WO2018051417A1 - 水素エネルギー貯蔵システム、及び水素エネルギー貯蔵システムの制御方法 - Google Patents

水素エネルギー貯蔵システム、及び水素エネルギー貯蔵システムの制御方法 Download PDF

Info

Publication number
WO2018051417A1
WO2018051417A1 PCT/JP2016/076991 JP2016076991W WO2018051417A1 WO 2018051417 A1 WO2018051417 A1 WO 2018051417A1 JP 2016076991 W JP2016076991 W JP 2016076991W WO 2018051417 A1 WO2018051417 A1 WO 2018051417A1
Authority
WO
WIPO (PCT)
Prior art keywords
hydrogen
power
unit
storage unit
power generation
Prior art date
Application number
PCT/JP2016/076991
Other languages
English (en)
French (fr)
Inventor
門田 行生
佐藤 純一
大悟 橘高
Original Assignee
株式会社 東芝
東芝エネルギーシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 東芝, 東芝エネルギーシステムズ株式会社 filed Critical 株式会社 東芝
Priority to PCT/JP2016/076991 priority Critical patent/WO2018051417A1/ja
Publication of WO2018051417A1 publication Critical patent/WO2018051417A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/34Parallel operation in networks using both storage and other dc sources, e.g. providing buffering
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J15/00Systems for storing electric energy
    • H02J15/008Systems for storing electric energy using hydrogen as energy vector
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E70/00Other energy conversion or management systems reducing GHG emissions
    • Y02E70/30Systems combining energy storage with energy generation of non-fossil origin

