insertion unit 13 1 . For example, when the footer insertion unit 13 1 adds footer information in the middle of a packet, the packet buffer 11 1 stores the packet in a state where an area for inserting footer information is secured.
- the delay measurement unit 12 1 starts counting the delay time in units of clocks using a clock (not shown) of the multiplexing device 1 triggered by the packet head timing notified from the packet buffer 11 1 .
- the clock unit is 8 ns.
- the delay time is an integer multiple of 8 ns.
- the packet output control unit 15 recognizes whether or not packets are stored in the packet buffers 11 1 and 11 2 in each transmission unit, and determines the packet output start timing from each packet buffer. The packet output control unit 15 determines the packet output order of the packet buffer according to the round robin method or the like. Packet output control section 15 notifies the packet output start timing of the packet buffer 11 1 to the packet buffer 11 1 and a delay measuring section 12 1, a packet output start timing packet buffer 11 2 and the delay measurement from the packet buffer 11 2 to notify the department 12 2. When the packet output start timing is notified from the packet output control unit 15, the packet buffer 11 1 outputs the accumulated packets to the footer insertion unit 13 1 .
- Delay measuring unit 12 ends the counting of the delay time and output an instruction packet from the packet output control section 15 is notified, the footer generating unit 14 a count value T_m of the delay time count result or clock as the delay time information Notify 1
- Footer generation section 14 1 generates a footer information by using the delay time information notified from the delay measurement unit 12 1, and outputs to the footer insertion portion 13 1.
- the footer information is information including delay time information, and may include input port information as necessary.
- the footer insertion unit 13 1 inserts the footer information generated by the footer generation unit 14 1 into the packet output from the packet buffer 11 1 .
- Footer insertion portion 13 1 is not limited to the position it is considered to insert to insert the footer information in the preamble area or a header area of the Ethernet frame.
- Figure 3 is a transmission unit of the multiplexer according to the first embodiment, i.e., the packet buffer 11 1, the delay measurement unit 12 1, footer insertion portion 13 1 and the footer generating unit 14 transmission unit 10 1, which is configured with 1 It is a flowchart which shows the example of operation
- Transmission unit 10 1 checks whether or not a packet has been input (step S11), and if there is no input (Step S11: No), and repeats the check.
- Transmission unit 10 1 when the packet is inputted (step S11: Yes), starts counting the elapsed time (step S12).
- Transmission unit 10 1 counts the elapsed time by counting the clock.
- Transmission unit 10 1 starts to count the elapsed time, it confirms whether an instruction to output the packet from the packet output control section 15 (step S13), and if there is no instruction (step S13: No), repeats the confirmation .
- Transmission unit 10 1 when instructed to output the packet (step S13: Yes), stops the counting of the elapsed time (step S14).
- the transmission unit 10 1 outputs to the packet multiplexing section 16 by inserting the delay time information indicating an elapsed time since the packet is input to the packet (step S15).
- Transmission unit 10 1 in step S15 and inserted into a packet to generate the footer information including the delay time information, and outputs the packet.
- Transmission unit 10 1 in addition to the delay time information, information indicating the packet source of the packet transmission device, i.e., generation information of an input port which the packet is input, the footer information including identification information or the like of the packet transmission device May be.
- the footer information is delay time information.
- the transmission unit 10 1 generates and outputs a packet including the delay time information which is information of the elapsed time until the output of receiving the packet to the packet multiplexing section 16.
- the packet multiplexing unit 16 receives the packet in which the footer information is inserted by the footer insertion unit 13 1 and the packet in which the footer information is inserted by the footer insertion unit 13 2 , and time-division-multiplexes each received packet to the optical interface 17. Output.
- the timing at which packets are output from each footer insertion unit is controlled by the packet output control unit 15 so that the packets are not output redundantly from each footer insertion unit. Therefore, the packet multiplexing unit 16 outputs a packet to the optical interface 17 every time a packet is input from each footer insertion unit.
- the optical interface 17 When the optical interface 17 receives a packet from the packet multiplexing unit 16, the optical interface 17 converts the electrical signal into an optical signal and transmits the optical signal to the separation device 2 via the optical transmission path.
- the optical signal transmitted from the multiplexer 1 is received by the separator 2. That is, the optical interface 24 of the separation device 2 receives a packet transmitted as an optical signal from the multiplexing device 1. When receiving the optical signal, the optical interface 24 converts the optical signal into an electrical signal and outputs the electrical signal to the packet separator 25. The optical interface 24 also performs processing for extracting the clock of the multiplexing device 1 from the electrical signal, and uses the extracted clock as the clock of the separation device 2. As the clock extraction method, Clock and Data Recovery (CDR) or the like is used.
- CDR Clock and Data Recovery
- the packet separation unit 25 identifies which packet transmission device the packet input from the optical interface 24 is transmitted from, and outputs the packet to the reception unit 22 1 or the reception unit 22 2 .
- the packet separation unit 25 identifies a packet transmission source using, for example, a VLAN (Virtual Local Area Network) TAG of an Ethernet frame.
- VLAN Virtual Local Area Network
- the packet separator 25 may identify the transmission source of the packet by using the footer information inserted in the packet, that is, the input port information. Packet output from the packet separating unit 25 is input to the footer extractor 21 second receiving unit 20 1 of the footer extractor 21 1 or the receiving unit 20 2.
- Footer extractor 21 first receiving unit 20 1 extracts footer information from a packet received from the packet separating unit 25.
- the footer extraction unit 21 1 outputs the delay time information included in the extracted footer information to the delay calculation unit 23 1 .
- the delay time information is the clock count value T_m of the multiplexer 1.
- the delay calculation unit 23 1 calculates a value (T_f ⁇ T_m) obtained by subtracting a count value (T_m) indicating a delay time in the multiplexing apparatus 1 from a preset fixed delay amount (T_f) as a delay correction value.
- the delay calculation unit 23 1 notifies the packet delay unit 22 1 of the calculated delay correction value (T_f ⁇ T_m).
- the fixed delay amount T_f is set in advance in the delay calculation unit 23 1 from an external personal computer or the like via the external setting interface 209 shown in FIG.
- the fixed delay amount T_f is calculated using the following equation (1).
- T_f maximum packet length x number of packet transmission devices x 2 / (transfer rate between multiplexer and demultiplexer + transfer rate of packet transmission device) ... (1)
- Maximum packet length is an upper limit value of the packet size that can be transmitted by the system, and is, for example, 1518 bytes in the case of a system compliant with Ethernet.
- the packet delay unit 22 1 delays the packet received from the footer extraction unit 21 1 based on the delay correction value calculated by the delay calculation unit 23 1 , and then outputs the packet to the packet reception device 4-1. That is, when receiving a packet from the footer extraction unit 21 1 , the packet delay unit 22 1 starts counting using the clock extracted by the optical interface 24, and outputs the packet when the count value reaches the delay correction value.
- Figure 4 shows the receiving part of such a separating apparatus according to the first embodiment, i.e., the footer extractor 21 1, an operation example of the receiver 20 1 configured with a packet delay unit 22 1 and the delay calculating unit 23 1 It is a flowchart.
- Reception unit 20 1 checks whether it has received a packet (step S21), and if not received (step S21: No), and repeats the check.
- Reception unit 20 1 when receiving the packet (step S21: Yes), reads the delay time information inserted in the received packet to calculate a delay correction value (step S22).
- the reception unit 20 calculated delay correction value to confirm whether or not more than zero (step S23), if more than zero (step S23: Yes), starts counting the elapsed time (step S24).
- the reception unit 20 1 checks whether the elapsed time indicated by the delay correction value (step S25), and has not elapsed time indicated by the delay correction value (Step S25: No), the confirmation repeat.
- Reception unit 20 when elapsed time indicated by the delay correction value (Step S25: Yes), it outputs the packet to the packet reception device 4-1 (step S26).
- the receiving unit 20 when the delay correction value calculated in step S22 is less than zero (step S23: No), discards without outputting the packet (step S27).
- the multiplexing device 1 is the time from when a packet is received until it is output, more specifically, after the packet is input to the packet buffers 11 1 and 11 2. Footer information including delay time information indicating the time until output is inserted into the packet and transmitted.
- the separation device 2 holds the packet for the time indicated by the delay correction value, which is a value obtained by subtracting the delay time information from the fixed delay amount, and then outputs the packet.
- each packet transmitted from the packet transmission apparatuses 3-1 and 3-2 is transmitted to the packet reception apparatus 4-
- the delay time until reception at 1, 4-2 can be fixed, and both the packet input from the packet transmission device 3-1 and the packet input from the packet transmission device 3-2 are delayed. Can be suppressed. That is, it is possible to suppress delay fluctuation when transferring packets input from a plurality of packet transmission apparatuses.
- FIG. 5 is a diagram illustrating an example of a packet transfer operation in the packet transfer system 100 according to the first embodiment.
- the packet # 1 transmitted by the packet transmission device 3-1 starts to be output to the transmission path as soon as the input to the multiplexing device 1 is completed.
- the delay amount T_m1 is inserted as the delay time information into the packet # 1.
- the packet # 2 transmitted by the packet transmission device 3-2 waits for the output of the packet # 1 to be completed after the input to the multiplexing device 1 is completed, and then starts to be output to the transmission path. .
- the delay amount T_m2 is inserted as the delay time information into the packet # 2.
- the separation device 2 starts outputting the packet # 1 to the packet reception device 4-1, after the time indicated by the delay correction value (T_f-Tm1) has elapsed since the reception of the packet # 1 started. Further, after the time indicated by the delay correction value (T_f ⁇ Tm2) has elapsed since the start of reception of the packet # 2, the separation device 2 starts outputting the packet # 2 to the packet reception device 4-2. .
- Embodiment 2 FIG. In the first embodiment described above, the delay correction amount is calculated by the separation device. Next, a second embodiment in which the delay correction amount is calculated by the multiplexing device will be described.
- FIG. 6 is a diagram illustrating a configuration example of the packet transfer system according to the second exemplary embodiment of the present invention.
- the same components as those in the packet transfer system according to the first embodiment are denoted by the same reference numerals.
- a description of portions common to the packet transfer system according to the first exemplary embodiment is omitted.
- the multiplexer 1 of the packet transfer system 100 according to the first embodiment is replaced with the multiplexer 1a, and the separator 2 is replaced with the separator 2a.
- the multiplexing device 1a is obtained by replacing the transmission units 10 1 and 10 2 and the packet output control unit 15 of the multiplexing device 1 according to the first embodiment with transmission units 10a 1 and 10a 2 and a packet output control unit 15a.
- the transmission unit 10a 1 includes the packet buffer 11 1 , the delay measurement unit 12 1, and the footer generation unit 14 1 of the transmission unit 10 1 according to the first embodiment, the packet buffer 11a 1 , the delay calculation unit 18 1, and the footer generation unit. replaced 14a 1, the transmission unit 10a 2, the packet buffer 11 2 of the transmission unit 10 2 of the first embodiment, the delay measurement unit 12 2 and the footer generation section 14 2 packet buffers 11a 2, the delay calculating unit 18 2 and it is replaced with a footer generation section 14a 2.
- the separating device 2a is obtained by replacing the receiving units 20 1 and 20 2 of the separating device 2 according to the first embodiment with receiving units 20a 1 and 20a 2 .
- the receiving unit 20a 1 deletes the delay calculating unit 23 1 from the receiving unit 20 1 of the first embodiment, further replaces the footer extractor 21 1 in the footer extractor 21a 1, the receiving section 20a 2 is
- the delay calculation unit 23 2 is deleted from the reception unit 20 2 according to the first embodiment, and the footer extraction unit 21 2 is replaced with a footer extraction unit 21a 2 .
- the transmitter 10a 1 receives the packet output from the packet transmitter 3-1 and holds it until the output timing instructed by the packet output controller 15a is reached. After receiving the packet, when the transmission unit 10a 1 receives an instruction of the output timing from the packet output control unit 15a, the transmission unit 10a 1 waits until the instructed output timing is reached, and when the output timing is reached, the packet multiplexing unit 16 Output to. Further, when receiving an instruction of output timing from the packet output control unit 15a, the transmission unit 10a 1 receives the packet from the reception unit 20a of the separation device 2a based on the time during which the packet is held, that is, the time from when the packet is received until it is output.
- a delay correction value indicating the time from when 1 receives a packet until it is output is calculated. Further, the transmitter 10a 1 inserts the calculated delay correction value into the packet and outputs it.
- the transmitter 10a 2 receives the packet output from the packet transmitter 3-2 and holds it until the output timing instructed by the packet output controller 15a is reached. After receiving the packet, when the transmission unit 10a 2 receives an instruction of the output timing from the packet output control unit 15a, the transmission unit 10a 2 waits until the instructed output timing is reached, and when the output timing is reached, the packet multiplexing unit 16 Output to.
- the transmission unit 10a 2 when receiving an instruction of output timing from the packet output control unit 15a, receives the packet from the reception unit 20a of the separation device 2a based on the time during which the packet is held, that is, the time from when the packet is received until it is output. 2 calculates a delay correction value indicating the time from when a packet is received until it is output. Further, the transmitter 10a 2 inserts the calculated delay correction value into the packet and outputs it.
- the transmission unit includes two configurations, that is, a configuration including the transmission units 10 a 1 and 10 a 2 , but the number of transmission units may be three or more. Since the transmission units 10a 1 and 10a 2 have the same configuration and execute the same processing, in the present embodiment, the transmission unit 10a 1 will be described, and the detailed description of the transmission unit 10a 2 will be omitted.
- the packet buffer 11a 1 receives and holds the packet from the packet transmission device 3-1. Further, when the packet buffer 11a 1 recognizes the arrival of the packet, the packet buffer 11a 1 outputs a head detection signal indicating that to the delay calculation unit 18 1 . The packet buffer 11a 1 outputs the held buffer to the footer insertion unit 13 1 in accordance with an instruction from the packet output control unit 15a.
- Delay calculation section 18 1 on the basis of the timing and the packet buffer 11a 1 packet arrives at the packet buffer 11a 1 to the timing at which the packet is output, and calculates a delay correction value.
- the delay correction value delay calculation section 181 calculates, same information as the delay correction value delay calculation section 23 first receiving portion 20 1 of the separation device 2 described in the first embodiment is calculated, i.e., the reception section 20a 1 is information indicating the time from when a packet is received until it is output.
- a packet output schedule instruction that the packet output control unit 15a outputs to the packet buffer 11a 1 is input to the delay calculation unit 18 1 .
- the packet output schedule instruction is information for instructing the packet buffer 11a 1 on the packet output timing, and the delay calculation unit 18 1 can grasp the timing at which the packet is output from the packet buffer 11a 1. .
- the delay calculation unit 18 1 calculates a delay correction value based on the time from when a packet is input to the packet buffer 11a 1 until it is output, that is, the time from when the transmission unit 10a 1 receives a packet until it is output. To do. Specifically, the delay calculation unit 18 1 calculates, as a delay correction value, a value obtained by subtracting, from the fixed delay amount, the time from when a packet is input to the packet buffer 11a 1 until it is output. The delay calculation unit 18 1 outputs the calculated delay correction value to the footer generation unit 14a 1 .
- the delay calculation unit 18 1 calculates the calculated delay. without outputting a correction value to the footer generating unit 14a 1, and notifies the output stop to the packet output control unit 15a.
- the operation of the packet output control unit 15a when receiving an output stop notification will be described separately.
- the footer generation unit 14a 1 generates footer information based on the delay correction value output from the delay calculation unit 18 1 and outputs the footer information to the footer insertion unit 13 1 .
- the footer information includes at least a delay correction value.
- the packet output control unit 15a notifies the transmission units 10a 1 and 10a 2 of an output schedule instruction, and instructs to output the held packet at the timing indicated by the output schedule instruction that has notified the packet.
- Packet output controller 15a a signal indicating the output schedule instruction, the packet buffer 11a 1 and the delay calculating unit 18 1 of the transmitting unit 10a 1, with respect to a transmission unit packet buffer 11a 2 and the delay calculating unit 18 2 of 10a 2 Output.
- the packet output control unit 15a determines the timing at which the transmission units 10a 1 and 10a 2 output packets according to a predetermined procedure.
