WO2018051400A1 - 熱間鍛造金型用離型剤、その塗布方法及び塗布装置 - Google Patents

熱間鍛造金型用離型剤、その塗布方法及び塗布装置 Download PDF

Info

Publication number
WO2018051400A1
WO2018051400A1 PCT/JP2016/076938 JP2016076938W WO2018051400A1 WO 2018051400 A1 WO2018051400 A1 WO 2018051400A1 JP 2016076938 W JP2016076938 W JP 2016076938W WO 2018051400 A1 WO2018051400 A1 WO 2018051400A1
Authority
WO
WIPO (PCT)
Prior art keywords
release agent
hot forging
mold
micro
forging die
Prior art date
Application number
PCT/JP2016/076938
Other languages
English (en)
French (fr)
Inventor
真人 ▲高▼垣
雄三 山我
猛 前田
Original Assignee
マツダ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by マツダ株式会社 filed Critical マツダ株式会社
Priority to CN201680084042.5A priority Critical patent/CN108883460B/zh
Priority to PCT/JP2016/076938 priority patent/WO2018051400A1/ja
Priority to JP2018538980A priority patent/JP6696577B2/ja
Priority to US16/088,786 priority patent/US11242496B2/en
Priority to EP16916185.8A priority patent/EP3424610B1/en
Publication of WO2018051400A1 publication Critical patent/WO2018051400A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05CAPPARATUS FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05C11/00Component parts, details or accessories not specifically provided for in groups B05C1/00 - B05C9/00
    • B05C11/10Storage, supply or control of liquid or other fluent material; Recovery of excess liquid or other fluent material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M173/00Lubricating compositions containing more than 10% water
    • C10M173/02Lubricating compositions containing more than 10% water not containing mineral or fatty oils
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M107/00Lubricating compositions characterised by the base-material being a macromolecular compound
    • C10M107/20Lubricating compositions characterised by the base-material being a macromolecular compound containing oxygen
    • C10M107/36Polysaccharides, e.g. cellulose
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D1/00Processes for applying liquids or other fluent materials
    • B05D1/007Processes for applying liquids or other fluent materials using an electrostatic field
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D1/00Processes for applying liquids or other fluent materials
    • B05D1/02Processes for applying liquids or other fluent materials performed by spraying
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D3/00Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D7/00Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials
    • B05D7/14Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials to metal, e.g. car bodies
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21JFORGING; HAMMERING; PRESSING METAL; RIVETING; FORGE FURNACES
    • B21J13/00Details of machines for forging, pressing, or hammering
    • B21J13/02Dies or mountings therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21JFORGING; HAMMERING; PRESSING METAL; RIVETING; FORGE FURNACES
    • B21J3/00Lubricating during forging or pressing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16NLUBRICATING
    • F16N15/00Lubrication with substances other than oil or grease; Lubrication characterised by the use of particular lubricants in particular apparatus or conditions
    • F16N15/04Lubrication with substances other than oil or grease; Lubrication characterised by the use of particular lubricants in particular apparatus or conditions with water
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2201/00Inorganic compounds or elements as ingredients in lubricant compositions
    • C10M2201/04Elements
    • C10M2201/041Carbon; Graphite; Carbon black
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2209/00Organic macromolecular compounds containing oxygen as ingredients in lubricant compositions
    • C10M2209/12Polysaccharides, e.g. cellulose, biopolymers
    • C10M2209/123Polysaccharides, e.g. cellulose, biopolymers used as base material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2217/00Organic macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2217/04Macromolecular compounds from nitrogen-containing monomers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C10M2217/044Polyamides
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2020/00Specified physical or chemical properties or characteristics, i.e. function, of component of lubricating compositions
    • C10N2020/01Physico-chemical properties
    • C10N2020/055Particles related characteristics
    • C10N2020/06Particles of special shape or size
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2030/00Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
    • C10N2030/56Boundary lubrication or thin film lubrication
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/20Metal working
    • C10N2040/24Metal working without essential removal of material, e.g. forming, gorging, drawing, pressing, stamping, rolling or extruding; Punching metal
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/20Metal working
    • C10N2040/242Hot working
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/36Release agents or mold release agents
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2050/00Form in which the lubricant is applied to the material being lubricated
    • C10N2050/12Micro capsules
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16NLUBRICATING
    • F16N15/00Lubrication with substances other than oil or grease; Lubrication characterised by the use of particular lubricants in particular apparatus or conditions
    • F16N15/02Lubrication with substances other than oil or grease; Lubrication characterised by the use of particular lubricants in particular apparatus or conditions with graphite or graphite-containing compositions

