WO2018050057A1 - 一种高压换流阀阀塔漏水检测装置 - Google Patents

一种高压换流阀阀塔漏水检测装置 Download PDF

Info

Publication number
WO2018050057A1
WO2018050057A1 PCT/CN2017/101481 CN2017101481W WO2018050057A1 WO 2018050057 A1 WO2018050057 A1 WO 2018050057A1 CN 2017101481 W CN2017101481 W CN 2017101481W WO 2018050057 A1 WO2018050057 A1 WO 2018050057A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical signal
light blocking
blocking mechanism
rotating shaft
converter valve
Prior art date
Application number
PCT/CN2017/101481
Other languages
English (en)
French (fr)
Inventor
郑力
张翔
宋戈
杨帆
高晟辅
方太勋
Original Assignee
南京南瑞继保电气有限公司
南京南瑞继保工程技术有限公司
常州博瑞电力自动化设备有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南京南瑞继保电气有限公司, 南京南瑞继保工程技术有限公司, 常州博瑞电力自动化设备有限公司 filed Critical 南京南瑞继保电气有限公司
Publication of WO2018050057A1 publication Critical patent/WO2018050057A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M3/00Investigating fluid-tightness of structures
    • G01M3/02Investigating fluid-tightness of structures by using fluid or vacuum
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F23/00Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm
    • G01F23/30Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by floats
    • G01F23/32Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by floats using rotatable arms or other pivotable transmission elements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M3/00Investigating fluid-tightness of structures
    • G01M3/02Investigating fluid-tightness of structures by using fluid or vacuum
    • G01M3/26Investigating fluid-tightness of structures by using fluid or vacuum by measuring rate of loss or gain of fluid, e.g. by pressure-responsive devices, by flow detectors
    • G01M3/28Investigating fluid-tightness of structures by using fluid or vacuum by measuring rate of loss or gain of fluid, e.g. by pressure-responsive devices, by flow detectors for pipes, cables or tubes; for pipe joints or seals; for valves ; for welds
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M3/00Investigating fluid-tightness of structures
    • G01M3/38Investigating fluid-tightness of structures by using light