- the packet output control unit 15a monitors whether or not each transmission unit holds a packet, and the size of the packet held by each transmission unit, and transmits each round robin based on the monitoring result.
- Each transmission unit determines the timing of outputting a packet so that the packet is output from the unit.
- the packet output control unit 15a when receiving the notification output stop from the delay calculating unit 18 1, instructs the packet buffer 11a 1, the output drops stop or packet that holds the packet.
- the packet buffer 11a 1 discards the held packet without outputting it.
- the operation when the packet output control unit 15a receives the output stop notification from the delay calculation unit 18 2 is the same.
- the reception unit 20a 1 receives a packet addressed to the packet reception device 4-1 among the packets transmitted from the multiplexing device 1a via the optical interface 24 and the packet separation unit 25, and is inserted into the received packet. After holding the packet for the time indicated by the delay correction value, the packet is output to the packet receiving device 4-1.
- the receiving unit 20a 2 receives a packet addressed to the packet receiving device 4-2 from the packets transmitted from the multiplexing device 1a via the optical interface 24 and the packet separating unit 25, and a delay correction value inserted in the received packet. Is held for the time indicated by, and then output to the packet receiver 4-2.
- the receiving unit has two configurations, that is, a configuration including the receiving units 20 a 1 and 20 a 2 , but the number of receiving units may be three or more. Since the receiving units 20a 1 and 20a 2 have the same configuration and execute similar processing, the receiving unit 20a 1 will be described in the present embodiment, and a detailed description of the receiving unit 20a 2 will be omitted.
- the footer extracting unit 21a 1 receives a packet from the packet separating unit 25
- the footer extracting unit 21a 1 extracts footer information from the received packet, and a delay correction value included in the extracted footer information
- the packet after the footer information extraction is output to the packet delay unit 22 1 .
- the packet delay unit 22 1 When the packet delay unit 22 1 receives the packet and the delay correction value from the footer extraction unit 21a 1 , the packet delay unit 22 1 holds the received packet for the time indicated by the delay correction value, and then outputs the packet to the packet reception device 4-1.
- FIG. 7 is a diagram illustrating a configuration example of hardware for realizing the multiplexing device 1a and the separation device 2a according to the second embodiment.
- the same reference numerals are given to the hardware similar to that shown in FIG. 2 showing the configuration example of the hardware that realizes the multiplexing device 1 and the separation device 2 according to the first embodiment, and detailed description thereof will be omitted.
- the multiplexing apparatus 1a is realized by a packet interface 101, a packet buffer 102, a buffer counter circuit 103, a buffer reading circuit 104, a packet generation circuit 105, an electro-optical interface 106, a CPU 107, a memory 108, and an external setting interface 109.
- the packet interface 101, the packet buffer 102, the buffer counter circuit 103, the buffer reading circuit 104, the packet generation circuit 105, and the electro-optical interface 106 are the packet interface 101, the packet buffer 102, the buffer counter circuit 103, and the buffer reading shown in FIG.
- the hardware is the same as the circuit 104, the packet generation circuit 105, and the electro-optical interface 106.
- the CPU 107 implements a part of the functions of the multiplexing device 1 a by executing a program stored in the memory 108.
- the memory 108 corresponds to RAM, ROM, flash memory, EPROM, EEPROM, or the like.
- the external setting interface 109 is an electronic circuit for connecting an external personal computer (PC) to the multiplexing device 1a. Information such as a fixed delay amount used by the delay calculation units 18 1 and 18 2 shown in FIG. Obtain from a personal computer.
- the delay calculation units 18 1 and 18 2 are realized by the CPU 107, the memory 108, and the external setting interface 109. That is, executes processing CPU107 is in accordance with the program stored in the memory 108, when realizing the delay calculation unit 18 1, the timing at which the packet is input to packet buffer 11a 1, the packet from the packet buffer 11a 1 The delay correction value is calculated based on the timing at which the signal is output. The same applies to the case where the delay calculation unit 18 2 is realized.
- the footer generation units 14 a 1 and 14 a 2 are realized by the packet generation circuit 105. That is, when the CPU 107 receives a delay correction value calculated by the CPU 107 executing a process according to a program stored in the memory 108, the packet generation circuit 105 generates footer information to be inserted into the packet based on the delay correction value. To do.
- the separation device 2a is realized by an electro-optical interface 201, a packet buffer 202, a packet analysis circuit 203, a buffer counter circuit 204, a buffer reading circuit 205, and a packet interface 208.
- the electro-optical interface 201, the packet buffer 202, the packet analysis circuit 203, the buffer counter circuit 204, the buffer reading circuit 205, and the packet interface 208 are the same as the electro-optical interface 201, the packet buffer 202, the packet analysis circuit 203, It is the same hardware as the buffer counter circuit 204, the buffer read circuit 205, and the packet interface 208.
- the footer extraction units 21 a 1 and 21 a 2 are realized by the packet analysis circuit 203. That is, the packet analysis circuit 203 analyzes the packet and extracts footer information from the packet.
- the overall operation of the packet transfer system according to this embodiment that is, the operation in which the multiplexing device 1a transfers the packets received from the packet transmission devices 3-1 and 3-2 to the separation device 2a will be described.
- the multiplexing device 1a transfers the packet received from the packet transmission device 3-1 to the separation device 2a, and the separation device 2a outputs the packet to the packet separation device 4-1.
- the operation when the packet output from the packet transmission device 3-2 is transferred from the multiplexing device 1a to the separation device 2a is the same. Descriptions of operations common to the multiplexing device 1 and the separation device 2 according to the first embodiment are omitted.
- the transmission unit 10a 1 of the multiplexer 1a receives this. That is, the packet output from the packet transmission device 3-1 is stored in the packet buffer 11a 1 constituting the transmission unit 10a 1 of the multiplexing device 1a.
- the packet buffer 11a 1 detects and accumulates the head of the packet, and notifies the delay calculation unit 18 1 of the packet head timing indicating that the head of the packet has been detected.
- the delay calculation unit 18 1 receives the notification of the packet head timing from the packet buffer 11a 1 and further receives the notification of the output schedule instruction from the packet output control unit 15a, that is, the notification of the timing at which the packet buffer 11a 1 outputs the packet, based on the packet output start timing of the packet input start timing and the packet buffers 11a 1 to the buffer 11a 1, to calculate the delay correction value. That is, the delay calculation unit 18 1 calculates a time from when a packet is input to the packet buffer 11a 1 until it is output, and calculates a delay correction value by subtracting the calculated time from a set fixed delay amount. To do.
- the delay calculation unit 18 1 When the calculated delay correction value is greater than or equal to zero, the delay calculation unit 18 1 notifies the footer generation unit 14a 1 of the delay correction value. Also, when the calculated delay correction value is a negative value, the delay calculation unit 18 1 notifies the packet output control unit 15a that reading is stopped without notifying the footer generation unit 14a 1 of the delay correction value.
- Footer generating unit 14a 1 generates footer information using the notified delay correction value from the delay calculating unit 18 1, and outputs to the footer insertion portion 13 1.
- the footer information is information including a delay correction value, and may include input port information as necessary.
- the packet output control unit 15a recognizes the presence / absence of packet accumulation in the packet buffers 11a 1 and 11a 2 in each transmission unit, and determines the packet output start timing from each packet buffer.
- the packet output control unit 15a determines the packet output order of the packet buffer according to the round robin method or the like.
- the packet output control unit 15a determines the packet output start timing from the packet buffer 11a 1
- the packet output control unit 15a notifies the packet buffer 11a 1 and the delay calculation unit 18 1 of this by an output schedule instruction, and starts packet output from the packet buffer 11a 2.
- the timing is determined, it is notified to the packet buffer 11a 2 and the delay calculation unit 18 2 by an output schedule instruction.
- the packet output control unit 15a when receiving the notification output stop from the delay calculating unit 18 1, and instructs the output stop of the packet to the packet buffer 11a 1.
- the packet output control unit 15 a instructs the packet buffer 11 a 2 to stop outputting the packet.
- the packet buffer 11a 1 receives the notification of the output schedule instruction from the packet output control unit 15a, and outputs the held packet at the timing indicated by the output schedule instruction without receiving the instruction to stop outputting the packet.
- the packet buffer 11a 1 discards the held packet without outputting it.
- the packet buffer 11a 2 receives the notification of the output schedule instruction from the packet output control unit 15a, and outputs the held packet at the timing indicated by the output schedule instruction without receiving the instruction to stop the output of the packet. When receiving a packet output stop instruction, the packet buffer 11a 2 discards the held packet without outputting it.
- Figure 8 is a transmission unit of the multiplexer according to the second embodiment, i.e., the packet buffer 11a 1, footer insertion portion 13 1, a transmitting portion 10a 1 which is configured with a footer generation section 14a 1 and the delay calculating unit 18 1 It is a flowchart which shows the example of operation
- the transmitter 10a 1 confirms whether or not a packet has been input (step S31). If there is no input (step S31: No), the confirmation is repeated.
- the transmission unit 10a 1 starts counting elapsed time (step S32).
- the transmission unit 10a 1 counts the elapsed time by counting the clock.
- the transmitter 10a 1 that has started counting the elapsed time confirms whether or not a packet output schedule instruction has been received from the packet output controller 15a (step S33). If there is no instruction (step S33: No), confirmation is performed. repeat.
- the transmitter 10a 1 calculates a delay correction value (step S34).
- step S34 the transmission unit 10a 1 calculates a time from when the packet is received from the packet transmission device 3-1 until the packet output timing indicated by the packet output schedule instruction, and the calculated time is calculated in advance.
- the delay correction value is calculated by subtracting from the set fixed delay amount.
- the transmitter 10a 1 checks whether or not the calculated delay correction value is zero or more (step S35), and if it is zero or more (step S35: Yes), checks whether it is the packet output timing. (Step S36).
- step S36 the transmitting unit 10a 1 checks whether or not the elapsed time from the input of the packet has reached the output timing indicated by the packet output schedule instruction.
- step S36: No the transmission unit 10a 1 repeats checking whether it is the packet output timing. Transmitting portion 10a 1, when an output timing of the packet (step S36: Yes), and outputs the inserted delay correction value in the packet to the packet multiplexing section 16 (step S37).
- step S37 the transmission unit 10a 1 generates footer information including the delay correction value, inserts it into the packet, and outputs the packet.
- the transmission unit 10a 1 generates information indicating the packet transmission device that is the packet transmission source, that is, information on the input port to which the packet is input, identification information of the packet transmission device, and the like. May be.
- the footer information is a delay correction value.
- the delay correction value calculated in step S34 is less than zero (step S35: No)
- the transmission unit 10a 1 discards the packet without outputting it (step S38).
- the transmission unit 10a 1 when the transmission unit 10a 1 outputs a packet to the packet multiplexing unit 16, the transmission unit 10a 1 outputs a delay correction value that is information indicating the time from when the packet is input to the reception unit 20a 1 of the separation device 2a until the output. Insert the included footer information into the packet and output it.
- the separator 2a When the separator 2a receives a packet addressed to the packet receiver 4-1 from the multiplexer 1a, the receiver 20a 1 processes the packet and outputs it to the packet receiver 4-1.
- FIG. 9 is a flowchart illustrating an operation example of the reception unit 20a 1 configured to include the reception unit of the separation device according to the second embodiment, that is, the footer extraction unit 21a 1 and the packet delay unit 22 1 .
- the receiving unit 20a 1 confirms whether or not a packet has been received (step S41), and if not received (step S41: No), repeats the confirmation.
- the receiving unit 20a 1 reads the delay correction value inserted in the received packet (step S42), and starts counting elapsed time (step S43).
- the receiving unit 20a 1 confirms whether or not the time indicated by the delay correction value has elapsed (step S44). If the time indicated by the delay correction value has not elapsed (step S44: No), the confirmation is performed. repeat.
- Receiving unit 20a 1, when elapsed time indicated by the delay correction value (Step S44: Yes) outputs the packet to the packet reception device 4-1 (step S45).
- the multiplexing device 1a calculates the delay correction value based on the time from when a packet is input to the packet buffers 11a 1 and 11a 2 until it is output.
- the footer information including the delay correction value is inserted into the packet and transmitted.
- the separating device 2a holds the packet for the time indicated by the delay correction value inserted in the packet and outputs the packet.
- the delay until each packet transmitted from the packet transmission device 3-1 or 3-2 is received by the packet reception device 4-1 or 4-2.
- the time can be fixed, and delay fluctuations of all packets can be suppressed.
- the packet delay amount that is, the time from when the packet is input to the multiplexer 1a until it is output is compared with the fixed delay amount, and the packet delay amount is fixed delay.
- Embodiment 3 FIG. Embodiments 1 and 2 described above are intended to suppress delay fluctuations in the multiplexing apparatus and delay fluctuations in the separation apparatus. Next, a case where the multiplexing apparatus and a plurality of separation apparatuses are connected is described. Embodiment 3 for suppressing delay fluctuation will be described.
- FIG. 10 is a diagram illustrating a configuration example of a packet transfer system according to the third exemplary embodiment of the present invention.
- the same components as those in the packet transfer system according to the first or second embodiment are denoted by the same reference numerals. A description of portions common to the packet transfer system according to the first or second embodiment will be omitted.
- the packet transfer system 100b includes packet transmission apparatuses 3-1 and 3-2 that transmit packets and multiplexing that transmits the packets transmitted from the packet transmission apparatuses 3-1 and 3-2.
- Device 1b separation devices 2b-1 and 2b-2 that receive packets transmitted from multiplexing device 1b and output them to a route according to the destination, and packet reception that receives packets output from separation device 2b-1 Devices 4-1 and 4-2.
- the number of separation devices is two, but may be three or more. Further, the description of the packet receiving device that receives the packet output from the separating device 2b-2 and the packet transmitting device that transmits the packet to the packet receiving device is omitted.
- the multiplexing apparatus 1b includes multiplexing units 30-1 and 30-2 and a delay amount determining unit 40.
- the multiplexing unit 30-1 and the multiplexing unit 30-2 have the same configuration, and the description of the internal configuration of the multiplexing unit 30-2 is omitted in FIG. In the present embodiment, the multiplexing unit 30-1 will be described, and the description of the multiplexing unit 30-2 will be omitted. Although the number of multiplexing units is 2 in FIG. 10, it may be 3 or more.
- Each of the plurality of multiplexing units has a one-to-one correspondence with any one of the plurality of separation devices, and transfers the packet received from the packet transmission device to the corresponding separation device.
- the multiplexing unit 30-1 transfers the packet to the separation device 2b-1
- the multiplexing unit 30-2 transfers the packet to the separation device 2b-2.
- the multiplexing unit 30-1 includes transmission units 10a 1 and 10a 2 , a packet output control unit 15b, a packet multiplexing unit 16b, an optical interface (IF) 17b, and a transmission delay measurement unit 19.
- the transmitting units 10a 1 and 10a 2 have the same configuration as the transmitting units 10a 1 and 10a 2 of the multiplexing device 1a described in the second embodiment, and perform the same processing, and thus description thereof is omitted.
- Packet output control unit 15b notifies the output schedule instruction to the transmitting section 10a 1 and 10a 2, and instructs to output at the timing indicated by the output schedule instruction notifies the packet held. Packet output controller 15b, a signal indicating the output schedule instruction, the packet buffer 11a 1 and the delay calculating unit 18 1 of the transmitting unit 10a 1, with respect to a transmission unit packet buffer 11a 2 and the delay calculating unit 18 2 of 10a 2 Output.
- Packet multiplexing unit 16b a packet output from the transmitting unit 10a 1, the output from the transmission section 10a 2 packets, and output from the transmission delay measurement unit 19 packets are multiplexed and output to the optical interface 17b. Further, when the packet multiplexing unit 16b receives a packet processed by the transmission delay measuring unit 19 from the optical interface 17b, the packet multiplexing unit 16b outputs the packet to the transmission delay measuring unit 19.
- the optical interface 17b converts the packet output from the packet multiplexing unit 16b from an electrical signal to an optical signal and outputs it to the optical transmission line. Further, when a packet transmitted as an optical signal from the separation device 2b-1 is input from the optical transmission path, the optical interface 17b converts the packet from an optical signal to an electrical signal and outputs the packet to the packet multiplexer 16b.