Definitions

  • the present disclosure relates to a mold release agent for hot forging dies, a coating method thereof, and a coating apparatus.
  • a high temperature material is forged by a press die, so that the die is subjected to high surface pressure, thermal fatigue due to contact with the high temperature material, and die wear due to the high temperature material sliding on the die surface. Is a problem. Therefore, in general, a mold release agent is applied to the surface of the mold after demolding for the purpose of improving the lubricity and mold releasability of the mold and promoting the cooling of the mold surface. .
  • Patent Document 1 in a state where the upper and lower molds for forging forming process are opened after the molding process, a release agent injection nozzle is disposed between them, and the upper and lower molds correspond to the respective injection openings.
  • a technique for injecting a release agent toward each part is disclosed.
  • Patent Document 1 by adjusting the injection conditions such as the release time and pressure of the release agent, the position of the release agent injection nozzle, according to the detection temperature of the temperature sensor provided in each part of the upper and lower molds, It describes that the mold is properly cooled to improve the releasability.
  • the present disclosure has been made in view of the above points, and an object of the present disclosure is to form a uniform release agent coating film while obtaining sufficient cooling capacity while suppressing the amount of release agent coating.
  • An object of the present invention is to provide a release agent for hot forging dies and a method for applying the same.
  • the release agent for hot forging dies is made to contain micro-nano bubbles.
  • the release agent for hot forging dies according to the first technique disclosed herein contains micro-nano bubbles.
  • the wettability of the release agent is improved, so that the contact area between the release agent droplet and the mold surface is increased, and the vaporization of the solvent component of the release agent from the contact surface is promoted. Is done. Further, the vaporization of the solvent component of the release agent is promoted by using the micro-nano bubbles present in the release agent droplet as a nucleus. For this reason, the mold can be cooled in a short time, and the application amount of the release agent can be suppressed. Thus, the film thickness of the release agent layer formed by the applied release agent can be made uniform with a sufficient thickness suitable for lubricity and release properties.
  • the diameter of the micro-nano bubble is 0.1 ⁇ m or more and 200 ⁇ m or less.
  • the present technology it is possible to effectively improve the cooling performance of the release agent to suppress the coating amount of the release agent, and to form a uniform release agent layer having a sufficient thickness in a short time. .
  • the content of the micro-nano bubbles is 0.1 volume% or more and 10 volume% or less.
  • the cooling performance of the release agent can be further improved.
  • the method for applying the release agent for hot forging dies according to the fourth technique disclosed herein sprays the release agent for hot forging dies according to the first to third techniques onto the hot forging die. It is characterized by applying.
  • the hot forging die after forming is cooled in a shorter time, and a uniform release agent layer having a sufficient thickness is formed on the surface of the hot forging die.
  • the lubricity and releasability of the mold can be improved.
  • the mold release agent for hot forging dies is spray-coated on the hot forging dies in the form of particles having a Sauter average particle diameter of 10 ⁇ m or more and 30 ⁇ m or less.
  • an average film thickness of a release agent layer formed by the release agent for the hot forging die applied to the hot forging die is 2.3 ⁇ m or more. 15 ⁇ m or less.
  • a filling step of filling a storage part including a bubble generation unit and a stirring unit with a release agent stock solution, and the microbubbles in the release agent stock solution by the bubble generation unit A bubble generating step for generating nanobubbles, and the release agent stock solution by stirring with the stirring means to uniformly disperse the micro / nano bubbles generated in the release agent stock solution to release mold for the hot forging die.
  • a spray coating step of spray-coating the microbubbles in the bubble generating step wherein air is supplied to the bubble generating means at an air supply pressure of 0.03 MPa or more and 0.3 MPa or less.
  • the atomizing air pressure is 0.20 MPa or more and 0.80 MPa or less.
  • the present technology it is possible to prepare a release agent containing sufficient micro / nano bubbles. Moreover, it becomes possible to apply
  • the apparatus for applying a release agent for hot forging dies according to the eighth technique disclosed herein includes a release agent for hot forging dies according to the first to third techniques on the surface of the hot forging die.
  • It is characterized by comprising bubble generating means and spray application means for spray-applying the hot forging mold release agent stored in the storage section to the hot forging mold.
  • the present technology it becomes possible to uniformly apply a release agent containing sufficient micro-nano bubbles to a hot forging die.
  • the cooling ability of the mold surface by the release agent can be increased, and a uniform release agent layer having a sufficient thickness can be obtained.
  • the wettability of the release agent is improved, so that the contact area between the release agent droplet and the mold surface is increased, and the vaporization of the solvent component of the release agent from the contact surface is promoted. Is done. Further, the vaporization of the solvent component of the release agent is promoted by using the micro-nano bubbles present in the release agent droplet as a nucleus. For this reason, the mold can be cooled in a short time, and the application amount of the release agent can be suppressed. Thus, the film thickness of the release agent layer formed by the applied release agent can be made uniform with a sufficient thickness suitable for lubricity and release properties.
  • FIG. 1 is a perspective view of a crankshaft used in an in-line four-cylinder engine.
  • FIG. 2 is a side view of the crankshaft of FIG.
  • FIG. 3 is a perspective view of a mold for manufacturing the crankshaft of FIG. 1 by hot forging.
  • FIG. 4 is a perspective view of the upper mold of the mold of FIG.
  • FIG. 5 is a perspective view of the lower mold of the mold of FIG.
  • FIG. 6 is a plan view of a rough mold in the upper mold of FIG.
  • FIG. 7 is a plan view of a rough mold in the lower mold of FIG.
  • FIG. 8 is a diagram schematically illustrating a release agent coating apparatus according to an embodiment.
  • FIG. 9 is a diagram schematically showing droplets of the release agent sprayed from the spray nozzle of the release agent coating apparatus of FIG.
  • FIG. 10 is a flowchart for explaining a method of applying a release agent to a mold using the release agent application apparatus of FIG.
  • FIG. 11 is a diagram schematically showing the configuration of an experimental apparatus for evaluating the cooling ability of the release agent.
  • FIG. 12 is a plan view schematically showing a release agent layer formed by droplets of a release agent dropped on the iron plate by the experimental apparatus of FIG.
  • FIG. 13 is a graph showing the cooling ability of the release agent when the iron plate temperature is 260 ° C., measured using the experimental apparatus of FIG. FIG.
  • FIG. 14 is a graph showing the cooling ability of the release agent when the iron plate temperature is 200 ° C., measured using the experimental apparatus of FIG.
  • FIG. 15 is a graph showing the mold cooling temperature per unit coating time when a conventional release agent is spray-coated on the rough mold of FIG.
  • FIG. 16 is a graph showing the mold cooling temperature per unit application time when the release agent according to one embodiment is spray-applied to the rough mold of FIG.
  • FIG. 17 is a diagram schematically showing a state in which an observation experiment using an inverted microscope is performed on micro-nano bubble water hardened with gelatin.
  • FIG. 18 is a diagram for explaining a method for obtaining the content of micro / nano bubbles contained in micro / nano bubble water from the optical microscope image obtained in the observation experiment of FIG. FIG.
  • FIG. 19 is an optical microscope image obtained in the observation experiment of FIG.
  • FIG. 20 is an optical microscope image obtained in an observation experiment using another optical microscope.
  • FIG. 21 is a diagram schematically showing water drops dropped on a metal plate.
  • FIG. 22 is a diagram for explaining the Leidenfrost phenomenon.
  • crankshaft> 1 and 2 show a crankshaft C that is a component of an automobile engine.
  • the crankshaft C is a part of an inline 4-cylinder gasoline engine that is mounted on a vehicle such as a four-wheeled vehicle. Although illustration and detailed description of the configuration of the engine on which the crankshaft C is mounted are omitted, the crankshaft C is rotatably supported by a crankcase provided in the cylinder block. The connecting rod is connected to a piston in the cylinder bore. Thus, the crankshaft C functions as an output rotation shaft of the engine by converting the reciprocating motion of the piston into a rotational motion. In FIGS. 1 and 2, the rear side and the front side are shown using arrows.
  • crankshaft C The illustration and detailed description of the manufacturing process of the crankshaft C are omitted, but the outline is as follows. That is, first, in the heating step SI, for example, a round steel material K as a material is heated to about 1200 ° C. by a bar heater or the like. And the heated steel K is cut
  • tuftride nitriding
  • the mold release agent for hot forging dies, the coating method thereof, and the coating apparatus thereof according to this embodiment are applied to a press molding die 1 (hot forging die) provided in the press molding apparatus P.
  • the press molding die 1 hot forging die
  • coating apparatus can be used not only for the said crankshaft but for the metal mold
  • the mold release agent which concerns on this embodiment, its application
  • coating apparatus can be used not only for the said crankshaft but for the metal mold
  • coating apparatus can be used not only for the said crankshaft but for the metal mold
  • ⁇ Mold> 3 to 7 show the configuration of a mold 1 (hot forging mold) for manufacturing the crankshaft C.
  • FIG. 1 hot forging mold
  • the mold 1 includes an upper mold 12 and a lower mold 13.
  • the upper mold 12 includes a rough upper mold 121, a finish upper mold 122, and a trimming upper mold 123.
  • the lower mold 13 includes a rough lower mold 131, a finished lower mold 132, and a trimming lower mold 133.
  • the rough mold X is composed of the rough mold 121 and the rough mold 131
  • the finish mold Y is composed of the finish upper mold 122 and the finish lower mold 132
  • the trimming mold Z is composed of the trimming upper mold 123 and the trimming lower mold 133. Is configured.
  • FIGS. 6 and 7 show enlarged views of the rough mold 121 and the rough mold 131, respectively.
  • the steel material K after the roll forming step SII described above is first pressed by the rough mold X and subjected to rough forming in the press forming step SIII. After that, it is moved to the finishing die Y and finish molding is performed, and then trimming molding is performed by the trimming die Z.
  • the filling state of the steel material K into the details of the rough upper mold 121 and the rough lower mold 131 shown in FIG. 6 and FIG. This greatly relates to the yield of the crankshaft C.
  • the counterweight CW8 of the crankshaft C shown in FIGS. 1 and 2 is for correcting the unbalance of the crankshaft to prevent vibration, and the steel material K can be sufficiently filled in rough forming. is important.
  • the vertical direction, the horizontal direction, and the front-back direction are based on the mold 1 as shown in FIGS. That is, the “vertical direction” means the arrangement direction of the upper mold 12 and the lower mold 13 in the mold 1 as shown in FIG.
  • the “left-right direction” refers to the rough upper mold 121 and the rough lower mold 131, the finishing upper mold 122 and the lower finishing mold 132, and the trimming upper mold 123 and the trimming lower mold 133, as shown in FIGS.
  • the “front-rear direction” refers to the front and back directions of the mold 1 on the paper surface of FIGS. 3 and 5.
  • the front side of the crankshaft C shown in FIGS. 1 and 2 is the front side and the rear side is the rear side in the rough die 121 and the rough die 131 shown in FIGS. It becomes.
  • the press molding apparatus P provided with the mold 1 measures the surface temperature of the rough die 121, rough die 131, finish upper die 122, finish lower die 132, trimming upper die 123, and trimming lower die 133.
  • a radiation thermometer (not shown) is installed. With this radiation thermometer, the mold surface temperature after molding and before the application of the release agent, and the mold surface temperature after application of the release agent and before the next molding can be measured at any time.
  • the press molding apparatus P is a crank press, and is configured such that an upper ram to which the upper mold 12 is attached moves up and down as the crankshaft rotates. Then, by monitoring the rotation angle of the crankshaft, the vertical position of the upper mold 12 is detected, and the mold surface temperature is automatically measured by the radiation thermometer at a predetermined rotation angle. • It is configured to record.
  • the release agent coating apparatus 2 is an apparatus for applying a release agent 21 to be described later to the surface of a mold 1.
  • the coating device 2 includes a tank 20 (storage part) for storing the release agent 21.
  • the tank 20 is provided with a stirrer 22 (stirring means) for stirring the release agent 21 stored in the tank 20.
  • a micro / nano bubble generating device 23 (bubble generating means) for supplying the micro / nano bubbles into the release agent 21 stored in the tank 20 is installed.
  • the coating apparatus 2 includes a release agent spray unit 3 (a spray application means) for spray-applying the release agent 21 stored in the tank 20 to the mold 1.
  • the tank 20 is filled with the release agent stock solution 210.
  • micro / nano bubbles are generated in the release agent stock solution 210 by the micro / nano bubble generator 23.
  • the release agent stock solution 210 is stirred by the stirrer 22, and the micro / nano bubbles 213 generated in the release agent stock solution 210 are uniformly dispersed to obtain the release agent 21.
  • the stirring of the release agent stock solution 210 in the stirring step S3 may be performed before the bubble generation step S2.
  • the release agent 21 is supplied to the release agent spray unit 3.
  • the release agent 21 is spray applied to the mold 1 by the release agent spray unit 3.