Definitions

  • Embodiments of the present invention relate to a hydrogen energy storage system and a method for controlling the hydrogen energy storage system.
  • a hydrogen energy storage system that supplies electric power generated by renewable energy such as sunlight or wind power to a load and stores hydrogen generated using surplus power is known.
  • this hydrogen energy storage system when power is insufficient, power generated using stored hydrogen is supplied to a load.
  • short-term excess or deficiency of power supplied to the load is compensated by charging / discharging of the power storage unit having a faster response speed.
  • the power storage energy of the power storage unit tends to increase during the period when the power is surplus, and the power storage energy of the power storage unit tends to decrease during the period where the power is insufficient. For this reason, in order to make up for the short-term excess or shortage of power with the power storage unit, a power storage unit with a larger capacity has been required.
  • the problem to be solved by the present invention is to provide a hydrogen energy storage system capable of controlling the stored energy of the power storage unit, and a control method for the hydrogen energy storage system.
  • the hydrogen energy storage system generates hydrogen by electrolysis of water using electric power supplied from a power generation unit using renewable energy, and produces hydrogen by storing the generated hydrogen in the hydrogen storage unit
  • a hydrogen power generation unit that supplies power generated using hydrogen stored in the hydrogen storage unit to a load, and a power storage unit that has a control response earlier than the hydrogen production unit and the hydrogen power generation unit,
  • a power storage unit that charges and discharges an excess or deficiency of power supplied from the power generation unit to the load, and a first period in which the hydrogen production unit performs control to generate hydrogen.
  • a control unit that performs control to reduce the stored energy of the power storage unit while charging and discharging the battery.
  • the stored energy of the power storage unit can be controlled.
  • FIG. 1 is a block diagram showing a configuration of a hydrogen energy storage system 1 according to the embodiment.
  • the hydrogen energy storage system 1 according to the present embodiment is a system capable of generating power using hydrogen generated by decomposition using renewable energy, and includes a control unit 100, a power generation unit 102, The hydrogen production unit 104, the hydrogen storage unit 106, the hydrogen power generation unit 108, the power storage unit 110, the first measurement unit 112, and the second measurement unit 114 are configured.
  • the control unit 100 is connected to the hydrogen production unit 104, the hydrogen storage unit 106, the hydrogen power generation unit 108, the power storage unit 110, the first measurement unit 112, and the second measurement unit 114, and the hydrogen production unit 104, Control of the hydrogen power generation unit 108, the power storage unit 110, and the like is performed.
  • the detailed configuration of the control unit 100 will be described later.
  • the power generation unit 102 generates power using renewable energy.
  • the power generation unit 102 includes a solar power generation device using sunlight, a wind power generation device using wind power, and the like.
  • the power generation unit 102 does not require fuel such as fossil fuel, but the power generation amount is affected by the environment such as weather and wind power.
  • the power generation unit 102 is connected to the load 4, the hydrogen production unit 104, and the power storage unit 110 via the power transmission unit 2, and generates power to the load 4, the hydrogen production unit 104, and the power storage unit 110.
  • the electric power transmission part 2 is a conducting wire, for example, and is comprised with conductors, such as copper.
  • the hydrogen production unit 104 produces hydrogen by electrolysis of water using the power supplied from the power generation unit 102 via the power transmission unit 2, and stores the produced hydrogen in the hydrogen storage unit 106.
  • the hydrogen production unit 104 is, for example, a water electrolysis device that produces hydrogen and oxygen from water by passing an electric current through an alkaline solution. That is, the hydrogen production unit 104 communicates with the hydrogen storage unit 106 via the hydrogen pipe 6 and stores the generated hydrogen in the hydrogen storage unit 106. Thereby, the hydrogen production unit 104 can generate and store hydrogen using surplus power. More specifically, water is electrolyzed according to a hydrogen generation signal input from the control unit 100 to generate hydrogen and oxygen.
  • the hydrogen storage unit 106 is composed of, for example, a hydrogen tank, and stores the hydrogen phase-shifted from the hydrogen production unit 104. That is, the hydrogen storage unit 106 communicates with the hydrogen production unit 104 and the hydrogen power generation unit 108 via the hydrogen pipes 6 and 8.
  • the hydrogen power generation unit 108 is, for example, a fuel cell, and supplies the load 4 with electric power generated using hydrogen stored in the hydrogen storage unit 106. That is, the hydrogen power generation unit 108 generates electricity using oxygen, hydrogen and oxygen supplied from the hydrogen pipe 8. Oxygen in the air may be used as the oxygen, or oxygen stored in the oxygen tank by the hydrogen production unit 104 as it produces hydrogen may be used. As a result, the insufficient power can be supplemented by the power generation by the hydrogen power generation unit 108. More specifically, power generation is performed according to a power generation signal input from the control unit 100.
  • the power storage unit 110 has a faster control response than the hydrogen production unit 104 and the hydrogen power generation unit 108, and compensates for short-term excess and deficiency of power supplied from the power generation unit 102 to the load 4 by charging and discharging.
  • the power storage unit 110 includes, for example, a secondary battery, a large-capacity capacitor, a flywheel, a SMES, and the like, and can handle charging and discharging of electric power at a speed higher than the order of seconds to minutes. That is, when power is supplied from the power generation unit 102 and the hydrogen power generation unit 108 to the load 4, the power storage unit 110 charges and discharges excess or deficiency of the power supplied from the power generation unit 102 and the hydrogen power generation unit 108 to the load 4. To do.
  • the power storage unit 110 charges / discharges excess or deficiency of the power supplied from the power generation unit 102 to the load 4 and the hydrogen production unit 104. To do. As a result, the power supplied from the power generation unit 102 to the load 4 can be leveled. More specifically, the power storage unit 110 charges and discharges electric power through the power transmission unit 2 in accordance with a charge / discharge signal input from the control unit 100.
  • the 1st measurement part 112 is comprised with a power meter, for example, and outputs the electric power information regarding the electric power generated by the electric power generation part 102 to the control part 100.
  • the second measurement unit 114 is configured with a power meter, for example, and outputs power information related to the power consumption of the load 4 to the control unit 100.
  • the difference value between the measured power of the first measurement unit 112 and the measured power of the second measurement unit 114 indicates the excess / deficiency power value of the power supplied from the power generation unit 102 to the load 4.
  • the control unit 100 performs control to reduce the accumulated energy of the power storage unit 110 while charging / discharging the power storage unit 110 for excess and deficiency of power in the first period in which the hydrogen production unit 104 generates hydrogen.
  • the first period is a period that, on average, becomes surplus power.
  • control unit 100 performs control to cause the hydrogen production unit 104 to produce hydrogen within a range where the accumulated energy amount of the power storage unit 110 does not reach the first set value that allows discharge.
  • the first set value is 10% of the maximum stored energy amount of the power storage unit 110.
  • the control unit 100 always obtains information regarding the amount of energy stored in the power storage unit 110.
  • the amount of energy stored here is a physical quantity equivalent to the amount of stored power in the power storage unit 110.
  • 10% of the maximum stored energy amount here means 10% of the maximum stored power.
  • the control unit 100 increases the accumulated energy of the power storage unit 110 while charging / discharging the power storage unit 110 in excess or deficiency of power during the second period in which the hydrogen power generation unit 108 performs power generation control.
  • the second period is a period in which, on average, there is insufficient power. That is, in the second period, the control unit 100 performs control to cause the hydrogen power generation unit 108 to generate power in a range where the amount of stored energy of the power storage unit 110 does not reach the second set value that allows charging.
  • the second set value is 90% of the maximum stored energy amount of the power storage unit 110.
  • FIG. 2 is a block diagram illustrating a configuration of the control unit 100.
  • the control unit 100 includes a storage unit 118, a prediction unit 120, a determination unit 122, and a command value generation unit 124.
  • the storage unit 118 includes a readable recording medium such as a magnetic or optical recording medium or a semiconductor memory.
  • the storage unit 118 stores a power generation amount prediction data group 126A and a power consumption amount prediction data group 126B.
  • the power generation amount prediction data group 126A is a data group used for predicting the power generation amount of the power generation unit 102, and includes weather prediction data 128A, calendar data 130A, and past power generation amount 132A.
  • the weather prediction data 128A is data such as sunny, rainy, temperature, and wind speed in the prediction target period.
  • the calendar data 130A is data such as weekdays and holidays.
  • the past power generation amount 132A is the amount of power generated by the power generation unit 102 in the past.
  • the power consumption prediction data group 126B is a data group used for predicting the power consumption of the load 4, and includes weather prediction data 128B, calendar data 130B, and past power consumption 132B.
  • the weather prediction data 128B is data such as sunny and rainy, and temperature and wind speed in the prediction target period, as described above.
  • the calendar data 130B is data such as weekdays and holidays as described above.
  • the past power consumption 132B is the power consumption consumed by the load 4 in the past.
  • Pieces of information may be given from the outside of the control unit 100, or may be incorporated in the control unit 100 in advance. Further, as the past power generation amount, information obtained by accumulating the generated power of the power generation unit 102 measured by the first measurement unit 112 in the control unit 100 may be used. Similarly, as the past power consumption 132B, information obtained by accumulating the power consumption of the load 4 measured by the second measurement unit 114 in the control unit 100 may be used.
  • the prediction unit 120 predicts the power generation amount of the power generation unit 102 and the power consumption amount of the load 4. That is, the prediction unit 120 includes a power generation amount prediction unit 134, a power consumption amount prediction unit 136, a specific period selection unit 138, a specific period generation power amount prediction unit 140, and a specific period power consumption amount prediction unit 142. It is prepared for.
  • the generated power amount prediction unit 134 predicts the generated power amount of the power generation unit 102 using the information of the generated power amount prediction data group 126A.
  • the power consumption amount prediction unit 136 predicts the power consumption amount of the load 4 using the information of the power consumption amount prediction data group 126B.
  • the specific period selection unit 138 selects a specific period as a calculation unit such as one day, one week, month, season, or the like. This specific period may be input from the outside, may be determined by calculation according to a predetermined condition, or may be set in advance.
  • the specific period generated power amount prediction unit 140 extracts information on the period set by the specific period selection unit 138 from the generated power amount calculated by the generated power amount prediction unit 134, and outputs the information as a predicted generated power amount for the specific period.
  • the specific period power consumption prediction unit 142 extracts information on the period set by the specific period selection unit 138 from the power consumption calculated by the power consumption prediction unit 136 and outputs the information as a power consumption prediction value for the specific period. To do.
  • the determination unit 122 determines whether or not the specific period is the first period in which the generated power amount of the power generation unit 102 is a surplus power period larger than the power consumption amount of the load 4. In addition, the determination unit 122 determines whether or not the specific period is the second period, which is an insufficient power period in which the amount of power generated by the power generation unit 102 is smaller than the amount of power consumed by the load 4. Specifically, the determination unit 122 includes a calculation unit 144 and a determination unit 146.
  • the computing unit 144 subtracts the integrated value of the predicted power consumption amount for the specific period from the integrated value of the predicted power generation amount for the specific period, and outputs the subtracted value to the determining unit 146.
  • the determination unit 146 determines whether the subtraction value is a positive sign or a negative sign. That is, the determination part 146 determines that it is the 1st period when the surplus electric energy generate
  • the command value generation unit 124 controls the hydrogen production unit 104 and the power storage unit 110 in accordance with the equation (1) in the first period in which the surplus power is generated.
  • Power command value of hydrogen production department (surplus power amount + accumulated energy amount of power storage part / N) / specific period (1)
  • the specific period here is a period equivalent to the first period.
  • the control unit 100 equalizes the surplus power amount for a specific period and uses it for the power consumption of the hydrogen production unit 104.
  • N is a coefficient for reducing the energy stored in the power storage unit 110 based on the amount of energy stored in the power storage unit 110. That is, as N increases, the rate at which the amount of energy stored in power storage unit 110 decreases is reduced.
  • the power command value of the hydrogen power generation unit 108 that is, the power generation signal is a signal for setting power generation to 0, and the operation of the hydrogen power generation unit 108 is stopped.
  • a power command value (charge ⁇ ) that is, a charge / discharge signal to power storage unit 110 is expressed by equation (2).
  • Power command value of power storage unit (charging-) measured power of first measurement unit-measured power of second measurement unit-input power to hydrogen production unit (2)
  • the control unit 100 performs control to adjust excess / deficient power generated by the operation of the power generation unit 102, the load 4, and the water decomposition unit by charging and discharging of the power storage unit 110.
  • the control unit 100 performs the control shown in the equation (2) while reducing the stored energy of the power storage unit 110 as shown in the equation (1). That is, the first period is a period in which the power generation amount of the power generation unit 102 is larger than the power consumption amount of the load 4, and the control unit 100 determines the power generation amount, the power consumption amount, and the stored energy amount of the power storage unit 110. Control is performed to cause the hydrogen production unit 104 to produce hydrogen using the power command value calculated based on the above.