Definitions

  • the invention relates to a water leakage detecting device, in particular to a water leakage detecting technology of a converter valve tower.
  • Leak detection is an important auxiliary device in the DC converter valve system to monitor the leakage of the converter valve cooling water circuit. According to the severity of the water leakage, different levels of signals such as alarms and trips are issued to the protection monitoring system.
  • the electromagnetic environment in the converter valve is more complicated, so the use of anti-jamming optical signals for leak detection is the preferred method.
  • the method of utilizing the refractive index of water may specifically adopt a linear light emitter and receiver placed horizontally or obliquely on both sides of the leak collector.
  • the optical path of the propagation makes it impossible for the optical signal to enter the receiver from the transmitter to form an action signal, such as Patent Publication No. CN204881995U. It is also possible to place the optical signal receiver and the transmitter on one side and form an optical path by means of plane mirror reflection.
  • the defect of this type of device is that the optical signal transceiver is located in the leak collector, the environmental condition of the optical channel is poor, and the long-term operation reliability is low; in order to ensure the smooth up and down movement of the float, the optical blocking signal connected vertically is transmitted and received in the optical signal.
  • the side needs to have a certain range of motion, resulting in a large distance of the optical signal detection channel, and also requires a large transmission power due to the light attenuation, resulting in low reliability of long-term operation of the device; due to the structural limitation of the light blocking mechanism connected to the vertical of the float, When there is no water leakage or little water leakage, the float is close to the bottom of the leak box.
  • the typical method of using gravity is the tipping method. After a large amount of water leaks into the bucket with the counterweight at the other end, the bucket flips and drops the water, so that the optical channel of the optical signal transceiver on the connected rotating shaft is blocked once.
  • the leakage frequency of the optical signal is used to calculate the water leakage condition, such as Patent Publication No. CN103033323A.
  • the defect of the device and method is that the sloshing of the dump bucket after returning to the original position after tilting is likely to cause misjudgment of the degree of water leakage; the rotating shaft side bears a large weight, and after long-term operation, the increasing rotation resistance will affect the water leakage detection situation. This puts strict requirements on the manufacturing process of the rotating shaft, resulting in high equipment cost and complicated structure.
  • the object of the present invention is to overcome the problems of poor optical environment conditions, large light attenuation rate, complicated device structure, and low long-term operation reliability of the optical channel existing in the prior art, and to provide a water path and an optical path separation, a simple structure, and a low cost.
  • High reliability converter valve tower leakage detection device is to provide a water path and an optical path separation, a simple structure, and a low cost.
  • a high pressure converter valve tower leakage detecting device the leak detecting device is located at the bottom of the converter valve tower, and includes a leakage box, a float, a connecting rod, a rotating shaft, a light blocking mechanism, and an optical signal detecting mechanism.
  • the utility model is characterized in that the float is placed inside the collecting case and connected to the rotating shaft through the connecting rod; the light blocking mechanism, the optical signal detecting mechanism and the rotating shaft are located in the same frame; the floating up and down floating is driven by the connecting rod and the rotating shaft The light blocking mechanism and the optical signal detecting mechanism rotate relative to each other.
  • the leakage box is provided with a bottom and a water outlet hole arranged in a layered manner, and the top of the leakage box is provided with a water overflow opening; the water outlet hole can be manually blocked or manually opened.
  • the float and the connecting rod are placed inside the collecting box, and the inner wall of the collecting box is provided with a connecting rod mounting bracket.
  • the optical signal detecting mechanism comprises a set of optical fiber interfaces and optical signal channels, and the number of optical signal detecting mechanisms can be arbitrarily configured.
  • the light blocking mechanism is internally provided with a light passage, and the size and number of the light passages are acceptable. Design.
  • the light blocking mechanism is disposed on the rotating shaft body or an axial extension line thereof, and the floating up and down of the float drives the light blocking mechanism to rotate synchronously with the rotating shaft; the light blocking mechanism
  • the number can be arbitrarily configured.
  • the optical signal detecting mechanism is disposed on two sides of the rotating shaft, and the optical fiber interface and the optical signal channel of the optical signal detecting mechanism correspond to the position of the light passing channel on the light blocking mechanism.
  • the light blocking mechanism is connected to one side of the rotating shaft, and the floating of the floating member causes the light blocking mechanism to rotate synchronously around the rotating shaft; the number of the light blocking mechanism can be arbitrarily Configuration.
  • the optical signal detecting mechanism is disposed on the same side of the light blocking mechanism, and the optical fiber interface and the optical signal channel of the optical signal detecting mechanism correspond to the position of the light passing channel on the light blocking mechanism.
  • a sealing cover covers the light blocking mechanism and the optical signal detecting mechanism.
  • the isolation of the optical signal detecting mechanism and the leakage box improves the reliability of the detection compared with the prior art; thanks to the unique structure, the distance of the optical signal channel is shortened, and the light is reduced. The consumption is reduced, and the life of the optical signal transceiver is increased; the float is connected to the rotating shaft through the connecting rod, and the floating body does not need to directly bear the gravity of the upper end blocking mechanism, thereby reducing the limitation on the material, the shape and the volume, and improving the service life of the mechanism.
  • FIG. 1 is a side view showing an example of a water leakage detecting device of a high pressure converter valve tower.
  • FIG. 2 is a top plan view showing an example of a water leakage detecting device of a high pressure converter valve tower.
  • Fig. 3 is a front elevational view showing an example of a water leakage detecting device of a high pressure converter valve.
  • FIG. 4 is a close-up view of an optical fiber detecting mechanism of an example of a water leakage detecting device for a high pressure converter valve.
  • Fig. 5 is a side view showing another example of a high pressure converter valve tower leakage detecting device.
  • Fig. 6 is a plan view showing an example of another high pressure converter valve tower leakage detecting device (without a sealing cover).
  • Fig. 7 is a front elevational view showing another example of a high pressure converter valve tower leakage detecting device.
  • Fig. 8 is a close-up view showing another example of the light blocking mechanism of the high pressure converter valve tower leakage detecting device.
  • reference numeral 1 is a drain box
  • reference numeral 2 is a bottom water outlet hole
  • reference numeral 3 is a side water outlet hole
  • reference numeral 4 is a side overflow water baffle
  • reference numeral 5 is a float
  • reference numeral 6 is a connecting rod
  • reference numeral 7 is a connecting rod mounting bracket.
  • 8 is a rotating shaft
  • 9 is a fiber optic interface
  • 10 is a frame with an optical signal detecting mechanism
  • 11 is a light blocking mechanism
  • 12 is a light path
  • 13 is another example with light.
  • reference numeral 14 is a light blocking mechanism of another example
  • reference numeral 15 is a light passing passage of another example
  • reference numeral 16 is a sealing cover of another example.
  • the embodiment is installed under the side of the manifold on the bottom shield of the converter valve tower, and the busbar is designed to be drained by a certain inclination to ensure that the leakage water of the converter valve can all flow into the leak box of the embodiment.
  • the top of the leakage box 1 has a mounting base, the bottom and the rear side are curved structures, the front side is a vertical structure, and the connecting rod mounting bracket 7 is provided, and the height of the overflow baffle 4 on the left and right sides is provided.
  • Below the mounting base an overflow outlet is formed, which is generally shaped as a curved container.
  • the water collecting hole 2 is opened at the bottom of the collecting case 1, and another water hole 3 is opened above the curved surface.
  • the float 5 and its connecting rod 6 are obliquely placed in the collecting case 1; the other end of the connecting rod 6 is rigidly connected to one end of the top rotating shaft 8 of the collecting case 1.
  • the other end of the rotating shaft 8 extends into the closed frame 10 with the optical signal detecting mechanism.
  • the body of the rotating shaft 8 is provided with a light blocking mechanism 11 which may be a part of the rotating shaft body structure or may be axially extended. Other institutions.
  • the light blocking mechanism 11 has two light-passing channels 12 of different sizes, corresponding to the optical signal channel formed by the two-way optical fiber interface 9, and the light-passing channel 12 is inclined. In terms of the rotation angle utilization rate has been improved.
  • the float 6 In the absence of the drain box 1, the float 6 is placed at the bottom, and the center line of the two light-passing channels 12 in the rotating shaft 8 and the two-way optical fiber interface 9 are in a straight line, and the light can be transmitted from the optical fiber interface 9.
  • the light passage 12 passes straight through.
  • the working process of the example is as follows.
  • the connecting rod 6 and the floating rod 5 are placed on the connecting rod mounting bracket 7 of the inner wall of the collecting and collecting box, and the floating rod 5 is not in contact with the bottom of the collecting case 1 to avoid sticking for a long time. bottom.
  • the angle of the rotating shaft causes the light of the optical signal detecting mechanism to form a passage through the light passing passage 12.
  • the water level of the leakage box 1 gradually rises, and the floating rod 5 is caused to float upward, and the rotating shaft 8 connected to the connecting rod 6 starts to generate a rotation angle.
  • the opening of the light blocking mechanism 11 is relatively smooth.
  • the small clear channel first blocks an optical signal channel and generates an alarm signal; if the leakage flow rate does not change, the water level of the trap box 1 continues to rise, reaching the water outlet hole 3 on the alarm water level; if the leakage flow rate is not greater than two water outlets
  • the sum of the water flow rates of the holes 2, 3, the water level will stay here; if the flow rate is greater than the sum of the water flow rates of the two water outlet holes 2, 3, the water level will continue to rise, and the rotation angle of the rotating shaft 8 continues to increase until the light blockage
  • the mechanism 11 blocks an optical signal path formed by a large open light passage to generate a trip signal. At this time, if the water level continues to rise, it flows out through the overflow baffle. Considering that the excessive water leakage flow may not be discharged from the overflow baffle 4 in time, the optical signal detecting mechanism that submerges the height of the rotating shaft 8 affects the safety of the device, and the rotating shaft 8 can be installed higher.
  • the water level of the leakage that is, the total amount of water leakage directly determines the angle of rotation of the rotating shaft 8, and the on/off of the alarm and trip light signals is related to the total amount of water leakage.
  • the third way is to block only the water outlet hole 2 at the bottom of the leak box 1 or only the water outlet hole 3 at the upper part of the alarm water level.
  • the detection logic is related to the total amount of the alarm and the leakage, and the trip and the leakage flow are related; The leakage flow is related, and the trip is related to the total amount of water leakage.
  • the light blocking mechanism 14 and the frame 13 with the optical signal detecting mechanism may be mounted on the other side of the link 6 and the rotating shaft 8, and the float 5 floats up and down.
  • the light blocking mechanism 14 is caused to rotate in opposite directions.
  • the light blocking mechanism 14 adopts a light-weight sheet having two light-passing passages 15 of different arc lengths, and the two-way optical fiber interfaces 9 respectively form two optical signal passages with the light-passing passages 15.
  • the entire light blocking mechanism and the optical signal detecting mechanism are housed in a sealing cover 16 to protect against water and dust.
  • the float 5 floats due to the leakage of the liquid, and the light blocking mechanism 14 rotates with the rotating shaft 8, and when rotated to a specific position, the light blocking mechanism 14 starts to block the optical signal passage of the short-pass optical passage, and an alarm signal is generated; when the float 5 continues When floating up to a higher specific position, the light blocking mechanism 14 begins to block the optical signal path of the long light passage, and a trip signal is generated, thereby detecting the water leakage condition.
  • the shape of the leak box is not limited to the shape of the above example.
  • the light blocking mechanism and its light passage are not limited to the shape of the above examples.
  • optical signal detecting mechanism and the light passing passage of the corresponding light blocking mechanism are not limited in number.
  • the float and the link may have a flexible connection for a transition.
  • the core part of the solution is that the float is connected to the rotating shaft through the connecting rod, and the light blocking mechanism, the optical signal detecting mechanism and the rotating shaft are located in the same frame; the floating up and down of the float drives the light blocking through the connecting rod and the rotating shaft.
  • the mechanism and the optical signal detecting mechanism are relatively moved, thereby generating light opening and interrupting signals, and any other embodiments obtained based on the structure without creative labor are within the scope of application of the present solution.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Examining Or Testing Airtightness (AREA)
  • Level Indicators Using A Float (AREA)

Abstract

一种高压换流阀阀塔漏水检测装置,该装置位于换流阀阀塔底部,包含集漏盒(1)、浮子(5)、连杆(6)、转动轴(8)、机架(10、13)、阻光机构(11、14)、光信号检测机构,浮子(5)置于集漏盒(1)内部,并通过连杆(6)与转动轴(8)连接;阻光机构(11、14)、光信号检测机构、转动轴(8)位于同一机架(10、13)内,浮子(5)上浮通过连杆(6)及转动轴(8)带动阻光机构(11、14)与光信号检测机构发生相对转动。与现有利用浮力的检漏技术相比,该装置的水路和光路相分离、结构简单、成本低、可靠性高。

Description

一种高压换流阀阀塔漏水检测装置 技术领域
本发明涉及一种漏水检测装置,尤其涉及换流阀阀塔的漏水检测技术。
背景技术
漏水检测是直流换流阀系统里重要的辅助设备,用于监视换流阀冷却水路的漏水情况。根据漏水的严重程度,向保护监控系统发出报警、跳闸等不同级别的信号。换流阀内电磁环境较为复杂,因此使用抗干扰的光信号进行漏水检测是首选的方式。
现有的漏水检测装置主要有三类,分别利用水的折射率、浮力或重力的特性。利用水的折射率的方法具体可以采用集漏器内两侧水平或倾斜放置的呈一条直线的光信号发射器和接收器,当漏水水位涨起来,由于水的折射率,将改变原有直线传播的光路,使光信号无法再从发射器进入接收器,形成动作信号,如专利公开号CN204881995U。也可以将光信号接收器和发射器放置在一侧,采用平面镜反射的方式形成光路。但是这种漏水检测装置,因光信号要穿越水路,造成光信号衰耗较大,对发射功率要求很高,设备寿命不长;同时光信号的通道穿越集漏器的器壁,复杂环境条件下的灰尘、水渍容易影响正常的光信号通道,造成误动。利用浮力的方法目前多是采用光信号接收器和发射器放置于集漏器的浮子上方,浮子上浮过程中,浮子垂直所连的阻光机构阻挡光信号的通道,如专利公开号CN102519689A。这类装置的缺陷是,光信号收发器位于集漏器内,光通道的环境条件差,长期运行可靠率低;为保证浮子能顺利的上下运动,垂直所连的阻光机构在光信号收发侧需要具有一定的活动范围,导致光信号检测通道的距离较大,同样因光衰耗需较大的发射功率,造成设备长期运行可靠性低;由于浮子垂直所连阻光机构的结构限制,在没有漏水或漏水很少时,浮子紧贴集漏盒底部, 污垢会引起浮子与底部粘连,影响浮子上浮。利用重力的典型方法是翻斗法,漏水大量进入另一端配有平衡重块的翻斗后,翻斗翻动倒掉漏水,使所连的转动轴上的光信号收发器的光通道被阻断一次,通过光信号的阻断频率计算漏水情况,如专利公开号CN103033323A。该装置及方法的缺陷是,翻斗在倾翻后回归原位的晃动容易造成漏水程度的误判断;转动轴一侧承担较大重量,长期运行后,转动阻力的不断增大会影响漏水检测情况,这对转轴制造工艺提出了严格的要求,造成装置成本高、结构复杂。
发明内容
本发明的目的是:克服现有技术中存在的光通道环境条件差、光衰减率大、装置结构复杂、长期运行可靠性低的问题,提供一种水路和光路分离、结构简单、成本低、可靠性高的换流阀阀塔漏水检测装置。
具体方案如下,一种高压换流阀阀塔漏水检测装置,所述漏水检测装置位于换流阀阀塔底部,包含集漏盒、浮子、连杆、转动轴、阻光机构、光信号检测机构,其特征是,浮子置于集漏盒内部,并通过连杆与转动轴连接;阻光机构、光信号检测机构、转动轴位于同一机架内;浮子的上下浮动通过连杆及转动轴带动阻光机构与光信号检测机构发生相对转动。
优选的,所述集漏盒设有底部和分层布置的出水孔,所述集漏盒顶部设有溢水口;出水孔可以人工堵塞或人工开放。
优选的,所述浮子与所述连杆置于所述集漏盒内部,所述集漏盒内壁设有连杆搭放支架。
优选的,所述光信号检测机构包括一组光纤接口和光信号通道,光信号检测机构的数目可任意配置。
优选的,所述阻光机构内部设有通光通道,通光通道的大小形状和数目可任 意设计。
优选的一种方式是,所述阻光机构安置在所述转动轴轴体或其轴向延长线上,浮子的上下浮动带动所述阻光机构与转动轴作同步自转运动;阻光机构的数目可任意配置。所述光信号检测机构置于转动轴的两侧,所述光信号检测机构的光纤接口和光信号通道与所述阻光机构上的通光通道位置对应。
另一种优选方式是,所述阻光机构连接在所述转动轴的一侧,浮子的上下浮动使所述阻光机构绕所述转动轴做同步的旋转运动;阻光机构的数目可任意配置。所述光信号检测机构置于所述阻光机构同侧,所述光信号检测机构的光纤接口和光信号通道与所述阻光机构上的通光通道位置对应。在阻光机构和光信号检测机构机架上,有密封罩将阻光机构和光信号检测机构罩入。
采用本发明所述装置和方法,与现有技术相比,光信号检测机构与集漏盒的隔离提高了检测的可靠性;得益于独特的结构,光信号通道的距离得以缩短,光衰耗降低,增大了光信号收发器的寿命;浮子通过连杆与转动轴相连,浮子不需要直接承受上端阻光机构的重力,减少在材质、形状和体积上的限制,提高机构的使用寿命和可靠性;浮子在没有漏水或漏水很少时,不会紧贴集漏盒底部,避免污垢引起的浮子与底部的粘连,影响浮子上浮;转动轴不需承受较大受力,机械损耗少,设计和工艺成本低。
附图说明
图1为一种高压换流阀阀塔漏水检测装置实例的侧视图。
图2为一种高压换流阀阀塔漏水检测装置实例的俯视图。
图3为一种高压换流阀阀塔漏水检测装置实例的正视图。
图4为一种高压换流阀阀塔漏水检测装置实例的光纤检测机构的特写示意图。
图5为另一种高压换流阀阀塔漏水检测装置实例的侧视图。
图6为另一种高压换流阀阀塔漏水检测装置实例的俯视图(不含密封罩)。
图7为另一种高压换流阀阀塔漏水检测装置实例的正视图。
图8为另一种高压换流阀阀塔漏水检测装置实例的阻光机构的特写示意图。
图中标号1为集漏盒,标号2为底部出水孔,标号3为侧面出水孔,标号4为侧面溢水挡板,标号5为浮子,标号6为连杆,标号7为连杆搭放支架,标号8为转动轴,标号9为光纤接口,标号10为带有光信号检测机构的机架,标号11为阻光机构,标号12为通光通道,标号13为另一实例的带有光信号检测机构的机架,标号14为另一实例的阻光机构,标号15为另一实例的通光通道,标号16为另一实例的密封罩。
具体实施方式
下面结合一种具体实施例和附图对该技术方案进行完整地、清楚地描述,但本方案的实施方式不限于此。
该实施例安装在换流阀阀塔底部屏蔽罩上汇流板一侧下方,汇流板通过一定倾角的引流设计,确保换流阀冷却水漏液可以全部流入该实施例的集漏盒内。如图1至4所示,集漏盒1顶部有安装基座,底部及后侧为弧形结构,前侧为垂直结构,设有连杆搭放支架7,左右两侧溢水挡板4高度低于安装基座,形成溢水出口,总体为一个弧形容器造型。集漏盒1底部开有一出水孔2,在弧面上方开另一出水孔3。浮子5及其连杆6斜置于集漏盒1内;连杆6另一端刚性连接于集漏盒1顶部转动轴8的一端上。转动轴8的另一端伸进密闭的带有光信号检测机构的机架10中,转动轴8的本体装有阻光机构11,它可以是转动轴本体结构的一部分,也可以是轴向延伸的其他机构。该阻光机构11内部开有二个大小不一的通光通道12,对应二路光纤接口9组成的光信号通道,通光通道12倾斜设 计,已提高转动角度利用率。在集漏盒1无水情况下,浮子6置于底部,转动轴8内的二个通光通道12的中心线与二路光纤接口9均在一条直线上,且光线可以从光纤接口9、通光通道12直线通过。
所述实例的工作过程如下,无漏水进入时,连杆6和浮子5搭放集漏盒内壁的连杆搭放支架7上,浮子5不与集漏盒1底部接触,以免长期放置粘黏底部。此时,转动轴的角度使光信号检测机构的光经过通光通道12形成通路。在集漏盒1出水孔2、3均人工开放的情况下,漏水流入时,若漏水量小于底部出水孔2对应的流量,漏水将全部从底部出水孔2排出,不会使浮子5上浮。当漏水量大于底部出水孔2对应的流量时,集漏盒1水位逐渐上升,带动浮子5上浮,连杆6连接的转动轴8开始产生转动角度,在这个过程,阻光机构11内开口较小的通光通道首先阻断一个光信号通道,产生报警信号;若漏水流量不变,此时集漏盒1水位继续上升,到达报警水位上的出水孔3;若漏水流量不大于两个出水孔2、3的出水流量之和,水位将停留在此;若流量大于两个出水孔2、3的出水流量之和,水位将继续上升,转动轴8的转动角度继续增大,直至阻光机构11阻断开口较大的通光通道所形成的光信号通道,产生跳闸信号。此时如水位继续上升,则通过溢水挡板流出。考虑到过大的漏水流量可能无法及时从溢水挡板4处排出,淹没转动轴8所在高度的光信号检测机构,对设备安全造成影响,可以将转动轴8安装的更高。
这是利用漏水流量决定信号等级的方法,另一种方式是,将集漏盒1内全部预留出水孔2和3人工堵住,冷却水漏液完全收集在集漏盒1内,此时漏液的水位即漏水总量直接决定转动轴8转动的角度,报警、跳闸光信号的通断与漏水总量相关。第三种方式是,仅堵住集漏盒1底部出水孔2或者仅堵住报警水位上部的出水孔3,此时检测逻辑分别是报警与漏水总量相关、跳闸与漏水流量相关;报警与漏水流量相关、跳闸与漏水总量相关。
在另一种实例中,如图5至8所示,阻光机构14和带有光信号检测机构的机架13可以安装在连杆6与转动轴8的另一侧,浮子5的上下浮动使该阻光机构14做方向相反的旋转运动。阻光机构14采用一个轻质薄片,上面开有二个弧长不一的通光通道15,二路光纤接口9分别与该通光通道15形成二个光信号通道。整个阻光机构、光信号检测机构被罩入一个密封罩16内,起到防水防尘作用。浮子5因漏液流入而上浮,阻光机构14随转动轴8转动,转动到特定位置时,阻光机构14开始遮挡短通光通道的光信号通道,这时产生报警信号;当浮子5接着上浮到更高的特定位置时,阻光机构14开始遮挡长通光通道的光信号通道,这时产生跳闸信号,从而实现漏水情况的检测。
在其他实例中,集漏盒的形状不限于上述实例的形状。
在其他实例中,阻光机构及其通光通道不局限于上述实例的形状。
在其他实例中,光信号检测机构与对应阻光机构的通光通道不受数量的限制。
在其他实例中,浮子与连杆可以有一段的柔性连接进行过渡。
需要说明的是,本方案的核心部分是浮子通过连杆与转动轴连接,阻光机构、光信号检测机构、转动轴位于同一机架内;浮子的上下浮动通过连杆及转动轴带动阻光机构与光信号检测机构发生相对运动,从而产生光的开通、中断信号,任何基于本结构在没有创造性劳动前提下所获得的其他实施例,都在本方案的申请保护范围内。

Claims (10)

  1. 一种高压换流阀阀塔漏水检测装置,所述漏水检测装置位于换流阀阀塔底部,其特征在于:包含集漏盒、浮子、连杆、转动轴、阻光机构、光信号检测机构;浮子置于集漏盒内部,并通过连杆与转动轴连接;阻光机构、光信号检测机构、转动轴位于同一机架内;浮子的上下浮动通过连杆及转动轴带动阻光机构与光信号检测机构发生相对转动。
  2. 如权利要求1所述的一种高压换流阀阀塔漏水检测装置,其特征在于所述集漏盒设有底部和分层布置的出水孔,所述集漏盒顶部设有溢水口;出水孔可以人工堵塞或人工开放。
  3. 如权利要求1所述的一种高压换流阀阀塔漏水检测装置,其特征在于所述浮子与所述连杆置于所述集漏盒内部,所述集漏盒内壁设有连杆搭放支架。
  4. 如权利要求1所述的一种高压换流阀阀塔漏水检测装置,其特征在于所述光信号检测机构包括至少一组光纤接口和光信号通道。
  5. 如权利要求1所述的一种高压换流阀阀塔漏水检测装置,其特征在于所述阻光机构内部设有通光通道。
  6. 如权利要求1所述的一种高压换流阀阀塔漏水检测装置,其特征在于所述阻光机构安置在所述转动轴轴体或其轴向延长线上,浮子的上下浮动带动所述阻光机构与转动轴作同步自转运动。
  7. 如权利要求6所述的一种高压换流阀阀塔漏水检测装置,其特征在于所述光信号检测机构置于转动轴的两侧,所述光信号检测机构的光纤接口和光信号通道与所述阻光机构上的通光通道位置对应。
  8. 如权利要求1所述的一种高压换流阀阀塔漏水检测装置,其特征在于所述阻光机构连接在所述转动轴的一侧,浮子的上下浮动使所述阻光机构绕所述转动轴做同步的旋转运动。
  9. 如权利要求8所述的一种高压换流阀阀塔漏水检测装置,其特征在于所述光信号检测机构置于所述阻光机构同侧,所述光信号检测机构的光纤接口和光信号通道与所述阻光机构上的通光通道位置对应。
  10. 如权利要求9所述的一种高压换流阀阀塔漏水检测装置,其特征在于在阻光机构和光信号检测机构机架上,有密封罩将阻光机构和光信号检测机构罩入。
PCT/CN2017/101481 2016-09-13 2017-09-13 一种高压换流阀阀塔漏水检测装置 WO2018050057A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610821174.3A CN107817072A (zh) 2016-09-13 2016-09-13 一种高压换流阀阀塔漏水检测装置
CN201610821174.3 2016-09-13

Publications (1)

Publication Number Publication Date
WO2018050057A1 true WO2018050057A1 (zh) 2018-03-22

Family

ID=61601457

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/101481 WO2018050057A1 (zh) 2016-09-13 2017-09-13 一种高压换流阀阀塔漏水检测装置

Country Status (2)

Country Link
CN (1) CN107817072A (zh)
WO (1) WO2018050057A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108519065A (zh) * 2018-04-18 2018-09-11 红云红河烟草(集团)有限责任公司 一种差动式光纤Bragg光栅倾角传感器及其使用方法
CN108801562A (zh) * 2018-03-31 2018-11-13 特变电工新疆新能源股份有限公司 一种柔性直流输电换流阀阀塔漏水检测装置及方法
CN112054654A (zh) * 2020-08-18 2020-12-08 许继电气股份有限公司 一种海上柔直换流阀阀塔防漏水装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3954009A (en) * 1972-10-04 1976-05-04 Instrumentation Specialties Company Flow meter
JPS60220824A (ja) * 1985-04-04 1985-11-05 Nifco Inc 液面高さ検出装置
CN1057124A (zh) * 1991-05-27 1991-12-18 童晓枫 具有损坏报警功能的液位开关
CN1713322A (zh) * 2004-06-25 2005-12-28 上海万森水处理有限公司 一种无密封浮球液面开关
CN102519689A (zh) * 2011-11-30 2012-06-27 许继集团有限公司 一种换流阀阀塔漏水检测装置
CN206095529U (zh) * 2016-09-13 2017-04-12 南京南瑞继保电气有限公司 一种高压换流阀阀塔漏水检测装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0943089A (ja) * 1995-07-27 1997-02-14 Mitsubishi Electric Corp 漏水検知器
CN201569553U (zh) * 2009-11-27 2010-09-01 中国电力科学研究院 一种直流换流阀漏水监测装置
CN201856447U (zh) * 2010-05-17 2011-06-08 广州麦普实业有限公司 打印机墨盒
JP2012000856A (ja) * 2010-06-17 2012-01-05 Brother Industries Ltd インク供給装置及びインクカートリッジ
CN105466650A (zh) * 2014-09-28 2016-04-06 国家电网公司 一种监控直流换流阀漏水系统
KR101625080B1 (ko) * 2014-12-04 2016-05-27 한국전력공사 사이리스터 밸브 냉각용 배관 벨로우즈의 누수감지장치

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3954009A (en) * 1972-10-04 1976-05-04 Instrumentation Specialties Company Flow meter
JPS60220824A (ja) * 1985-04-04 1985-11-05 Nifco Inc 液面高さ検出装置
CN1057124A (zh) * 1991-05-27 1991-12-18 童晓枫 具有损坏报警功能的液位开关
CN1713322A (zh) * 2004-06-25 2005-12-28 上海万森水处理有限公司 一种无密封浮球液面开关
CN102519689A (zh) * 2011-11-30 2012-06-27 许继集团有限公司 一种换流阀阀塔漏水检测装置
CN206095529U (zh) * 2016-09-13 2017-04-12 南京南瑞继保电气有限公司 一种高压换流阀阀塔漏水检测装置

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108801562A (zh) * 2018-03-31 2018-11-13 特变电工新疆新能源股份有限公司 一种柔性直流输电换流阀阀塔漏水检测装置及方法
CN108801562B (zh) * 2018-03-31 2024-05-17 特变电工新疆新能源股份有限公司 一种柔性直流输电换流阀阀塔漏水检测装置及方法
CN108519065A (zh) * 2018-04-18 2018-09-11 红云红河烟草(集团)有限责任公司 一种差动式光纤Bragg光栅倾角传感器及其使用方法
CN112054654A (zh) * 2020-08-18 2020-12-08 许继电气股份有限公司 一种海上柔直换流阀阀塔防漏水装置
CN112054654B (zh) * 2020-08-18 2022-02-18 许继电气股份有限公司 一种海上柔直换流阀阀塔防漏水装置

Also Published As

Publication number Publication date
CN107817072A (zh) 2018-03-20

Similar Documents

Publication Publication Date Title
WO2018050057A1 (zh) 一种高压换流阀阀塔漏水检测装置
CN109555218B (zh) 浮渣自动收集系统
CN215984770U (zh) 一种防卡阻的耐腐蚀的磁翻板液位计
CN206095529U (zh) 一种高压换流阀阀塔漏水检测装置
CN102563358A (zh) 一种自闭式煤气排水器及其使用方法
CN101974929B (zh) 一种漏水保护装置
CN201562343U (zh) 抽水马桶漏水报警器
CN201462410U (zh) 用于高压煤气管网的煤气排水、水封装置
CN216813732U (zh) 一种蒸汽式疏水阀用防冻装置
JP2009299308A (ja) 逆流防止構造及び排水施設
CN213709778U (zh) 一种市政道路排水系统
CN205094363U (zh) 用于洗碗机的水位保护装置及具有其的洗碗机
CN209885074U (zh) 一种升降式可扩容防火堤
CN114482229A (zh) 微型管廊排水系统及排水方法
CN108978845A (zh) 一种在雨天能自动开关排除杂物的雨水篦子装置
CN102192406B (zh) 煤气管道自动锁气脱水装置
CN206457916U (zh) 排水防臭汇集器
CN215000922U (zh) 免补水智能型双防泄露煤气排水器
CN218468828U (zh) 一种用于煤气管道的集水装置
CN217460677U (zh) 一种阀门井防水淹装置
CN110725392A (zh) 助排截流井
CN104121392A (zh) 浮筒式自控拍门
CN219137837U (zh) 一种水泵房防淹设备
CN217654084U (zh) 一种船用空调凝水收集排放装置
CN215862908U (zh) 一种介于远程控制仪表阀门

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17850259

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17850259

Country of ref document: EP

Kind code of ref document: A1