  • the spray application step S5 is performed, for example, on the rough die X, the finishing die Y, and the trimming die Z immediately after the mold opening after the press molding by the mold 1 in the press molding step SIII.
  • the application method of the release agent 21 according to the present embodiment is performed using the coating apparatus 2 illustrated in FIG. 8, but is not limited to the coating apparatus 2 illustrated in FIG. 8, and is performed using another apparatus having the same configuration. You may go.
  • the tank 20 is for storing the release agent 21 according to the present embodiment.
  • the release agent stock solution 210 is supplied to the tank 20 in the filling step S1.
  • the micro / nano bubbles are supplied into the release agent stock solution 210 by the micro / nano bubble generating device 23 in the bubble generating step S2, and the agitator 22 is stirred in the stirring step S3 to prepare the release agent 21.
  • the tank 20 has a capacity capable of securing a sufficient supply amount of the release agent 21 with respect to the size of the mold 1 to which the release agent 21 is applied, particularly the surface area of the portion to which the release agent 21 is applied. If you do.
  • the capacity of the tank 20 is preferably 20L to 5000L, more preferably 200L to 4000L, and particularly preferably 1500L to 2500L.
  • the tank 20 is provided with a release agent supply pipe 29 for supplying the release agent 21 from the tank 20 in the supply step S4.
  • the supply amount of the release agent 21 from the tank 20 can be appropriately changed depending on the size of the mold 1 and the like. Specifically, for example, it is preferably 3 L / min to 30 L / min, preferably 5 L / min. 20 L / min or more, particularly preferably 8 L / min or more and 12 L / min.
  • a new release agent stock solution 210 may be supplied to the tank 20 when the storage amount of the release agent 21 falls below a certain amount. Further, a pipe for supplying the release agent stock solution 210 is provided in the tank 20 so that the same amount of the release agent stock solution 210 as the supply amount of the release agent 21 is always supplied.
  • the storage amount of the agent 21 may be constant.
  • the stirrer 22 constantly agitates the release agent 21 stored in the tank 20, and the micro / nano bubbles supplied from the micro / nano bubble generator 23 installed in the tank 20 are always uniformly in the release agent 21. It is intended to be distributed.
  • the stirrer 22 is not particularly limited, and any commercially available stirrer may be disposed in the tank 20.
  • the micro / nano bubble generating device 23 generates micro / nano bubbles in the release agent stock solution 210 stored in the tank 20 and continuously supplies the micro / nano bubbles into the release agent 21 in the bubble generation step S2. is there.
  • the micro / nano bubble generator 23 a commercially available one can be used as appropriate.
  • a nonwoven fabric method for supplying pressurized gas to a nonwoven fabric made of a porous polymer film or the like and generating micro / nano bubbles through the pores of the film, etc. Those using can be suitably used.
  • gas which comprises a micro nano bubble it is preferable that it is air from a viewpoint of safety
  • the coating apparatus 2 is provided with air pipes 24A, 24B, 24C, and 24D (hereinafter sometimes collectively referred to as air pipes 24) that supply air to the components of the coating apparatus 2. .
  • the air 25A and 25D are supplied to the micro / nano bubble generator 23 through the air pipes 24A and 24D.
  • a regulator 26 is provided on the air pipe 24A, and the air pressure of the air 25A can be adjusted.
  • a branch unit 27 is further provided on the air pipe 24 and branches into a plurality of air pipes 24D.
  • the air 25A supplied by the air pipe 24 is branched by the branch unit 27 and supplied to each micro / nano bubble generator 23 as air 25D through the air pipe 24D connected to each micro / nano bubble generator 23 as shown in FIG. Is done.
  • the air pressure (air supply pressure) supplied to the micro / nano bubble generating device 23 is preferably 0.03 MPa or more and 0.3 MPa or less, more preferably 0.8 MPa from the viewpoint of supplying sufficient micro / nano bubbles into the release agent 21.
  • the pressure is from 05 MPa to 0.25 MPa, particularly preferably from 0.1 MPa to 0.2 MPa.
  • micro / nano bubble generating device 23 is separated from the balance between the capacity of the tank 20, that is, the capacity of the release agent 21 filled in the tank 20 and the supply amount of the release agent 21 to the release agent spray unit 3.
  • the mold 21 needs to be capable of supplying micro / nano bubbles so that the micro / nano bubbles are always filled.
  • a plurality of micro / nano bubble generators 23 are provided as shown in FIG.
  • the supply amount of the micro / nano bubbles to the release agent 21 can be adjusted by increasing / decreasing the number of the micro / nano bubble generation devices 23 according to the micro / nano bubble supply capability of the micro / nano bubble generation device 23.
  • a plurality of micro / nano bubble generation devices 23 may be provided as in the present embodiment, or only one may be provided when the micro / nano bubble generation device 23 having a large micro / nano bubble supply capability is employed.
  • the total supply amount of micro-nano bubbles supplied from the plurality of micro-nano bubble generators 23 into the release agent 21 is from the viewpoint of supplying sufficient micro-nano bubbles in the release agent 21. It is preferably 1 L / min or more and 100 L / min or less, more preferably 2 L / min or more and 50 L / min or less, particularly preferably 3 L / min or more and 30 L / min or less.
  • the release agent spray unit 3 is for spray-applying the release agent 21 to the mold 1 in the spray application step S5.
  • the release agent spray unit 3 includes an atomizing unit 31 that mixes air 25C with the release agent 21 supplied from the tank 20 to atomize the release agent 21.
  • the release agent spray unit 3 is connected to the atomizing portion 31 and is disposed between the upper mold 12 and the lower mold 13 of the mold 1, and the surfaces of the upper mold 12 and the lower mold 13.
  • the spray head 32 which injects the mold release agent 21 atomized by the atomization part 31 is provided.
  • a release agent supply pipe 29 for supplying the release agent 21 from the tank 20 is connected to the atomization unit 31 via a release agent supply pump 28.
  • the release agent supply pump 28 is an air-driven pump, and is connected to an air pipe 24B to supply air 25B.
  • the release agent 21 ⁇ / b> A supplied from the tank 20 is supplied to the atomization unit 31 through the release agent supply pipe 29.
  • the supply pump pressure (supply pressure) of the release agent 21 by the release agent supply pump 28 in the supply step S4 is preferably from the viewpoint of supplying a sufficient amount of the release agent 21 to the upper mold 12 and the lower mold 13. Is 0.2 MPa or more and 10 MPa or less, more preferably 0.3 MPa or more and 5 MPa or less, and particularly preferably 0.4 MPa or more and 4 MPa or less.
  • the supply pump pressure can be appropriately changed depending on the type, size, configuration, etc. of the mold 1 to which the release agent 21 is applied.
  • the atomizing section 31 is supplied with the inlet of the release agent 21 supplied through the release agent supply pipe 29 and the air supplied through the air pipe 24C to the release agent 21 introduced from the inlet. And a mixing unit for mixing 25C.
  • the release agent 21 is mixed with the air 25C and atomized in the mixing unit.
  • the atomization air pressure of the air 25C supplied to the atomization unit 31 through the release agent supply pipe 29 is a viewpoint of spraying the release agent 21 uniformly on the upper mold 12 and the lower mold 13. Therefore, it is preferably 0.10 MPa or more and 0.80 MPa or less, more preferably 0.20 MPa or more and 0.70 MPa or less, and particularly preferably 0.30 MPa or more and 0.50 MPa or less.
  • the spray head 32 is inserted between the upper mold 12 and the lower mold 13 immediately after the mold opening after the press molding by the mold 1 and is atomized on the surfaces of the rough mold X, the finishing mold Y, and the trimming mold Z.
  • the mold release agent 21 is applied.
  • the spray head 32 has a plurality of spray ports (not shown) from the viewpoint of evenly applying the release agent 21 to the entire surface of the upper mold 12 and the lower mold 13, and the mold is released from the plurality of spray ports.
  • the agent 21 is ejected in the form of mist particles.
  • the structure of the spray head 32 is not limited to the said structure, For example, you may comprise so that an injection quantity, an injection speed, etc. can be changed for every injection port.
  • the Sauter average particle size of the atomized particles of the release agent 21 spray-applied from the release agent spray unit 3 is preferably 10 ⁇ m or more and 30 ⁇ m or less from the viewpoint of spray-applying the release agent 21 uniformly on the mold 1. More preferably, they are 12 micrometers or more and 28 micrometers or less, Most preferably, they are 15 micrometers or more and 25 micrometers or less.
  • FIG. 9 schematically shows an enlarged droplet 21 ⁇ / b> B of the release agent 21 ejected from the spray head 32.
  • the droplet 21 ⁇ / b> B of the release agent 21 includes a release agent stock solution 210 and micro / nano bubbles 213 dispersed in the release agent stock solution 210.
  • -Release agent stock solution As the release agent stock solution 210, a commercially available release agent used for hot forging dies, or a solution obtained by diluting this commercially available release agent with water can be used. Specifically, for example, as shown in FIG. 9, a water-soluble graphite release agent in which graphite particles 212 are dispersed in water 211 as a solvent, or a water-soluble white release agent not containing graphite can be used. .
  • water-soluble white release agents include water-soluble polymers such as sodium polyacrylate (PA-Na) and sodium carboxymethylcellulose (CMC-Na) based on carboxylates, inorganic salts, etc. If necessary, it is a non-graphite-based water-soluble release agent made by adding a solid lubricant.
  • the release agent 21 according to the present embodiment is characterized by containing micro-nano bubbles 213.
  • micro / nano bubble means a fine bubble having a diameter of 200 ⁇ m or less when the fine bubble is regarded as a true sphere.
  • the diameter of the true sphere when the fine bubble is regarded as a true sphere is referred to as “the diameter of the micro / nano bubble”.
  • the volume of the true sphere when the fine bubbles are regarded as a true sphere is referred to as “volume of the micro / nano bubble”.
  • the “content of the micro / nano bubbles in the release agent” means the volume of the micro / nano bubbles contained per unit volume of the release agent and expressed in volume%.
  • the micro / nano bubbles are supplied into the release agent 21 by the micro / nano bubble generator 23 in the bubble generation step S2.
  • the diameter of the micro / nano bubbles is preferably 200 ⁇ m or less, more preferably 150 ⁇ m or less, particularly preferably 50 ⁇ m or less, and preferably 0.1 ⁇ m or more, more preferably, from the viewpoint of increasing the cooling capacity of the release agent 21. Is 0.5 ⁇ m or more, particularly preferably 0.6 ⁇ m or more.
  • the content (volume%) of the micro / nano bubbles contained in the release agent 21 is preferably 10% by volume or less, more preferably 8% by volume or less, particularly from the viewpoint of increasing the cooling capacity of the release agent 21.
  • it is 5 volume% or less,
  • it is 0.1 volume% or more, More preferably, it is 0.15 volume% or more, Most preferably, it is 0.2 volume% or more.
  • the mold release agent 21 contains micro / nano bubbles, so that the surface tension is reduced and the wettability is improved. Therefore, the contact area with the mold increases. In addition, since micro-nano bubbles are small, the buoyancy acting on the bubbles is reduced, and the micro-nano bubbles have the property of staying in the water.
  • the boiling of the solvent component proceeds from the micro / nano bubble in the droplet of the release agent 21 as a starting point. Thus, the vaporization of the solvent component of the release agent 21 is promoted, and the cooling ability of the mold by the release agent is improved.
  • the release agent layer has a role of improving the lubricity / release properties of the mold 1.
  • the inclusion of micro-nano bubbles in the release agent 21 increases the amount of vaporization of the release agent 21 and increases the cooling capacity. Variation in the thickness can be reduced, and a more uniform release agent layer can be obtained.
  • the average film thickness of the release agent layer is preferably 2.3 ⁇ m or more and 15 ⁇ m or less, more preferably 3.7 ⁇ m or more and 12 ⁇ m or less, and particularly preferably 5.0 ⁇ m, from the viewpoint of improving the lubricity and mold release property of the mold 1. It is 10.0 ⁇ m or less.
  • the particle size of the mist particles of the release agent 21 spray-applied from the release agent spray unit 3 was measured using a phase Doppler laser particle analyzer. Specifically, the mist-like particles of the release agent 21 at a position 200 mm away from the spray head 32, that is, a distance corresponding to the distance from the spray head 32 to the mold surface on which the release agent 21 is spray applied. The diameter was measured and the Sauter average particle diameter was calculated.
  • Table 1 shows the results of the Sauter average particle diameter of the mist particles of the release agent 21.
  • the supply pump pressure of the release agent 21 is 1.0 MPa, and the atomization air pressure of the air 25C is 0.45 MPa.
  • the mold release agent 21 was spray-applied to the mold 1 as mist particles having a particle size shown in Table 1. As will be described later, it is understood that the release agent 21 is applied to the mold surface in a good application state, and has a sufficient thickness and forms a uniform release agent layer.
  • Example 1 ⁇ Cooling performance evaluation experiment 1 of release agent> (Example 1) -Preparation of release agent containing micro-nano bubbles- A commercially available water-soluble graphite release agent (Henkel, Deltaforge F850) was fed with air at an air pressure of 0.15 MPa and bubbled for 1 hour using a nanobubble generator (Nack Co., Foamest 201). A release agent 21 containing micro / nano bubbles was prepared.
  • a pipette 52 was attached to the stand 51.
  • the iron plate 54 attached to the ceramic base 53 was arrange
  • a thermocouple 55 is attached to the back side of the iron plate 54 in the vicinity of the pipette 52.