  • the stored energy amount of the power storage unit 110 is always operated on the discharge side. That is, the power storage unit 110 can be ready for receiving charging power by reducing the amount of stored energy. For this reason, even if a situation occurs in which the amount of generated power suddenly exceeds the amount of power consumption suddenly, excessive power can be charged by the power storage unit 110, and the power storage capacity of the power storage unit 110 can be further reduced.
  • a capacity for storing stored energy is secured in the power storage unit 110, and surplus power can be absorbed in the short term. For this reason, the power storage capacity of power storage unit 110 can be further reduced.
  • control unit 100 controls the hydrogen production unit 104 within a range where the amount of stored energy of the power storage unit 110 does not reach the first set value that allows discharge. That is, if the power storage unit 110 is completely discharged, it cannot be discharged when insufficient power is generated. In order to avoid such a state, the stored energy amount of the power storage unit 110 is discharged only to the first set value.
  • the control unit 100 allows the charging operation of the power storage unit 110 and stops the discharging operation. Further, the control unit 100 controls the hydrogen production unit 104 to reduce water electrolysis, that is, reduce the hydrogen production amount, based on the first set value. Alternatively, the control unit 100 performs control to stop the operation of the hydrogen production unit 104 and cause the hydrogen power generation unit 108 to generate power based on the first set value. That is, the control unit 100 controls either the hydrogen production unit 104 or the hydrogen power generation unit 108 in accordance with the amount of energy stored in the power storage unit 110. With such control, the amount of discharge of power storage unit 110 is adjusted. Thereby, the reduction
  • the command value generation unit 124 controls the hydrogen power generation unit 108 and the power storage unit 110 in accordance with the expression (3) in the second period in which the insufficient power amount is generated.
  • Power command value for hydrogen power generation unit (insufficient power amount + (maximum stored energy amount of power storage unit ⁇ accumulated energy amount of power storage unit) / N) / specific period (3)
  • the specific period here is the second period Is the same period.
  • the control unit 100 performs control for leveling the insufficient power amount in the specific period and causing the hydrogen power generation unit 108 to generate power.
  • N is a coefficient for increasing the stored energy of the power storage unit 110 based on a value obtained by subtracting the stored energy amount of the power storage unit 110 from the maximum stored energy amount of the power storage unit 110. That is, as N increases, the rate of increase in the amount of energy stored in power storage unit 110 decreases.
  • the power command value to the hydrogen production unit 104 that is, the hydrogen generation signal is a signal for generating zero, and the operation of the hydrogen production unit 104 is stopped.
  • control unit 100 performs control to adjust excess / deficient power generated by the operation of the power generation unit 102, the load 4, and the water decomposition unit by charging and discharging of the power storage unit 110.
  • the control unit 100 performs the control shown in the formula (4) while increasing the stored energy of the power storage unit 110 as shown in the formula (3). That is, the second period is a period in which the amount of power generated by the power generation unit 102 is smaller than the amount of power consumed by the load 4, and the control unit 100 determines the amount of power generated, the amount of power consumed, and the amount of energy stored in the power storage unit 110. Control is performed to cause the hydrogen power generation unit 108 to generate power using the power command value calculated based on the power command value.
  • the stored energy amount of the power storage unit 110 is always operated on the charging side, and the stored energy amount can be increased to prepare for discharging. For this reason, even if a situation occurs in which the amount of power consumption suddenly exceeds the amount of generated power suddenly, the power storage unit 110 can discharge insufficient power, and the power storage capacity of the power storage unit 110 can be further reduced.
  • the power storage unit 110 has a capacity for discharging the stored energy, and the shortage of power can be discharged in the short term. For this reason, the power storage capacity of power storage unit 110 can be further reduced.
  • control unit 100 controls the hydrogen power generation unit 108 in a range where the amount of stored energy of the power storage unit 110 does not reach the second set value that allows charging. That is, if the power storage unit 110 is completely charged, it cannot be charged when short-term surplus power is generated. In order to avoid such a state, the storage energy amount of the power storage unit 110 is charged only up to the second set value.
  • the control unit 100 stops the charging operation while permitting the discharging operation of the power storage unit 110. Further, the control unit 100 controls the hydrogen power generation unit 108 to reduce the generated power based on the second set value. Alternatively, the control unit 100 performs control to stop the operation of the hydrogen power generation unit 108 and cause the hydrogen production unit 104 to perform hydrogen production based on the second set value. That is, the control unit 100 controls either the hydrogen production unit 104 or the hydrogen power generation unit 108 in accordance with the amount of energy stored in the power storage unit 110. By such control, the amount of charge to power storage unit 110 is adjusted. Thereby, the reduction
  • FIG. 3 shows the relationship between the power generation amount of the power generation unit 102, the power consumption amount of the load 4, the power consumption amount of the hydrogen production unit 104, the power generation amount of the hydrogen power generation unit 108, and the charge / discharge power of the power storage unit 110 in one day.
  • FIG. The horizontal axis indicates time, and the vertical axis indicates power and electric energy.
  • 3A represents the power generation amount of the power generation unit 102
  • 3B represents the power consumption amount of the load 4
  • 3C represents the power consumption amount of the hydrogen production unit 104
  • 3D represents the power generation amount of the hydrogen power generation unit 108
  • 3E represents The charge / discharge power of the power storage unit 110 is shown
  • 3F shows the charge / discharge power amount of the power storage unit 110.
  • 3A indicates that the power generation amount prediction unit 140 for a specific period takes out the power generation amount prediction value for one day selected as the specific period from the power generation amount prediction value of the power generation unit 102 and uses it as the power generation amount prediction value for the specific period. This is the output value.
  • 3B is a value output by the specific period power consumption prediction unit 142 as a power consumption prediction value for the specific period by extracting the power consumption prediction value for the day selected as the specific period from the power consumption prediction value of the load 4 It is.
  • the determination unit 122 Since the determination unit 122 obtains a positive sign by subtracting a value obtained by integrating the predicted power consumption amount during the day period from a value obtained by integrating the predicted power generation amount during the specific period during the day period, However, it determines with the 1st period when the electric power generation amount of the electric power generation part 102 is larger than the electric energy consumption of the load 4. For this reason, the command value generation unit 124 calculates a power command value according to the above-described equation (1).
  • the power command value of the hydrogen production unit 104 (the surplus power amount of the day + the stored energy amount of the power storage unit 110 / N) / 24 hours, a command value is output to the hydrogen production unit 104.
  • the hydrogen production unit 104 produces hydrogen uniformly using a substantially constant electric power during the specific period.
  • the surplus power amount per day is 7.2 kWh
  • the stored energy amount of the power storage means is 6 kWh
  • the coefficient N is 3
  • the power command value of the power storage unit 110 is calculated as (measured power of the first measuring unit ⁇ measured power of the second measuring unit ⁇ input power of the hydrogen production unit 104) according to the equation (2).
  • the power storage unit 110 performs an operation according to the electric power command value, and charges / discharges excess / deficient power of the power generation unit 102, the load 4, and the hydrogen production unit 104.
  • the power storage unit 110 adjusts the excess / deficiency power of one day, which is a specific period. For this reason, the operation is performed such that the power amount of the power storage unit 110 is zero when accumulated at the end of the specific period of the day. Thereby, power storage unit 110 can avoid operations such as excessive accumulation of electric power and discharge.
  • FIG. 4 shows the relationship between the power generation amount of the power generation unit 102, the power consumption amount of the load 4, the power consumption amount of the hydrogen production unit 104, the power generation amount of the hydrogen power generation unit 108, and the charge / discharge power of the power storage unit 110 in two days.
  • FIG. The horizontal axis indicates time, and the vertical axis indicates power and electric energy.
  • 4A represents the power generation amount of the power generation unit 102
  • 4B represents the power consumption amount of the load 4
  • 4C represents the power consumption amount of the hydrogen production unit 104
  • 4D represents the power generation amount of the hydrogen power generation unit 108
  • 4E represents The charging / discharging electric power of the electrical storage part 110 is shown
  • 4F has shown the charging / discharging electric energy of the electrical storage part 110.
  • 4A extracts the predicted power generation amount for two days selected as the specific period from the power generation amount prediction value of the power generation unit 102 by the specific period power generation amount prediction unit 140, This is a value output as a predicted power generation amount for a specific period.
  • 4B is a value output by the specific period power consumption prediction unit 142 as a power consumption prediction value for the specific period by taking out the power consumption prediction value for two days selected as the specific period from the power consumption prediction value of the load 4 It is.
  • the determination unit 122 Since the determination unit 122 obtains a positive sign by subtracting a value obtained by integrating the predicted power consumption amount during the two-day period from a value obtained by integrating the predicted power generation amount during the specific period over the two-day period, However, it determines with it being the 1st period when the electric power generation amount of the electric power generation part 102 is larger than the electric energy consumption of the load 4. FIG. For this reason, the command value generation unit 124 calculates a power command value according to the above-described equation (1).
  • the command value of power command value of hydrogen production unit 104 (surplus power amount per day + accumulated energy amount of power storage unit 110 / N) / 48 hours is output to hydrogen production unit 104.
  • the hydrogen production unit 104 produces hydrogen using substantially constant power during the specific period.
  • the surplus power amount for 2 days is 9.1 kWh
  • the stored energy amount of the power storage unit 110 is 6 kWh
  • the coefficient N is 3
  • the power command value of the power storage unit 110 is calculated as (measured power of the first measuring unit ⁇ measured power of the second measuring unit ⁇ input power of the hydrogen production unit 104) according to the equation (2).
  • the power storage unit 110 performs an operation according to the electric power command value, and charges / discharges excess / deficient power of the power generation unit 102, the load 4, and the hydrogen production unit 104.
  • the power storage unit 110 adjusts the excess / deficiency power of one day, which is a specific period. For this reason, the operation is performed such that the power amount of the power storage unit 110 is zero when accumulated at the end of the specific period of the day. Thereby, power storage unit 110 can avoid operations such as excessive accumulation of electric power and discharge.
  • the specific period can also be used as a month or season (about three months). Further, as the specific period, a time unit smaller than one day, for example, every hour may be set. Thereby, the equipment rating of the hydrogen production unit 104 or the hydrogen power generation unit 108 can be reduced, and the power storage capacity of the power storage unit 110 can be reduced.
  • FIG. 5 is a flowchart illustrating an example of a control flow of the hydrogen energy storage system 1, and an example of a control flow of the hydrogen energy storage system 1 will be described with reference to FIG.
  • an example of operation control when the specific period selection unit 138 selects two days as the specific period will be described.
  • the generated power amount prediction unit 134 predicts the generated power amount of the power generation unit 102 using the information of the generated power amount prediction data group 126A (step S500).
  • the specific period selection unit 138 selects two days as the fixed period (step S502).
  • the specific period generated power amount prediction unit 140 extracts information for two days from the generated power amount calculated by the generated power amount prediction unit 134 and outputs it as a predicted generated power amount value for the specific period (step S504).
  • the power consumption prediction unit 136 predicts the power consumption of the load 4 using the information of the power consumption prediction data group 126B (step S506). Similar to step S502, the specific period selection unit 138 selects two days as the fixed period (step S508).
  • the specific period power consumption amount prediction unit 142 extracts information for two days from the power consumption amount calculated by the power consumption amount prediction unit 136, and outputs it as a power consumption amount prediction value for the specific period (step S510).
  • the calculation unit subtracts the integrated value of the predicted power generation amount for two days or the integrated value of the predicted power consumption amount for two days, and outputs the subtracted value to the determination unit (step S512).
  • the determination unit determines whether the subtraction value is a positive sign or a negative sign (step S514). That is, in the case of a positive sign, the determination unit determines that it is the first period in which surplus power is generated (step S514: YES).
  • the command value generation unit 124 generates a power command value according to the equation (1) (step S516), and ends a series of processes.
  • the determination unit determines that it is the second period in which the insufficient power amount is generated (step S514: NO).
  • the command value generation unit 124 generates a power command value according to the equation (3) (step S518), and ends a series of processes.
  • the control unit 100 performs control to cause the hydrogen production unit 104 to generate hydrogen.
  • the power storage unit 110 is charged / discharged with excess or deficiency of power.
  • control to reduce the stored energy of the power storage unit 110 is performed.
  • stores stored energy in the electrical storage part 110 is ensured, and the surplus electric power can be absorbed in a short term.
  • the power storage capacity of power storage unit 110 can be further reduced.
  • the control unit 100 controls the hydrogen power generation unit 108 to generate power.
  • the stored energy of the power storage unit 110 is increased while the power storage unit 110 is charged / discharged with excess or shortage of power. It was decided to perform control. Thereby, the capacity for discharging the stored energy is secured in the power storage unit 110, and the shortage of power can be discharged in the short term. For this reason, the power storage capacity of power storage unit 110 can be further reduced.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Fuel Cell (AREA)
  • Supply And Distribution Of Alternating Current (AREA)