- the transmission delay measurement unit 19 transmits / receives a transmission delay measurement packet to / from the separation device 2b-1, and measures the transmission delay in the optical transmission path between the multiplexing unit 30-1 and the separation device 2b-1. .
- the transmission delay measurement unit 19 notifies the delay amount determination unit 40 of the transmission delay measurement result.
- the delay amount determination unit 40 determines a fixed delay amount necessary for each multiplexing unit to calculate the delay amount based on the transmission delay measured by each multiplexing unit. The delay amount determination unit 40 notifies the determined fixed delay amount to each multiplexing unit.
- Each of the plurality of demultiplexing devices has a one-to-one correspondence with any one of the plurality of multiplexing units of the multiplexing device 1b, and transfers a packet received from the corresponding multiplexing unit to the packet receiving device.
- the separation device 2b-1 receives the packet transferred by the multiplexing unit 30-1 of the multiplexing device 1b, and the separation device 2b-1 receives the received packet according to its destination. Output to the packet receiver 4-1 or 4-2. Since the separation devices 2b-1 and 2b-2 have the same configuration and perform the same processing, the separation device 2b-1 will be described here, and the description of the separation device 2b-2 will be omitted.
- the separation device 2b-1 includes reception units 20a 1 and 20a 2 , an optical interface (IF) 24b, a packet separation unit 25b, and a measurement packet termination unit 26.
- the receiving units 20a 1 and 20a 2 have the same configuration as the receiving units 20a 1 and 20a 2 of the separation device 2a described in the second embodiment, and perform the same processing, and thus description thereof is omitted.
- the optical interface 24b converts the packet from an optical signal to an electrical signal and outputs the packet to the packet separation unit 25b.
- the packet is converted from an electronic signal to an optical signal and output to the optical transmission line.
- the packet separation unit 25 b outputs the packet input from the optical interface 24 b to the reception unit 20 a 1 , the reception unit 20 a 2, or the measurement packet termination unit 26. Specifically, the packet separating unit 25b, packet or packet reception device 4-1 transmitted from the packet transmission device 3-1 outputs a packet of the destination to the receiver 20a 1. The packet separating unit 25b, packet or packet reception device 4-2 transmitted from the packet transmission device 3-2 outputs a packet of the destination to the receiver 20a 2. Further, the packet separation unit 25 b outputs the transmission delay measurement packet to the measurement packet termination unit 26. The packet separation unit 25b determines the output destination of the packet based on, for example, information stored in the packet header. The output destination may be determined by other methods.
- the measurement packet termination unit 26 terminates the transmission delay measurement packet transmitted by the multiplexing unit 30-1 of the multiplexing device 1b, and returns the measurement packet to the multiplexing unit 30-1.
- FIG. 11 is a diagram illustrating a configuration example of hardware for realizing the multiplexing device 1b and the separation devices 2b-1 and 2b-2 according to the third embodiment.
- FIG. 2 shows a configuration example of hardware that realizes the multiplexing device 1 and the separation device 2 according to the first embodiment, and shows a configuration example of hardware that realizes the multiplexing device 1a and the separation device 2a according to the second embodiment.
- the same hardware as in FIG. 7 is assigned the same reference numeral, and detailed description thereof is omitted.
- the multiplexer 1b includes a packet interface 101, a packet buffer 102, a buffer counter circuit 103, a buffer read circuit 104, a packet generation circuit 105, an electro-optical interface 106, a CPU 107, a memory 108, an external setting interface 109, and a transmission delay measurement circuit 110.
- a packet interface 101 a packet buffer 102, a buffer counter circuit 103, a buffer read circuit 104, a packet generation circuit 105, an electro-optical interface 106, and a transmission delay measurement circuit 110 corresponding to the number of multiplexing units.
- the structure provided is shown.
- the packet buffers 11a 1 and 11a 2 are realized by the packet buffer 102.
- the delay calculation units 18 1 and 18 2 are realized by the CPU 107 and the memory 108. That is, executes processing CPU107 is in accordance with the program stored in the memory 108, when realizing the delay calculation unit 18 1, the timing at which the packet is input to packet buffer 11a 1, the packet from the packet buffer 11a 1 The delay correction value is calculated based on the timing at which the signal is output. The same applies to the case where the delay calculation unit 18 2 is realized.
- the footer insertion units 13 1 and 13 2 are realized by the buffer read circuit 104 and the packet generation circuit 105. Also, the footer generation units 14 a 1 and 14 a 2 are realized by the packet generation circuit 105. That is, when the CPU 107 receives a delay correction value calculated by the CPU 107 executing a process according to a program stored in the memory 108, the packet generation circuit 105 generates footer information to be inserted into the packet based on the delay correction value. To do. Next, the packet generation circuit 105 inserts the generated footer information into the packet read from the packet buffer 102 by the buffer reading circuit 104, and generates a packet to be transmitted to the separation devices 2b-1 and 2b-2.
- the packet output control unit 15b is realized by the buffer read circuit 104.
- the packet multiplexing unit 16 b is realized by the packet generation circuit 105.
- the optical interface 17 b is realized by the electro-optical interface 106.
- the transmission delay measuring unit 19 is realized by the transmission delay measuring circuit 110. That is, the transmission delay measurement circuit 110 transmits and receives a transmission delay measurement packet, and measures the transmission delay between the multiplexer 1b and the demultiplexer 2b-1.
- the delay amount determination unit 40 is realized by the CPU 107 and the memory 108. That is, the CPU 107 executes a process according to a program stored in the memory 108 and calculates a fixed delay amount based on the transmission delay measured by the transmission delay measurement circuit 110.
- Separation devices 2b-1 and 2b-2 are realized by an electro-optical interface 201, a packet buffer 202, a packet analysis circuit 203, a buffer counter circuit 204, a buffer read circuit 205, a packet interface 208, and a packet generation circuit 210.
- the optical interface 24b is realized by the electro-optical interface 201.
- the packet separation unit 25b is realized by the packet analysis circuit 203 and the packet buffer 202. That is, the packet analysis circuit 203 analyzes the packet received by the electro-optical interface 201, determines the output destination of the packet, and stores the packet in the packet buffer 202.
- the footer extraction units 21 a 1 and 21 a 2 are realized by the packet analysis circuit 203. That is, the packet analysis circuit 203 analyzes the packet and extracts footer information from the packet.
- the packet delay units 22 1 and 22 2 are realized by the packet buffer 202, the buffer counter circuit 204, the buffer read circuit 205, and the packet interface 208. That is, the buffer counter circuit 204 counts the elapsed time since the packet is stored in the packet buffer 202, and the buffer read circuit 205 determines that the packet buffer 202 is in the case where the count value of the buffer counter circuit 204 matches the delay correction value. Read packet from.
- the packet interface 208 outputs the packet read by the buffer reading circuit 205 to the packet receiving devices 4-1 and 4-2.
- the measurement packet termination unit 26 is realized by the packet analysis circuit 203 and the packet generation circuit 210. That is, the packet analysis circuit 203 analyzes the packet, and when the packet received from the multiplexing device 1b is a transmission delay measurement packet, the packet generation circuit 210 generates a measurement packet to be returned to the multiplexing device 1b.
- the multiplexing unit 30-1 of the multiplexing device 1b transfers the packets received from the packet transmission devices 3-1 and 3-2 to the separation device 2b-1, and the separation device 2b-1 transfers the packets to the packet separation device 4-b.
- a case of outputting to 1,4-2 will be described.
- the operation when the multiplexing unit 30-2 transfers the packet to the separation device 2b-2 is the same.
- the multiplexing units 30-1 and 30-2 of the multiplexing device 1b receive the packet from the packet transmission device, the footer information including the delay correction value is inserted into the received packet, and time division is performed.
- the multiplexed data is transferred to the separation device 2b-1 or 2b-2.
- the delay correction value is calculated by the delay calculation unit of each transmission unit.
- the separation device 2b-1 receives the packet from the multiplexing device 1b, the separation device 2b-1 outputs the packet to the packet reception device 4-1 or 4-2 when the time indicated by the delay correction value inserted in the received packet has elapsed. .
- the above operation is the same as the operation in which the multiplexing device 1a and the separation device 2a transfer packets in the packet transfer system 100a according to the second embodiment.
- the difference between the packet transfer system 100b according to the third embodiment and the packet transfer system 100a according to the second embodiment is a method for determining a fixed delay amount used when the multiplexing device calculates a delay correction value. That is, in the packet transfer system 100b according to the third embodiment, the delay amount determination unit 40 of the multiplexing device 1b determines the fixed delay amount based on the transmission delay time between each multiplexing unit and each separation device. Different. Hereinafter, an operation in which the delay amount determination unit 40 determines the fixed delay amount will be described.
- the operation in which the delay amount determination unit 40 determines the fixed delay amount is executed, for example, when the multiplexing device 1b is activated.
- the delay amount determination unit 40 performs an operation of determining the fixed delay amount when the connection relationship between the multiplexer 1b and the separator is changed, such as when the number of separators connected to the multiplexer 1b is increased or decreased. May be executed. It should be noted that the execution conditions for the operation in which the delay amount determination unit 40 determines the fixed delay amount are not limited to these.
- the transmission delay measurement unit 19 of the multiplexing unit 30-1 In the operation of determining the fixed delay amount, first, the transmission delay measurement unit 19 of the multiplexing unit 30-1 generates and transmits a transmission delay measurement packet. An internal counter value managed by the multiplexer 1b is stored in the measurement packet. The measurement packet is input from the transmission delay measurement unit 19 to the packet multiplexing unit 16b and transmitted to the corresponding separation device 2b-1 via the optical interface 17b.
- the separation device 2b-1 Upon receipt of the transmission delay measurement packet, the separation device 2b-1 separates it at the packet separation unit 25b and inputs it to the measurement packet termination unit 26.
- the packet separator 25b separates the packets by identifying the measurement packets using, for example, a VLAN TAG of the Ethernet frame. That is, the transmission delay measurement unit 19 of the multiplexing unit 30-1 generates and transmits a transmission delay measurement packet in which information indicating that it is a transmission delay measurement packet is set in the VLAN TAG.
- the packet separation unit 25b of the separation device 2b-1 determines whether or not the packet is a transmission delay measurement packet by confirming the VLAN TAG of the received packet.
- the measurement packet termination unit 26 of the separation device 2b-1 captures the internal counter value stored in the received measurement packet, and the separation device 2b-1 adds the internal counter value captured by the measurement packet termination unit 26 to its own device. Set the internal counter. Next, the measurement packet termination unit 26 stores the counter value counted by the internal counter of its own device, that is, the separation device 2b-1, in the measurement packet received from the multiplexing device 1b and transmits it to the multiplexing device 1b.
- the measurement packet output from the measurement packet termination unit 26 is input to the packet separation unit 25b and transmitted to the multiplexing unit 30-1 of the multiplexing device 1b via the optical interface 24b.
- the transmission delay measurement unit 19 of the multiplexing unit 30-1 receives the measurement packet transmitted by the measurement packet termination unit 26 of the separation device 2b-1 via the optical interface 17b and the packet multiplexing unit 16b. Then, the transmission delay measuring unit 19 determines the multiplexing device 1b based on the counter value stored in the received measurement packet and the counter value of the own device when the measurement packet is received, that is, the counter value of the multiplexing device 1b. The transmission delay time with respect to the separation device 2b-1 is measured.
- the transmission delay measuring unit 19 calculates a difference between the counter value of the own device at the time of receiving the measurement packet and the counter value stored in the received measurement packet, and the calculated difference is 2 By dividing, the transmission delay time between the multiplexer 1b and the separator 2b-1 is obtained. The transmission delay measurement unit 19 notifies the delay amount determination unit 40 of the obtained transmission delay time as a transmission delay.
- the transmission delay measuring unit 19 of the multiplexing unit 30-1 measures the transmission delay time
- the transmission delay measuring unit not shown in the multiplexing unit 30-2 also performs the separation device 2b-2 in the same procedure.
- the transmission delay time is measured, and the measured transmission delay time is notified to the delay amount determination unit 40 as a transmission delay.
- the delay amount determination unit 40 uses the transmission delay time notified from the multiplexing units 30-1 and 30-2, and calculates a fixed delay amount (T_f) according to the following equation (2). When the calculation of the fixed delay amount is completed, the delay amount determination unit 40 notifies the calculated delay delay amount to each delay calculation unit included in the multiplexing units 30-1 and 30-2.
- T_f (maximum transmission delay time ⁇ own transmission delay amount) + maximum packet length ⁇ number of packet transmission devices ⁇ 2 / (transfer rate between multiplexing device and demultiplexing device + transfer rate of packet transmission device):
- “maximum value of transmission delay time” is the maximum value of the transmission delay times notified from each multiplexing unit.
- “Own transmission delay amount” is the time required from the packet input to the completion of the packet output when the multiplexer 1b immediately outputs the packet input from the packet transmission device to the optical transmission line.
- the “number of packet transmitting devices” is the number of packet transmitting devices connected to the multiplexing unit where the “maximum value of transmission delay time” is measured.
- Each delay calculation unit included in the multiplexing units 30-1 and 30-2 calculates a delay correction value using the fixed delay amount notified from the delay amount determination unit 40.
- FIG. 12 is a flowchart of an operation example of the transmission delay measuring unit 19 included in the multiplexing unit 30-1 of the multiplexing device 1b according to the third embodiment.
- the transmission delay measuring unit 19 generates a transmission delay measurement packet storing the internal counter value of the own device and transmits the packet to the separation device 2b-1 (step S51).
- the transmission delay measurement unit 19 calculates a transmission delay time from the own device to the separation device 2b-1 (step S53).
- the transmission delay measuring unit 19 calculates the transmission delay time based on the counter value stored in the received measurement packet and the value of the internal counter of the own device when the measurement packet is received. To do.
- the counter value stored in the received measurement packet is the value of the internal counter of the separation device 2b-1 at the time when the separation device 2b-1 transmits the measurement packet.
- the transmission delay measuring unit 19 outputs transmission delay information indicating the transmission value delay time calculated in step S53 to the delay amount determining unit 40 (step S54).
- FIG. 13 is a flowchart illustrating an operation example of the measurement packet termination unit 26 provided in the separation device 2b-1 according to the third embodiment.
- the measurement packet termination unit 26 first receives the transmission delay measurement packet transmitted by the multiplexing device 1b (step S61). Next, the measurement packet termination unit 26 uses the internal counter value stored in the received measurement packet, that is, the counter value of the internal counter of the multiplexing device 1b at the time when the measurement packet is transmitted. Is adjusted (step S62). In step S62, the measurement packet termination unit 26 extracts the internal counter value stored in the measurement packet received in step S61, and adds the internal counter value of the own device, that is, the separation device 2b-1, to the extracted internal counter value. Match the values.
- the measurement packet termination unit 26 stores the value of the internal counter of the own device for the measurement packet received from the multiplexing device 1b, and transmits the measurement packet to the multiplexing device 1b (step S63).
- FIG. 14 is a flowchart of an operation example of the delay amount measuring unit 40 included in the multiplexing device 1b according to the third embodiment.
- the delay amount determination unit 40 checks whether or not transmission delay information has been received from all the multiplexing units (step S71), and when there is a multiplexing unit that has not received transmission delay information (step S71: No), Repeat the verification operation.
- the delay amount determination unit 40 calculates a fixed delay amount based on the transmission delay information received from each multiplexing unit (step S72).
- the delay amount determination unit 40 notifies each multiplexing unit of the calculated fixed delay amount (step S73).
- the multiplexing device 1b includes a plurality of multiplexing units that transmit packets to the demultiplexing device, and the multiplexing unit is a transmission delay time between the demultiplexing device that is the packet transfer destination.
- a transmission delay measuring unit for measuring the multiplexing device 1b determines a fixed delay amount to be used when calculating the delay correction value based on the transmission delay time measured by the transmission delay measuring unit of each multiplexing unit.
- the delay time from when a packet is input to the multiplexer until each separator outputs a packet can be set to a fixed time corresponding to the combination of the multiplexer and the plurality of separators. Also, it is possible to suppress the number of discarded packets while preventing the delay time from when a packet is input to the multiplexing device to when each separating device outputs the packet becomes longer than necessary.
- the configuration described in the above embodiment shows an example of the contents of the present invention, and can be combined with another known technique, and can be combined with other configurations without departing from the gist of the present invention. It is also possible to omit or change the part.
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Data Exchanges In Wide-Area Networks (AREA)
Abstract
転送装置である多重装置(1)は、それぞれ異なるパケット送信装置からパケットを受け取り、受け取ったパケットを保持してから出力する複数の送信部(101,102)と、複数の送信部(101,102)の各々に対して保持しているパケットの出力を指示するパケット出力制御部(15)と、を備え、送信部(101,102)は、パケットを受け取ってから出力するまでの時間を示す遅延時間情報を対向装置におけるパケットの遅延揺らぎ抑制処理で使用する情報としてパケットに挿入し、対向装置である分離装置(2)へ送信する。
Description
本発明は、入力されたパケットを光伝送路へ転送する転送装置、パケット転送システムおよびパケット転送方法に関する。
近年、デジタルファイバ無線を適用した無線通信システムの開発が行われている。デジタルファイバ無線はDROF(Digitized Radio on Fiber)とも呼ばれる。DROFを適用した無線通信システムでは、無線基地局を、無線変復調機能を持った親局装置と無線送受信機能を持った子局装置とに分離し、それらの装置間で、無線ベースバンド信号または無線中間周波数信号などの無線信号を伝送する。具体的には、親局装置と子局装置とを光ファイバネットワークを介して接続し、親局装置および子局装置は、デジタル化したデータからなるパケットをパケットネットワークとしての光ファイバネットワーク上で伝送する(例えば特許文献1)。DROFではパケットベースで無線信号を転送するため、既存のパケットベースのネットワークサービスの利用が可能であり、低コストでの運用が可能である。DROFを用いることにより、数km~数十kmといったセル半径を実現して無線アクセスネットワークの広域化を図ることができる。
DROFを実現する場合、子局装置がデータを受信するタイミングを一致させる必要があり、パケットネットワークで発生する遅延揺らぎを全パケットに対し抑制する必要がある。一例として、LTE(Long Term Evolution)においてDROFを実現する場合、パケットネットワークで発生する遅延揺らぎを1μs以下とする必要がある。
特許文献1では、DROFにおける遅延揺らぎを抑制するため、GPS(Global Positioning System)または親局装置が外部から取得した時刻情報を用いて親局装置と子局装置とが時刻同期を行い、遅延揺らぎを抑制する方法が提案されている。
特許文献1に記載された発明では、異なる複数の装置から送信されたパケットを転送する場合について考慮されておらず、遅延揺らぎを抑制することができないという問題があった。
本発明は、上記に鑑みてなされたものであって、異なる複数の装置から送信されたパケットを転送する場合においても遅延揺らぎを抑制することが可能な転送装置を得ることを目的とする。
上述した課題を解決し、目的を達成するために、本発明にかかる転送装置は、それぞれ異なるパケット送信装置からパケットを受け取り、受け取ったパケットを保持してから出力する複数の送信部と、複数の送信部の各々に対して保持しているパケットの出力を指示するパケット出力制御部とを備える。また、転送装置の送信部は、パケットを受け取ってから出力するまでの時間を示す遅延時間情報を対向装置におけるパケットの遅延揺らぎ抑制処理で使用する情報としてパケットに挿入し、対向装置へ送信する。
本発明にかかる転送装置は、異なる複数の装置から送信されたパケットを転送する場合の遅延揺らぎを抑制することができる、という効果を奏する。
以下に、本発明の実施の形態にかかる転送装置、パケット転送システムおよびパケット転送方法を図面に基づいて詳細に説明する。なお、この実施の形態によりこの発明が限定されるものではない。
実施の形態1.
図1は、本発明の実施の形態1にかかるパケット転送システムの構成例を示す図である。図1に示したように、実施の形態1にかかるパケット転送システム100は、パケットを送信するパケット送信装置3-1および3-2と、パケット送信装置3-1および3-2から送信されたパケットを多重して送信する多重装置1と、多重装置1から送信されたパケットを受信して宛先に応じた経路へ出力する分離装置2と、分離装置2から出力されたパケットを受信するパケット受信装置4-1および4-2とを備えている。多重装置1と分離装置2とは光ファイバなどの光伝送路を介して接続されている。多重装置1および分離装置2は、パケット送信装置3-1および3-2とパケット受信装置4-1および4-2との間で送受信されるパケットを転送する転送装置である。多重装置1はパケット送信装置側の転送装置、分離装置2はパケット受信装置側の転送装置となる。
図1は、本発明の実施の形態1にかかるパケット転送システムの構成例を示す図である。図1に示したように、実施の形態1にかかるパケット転送システム100は、パケットを送信するパケット送信装置3-1および3-2と、パケット送信装置3-1および3-2から送信されたパケットを多重して送信する多重装置1と、多重装置1から送信されたパケットを受信して宛先に応じた経路へ出力する分離装置2と、分離装置2から出力されたパケットを受信するパケット受信装置4-1および4-2とを備えている。多重装置1と分離装置2とは光ファイバなどの光伝送路を介して接続されている。多重装置1および分離装置2は、パケット送信装置3-1および3-2とパケット受信装置4-1および4-2との間で送受信されるパケットを転送する転送装置である。多重装置1はパケット送信装置側の転送装置、分離装置2はパケット受信装置側の転送装置となる。
パケット送信装置3-1および3-2は、上述した無線基地局の親局装置を例示することができ、パケット受信装置4-1および4-2は、上述した無線基地局の子局装置を例示することができる。本実施の形態では、パケット送信装置3-1が送信したパケットをパケット受信装置4-1が受信し、パケット送信装置3-2が送信したパケットをパケット受信装置4-2が受信するものとして説明を行う。なお、パケット送信装置3-1および3-2は、パケットを生成して送信する一般的な送信装置としてもよい。同様に、パケット受信装置4-1および4-2は、パケットを受信する一般的な受信装置としてもよい。また、パケット送信装置の数およびパケット受信装置の数を図1に示したものに限定するものではない。
多重装置1の構成について説明する。図1に示したように、多重装置1は、送信部101,102、パケット出力制御部15、パケット多重部16および光インタフェース(IF:Inter Face)17を備える。
送信部101は、パケット送信装置3-1から出力されたパケットを受け取り、パケット出力制御部15から出力指示があるまで保持する。送信部101は、パケット出力制御部15から指示を受けた場合、保持しているパケットをパケット多重部16へ出力する。このとき、送信部101は、パケットを保持していた時間を示す遅延時間情報をパケットに挿入して出力する。送信部102は、パケット送信装置3-2から出力されたパケットを受け取り、パケット出力制御部15から指示があるまで保持する。送信部102は、パケット出力制御部15から指示を受けた場合、保持しているパケットをパケット多重部16へ出力する。このとき、送信部102は、パケットを保持していた時間を示す遅延時間情報をパケットに挿入して出力する。遅延時間情報は、対向装置である分離装置2が、多重装置1から受信したパケットの遅延揺らぎ抑制処理で使用する情報である。遅延揺らぎ抑制処理については後述する。
図1に示した例では送信部が2つの構成すなわち送信部101および102を備えた構成としているが送信部の数を3以上としてもよい。送信部101および102の構成は同一であり、同様の処理を実行するため、本実施の形態では送信部101について説明を行い、送信部102の詳細な説明は省略する。
送信部101は、パケットバッファ111、遅延測定部121、フッタ挿入部131およびフッタ生成部141を備える。
パケットバッファ111は、パケット送信装置3-1からパケットを受け取り保持する。また、パケットバッファ111は、パケットの到着を認識すると、その旨を示す信号である先頭検出信号を遅延測定部121へ出力する。パケットバッファ111は、パケット出力制御部15からの指示に従い、保持しているバッファをフッタ挿入部131へ出力する。
遅延測定部121は、パケットバッファ111にパケットが到着したタイミングおよびパケットバッファ111からパケットが出力されるタイミングに基づいて、パケットの遅延時間を測定する。パケットの遅延時間は、パケットがパケットバッファ111に到着してから出力されるまでの時間、すなわちパケットバッファ111がパケットを保持していた時間である。ここで、遅延測定部121には、パケット出力制御部15がパケットバッファ111に対して出力する、パケットの出力指示が入力される。そのため、遅延測定部121は、パケットバッファ111からパケットが出力されるタイミングを把握することができる。遅延測定部121は、遅延時間の測定が終了すると、測定結果を示す遅延時間情報をフッタ生成部141へ出力する。
フッタ挿入部131は、パケットバッファ111から出力されたパケットを受け取り、受け取ったパケットにフッタ生成部141で生成されたフッタ情報を挿入してパケット多重部16へ出力する。
フッタ生成部141は、遅延測定部121から出力された遅延時間情報に基づいてフッタ情報を生成してフッタ挿入部131へ出力する。フッタ情報は少なくとも遅延時間情報を含むものとする。
パケット出力制御部15は、送信部101および102に対して、保持しているパケットの出力指示を行う。パケット出力制御部15は、パケットの出力指示を示す信号を、送信部101のパケットバッファ111および遅延測定部121と、送信部102のパケットバッファ112および遅延測定部122とに対して出力する。パケット出力制御部15は、どの送信部に対してどのタイミングでパケットの出力指示を行うかを予め決められた手順に従い決定する。一例として、パケット出力制御部15は、各送信部がパケットを保持しているか否か、および保持しているパケットのサイズを監視し、監視結果に基づいて、ラウンドロビンで各送信部からパケットが出力されるよう、各送信部に対してパケットの出力指示を行う。
パケット多重部16は、送信部101から出力されたパケットと送信部102から出力されたパケットとを多重化して光インタフェース17へ出力する。
光インタフェース17は、パケット多重部16から出力されたパケットを電気信号から光信号に変換して光伝送路へ出力する。
次に、分離装置2の構成について説明する。図1に示したように、分離装置2は、受信部201,202、光インタフェース(IF)24およびパケット分離部25を備える。
光インタフェース24は、多重装置1から光信号として送信されたパケットが光伝送路から入力されると、パケットを光信号から電気信号に変換してパケット分離部25へ出力する。
パケット分離部25は、光インタフェース24から入力されたパケットを受信部201または202へ出力する。具体的には、パケット分離部25は、パケット送信装置3-1から送信されたパケットすなわちパケット受信装置4-1が宛先のパケットを、受信部201へ出力する。また、パケット分離部25は、パケット送信装置3-2から送信されたパケットすなわちパケット受信装置4-2が宛先のパケットを、受信部202へ出力する。パケット分離部25は、例えば、パケットのヘッダに格納されている情報に基づいてパケットの出力先を判断する。パケット分離部25は他の方法で出力先を判断するようにしてもよい。
受信部201は、多重装置1から送信されたパケットのうちパケット受信装置4-1宛のパケットを光インタフェース24およびパケット分離部25を介して受け取り、受け取ったパケットに挿入されている遅延時間情報に基づき決定した時間にわたってパケットを保持した後、パケット受信装置4-1へ出力する。受信部202は、多重装置1から送信されたパケットのうちパケット受信装置4-2宛のパケットを光インタフェース24およびパケット分離部25を介して受け取り、受け取ったパケットに挿入されている遅延時間情報に基づき決定した時間にわたってパケットを保持した後、パケット受信装置4-2へ出力する。受信部201および202が、受け取ったパケットに対して実行する処理、具体的には、受け取ったパケットに挿入されている遅延時間情報に基づき決定した時間にわたってパケットを保持した後に出力する処理は遅延揺らぎ抑制処理に該当する。
図1に示した例では受信部が2つの構成すなわち受信部201および202を備えた構成としているが受信部の数を3以上としてもよい。受信部201および202の構成は同一であり、同様の処理を実行するため、本実施の形態では受信部201について説明を行い、受信部202の詳細な説明は省略する。
受信部201は、フッタ抽出部211、パケット遅延部221および遅延算出部231を備える。
フッタ抽出部211は、パケット分離部25からパケットを受け取ると、受け取ったパケットからフッタ情報を抽出し、フッタ情報を遅延算出部231へ出力するとともに、パケットをパケット遅延部221へ出力する。フッタ抽出部211がパケットをパケット遅延部221へ出力するパケットはフッタ情報を含んでいないパケット、すなわち、多重装置1の送信部101においてフッタ情報が挿入される前のパケットと同じパケットである。
パケット遅延部221は、フッタ抽出部211から受け取ったパケットを後述する遅延算出部231で算出された遅延補正値が示す時間にわたって保持した後、パケット受信装置4-1へ出力する。
遅延算出部231は、フッタ抽出部211で抽出されたフッタ情報に含まれている遅延時間情報に基づいて、パケット遅延部221がパケットを保持し続ける時間を示す遅延補正値を算出する。遅延算出部231は、算出した遅延補正値をパケット遅延部221へ出力する。
図2は、実施の形態1にかかる多重装置1および分離装置2を実現するハードウェアの構成例を示す図である。図2において、パケット送信装置3は図1に示したパケット送信装置3-1または3-2である。パケット受信装置4は、図1に示したパケット受信装置4-1または4-2である。
多重装置1は、パケットインタフェース(IF)101、パケットバッファ102、バッファカウンタ回路103、バッファ読出回路104、パケット生成回路105および電気-光インタフェース(IF)106により実現される。
パケットインタフェース101は、パケット送信装置3から出力されたパケットを受信する受信装置である。パケットバッファ102は、パケットインタフェース101が受信したパケットを格納するバッファである。バッファカウンタ回路103は、パケットバッファ102にパケットが格納されるとカウントを開始するカウンタである。バッファ読出回路104はパケットバッファ102に格納されているパケットを読み出す電子回路である。パケット生成回路105は、バッファ読出回路104がパケットバッファ102から読み出したパケットにフッタ情報を付加して分離装置2へ送信するパケットを生成する電子回路である。電気-光インタフェース106は、入力された電気信号を光信号に変換して出力する光送信器である。また、バッファ読出回路104およびパケット生成回路105は、単一回路、複合回路、プログラム化したプロセッサ、並列プログラム化したプロセッサ、ASIC(Application Specific Integrated Circuit)、FPGA(Field Programmable Gate Array)、またはこれらを組み合わせた構成の処理回路である。
図1に示した多重装置1の機能ブロックと図2に示した多重装置1のハードウェア構成の対応を以下に示す。
パケットバッファ111およびパケットバッファ112は、パケットバッファ102により実現される。遅延測定部121および122は、パケットインタフェース101、バッファカウンタ回路103およびバッファ読出回路104により実現される。すなわち、バッファカウンタ回路103は、パケットインタフェース101がパケットを受信してパケットバッファ102へパケットを格納するタイミングでカウントを開始し、バッファ読出回路104がパケットバッファ102からパケットを読み出すタイミングでカウントを停止する。
フッタ挿入部131および132は、バッファ読出回路104およびパケット生成回路105により実現される。また、フッタ生成部141および142は、パケット生成回路105により実現される。すなわち、パケット生成回路105は、バッファ読出回路104がパケットバッファ102からパケットを読み出すと、バッファカウンタ回路103のカウント値に基づいてフッタ情報を生成し、パケットにフッタ情報を挿入することにより分離装置2へ送信するパケットを生成する。
パケット出力制御部15は、バッファ読出回路104により実現される。パケット多重部16は、パケット生成回路105により実現される。光インタフェース17は、電気-光インタフェース106により実現される。
分離装置2は、電気-光インタフェース(IF)201、パケットバッファ202、パケット解析回路203、バッファカウンタ回路204、バッファ読出回路205、CPU(Central Processing Unit)206、メモリ207、パケットインタフェース(IF)208および外部設定インタフェース(IF)209により実現される。
電気-光インタフェース201は、入力された光信号を電気信号に変換して出力する光受信器である。パケットバッファ202は、電気-光インタフェース201が受信したパケットを格納するバッファである。パケット解析回路203は、電気-光インタフェース201が受信したパケットを解析する電子回路である。バッファカウンタ回路204は、パケットバッファ202にパケットが格納されるとカウントを開始するカウンタである。バッファ読出回路205は、パケットバッファ202に格納されているパケットを読み出す電子回路である。CPU206は、メモリ207に格納されているプログラムを実行することにより分離装置2の一部の機能を実現する。メモリ207としては、RAM(Random Access Memory)、ROM(Read Only Memory)、フラッシュメモリー、EPROM(Erasable Programmable Read Only Memory)、EEPROM(Electrically Erasable Programmable Read Only Memory)などが該当する。パケットインタフェース208は、バッファ読出回路205によりパケットバッファ202から読み出されたパケットをパケット受信装置4へ送信する送信装置である。外部設定インタフェース209は、外部のパーソナルコンピュータ(PC:Personal Computer)を分離装置2に接続するための電子回路であり、後述する固定遅延量などの情報をパーソナルコンピュータから取得する。パケット解析回路203およびバッファ読出回路205は、単一回路、複合回路、プログラム化したプロセッサ、並列プログラム化したプロセッサ、ASIC、FPGA、またはこれらを組み合わせた構成の処理回路である。
図1に示した分離装置2の機能ブロックと図2に示した分離装置2のハードウェア構成の対応を以下に示す。
光インタフェース24は、電気-光インタフェース201により実現される。パケット分離部25は、パケット解析回路203およびパケットバッファ202により実現される。すなわち、パケット解析回路203は、電気-光インタフェース201が受信したパケットを解析してパケットの出力先を決定した上でパケットバッファ202にパケットを格納する。
フッタ抽出部211および212は、パケット解析回路203により実現される。すなわち、パケット解析回路203がパケットを解析し、パケットからフッタ情報を抽出する。
パケット遅延部221および222は、パケットバッファ202、バッファカウンタ回路204、バッファ読出回路205およびパケットインタフェース208により実現される。すなわち、バッファカウンタ回路204は、パケットがパケットバッファ202に格納されてからの経過時間をカウントし、バッファ読出回路205は、バッファカウンタ回路204のカウント値が遅延補正値と一致した場合にパケットバッファ202からパケットを読み出す。パケットインタフェース208は、バッファ読出回路205が読み出したパケットをパケット受信装置4へ出力する。
遅延算出部231および232は、CPU206、メモリ207および外部設定インタフェース209により実現される。すなわち、CPU206がメモリ207に格納されたプログラムに従った処理を実行し、パケットから抽出したフッタ情報に含まれている遅延時間情報および外部設定インタフェース209が外部から取得した固定遅延量情報に基づいて、パケット遅延部221および222のそれぞれがパケットを保持し続ける時間、すなわちパケット遅延部221および222のそれぞれがパケットを受け取ってから出力するまでの時間を示す遅延補正値を算出する。
次に、本実施の形態にかかるパケット転送システムの全体動作、すなわち、多重装置1がパケット送信装置3-1,3-2から受け取ったパケットを分離装置2へ転送する動作について説明する。ここでは、多重装置1がパケット送信装置3-1から受け取ったパケットを分離装置2へ転送し、分離装置2がパケットをパケット分離装置4-1へ出力する場合について説明する。なお、パケット送信装置3-2が出力したパケットを多重装置1から分離装置2へ転送する場合の動作も同様である。
パケット送信装置3-1からパケットが出力されると、これを多重装置1の送信部101が受け取る。すなわち、パケット送信装置3-1から出力されたパケットは多重装置1の送信部101を構成しているパケットバッファ111に格納される。パケットバッファ111は、パケットの先頭を検出して蓄積するとともに、パケットの先頭を検出したことを示すパケット先頭タイミングを遅延測定部121に通知する。パケットの先頭の検出は、パケットがイーサネット(登録商標)フレームであればプリアンブルの検出が該当する。パケットバッファ111は、後段のフッタ挿入部131でパケットに挿入されるフッタ情報を考慮してパケットを蓄積する。例えば、フッタ挿入部131がパケットの途中にフッタ情報を追加する場合、パケットバッファ111はフッタ情報を挿入するための領域を確保した状態でパケットを蓄積する。
遅延測定部121は、パケットバッファ111から通知されたパケット先頭タイミングを契機に、多重装置1の不図示のクロックを使用して、クロック単位での遅延時間のカウントを開始する。多重装置1が125MHzのクロックを有している場合、クロック単位は8nsとなる。この場合、遅延時間は8nsの整数倍の値となる。
パケット出力制御部15は、各送信部内のパケットバッファ111および112へのパケット蓄積の有無を認識し、各パケットバッファからのパケット出力開始タイミングを決定する。パケット出力制御部15は、パケットバッファのパケット出力順をラウンドロビン方式などに従って決定する。パケット出力制御部15は、パケットバッファ111からのパケット出力開始タイミングをパケットバッファ111および遅延測定部121へ通知し、パケットバッファ112からのパケット出力開始タイミングをパケットバッファ112および遅延測定部122へ通知する。パケットバッファ111は、パケット出力制御部15からパケット出力開始タイミングが通知されると、蓄積しているパケットをフッタ挿入部131へ出力する。
遅延測定部121は、パケット出力制御部15からパケットの出力指示が通知されると遅延時間のカウントを終了し、遅延時間のカウント結果すなわちクロックのカウント値T_mを遅延時間情報としてフッタ生成部141へ通知する。
フッタ生成部141は、遅延測定部121から通知された遅延時間情報を用いてフッタ情報を生成し、フッタ挿入部131へ出力する。フッタ情報は遅延時間情報を含んだ情報であり、必要に応じて入力ポート情報を含ませてもよい。
フッタ挿入部131は、パケットバッファ111から出力されたパケットに対して、フッタ生成部141で生成されたフッタ情報を挿入する。フッタ挿入部131は、イーサネットフレームのプリアンブル領域またはヘッダ領域にフッタ情報を挿入することが考えられるが挿入する位置をこれらに限定するものではない。
図3は、実施の形態1にかかる多重装置の送信部、すなわち、パケットバッファ111、遅延測定部121、フッタ挿入部131およびフッタ生成部141を備えて構成された送信部101の動作例を示すフローチャートである。
送信部101は、パケットが入力されたか否かを確認し(ステップS11)、入力が無い場合(ステップS11:No)、確認を繰り返す。送信部101は、パケットが入力された場合(ステップS11:Yes)、経過時間のカウントを開始する(ステップS12)。送信部101は、クロックをカウントすることにより経過時間をカウントする。経過時間のカウントを開始した送信部101は、パケットの出力をパケット出力制御部15から指示されたか否かを確認し(ステップS13)、指示が無い場合(ステップS13:No)、確認を繰り返す。送信部101は、パケットの出力を指示された場合(ステップS13:Yes)、経過時間のカウントを停止する(ステップS14)。次に、送信部101は、パケットが入力されてからの経過時間を示す遅延時間情報をパケットに挿入してパケット多重部16へ出力する(ステップS15)。送信部101は、ステップS15において、遅延時間情報を含んだフッタ情報を生成してパケットに挿入し、パケットを出力する。送信部101は、遅延時間情報に加えて、パケット送信元のパケット送信装置を示す情報、すなわち、パケットが入力された入力ポートの情報、パケット送信装置の識別情報などを含んだフッタ情報を生成してもよい。パケット送信元のパケット送信装置を示す情報がフッタ情報に含まれない場合、フッタ情報は遅延時間情報である。このように、送信部101は、パケットを受け取ってから出力するまでの経過時間の情報である遅延時間情報を含んだパケットを生成してパケット多重部16へ出力する。
パケット多重部16は、フッタ挿入部131でフッタ情報が挿入されたパケットおよびフッタ挿入部132でフッタ情報が挿入されたパケットを受け取り、受け取った各パケットを時分割多重して光インタフェース17へ出力する。なお、多重装置1において、各フッタ挿入部からパケットが出力されるタイミングはパケット出力制御部15により制御され、各フッタ挿入部からパケットが重複して出力されないようにしている。そのため、パケット多重部16は、各フッタ挿入部からパケットが入力されるごとに、パケットを光インタフェース17へ出力する。
光インタフェース17は、パケット多重部16からパケットを受け取ると、電気信号から光信号に変換し、光伝送路を介して分離装置2へ送信する。
多重装置1が送信した光信号は分離装置2により受信される。すなわち、分離装置2の光インタフェース24が多重装置1から光信号として送信されたパケットを受信する。光インタフェース24は、光信号を受信すると電気信号に変換してパケット分離部25へ出力する。また、光インタフェース24は、多重装置1のクロックを電気信号から抽出する処理も行い、抽出したクロックを分離装置2のクロックとして使用する。クロック抽出方法は、Clock and Data Recovery(CDR)などを用いる。
パケット分離部25は、光インタフェース24から入力されたパケットがどのパケット送信装置から送信されたパケットであるかを識別し、受信部221または受信部222へ出力する。パケット分離部25は、例えばイーサネットフレームのVLAN(Virtual Local Area Network) TAGを用いてパケットの送信元を識別する。パケットの挿入されているフッタ情報が入力ポート情報を含んでいる場合、パケット分離部25は、パケットに挿入されているフッタ情報すなわち入力ポート情報を用いてパケットの送信元を識別してもよい。パケット分離部25から出力されたパケットは、受信部201のフッタ抽出部211または受信部202のフッタ抽出部212に入力される。
受信部201のフッタ抽出部211は、パケット分離部25から受け取ったパケットからフッタ情報を抽出する。フッタ抽出部211は、抽出したフッタ情報に含まれている遅延時間情報を遅延算出部231へ出力する。上述したように、遅延時間情報は、多重装置1のクロックのカウント値T_mである。
遅延算出部231は、予め設定されている固定遅延量(T_f)から多重装置1での遅延時間を示すカウント値(T_m)を差し引いた値(T_f-T_m)を遅延補正値として算出する。遅延算出部231は、算出した遅延補正値(T_f-T_m)をパケット遅延部221へ通知する。ここで、固定遅延量T_fは、図2に示した外部設定インタフェース209を介して、外部のパーソナルコンピュータなどから遅延算出部231に前もって設定されているものとする。固定遅延量T_fは、以下の式(1)を用いて算出する。
T_f=最大パケット長×パケット送信装置数×2/(多重装置と分離装置間の転送レート+パケット送信装置の転送レート) …(1)
式(1)において、「最大パケット長」はシステムで送信可能なパケットサイズの上限値であり、例えばイーサネットに準拠したシステムの場合1518byteとなる。
パケット遅延部221は、フッタ抽出部211から受け取ったパケットを遅延算出部231で算出された遅延補正値に基づいて遅延させた後、パケット受信装置4-1へ出力する。すなわち、パケット遅延部221は、フッタ抽出部211からパケットを受け取ると、光インタフェース24が抽出したクロックを使用したカウントを開始し、カウント値が遅延補正値に達するとパケットを出力する。
図4は、実施の形態1にかかる分離装置の受信部、すなわち、フッタ抽出部211、パケット遅延部221および遅延算出部231を備えて構成された受信部201の動作例を示すフローチャートである。
受信部201は、パケットを受信したか否かを確認し(ステップS21)、受信していない場合(ステップS21:No)、確認を繰り返す。受信部201は、パケットを受信した場合(ステップS21:Yes)、受信したパケットに挿入されている遅延時間情報を読み出して遅延補正値を算出する(ステップS22)。次に、受信部201は、算出した遅延補正値がゼロ以上であるか否かを確認し(ステップS23)、ゼロ以上の場合(ステップS23:Yes)、経過時間のカウントを開始する(ステップS24)。次に、受信部201は、遅延補正値が示す時間が経過したか否かを確認し(ステップS25)、遅延補正値が示す時間が経過していない場合(ステップS25:No)、確認を繰り返す。受信部201は、遅延補正値が示す時間が経過した場合(ステップS25:Yes)、パケットをパケット受信装置4-1へ出力する(ステップS26)。また、受信部201は、ステップS22で算出した遅延補正値がゼロ未満である場合(ステップS23:No)、パケットを出力せずに廃棄する(ステップS27)。
以上のように、本実施の形態にかかるパケット転送システムにおいて、多重装置1は、パケットを受け取ってから出力するまでの時間、より詳細にはパケットバッファ111,112にパケットが入力されてから出力されるまでの時間を示す遅延時間情報を含んだフッタ情報をパケットに挿入して送信する。分離装置2は、パケットを受信すると、固定遅延量から遅延時間情報を差し引いた値である遅延補正値が示す時間の間パケットを保持してから出力する。
これにより、複数のパケット送信装置から多重装置1へ同時にパケットが入力された場合でも、図5に示すようにパケット送信装置3-1,3-2から送信された各パケットがパケット受信装置4-1,4-2で受信されるまでの遅延時間を固定とすることができ、パケット送信装置3-1から入力されたパケットおよびパケット送信装置3-2から入力されたパケットのいずれについても遅延揺らぎを抑制することができる。すなわち、複数のパケット送信装置から入力されたパケットを転送する場合の遅延揺らぎを抑制することができる。また、固定遅延量T_fの値を、最大パケット長、パケット送信装置数、多重装置と分離装置との間の転送レートおよびパケット送信装置の転送レートを用いて設定することで、遅延時間をシステム構成に応じて最小にすることができる。なお、図5は、実施の形態1にかかるパケット転送システム100におけるパケット転送動作の一例を示す図である。
図5に示した例では、パケット送信装置3-1が送信するパケット#1は、多重装置1への入力が完了すると直ちに伝送路への出力が開始される。このとき、パケット#1には遅延時間情報として遅延量T_m1が挿入される。一方、パケット送信装置3-2が送信するパケット#2は、多重装置1への入力が完了した後、パケット#1の出力が完了するのを待ってから、伝送路への出力が開始される。このとき、パケット#2には遅延時間情報として遅延量T_m2が挿入される。分離装置2は、パケット#1の受信を開始してから遅延補正値(T_f-Tm1)が示す時間が経過した後、パケット受信装置4-1に対してパケット#1の出力を開始する。また、分離装置2は、パケット#2の受信を開始してから遅延補正値(T_f-Tm2)が示す時間が経過した後、パケット受信装置4-2に対してパケット#2の出力を開始する。
実施の形態2.