  • a release agent layer 21D was formed as shown in FIG. After sufficiently cooling the iron plate 54, the size and film thickness of the release agent layer 21D were measured. Specifically, as shown in FIG. 12, the width W2 of the release agent layer 21D and the film thickness at each point M1 to M4 of the release agent layer 21D were measured. M1 is a center point when the release agent layer 21D is regarded as a circle, M2 and M3 are points about 1/6 of the diameter from the outer circumference circle on the diameter of the release agent layer 21D passing through M1, M4 is also a point about 1/10 inside the diameter. The film thickness was measured using a commercially available film thickness measuring instrument (Electromagnetic film thickness meter LE373, manufactured by Kett Scientific Laboratory Co., Ltd.).
  • Example 2 The experiment was performed in the same manner as in Example 1 except that the iron plate 54 was heated to 200 ° C. and only the experiment A was performed.
  • Comparative Examples 1 and 2 In Comparative Examples 1 and 2, experiments were performed in the same manner as in Examples 1 and 2 except that the commercially available water-soluble graphite release agent was used as it was without bubbling with a nanobubble generator.
  • FIG. 13, FIG. 14, Table 2 and Table 3 show the results of Experiment A of Examples 1 and 2 and Comparative Examples 1 and 2.
  • Table 4 shows the results of Experiments B and C of Example 1 and Comparative Example 1. Note that the position indicated by the arrow in FIGS. 13 and 14 indicates the time when the droplet of the release agent is dropped, and is 0 second.
  • Example 1 where the iron plate temperature is 260 ° C., the cooling is performed at 106 ° C. after time t1 (4.9 seconds), and when 106 ° C. is divided by time t1, a unit up to time t1 is obtained.
  • the cooling temperature per time that is, the cooling rate is 22 ° C./second.
  • time t2 (9.6 seconds)
  • the cooling is performed at 119 ° C., and the cooling rate is 12 ° C./second.
  • the cooling rate of the iron plate 54 is improved at both times t1 and t2, compared with the conventional release agent of Comparative Example 1, and the time It can be seen that at t1, the cooling capacity is improved by about 37%.
  • Example 2 where the iron plate temperature is 200 ° C. and Comparative Example 2 where the iron plate temperature is 201 ° C.
  • the cooling is performed at 64 ° C. and 43 ° C. after time t3 (4.4 seconds), respectively.
  • the cooling rate is 15 ° C./second and 10 ° C./second, respectively.
  • the release agent 21 containing micro-nano bubbles of Example 2 has an improved cooling capacity of about 50% at time t3 as compared with the conventional release agent of Comparative Example 2.
  • the release agent 21 according to the present embodiment contains the micro-nano bubbles, and in particular, the cooling ability is improved particularly about 5 seconds after the dropping.
  • the maximum film thickness difference is 7.4 ⁇ m in Comparative Example 1, whereas it is 0.7 ⁇ m in Example 1, which greatly reduces the variation in film thickness. I know that.
  • FIG. 21 schematically shows a state in which, for example, a water droplet 101 is in contact with the metal plate 201.
  • the amount of heat Q per unit time transmitted from the metal plate 201 to the water droplet 101 is expressed by the following formula (1).
  • ⁇ , A, ⁇ T, and L are the thermal conductivity of the water droplet 101, the contact area and temperature difference between the metal plate 201 and the water droplet 101, and the heat transfer distance, respectively.
  • the cooling capacity of the metal plate 201 by the water droplet 101 is such that the larger the contact area A of the water droplet 101 in contact with the metal plate 201 or the smaller the heat transfer distance L that is the height of the water droplet 101. It is thought that it will improve.
  • FIG. 22 schematically shows the Leidenfrost phenomenon that occurs when the water droplet 101 is dropped on the high-temperature metal plate 201.
  • the temperature of the metal plate 201 is very high, the water droplets abruptly evaporate from the contact portion between the water droplet 101 and the metal plate 201, and an updraft of the steam 101B is generated.
  • a part or all of the water droplet portion 101A is lifted from above the metal plate 201 by the rising air current of the steam 101B, and the contact area between the water droplet portion 101A and the metal plate 201 is reduced.
  • heat conduction from the metal plate 201 to the water droplet portion 101A is hindered, and the cooling ability of the metal plate 201 by the water droplet portion 101A is reduced.
  • the droplets of the release agent 21 according to the present embodiment contain micro / nano bubbles, whereby the surface tension is lowered and the wettability is improved. Therefore, the contact area with the mold increases. Then, it is thought that the cooling capacity of the metal mold
  • micro-nano bubbles have the property that the buoyancy acting on the bubbles is reduced due to the small size of the bubbles, so that they remain in water. Therefore, when the droplets of the release agent 21 come into contact with the high-temperature mold surface, the micro / nano bubbles 213 present in the droplets of the release agent 21 are the starting points of the boiling of the water 211, for example, like the boiling stones. It is thought that it becomes. Then, in addition to the evaporation of water 211 from the contact surface between the droplet and the mold, the boiling of the water 211 starts from the micro-nano bubble 213, so that compared with a conventional release agent that does not contain micro-nano bubbles. It is considered that the amount of water 211 vaporized increases and the cooling capacity of the mold surface improves.
  • mold release agent 2- (Example 3) Water is added to and mixed with a commercially available water-soluble graphite release agent (manufactured by Henkel, Deltaforge F850), and the tank is filled with a specific gravity of 1.0075 with a hydrometer.
  • the mold release agent 21 was prepared using the coating device 2 in which 5 Nack's Foamest 201) were installed. The five micro / nano bubble generators were supplied with air at an air pressure of 0.15 MPa. Moreover, the total supply amount of the micro / nano bubbles supplied from the micro / nano bubble generator to the release agent 21 was 3.5 L / min.
  • the mold surface temperature T1 [° C.] immediately after the rough forming of the steel material K and the mold surface temperature T2 [° C. immediately after spray application of the release agent 21 by the coating device 2 are performed.
  • the application time of the release agent 21 is t [second]
  • ⁇ [° C./second] represented by the following formula (2) is calculated as the mold cooling temperature per unit application time of the release agent 21; The cooling performance was evaluated.
  • (T1-T2) / t (2) Note that the spray application of the release agent 21 is performed under the conditions shown in the measurement of the particle size of the mist particles of the release agent described above, that is, the conditions for obtaining the particle size of the mist particles shown in Table 1.
  • the supply pump pressure of the agent 21 is 1.0 MPa, and the atomization air pressure of the air 25C is 0.45 MPa.
  • Comparative Example 3 In Comparative Example 3, an experiment was conducted in the same manner as in Example 3 except that a commercially available water-soluble graphite release agent was used as it was without bubbling with a micro-nano bubble generator.
  • Results of Comparative Example 3 and Example 3 are shown in FIGS. 15 and 16, respectively.
  • the rough forming and the release agent application accompanying the rough forming were performed a plurality of times during the experimental time over several hours, and the measurement was performed for each rough forming and the release agent application.
  • 15 and 16 plot the coating time t for each measurement and the mold cooling temperature ⁇ [° C./second] per unit coating time over the experimental time of several hours.
  • the coating time t is about 2.2 seconds.
  • the average mold cooling temperature ⁇ per unit time from 1 hour to 6 hours was 24.7 ° C./second. Even when the coating time was 2.2 seconds, the mold cooling temperature ⁇ per unit time sometimes fell below 0 ° C./second. When the mold cooling temperature ⁇ per unit time is less than 0 ° C./second, it indicates that the rough mold 131 is not cooled at all even when the release agent is applied.
  • Example 3 the application time t is approximately 2.1 seconds.
  • the average value of the mold cooling temperature ⁇ per unit time from 1 hour to 4 hours and from 5 hours to 7 hours in the experiment time was 63.2 ° C./second.
  • the mold cooling temperature ⁇ per unit time was 0 as in Comparative Example 3 while the rough molding and the release agent application were performed from 1 hour to 4 hours and from 5 hours to 7 hours. No more times below ° C / sec.
  • the release agent 21 containing micro-nano bubbles according to the present embodiment has a cooling capacity of about 2. in the average value of the mold cooling temperature ⁇ per unit time as compared with the conventional release agent. It turns out that it has improved 6 times.
  • Example 4 the film thickness of the release agent layer formed on the surface of the rough mold 131 to which the release agent was applied was measured using a commercially available film thickness measuring instrument (electromagnetic film thickness meter LE373, manufactured by Kett Science Laboratory Co., Ltd.). ). The film thickness was measured at each site X1 to X8 of the rough mold 131 shown in FIG.
  • Comparative Example 4 In Comparative Example 3, the film thickness of the release agent layer formed on the surface of the rough mold 131 coated with the release agent was measured in the same manner as in Example 4.
  • Table 5 shows the results of Example 4 and Comparative Example 4.
  • the average film thickness of X1 to X8 is smaller on the rear side of the rough die 131, particularly on X7 and X8, compared to 3.1 ⁇ m. I can see that.
  • the surface temperature of the mold 1 is related to the fact that the film thickness of the release agent layer becomes thinner on the rear side than the front side of the rough mold 121 and the rough mold 131.
  • the mold surface temperature immediately after rough forming by the rough mold 121 and the rough mold 131 shown in FIGS. 6 and 7 is about 200 ° C. to about 400 ° C.
  • the front side of the rough mold 121 and the rough mold 131 is about 200 ° C. to about 350 ° C.
  • the rear side is about 300 ° C. to about 400 ° C.
  • the rear side is a mold that is more than the front side. The knowledge that surface temperature becomes high is acquired.
  • the Leidenfrost phenomenon tends to occur on the rear side where the mold surface temperature is high, and the mold surface cooling ability by the mold release agent Is expected to decrease. If it does so, the film thickness of a mold release agent layer will become thin in the back side rather than the front side of a metal mold
  • Example 4 of Table 5 when the release agent 21 according to this embodiment containing micro-nano bubbles was used, the average film thickness in X1 to X8 increased to 6.8 ⁇ m, and X7 and It can be seen that the film thickness of X8 also increased to 6.5 ⁇ m and 10.3 ⁇ m, respectively.
  • Example 4 since the mold release agent 21 contains micro / nano bubbles, the cooling ability of the mold surface by the mold release agent is improved, and the mold surface is also provided behind the rough mold 121 and the rough mold 131. It is thought that cooling is promoted. Thus, it is considered that the thickness of the release agent layer is sufficiently thick, and the lack of thickness in the counterweight CW8 is reduced.
  • micro-nano bubble water ⁇ Micro / nano bubble content contained in micro / nano bubble water>
  • the volume of bubbles per unit volume contained in water containing micro-nano bubbles ie, micro-nano bubble water
  • micro-nano bubble water is solidified with gelatin to prepare a sample piece of micro-nano bubble water, and the micro-nano bubble contained in the sample piece by an inverted microscope The size of was measured.
  • the experimental procedure is as follows.
  • Example 1 First, the micro / nano bubble generator was immersed in water and bubbled for 1 hour to prepare micro / nano bubble water. To 50 g of this micro / nano bubble water, separately add 5 g of commercially available gelatin (Morinaga Cook Gelatin, manufactured by Morinaga Milk Industry Co., Ltd.) to 15 g of hot water at about 80 ° C. and stir, and then in a refrigerator at about 10 ° C. for 2 hours. Cooled down.
  • commercially available gelatin Moorinaga Cook Gelatin, manufactured by Morinaga Milk Industry Co., Ltd.
  • a sample piece 40 of about 15 mm ⁇ 15 mm ⁇ 10 mm was collected from the micro / nano bubble water jelly prepared as described above and placed on a petri dish 42 as shown in FIG.
  • a water droplet 41 for adhesion is hung on the outer periphery of the sample piece 40, and the sample is taken with an optical microscope (Olympus GX41).
  • the size of the micro / nano bubbles contained in the piece 40 was measured.
  • symbol 44 in FIG. 17 has shown the objective lens of optical microscope GX41 (inverted microscope). In this experiment, microbubbles having a diameter of 2 ⁇ m or more and less than 1000 ⁇ m were observed with an optical microscope GX41.
  • FIG. 18 shows an example of the observation surface 40A.
  • the area of one micro / nano bubble 213 included in the observation surface 40A was measured.
  • the radius of the one micro-nano bubble 213 is regarded as the area of a circle, the radius is calculated, and the volume of the sphere having the radius is calculated to be the volume MA1 of the micro-nano bubble 213.
  • volume MA1 was calculated for other micro / nano bubbles 213 included in the observation surface 40A.
  • the volume MA1 of all the micro / nano bubbles 213 included in the observation surface 40A is summed to obtain the content MA2 of the micro / nano bubbles 213 included in the observation surface 40A.
  • the content MA4 of the micro / nano bubbles having a diameter of 2 ⁇ m or more and less than 1000 ⁇ m contained in the micro / nano bubble water was calculated by volume%.
  • Tables 6 to 8 show the calculation results of the micro / nano bubbles in Experimental Example 1.
  • Example 2 About the sample piece 40 of the micro nano bubble water jelly of Experimental example 1, the micro nano bubble less than 2 micrometers in diameter was observed using the optical microscope (The Olympus company make, DSX510).
  • FIG. 20 shows an example of the observation surface.
  • the radius of the one micro-nano bubble 213 is regarded as the area of a circle, the radius is calculated, the volume of the sphere having the radius is calculated, and the volume MB1 of the micro-nano bubble 213 is obtained.
  • volume MB1 was calculated for other micro / nano bubbles 213 included in the observation surface.
  • the content MB4 of the micro / nano bubbles having a diameter of less than 2 ⁇ m contained in the micro / nano bubble water was calculated by volume%.
  • Table 9 shows the calculation results of the micro / nano bubbles in Experimental Example 2.
  • This disclosure is extremely useful in the field of hot forging.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Wood Science & Technology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Emergency Medicine (AREA)
  • Forging (AREA)
  • Mold Materials And Core Materials (AREA)
  • Shafts, Cranks, Connecting Bars, And Related Bearings (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)