Abstract

本実施形態に係る水素エネルギー貯蔵システムは、再生可能エネルギーを用いた発電部から供給された電力を用いて、水の電気分解により水素を生成し、この生成した水素を水素貯蔵部に蓄える水素製造部と、水素貯蔵部に蓄えられた水素を用いて発電した電力を負荷に供給する水素発電部と、水素製造部及び水素発電部よりも制御応答が早い蓄電部であって、発電部から負荷に供給される電力の過不足分を充放電する蓄電部と、水素製造部に水素を生成させる制御を行う第1期間には、蓄電部に電力の過不足分を充放電させつつ、蓄電部の蓄積エネルギーを減少させる制御を行う制御部と、を備える。

Description

水素エネルギー貯蔵システム、及び水素エネルギー貯蔵システムの制御方法
 本発明の実施の形態は、水素エネルギー貯蔵システム、及び水素エネルギー貯蔵システムの制御方法に関する。
 太陽光や風力等の再生可能エネルギーにより発電した電力を負荷に供給し、余剰電力を用いて生成した水素を貯蔵する水素エネルギー貯蔵システムが知られている。この水素エネルギー貯蔵システムでは、電力が不足した際には、貯蔵した水素を用いて発電した電力が負荷に供給される。また、この負荷へ供給される電力の短期的な過不足は、より応答速度の速い蓄電部が充放電することで補われている。
 ところが、電力が余剰する期間では、蓄電部の蓄電エネルギーが増加する傾向にあり、電力が不足する期間では、蓄電部の蓄電エネルギーが減少する傾向にある。このため、短期的に過不足した電力を蓄電部で補うためには、より大きな容量の蓄電部が必要とされていた。
特開2009-165225号公報
 本発明が解決しようとする課題は、蓄電部の蓄積エネルギーの制御が可能な水素エネルギー貯蔵システム、及び水素エネルギー貯蔵システムの制御方法を提供することである。
 本実施形態に係る水素エネルギー貯蔵システムは、再生可能エネルギーを用いた発電部から供給された電力を用いて、水の電気分解により水素を生成し、この生成した水素を水素貯蔵部に蓄える水素製造部と、前記水素貯蔵部に蓄えられた水素を用いて発電した電力を負荷に供給する水素発電部と、前記水素製造部及び前記水素発電部よりも制御応答が早い蓄電部であって、前記発電部から前記負荷に供給される電力の過不足分を充放電する蓄電部と、前記水素製造部に水素を生成させる制御を行う第1期間には、前記蓄電部に前記電力の過不足分を充放電させつつ、前記蓄電部の蓄積エネルギーを減少させる制御を行う制御部と、を備える。
 本実施形態によれば、蓄電部の蓄積エネルギーを制御することができる。
実施形態に係る水素エネルギー貯蔵システムの構成を示すブロック図である。 制御部の構成を示すブロック図である。 1日での発電部の発電量、負荷の消費電力量、水素製造部の消費電力量、水素発電部の発電電力量、蓄電部の充放電電力の関係を示す図である。 2日での発電部の発電量、負荷の消費電力量、水素製造部の消費電力量、水素発電部の発電電力量、蓄電部の充放電電力の関係を示す図である。 水素エネルギー貯蔵システムの制御の流れの一例であるフローチャートを示す図である。
 以下、本発明の実施形態を、図面を参照して説明する。本実施形態は、本発明を限定するものではない。
 実施形態に係る水素エネルギー貯蔵システムは、水素製造部に水素を生成させる制御を行う特定期間には、蓄電部の蓄積エネルギーを定常的に減少させる制御を行うことにより、この特定期間に発生する短期間の余剰電力をなるべく多く蓄電部に蓄えさせようとしたものである。
 図1は、実施形態に係る水素エネルギー貯蔵システム1の構成を示すブロック図である。この図1に示すように、本実施形態に係る水素エネルギー貯蔵システム1は、再生可能エネルギーを用いて分解生成した水素を用いた発電が可能なシステムであり、制御部100と、発電部102と、水素製造部104と、水素貯蔵部106と、水素発電部108と、蓄電部110と、第1計測部112と、第2計測部114と、を備えて構成されている。
 制御部100は、水素製造部104と、水素貯蔵部106と、水素発電部108と、蓄電部110と、第1計測部112と、第2計測部114とに接続され、水素製造部104、水素発電部108、及び蓄電部110などの制御を行う。制御部100の詳細な構成は後述する。
 発電部102は、再生可能エネルギーを用いて発電する。例えば、発電部102は、太陽光を用いた太陽光発電装置、風力を用いた風力発電装置などで構成される。この発電部102は、化石燃料などの燃料が不要であるが、その発電量は天候や風力などの環境の影響を受ける。より詳細には、発電部102は、電力伝達部2を介して負荷4と、水素製造部104と、蓄電部110とに接続され、負荷4、水素製造部104、及び蓄電部110に発電電力を供給する。電力伝達部2は、例えば導線であり、銅などの導体で構成されている。
 水素製造部104は、発電部102から電力伝達部2を介して供給された電力を用いて、水の電気分解により水素を製造し、この製造した水素を水素貯蔵部106に蓄える。水素製造部104は、例えば、アルカリ性の溶液に電流を流すことにより、水から水素と酸素とを製造する水電解装置である。すなわち、水素製造部104は、水素配管6を介して水素貯蔵部106と連通しており、生成した水素を水素貯蔵部106に蓄える。これにより、水素製造部104は、余剰電力を用いて水素を生成し、蓄積可能である。より詳細には、制御部100から入力される水素生成信号に従い水の電気分解を行い、水素と酸素とを生成する。
 水素貯蔵部106は、例えば水素タンクで構成され、水素製造部104から移相された水素を貯蔵する。すなわち、水素貯蔵部106は、水素配管6、8を介して水素製造部104と、水素発電部108と連通している。
 水素発電部108は、例えば燃料電池であり、水素貯蔵部106に蓄えられた水素を用いて発電した電力を負荷4に供給する。すなわち、この水素発電部108は、酸素と、水素配管8から供給される水素と酸素とを用いて電気を発電する。酸素は空気中の酸素を利用しても良いし、水素製造部104が水素製造に伴い出力する酸素を酸素タンクに蓄積したものを使用してもよい。これにより、不足電力を水素発電部108による発電により補うことが可能である。より詳細には、制御部100から入力される発電信号に従い発電を行う。
 蓄電部110は、水素製造部104及び水素発電部108よりも制御応答が早く、発電部102から負荷4に供給される電力の短期的な過不足分を充放電により補う。蓄電部110は、例えば二次電池、大容量キャパシタ、フライホイール、SMES等で構成され、秒から分のオーダーよりも高速な電力の充放電に対応可能である。すなわち、蓄電部110は、発電部102及び水素発電部108から電力が負荷4に供給される際には、発電部102及び水素発電部108から負荷4に供給される電力の過不足を充放電する。また、蓄電部110は、発電部102から電力が負荷4及び水素製造部104に供給される際には、発電部102から負荷4及び水素製造部104に供給される電力の過不足を充放電する。これにより、発電部102から負荷4に供給される電力の平準化を行うことが可能である。より詳細には、蓄電部110は、制御部100から入力される充放電信号に従い、電力伝達部2を介して、電力の充放電を行う。
 第1計測部112は、例えば電力計で構成され、発電部102の発電電力に関する電力情報を制御部100に出力する。第2計測部114は、例えば電力計で構成され、負荷4の消費電力に関する電力情報を制御部100に出力する。第1計測部112の計測電力と第2計測部114の計測電力との差分値が、発電部102から負荷4に供給される電力の過不足電力値を示している。
 次に、制御部100の詳細な構成を説明する。制御部100は、水素製造部104に水素を生成させる制御を行う第1期間には、蓄電部110に電力の過不足分を充放電させつつ、蓄電部110の蓄積エネルギーを低減させる制御を行う。ここで、第1期間は、平均すると、余剰電力となる期間である。
 すなわち、制御部100は、第1期間には、蓄電部110の蓄積エネルギー量が放電を許容する第1設定値に至らない範囲で、水素製造部104に水素を製造させる制御を行う。
 例えば、第1設定値は、蓄電部110の最大蓄積エネルギー量の10%である。この場合、制御部100は、蓄電部110の蓄積エネルギー量に関する情報を常に取得している。蓄電部110が例えば二次電池で構成されている場合、ここでの蓄積エネルギー量は、蓄電部110における蓄積電力量と同等の物理量である。例えば、ここでの最大蓄積エネルギー量の10%は、最大蓄積電力の10%を意味する。
 一方で、制御部100は、水素発電部108に電力を発電させる制御を行う第2期間には、蓄電部110に電力の過不足分を充放電させつつ、蓄電部110の蓄積エネルギーを増加させる制御を行う。ここで、第2期間は、平均すると、不足電力となる期間である。すなわち、制御部100は、第2期間には、蓄電部110の蓄積エネルギー量が充電を許容する第2設定値に至らない範囲で、水素発電部108に発電を行わせる制御を行う。例えば、第2設定値は、蓄電部110の最大蓄積エネルギー量の90%である。
 より具体的に、図2を参照にしつつ制御部100の構成を説明する。図2は、制御部100の構成を示すブロック図である。この図2に示すように、制御部100は、記憶部118と、予測部120と、判定部122と、指令値生成部124とを備えて構成されている。