以上の実施の形態1は、分離装置にて遅延補正量を算出するようにしたものであるが、次に、多重装置にて遅延補正量を算出する実施の形態2を説明する。
以上の実施の形態1は、分離装置にて遅延補正量を算出するようにしたものであるが、次に、多重装置にて遅延補正量を算出する実施の形態2を説明する。
図6は、本発明の実施の形態2にかかるパケット転送システムの構成例を示す図である。図6においては、実施の形態1にかかるパケット転送システムと同じ構成要素に同一の符号を付している。実施の形態1にかかるパケット転送システムと共通の部分については説明を省略する。
実施の形態2にかかるパケット転送システム100aは、実施の形態1にかかるパケット転送システム100の多重装置1を多重装置1aに置き換え、分離装置2を分離装置2aに置き換えたものである。
多重装置1aは、実施の形態1にかかる多重装置1の送信部101,102およびパケット出力制御部15を送信部10a1,10a2およびパケット出力制御部15aに置き換えたものである。また、送信部10a1は、実施の形態1にかかる送信部101のパケットバッファ111、遅延測定部121およびフッタ生成部141をパケットバッファ11a1、遅延算出部181およびフッタ生成部14a1に置き換え、送信部10a2は、実施の形態1にかかる送信部102のパケットバッファ112、遅延測定部122およびフッタ生成部142をパケットバッファ11a2、遅延算出部182およびフッタ生成部14a2に置き換えたものである。
分離装置2aは、実施の形態1にかかる分離装置2の受信部201,202を受信部20a1,20a2に置き換えたものである。また、受信部20a1は、実施の形態1にかかる受信部201から遅延算出部231を削除し、さらにフッタ抽出部211をフッタ抽出部21a1に置き換えたもの、受信部20a2は、実施の形態1にかかる受信部202から遅延算出部232を削除し、さらにフッタ抽出部212をフッタ抽出部21a2に置き換えたものである。
多重装置1aにおいて、送信部10a1は、パケット送信装置3-1から出力されたパケットを受け取り、パケット出力制御部15aから指示される出力タイミングとなるまで保持する。送信部10a1は、パケットを受け取った後、パケット出力制御部15aから出力タイミングの指示を受けると、指示された出力タイミングとなるまで待ち、出力タイミングになると保持しているパケットをパケット多重部16へ出力する。また、送信部10a1は、パケット出力制御部15aから出力タイミングの指示を受けると、パケットを保持している時間すなわちパケットを受け取ってから出力するまでの時間に基づき、分離装置2aの受信部20a1がパケットを受信してから出力するまでの時間を示す遅延補正値を算出する。また、送信部10a1は、算出した遅延補正値をパケットに挿入して出力する。送信部10a2は、パケット送信装置3-2から出力されたパケットを受け取り、パケット出力制御部15aから指示される出力タイミングとなるまで保持する。送信部10a2は、パケットを受け取った後、パケット出力制御部15aから出力タイミングの指示を受けると、指示された出力タイミングとなるまで待ち、出力タイミングになると保持しているパケットをパケット多重部16へ出力する。また、送信部10a2は、パケット出力制御部15aから出力タイミングの指示を受けると、パケットを保持している時間すなわちパケットを受け取ってから出力するまでの時間に基づき、分離装置2aの受信部20a2がパケットを受信してから出力するまでの時間を示す遅延補正値を算出する。また、送信部10a2は、算出した遅延補正値をパケットに挿入して出力する。
図6に示した例では送信部が2つの構成すなわち送信部10a1および10a2を備えた構成としているが送信部の数を3以上としてもよい。送信部10a1および10a2の構成は同一であり、同様の処理を実行するため、本実施の形態では送信部10a1について説明を行い、送信部10a2の詳細な説明は省略する。
多重装置1aの送信部10a1において、パケットバッファ11a1は、パケット送信装置3-1からパケットを受け取り保持する。また、パケットバッファ11a1は、パケットの到着を認識すると、その旨を示す信号である先頭検出信号を遅延算出部181へ出力する。パケットバッファ11a1は、パケット出力制御部15aからの指示に従い、保持しているバッファをフッタ挿入部131へ出力する。
遅延算出部181は、パケットバッファ11a1にパケットが到着したタイミングおよびパケットバッファ11a1からパケットが出力されるタイミングに基づいて、遅延補正値を算出する。遅延算出部181が算出する遅延補正値は、実施の形態1で説明した分離装置2の受信部201の遅延算出部231が算出する遅延補正値と同様の情報、すなわち、受信部20a1がパケットを受け取ってから出力するまでの時間を示す情報である。ここで、遅延算出部181には、パケット出力制御部15aがパケットバッファ11a1に対して出力する、パケットの出力予定指示が入力される。パケットの出力予定指示とは、パケットバッファ11a1に対してパケットの出力タイミングを指示する情報であり、遅延算出部181は、パケットバッファ11a1からパケットが出力されるタイミングを把握することができる。遅延算出部181は、パケットバッファ11a1にパケットが入力されてから出力されるまでの時間、すなわち、送信部10a1がパケットを受け取ってから出力するまでの時間に基づいて遅延補正値を算出する。具体的には、遅延算出部181は、パケットバッファ11a1にパケットが入力されてから出力されるまでの時間を固定遅延量から差し引いた値を遅延補正値として算出する。遅延算出部181は、算出した遅延補正値をフッタ生成部14a1へ出力する。ただし、遅延算出部181は、算出した遅延補正値が負の場合、すなわち、パケットバッファ11a1にパケットが入力されてから出力されるまでの時間が固定遅延量よりも大きい場合、算出した遅延補正値をフッタ生成部14a1へ出力せずに、パケット出力制御部15aに対して出力停止を通知する。出力停止の通知を受けた場合のパケット出力制御部15aの動作については別途説明する。
フッタ生成部14a1は、遅延算出部181から出力された遅延補正値に基づいてフッタ情報を生成してフッタ挿入部131へ出力する。フッタ情報は少なくとも遅延補正値を含むものとする。
パケット出力制御部15aは、送信部10a1および10a2に対して出力予定指示を通知し、保持しているパケットを通知した出力予定指示が示すタイミングで出力するよう指示する。パケット出力制御部15aは、出力予定指示を示す信号を、送信部10a1のパケットバッファ11a1および遅延算出部181と、送信部10a2のパケットバッファ11a2および遅延算出部182とに対して出力する。パケット出力制御部15aは、送信部10a1および10a2がパケットを出力するタイミングを予め決められた手順に従い決定する。一例として、パケット出力制御部15aは、各送信部がパケットを保持しているか否か、および各送信部が保持しているパケットのサイズを監視し、監視結果に基づいて、ラウンドロビンで各送信部からパケットが出力されるよう、各送信部がパケットを出力するタイミングを決定する。また、パケット出力制御部15aは、遅延算出部181から出力停止の通知を受けた場合、パケットバッファ11a1に対して、パケットの出力停止すなわち保持しているパケットの廃棄を指示する。パケットバッファ11a1は、パケットの出力停止が通知された場合、保持しているパケットを出力せずに廃棄する。パケット出力制御部15aが遅延算出部182から出力停止の通知を受けた場合の動作も同様である。
分離装置2aにおいて、受信部20a1は、多重装置1aから送信されたパケットのうちパケット受信装置4-1宛のパケットを光インタフェース24およびパケット分離部25を介して受け取り、受け取ったパケットに挿入されている遅延補正値が示す時間にわたってパケットを保持した後、パケット受信装置4-1へ出力する。受信部20a2は、多重装置1aから送信されたパケットのうちパケット受信装置4-2宛のパケットを光インタフェース24およびパケット分離部25を介して受け取り、受け取ったパケットに挿入されている遅延補正値が示す時間にわたってパケットを保持した後、パケット受信装置4-2へ出力する。
図6に示した例では受信部が2つの構成すなわち受信部20a1および20a2を備えた構成としているが受信部の数を3以上としてもよい。受信部20a1および20a2の構成は同一であり、同様の処理を実行するため、本実施の形態では受信部20a1について説明を行い、受信部20a2の詳細な説明は省略する。
分離装置2aの受信部20a1において、フッタ抽出部21a1は、パケット分離部25からパケットを受け取ると、受け取ったパケットからフッタ情報を抽出し、抽出したフッタ情報に含まれている遅延補正値とフッタ情報抽出後のパケットとをパケット遅延部221へ出力する。
パケット遅延部221は、フッタ抽出部21a1からパケットおよび遅延補正値を受け取ると、受け取ったパケットを遅延補正値が示す時間にわたって保持した後、パケット受信装置4-1へ出力する。
図7は、実施の形態2にかかる多重装置1aおよび分離装置2aを実現するハードウェアの構成例を示す図である。実施の形態1にかかる多重装置1および分離装置2を実現するハードウェアの構成例を示した図2と同様のハードウェアには同一の符号を付して詳細説明を省略する。
多重装置1aは、パケットインタフェース101、パケットバッファ102、バッファカウンタ回路103、バッファ読出回路104、パケット生成回路105、電気-光インタフェース106、CPU107、メモリ108および外部設定インタフェース109により実現される。パケットインタフェース101、パケットバッファ102、バッファカウンタ回路103、バッファ読出回路104、パケット生成回路105および電気-光インタフェース106は、図2に示したパケットインタフェース101、パケットバッファ102、バッファカウンタ回路103、バッファ読出回路104、パケット生成回路105および電気-光インタフェース106と同じハードウェアである。
CPU107は、メモリ108に格納されているプログラムを実行することにより多重装置1aの一部の機能を実現する。メモリ108としては、RAM、ROM、フラッシュメモリー、EPROM、EEPROMなどが該当する。外部設定インタフェース109は、外部のパーソナルコンピュータ(PC)を多重装置1aに接続するための電子回路であり、図6に示した遅延算出部181および182が使用する固定遅延量などの情報をパーソナルコンピュータから取得する。
図6に示した多重装置1aの機能ブロックと図7に示した多重装置1aのハードウェア構成の対応を以下に示す。
遅延算出部181および182は、CPU107、メモリ108および外部設定インタフェース109により実現される。すなわち、CPU107がメモリ108に格納されたプログラムに従った処理を実行し、遅延算出部181を実現する場合には、パケットバッファ11a1にパケットが入力されたタイミングと、パケットバッファ11a1からパケットが出力されるタイミングとに基づいて、遅延補正値を算出する。遅延算出部182を実現する場合も同様である。
フッタ生成部14a1および14a2は、パケット生成回路105により実現される。すなわち、パケット生成回路105は、CPU107がメモリ108に格納されたプログラムに従った処理を実行して算出された遅延補正値を受け取ると、遅延補正値に基づいて、パケットに挿入するフッタ情報を生成する。
分離装置2aは、電気-光インタフェース201、パケットバッファ202、パケット解析回路203、バッファカウンタ回路204、バッファ読出回路205およびパケットインタフェース208により実現される。電気-光インタフェース201、パケットバッファ202、パケット解析回路203、バッファカウンタ回路204、バッファ読出回路205およびパケットインタフェース208は、図2に示した電気-光インタフェース201、パケットバッファ202、パケット解析回路203、バッファカウンタ回路204、バッファ読出回路205およびパケットインタフェース208と同じハードウェアである。
図6に示した分離装置2aの機能ブロックと図7に示した分離装置2aのハードウェア構成の対応を以下に示す。
フッタ抽出部21a1および21a2は、パケット解析回路203により実現される。すなわち、パケット解析回路203がパケットを解析し、パケットからフッタ情報を抽出する。
次に、本実施の形態にかかるパケット転送システムの全体動作、すなわち、多重装置1aがパケット送信装置3-1,3-2から受け取ったパケットを分離装置2aへ転送する動作について説明する。ここでは、多重装置1aがパケット送信装置3-1から受け取ったパケットを分離装置2aへ転送し、分離装置2aがパケットをパケット分離装置4-1へ出力する場合について説明する。なお、パケット送信装置3-2が出力したパケットを多重装置1aから分離装置2aへ転送する場合の動作も同様である。実施の形態1にかかる多重装置1および分離装置2と共通の動作については説明を省略する。
パケット送信装置3-1からパケットが出力されると、これを多重装置1aの送信部10a1が受け取る。すなわち、パケット送信装置3-1から出力されたパケットは多重装置1aの送信部10a1を構成しているパケットバッファ11a1に格納される。パケットバッファ11a1は、パケットの先頭を検出して蓄積するとともに、パケットの先頭を検出したことを示すパケット先頭タイミングを遅延算出部181に通知する。
遅延算出部181は、パケットバッファ11a1からパケット先頭タイミングの通知を受け、さらに、パケット出力制御部15aから出力予定指示の通知すなわちパケットバッファ11a1がパケットを出力するタイミングの通知受けると、パケットバッファ11a1へのパケット入力開始タイミングおよびパケットバッファ11a1からのパケット出力開始タイミングに基づいて、遅延補正値を算出する。すなわち、遅延算出部181は、パケットバッファ11a1にパケットが入力されてから出力されるまでの時間を算出し、算出した時間を設定されている固定遅延量から差し引くことにより遅延補正値を算出する。遅延算出部181は、算出した遅延補正値がゼロ以上の値の場合、遅延補正値をフッタ生成部14a1に通知する。また、遅延算出部181は、算出した遅延補正値が負の値の場合、遅延補正値をフッタ生成部14a1に通知せずに、読出し停止をパケット出力制御部15aに通知する。
フッタ生成部14a1は、遅延算出部181から通知された遅延補正値を用いてフッタ情報を生成し、フッタ挿入部131へ出力する。フッタ情報は遅延補正値を含んだ情報であり、必要に応じて入力ポート情報を含ませてもよい。
パケット出力制御部15aは、各送信部内のパケットバッファ11a1および11a2へのパケット蓄積の有無を認識し、各パケットバッファからのパケット出力開始タイミングを決定する。パケット出力制御部15aは、パケットバッファのパケット出力順をラウンドロビン方式などに従って決定する。パケット出力制御部15aは、パケットバッファ11a1からのパケット出力開始タイミングを決定すると、それを出力予定指示によりパケットバッファ11a1および遅延算出部181へ通知し、パケットバッファ11a2からのパケット出力開始タイミングを決定すると、それを出力予定指示によりパケットバッファ11a2および遅延算出部182へ通知する。また、パケット出力制御部15aは、遅延算出部181から出力停止の通知を受けた場合、パケットバッファ11a1に対してパケットの出力停止を指示する。パケット出力制御部15aは、遅延算出部182から出力停止の通知を受けた場合、パケットバッファ11a2に対してパケットの出力停止を指示する。パケットバッファ11a1は、パケット出力制御部15aから出力予定指示の通知を受け、パケットの出力停止の指示を受けることなく、出力予定指示が示すタイミングになると、保持しているパケットを出力する。パケットバッファ11a1は、パケットの出力停止の指示を受けた場合、保持しているパケットを出力せずに廃棄する。パケットバッファ11a2は、パケット出力制御部15aから出力予定指示の通知を受け、パケットの出力停止の指示を受けることなく、出力予定指示が示すタイミングになると、保持しているパケットを出力する。パケットバッファ11a2は、パケットの出力停止の指示を受けた場合、保持しているパケットを出力せずに廃棄する。
図8は、実施の形態2にかかる多重装置の送信部、すなわち、パケットバッファ11a1、フッタ挿入部131、フッタ生成部14a1および遅延算出部181を備えて構成された送信部10a1の動作例を示すフローチャートである。
送信部10a1は、パケットが入力されたか否かを確認し(ステップS31)、入力が無い場合(ステップS31:No)、確認を繰り返す。送信部10a1は、パケットが入力された場合(ステップS31:Yes)、経過時間のカウントを開始する(ステップS32)。送信部10a1は、クロックをカウントすることにより経過時間をカウントする。経過時間のカウントを開始した送信部10a1は、パケットの出力予定指示をパケット出力制御部15aから受けたか否かを確認し(ステップS33)、指示が無い場合(ステップS33:No)、確認を繰り返す。送信部10a1は、パケットの出力予定指示を受けた場合(ステップS33:Yes)、遅延補正値を算出する(ステップS34)。このステップS34において、送信部10a1は、パケット送信装置3-1よりパケットを受け取ってから、パケットの出力予定指示が示す、パケットの出力タイミングとなるまでの時間を算出し、算出した時間を予め設定されている固定遅延量から差し引いて遅延補正値を算出する。送信部10a1は、次に、算出した遅延補正値がゼロ以上であるか否かを確認し(ステップS35)、ゼロ以上の場合(ステップS35:Yes)、パケットの出力タイミングか否かを確認する(ステップS36)。このステップS36において、送信部10a1は、パケットが入力されてからの経過時間がパケットの出力予定指示が示す出力タイミングに達したか否かを確認する。送信部10a1は、パケットの出力タイミングではない場合(ステップS36:No)、パケットの出力タイミングか否かの確認を繰り返す。送信部10a1は、パケットの出力タイミングである場合(ステップS36:Yes)、遅延補正値をパケットに挿入してパケット多重部16へ出力する(ステップS37)。送信部10a1は、ステップS37において、遅延補正値を含んだフッタ情報を生成してパケットに挿入し、パケットを出力する。送信部10a1は、遅延補正値に加えて、パケット送信元のパケット送信装置を示す情報、すなわち、パケットが入力された入力ポートの情報、パケット送信装置の識別情報などを含んだフッタ情報を生成してもよい。パケット送信元のパケット送信装置を示す情報がフッタ情報に含まれない場合、フッタ情報は遅延補正値である。送信部10a1は、ステップS34で算出した遅延補正値がゼロ未満である場合(ステップS35:No)、パケットを出力せずに廃棄する(ステップS38)。
このように、送信部10a1は、パケット多重部16へパケットを出力する場合、分離装置2aの受信部20a1にパケットが入力されてから出力するまでの時間を示す情報である遅延補正値を含んだフッタ情報をパケットに挿入して出力する。
分離装置2aは、多重装置1aからパケット受信装置4-1宛のパケットを受信すると、受信部20a1がパケットを処理してパケット受信装置4-1へ出力する。
図9は、実施の形態2にかかる分離装置の受信部、すなわち、フッタ抽出部21a1およびパケット遅延部221を備えて構成された受信部20a1の動作例を示すフローチャートである。
受信部20a1は、パケットを受信したか否かを確認し(ステップS41)、受信していない場合(ステップS41:No)、確認を繰り返す。受信部20a1は、パケットを受信した場合(ステップS41:Yes)、受信したパケットに挿入されている遅延補正値を読み出し(ステップS42)、経過時間のカウントを開始する(ステップS43)。次に、受信部20a1は、遅延補正値が示す時間が経過したか否かを確認し(ステップS44)、遅延補正値が示す時間が経過していない場合(ステップS44:No)、確認を繰り返す。受信部20a1は、遅延補正値が示す時間が経過した場合(ステップS44:Yes)、パケットをパケット受信装置4-1へ出力する(ステップS45)。
以上のように、本実施の形態にかかるパケット転送システムにおいて、多重装置1aは、パケットバッファ11a1,11a2にパケットが入力されてから出力されるまでの時間に基づいて、遅延補正値を算出し、遅延補正値を含んだフッタ情報をパケットに挿入して送信する。分離装置2aは、パケットを受信すると、パケットに挿入されている遅延補正値が示す時間の間パケットを保持してから出力する。これにより、実施の形態1にかかるパケット転送システムと同様に、パケット送信装置3-1,3-2から送信された各パケットがパケット受信装置4-1,4-2で受信されるまでの遅延時間を固定とすることができ、全パケットの遅延揺らぎを抑制することができる。また、多重装置1aの送信部10a1および10a2において、パケット遅延量すなわち多重装置1aにパケットが入力されてから出力されるまでの時間と固定遅延量とを比較し、パケット遅延量が固定遅延量を超えるパケットを廃棄することで、各パケット送信装置からの入力レートの合計が、多重装置1aから分離装置間2aへの伝送レートを一時的に超えた場合におけるパケットの廃棄数を抑えることができる。
実施の形態3.
以上の実施の形態1および2は、多重装置内での遅延揺らぎおよび分離装置内での遅延揺らぎを抑制するものであるが、次に、多重装置と複数の分離装置とが接続された場合の遅延揺らぎを抑制する実施の形態3を説明する。
以上の実施の形態1および2は、多重装置内での遅延揺らぎおよび分離装置内での遅延揺らぎを抑制するものであるが、次に、多重装置と複数の分離装置とが接続された場合の遅延揺らぎを抑制する実施の形態3を説明する。
図10は、本発明の実施の形態3にかかるパケット転送システムの構成例を示す図である。図10においては、実施の形態1または2にかかるパケット転送システムと同じ構成要素に同一の符号を付している。実施の形態1または2にかかるパケット転送システムと共通の部分については説明を省略する。
実施の形態3にかかるパケット転送システム100bは、パケットを送信するパケット送信装置3-1および3-2と、パケット送信装置3-1および3-2から送信されたパケットを多重して送信する多重装置1bと、多重装置1bから送信されたパケットを受信して宛先に応じた経路へ出力する分離装置2b-1および2b-2と、分離装置2b-1から出力されたパケットを受信するパケット受信装置4-1および4-2とを備えている。なお、図10では分離装置の数を2台としているが3台以上としてもよい。また、分離装置2b-2が出力するパケットを受信するパケット受信装置、このパケット受信装置に向けてパケットを送信するパケット送信装置については記載を省略している。
多重装置1bは、多重部30-1,30-2および遅延量決定部40を備える。多重部30-1と多重部30-2とは同じ構成であり、図10では多重部30-2の内部構成の記載を省略している。本実施の形態では多重部30-1について説明を行い、多重部30-2についての説明は省略する。図10では多重部の数を2としているが3以上としてもよい。
複数の多重部の各々は、複数の分離装置のいずれか一つと一対一で対応しており、パケット送信装置から受信したパケットを対応している分離装置へ転送する。図10に示したパケット転送システム100bでは、多重部30-1が分離装置2b-1へパケットを転送し、多重部30-2が分離装置2b-2へ転送する。
多重部30-1は、送信部10a1,10a2、パケット出力制御部15b、パケット多重部16b、光インタフェース(IF)17bおよび伝送遅延測定部19を備える。送信部10a1,10a2は、実施の形態2で説明した多重装置1aの送信部10a1,10a2と同じ構成であり、同じ処理を行うものであるため説明を省略する。
パケット出力制御部15bは、送信部10a1および10a2に対して出力予定指示を通知し、保持しているパケットを通知した出力予定指示が示すタイミングで出力するよう指示する。パケット出力制御部15bは、出力予定指示を示す信号を、送信部10a1のパケットバッファ11a1および遅延算出部181と、送信部10a2のパケットバッファ11a2および遅延算出部182とに対して出力する。
パケット多重部16bは、送信部10a1から出力されたパケットと、送信部10a2から出力されたパケットと、伝送遅延測定部19から出力されたパケットとを多重化して光インタフェース17bへ出力する。また、パケット多重部16bは、伝送遅延測定部19が処理するパケットを光インタフェース17bから受信した場合、パケットを伝送遅延測定部19へ出力する。
光インタフェース17bは、パケット多重部16bから出力されたパケットを電気信号から光信号に変換して光伝送路へ出力する。また、光インタフェース17bは、分離装置2b-1から光信号として送信されたパケットが光伝送路から入力されると、パケットを光信号から電気信号に変換してパケット多重部16bへ出力する。
伝送遅延測定部19は、伝送遅延の測定用パケットを分離装置2b-1との間で送受信し、多重部30-1と分離装置2b-1との間の光伝送路における伝送遅延を測定する。伝送遅延測定部19は、伝送遅延の測定結果を遅延量決定部40へ通知する。
遅延量決定部40は、各多重部で測定された伝送遅延に基づいて、各多重部が遅延量を算出するために必要な固定遅延量を決定する。遅延量決定部40は、決定した固定遅延量を各多重部へ通知する。
複数の分離装置の各々は、多重装置1bの複数の多重部のいずれか一つと一対一で対応しており、対応している多重部から受信したパケットをパケット受信装置へ転送する。図10に示したパケット転送システム100bでは、多重装置1bの多重部30-1が転送したパケットを分離装置2b-1が受信し、分離装置2b-1は、受信したパケットをその宛先に応じてパケット受信装置4-1または4-2へ出力する。分離装置2b-1および2b-2は同じ構成であり、同様の処理を行うものであるため、ここでは分離装置2b-1について説明を行い、分離装置2b-2の説明は省略する。
分離装置2b-1は、受信部20a1,20a2、光インタフェース(IF)24b、パケット分離部25bおよび測定パケット終端部26を備える。受信部20a1,20a2は、実施の形態2で説明した分離装置2aの受信部20a1,20a2と同じ構成であり、同じ処理を行うものであるため説明を省略する。
光インタフェース24bは、多重装置1bの多重部30-1から光信号として送信されたパケットが光伝送路から入力されると、パケットを光信号から電気信号に変換してパケット分離部25bへ出力する。また、多重装置1bの多重部30-1へ送信するパケットがパケット分離部25bから入力されると、パケットを電子信号から光信号に変換して光伝送路へ出力する。
パケット分離部25bは、光インタフェース24bから入力されたパケットを受信部20a1、受信部20a2または測定パケット終端部26へ出力する。具体的には、パケット分離部25bは、パケット送信装置3-1から送信されたパケットすなわちパケット受信装置4-1が宛先のパケットを受信部20a1へ出力する。また、パケット分離部25bは、パケット送信装置3-2から送信されたパケットすなわちパケット受信装置4-2が宛先のパケットを受信部20a2へ出力する。また、パケット分離部25bは、伝送遅延の測定用パケットを測定パケット終端部26へ出力する。パケット分離部25bは、例えば、パケットのヘッダに格納されている情報に基づいてパケットの出力先を判断する。他の方法で出力先を判断するようにしてもよい。
測定パケット終端部26は、多重装置1bの多重部30-1が送信した伝送遅延の測定用パケットを終端し、測定用パケットを多重部30-1へ返送する。
図11は、実施の形態3にかかる多重装置1bおよび分離装置2b-1,2b-2を実現するハードウェアの構成例を示す図である。実施の形態1にかかる多重装置1および分離装置2を実現するハードウェアの構成例を示した図2、実施の形態2にかかる多重装置1aおよび分離装置2aを実現するハードウェアの構成例を示した図7と同様のハードウェアには同一の符号を付して詳細説明を省略する。
多重装置1bは、パケットインタフェース101、パケットバッファ102、バッファカウンタ回路103、バッファ読出回路104、パケット生成回路105、電気-光インタフェース106、CPU107、メモリ108、外部設定インタフェース109および伝送遅延測定回路110により実現される。図11では、多重部の数に対応して、パケットインタフェース101、パケットバッファ102、バッファカウンタ回路103、バッファ読出回路104、パケット生成回路105、電気-光インタフェース106および伝送遅延測定回路110を2組備えた構成を示している。
図10に示した多重装置1bの機能ブロックと図11に示した多重装置1bのハードウェア構成の対応を以下に示す。
パケットバッファ11a1および11a2は、パケットバッファ102により実現される。遅延算出部181および182は、CPU107およびメモリ108により実現される。すなわち、CPU107がメモリ108に格納されたプログラムに従った処理を実行し、遅延算出部181を実現する場合には、パケットバッファ11a1にパケットが入力されたタイミングと、パケットバッファ11a1からパケットが出力されるタイミングとに基づいて、遅延補正値を算出する。遅延算出部182を実現する場合も同様である。
フッタ挿入部131および132は、バッファ読出回路104およびパケット生成回路105により実現される。また、フッタ生成部14a1および14a2は、パケット生成回路105により実現される。すなわち、パケット生成回路105は、CPU107がメモリ108に格納されたプログラムに従った処理を実行して算出された遅延補正値を受け取ると、遅延補正値に基づいて、パケットに挿入するフッタ情報を生成する。次に、パケット生成回路105は、生成したフッタ情報をバッファ読出回路104がパケットバッファ102から読み出したパケットに挿入し、分離装置2b-1,2b-2へ送信するパケットを生成する。
パケット出力制御部15bは、バッファ読出回路104により実現される。パケット多重部16bは、パケット生成回路105により実現される。光インタフェース17bは、電気-光インタフェース106により実現される。
伝送遅延測定部19は、伝送遅延測定回路110により実現される。すなわち、伝送遅延測定回路110は、伝送遅延の測定用パケットの送信および受信を行い、多重装置1bと分離装置2b-1との間の伝送遅延を測定する。
遅延量決定部40は、CPU107およびメモリ108により実現される。すなわち、CPU107がメモリ108に格納されたプログラムに従った処理を実行し、伝送遅延測定回路110で測定された伝送遅延に基づいて固定遅延量を算出する。
分離装置2b-1,2b-2は、電気-光インタフェース201、パケットバッファ202、パケット解析回路203、バッファカウンタ回路204、バッファ読出回路205、パケットインタフェース208およびパケット生成回路210により実現される。
図10に示した分離装置2b-1,2b-2の機能ブロックと図11に示した分離装置2b-1,2b-2のハードウェア構成の対応を以下に示す。
光インタフェース24bは、電気-光インタフェース201により実現される。パケット分離部25bは、パケット解析回路203およびパケットバッファ202により実現される。すなわち、パケット解析回路203は、電気-光インタフェース201が受信したパケットを解析してパケットの出力先を決定した上でパケットバッファ202にパケットを格納する。
フッタ抽出部21a1および21a2は、パケット解析回路203により実現される。すなわち、パケット解析回路203がパケットを解析し、パケットからフッタ情報を抽出する。パケット遅延部221および222は、パケットバッファ202、バッファカウンタ回路204、バッファ読出回路205およびパケットインタフェース208により実現される。すなわち、バッファカウンタ回路204は、パケットがパケットバッファ202に格納されてからの経過時間をカウントし、バッファ読出回路205は、バッファカウンタ回路204のカウント値が遅延補正値と一致した場合にパケットバッファ202からパケットを読み出す。パケットインタフェース208は、バッファ読出回路205が読み出したパケットをパケット受信装置4-1,4-2へ出力する。
測定パケット終端部26は、パケット解析回路203およびパケット生成回路210により実現される。すなわち、パケット解析回路203がパケットを解析し、多重装置1bから受信したパケットが伝送遅延の測定用パケットである場合、パケット生成回路210が多重装置1bへ返送する測定用パケットを生成する。
次に、本実施の形態にかかるパケット転送システム100bの全体動作について説明する。ここでは、多重装置1bの多重部30-1がパケット送信装置3-1,3-2から受け取ったパケットを分離装置2b-1へ転送し、分離装置2b-1がパケットをパケット分離装置4-1,4-2へ出力する場合について説明する。なお、多重部30-2が分離装置2b-2へパケットを転送する場合の動作も同様である。
パケット転送システム100bにおいて、多重装置1bの多重部30-1および30-2は、パケット送信装置からパケットを受け取ると、受け取ったパケットに対して遅延補正値を含んだフッタ情報を挿入し、時分割多重で分離装置2b-1または2b-2へ転送する。遅延補正値は各送信部の遅延算出部で算出される。分離装置2b-1は、多重装置1bからパケットを受信すると、受信したパケットに挿入されていた遅延補正値が示す時間が経過した時点でパケットをパケット受信装置4-1または4-2へ出力する。
以上の動作は、実施の形態2にかかるパケット転送システム100aにおいて多重装置1aおよび分離装置2aがパケットを転送する動作と同じである。実施の形態3にかかるパケット転送システム100bと実施の形態2にかかるパケット転送システム100aの違いは、多重装置が遅延補正値を算出する際に使用する固定遅延量の決定方法である。すなわち、実施の形態3にかかるパケット転送システム100bでは、多重装置1bの遅延量決定部40が、各多重部と各分離装置との間の伝送遅延時間に基づいて固定遅延量を決定する点が異なる。以下、遅延量決定部40が固定遅延量を決定する動作について説明する。遅延量決定部40が固定遅延量を決定する動作は、例えば、多重装置1bが起動した場合に実行する。また、多重装置1bに接続される分離装置が増加した場合または減少した場合など、多重装置1bと分離装置との接続関係が変化した場合に遅延量決定部40が固定遅延量を決定する動作を実行してもよい。なお、遅延量決定部40が固定遅延量を決定する動作の実行条件をこれらに限定するものではない。
固定遅延量を決定する動作では、まず、多重部30-1の伝送遅延測定部19が、伝送遅延の測定用パケットを生成して送信する。測定用パケットには多重装置1bが管理する内部カウンタ値が格納される。測定用パケットは伝送遅延測定部19からパケット多重部16bに入力され、光インタフェース17bを介して対応する分離装置2b-1へ送信される。
分離装置2b-1は、伝送遅延の測定用パケットを受信すると、パケット分離部25bにおいてこれを分離し、測定パケット終端部26へ入力する。パケット分離部25bは、例えばイーサネットフレームのVLAN TAGを用いて測定用パケットを識別することによりパケットの分離を行う。すなわち、多重部30-1の伝送遅延測定部19は、伝送遅延の測定用パケットであることを示す情報がVLAN TAGに設定された伝送遅延の測定用パケットを生成して送信する。分離装置2b-1のパケット分離部25bは、受信したパケットのVLAN TAGを確認することにより、伝送遅延の測定用パケットか否かを判別する。分離装置2b-1の測定パケット終端部26は、受信した測定用パケットに格納された内部カウンタ値を取り込み、分離装置2b-1は、測定パケット終端部26が取り込んだ内部カウンタ値に自装置の内部カウンタを合わせる。次に、測定パケット終端部26は、自装置すなわち分離装置2b-1の内部カウンタにてカウントしたカウンタ値を多重装置1bから受信した測定用パケットに格納して多重装置1bへ送信する。測定パケット終端部26から出力された測定用パケットはパケット分離部25bに入力され、光インタフェース24bを介して多重装置1bの多重部30-1へ送信される。
多重部30-1の伝送遅延測定部19は、分離装置2b-1の測定パケット終端部26が送信した測定用パケットを光インタフェース17bおよびパケット多重部16bを介して受信する。そして、伝送遅延測定部19は、受信した測定パケットに格納されているカウンタ値と、測定パケットを受信した時点の自装置のカウンタ値すなわち多重装置1bのカウンタ値とに基づいて、多重装置1bと分離装置2b-1との間の伝送遅延時間を測定する。具体的には、伝送遅延測定部19は、測定パケットを受信した時点の自装置のカウンタ値と、受信した測定パケットに格納されているカウンタ値との差分を算出し、算出した差分を2で割ることで、多重装置1bと分離装置2b-1との間の伝送遅延時間を求める。伝送遅延測定部19は、求めた伝送遅延時間を伝送遅延として遅延量決定部40に通知する。
多重部30-1の伝送遅延測定部19が伝送遅延時間を測定する場合について説明したが、多重部30-2の図示を省略している伝送遅延測定部でも同様の手順で分離装置2b-2との間の伝送遅延時間を測定し、測定した伝送遅延時間を伝送遅延として遅延量決定部40に通知する。
遅延量決定部40は、多重部30-1および30-2から通知された伝送遅延時間を使用し、以下の式(2)に従って固定遅延量(T_f)を算出する。遅延量決定部40は、固定遅延量の算出が終了すると、算出した固定遅延量を多重部30-1および30-2が備えている各遅延算出部へ通知する。
T_f=(伝送遅延時間の最大値-自身の伝送遅延量)+最大パケット長×パケット送信装置数×2/(多重装置と分離装置間の転送レート+パケット送信装置の転送レート) …(2)
式(2)において、「伝送遅延時間の最大値」は、各多重部から通知された伝送遅延時間の中の最大値である。「自身の伝送遅延量」は、多重装置1bがパケット送信装置から入力されたパケットをすぐに光伝送路へ出力する場合のパケット入力からパケット出力が完了するまでの所要時間である。「パケット送信装置数」は、「伝送遅延時間の最大値」が測定された多重部に接続されているパケット送信装置の数である。
多重部30-1および30-2が備えている各遅延算出部は、遅延量決定部40から通知された固定遅延量を使用して遅延補正値を算出する。
図12は、実施の形態3にかかる多重装置1bの多重部30-1が備えている伝送遅延測定部19の動作例を示すフローチャートである。
伝送遅延測定部19は、まず、自装置の内部カウンタ値が格納された伝送遅延の測定用パケットを生成して分離装置2b-1へ送信する(ステップS51)。伝送遅延測定部19は、次に、伝送遅延の測定用パケットを分離装置2b-1から受信すると(ステップS52)、自装置から分離装置2b-1までの伝送遅延時間を算出する(ステップS53)。このステップS53において、伝送遅延測定部19は、受信した測定用パケットに格納されているカウンタ値と測定用パケットを受信した時の自装置の内部カウンタの値とに基づいて、伝送遅延時間を算出する。受信した測定用パケットに格納されているカウンタ値は、分離装置2b-1が測定用パケットを送信した時点における分離装置2b-1の内部カウンタの値である。伝送遅延測定部19は、最後に、ステップS53で算出した伝送値遅延時間を示す伝送遅延情報を遅延量決定部40へ出力する(ステップS54)。
図13は、実施の形態3にかかる分離装置2b-1が備えている測定パケット終端部26の動作例を示すフローチャートである。
測定パケット終端部26は、まず、多重装置1bが送信した伝送遅延の測定用パケットを受信する(ステップS61)。測定パケット終端部26は、次に、受信した測定用パケットに格納されている内部カウンタ値、すなわち測定用パケットが送信された時点の多重装置1bの内部カウンタのカウンタ値を使用して、自装置のカウンタを調整する(ステップS62)。このステップS62において、測定パケット終端部26は、ステップS61で受信した測定用パケットに格納されている内部カウンタ値を抽出し、抽出した内部カウンタ値に自装置すなわち分離装置2b-1の内部カウンタの値を合わせる。
測定パケット終端部26は、次に、多重装置1bから受信した測定用パケットに対して自装置の内部カウンタの値を格納し、測定用パケットを多重装置1bへ送信する(ステップS63)。
図14は、実施の形態3にかかる多重装置1bが備えている遅延量測定部40の動作例を示すフローチャートである。
遅延量決定部40は、全ての多重部から伝送遅延情報を受信したか否かを確認し(ステップS71)、伝送遅延情報を受信していない多重部が存在する場合(ステップS71:No)、確認動作を繰り返す。遅延量決定部40は、全ての多重部から伝送遅延情報を受信した場合(ステップS71:Yes)、各多重部から受け取った伝送遅延情報に基づいて固定遅延量を算出する(ステップS72)。遅延量決定部40は、次に、算出した固定遅延量を各多重部へ通知する(ステップS73)。
以上のように、本実施の形態にかかるパケット転送システムにおいて、多重装置1bは、分離装置へパケットを送信する多重部を複数備え、多重部はパケット転送先の分離装置との間の伝送遅延時間を測定する伝送遅延測定部を備える。また、多重装置1bは、各多重部の伝送遅延測定部で測定された伝送遅延時間に基づいて、遅延補正値を算出する際に使用する固定遅延量を決定する。これにより、1台の多重装置に対して複数の分離装置が接続される構成において、多重装置にパケットが入力されてから各分離装置がパケットを出力するまでの遅延時間の揺らぎを抑制できる。すなわち、多重装置にパケットが入力されてから各分離装置がパケットを出力するまでの遅延時間を多重装置と複数の分離装置との組み合わせに応じた固定時間とすることができる。また、多重装置にパケットが入力されてから各分離装置がパケットを出力するまでの遅延時間が必要以上に長くなるのを防止しつつパケットの廃棄数を抑制することができる。
以上の実施の形態に示した構成は、本発明の内容の一例を示すものであり、別の公知の技術と組み合わせることも可能であるし、本発明の要旨を逸脱しない範囲で、構成の一部を省略、変更することも可能である。
1,1a,1b 多重装置、2,2a,2b-1,2b-2 分離装置、3,3-1,3-2 パケット送信装置、4,4-1,4-2 パケット受信装置、101,102,10a1,10a2 送信部、111,112,11a1,11a2 パケットバッファ、121,122 遅延測定部、131,132 フッタ挿入部、141,142,14a1,14a2 フッタ生成部、15,15a,15b パケット出力制御部、16,16b パケット多重部、17,17b,24,24b 光インタフェース(光IF)、181,182,231,232 遅延算出部、19 伝送遅延測定部、201,202,20a1,20a2 受信部、211,212,21a1,21a2 フッタ抽出部、221,222 パケット遅延部、25,25b パケット分離部、30-1,30-2 多重部、40 遅延量決定部、100,100a,100b パケット転送システム。
Claims (15)
- それぞれ異なるパケット送信装置からパケットを受け取り、受け取ったパケットを保持してから出力する複数の送信部と、
前記複数の送信部の各々に対して保持しているパケットの出力を指示するパケット出力制御部と、
を備え、
前記送信部は、前記パケットを受け取ってから出力するまでの時間を示す遅延時間情報を対向装置における前記パケットの遅延揺らぎ抑制処理で使用する情報として前記パケットに挿入し、前記対向装置へ送信する、
ことを特徴とする転送装置。 - それぞれ異なるパケット送信装置からパケットを受け取り、受け取ったパケットを保持してから出力する複数の送信部と、
前記複数の送信部の各々に対して保持しているパケットの出力を指示するパケット出力制御部と、
を備え、
前記送信部は、前記パケットを受け取ってから出力するまでの時間に基づいて、出力した前記パケットを対向装置が受信してから出力するまでの時間を示す遅延補正値を算出し、算出した遅延補正値を前記パケットに挿入し、前記対向装置へ送信する、
ことを特徴とする転送装置。 - 前記送信部は、前記パケットを受け取ってから出力するまでの時間を予め設定された固定遅延量から差し引いた値を前記遅延補正値として算出する、
ことを特徴とする請求項2に記載の転送装置。 - 前記送信部は、前記算出した遅延補正値がゼロ未満の場合、保持しているパケットを廃棄する、
ことを特徴とする請求項3に記載の転送装置。 - 前記固定遅延量は、前記対向装置へ送信可能なパケットの最大サイズと、前記転送装置と前記対向装置との間の転送レートと、前記パケット送信装置の数と、に基づいて決定された値である、
ことを特徴とする請求項3または4に記載の転送装置。 - 異なる光伝送路を介して接続された複数の対向装置へパケットを転送する転送装置であって、
前記複数の対向装置のいずれか一つと一対一で接続され、複数のパケット送信装置から受け取ったパケットを多重化して、接続されている対向装置へ転送する複数の多重部と、
前記多重部が転送したパケットを前記対向装置が受信してからパケット受信装置へ出力するまでの時間を示す遅延補正値を前記多重部が算出する際に前記多重部が使用する固定遅延量を決定する遅延量決定部と、
を備え、
前記固定遅延量決定部は、前記複数の多重部と前記対向装置とを接続している各光伝送路における伝送遅延時間に基づいて前記固定遅延量を決定し、
前記多重部は、前記パケットを受け取ってから送信するまでの時間と前記固定遅延量とに基づいて前記遅延補正値を算出し、算出した遅延補正値を前記パケットに挿入し、前記接続されている対向装置へ送信する、
ことを特徴とする転送装置。 - 前記固定遅延量決定部は、前記パケットを受け取ってから送信するまでの時間を前記固定遅延量から差し引いた値を前記遅延補正値として算出する、
ことを特徴とする請求項6に記載の転送装置。 - 前記多重部は、前記算出した遅延補正値がゼロ未満の場合、保持しているパケットを廃棄する、
ことを特徴とする請求項7に記載の転送装置。 - 前記固定遅延量決定部は、前記複数の多重部と前記対向装置とを接続している各光伝送路における伝送遅延時間のうち、最も大きい伝送遅延時間と、前記対向装置へ送信可能なパケットの最大サイズと、前記対向装置との間の転送レートと、前記最も大きい伝送遅延時間に対応する多重部に接続されているパケット送信装置の数と、に基づいて前記固定遅延量を決定する、
ことを特徴とする請求項6、7または8に記載の転送装置。 - 前記遅延補正値は、前記対向装置との間で同期したクロックの周期を整数倍した値を示す、
ことを特徴とする請求項2から9のいずれか一つに記載の転送装置。 - それぞれ異なるパケット送信装置からパケットを受け取り転送するパケット送信装置側の転送装置と、
前記パケット送信装置側の転送装置が転送した前記パケットを受信してパケット受信装置へ送信するパケット受信装置側の転送装置と、
を備え、
前記パケット送信装置側の転送装置は、前記パケットを受け取ってから転送するまでの時間を示す遅延時間情報を前記パケットに挿入して前記パケット受信装置側の転送装置へ送信し、
前記パケット受信装置側の転送装置は、受信した前記パケットに挿入されている前記遅延時間情報に基づいて、前記受信したパケットを前記パケット受信装置へ送信するタイミングを決定する、
ことを特徴とするパケット転送システム。 - 前記パケット受信装置側の転送装置は、前記パケットを受信すると、受信したパケットに挿入されている前記遅延時間情報が示す時間を予め設定された固定遅延時間から差し引いた時間のカウントを開始し、カウントが終了すると、前記受信したパケットを前記パケット受信装置へ送信する、
ことを特徴とする請求項11に記載のパケット転送システム。 - 前記パケット受信装置側の転送装置は、前記遅延時間情報が示す時間が前記固定遅延時間よりも長い場合、前記受信したパケットを廃棄する、
ことを特徴とする請求項12に記載のパケット転送システム。 - 前記遅延時間情報は、前記パケット送信側の転送装置と前記パケット受信装置側の転送装置との間で同期したクロックの周期を整数倍した値を示す、
ことを特徴とする請求項11、12または13に記載のパケット転送システム。 - それぞれ異なるパケット送信装置からパケットを受け取り、受け取ったパケットを保持してから出力する複数の送信部、を備えた転送装置におけるパケット転送方法であって、
前記送信部が、前記パケットを受け取ってから出力するまでの時間を測定するステップと、
前記送信部が、前記測定した時間を示す遅延時間情報を対向装置における前記パケットの遅延揺らぎ抑制処理で使用する情報として前記パケットに挿入するステップと、
前記送信部が、前記遅延時間情報が挿入された前記パケットを前記対向装置へ送信するステップと、
を含むことを特徴とするパケット転送方法。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2016/077013 WO2018051418A1 (ja) | 2016-09-13 | 2016-09-13 | 転送装置、パケット転送システムおよびパケット転送方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2016/077013 WO2018051418A1 (ja) | 2016-09-13 | 2016-09-13 | 転送装置、パケット転送システムおよびパケット転送方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018051418A1 true WO2018051418A1 (ja) | 2018-03-22 |
Family
ID=61619099
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2016/077013 WO2018051418A1 (ja) | 2016-09-13 | 2016-09-13 | 転送装置、パケット転送システムおよびパケット転送方法 |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2018051418A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2023166807A1 (ja) * | 2022-03-02 | 2023-09-07 | 住友電気工業株式会社 | 伝送システム、送信装置、受信装置、及びデータ伝送方法 |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001268085A (ja) * | 2000-03-16 | 2001-09-28 | Matsushita Electric Ind Co Ltd | セル多重制御装置 |
JP2010183448A (ja) * | 2009-02-06 | 2010-08-19 | Nec Corp | ストリーム信号伝送装置及び伝送方法 |
-
2016
- 2016-09-13 WO PCT/JP2016/077013 patent/WO2018051418A1/ja active Application Filing
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001268085A (ja) * | 2000-03-16 | 2001-09-28 | Matsushita Electric Ind Co Ltd | セル多重制御装置 |
JP2010183448A (ja) * | 2009-02-06 | 2010-08-19 | Nec Corp | ストリーム信号伝送装置及び伝送方法 |
Non-Patent Citations (1)
Title |
---|
KAZUHIRO KAMIMURA ET AL.: "A Study on Delay Stabilization for 802.11 Wireless LAN Communications", IEICE TECHNICAL REPORT, vol. 109, no. 326, 3 December 2009 (2009-12-03), pages 29 - 32 * |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2023166807A1 (ja) * | 2022-03-02 | 2023-09-07 | 住友電気工業株式会社 | 伝送システム、送信装置、受信装置、及びデータ伝送方法 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101481396B1 (ko) | 노드들 사이의 집성된 연결을 갖는 패킷-스위칭된 네트워크의 마스터 및 슬레이브 클록들을 동기화시키기 위한 방법 및 관련된 동기화 디바이스들 | |
US8982897B2 (en) | Data block output apparatus, communication system, data block output method, and communication method | |
CN101827098A (zh) | 时间同步的处理方法及装置 | |
CN102439964A (zh) | 相机系统、信号延迟量调整方法和程序 | |
US9209919B2 (en) | Synchronization control system | |
JP4757215B2 (ja) | 光伝送システムおよび光伝送方法 | |
WO2012050360A3 (en) | Method and system of transmitting packet data units of machine type communication devices over a network interface in a long term evolution network | |
WO2010037347A1 (zh) | 同步网中主、从时钟侧的时间同步方法、装置、及系统 | |
CN101534249A (zh) | 一种在捆绑链路上发送数据的方法及网络设备 | |
JP4425258B2 (ja) | 光送信器のフレーム生成回路および光伝送方法 | |
US20110096790A1 (en) | Signal processing circuit, interface unit, frame transmission apparatus, and segment data reading method | |
US20080159748A1 (en) | Optical transmission system | |
US6781984B1 (en) | Techniques and architectures for implementing a data skew equalizer for data alignment in a distributed system | |
JP2008017264A (ja) | Pon多重中継システムとこれに用いるpon多重中継装置及びその網同期方法 | |
KR20170010006A (ko) | 광 패킷 전송 방법 및 장치, 처리 방법 및 광 스위칭 장치 | |
JP2003101502A (ja) | 多重転送システム及び装置 | |
WO2018051418A1 (ja) | 転送装置、パケット転送システムおよびパケット転送方法 | |
US20110044332A1 (en) | Communication apparatus, communication system, and communication method | |
WO2015176242A1 (zh) | 一种数据传输方法、装置及网络系统 | |
JP2018157519A (ja) | 通信装置及び信号中継方法 | |
JP5889812B2 (ja) | 遅延測定方法および遅延測定システム | |
JP6456776B2 (ja) | 遅延揺らぎ吸収方法 | |
JP6341869B2 (ja) | 通信装置および通信システム | |
EP3729752B1 (en) | Data communication | |
JP2014033251A (ja) | 通信システム及びパケット送信方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16916203 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 16916203 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: JP |