Abstract

マイクロナノバブルを含有することを特徴とする熱間鍛造金型用離型剤。

Description

熱間鍛造金型用離型剤、その塗布方法及び塗布装置
 本開示は、熱間鍛造金型用離型剤、その塗布方法及び塗布装置に関する。
 従来、熱間鍛造法では、高温材料をプレス金型で鍛造成形するため、金型は高い面圧を受けるとともに高温材料の接触による熱疲労及び高温材料が金型表面を滑ることによる金型摩耗が問題となる。そこで、一般に、金型の潤滑性及び離型性を向上させるとともに、金型表面の冷却を促進させる目的で、脱型後の金型の表面に離型剤を塗布することが行われている。
 例えば、特許文献1には、鍛造成形加工用の上下金型が成形加工後に型開きした状態で、これら相互間に離型剤噴射ノズルを配置し、その各噴射口から上下金型の対応する各部位に向けて離型剤を噴射する技術が開示されている。
 特許文献1では、上下金型の各部位に設けられた温度センサの検出温度に応じて、離型剤の噴射時間・圧力、離型剤噴射ノズルの位置などの噴射条件を調整することで、金型の冷却を適正に行い、離型性を向上させることが記載されている。
特開2007-268614号公報
 ところで、例えば水に黒鉛等を混合させた従来の離型剤では、金型表面に塗布された離型剤の液滴のうち金型に接触する部分が、金型表面の熱により急速に蒸発する。そうすると、急速な蒸発により蒸気の上昇気流が生じる、いわゆるライデンフロスト現象が起こり、金型表面に接触する液滴の接触面積が減少する。そうして、離型剤による十分な冷却能力が得られなくなり、離型剤の大量塗布が必要となるという問題があった。また、離型剤を大量に塗布することで、離型性を担う均一な黒鉛皮膜を得ることが困難になるという問題があった。
 本開示は、上記点に鑑みてなされたものであり、その目的とするところは、離型剤の塗布量を抑えつつ、十分な冷却能力を得るとともに、均一な離型剤の塗布膜を形成することができる熱間鍛造金型用の離型剤及びその塗布方法をもたらすことにある。
 上記目的を達成するために、この開示技術では、熱間鍛造金型用離型剤にマイクロナノバブルを含有させるようにした。
 すなわち、ここに開示する第1の技術に係る熱間鍛造金型用離型剤は、マイクロナノバブルを含有することを特徴とする。
 本技術によれば、離型剤の濡れ性が向上するから、離型剤の液滴と金型表面との接触面積が増加して、接触面からの離型剤の溶媒成分の気化が促進される。また、離型剤の液滴中に存在するマイクロナノバブルを核として、離型剤の溶媒成分の気化が促進される。このため、短時間での金型の冷却が可能となり、離型剤の塗布量を抑えることができる。そうして、塗布された離型剤により形成された離型剤層の膜厚を潤滑性及び離型性に適した十分な厚さを有し且つ均一なものとすることができる。
 第2の技術では、第1の技術において、前記マイクロナノバブルの直径は0.1μm以上200μm以下である。
 本技術によれば、離型剤の冷却性能を効果的に向上させて、離型剤の塗布量を抑えるとともに、短時間で十分な厚さの均一な離型剤層を形成することができる。
 第3の技術では、第2の技術において、前記マイクロナノバブルの含有量は0.1体積%以上10体積%以下である。
 本技術によれば、さらに離型剤の冷却性能を向上させることができる。
 ここに開示する第4の技術に係る熱間鍛造金型用離型剤の塗布方法は、第1~第3の技術に係る熱間鍛造金型用離型剤を熱間鍛造金型に噴霧塗布することを特徴とする。
 本技術によれば、成形後の熱間鍛造金型をより短時間で冷却させ、熱間鍛造金型表面に十分な厚さの均一な離型剤層を形成することで、熱間鍛造金型の潤滑性及び離型性を高めることができる。
 第5の技術では、第4の技術において、前記熱間鍛造金型用離型剤は、ザウター平均粒径10μm以上30μm以下の粒子状で前記熱間鍛造金型に噴霧塗布される。
 本技術によれば、離型剤の熱間鍛造金型へのより均一な塗布が可能となる。
 第6の技術では、第5の技術において、前記熱間鍛造金型に塗布された前記熱間鍛造金型用離型剤により形成された離型剤層の平均膜厚は、2.3μm以上15μm以下である。
 本技術によれば、熱間鍛造金型の良好な潤滑性及び離型性を確保することができる。
 第7の技術では、第6の技術において、気泡発生手段と撹拌手段とを備えた貯留部に離型剤原液を充填する充填工程と、前記気泡発生手段により前記離型剤原液中に前記マイクロナノバブルを発生させる気泡発生工程と、前記撹拌手段により前記離型剤原液を撹拌して該離型剤原液中に発生させた前記マイクロナノバブルを均一に分散させて前記熱間鍛造金型用離型剤を得る撹拌工程と、前記熱間鍛造金型用離型剤を噴霧塗布手段に供給する供給工程と、前記噴霧塗布手段により前記熱間鍛造金型用離型剤を前記熱間鍛造金型に噴霧塗布する噴霧塗布工程とを備え、前記気泡発生工程で、前記気泡発生手段に対してエア供給圧は0.03MPa以上0.3MPa以下でエアを供給し、前記気泡発生手段による前記マイクロナノバブルの供給量は1L/分以上100L/分以下であり、前記供給工程で、前記熱間鍛造金型用離型剤の供給圧は0.5MPa以上2.0MPa以下であり、前記噴霧塗布手段に供給される霧化エア圧は0.20MPa以上0.80MPa以下である。
 本技術によれば、十分なマイクロナノバブルを含有する離型剤の調製が可能となる。また、このような離型剤を熱間鍛造金型に均一に塗布することが可能となる。そうして、離型剤による金型表面の冷却能力を高め、十分な厚さの均一な離型剤層を得ることができる。
 ここに開示する第8の技術に係る熱間鍛造金型用離型剤の塗布装置は、熱間鍛造金型の表面に第1~第3の技術に係る熱間鍛造金型用離型剤を塗布するための熱間鍛造金型用離型剤の塗布装置であって、前記熱間鍛造金型用離型剤を貯留するための貯留部と、前記貯留部に設けられ、該貯留部内に貯留された前記熱間鍛造金型用離型剤を撹拌するための撹拌手段と、前記貯留部内に貯留された前記熱間鍛造金型用離型剤中に前記マイクロナノバブルを供給するための気泡発生手段と、前記貯留部内に貯留された前記熱間鍛造金型用離型剤を前記熱間鍛造金型に噴霧塗布するための噴霧塗布手段とを備えたことを特徴とする。
 本技術によれば、十分なマイクロナノバブルを含有する離型剤を熱間鍛造金型に均一に塗布することが可能となる。そうして、離型剤による金型表面の冷却能力を高め、十分な厚さの均一な離型剤層を得ることができる。
 本技術によれば、離型剤の濡れ性が向上するから、離型剤の液滴と金型表面との接触面積が増加して、接触面からの離型剤の溶媒成分の気化が促進される。また、離型剤の液滴中に存在するマイクロナノバブルを核として、離型剤の溶媒成分の気化が促進される。このため、短時間での金型の冷却が可能となり、離型剤の塗布量を抑えることができる。そうして、塗布された離型剤により形成された離型剤層の膜厚を潤滑性及び離型性に適した十分な厚さを有し且つ均一なものとすることができる。
図1は、直列4気筒エンジンに使用されるクランクシャフトの斜視図である。 図2は、図1のクランクシャフトの側面図である。 図3は、図1のクランクシャフトを熱間鍛造により製造するための金型の斜視図である。 図4は、図3の金型の上金型の斜視図である。 図5は、図3の金型の下金型の斜視図である。 図6は、図4の上金型における荒上型の平面図である。 図7は、図5の下金型における荒下型の平面図である。 図8は、一実施形態に係る離型剤の塗布装置を模式的に示す図である。 図9は、図8の離型剤の塗布装置の噴射ノズルから噴霧された離型剤の液滴を模式的に示す図である。 図10は、図8の離型剤の塗布装置を用いて金型に離型剤を塗布する方法を説明するためのフローチャートである。 図11は、離型剤の冷却能力を評価するための実験装置の構成を模式的に示す図である。 図12は、図11の実験装置により鉄板上に滴下された離型剤の液滴により形成された離型剤層を模式的に示す平面図である。 図13は、図11の実験装置を用いて測定した、鉄板温度260℃のときの離型剤の冷却能力を示すグラフである。 図14は、図11の実験装置を用いて測定した、鉄板温度200℃のときの離型剤の冷却能力を示すグラフである。 図15は、図7の荒下型に従来の離型剤を噴霧塗布したときの単位塗布時間当たりの金型冷却温度を示すグラフである。 図16は、図7の荒下型に一実施形態に係る離型剤を噴霧塗布したときの単位塗布時間当たりの金型冷却温度を示すグラフである。 図17は、ゼラチンで固めたマイクロナノバブル水について倒立顕微鏡による観察実験を行う様子を模式的に示す図である。 図18は、図17の観察実験で得られた光学顕微鏡像からマイクロナノバブル水に含まれるマイクロナノバブルの含有量を求める方法を説明するための図である。 図19は、図17の観察実験で得られた光学顕微鏡像である。 図20は、他の光学顕微鏡を用いた観察実験で得られた光学顕微鏡像である。 図21は、金属板上に滴下された水滴を模式的に示す図である。 図22は、ライデンフロスト現象を説明するための図である。
 以下、本実施の形態を図面に基づいて詳細に説明する。以下の好ましい実施形態の説明は、本質的に例示に過ぎず、本開示、その適用物或いはその用途を制限することを意図するものでは全くない。
 <クランクシャフト>
 図1及び図2は、自動車エンジンの部品であるクランクシャフトCを示している。
 クランクシャフトCは、例えば四輪自動車等の車両に載置される直列4気筒ガソリンエンジンの部品である。クランクシャフトCが搭載されるエンジンの構成について、図示及び詳細な説明は省略するが、クランクシャフトCは、シリンダブロックに設けられたクランクケースに回転自在に支持される。そして、コネクティングロッドによってシリンダボア内のピストンに連結される。そうして、クランクシャフトCは、ピストンの往復運動を回転運動に変換させて、エンジンの出力回転軸として機能する。なお、図1及び図2において、リア側及びフロント側について、矢印を用いて示している。
 クランクシャフトCの製造工程について、図示及び詳細な説明は省略するが、その概略は以下の通りである。すなわち、まず、加熱工程SIにおいて、材料としての例えば丸棒の鋼材Kを例えばバーヒータ等により約1200℃程度に加熱する。そして、加熱された鋼材Kは、ロール成形工程SIIにおいて、ロール成形機により切断され、つぶし加工がなされる。その後、鋼材Kはプレス成形装置Pに搬送され、プレス成形工程SIIIにおいて、プレス成形が行われて図1及び図2に示すクランクシャフトCが得られる。そして、クランクシャフトCは、その軸部に高周波焼入れ、浸炭、窒化(タフトライド)が施されて、エンジン部品として供される。
 本実施形態に係る熱間鍛造金型用離型剤、その塗布方法及びその塗布装置は、上記プレス成形装置Pに設けられたプレス成形用の金型1(熱間鍛造金型)に適用される。
 なお、本実施形態に係る離型剤、その塗布方法及びその塗布装置は、上記クランクシャフトに限らず、コネクティングロッドやカムシャフト等の熱間鍛造成形品の金型に用いることができる。また、上記自動車エンジン部品に限らず、例えば、自動車のミッション部品やサスペンション部品、航空機、船舶等のエンジン部品やその他熱間鍛造法を用いて製造される種々の熱間鍛造成形品の金型に適用することができる。
 <金型>
 図3~図7は、クランクシャフトCを製造するための金型1(熱間鍛造金型)の構成を示している。
 図3に示すように、金型1は、上金型12と、下金型13とにより構成される。
 上金型12は、図4に示すように、荒上型121と、仕上げ上型122と、トリミング上型123とを備える。また、下金型13は、図5に示すように、荒下型131と、仕上げ下型132と、トリミング下型133とを備える。なお、荒上型121及び荒下型131により荒型Xが構成され、仕上げ上型122及び仕上げ下型132により仕上げ型Yが構成され、またトリミング上型123及びトリミング下型133によりトリミング型Zが構成される。なお、図6及び図7に、荒型Xの荒上型121及び荒下型131の拡大図をそれぞれ示している。
 上述のロール成形工程SII後の鋼材Kは、プレス成形工程SIIIにおいて、まず荒型Xによりプレスされて荒成形が施される。その後、仕上げ型Yに移動して仕上げ成形が施され、続いて、トリミング型Zによりトリミング成形が施される。
 荒型Xによる荒成形は、鋼材Kの最初のプレス成形であるため、図6及び図7に示す荒上型121及び荒下型131の細部への鋼材Kの充填状況が、トリミング成形後のクランクシャフトCの歩留まりに大きく関係する。例えば図1及び図2に示すクランクシャフトCのカウンターウエイトCW8は、クランクシャフトのアンバランスを是正して振動を防止するためのものであり、荒成形において鋼材Kの充填が十分に行われることが重要である。
 なお、本明細書において、上下方向、左右方向、及び前後方向は、図3~図8に示すように、金型1を基準とする。すなわち、「上下方向」とは、図3に示すように、金型1において上金型12及び下金型13の配列方向をいう。また、「左右方向」とは、図3~図5に示すように、荒上型121及び荒下型131、仕上げ上型122及び仕上げ下型132、並びにトリミング上型123及びトリミング下型133の配列方向をいう。そして、「前後方向」は、図3及び図5の紙面上で金型1の手前及び奥方向をいう。「前後方向」は、図6及び図7に示す荒上型121及び荒下型131において、図1及び図2に示すクランクシャフトCのフロント側を形成する側が前、リア側を形成する側が後となる。
 また、金型1が設けられたプレス成形装置Pには、荒上型121、荒下型131、仕上げ上型122、仕上げ下型132、トリミング上型123及びトリミング下型133の表面温度を測定するための図示しない放射温度計が設置されている。この放射温度計により、成形後であって離型剤塗布前の金型表面温度、及び離型剤塗布後であって次の成形前の金型表面温度を随時測定することができる。なお、プレス成形装置Pはクランクプレスであり、クランク軸の回転に伴い上金型12を取り付けた上部ラムが上下動するように構成されている。そして、クランク軸の回転角度を監視することで、上金型12の上下方向の位置を検知し、予め設定された一定の回転角度のときに、上記放射温度計により金型表面温度を自動測定・記録するように構成されている。
 <離型剤の塗布装置及び塗布方法>
 以下、本実施形態に係る離型剤21(熱間鍛造金型用離型剤)の塗布装置2(熱間鍛造金型用離型剤の塗布装置)と、その塗布装置2を用いた離型剤21の塗布方法(熱間鍛造金型用離型剤の塗布方法)について概略を述べた後に、塗布装置2の各構成、及び本実施形態に係る離型剤21について、詳述する。
 [離型剤の塗布装置]
 図8に示すように、本実施形態に係る離型剤の塗布装置2は、金型1の表面に、後述する離型剤21を塗布するための装置である。
 塗布装置2は、離型剤21を貯留するためのタンク20(貯留部)を備えている。
 そして、そのタンク20には、タンク20内に貯留された離型剤21を撹拌するための撹拌機22(撹拌手段)が設けられている。
 また、タンク20内には、タンク20内に貯留された離型剤21中にマイクロナノバブルを供給するためのマイクロナノバブル発生装置23(気泡発生手段)が設置されている。
 さらに、塗布装置2は、タンク20内に貯留された離型剤21を金型1に噴霧塗布するための離型剤スプレーユニット3(噴霧塗布手段)を備えている。
 [離型剤の塗布方法]
 図10に示すように、本実施形態に係る離型剤21の塗布方法は、以下の手順で行われる。
 まず、充填工程S1において、タンク20に離型剤原液210を充填する。
 そして、気泡発生工程S2において、マイクロナノバブル発生装置23により離型剤原液210中にマイクロナノバブルを発生させる。