 記憶部118は、磁気的もしくは光学的記録媒体または半導体メモリなどの、読み取り可能な記録媒体を含んだ構成されている。記憶部118は、発電電力量予測データ群126Aと、消費電力量予測データ群126Bとを記憶している。発電電力量予測データ群126Aは、発電部102の発電電力量を予測ために使用するデータ群であり、気象予測データ128Aと、カレンダーデータ130Aと、過去発電電力量132Aとで構成される。気象予測データ128Aは、予測対象期間における晴れや雨、また気温や風速等のデータである。カレンダーデータ130Aは、平日や休日などのデータである。過去発電電力量132Aは、発電部102が過去に発電した発電電力量である。
 一方で、消費電力量予測データ群126Bは、負荷4の消費電力量を予測ために使用するデータ群であり、気象予測データ128Bと、カレンダーデータ130Bと、過去消費電力量132Bとで構成される。気象予測データ128Bは、上述と同様に、予測対象期間における晴れや雨、また気温や風速等のデータである。カレンダーデータ130Bは、上述と同様に、平日や休日などのデータである。過去消費電力量132Bは、負荷4が過去に消費した消費電力量である。
 これらの情報は制御部100の外部から与えても良いし、或いは、予め制御部100に組み込んでおいても良い。また、過去の発電電力量は、第1計測部112により測定した発電部102の発電電力を制御部100に蓄積した情報を用いてもよい。同様に、過去消費電力量132Bは、第2計測部114により測定した負荷4の消費電力を制御部100に蓄積した情報を用いてもよい。
 予測部120は、発電部102の発電電力量及び負荷4の消費電力量を予測する。すなわち、予測部120は、発電電力量予測部134と、消費電力量予測部136と、特定期間選定部138と、特定期間発電電力量予測部140と、特定期間消費電力量予測部142とを備えて構成されている。
 発電電力量予測部134は、発電電力量予測データ群126Aの情報を用いて発電部102の発電電力量を予測する。消費電力量予測部136は消費電力量予測データ群126Bの情報を用いて負荷4の消費電力量を予測する。特定期間選定部138は、一日、一週間、月、季節などの計算単位となる特定期間を選定する。この特定期間は外部から入力しても良いし、所定条件に従って計算で決定しても良いし、予め設定しても良い。
 特定期間発電電力量予測部140は、発電電力量予測部134で算出した発電電力量から特定期間選定部138で設定した期間の情報を取り出し、特定期間の発電電力量予測値として出力する。同様に、特定期間消費電力量予測部142は、消費電力量予測部136で算出した消費電力量から特定期間選定部138で設定した期間の情報を取り出し、特定期間の消費電力量予測値として出力する。
 判定部122は、特定期間が、発電部102の発電電力量が負荷4の消費電力量よりも大きい余剰電力期間である第1期間であるか、否かを判定する。また、判定部122は、特定期間が、発電部102の発電電力量が負荷4の消費電力量よりも小さい不足電力期間である第2期間であるか否かを判定する。具体的には、判定部122は、演算部144と、判断部146とを有している。
 演算部144は、特定期間の発電電力量予測値の積算値から特定期間の消費電力量予測値の積算値を減算し、減算値を判断部146に出力する。判断部146は、減算値が正符号か、または負符号かを判断する。すなわち、判断部146は、正符号の場合、余剰電力量が発生する第1期間であると判断する。一方で、判断部146は、負符号の場合、不足電力量が発生する第2期間であると判断する。
 指令値生成部124は、余剰電力量が発生する第1期間である場合、(1)式に従った制御を水素製造部104と、蓄電部110に行う。
 水素製造部の電力指令値=(余剰電力量+蓄電部の蓄積エネルギー量/N)/特定期間                   (1)式
ここでの特定期間は、第1期間と同等の期間である。この(1)式からわかるように、制御部100は、特定期間において余剰電力量を平準化して水素製造部104の消費電力に使用する。ここでのNは蓄電部110の蓄積エネルギー量に基づき、蓄電部110の蓄積エネルギーを減少させる係数である。つまり、Nが大きくなるに従い蓄電部110の蓄積エネルギー量の減る割合は低減される。この場合、水素発電部108の電力指令値、すなわち発電信号は発電を0とする信号であり、水素発電部108の運転を停止させる。一方で、蓄電部110への電力指令値(充電-)、すなわち充放電信号は、(2)式で示される。
 蓄電部の電力指令値(充電-)=第一の計測部の計測電力-第二の計測部の計測電力-水素製造部への入力電力           (2)式
 このように、制御部100は、発電部102と負荷4と水分解部の運転で生じる過不足電力を蓄電部110の充放電で調整する制御を行う。この場合、制御部100は、(1)式で示すように、蓄電部110の蓄積エネルギーを減少させつつ、(2)式に示す制御を行っている。すなわち、第1期間は、発電部102の発電電力量が負荷4の消費電力量よりも大きい期間であり、制御部100は、発電電力量、消費電力量、及び蓄電部110の蓄積エネルギー量に基づき算出した電力指令値を用いて水素製造部104に水素を製造させる制御を行う。
 これにより、第1期間では、蓄電部110の蓄積エネルギー量は、常に放電側に運用される。つまり、蓄電部110は、蓄積エネルギー量を低減させることで、充電電力の受入れに対する準備が可能である。このため、急に発電電力量が消費電力量をより大きく超過するような事態が生じても、蓄電部110で過分電力を充電でき、蓄電部110の蓄電容量をより小型化することができる。
 換言すると、蓄電部110に蓄積エネルギーを蓄える容量が確保され、短期的に余剰した電力を吸収できる。このため、蓄電部110の蓄電容量をより小型化可能である。
 また、制御部100は、蓄電部110の蓄積エネルギー量が放電を許容する第1設定値に至らない範囲で、水素製造部104の制御を行う。すなわち、蓄電部110を完全に放電してしまうと、不足電力が生じた場合に放電でき無くなってしまう。このような状態を避けるため、蓄電部110の蓄積エネルギー量の放電は、第1設定値までしか行わない。
 この場合、制御部100は、蓄電部110の蓄積エネルギー量が充電を許容する第1設定値に到達した場合には、蓄電部110の充電動作は許容しつつ、放電動作を停止する。また、制御部100は、第1設定値に基づき、水素製造部104に水電解を低減させる、すなわち水素製造量を低減させる制御を行う。或いは、制御部100は、第1設定値に基づき、水素製造部104の動作を停止させ、水素発電部108に発電を行なわせる制御を行う。すなわち、制御部100は、蓄電部110の蓄積エネルギー量に応じて水素製造部104、及び水素発電部108のいずれかの制御を行う。このような制御により、蓄電部110の放電量を調整する。これにより、蓄電部110の蓄積エネルギー量の減少を使用範囲に抑えることができ、水素エネルギー貯蔵システム1の運用継続と蓄電部110容量の小型化が可能となる。
 指令値生成部124は、不足電力量が発生する第2期間である場合、(3)式に従った制御を水素発電部108と、蓄電部110に行う。
 水素発電部への電力指令値=(不足電力量+(蓄電部の最大蓄積エネルギー量-蓄電部の蓄積エネルギー量)/N)/特定期間     (3)式
ここでの特定期間は、第2期間と同等の期間である。この(3)式からわかるように、制御部100は、特定期間において不足電力量を平準化して水素発電部108に発電させる制御を行う。ここでのNは、蓄電部110の最大蓄積エネルギー量から蓄電部110の蓄積エネルギー量を引いた値に基づき、蓄電部110の蓄積エネルギーを増加させる係数である。つまり、Nが大きくなるに従い蓄電部110の蓄積エネルギー量の増加する割合は低減される。この場合、水素製造部104への電力指令値、すなわち水素生成信号は生成を0とする信号であり、水素製造部104の運転を停止させる。一方で、蓄電部110への電力指令値(充電+)、すなわち充放電信号は、(4)式で示される。
 蓄電部の電力指令値(充電+)=第一の計測部の計測電力-第二の計測部の計測電力+水素発電部の出力電力             (4)式
 このように、制御部100は、発電部102と負荷4と水分解部の運転で生じる過不足電力を蓄電部110の充放電で調整する制御を行う。この場合、制御部100は、(3)式で示すように、蓄電部110の蓄積エネルギーを増加させつつ、(4)式に示す制御を行っている。すなわち、第2期間は、発電部102の発電電力量が負荷4の消費電力量よりも小さい期間であり、制御部100は、発電電力量、消費電力量、及び蓄電部110の蓄積エネルギー量に基づき算出した電力指令値を用いて水素発電部108に発電を行わせる制御を行う。
 これにより、第2期間では、蓄電部110の蓄積エネルギー量は、常に充電側に運用され、蓄積エネルギー量を増加させて放電に対する準備が可能である。このため、急に消費電力量が発電電力量をより大きく超過するような事態が生じても、蓄電部110で不足電力を放電でき、蓄電部110の蓄電容量をより小型化することができる。
 換言すると、蓄電部110に蓄積エネルギーを放電する容量が確保され、短期的に不足した電力を放電できる。このため、蓄電部110の蓄電容量をより小型化可能である。
 また、制御部100は、蓄電部110の蓄積エネルギー量が充電を許容する第2設定値に至らない範囲で、水素発電部108の制御を行う。すなわち、蓄電部110を完全に充電してしまうと、短期的な余剰電力が生じた場合に充電でき無くなってしまう。このような状態を避けるため、蓄電部110の蓄積エネルギー量の充電は、第2設定値までしか行わない。