 さらに、撹拌工程S3において、撹拌機22により離型剤原液210を撹拌し、離型剤原液210中に発生させたマイクロナノバブル213を均一に分散させて離型剤21を得る。なお、撹拌工程S3における離型剤原液210の撹拌は、上記気泡発生工程S2を行う前から行う構成としてもよい。
 次に、供給工程S4において、上記離型剤21を離型剤スプレーユニット3に供給する。
 そして、噴霧塗布工程S5において、離型剤スプレーユニット3により離型剤21を金型1に噴霧塗布する。噴霧塗布工程S5は、上述のプレス成形工程SIIIにおいて、金型1によるプレス成形後の型開き直後に、例えば荒型X、仕上げ型Y及びトリミング型Zに対して行われる。
 本実施形態に係る離型剤21の塗布方法は、図8に示す塗布装置2を用いて行われるが、図8に示す塗布装置2に限らず、同様の構成を有する他の装置を用いて行ってもよい。
 [タンク]
 タンク20は、本実施形態にかかる離型剤21を貯留するためのものである。タンク20には、充填工程S1で離型剤原液210が供給される。そして、気泡発生工程S2でマイクロナノバブル発生装置23により離型剤原液210中にマイクロナノバブルが供給されるとともに、撹拌工程S3で撹拌機22により撹拌されて、離型剤21が調製される。
 タンク20は、離型剤21が塗布される金型1の大きさ、特に離型剤21が塗布される部分の表面積に対して、十分な離型剤21の供給量を確保できる容量を有していればよい。具体的には例えば、タンク20の容量は、好ましくは20L以上5000L以下、より好ましくは200L以上4000L以下、特に好ましくは1500L以上2500L以下である。
 タンク20には、供給工程S4でタンク20から離型剤21を供給するための離型剤供給配管29が設けられている。タンク20からの離型剤21の供給量は、金型1の大きさ等によって適宜変更することができるが、具体的には例えば、好ましくは3L/分以上30L/分、好ましくは5L/分以上20L/分、特に好ましくは8L/分以上12L/分である。
 タンク20には、例えば離型剤21の貯留量が一定量を下回ったところで新たな離型剤原液210を供給してもよい。また、タンク20に離型剤原液210供給用の配管を設けて、離型剤21の供給量とほぼ同量の離型剤原液210が常に供給されるようにして、タンク20内の離型剤21の貯留量が一定となるようにしてもよい。
 [撹拌機]
 撹拌機22は、タンク20内に貯留された離型剤21を常時撹拌して、タンク20内に設置されたマイクロナノバブル発生装置23から供給されるマイクロナノバブルが離型剤21中に常に均一に分散されるようにするためのものである。撹拌機22は、特に限定されるものではなく、市販のいかなる撹拌機をタンク20に配置してもよい。
 [マイクロナノバブル発生装置]
 マイクロナノバブル発生装置23は、気泡発生工程S2で、タンク20内に貯留された離型剤原液210中にマイクロナノバブルを発生させるとともに、離型剤21中にマイクロナノバブルを引き続き供給するためのものである。マイクロナノバブル発生装置23は、市販のものを適宜用いることができるが、例えば、多孔性高分子フィルム等からなる不織布に加圧気体を供給し、フィルムの空孔を通じてマイクロナノバブルを発生させる不織布法等を用いたものを好適に用いることができる。なお、マイクロナノバブルを構成する気体としては、安全性向上及びコスト抑制の観点から、エアであることが好ましい。
 塗布装置2には、図8に示すように塗布装置2の各構成にエアを供給するエア配管24A,24B,24C,24D(以下、エア配管24と総称することがある)が設けられている。
 マイクロナノバブル発生装置23には、エア配管24A,24Dを通じてエア25A,25Dが供給される。エア配管24A上には、レギュレータ26が設けられており、エア25Aのエア圧を調節することができる。エア配管24上にはさらに分岐ユニット27が設けられており、複数のエア配管24Dに分岐される。エア配管24により供給されたエア25Aは、分岐ユニット27で分岐され、各マイクロナノバブル発生装置23に接続されたエア配管24Dを通じて、図8に示すようにエア25Dとして各マイクロナノバブル発生装置23に供給される。
 マイクロナノバブル発生装置23に供給されるエア圧(エア供給圧)は、離型剤21中に十分なマイクロナノバブルを供給する観点から、好ましくは0.03MPa以上0.3MPa以下、より好ましくは0.05MPa以上0.25MPa以下、特に好ましくは0.1MPa以上0.2MPa以下である。
 また、マイクロナノバブル発生装置23は、タンク20の容量、すなわちタンク20に充填された離型剤21の容量と、離型剤スプレーユニット3への離型剤21の供給量とのバランスから、離型剤21中に常にマイクロナノバブルが満たされるようにマイクロナノバブルを供給する能力が必要である。
 本実施形態において、マイクロナノバブル発生装置23は、図8に示すように、複数個設けられている。マイクロナノバブル発生装置23のマイクロナノバブル供給能力に応じて、マイクロナノバブル発生装置23の個数を増減することで、離型剤21へのマイクロナノバブルの供給量を調整することができる。なお、マイクロナノバブル発生装置23は、本実施形態のように複数個設ける構成としてもよいし、マイクロナノバブル供給能力の大きなマイクロナノバブル発生装置23を採用する場合は、1個だけ設ける構成としてもよい。
 なお、複数個のマイクロナノバブル発生装置23から離型剤21中に供給されるマイクロナノバブルの全供給量(マイクロナノバブルの供給量)は、離型剤21中に十分なマイクロナノバブルを供給する観点から、好ましくは1L/分以上100L/分以下、より好ましくは2L/分以上50L/分以下、特に好ましくは3L/分以上30L/分以下である。
 [離型剤スプレーユニット]
 離型剤スプレーユニット3は、噴霧塗布工程S5において、離型剤21を金型1に噴霧塗布するためのものである。離型剤スプレーユニット3は、タンク20から供給された離型剤21にエア25Cを混合させて離型剤21を霧化させる霧化部31を備えている。また、離型剤スプレーユニット3は、霧化部31に接続されるとともに金型1の上金型12と下金型13との間に配置され、上金型12及び下金型13の表面に霧化部31により霧化された離型剤21を噴射するスプレーヘッド32を備えている。
 霧化部31には、タンク20から離型剤21を供給するための離型剤供給配管29が、離型剤供給ポンプ28を介して接続されている。離型剤供給ポンプ28はエア駆動式ポンプであり、エア配管24Bが接続されてエア25Bが供給されるようになっている。タンク20から供給された離型剤21Aは、離型剤供給配管29を通じて霧化部31に供給される。
 供給工程S4における、離型剤供給ポンプ28による離型剤21の供給ポンプ圧(供給圧)は、上金型12及び下金型13に十分量の離型剤21を供給する観点から、好ましくは0.2MPa以上10MPa以下、より好ましくは0.3MPa以上5MPa以下、特に好ましくは0.4MPa以上4MPa以下である。なお、供給ポンプ圧は、離型剤21が塗布される金型1の種類、大きさ、構成等により適宜変更することができる。
 霧化部31には、図示はしないが、離型剤供給配管29を通じて供給された離型剤21の注入口と、注入口から導入される離型剤21にエア配管24Cを通じて供給されたエア25Cを混合させるミキシング部とが設けられている。離型剤21は、ミキシング部においてエア25Cと混合されて霧化される。
 供給工程S4における、離型剤供給配管29を通じて霧化部31に供給されるエア25Cの霧化エア圧は、上金型12及び下金型13に均一に離型剤21を噴霧塗布する観点から、好ましくは0.10MPa以上0.80MPa以下、より好ましくは0.20MPa以上0.70MPa以下、特に好ましくは0.30MPa以上0.50MPa以下である。
 スプレーヘッド32は、金型1によるプレス成形後の型開き直後に上金型12及び下金型13の間に挿入されて、荒型X、仕上げ型Y及びトリミング型Zの表面に霧化された離型剤21を塗布するように構成されている。
 スプレーヘッド32は、上金型12及び下金型13の全表面に均等に離型剤21を塗布する観点から、図示しない複数の噴射口を有しており、これら複数の噴射口から離型剤21が霧状の粒子状で噴射される。なお、スプレーヘッド32の構成は、上記構成に限定されるものではなく、例えば噴射口毎に噴射量、噴射速度等を変更可能に構成してもよい。
 離型剤スプレーユニット3から噴霧塗布される離型剤21の霧状粒子のザウター平均粒径は、金型1に均一に離型剤21を噴霧塗布する観点から、好ましくは10μm以上30μm以下、より好ましくは12μm以上28μm以下、特に好ましくは15μm以上25μm以下である。
 <離型剤>
 図9は、スプレーヘッド32から噴射された離型剤21の液滴21Bを拡大して模式的に示している。離型剤21の液滴21Bは、図9に示すように、離型剤原液210と離型剤原液210中に分散したマイクロナノバブル213とにより構成されている。
 -離型剤原液-
 離型剤原液210としては、熱間鍛造金型に用いられる市販の離型剤や、この市販の離型剤を水で希釈したものを用いることができる。具体的には例えば、図9に示すように、溶媒としての水211に黒鉛粒子212が分散した水溶性黒鉛系離型剤や、黒鉛を含まない水溶性白色系離型剤を用いることができる。水溶性白色系離型剤は、具体的には例えばカルボン酸塩をベースにポリアクリル酸ナトリウム(PA-Na)やカルボキシメチルセルロースナトリウム(CMC-Na)等の水溶性高分子、無機塩等を配合し、必要によっては固体潤滑剤を添加して作られた非黒鉛系の水溶性離型剤である。
 -マイクロナノバブル-
 ここに、本実施形態に係る離型剤21は、マイクロナノバブル213を含有することを特徴とする。
 本明細書において、「マイクロナノバブル」とは、微細気泡であり、その微細気泡を真球とみなしたときの直径が200μm以下の微細気泡をいう。なお、本明細書において、この微細気泡を真球とみなしたときのその真球の直径を「マイクロナノバブルの直径」という。また、本明細書において、上記微細気泡を真球とみなしたときのその真球の体積を「マイクロナノバブルの体積」という。そして、「離型剤中のマイクロナノバブルの含有量」とは、離型剤単位体積当たりに含有されるマイクロナノバブルの体積を算出し、体積%で表したものをいう。
 マイクロナノバブルは、上述のごとく、気泡発生工程S2において、マイクロナノバブル発生装置23により離型剤21中に供給される。
 なお、マイクロナノバブルの直径は、離型剤21の冷却能力を高める観点から、好ましくは200μm以下、より好ましくは150μm以下、特に好ましくは50μm以下であり、また、好ましくは0.1μm以上、より好ましくは0.5μm以上、特に好ましくは0.6μm以上である。
 また、離型剤21中に含有されるマイクロナノバブルの含有量(体積%)は、離型剤21の冷却能力を高める観点から、好ましくは10体積%以下、より好ましくは8体積%以下、特に好ましくは5体積%以下であり、好ましくは0.1体積%以上、より好ましくは0.15体積%以上、特に好ましくは0.2体積%以上である。
 本実施形態に係る離型剤21は、マイクロナノバブルを含有することにより、表面張力が低下し、濡れ性が向上する。ゆえに、金型との接触面積が増加する。また、マイクロナノバブルは、気泡が小さいために気泡に働く浮力が減少し、水中に留まる性質があるため、離型剤21の液滴と金型表面との接触面からの溶媒成分の蒸発に加え、離型剤21の液滴中のマイクロナノバブルを起点として溶媒成分の沸騰が進む。そうして、離型剤21の溶媒成分の気化が促進され、離型剤による金型の冷却能力が向上する。
 <離型剤層>
 塗布装置2により高温の金型1に噴霧塗布された離型剤21は、例えば水等の溶媒成分が気化し、離型剤層が形成される。離型剤層は、金型1の潤滑性・離型性を高める役割を有している。
 本実施形態に係る離型剤21では、離型剤21中にマイクロナノバブルを含有することにより、離型剤21の気化量が増加し、冷却能力が増加するから、離型剤層の膜厚のばらつきが低減され、より均一な離型剤層が得ることができる。
 離型剤層の平均膜厚は、金型1の潤滑性・離型性を高める観点から、好ましくは2.3μm以上15μm以下、より好ましくは3.7μm以上12μm以下、特に好ましくは5.0μm以上10.0μm以下である。
 以下、具体的に実施した実施例について説明する。
 <離型剤の霧状粒子の粒径測定>
 離型剤スプレーユニット3から噴霧塗布される離型剤21の霧状粒子の粒径について、位相ドップラー式レーザー粒子分析計を用いて測定した。具体的には、スプレーヘッド32から200mm、すなわちスプレーヘッド32から離型剤21が噴霧塗布される金型表面までの距離に相当する距離だけ離れた位置における離型剤21の霧状粒子の粒径を測定し、ザウター平均粒径を算出した。
 表1に、離型剤21の霧状粒子のザウター平均粒径の結果を示す。なお、離型剤21の供給ポンプ圧は1.0MPa、エア25Cの霧化エア圧は0.45MPaである。
Figure JPOXMLDOC01-appb-T000001
 後述する離型剤の冷却性能評価実験2において、離型剤21を表1に示す粒径を有する霧状粒子として金型1に噴霧塗布した。後述するように、離型剤21は良好な塗布状態で金型表面に塗布され、十分な厚さを有するとともに均一な離型剤層が形成されることが判る。
 <離型剤の冷却性能評価実験1>
 (実施例1)
 -マイクロナノバブル含有離型剤の調製-
 市販の水溶性黒鉛系離型剤(Henkel社製、Deltaforge F850)に、ナノバブル発生装置(株式会社ナック製、Foamest201)を用いて、エア圧0.15MPaでエアを送り込み、1時間バブリングして、マイクロナノバブルを含有する離型剤21を調製した。
 -実験装置-
 図11に示すように、スタンド51にピペット52を取り付けた。そして、セラミック台53に取り付けた鉄板54を、ピペット52の先端から鉄板54までの距離hが20mmとなるように、ピペット52の下に配置した。鉄板54裏側にはピペット52の真下近傍に熱電対55を取り付けた。
 -実験A-
 鉄板54を260℃に加熱した状態で、ピペット52から0.3mLの離型剤21の液滴を滴下したときの、鉄板54の温度変化を測定した。
 -実験B-
 また、離型剤21滴下前後の液滴の様子を高速カメラで撮影し、滴下直後、すなわち液滴が鉄板54に到達してから0.5秒後の液滴の幅W1を測定した。
 -実験C-
 離型剤21を滴下後約50秒後には、離型剤21の水分が気化し、図12に示すように、離型剤層21Dが形成された。鉄板54を十分冷却後、この離型剤層21Dのサイズ及び膜厚について測定を行った。具体的には、図12に示すように、離型剤層21Dの幅W2及び離型剤層21Dの各点M1~M4における膜厚を測定した。なお、M1は、離型剤層21Dを円形とみなしたときの中央点、M2及びM3は、M1を通る離型剤層21Dの直径上における外周円から直径の約1/6内側の点、M4は同様に直径の約1/10内側の点である。膜厚は、市販の膜厚測定器(株式会社ケツト科学研究所社製、電磁膜厚計LE373)を用いて測定した。
 (実施例2)
 鉄板54を200℃に加熱し、実験Aのみを行った以外は実施例1と同様に実験を行った。
 (比較例1,2)
 比較例1,2は、ナノバブル発生装置によるバブリングを行わず、市販の水溶性黒鉛系離型剤をそのまま用いた以外は、それぞれ実施例1,2と同様に実験を行った。
 図13、図14、表2及び表3に、実施例1,2及び比較例1,2の実験Aの結果を示す。また、表4に、実施例1及び比較例1の実験B,Cの結果を示す。なお、図13及び図14の矢印で示す位置は、離型剤の液滴を滴下した時間であることを示し、0秒とする。