 この場合、制御部100は、蓄電部110の蓄積エネルギー量が充電を許容する第2設定値に到達した場合には、蓄電部110の放電動作は許容しつつ、充電動作を停止する。また、制御部100は、第2設定値に基づき、水素発電部108に発電電力を低減させる制御を行う。或いは、制御部100は、第2設定値に基づき、水素発電部108の動作を停止させ、水素製造部104に水素製造を行なわせる制御を行う。すなわち、制御部100は、蓄電部110の蓄積エネルギー量に応じて水素製造部104、及び水素発電部108のいずれかの制御を行う。このような制御により、蓄電部110への充電量を調整する。これにより、蓄電部110の蓄電エネルギー量の減少を使用範囲に抑えることができ、水素エネルギー貯蔵システム1の運用継続と蓄電部110容量の小型化が可能となる。
 次に、図3を参照にしつつ、特定期間選定部138で一日を特定期間として選定した場合の運用動作例を説明する。図3は、1日での発電部102の発電量、負荷4の消費電力量、水素製造部104の消費電力量、水素発電部108の発電電力量、蓄電部110の充放電電力の関係を示す図である。横軸は時間を示し、縦軸は電力と電力量を示している。3Aは発電部102の発電量を示し、3Bは負荷4の消費電力量を示し、3Cは水素製造部104の消費電力量を示し、3Dは水素発電部108の発電電力量を示し、3Eは、蓄電部110の充放電電力を示し、3Fは、蓄電部110の充放電電力量を示している。
 すなわち、3Aは、特定期間発電電力量予測部140が、発電部102の発電電力量予測値から特定期間として選定した一日の発電電力量予測値を取り出し、特定期間の発電電力量予測値として出力した値である。3Bは、特定期間消費電力量予測部142が、負荷4の消費電力量予測値から特定期間として選定した一日の消費電力量予測値を取り出し、特定期間の消費電力量予測値として出力した値である。
 判定部122は、この特定期間の発電電力量予測値を一日の期間で積分した値から、消費電力量予測値を一日の期間で積分した値を引くと正符号となるので、特定期間が、発電部102の発電電力量が負荷4の消費電力量よりも大きい第1期間であると判定する。このため、指令値生成部124は、上述の(1)式に従った電力指令値を演算する。
 すなわち、水素製造部104の電力指令値=(一日の余剰電力量+蓄電部110の蓄積エネルギー量/N)/24時間となる指令値を水素製造部104に出力する。これにより、水素製造部104は、特定期間において、ほぼ一定の電力を使用して平準的に水素を製造する。なお、図3では、一日の余剰電力量が7.2kWh、蓄電手段の蓄積エネルギー量が6kWh、係数Nを3として演算すると、水素製造部104の電力指令値は、(7.2kWh+6kWh/3)/24H=0.38kWとして演算される。
 また、蓄電部110の電力指令値は、(2)式に従い、(第一の計測部の測定電力-第二の計測部の測定電力-水素製造部104の入力電力)として演算される。蓄電部110は、この電力指令値に従った運転を行い、発電部102と負荷4と水素製造部104との過不足電力を充放電する。蓄電部110は、特定期間である一日の過不足電力を調整する。このため、蓄電部110の電力量は一日の特定期間終了時に累積すると差引ゼロとなるように運転が行なわれている。これにより、蓄電部110は、過剰に電力を蓄積したり、放電したりといった動作を回避することができる。
 次に、図4を参照にしつつ、特定期間選定部138で2日を特定期間として選定した場合の運用動作例を説明する。図4は、2日間での発電部102の発電量、負荷4の消費電力量、水素製造部104の消費電力量、水素発電部108の発電電力量、蓄電部110の充放電電力の関係を示す図である。横軸は時間を示し、縦軸は電力と電力量を示している。4Aは発電部102の発電量を示し、4Bは負荷4の消費電力量を示し、4Cは水素製造部104の消費電力量を示し、4Dは水素発電部108の発電電力量を示し、4Eは、蓄電部110の充放電電力を示し、4Fは、蓄電部110の充放電電力量を示している。
 すなわち、図3での説明と同様に、4Aは、特定期間発電電力量予測部140が、発電部102の発電電力量予測値から特定期間として選定した2日の発電電力量予測値を取り出し、特定期間の発電電力量予測値として出力した値である。4Bは、特定期間消費電力量予測部142が、負荷4の消費電力量予測値から特定期間として選定した2日の消費電力量予測値を取り出し、特定期間の消費電力量予測値として出力した値である。
 判定部122は、この特定期間の発電電力量予測値を2日の期間で積分した値から、消費電力量予測値を2日の期間で積分した値を引くと正符号となるので、特定期間が、発電部102の発電電力量が負荷4の消費電力量よりも大きい第1期間であると判定する。このため、指令値生成部124は、上述の(1)式に従った電力指令値を演算する。
 すなわち、水素製造部104の電力指令値=(一日の余剰電力量+蓄電部110の蓄積エネルギー量/N)/48時間となる指令値を水素製造部104に出力する。これにより、水素製造部104は、特定期間において、ほぼ一定の電力を使用して水素を製造する。なお、図4では、2日間の余剰電力量が9.1kWh、蓄電部110の蓄積エネルギー量が6kWh、係数Nを3として演算すると、水素製造部104の電力指令値は、(9.1kWh+6kWh/3)/48H=0.23kWとして演算される。
 また、蓄電部110の電力指令値は、(2)式に従い、(第一の計測部の測定電力-第二の計測部の測定電力-水素製造部104の入力電力)として演算される。蓄電部110は、この電力指令値に従った運転を行い、発電部102と負荷4と水素製造部104との過不足電力を充放電する。蓄電部110は、特定期間である一日の過不足電力を調整する。このため、蓄電部110の電力量は一日の特定期間終了時に累積すると差引ゼロとなるように運転が行なわれている。これにより、蓄電部110は、過剰に電力を蓄積したり、放電したりといった動作を回避することができる。
 ここでは1日、もしくは2日間を特定期間として、水素エネルギー貯蔵システム1の動作例を説明したが、特定期間は1月間や季節(三か月程度)等としても運用可能である。また、特定期間として、1日よりもさらに小さな時間単位、例えば1時間毎などを設定しても良い。これにより、水素製造部104又は水素発電部108の機器定格を低減することができ、かつ蓄電部110の蓄電容量を小型化することができる。
 図5は、水素エネルギー貯蔵システム1の制御の流れの一例であるフローチャートを示す図であり、図5に基づき水素エネルギー貯蔵システム1の制御の流れの一例を説明する。ここでは、特定期間選定部138が、2日間を特定期間として選定した場合の運用制御例を説明する。
 発電電力量予測部134が、発電電力量予測データ群126Aの情報を用いて発電部102の発電電力量を予測する(ステップS500)。次に、特定期間選定部138は、2日を定期間として選定する(ステップS502)。次に、特定期間発電電力量予測部140が、発電電力量予測部134で算出した発電電力量から2日間の情報を取り出し、特定期間の発電電力量予測値として出力する(ステップS504)。
 一方で、消費電力量予測部136が、消費電力量予測データ群126Bの情報を用いて負荷4の消費電力量を予測する(ステップS506)。ステップS502と同様に、特定期間選定部138は、2日を定期間として選定する(ステップS508)。
 次に、特定期間消費電力量予測部142は、消費電力量予測部136で算出した消費電力量から2日間の情報を取り出し、特定期間の消費電力量予測値として出力する(ステップS510)。次に、演算部は、2日間の発電電力量予測値の積算値か2日間の消費電力量予測値の積算値を減算し、減算値を判断部に出力する(ステップS512)。
 次に、判断部は、減算値が正符号か、または負符号かを判断する(ステップS514)。すなわち、判断部は、正符号の場合、余剰電力量が発生する第1期間であると判断する(ステップS514:YES)。指令値生成部124は、(1)式に従った電力指令値を生成し(ステップS516)、一連の処理を終了する。
 一方で判断部は、負符号の場合、不足電力量が発生する第2期間であると判断する(ステップS514:NO)。指令値生成部124は、(3)式に従った電力指令値を生成し(ステップS518)、一連の処理を終了する。
 以上のように、本実施形態によれば、制御部100が、水素製造部104に水素を生成させる制御を行う、電力の余剰期間には、蓄電部110に電力の過不足分を充放電させつつ、蓄電部110の蓄積エネルギーを減少させる制御を行うこととした。これにより、蓄電部110に蓄積エネルギーを蓄える容量が確保され、短期的に余剰した電力を吸収できる。このため、蓄電部110の蓄電容量をより小型化可能である。また、制御部100が、水素発電部108に電力を発電させる制御を行う、電力の不足期間には、蓄電部110に電力の過不足分を充放電させつつ、蓄電部110の蓄積エネルギーを増加させる制御を行うこととした。これにより、蓄電部110に蓄積エネルギーを放電する容量が確保され、短期的に不足した電力を放電できる。このため、蓄電部110の蓄電容量をより小型化可能である。
 以上、本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施することが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これらの実施形態やその変形例は、発明の範囲や要旨に含まれると共に、特許請求の範囲に記載された発明とその均等の範囲に含まれる。

Claims (16)

  1.  再生可能エネルギーを用いた発電部から供給された電力を用いて、水の電気分解により水素を生成し、この生成した水素を水素貯蔵部に蓄える水素製造部と、
     前記水素貯蔵部に蓄えられた水素を用いて発電した電力を負荷に供給する水素発電部と、
     前記水素製造部及び前記水素発電部よりも制御応答が早い蓄電部であって、前記発電部から前記負荷に供給される電力の過不足分を充放電する蓄電部と、
     前記水素製造部に水素を生成させる制御を行う第1期間には、前記蓄電部に前記電力の過不足分を充放電させつつ、前記蓄電部の蓄積エネルギーを減少させる制御を行う制御部と、
     を備える水素エネルギー貯蔵システム。
  2.  前記制御部は、前記蓄電部の蓄積エネルギー量を減少させるように前記水素製造部の制御を行う請求項1に記載の水素エネルギー貯蔵システム。
  3.  前記制御部は、前記蓄電部における放電を許容する第1設定値に基づき、前記水素製造部の水素製造量を増加させる制御を行う請求項1又は2に記載の水素エネルギー貯蔵システム。
  4.  前記第1期間は、前記発電部の発電電力量が前記負荷の消費電力量よりも大きい期間であり、
     前記制御部は、前記発電電力量、前記消費電力量、及び前記蓄電部の蓄積エネルギー量に基づき算出した電力指令値を用いて前記水素製造部に水素を生成させる請求項1乃至3のいずれか一項に記載の水素エネルギー貯蔵システム。
  5.  前記制御部は、前記水素発電部に前記電力を発電させる制御を行う第2期間には、前記蓄電部に前記電力の過不足分を充放電させつつ、前記蓄電部の蓄積エネルギーを増加させる制御を行う請求項1乃至4のいずれか一項に記載の水素エネルギー貯蔵システム。
  6.  前記制御部は、前記蓄電部の蓄積エネルギー量を増加させるように前記水素発電部の制御を行う請求項5に記載の水素エネルギー貯蔵システム。
  7.  前記制御部は、前記蓄電部における充電を許容する第2設定値に基づき、前記水素発電部の発電量を増加させる制御を行う請求項5又は6に記載の水素エネルギー貯蔵システム。
  8.  前記第2期間は、前記発電部の発電電力量が前記負荷の消費電力量よりも小さい期間であり、
     前記制御部は、前記発電電力量、前記消費電力量、及び前記蓄電部の蓄積エネルギー量に基づき算出した電力指令値を用いて前記水素発電部に発電を行わせる請求項6乃至7のいずれか一項に記載の水素エネルギー貯蔵システム。
  9.  再生可能エネルギーを用いた発電部から供給された電力を用いて、水の電気分解により水素を生成し、この生成した水素を水素貯蔵部に蓄える水素製造部と、
     前記水素貯蔵部に蓄えられた水素を用いて発電した電力を負荷に供給する水素発電部と、
     前記水素製造部及び前記水素発電部よりも制御応答が早い蓄電部であって、前記発電部から前記負荷に供給される電力の過不足分を充放電する蓄電部と、
     前記水素発電部に電力を発電させる制御を行う第2期間には、前記蓄電部に前記電力の過不足分を充放電させつつ、前記蓄電部の蓄積エネルギーを増加させる制御を行う制御部と、
     を備える水素エネルギー貯蔵システム。
  10.  再生可能エネルギーを用いた発電部から供給された電力を用いて、水の電気分解により水素を生成し、この生成した水素を水素貯蔵部に蓄える水素製造部と、
     前記水素貯蔵部に蓄えられた水素を用いて発電した電力を負荷に供給する水素発電部と、
     前記水素製造部及び前記水素発電部よりも制御応答が早い蓄電部であって、前記発電部から前記負荷に供給される電力の過不足分を充放電する蓄電部と、
     前記蓄電部の蓄積エネルギー量に応じて前記水素製造部、及び前記水素発電部のいずれかの制御を行う制御部と、
     を備える水素エネルギー貯蔵システム。
  11.  前記制御部は、前記蓄電部の蓄積エネルギー量が放電を許容する第1設定値に到達した場合には、前記蓄電部の充電動作は許容しつつ、放電動作を停止し、
     前記水素発電部に電力を発生させる制御、又は前記水素製造部が水素製造を行う電力を低減させる制御を行う請求項10に記載の水素エネルギー貯蔵システム。
  12.  前記制御部は、前記蓄電部の蓄積エネルギー量が充電を許容する第2設定値に到達した場合には、前記蓄電部の放電動作は許容しつつ、充電動作を停止し、
     前記水素発電部に発電電力を低減させる制御、又は前記水素製造部が水素製造を行う電力を増加させる制御を行う請求項10又は11に記載の水素エネルギー貯蔵システム。
  13.  前記再生可能エネルギーを用いた前記発電部を更に備え、
     前記水素製造部は、前記発電部から供給された電力を用いる請求項1乃至12のいずれか一項に記載の水素エネルギー貯蔵システム。
  14.  再生可能エネルギーを用いた発電部から供給された電力を用いて、水の電気分解により水素を生成し、この生成した水素を水素貯蔵部に蓄える水素製造部と、前記水素貯蔵部に蓄えられた水素を用いて発電した電力を負荷に供給する水素発電部と、前記水素製造部及び前記水素発電部よりも制御応答が早い蓄電部であって、前記発電部から前記負荷に供給される電力の過不足分を充放電する蓄電部と、を備える水素エネルギー貯蔵システムの制御方法であって、
     前記水素製造部に前記水素を生成させる制御を行う第1期間を設定するステップと、
     前記第1期間には、前記蓄電部に前記電力の過不足分を充放電させつつ、前記蓄電部の蓄積エネルギーを減少させる制御を行うステップと、
     を備える水素エネルギー貯蔵システムの制御方法。
  15.  再生可能エネルギーを用いた発電部から供給された電力を用いて、水の電気分解により水素を生成し、この生成した水素を水素貯蔵部に蓄える水素製造部と、前記水素貯蔵部に蓄えられた水素を用いて発電した電力を負荷に供給する水素発電部と、前記水素製造部及び前記水素発電部よりも制御応答が早い蓄電部であって、前記発電部から前記負荷に供給される電力の過不足分を充放電する蓄電部と、を備える水素エネルギー貯蔵システムの制御方法であって、
     前記水素発電部に前記電力を発電させる制御を行う第2期間を設定するステップと、
     前記第2期間には、前記蓄電部に前記電力の過不足分を充放電させつつ、前記蓄電部の蓄積エネルギーを増加させる制御を行うステップと、
     を備える水素エネルギー貯蔵システムの制御方法。
  16.  再生可能エネルギーを用いた発電部から供給された電力を用いて、水の電気分解により水素を生成し、この生成した水素を水素貯蔵部に蓄える水素製造部と、前記水素貯蔵部に蓄えられた水素を用いて発電した電力を負荷に供給する水素発電部と、前記水素製造部及び前記水素発電部よりも制御応答が早い蓄電部であって、前記発電部から前記負荷に供給される電力の過不足分を充放電する蓄電部と、を備える水素エネルギー貯蔵システムの制御方法であって、
     前記蓄電部の蓄積エネルギー量を取得するステップと、
     前記蓄積エネルギー量に応じて前記水素製造部、及び前記水素発電部のいずれかの制御を行うステップと、
     を備える水素エネルギー貯蔵システムの制御方法。
     
PCT/JP2016/076991 2016-09-13 2016-09-13 水素エネルギー貯蔵システム、及び水素エネルギー貯蔵システムの制御方法 WO2018051417A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/076991 WO2018051417A1 (ja) 2016-09-13 2016-09-13 水素エネルギー貯蔵システム、及び水素エネルギー貯蔵システムの制御方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/076991 WO2018051417A1 (ja) 2016-09-13 2016-09-13 水素エネルギー貯蔵システム、及び水素エネルギー貯蔵システムの制御方法

Publications (1)

Publication Number Publication Date
WO2018051417A1 true WO2018051417A1 (ja) 2018-03-22

Family

ID=61619103

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/076991 WO2018051417A1 (ja) 2016-09-13 2016-09-13 水素エネルギー貯蔵システム、及び水素エネルギー貯蔵システムの制御方法

Country Status (1)

Country Link
WO (1) WO2018051417A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110348709A (zh) * 2019-06-26 2019-10-18 西安交通大学 基于氢能与储能设备的多能源系统的运行优化方法和装置
CN112688406A (zh) * 2020-12-16 2021-04-20 维沃移动通信有限公司 能量收集电路和电子终端
US11296375B2 (en) 2018-02-19 2022-04-05 Kabushiki Kaisha Toshiba Apparatus for power supply system, control method for power supply system, and power supply system
JP7456296B2 (ja) 2020-06-01 2024-03-27 株式会社デンソー エネルギーマネジメントシステム

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06351166A (ja) * 1993-06-08 1994-12-22 Nippondenso Co Ltd 車両用充電制御装置
WO2013047840A1 (ja) * 2011-09-28 2013-04-04 京セラ株式会社 電力管理システム、電力管理装置及び電力管理方法
WO2016132406A1 (ja) * 2015-02-19 2016-08-25 株式会社 東芝 電力供給システム

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06351166A (ja) * 1993-06-08 1994-12-22 Nippondenso Co Ltd 車両用充電制御装置
WO2013047840A1 (ja) * 2011-09-28 2013-04-04 京セラ株式会社 電力管理システム、電力管理装置及び電力管理方法
WO2016132406A1 (ja) * 2015-02-19 2016-08-25 株式会社 東芝 電力供給システム

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11296375B2 (en) 2018-02-19 2022-04-05 Kabushiki Kaisha Toshiba Apparatus for power supply system, control method for power supply system, and power supply system
CN110348709A (zh) * 2019-06-26 2019-10-18 西安交通大学 基于氢能与储能设备的多能源系统的运行优化方法和装置
JP7456296B2 (ja) 2020-06-01 2024-03-27 株式会社デンソー エネルギーマネジメントシステム
CN112688406A (zh) * 2020-12-16 2021-04-20 维沃移动通信有限公司 能量收集电路和电子终端
CN112688406B (zh) * 2020-12-16 2023-11-14 维沃移动通信有限公司 能量收集电路和电子终端

Similar Documents

Publication Publication Date Title
JP5095495B2 (ja) 電力システムおよびその制御方法
JP6304392B2 (ja) 充放電管理装置
JP6304008B2 (ja) 電力供給システム
WO2018051417A1 (ja) 水素エネルギー貯蔵システム、及び水素エネルギー貯蔵システムの制御方法
US9331512B2 (en) Power control device and power control method for measuring open-circuit voltage of battery
US20140088898A1 (en) Method for Estimation State of Health for ESS
US7944179B2 (en) Method for charging a storage element of an autonomous system
JPWO2017013751A1 (ja) 電力供給システム、制御装置、および電力供給方法
JP6622552B2 (ja) 分散型電源の電力供給システム
JPWO2014129045A1 (ja) 電力潮流制御システムおよび電力潮流制御方法
US11296375B2 (en) Apparatus for power supply system, control method for power supply system, and power supply system
JP6614010B2 (ja) 蓄電池システム
WO2015059873A1 (ja) 電力管理装置
JP6189092B2 (ja) 系統用蓄電池の複数目的制御装置
JP2016100956A (ja) 直流電源の制御装置、直流電源システム、および直流電源の制御装置の制御方法
EP3261211B1 (en) Systems and methods for controlling performance parameters of an energy storage device
JP2003018763A (ja) 太陽光発電における発電量予測方法
JP2015213389A (ja) 蓄電池の運用方法および電力制御装置
JP2011222427A (ja) 空気二次電池蓄電装置
JP5992748B2 (ja) 太陽光発電システム及び電力供給システム
WO2016063351A1 (ja) 充放電管理装置
JP2008043147A (ja) 電源システム、電源システムの制御方法およびプログラム
JP6257388B2 (ja) 電力供給システム
JP2021061704A (ja) 充放電計画作成装置及び充放電計画作成方法
KR102469243B1 (ko) 전기차 충전 시스템

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16916202

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 16916202

Country of ref document: EP

Kind code of ref document: A1