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
 -実験Aの結果について-
 図13及び表2に示すように、鉄板温度260℃の実施例1では、時間t1(4.9秒)後には106℃冷却されており、106℃を時間t1で割ると時間t1までの単位時間当たりの冷却温度、すなわち冷却速度は22℃/秒となる。同様に、時間t2(9.6秒)後には、119℃冷却されており、冷却速度は12℃/秒となる。
 一方、鉄板温度264℃の比較例1では、時間t1,t2後には各々79℃,93℃冷却されており、冷却速度は各々16℃/秒、10℃/秒となる。
 このように、実施例1のマイクロナノバブルを含有する離型剤21では、比較例1の従来の離型剤に比べて、時間t1,t2のいずれにおいても鉄板54の冷却速度が向上し、時間t1では、冷却能力が約37%向上していることが判る。
 また、図14及び表3に示すように、鉄板温度200℃の実施例2及び鉄板温度201℃の比較例2では、時間t3(4.4秒)後には、各々64℃及び43℃冷却されており、冷却速度は各々15℃/秒、10℃/秒となる。
 このように、実施例2のマイクロナノバブルを含有する離型剤21では、比較例2の従来の離型剤に比べて、時間t3では冷却能力が約50%向上していることが判る。
 以上の結果から、本実施形態に係る離型剤21は、マイクロナノバブルを含有することで、特に滴下後約5秒間における冷却能力が特に向上していることが判る。
 -実験B,Cの結果について-
 表4から判るように、液滴の幅W1及び離型剤層21Dの幅W2は、両者とも比較例1に比べて実施例1の方が広い。この結果から、マイクロナノバブルを含有する離型剤21では、従来の離型剤に比べて濡れ性が向上していることが判る。
 また、離型剤層21Dの膜厚について、最大膜厚差は、比較例1では7.4μmであるのに対し、実施例1では0.7μmとなり、膜厚のばらつきが大幅に低減されていることが判る。
 -考察-
 図21は、金属板201上に例えば水滴101が接触している状態を模式的に示している。金属板201から水滴101に伝わる単位時間当たりの熱量Qは下記式(1)により表される。
 Q=λAΔT/L ・・・(1)
但し、λ、A、ΔT及びLは、それぞれ水滴101の熱伝導率、金属板201と水滴101との接触面積及び温度差、並びに伝熱距離である。
 式(1)から判るように、水滴101による金属板201の冷却能力は、金属板201に接触する水滴101の接触面積Aが大きい程、又は水滴101の高さである伝熱距離Lが小さい程向上すると考えられる。
 一方、図22は、高温の金属板201上に水滴101が滴下されたときに生じるライデンフロスト現象を模式的に示している。金属板201の温度が非常に高い場合には、水滴101と金属板201との接触部分から急激な水滴の蒸発が起こり蒸気101Bの上昇気流が生じる。そうして、水滴部分101Aの一部又は全部が蒸気101Bの上昇気流により金属板201上から持ち上げられたような状態となり、水滴部分101Aと金属板201との接触面積が減少する。そうすると、金属板201から水滴部分101Aへの熱伝導が阻害され、水滴部分101Aによる金属板201の冷却能力が低下する。
 実験A~Cの結果から判るように、本実施形態に係る離型剤21の液滴は、マイクロナノバブルを含有することにより、表面張力が低下し、濡れ性が向上する。ゆえに、金型との接触面積が増加する。そうして、離型剤による金型の冷却能力が向上すると考えられる。
 また、マイクロナノバブルは、気泡が小さいために気泡に働く浮力が減少し、水中に留まる性質がある。ゆえに、離型剤21の液滴が高温の金型表面に接触したときに、離型剤21の液滴中に存在するマイクロナノバブル213は、例えば沸騰石と同様に、水211の沸騰の起点となると考えられる。そうして、液滴と金型との接触面からの水211の蒸発に加えて、マイクロナノバブル213を起点として水211の沸騰が進むことで、マイクロナノバブルを含有しない従来の離型剤に比べて水211の気化量が増加し、金型表面の冷却能力が向上すると考えられる。
 そして、離型剤21の気化量が増加し、冷却能力が増加することにより、離型剤層21Dの膜厚のばらつきが低減され、より均一な離型剤層が得られることが判る。
 -離型剤の冷却性能評価実験2-
 (実施例3)
 市販の水溶性黒鉛系離型剤(Henkel社製、Deltaforge F850)に水を加えて混合し、比重計で1.0075の比重としたものをタンク20に充填し、マイクロナノバブル発生装置(株式会社ナック製、Foamest201)5本を設置した塗布装置2を用いて離型剤21を調製した。なお、5本のマイクロナノバブル発生装置にはエア圧0.15MPaでエアを送り込んだ。また、マイクロナノバブル発生装置から離型剤21に供給されるマイクロナノバブルの全供給量は3.5L/分であった。
 図7に示す荒下型131について、鋼材Kの荒成形を行った直後の金型表面温度T1[℃]と、塗布装置2による離型剤21の噴霧塗布直後の金型表面温度T2[℃]とを上述の放射温度計により測定した。なお、離型剤21の塗布時間をt[秒]として、下記式(2)で表されるτ[℃/秒]を離型剤21の単位塗布時間当たりの金型冷却温度として算出し、冷却性能を評価した。
 τ=(T1-T2)/t ・・・(2)
 なお、離型剤21の噴霧塗布は、前述の離型剤の霧状粒子の粒径測定に示す条件、すなわち表1に示す霧状粒子の粒径が得られる条件で行っており、離型剤21の供給ポンプ圧は1.0MPa、エア25Cの霧化エア圧は0.45MPaである。
 (比較例3)
 比較例3は、マイクロナノバブル発生装置によるバブリングを行わず、市販の水溶性黒鉛系離型剤をそのまま用いた以外は、実施例3と同様に実験を行った。
 比較例3及び実施例3の結果を、各々図15及び図16に示す。なお、荒成形及び荒成形に伴う離型剤塗布は数時間に亘る実験時間の間に複数回行われ、測定は1回の荒成形及び離型剤塗布毎に行われた。図15及び図16は、各測定毎の塗布時間t及び単位塗布時間当たりの金型冷却温度τ[℃/秒]を数時間の実験時間に亘ってプロットしたものである。
 図15に示すように、比較例3では、塗布時間tはおよそ2.2秒である。実験時間1時間から6時間までの単位時間当たりの金型冷却温度τの平均値は24.7℃/秒であった。また、塗布時間が2.2秒であっても、単位時間当たりの金型冷却温度τは0℃/秒を下回るときがあった。単位時間当たりの金型冷却温度τは0℃/秒を下回るときは、離型剤塗布を行っても荒下型131が全く冷却されていないときであることを示している。
 一方、図16に示すように、実施例3では、塗布時間tはおよそ2.1秒である。実験時間1時間から4時間、及び5時間から7時間までの単位時間当たりの金型冷却温度τの平均値は63.2℃/秒であった。また、実験時間1時間から4時間、及び5時間から7時間までの荒成形及び離型剤塗布が行われている間において、単位時間当たりの金型冷却温度τが比較例3のように0℃/秒を下回るときが生じなくなった。
 以上の結果から、本実施形態に係るマイクロナノバブルを含有する離型剤21では、従来の離型剤に比べて、単位時間当たりの金型冷却温度τの平均値において、冷却能力が約2.6倍に向上していることが判る。
 -離型剤層の膜厚測定-
 (実施例4)
 実施例3において離型剤が塗布された荒下型131の表面に形成された離型剤層の膜厚を市販の膜厚測定器(株式会社ケツト科学研究所社製、電磁膜厚計LE373)により測定した。なお、膜厚測定は、図7に示す荒下型131の各部位X1~X8においてそれぞれ行った。
 (比較例4)
 比較例3において離型剤が塗布された荒下型131の表面に形成された離型剤層の膜厚を実施例4と同様に測定した。
 表5に、実施例4及び比較例4の結果を示す。
Figure JPOXMLDOC01-appb-T000005
 表5に示すように、比較例4では、X1~X8の平均膜厚は3.1μmであるのに比較して、荒下型131の後側、特にX7及びX8において膜厚が小さくなっているのが判る。
 これまで、図1及び図2に示すクランクシャフトCにおいて、リア側の例えばカウンターウエイトCW8で、鋼材Kの充填不足による欠肉不良が生じる傾向があった。すなわち、荒上型121及び荒下型131により形成される、カウンターウエイトCW8の幅寸法に相当する彫寸法は120mmであるのに対し、鍛造後のクランクシャフトCにおけるカウンターウエイトCW8の幅寸法は約117mm程度となる欠肉不良が生じていた。
 これは、表5の比較例4の結果から判るように、図6及び図7に示す荒上型121及び荒下型131の前側よりも後側で離型剤層の膜厚が薄くなるためと考えられる。
 ここで、荒上型121及び荒下型131の前側よりも後側で離型剤層の膜厚が薄くなるのは、金型1の表面温度が関係していると考えられる。
 具体的には、図6及び図7に示す荒上型121及び荒下型131による荒成形直後の金型表面温度は、約200℃~約400℃になることが判っている。さらに、荒上型121及び荒下型131の前側では約200℃~約350℃であるのに対し、後側では約300℃~約400℃となり、前側よりも後側の方が金型の表面温度が高くなるという知見が得られている。
 荒上型121及び荒下型131の部位によって金型表面の温度に差が生じると、金型表面温度が高い後側では、ライデンフロスト現象が起こりやすく、離型剤による金型表面の冷却能力が低下すると考えられる。そうすると、金型の前側よりも後側で、離型剤層の膜厚が薄くなり、延いては金型表面の潤滑性の低下を招く。そうして、金型表面の摩擦抵抗が大きくなるために、図1及び図2に示すクランクシャフトCのリア側、例えばカウンターウエイトCW8等で鋼材Kの充填不足が生じると考えられる。
 表5の実施例4に示すように、マイクロナノバブルを含有する本実施形態に係る離型剤21を用いた場合には、X1~X8における平均膜厚は6.8μmに増加するとともに、X7及びX8の膜厚もそれぞれ6.5μm及び10.3μmと増加していることが判る。
 実際に、クランクシャフトCの鍛造を行うと、実施例4の離型剤を用いた場合には、カウンターウエイトCW8について、荒上型121及び荒下型131の彫寸法である120mmまで鋼材Kが充填されるようになり、カウンターウエイトCW8の欠肉不良はほぼ発生しなくなった。
 実施例4では、離型剤21にマイクロナノバブルが含まれることにより、離型剤による金型表面の冷却能力が向上し、荒上型121及び荒下型131の後側においても金型表面の冷却が促進されると考えられる。そうして、離型剤層の膜厚が十分厚くなり、カウンターウエイトCW8における欠肉不良が低減されたと考えられる。
 <マイクロナノバブル水に含有されるマイクロナノバブル含有量>
 離型剤中に含まれるマイクロナノバブルの含有量を評価するため、マイクロナノバブルを含有する水、すなわちマイクロナノバブル水に含有される単位体積当たりの気泡体積を測定した。具体的には、マイクロナノバブルは負電荷を帯びており水中で対流するため、マイクロナノバブル水をゼラチンで固めてマイクロナノバブル水の試料片を作製し、倒立顕微鏡にてその試料片に含まれるマイクロナノバブルのサイズを測定した。実験手順は以下のとおりである。
 (実験例1)
 まず、水にマイクロナノバブル発生装置を浸漬して1時間バブリングを行い、マイクロナノバブル水を調製した。このマイクロナノバブル水50gに対して、別途約80℃のお湯15gに市販のゼラチン(森永乳業社製、森永クックゼラチン)5gを溶かしたものを加えて撹拌し、約10℃の冷蔵庫内で2時間冷却した。
 このように調製したマイクロナノバブル水ゼリーから、15mm×15mm×10mm程度の試料片40を採取し、図17に示すように、シャーレ42上に載せた。試料片40をシャーレ42に密着させるとともに、光の散乱を防止して観察を容易にするため、試料片40の外周に密着用水滴41を垂らし、光学顕微鏡(オリンパス社製、GX41)にて試料片40中に含まれるマイクロナノバブルのサイズを測定した。なお、図17中符号44は光学顕微鏡GX41(倒立顕微鏡)の対物レンズを示している。本実験では、光学顕微鏡GX41により直径2μm以上1000μm未満のマイクロバブルを観察した。
 図18に示すように、図17の対物レンズ44による観察方向44Aに対し、符号40Aで示される1mm×1mmの面を観察面とする。図19に、観察面40Aの一例を示す。
 まず、観察面40Aに含まれる1個のマイクロナノバブル213の面積を測定した。
 そして、その1個のマイクロナノバブル213の面積を円の面積とみなして半径を算出し、その半径を有する球の体積を算出して、そのマイクロナノバブル213の体積MA1とした。
 同様に、観察面40Aに含まれる他のマイクロナノバブル213についても、体積MA1を算出した。
 そして、観察面40Aに含まれる全てのマイクロナノバブル213の体積MA1を合計して、その観察面40Aに含まれるマイクロナノバブル213の含有量MA2とした。
 次に、観察面40Aを基準として観察方向44Aの向きに±0.5mmの立方体40B内で複数の観察面について同様の観察を行い、各観察面に含まれるマイクロナノバブルの含有量MA2を算出した。
 そして、各観察面に含まれるマイクロナノバブルの含有量MA2の平均値を算出し、その平均値を立方体40B内に含まれるマイクロナノバブル213の総含有量MA3とした。
 そして、マイクロナノバブル水に含まれる直径2μm以上1000μm未満のマイクロナノバブルの含有量MA4を体積%で算出した。
 表6~表8に、実験例1のマイクロナノバブルの算出結果を示す。
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
 (実験例2)
 実験例1のマイクロナノバブル水ゼリーの試料片40について、光学顕微鏡(オリンパス社製、DSX510)を用いて、直径2μm未満のマイクロナノバブルを観察した。
 本実験において、20μm×20μmの1つの観察面に含まれる1個のマイクロナノバブル213の面積を測定した。図20に、観察面の一例を示す。
 そして、その1個のマイクロナノバブル213の面積を円の面積とみなして半径を算出し、その半径を有する球の体積を算出して、そのマイクロナノバブル213の体積MB1とした。
 同様に、観察面に含まれる他のマイクロナノバブル213についても、体積MB1を算出した。
 次に、観察面に含まれる全てのマイクロナノバブル213の体積を合計して、その観察面を含む20μm×20μm×20μm(=8000μm)の立方体中に含有されるマイクロナノバブル213の総含有量MB3とした。
 そして、マイクロナノバブル水に含まれる直径2μm未満のマイクロナノバブルの含有量MB4を体積%で算出した。
 表9に、実験例2のマイクロナノバブルの算出結果を示す。
Figure JPOXMLDOC01-appb-T000009
 表8及び表9の結果から、マイクロナノバブル水に含まれるマイクロナノバブルの含有量は、MA4及びMB4の合計として、0.27体積%であることが判る。
 本開示は、熱間鍛造の分野において極めて有用である。
1 金型(熱間鍛造金型)
12 上金型
13 下金型
2 塗布装置(熱間鍛造金型用離型剤の塗布装置)
20 タンク(貯留部)
21 離型剤(熱間鍛造金型用離型剤)
22 撹拌機(撹拌手段)
23 マイクロナノバブル発生装置(気泡発生手段)
210 離型剤原液   
213 マイクロナノバブル  
3 離型剤スプレーユニット(噴霧塗布手段)
S1 充填工程       
S2 気泡発生工程   
S3 撹拌工程       
S4 供給工程       
S5 噴霧塗布工程   
      

Claims (8)

  1.  マイクロナノバブルを含有することを特徴とする熱間鍛造金型用離型剤。
  2.  請求項1において、
     前記マイクロナノバブルの直径は0.1μm以上200μm以下であることを特徴とする熱間鍛造金型用離型剤。
  3.  請求項2において、
     前記マイクロナノバブルの含有量は0.1体積%以上10体積%以下であることを特徴とする熱間鍛造金型用離型剤。
  4.  請求項1~請求項3のいずれか1項に記載の熱間鍛造金型用離型剤を熱間鍛造金型に噴霧塗布することを特徴とする熱間鍛造金型用離型剤の塗布方法。
  5.  請求項4において、
     前記熱間鍛造金型用離型剤は、ザウター平均粒径10μm以上30μm以下の粒子状で前記熱間鍛造金型に噴霧塗布されることを特徴とする熱間鍛造金型用離型剤の塗布方法。
  6.  請求項5において、
     前記熱間鍛造金型に塗布された前記熱間鍛造金型用離型剤により形成された離型剤層の平均膜厚は、2.3μm以上15μm以下であることを特徴とする熱間鍛造金型用離型剤の塗布方法。
  7.  請求項6において、
     気泡発生手段と撹拌手段とを備えた貯留部に離型剤原液を充填する充填工程と、
     前記気泡発生手段により前記離型剤原液中に前記マイクロナノバブルを発生させる気泡発生工程と、
     前記撹拌手段により前記離型剤原液を撹拌して該離型剤原液中に発生させた前記マイクロナノバブルを均一に分散させて前記熱間鍛造金型用離型剤を得る撹拌工程と、
     前記熱間鍛造金型用離型剤を噴霧塗布手段に供給する供給工程と、
     前記噴霧塗布手段により前記熱間鍛造金型用離型剤を前記熱間鍛造金型に噴霧塗布する噴霧塗布工程と
    を備え、
     前記気泡発生工程で、
     前記気泡発生手段に対してエア供給圧は0.03MPa以上0.3MPa以下でエアを供給し、
     前記気泡発生手段による前記マイクロナノバブルの供給量は1L/分以上100L/分以下であり、
     前記供給工程で、
     前記熱間鍛造金型用離型剤の供給圧は0.5MPa以上2.0MPa以下であり、
     前記噴霧塗布手段に供給される霧化エア圧は0.20MPa以上0.80MPa以下である
    ことを特徴とする熱間鍛造金型用離型剤の塗布方法。
  8.  熱間鍛造金型の表面に請求項1~請求項3のいずれか1項に記載の熱間鍛造金型用離型剤を塗布するための熱間鍛造金型用離型剤の塗布装置であって、
     前記熱間鍛造金型用離型剤を貯留するための貯留部と、
     前記貯留部に設けられ、該貯留部内に貯留された前記熱間鍛造金型用離型剤を撹拌するための撹拌手段と、
     前記貯留部内に貯留された前記熱間鍛造金型用離型剤中に前記マイクロナノバブルを供給するための気泡発生手段と、
     前記貯留部内に貯留された前記熱間鍛造金型用離型剤を前記熱間鍛造金型に噴霧塗布するための噴霧塗布手段とを備えた
    ことを特徴とする熱間鍛造金型用離型剤の塗布装置。
PCT/JP2016/076938 2016-09-13 2016-09-13 熱間鍛造金型用離型剤、その塗布方法及び塗布装置 WO2018051400A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201680084042.5A CN108883460B (zh) 2016-09-13 2016-09-13 热锻模用脱模剂、其涂布方法及涂布装置
PCT/JP2016/076938 WO2018051400A1 (ja) 2016-09-13 2016-09-13 熱間鍛造金型用離型剤、その塗布方法及び塗布装置
JP2018538980A JP6696577B2 (ja) 2016-09-13 2016-09-13 熱間鍛造金型用離型剤、その塗布方法及び塗布装置
US16/088,786 US11242496B2 (en) 2016-09-13 2016-09-13 Release agent for hot-forging die, application method for same, and application device
EP16916185.8A EP3424610B1 (en) 2016-09-13 2016-09-13 Release agent for hot-forging die, application method for same, and application device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/076938 WO2018051400A1 (ja) 2016-09-13 2016-09-13 熱間鍛造金型用離型剤、その塗布方法及び塗布装置

Publications (1)

Publication Number Publication Date
WO2018051400A1 true WO2018051400A1 (ja) 2018-03-22

Family

ID=61618699

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/076938 WO2018051400A1 (ja) 2016-09-13 2016-09-13 熱間鍛造金型用離型剤、その塗布方法及び塗布装置

Country Status (5)

Country Link
US (1) US11242496B2 (ja)
EP (1) EP3424610B1 (ja)
JP (1) JP6696577B2 (ja)
CN (1) CN108883460B (ja)
WO (1) WO2018051400A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021088622A (ja) * 2019-12-02 2021-06-10 株式会社青木科学研究所 金型用中空ガラス含有離型剤、これを用いた塗布方法、及び成形方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63286238A (ja) * 1987-05-20 1988-11-22 Ootake Gaishi Kk 断熱,保温性塗型材
JP2007268614A (ja) * 2006-03-07 2007-10-18 Nissan Motor Co Ltd 離型剤塗布方法および離型剤塗布装置
JP2008082547A (ja) * 2006-08-28 2008-04-10 Ntn Corp 転がり軸受の潤滑方法
WO2014188589A1 (ja) * 2013-05-24 2014-11-27 有限会社エスアコード ポリウレタンフォーム成形用油中水型エマルション離型剤

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN86103173A (zh) * 1986-04-29 1987-03-18 沈阳市电镀协会 一种锻模脱模剂的制备方法
US5290603A (en) * 1992-12-18 1994-03-01 Union Carbide Chemicals & Plastics Technology Corporation Method for spraying polymeric compositions with reduced solvent emission and enhanced atomization
JP2013173183A (ja) * 2012-01-23 2013-09-05 Yushiro Chemical Industry Co Ltd 離型剤組成物
CN103419307A (zh) * 2012-05-24 2013-12-04 上海立汰新模具材料有限公司 聚氨酯蜡性脱模剂及其用途

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63286238A (ja) * 1987-05-20 1988-11-22 Ootake Gaishi Kk 断熱,保温性塗型材
JP2007268614A (ja) * 2006-03-07 2007-10-18 Nissan Motor Co Ltd 離型剤塗布方法および離型剤塗布装置
JP2008082547A (ja) * 2006-08-28 2008-04-10 Ntn Corp 転がり軸受の潤滑方法
WO2014188589A1 (ja) * 2013-05-24 2014-11-27 有限会社エスアコード ポリウレタンフォーム成形用油中水型エマルション離型剤

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3424610A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021088622A (ja) * 2019-12-02 2021-06-10 株式会社青木科学研究所 金型用中空ガラス含有離型剤、これを用いた塗布方法、及び成形方法

Also Published As

Publication number Publication date
CN108883460B (zh) 2020-10-02
CN108883460A (zh) 2018-11-23
EP3424610A1 (en) 2019-01-09
JP6696577B2 (ja) 2020-05-20
US11242496B2 (en) 2022-02-08
EP3424610B1 (en) 2021-09-01
EP3424610A4 (en) 2019-01-09
JPWO2018051400A1 (ja) 2019-01-10
US20200325412A1 (en) 2020-10-15

Similar Documents

Publication Publication Date Title
CN102149800B (zh) 模具用含粉体油性润滑剂、使用其的静电涂布方法及静电涂布装置
Gulyaev et al. Hollow droplets impacting onto a solid surface
CN107876692B (zh) 一种高性能水性金属压铸脱模剂
Sharma et al. Measurement of machining forces and surface roughness in turning of AISI 304 steel using alumina-MWCNT hybrid nanoparticles enriched cutting fluid
CN104125868B (zh) 脱模剂组合物
Elansezhian et al. The influence of SDS and CTAB surfactants on the surface morphology and surface topography of electroless Ni–P deposits
Sudagar et al. The performance of surfactant on the surface characteristics of electroless nickel coating on magnesium alloy
Orlova et al. Spreading of a distilled water droplet over polished and laser-treated aluminum surfaces
CN101595333B (zh) 用于内燃机活塞销及其制造方法
WO2018051400A1 (ja) 熱間鍛造金型用離型剤、その塗布方法及び塗布装置
Espallargas et al. The wear and lubrication performance of liquid–solid self-lubricated coatings
CN109014023B (zh) 一种水基脱模剂及其制备方法和使用方法
CN108339930B (zh) 一种应用于铝合金压铸件的水基脱模剂及其制备方法
JP2009520926A (ja) 内燃機関のためのコンロッドおよびこれを製造する方法
CN108838318A (zh) 一种耐高温铸造用脱模剂及其制备方法和使用方法
JP2000033457A (ja) 潤滑離型剤
CN101541450B (zh) 铸造用油性脱模剂、涂布方法及静电涂布装置
CN109642304A (zh) 高温金属的冷却方法及熔融镀锌钢带的制造方法
Mohammed et al. Development of a method for assessing erosive wear damage on dies used in aluminium casting
Sykes et al. Droplet splashing on curved substrates
Zhang et al. Controlling the morphology and slippage of the air–water interface on superhydrophobic surfaces
Inkley et al. Impact of controlled prewetting on part formation in binder jet additive manufacturing
EP1731481A1 (en) Method and apparatus for producing slush nitrogen
Tan Absorption of millimeter-and micrometer-sized droplets on nylon powder
JP5616947B2 (ja) アルミニウム合金鍛造製品の製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2018538980

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2016916185

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2016916185

Country of ref document: EP

Effective date: 20181004

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16916185

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE