WO2018049562A1 - 自适应调制编码的方法和基站 - Google Patents

自适应调制编码的方法和基站 Download PDF

Info

Publication number
WO2018049562A1
WO2018049562A1 PCT/CN2016/098859 CN2016098859W WO2018049562A1 WO 2018049562 A1 WO2018049562 A1 WO 2018049562A1 CN 2016098859 W CN2016098859 W CN 2016098859W WO 2018049562 A1 WO2018049562 A1 WO 2018049562A1
Authority
WO
WIPO (PCT)
Prior art keywords
subframe
base station
subframe set
scheduling
bler
Prior art date
Application number
PCT/CN2016/098859
Other languages
English (en)
French (fr)
Inventor
王轶
王成毅
林捷
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP16915948.0A priority Critical patent/EP3503655B1/en
Priority to PCT/CN2016/098859 priority patent/WO2018049562A1/zh
Priority to KR1020197009332A priority patent/KR102231454B1/ko
Priority to CN201680088954.XA priority patent/CN109644477A/zh
Priority to JP2019513981A priority patent/JP6779373B2/ja
Publication of WO2018049562A1 publication Critical patent/WO2018049562A1/zh
Priority to US16/351,085 priority patent/US10924206B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0023Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the signalling
    • H04L1/0026Transmission of channel quality indication
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0002Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission rate
    • H04L1/0003Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission rate by switching between different modulation schemes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0033Systems modifying transmission characteristics according to link quality, e.g. power backoff arrangements specific to the transmitter
    • H04L1/0035Systems modifying transmission characteristics according to link quality, e.g. power backoff arrangements specific to the transmitter evaluation of received explicit signalling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0072Error control for data other than payload data, e.g. control data
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • H04L5/0055Physical resource allocation for ACK/NACK
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1263Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/20Manipulation of established connections
    • H04W76/28Discontinuous transmission [DTX]; Discontinuous reception [DRX]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0009Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the channel coding
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/20Arrangements for detecting or preventing errors in the information received using signal quality detector
    • H04L1/203Details of error rate determination, e.g. BER, FER or WER

Definitions

  • the present invention relates to the field of communications, and in particular, to a method and base station for adaptive modulation coding.
  • LTE Long Term Evolution
  • the prior art continuously adjusts the channel quality indicator (CQI) reported by the user equipment through an Adaptive Modulation and Coding (AMC) mechanism, and adopts an Acknowledge (ACK)/Negative Acknowledge (Negative Acknowledge,
  • ACK Acknowledge
  • NACK target block error rate
  • MCS modulation and coding scheme
  • Bler downlink data block error rate
  • FinalDLCqiAdjStepOfbler is the adjustment step size, the default value can be 0.1; BlerTarget is the target block error rate, the default value can be 10%; BlerMeas is the block error rate measurement value, when receiving NACK, BlerMeans is 1, when received When ACK is reached, BlerMeas is 0.
  • the interference of the neighboring cell to the serving cell changes in real time, especially after the pilot breathing algorithm is turned on, the interference in the network changes regularly, and the existing AMC mechanism cannot adapt to the serving cell.
  • the internal interference changes in real time, so that the MCS transmitting data in the subframe in the serving cell that is less interfered by the neighboring cell is mainly determined by the subframe subject to interference, which affects the data transmission efficiency and the throughput rate of the network system.
  • the present application proposes an adaptive modulation and coding method and a base station to improve data transmission efficiency and throughput of a network system.
  • a method for adaptive modulation coding comprising: receiving, by a base station, a channel quality indicator CQI sent by a first terminal; the base station determining a subframe for scheduling the first terminal; a subframe set to which the subframe belongs, the subframe set is a first subframe set or a second subframe set, where the first subframe set and the second subframe set respectively correspond to different CQI adjustments
  • the base station adjusts the CQI according to the CQI adjustment amount corresponding to the subframe set to which the subframe belongs, and the base station determines to schedule the modulation coding scheme MCS of the first terminal according to the adjusted CQI.
  • the base station may determine a subframe set to which the subframe belongs, and the subframe set may be a first subframe set or a second subframe set, and then according to the subframe
  • the CQI adjustment amount corresponding to the frame set adjusts the CQI sent by the first terminal, thereby avoiding the phenomenon that the high signal-to-noise ratio of the low-interference subframe is wasted by using only one set of CQI adjustment amount in the prior art, and therefore, the base station
  • the high signal-to-noise ratio of the low-interference subframes in the current cell can be effectively utilized to improve the transmission efficiency of the downlink data and the throughput of the network system, and the CQI reported by the terminal can be flexibly adjusted and improved compared with the prior art. System flexibility.
  • the method further includes the base station dividing the plurality of scheduling subframes into the first subframe set and the second subframe set.
  • the base station may divide the multiple scheduling subframes into the first subframe set and the second subframe set according to the ACK/NACK information of the scheduling terminal, and does not need to acquire the neighboring cell from the neighboring cell of the serving cell where the terminal is located.
  • the data state of the sub-frames increases the flexibility of the system and the practicability of the solution.
  • the base station divides the multiple scheduling subframes into the first subframe set according to ACK/NACK information of the multiple scheduling terminals.
  • the second subframe set includes: the base station, according to the ACK/NACK information of the multiple scheduling terminals, statistics a block error rate Bler of each scheduling subframe of the multiple scheduling subframes; The Bler of each of the plurality of scheduling subframes divides the plurality of scheduling subframes into the first subframe set and the second subframe set.
  • the base station divides the multiple scheduling subframes into the first according to a Bler of each scheduling subframe of the multiple scheduling subframes.
  • the subframe set and the second subframe set include: when the adjustment time arrives, the base station acquires a Bler before each adjustment subframe of the multiple scheduling subframes before the adjustment time; the base station according to the Adjusting, in the Bler before the adjustment time, each of the scheduling subframes of the multiple scheduling subframes, adjusting the first subframe set and the subframe in the second subframe set before the adjustment time, to obtain the first subframe set and The second subframe set.
  • the base station can adjust the Bler of each scheduling subframe in the adjustment period before the time adjustment, and adjust the first subframe set and the second subframe in the adjustment period before the adjustment time according to the Bler of the scheduling subframe.
  • the set is adjusted so that the subframe set to which the scheduling subframe belongs can be dynamically changed, thereby improving the flexibility of the system.
  • the first subframe set before the adjustment time includes a first scheduling subframe
  • the base station is configured according to each of the multiple scheduling subframes.
  • the Bler before the adjustment time adjusts the first subframe set and the second subframe set before the adjustment time to obtain the first subframe set and the second subframe set, including: when the adjustment time arrives
  • the base station acquires the Bler of the first subframe set before the adjustment time; if the Bler of the first subframe set before the adjustment time is greater than the first threshold, and the first subframe set before the adjustment time
  • the Bler of one subframe is greater than the second threshold, and the base station changes the first subframe from the first scheduling subframe set before the adjustment time to the second subframe set before the adjustment time, at the adjustment time, to obtain the first subframe.
  • the second subframe set before the adjustment time includes a second scheduling subframe
  • the base station is configured according to each of the multiple scheduling subframes.
  • the Bler of the frame at the time of adjustment adjusts the first subframe set and the second subframe set before the adjustment time to obtain the first subframe set and the second subframe set, including: when the adjustment time arrives
  • the base station acquires the Bler of the second subframe set before the adjustment time; if the Bler of the second subframe set before the adjustment time is greater than the third threshold, and the second subframe set before the adjustment time
  • the Bler of the two subframes is less than or equal to the fourth threshold, and the base station changes the second subframe from the second subframe set before the adjustment time to the first subframe set before the adjustment time, at the adjustment time, to obtain the first subframe.
  • the base station according to the ACK/NACK information of the multiple scheduling terminals, statistics the error of each scheduling subframe of the multiple scheduling subframes.
  • the block rate Bler includes: the base station statistics the Bler of each of the plurality of scheduling subframes by using the following formula:
  • Bler(i) indicates Bler of the i-th subframe of the plurality of scheduling subframes within a preset time;
  • N NACK (i) indicates that the terminal transmits based on the i-th subframe within a preset time The number of NACKs of the downlink data feedback;
  • N ACK (i) represents the number of ACKs that the terminal feeds back based on the downlink data transmitted on the i-th subframe within a preset time;
  • N DTX (i) indicates In the set time, the terminal is based on the number of discontinuous transmission DTX states in which no signal is transmitted on the i-th subframe.
  • the first terminal is a terminal that receives a Radio Link Control (RLC) data per second that is greater than a preset threshold.
  • RLC Radio Link Control
  • a base station comprising a unit or module for performing the method described in the first aspect or any one of the first aspects.
  • a base station including a receiver, a memory, and a processor, wherein the memory is used to store a program, the processor is configured to execute a program, and when the program is executed, the processor is specifically configured to execute The method described in one aspect or in any one of the implementations of the first aspect.
  • a fourth aspect a computer readable medium for storing program code, the program code comprising a method for performing the first aspect or any one of the implementations of the first aspect Instructions.
  • FIG. 1 is a schematic diagram of a communication system according to an embodiment of the present invention.
  • 2 is a schematic diagram of interference variation of a serving cell under light load after pilot breathing is turned on;
  • FIG. 3 is a schematic flowchart of an adaptive modulation and coding method according to an embodiment of the present invention.
  • FIG. 4 is a detailed flowchart of an adaptive modulation and coding method according to another embodiment of the present invention.
  • FIG. 5 is a schematic block diagram of a base station according to an embodiment of the present invention.
  • FIG. 6 is a schematic structural diagram of a base station according to another embodiment of the present invention.
  • LTE Long Term Evolution
  • 5G future 5G communication systems
  • each 10 ms radio frame is divided into 10 1 ms subframes, and each subframe includes two slots, each of which is 0.5ms, each time slot can be composed of several Physical Resource Blocks (PRBs).
  • PRBs Physical Resource Blocks
  • the communication system 100 can include at least one network device 1101, such as a base station or base station controller or the like. Each network device 110 can provide communication coverage for a particular geographic area and can communicate with terminals (e.g., UEs) located within the coverage area (cell).
  • the network device 110 may be an evolved base station (evolved Node B, referred to as "eNB” or "eNodeB”) in the LTE system, or a cloud radio access network (CRAN).
  • eNB evolved Node B
  • eNodeB cloud radio access network
  • Wireless controller or the network device can be a relay station, an access point, an in-vehicle device, a wearable device, a network side device in a future 5G network, or a future public land mobile network (Public Land Mobile Network, referred to as "PLMN" ”) Network devices, etc.
  • PLMN Public Land Mobile Network
  • the wireless communication system 100 also includes a plurality of terminals 120 located within the coverage of the network device 110.
  • the plurality of terminals may be terminals of different standards.
  • the two terminals shown in FIG. 1 may be 4G terminals and 5G terminals, respectively.
  • FIG. 1 exemplarily shows a network device and two terminals.
  • the communication system 100 may include a plurality of network devices and may include other numbers of terminals within the coverage of each network device, in accordance with an embodiment of the present invention. There is no limit to this.
  • the terminal may include a User Equipment ("UE"), which is also It can be called a mobile terminal (Mobile Terminal), a mobile user equipment, etc., and can communicate with one or more core networks via a radio access network (for example, a Radio Access Network, referred to as "RAN”), and the user equipment can be a mobile terminal.
  • UE User Equipment
  • RAN Radio Access Network
  • the user equipment can be a mobile terminal.
  • a mobile phone or "cellular" phone
  • a computer with a mobile terminal for example, can be a portable, pocket, handheld, computer built-in or in-vehicle mobile device that exchanges language with the wireless access network and / or data.
  • the wireless communication system 100 may further include other network entities, such as a network controller, a mobility management entity, and the like, and the embodiment of the present invention is not limited thereto.
  • network entities such as a network controller, a mobility management entity, and the like, and the embodiment of the present invention is not limited thereto.
  • FIG. 2 is a schematic flowchart of a method for adaptive modulation and coding according to an embodiment of the present invention.
  • the method of Figure 2 can be performed by a base station.
  • the method includes:
  • the base station receives the CQI sent by the first terminal.
  • the base station when the base station needs to send the downlink data to the first terminal, the base station may send a Cell Specific Reference Signal (CRS) to the first terminal, where the first terminal may A CQI is generated according to the CRS and the CQI is transmitted to the base station.
  • CRS Cell Specific Reference Signal
  • the CQI may further include the MCS recommended by the first terminal.
  • the base station may further acquire the MCS according to the preset mapping table of the CQI and the MCS.
  • the base station determines a subframe used to schedule the first terminal.
  • the base station may allocate a downlink resource to the first terminal by using a certain policy according to the CQI. For example, the base station may determine, according to the CQI reported by the first terminal, a subframe in which the first terminal is scheduled (for example, subframe 3 on a frame with a frame number of 10) and an MCS to which the channel quality is applied.
  • a subframe in which the first terminal is scheduled for example, subframe 3 on a frame with a frame number of 10
  • the first terminal may be a large packet user terminal, and the data transmitted by the base station and the first terminal through the subframe may be large packet user data.
  • the large-capacity user terminal has a long online time and is scheduled to transmit downlink data. Therefore, the scheme for dividing the subframe set provided by the implementation of the present invention and maintaining the CQI adjustment amount corresponding to each subframe set can obtain higher. The throughput gain.
  • the base station may first identify whether the terminal is a large-pack user terminal. Specifically, in the embodiment of the present invention, when the data amount of the radio link control (RLC) of the terminal reaches the preset threshold, the base station may identify the terminal as a large-pack user terminal.
  • RLC radio link control
  • the value of the preset threshold is not specifically limited in the embodiment of the present invention.
  • the preset threshold may be 1250000 bytes, that is, if the data amount of the terminal reaching the RLC per second is greater than 1250000 bytes, the base station recognizes the terminal as a large-pack user terminal; for example, if the data volume to be transmitted is not 0, the preset threshold It may be Min ⁇ to-be-transmitted data amount *1000/8byte, 1250000byte ⁇ , wherein Min ⁇ to-be-transmitted data amount*1000/8byte, 1250000byte ⁇ indicates that the preset threshold takes a smaller amount of data to be transmitted *1000/8byte and 1250000byte. value.
  • the base station determines a subframe set to which the subframe belongs, where the subframe set is a first subframe set or a second subframe set, where the first subframe set and the second subframe
  • the sets correspond to different CQI adjustments.
  • the base station separately maintains the CQI adjustment amount corresponding to each of the first subframe set and the second subframe set, which is more flexible than the prior art, and maintains different CQI adjustment amounts for different subframe sets, and improves The data transmission efficiency and throughput of the network system.
  • the high and low interferences are alternately performed in FIG. 3
  • the high interference subframe is divided into the first subframe set
  • the low interference subframe is divided into the second subframe set, thereby
  • the scheduling subframe is adjusted by using different CQI adjustments, which can greatly improve the data transmission efficiency and throughput of the network system. This is discussed in detail below.
  • the CQI adjustment algorithm in the AMC mechanism given above that when the base station receives a NACK sent by the terminal, the adjustment amount of the CQI is about 10 times that of the received ACK. Therefore, the ratio of the neighboring cell sending system message subframe is larger than the Bler target value set by the AMC mechanism, that is, the neighboring cell has more than 10% subframe interference, and the CQI adjustment calculated by the AMC mechanism mainly depends on this.
  • the channel quality on a part of the high-interference subframe, and the MCS selected by the final base station will also mainly depend on the channel quality on the part of the high-interference subframe.
  • the MCS that schedules the terminal will also be selected to be low, so that the high signal-to-noise ratio (SNR) of the low-interference subframe cannot be reflected, and the throughput rate of the serving cell is reduced.
  • SNR signal-to-noise ratio
  • the scheduling subframe may be divided into a first subframe set and a second subframe set according to a neighbor interference situation, where the first subframe set receives less neighbor interference than the second subframe.
  • the base station maintains the CQI adjustment amount of each of the low-interference subframe set and the high-interference subframe set, thereby avoiding the problem that the high signal-to-noise ratio of the low-interference subframe cannot be reflected by using only one set of CQI adjustment amount in the prior art, thereby Improve the throughput rate of the community.
  • the division timing and the division manner of the subframe set are not performed.
  • the subframe may be directly divided into a first subframe set and a second subframe set by using a fixed partition.
  • the first subframe set and the second subframe set may be divided according to an adjustment period, where the base station may re-divide the multiple scheduling subframes into the first subframe.
  • the manner of dividing the plurality of scheduling subframes into the first subframe set and the second subframe set for the base station in the set and the second subframe set will be described in detail below, and details are not described herein again.
  • the base station adjusts the CQI according to the CQI adjustment amount corresponding to the subframe set to which the subframe belongs.
  • the base station determines, according to the adjusted CQI, a modulation and coding scheme MCS of the first terminal.
  • the base station may adjust the CQI reported by the first terminal according to the CQI adjustment amount corresponding to the subframe set to which the subframe of the first terminal belongs, so as to determine the scheduling according to the adjusted CQI.
  • the modulation coding scheme MCS of the first terminal For example, in the embodiment of the present invention, the CQI adjustment amount corresponding to the first subframe set may be 2, and the CQI adjustment amount corresponding to the second subframe set may be -1, and the base station receives the first CQI reported by the terminal as 3.
  • the base station may determine that the adjusted CQI of the first terminal is 5, and the base station may perform the adjusted CQI (ie, the CQI with a value of 5). Determining scheduling the MCS of the first terminal. Certainly, if the base station determines that the subframe in which the first terminal is scheduled belongs to the second subframe set, the base station may determine that the adjusted CQI of the first terminal is 2, and the base station may be based on the adjusted CQI (ie, the CQI with a value of 2) And determining to schedule the MCS of the first terminal.
  • the base station may adjust the CQI reported by the first terminal according to the CQI adjustment amount corresponding to the subframe set of the subframe according to the subframe set to which the subframe of the first terminal belongs. Compared with the prior art, it is more flexible.
  • the base station may adjust, according to the ACK/NACK information that is sent by the subframe of the first terminal, the CQI adjustment amount corresponding to the subframe set to which the subframe of the first terminal belongs.
  • the base station after the base station determines to schedule the subframe set to which the subframe of the first terminal belongs, the base station performs downlink data transmission with the first terminal by using the subframe, and the terminal may feed back the subframe to the base station.
  • the ACK/NACK information of the data transmitted in the frame after receiving the ACK/NACK information, the base station may adjust the CQI adjustment amount corresponding to the subframe set to which the subframe belongs by using the AMC mechanism.
  • the method for adaptive modulation and coding of the embodiment of the present invention may further include:
  • the base station divides the plurality of scheduling subframes into a first subframe set and a second subframe set.
  • the multiple scheduling subframes may be a subframe in which multiple terminals are scheduled, or may be a subframe in which one terminal is scheduled.
  • the base station may receive indication information of the base station corresponding to the neighboring cell, and the base station may divide the multiple scheduling subframes into the first subframe set and the second subframe set according to the indication information.
  • the indication information may indicate the interference situation of the neighboring cell to the cell where the first terminal is located, or the indication information indicates a division manner of the multiple scheduling subframes.
  • the embodiment of the present invention directly receives the indication information according to the base station corresponding to the neighboring cell, and directly divides the multiple scheduling subframes according to the indication information, and the division manner is simple and convenient to operate.
  • the base station may receive indication information of the base station corresponding to the neighboring cell, and the base station may divide the multiple scheduling subframes into the first subframe set and the second subframe set according to the indication information.
  • the indication information may indicate the interference situation of the neighboring cell to the cell where the first terminal is located, or the indication information indicates a division manner of the multiple scheduling subframes.
  • the embodiment of the present invention directly receives the indication information according to the base station corresponding to the neighboring cell, and directly divides the multiple scheduling subframes according to the indication information, and the division manner is simple and convenient to operate.
  • the base station may divide the multiple scheduling subframes in the serving cell into the first subframe set according to the data bearer status of the subframe in the neighboring cell of the serving cell where the first terminal is located. And the second subframe set, or the base station may further divide the multiple scheduling subframes in the serving cell into the first subframe set and the second subframe set according to the interference level of each subframe in the neighboring cell to the serving cell.
  • the base station determines a subframe for scheduling the first terminal, and the subframe may be referred to as a subframe in the serving cell, and the serving cell may include at least one neighboring cell.
  • the data bearer status may include un-beared data, carrying a small amount of data, carrying more data, and the like.
  • the data bearer status of the sub-frames that are turned off (for example, the sub-frame numbers 2 and 3) may be an un-bearing state; the data bearer status of the sub-frame number 0 that carries the broadcast message may be carrying more data;
  • the data bearer status of the subframe number (eg, subframe number 1, 4) may be to carry a small amount of data.
  • the data bearer state of the subframe of the neighboring cell shows that the more data the subframe carries, the higher the interference level of the subframe to the serving cell. That is to say, the data bearer status of the subframe of the neighboring cell can also indirectly reflect the interference level of the subframe number of the neighboring cell to the serving cell.
  • the subframe data bearer state may be: subframe number 0, subframe number 5 is to carry more data; subframe number 1, subframe number 4, and subframe number 9 are A small amount of data is carried; the subframe number 2, the subframe number 3, the subframe number 6, the subframe number 7, and the subframe number 8 are bearer data.
  • the interference level of each subframe that carries more data to the serving cell is high interference, and the interference level of each subframe that carries a small amount of data to the serving cell is medium interference, and the interference level of each subframe of the bearer data to the serving cell For low interference.
  • multiple scheduling subframes are divided into first subframes by using a subframe carrying data state of a neighboring cell of the serving cell where the first terminal is located or an interference level of the neighboring cell to the serving cell.
  • the serving cell and the neighboring cell are required to be time synchronization cells.
  • the base station dividing the multiple scheduling subframes into the first subframe set and the second subframe set may further include:
  • the base station acquires ACK/NACK information of multiple scheduling terminals
  • the base station divides the multiple scheduling subframes into the first subframe set and the second subframe set according to ACK/NACK information of the multiple scheduling terminals.
  • the embodiment of the present invention directly divides the multiple scheduling subframes into the first subframe set and the second subframe set without referring to the information of the neighboring cell, and the first need not be required.
  • the time zone of the serving cell and the neighboring cell of the terminal is synchronized, which increases the flexibility of the system.
  • the terminal may send the ACK/NACK information of the downlink data in the scheduling subframe to the base station, and when the terminal correctly receives the downlink data sent by the base station, The terminal may send the ACK information to the base station.
  • the terminal may send the NACK information to the base station, and the base station may divide the multiple scheduling subframes according to the ACK/NACK information of the multiple scheduling terminals. It is a first subframe set and a second subframe set.
  • the base station acquires the ACK/NACK information of the scheduling subframe according to the scheduling subframe, and may be specifically: the base station acquires the ACK sent by the terminal according to the data on the codeword 1 of the scheduling subframe. /NACK information, thereby dividing multiple scheduling subframes into the first subframe set The second subframe set is merged, but the invention is not limited thereto.
  • the base station divides the multiple scheduling subframes into the first subframe set and the second subframe set according to ACK/NACK information of the multiple scheduling terminals. Can include:
  • the eNB counts the number of ACKs and NACKs corresponding to each of the plurality of scheduling subframes in the preset preset time frame;
  • the scheduling subframe is divided into a first subframe set
  • the scheduling subframe may be divided into a second subframe set.
  • the base station divides the multiple scheduling subframes into the first subframe set and the second subframe according to ACK/NACK information of the multiple scheduling terminals.
  • Collections can also include:
  • the eNB calculates, according to the ACK/NACK information of the multiple scheduling terminals, the Bler of each scheduling subframe of the multiple scheduling subframes;
  • the base station divides the multiple scheduling subframes into the first subframe set and the second subframe set according to a Bler of each scheduling subframe of the multiple scheduling subframes.
  • each of the multiple scheduling subframes is used to schedule the terminal to perform downlink data transmission, and the scheduling subframe may be one subframe or a group of subframes, and the present invention Not limited. If each scheduling subframe represents a group of subframes, the Bler of each scheduling subframe may refer to the Bler of the group of subframes.
  • the base station divides the multiple scheduling subframes into the first subframe set and the Bler according to a Bler of each scheduling subframe of the multiple scheduling subframes.
  • the second subframe set may include:
  • the base station divides multiple scheduling subframes into multiple subframe groups
  • the base station divides the multiple subframe groups into a first subframe set and a second subframe set according to a Bler of each scheduling subframe of the multiple subframe groups.
  • the multiple scheduling subframes may be divided into multiple groups of subframes in multiple manners.
  • the base station may use multiple subframes of the scheduling subframe.
  • the modulo operation is performed as the modulo data to be categorized, and the sub-frames having the same value after the frame number of the sub-frame are divided into a group.
  • the base station may obtain an integral multiple of a long period of discontinuous reception (DRX) as a modulus to perform a modulo operation on the subframe number.
  • DRX discontinuous reception
  • the base station may obtain the subframe number n of the scheduling subframe and the radio frame number N where the scheduling subframe is located, and the base station may calculate the to-be-modulo data M of the scheduling subframe by using the following formula:
  • the base station can take a DRX long period as the modulus.
  • the DRX long period is generally configured to be 40 ms.
  • the base station can take 40 as the modulus.
  • the base station may modulate the to-be-modulo data pair 40 of the plurality of scheduling subframes, so that the subframes with the same value after the modulo are used as a group of subframes.
  • the base station may calculate a Bler of each of the plurality of scheduling subframes by using a formula:
  • Bler(i) indicates Bler of the i-th subframe of the plurality of scheduling subframes within a preset time;
  • N NACK (i) indicates that the terminal is based on the i-th subframe within a preset time The number of NACKs sent back by the downlink data transmitted;
  • N ACK (i) represents the number of ACKs that the terminal feeds back based on the downlink data transmitted on the i-th subframe within a preset time;
  • N DTX (i) indicates The preset time is based on the number of discontinuous transmission DTX states in which the signal is not transmitted on the i-th subframe.
  • the base station may further calculate a Bler of each of the plurality of scheduling subframes by using a formula:
  • Bler(i) indicates Bler of the i-th subframe of the plurality of scheduling subframes within a preset time;
  • N NACK (i) indicates that the terminal transmits based on the i-th subframe within a preset time The number of NACKs of the downlink data feedback;
  • N ACK (i) represents the number of ACKs that the terminal feeds back based on the downlink data transmitted on the i-th subframe within a preset time;
  • N DTX (i) indicates In the set time, the terminal is based on the number of discontinuous transmission DTX states in which no signal is transmitted on the i-th subframe.
  • the base station divides the multiple scheduling subframes into the first subframe set and the Bler according to a Bler of each scheduling subframe of the multiple scheduling subframes.
  • the second subframe set includes:
  • the base station acquires Bler before each adjustment subframe of the multiple scheduling subframes before the adjustment time;
  • the base station adjusts, according to the Bler before the adjustment time, each subframe of the multiple scheduling subframes, the subframes in the first subframe set and the second subframe set before the adjustment time, to obtain the a first subframe set and the second subframe set.
  • the base station may periodically adjust the Bler of each scheduling subframe of the multiple scheduling subframes before the adjustment time in the adjustment period before the adjustment time, and when the adjustment time arrives, the base station may Each of the scheduling subframes of the scheduling subframe is adjusted by the Bler before the adjustment time, and the subframes in the first subframe set and the second subframe set before the adjustment time are adjusted to obtain the first subframe set and the The second subframe set is described.
  • the base station counts the Bler of the adjustment period of each scheduling subframe before the adjustment time, and the adjustment period may be the number of large-packet user terminals (or large-packet users) that can transmit data with the base station. related.
  • the base station determines that the adjustment period of the Bler of each subframe may be the time parameter * the number of large packets, and the time parameter may be 320 ms.
  • the adjustment period between the first subframe set and the second subframe set may be related to the number of large packet user terminals, and the adjustment period may be selected according to the following principle: when the base station performs data transmission with multiple large packet user terminals, The terminal is guaranteed to send enough ACK/NACK information based on multiple scheduling subframes, so that the error rate of the updated period of each subframe after the adjustment time is more accurate.
  • the first subframe set before the adjustment time includes a first scheduling subframe
  • the base station is configured according to each of the multiple scheduling subframes before the adjustment time.
  • the Bler adjusts the first subframe set and the second subframe set before the adjustment time to obtain the first subframe set and the second subframe set, including:
  • the base station acquires the Bler of the first subframe set before the adjustment time;
  • the base station will The first subframe is changed from a first subframe set before the adjustment time to a second subframe set before the adjustment time, to obtain the first subframe set and the second subframe set.
  • the first subframe set may include the first scheduling subframe in the adjustment period before the adjustment time arrives, and when the adjustment time arrives, the base station may acquire the adjustment period before the adjustment time. Bler of the first set of subframes.
  • the multiple scheduling subframes are divided into multiple subframe groups, and the first subframe group may include the first subframe group in the adjustment period before the adjustment time, when the adjustment time arrives.
  • the base station may acquire the first subframe group and the Bler of the first subframe set, for a specific Bler
  • For the calculation method reference may be made to the Bler calculation method in each of the scheduled sub-frames in the preset time, and the preset time may be an adjustment period.
  • the Bler of the first subframe set may be an average value of Blers of the multiple subframe groups included in the first subframe set; the Bler of the second subframe set may be the first The average of the Blers of the plurality of subframe groups included in the two subframe sets.
  • the base station can obtain the Bler of the first subframe set and/or the Bler of the second subframe set.
  • the base station can also directly collect the first subframe set according to the ACK/NACK information sent by the terminal.
  • the Bler of the adjustment period before the adjustment time, and/or the Bler of the adjustment period before the adjustment time may be the same as the method of counting the Bler of each group of subframes for the specific statistical method, and the present invention does not Make a limit.
  • the base station may divide the multiple scheduling subframes into a first subframe set and a second subframe set, and the multiple scheduling subframes may be divided into multiple subframe groups, and thus in the present invention
  • the first subframe set may include a partial subframe group of the multiple subframe groups
  • the first subframe set may include another partial subframe group of the multiple subframe groups.
  • multiple scheduling subframes may be divided into 40 groups of subframes, and the first subframe group may include 19 groups of subframes in the 40 group subframes, where the second subframe group may include the An additional 21 sets of subframes in 40 sets of subframes.
  • the Bler of the first subframe set in the adjustment period before the adjustment time is greater than the first threshold
  • the first threshold may be the target Bler+5%
  • the target Bler may be preset for the base station.
  • the target Bler may be 10%
  • the Bler of the adjustment period before the adjustment time of the first scheduling subframe is greater than the second threshold
  • the second threshold may be 30%, but the present invention Not limited to this.
  • the base station when the base station counts the Bler in the adjustment period before the adjustment time of the first subframe set is greater than 15%, and the first in the first subframe set When the Bler in the adjustment period before the adjustment time is greater than 30%, the base station may change the first subframe from the first subframe set in the adjustment period before the adjustment time to the adjustment period before the adjustment time. Two sub-frames are in the collection.
  • the Bler in the adjustment period before the adjustment time is greater than the first threshold
  • the first subframe that meets the Bler in the adjustment period before the adjustment time is greater than the second threshold.
  • a plurality of subframes may be included. For example, in the first subframe set, four subframes may exist simultaneously while satisfying that Bler is greater than a second threshold.
  • the base station may limit the number of multiple subframes that satisfy the Bler condition, for example, when At the same time, there are 4 subframes in a subframe set that satisfy Bler greater than the second threshold. At this time, the base station only adjusts the subframes in the two subframes from the adjustment period before the adjustment time. A sub-frame set is changed to a second sub-frame set.
  • the 40 subframe groups may be divided according to a modulo operation manner, and subframes in each group of subframes are The value of the subframe number is the same as that of the modulo 40, and the base station may determine the two subframes in the order of the modulo values according to the size of the modulo value, and the first two subframes are from the first frame.
  • the subframe set is changed to the second subframe set. For example, three subframe groups with modulo values of 3, 4, and 7 satisfy the Bler adjustment condition, and the base station can select two subframe groups with modulus values of 3 and 4 to adjust.
  • the first subframe set in the adjustment period before the time is changed to the second subframe set.
  • the number of scheduling subframes included in the first subframe set is not less than a fifth threshold.
  • the 40 subframe groups may be divided according to a modulo operation manner, and subframes in each group of subframes are The value of the subframe number modulo 40 is the same.
  • the base station changes the subframe in the first group of subframes that meet the condition from the first subframe set to the second subframe set, the base station must satisfy the first subframe set.
  • the number of remaining subframe groups is greater than or equal to 10.
  • the setting of the fifth threshold to 10 is merely a specific implementation manner, and the present invention is not limited thereto.
  • the second subframe set before the adjustment time includes a second scheduling subframe, where the base station adjusts a time according to each of the multiple scheduling subframes.
  • the Bler adjusts the first subframe set and the second subframe set before the adjustment time to obtain the first subframe set and the second subframe set, including:
  • the base station acquires the Bler of the second subframe set before the adjustment time;
  • the base station is at the adjustment time. And changing the second subframe from the second subframe set before the adjustment time to the first subframe set before the adjustment time, to obtain the first subframe set and the second subframe set.
  • the Bler of the second subframe set before the base station obtains the adjustment time may be the same as the Bler of the first subframe set before the base station acquires the adjustment time, which is not limited by the present invention.
  • the Bler of the second subframe set before the adjustment time is greater than the third threshold
  • the third threshold may be the target Bler-5%
  • the target Bler may be the preset value of the base station.
  • the target Bler may be 10%
  • the Bler of the second subframe in the second subframe set before the adjustment time is less than or equal to the fourth threshold
  • the fourth threshold may be 0, but The invention is not limited to this.
  • the base station when the base station statistically adjusts the time, the Bler of the second subframe set in the previous update period is greater than 5%, and the second subframe before the adjustment time
  • the base station may change the second subframe from the second subframe set before the adjustment time to the first subframe set before the adjustment time, to obtain the first subframe.
  • the Bler of the second subframe set before the adjustment time is greater than the third threshold
  • the second subframe that meets the Bler greater than the fourth threshold in the second subframe set before the adjustment moment may be Including a plurality of subframes, for example, in the second subframe set before the adjustment time, there may be 4 subframes simultaneously and the Bler is less than or equal to the fourth threshold, and the base station may limit the multiple scheduling subframes that satisfy the Bler condition. For example, if there are four scheduling subframes in the second subframe set before the adjustment time, the Bler is less than or equal to the fourth threshold. In this case, the base station may only use one of the scheduling subframes from the second before the adjustment time.
  • the subframe set is changed to the first subframe set before the adjustment time.
  • the base station may divide the multiple scheduling subframes into 40 groups of subframes according to a modulo operation, and the subframe number in each group of subframes is the same after modulo 40, and the base station may satisfy Bler.
  • the four subframe groups of the condition determine a subframe group in which Bler is 0 according to the magnitude of the modulo value, and change the scheduling subframe in the subframe group from the second subframe set before the adjustment time to the first subframe group.
  • a set of subframes is obtained, and the first subframe set and the second subframe set are obtained.
  • the terminal transmits a Hybrid Automatic Repeat reQuest (HARQ) for downlink data feedback based on the first scheduling subframe or the second scheduling subframe, in an adjustment period before the adjustment time.
  • HARQ Hybrid Automatic Repeat reQuest
  • the number is greater than the fifth threshold.
  • the number of HARQs that the terminal transmits downlink data feedback based on the first scheduling subframe or the second scheduling subframe may be greater than 4, that is, the number of HARQs that the terminal feeds back based on the first scheduling subframe or the second scheduling subframe.
  • the base station may calculate that the Bler of the first scheduling subframe or the second subframe may be a valid Bler according to the ACK/NACK information fed back by the scheduling terminal. In this case, the base station may use the first scheduling subframe that satisfies the Bler condition or The set to which the second scheduling subframe belongs is changed.
  • FIG. 4 is a detailed description of the detailed steps or operations of the method for adaptive modulation and coding in the embodiment of the present invention.
  • the steps or operations are merely examples, and the embodiment of the present invention may have other operations that can be performed. Or the deformation of each operation in FIG.
  • the steps in FIG. 4 may be performed in a different order from that presented in FIG. 4, and it is possible that not all operations in FIG. 4 are to be performed. Work. It is to be understood that the following detailed description of the embodiments of the invention are intended to
  • the base station identifies the first terminal.
  • the base station may identify the first terminal according to the amount of data that the terminal receives the Radio Link Control (RLC) every second.
  • RLC Radio Link Control
  • the base station may set a preset threshold for the amount of data received by the terminal to reach the RLC every second.
  • the terminal may identify the terminal as the first a terminal. For example, in the embodiment of the present invention, if the amount of data to be transmitted is 0, the terminal can recognize the terminal as the first terminal when the amount of data arriving at the RLC is greater than 1250000 bytes per second; if the amount of data to be transmitted is not When the value is 0, the terminal can receive the RLC data per second, and the base station can identify the terminal as the first terminal. Therefore, the first terminal can also be called. For the terminal of a large package user.
  • the first terminal is a terminal that receives the data of the RLC to be greater than the preset threshold every second. Therefore, when the first terminal communicates with the base station, the online time is long and the number of scheduling times is large, and the technical solution of the present invention can be adopted. A larger throughput gain is obtained, but the invention is not limited thereto.
  • the first terminal may be multiple terminals.
  • the first terminal only reaches the terminal whose RLC data amount is greater than the preset threshold every second, that is, the terminal number of the terminal reaches the RLC per second in a certain period of time. If the threshold is greater than the preset threshold, the terminal No. 1 may be the first terminal, but in another time period, the terminal 1 does not satisfy the data amount of the RLC arriving at each time is greater than the preset threshold, and the terminal No. 1 is not the first terminal.
  • the base station receives the CQI sent by the first terminal.
  • the base station divides the multiple scheduling subframes into multiple subframe groups.
  • the base station may group the multiple scheduling subframes in an adjustment period according to the modulo operation.
  • the base station may take 40 as the modulus to the scheduling subframe.
  • the modulo operation divides the subframes corresponding to the subframe numbers with the same modulus value into a group, so that 40 subframe groups can be obtained, and each of the 40 subframe groups may include at least one scheduling subframe.
  • the base station may be configured according to the subframe The subframe number is modulo 40, so that the subframe group to which the subframe belongs can be obtained.
  • modulo algorithm refer to the foregoing.
  • the base station will schedule initialization of the subframe.
  • the base station may initialize all 40 subframe groups divided in S430 into a first subframe set, and the second subframe set may be an empty set.
  • the first subframe set may also be referred to as a low-interference subframe set
  • the second subframe set may also be referred to as a high-interference subframe set.
  • the base station divides the multiple scheduling subframes into a first subframe set and a second subframe set, where the first subframe set and the second subframe set respectively correspond to different
  • the CQI adjustment amount of the first subframe set may be initialized by the original CQI adjustment amount
  • the CQI adjustment amount corresponding to the second subframe set may be initialized to 0.
  • the base station adjusts the subframe in the subframe set.
  • the base station may determine the adjustment period of the subframe in the subframe set, where the adjustment period may be the time parameter * the number of the first terminal, and the adjustment period may be changed according to the number of the first terminal, so that the first terminal is guaranteed to be based on the scheduler.
  • the time parameter may be 320 ms.
  • the adjustment period may be 320 ms.
  • the adjustment period can be 640ms.
  • the base station before the arrival of the adjustment time, the base station continuously counts the ACK and NACK information that the terminal feeds back after transmitting the data according to each scheduling subframe, so that the Bler of the 40 subframe groups in the adjustment period before the adjustment time can be obtained, or The Bler calculation method of the first subframe set and the second subframe set in the adjustment period before the adjustment time is obtained.
  • the Bler calculation method of each scheduling subframe is described in the foregoing. For the sake of brevity of the application file, details are not described herein again.
  • the multiple scheduling subframes are divided into 40 subframe groups, which is only one specific implementation manner of the present invention, the Bler of each subframe group in the 40 subframe groups, and the first sub-frame.
  • the calculation method of the Bler of the frame set and the second subframe set may be the same as the calculation method of each scheduling subframe, that is, when calculating the Bler of the subframe set in which each subframe group or subframe group is located, It is to count the ACK/NACK information of all the terminals in the subframe group or the subframe set based on the scheduling subframe feedback, thereby calculating the Bler for acquiring the subframe group or the subframe set.
  • the subframe group in which the Bler is greater than 30% in the first subframe set may be changed from the first subframe set to the second subframe.
  • a frame set; if the Bler of the second subframe set is greater than the target Bler-5%, the subframe group in which the Bler is 0 in the second subframe set may be changed from the second subframe set before the adjustment time to the second at the adjustment time. Subframe collection.
  • the base station when determining, by the base station, the subframe set to which the subframe group belongs, the base station may first determine, according to the subframe group, the number of HARQs that the terminal feeds back after transmitting the data according to the subframes in the subframe group.
  • the base station may first determine, according to the subframe group, the number of HARQs that the terminal feeds back after transmitting the data according to the subframes in the subframe group.
  • the subframe group prohibits the change of the subframe set to which the subframe belongs.
  • the base station may further limit the number of the subframe groups in the first subframe set.
  • the base station when the base station performs the subframe group change to which the subframe group belongs, Limiting the number of subframe groups in the first subframe set to not less than 10, that is, when the number of subframe groups in the first subframe set is less than 10, the base station may prohibit the adjustment time.
  • the subframe group in the first subframe set is changed into the second subframe set.
  • the base station may further limit the subframe group of the first subframe set to the number of the second subframe set. For example, at the time of adjustment, the base station may only allow the first subframe set. The two subframe groups that satisfy the Bler condition are changed into the second subframe set. Certainly, the base station may also limit the subframe group of the second subframe set to the number of the first subframe set. For example, at the adjustment time, the base station may only allow one subframe group that satisfies the Bler condition to be changed to the first subframe. In the collection.
  • the base station determines, in an adjustment period, a subframe for scheduling the first terminal.
  • the base station modulo 40 according to the modulo data to be modulo, and determines a subframe group in which the subframe is located according to the modulo value. For example, the base station determines that the subframe number of the first terminal is 9 and the frame number of the station is 9, and the value of the base station after modulo is 19, so the base station can determine that the subframe is a subframe in the 19th subframe group. .
  • the base station may determine that the 19 subframe group is the first subframe set in the current adjustment period, and it should be understood that the 19 subframe group to which the subframe belongs is currently
  • the second subframe may also be a set in the period, and the embodiments of the present invention are merely exemplified herein.
  • S480 The base station adjusts the CQI reported by the first terminal according to the CQI adjustment amount corresponding to the subframe set to which the subframe of the first terminal belongs.
  • the base station determines, according to the adjusted CQI, the MCS that schedules the first terminal.
  • the base station may adjust, according to the ACK/NACK information sent by the first terminal according to the subframe in which the first terminal is scheduled, the CQI adjustment corresponding to the subframe set to which the subframe of the first terminal belongs. Make adjustments.
  • FIG. 5 is a schematic structural diagram of a base station according to an embodiment of the present invention.
  • the base station 500 of Figure 5 includes:
  • the receiving module 510 is configured to receive a channel quality indicator CQI sent by the first terminal;
  • a first determining module 520 configured to determine a subframe used to schedule the first terminal
  • a second determining module 530 configured to use the subframe set to which the subframe belongs, where the subframe set is a first subframe set or a second subframe set, where the first subframe set and the second subframe
  • the set of subframes respectively correspond to different CQI adjustment amounts
  • the adjusting module 540 is configured to adjust the CQI according to the CQI adjustment amount corresponding to the subframe set to which the subframe belongs;
  • the third determining module 550 is configured to determine, according to the adjusted CQI, the modulation and coding scheme MCS of the first terminal.
  • the base station may determine the subframe set to which the subframe belongs, and the subframe set may be the first subframe set or the second subframe set, and then according to the subframe.
  • the CQI adjustment amount corresponding to the set adjusts the CQI sent by the first terminal, thereby avoiding the phenomenon that the high signal-to-noise ratio of the low-interference subframe is wasted by using only one set of CQI adjustment amount in the prior art, and therefore, the present invention
  • the base station can effectively utilize the high signal to noise ratio of the low interference subframe in the current cell, and improve the transmission efficiency of the downlink data and the throughput rate of the current cell.
  • the CQI may further include the MCS recommended by the first terminal.
  • the base station may further acquire the MCS according to the preset mapping table of the CQI and the MCS.
  • the downlink data when the base station performs downlink data transmission with the first terminal, the downlink data may be large packet user data, but the invention is not limited thereto. It should be understood that, in the embodiment of the present invention, the large-packet user has a long online time and has many times of scheduling when transmitting the downlink data. Therefore, the technical solution implemented by the present invention can obtain a higher throughput gain.
  • the first subframe set and the second subframe set may be pre-divided sets.
  • the first subframe set and the second subframe set may be in accordance with The entire period is divided.
  • the base station may re-divide the first subframe set and the second subframe set, and the method for dividing the multiple scheduling subframes into the first subframe set and the second subframe set by the base station.
  • the base station may adjust, according to the ACK/NACK information sent by the first terminal according to the subframe in which the first terminal is scheduled, the CQI adjustment corresponding to the subframe set to which the subframe of the first terminal belongs. Make adjustments.
  • the base station of the adaptive modulation and coding of the embodiment of the present invention may further include:
  • a dividing module configured to divide the multiple scheduling subframes into a first subframe set and a second subframe set.
  • the dividing module may divide the multiple scheduling subframes in the serving cell into the first subframe according to the data bearer status of the subframe in the neighboring cell of the serving cell where the first terminal is located.
  • the set and the second subframe set, or the base station may further divide the multiple scheduling subframes in the serving cell into the first subframe set and the second subframe set according to the interference level of each subframe in the neighboring cell to the serving cell. .
  • the base station may further include:
  • An obtaining module configured to obtain response ACK/negative acknowledgement NACK information of multiple scheduling terminals
  • the dividing module is specifically configured to divide the multiple scheduling subframes into the first subframe set and the second subframe set according to the ACK/NACK information of the multiple scheduling terminals.
  • the base station may further include:
  • a statistic module configured to calculate, according to ACK/NACK information of the multiple scheduling terminals, a block error rate Bler of each of the plurality of scheduling subframes;
  • the dividing module is specifically configured to divide the multiple scheduling subframes into the first subframe set and the second subframe set according to a Bler of each scheduling subframe of the multiple scheduling subframes.
  • the statistic module is specifically configured to:
  • the Bler of each of the plurality of scheduling subframes is counted by using the following formula:
  • Bler(i) indicates Bler of the i-th subframe of the plurality of scheduling subframes within a preset time;
  • N NACK (i) indicates that the terminal is based on the i-th subframe within a preset time The number of NACKs sent back by the downlink data transmitted;
  • N ACK (i) represents the number of ACKs that the terminal feeds back based on the downlink data transmitted on the i-th subframe within a preset time;
  • N DTX (i) indicates The preset time is based on the number of discontinuous transmission DTX states in which the signal is not transmitted on the i-th subframe.
  • the statistic module is specifically configured to:
  • the Bler of each of the plurality of scheduling subframes is counted by using the following formula:
  • Bler(i) indicates Bler of the i-th subframe of the plurality of scheduling subframes within a preset time;
  • N NACK (i) indicates that the terminal transmits based on the i-th subframe within a preset time The number of NACKs of the downlink data feedback;
  • N ACK (i) represents the number of ACKs that the terminal feeds back based on the downlink data transmitted on the i-th subframe within a preset time;
  • N DTX (i) indicates In the set time, the terminal is based on the number of discontinuous transmission DTX states in which no signal is transmitted on the i-th subframe.
  • the acquiring module of the base station is further configured to:
  • the dividing module is specifically configured to adjust, according to the Bler before the adjustment time, each of the scheduling subframes of the multiple scheduling subframes, and adjust the subframes in the first subframe set and the second subframe set before the adjustment time And obtaining the first subframe set and the second subframe set.
  • the base station counts the Bler of the adjustment period of each scheduling subframe before the adjustment time, and the adjustment period may be related to the number of large packets of users transmitting data by the base station.
  • the first subframe set before the adjustment time includes a first scheduling subframe
  • the acquiring module of the base station is further configured to:
  • the dividing module is specifically configured to: if the Bler of the first subframe set before the adjustment time is greater than the first threshold, and the Bler of the first scheduling subframe in the first subframe set before the adjustment time is greater than the second threshold, The base station changes the first subframe from the first subframe set before the adjustment time to the second subframe set before the adjustment time, and obtains the first subframe set and the second subframe set.
  • the second subframe set before the adjustment time includes a second scheduling subframe
  • the acquiring module of the base station is further configured to:
  • the dividing module is specifically configured to: if the Bler of the second subframe set before the adjustment time is greater than the third threshold, and the Bler of the second subframe in the second subframe set before the adjustment time is less than or equal to the fourth threshold, The base station changes the second subframe from the second subframe set before the adjustment time to the first subframe set before the adjustment time, and obtains the first subframe set and the second subframe set. Hehe.
  • FIG. 6 is a schematic block diagram of a base station according to an embodiment of the present invention.
  • the base station 600 shown in FIG. 6 includes a receiver 620 that can be coupled to the processor 610 via a bus 640.
  • the receiver 620 is configured to receive data or information
  • the memory 630 stores execution instructions
  • the processor 610 communicates with the memory 630
  • the processor 610 calls the execution instructions in the memory 630.
  • the receiver 620 is configured to receive a channel quality indicator CQI sent by the first terminal.
  • the processor 610 is configured to determine a subframe used to schedule the first terminal.
  • the processor 610 is further configured to: the subframe set to which the subframe belongs, where the subframe set is a first subframe set or a second subframe set, where the first subframe set and the second subframe
  • the frame sets respectively correspond to different CQI adjustment amounts
  • the processor 610 is further configured to: adjust the CQI according to a CQI adjustment amount corresponding to the subframe set to which the subframe belongs;
  • the processor 610 is further configured to determine, according to the adjusted CQI, the modulation and coding scheme MCS of the first terminal.
  • the base station may determine the subframe set to which the subframe belongs, and the subframe set may be the first subframe set or the second subframe set, and then according to the subframe.
  • the CQI adjustment amount corresponding to the set adjusts the CQI sent by the first terminal, thereby avoiding the phenomenon that the high signal-to-noise ratio of the low-interference subframe is wasted by using only one set of CQI adjustment amount in the prior art, and therefore, the present invention
  • the base station can effectively utilize the high signal to noise ratio of the low interference subframe in the current cell, and improve the transmission efficiency of the downlink data and the throughput rate of the current cell.
  • the CQI may further include the MCS recommended by the first terminal.
  • the base station may further acquire the MCS according to the preset mapping table of the CQI and the MCS.
  • the downlink data when the base station performs downlink data transmission with the first terminal, the downlink data may be large packet user data, but the invention is not limited thereto. It should be understood that, in the embodiment of the present invention, the large-packet user has a long online time and has many times of scheduling when transmitting the downlink data. Therefore, the technical solution implemented by the present invention can obtain a higher throughput gain.
  • the first subframe set and the second subframe set may be pre-divided sets.
  • the first subframe set and the second subframe set may be in accordance with The entire period is divided.
  • the base station may re-divide the first subframe set and the second subframe set, and the method for dividing the multiple scheduling subframes into the first subframe set and the second subframe set by the base station.
  • the base station may adjust, according to the ACK/NACK information sent by the first terminal according to the subframe in which the first terminal is scheduled, the CQI adjustment corresponding to the subframe set to which the subframe of the first terminal belongs. Make adjustments.
  • the processor 610 is further configured to:
  • the plurality of scheduling subframes are divided into a first subframe set and a second subframe set.
  • the dividing module may divide the multiple scheduling subframes in the serving cell into the first subframe according to the data bearer status of the subframe in the neighboring cell of the serving cell where the first terminal is located.
  • the set and the second subframe set, or the base station may further divide the multiple scheduling subframes in the serving cell into the first subframe set and the second subframe set according to the interference level of each subframe in the neighboring cell to the serving cell. .
  • the processor 610 is further configured to obtain acknowledgement ACK/negative acknowledgement NACK information of the multiple scheduling terminals, and the multiple schedulers according to the ACK/NACK information of the multiple scheduling terminals.
  • the frame is divided into the first subframe set and the second subframe set.
  • the processor 610 is further configured to: calculate, according to the ACK/NACK information of the multiple scheduling terminals, a block error rate Bler of each of the plurality of scheduling subframes; The Bler of each of the plurality of scheduling subframes divides the plurality of scheduling subframes into the first subframe set and the second subframe set.
  • the processor 610 counts Bler of each of the plurality of scheduling subframes by using the following formula:
  • Bler(i) indicates Bler of the i-th subframe of the plurality of scheduling subframes within a preset time;
  • N NACK (i) indicates that the terminal is based on the i-th subframe within a preset time The number of NACKs sent back by the downlink data transmitted;
  • N ACK (i) represents the number of ACKs that the terminal feeds back based on the downlink data transmitted on the i-th subframe within a preset time;
  • N DTX (i) indicates The preset time is based on the number of discontinuous transmission DTX states in which the signal is not transmitted on the i-th subframe.
  • the processor 610 counts Bler of each of the plurality of scheduling subframes by using the following formula:
  • Bler(i) indicates Bler of the i-th subframe of the plurality of scheduling subframes within a preset time;
  • N NACK (i) indicates that the terminal transmits based on the i-th subframe within a preset time The number of NACKs of the downlink data feedback;
  • N ACK (i) represents the number of ACKs that the terminal feeds back based on the downlink data transmitted on the i-th subframe within a preset time;
  • N DTX (i) indicates In the set time, the terminal is based on the number of discontinuous transmission DTX states in which no signal is transmitted on the i-th subframe.
  • the processor 610 is further configured to: when the adjustment time arrives, obtain a Bler before the adjustment time of each of the multiple scheduling subframes; according to the multiple scheduling Adjusting, in the Bler before the adjustment time, the subframes before the adjustment time, and adjusting the subframes in the first subframe set and the second subframe set before the adjustment time, to obtain the first subframe set and the first subframe Two subframe sets.
  • the base station counts the Bler of the adjustment period of each scheduling subframe before the adjustment time, and the adjustment period may be related to the number of large packets of users transmitting data by the base station.
  • the first subframe set before the adjustment time includes a first scheduling subframe
  • the processor 610 is further configured to:
  • the base station will The first subframe is changed from a first subframe set before the adjustment time to a second subframe set before the adjustment time, to obtain the first subframe set and the second subframe set.
  • the second subframe set before the adjustment time includes a second scheduling subframe
  • the processor 610 is further configured to:
  • the base station is at the adjustment time. And changing the second subframe from the second subframe set before the adjustment time to the first subframe set before the adjustment time, to obtain the first subframe set and the second subframe set.
  • the disclosed systems, devices, and methods may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division.
  • there may be another division manner for example, multiple units or components may be combined or Can be integrated into another system, or some features can be ignored or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be in an electrical, mechanical or other form.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • each functional unit in each embodiment of the present invention may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the functions may be stored in a computer readable storage medium if implemented in the form of a software functional unit and sold or used as a standalone product.
  • the technical solution of the present invention which is essential or contributes to the prior art, or a part of the technical solution, may be embodied in the form of a software product, which is stored in a storage medium, including
  • the instructions are used to cause a computer device (which may be a personal computer, server, or network device, etc.) to perform all or part of the steps of the methods described in various embodiments of the present invention.
  • the foregoing storage medium includes: a U disk, a mobile hard disk, a read-only memory (ROM), a random access memory (RAM), a magnetic disk, or an optical disk, and the like. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明提供了一种自适应调制编码的方法和基站,包括:基站接收第一终端发送的信道质量指示CQI;该基站确定用于调度所述第一终端的子帧;所述基站确定该子帧所属的子帧集合,该子帧集合为第一子帧集合或第二子帧集合,其中,该第一子帧集合和该第二子帧集合分别对应不同的CQI调整量;该基站根据该子帧所属的子帧集合对应的CQI调整量,调整该CQI;所述基站根据调整的CQI确定调度该第一终端的调制编码方案MCS。在本发明中,基站分别维护第一子帧集合和第二子帧集合各自对应的CQI调整量,与现有技术相比,更加灵活,避免了现有技术中只采用一套CQI调整量而造成低干扰子帧的高信噪比浪费的现象,可以有效利用网络中低干扰子帧的高信噪比,提高下行数据的传输效率和网络系统的吞吐率。

Description

自适应调制编码的方法和基站 技术领域
本发明涉及通信领域,尤其涉及一种自适应调制编码的方法和基站
背景技术
为了满足人们日益增加的对数据业务的需求,第三代合作伙伴计划(3GPP,3rd Generation Partnership Project)启动了“长期演进(LTE,Long Term Evolution)项目”,该LTE项目旨在通过不断演进的3G系统,提供更强大的数据业务支持,为用户提供更好的服务。LTE系统的关键技术包括调度和自适应调制编码技术。
现有技术通过自适应调制和编码(Adaptive Modulation and Coding,AMC)机制来不断调整用户设备上报的信道质量指示(Channel quality indicator,CQI),通过应答(Acknowledge,ACK)/否定应答(Negative Acknowledge,NACK)信息、以及目标误块率动态调整调制与编码策略(Modulation and Coding Scheme,MCS),最终使得UE的下行数据误块率(Block Error Rate,Bler)收敛于目标值。AMC机制中CQI调整算法的公式为:
Figure PCTCN2016098859-appb-000001
其中,FinalDLCqiAdjStepOfbler是调整步长,缺省值可以为0.1;BlerTarget为目标误块率,缺省值可以为10%;BlerMeas为误块率测量值,当收到NACK时,BlerMeans为1,当收到ACK时,BlerMeas为0。
但是,在实际网络中,邻小区对服务小区的干扰是实时变化的,尤其是在导频呼吸算法打开后,网络中的干扰是呈现有规律的变化的,现有的AMC机制无法适应服务小区内干扰实时变化的情况,从而使服务小区中受到邻区干扰较小的子帧上传输数据的MCS主要由受到干扰较大的子帧决定,影响网络系统的数据传输效率和吞吐率。
发明内容
本申请提出了一种自适应调制编码方法和基站,以提高网络系统的的数据传输效率和吞吐率。
第一方面,提供了一种自适应调制编码的方法,包括:基站接收第一终端发送的信道质量指示CQI;所述基站确定用于调度所述第一终端的子帧;所述基站确定所述子帧所属的子帧集合,所述子帧集合为第一子帧集合或第二子帧集合,其中,所述第一子帧集合和所述第二子帧集合分别对应不同的CQI调整量;所述基站根据所述子帧所属的子帧集合对应的CQI调整量,调整所述CQI;所述基站根据调整的CQI确定调度所述第一终端的调制编码方案MCS。
在该方案中,基站确定调度第一终端的子帧后,基站可以确定该子帧所属的子帧集合,该子帧集合可以为第一子帧集合或第二子帧集合,然后根据该子帧集合所对应的CQI调整量对第一终端发送的CQI进行调整,从而避免了现有技术中只采用一套CQI调整量而造成低干扰子帧的高信噪比浪费的现象,因此,基站可以有效利用当前小区中低干扰子帧的高信噪比,提高下行数据的传输效率和网络系统的吞吐率,并且与现有技术相比,可以灵活的对终端上报的CQI进行调整,提高了系统的灵活性。
结合第一方面,在第一方面的某些实现方式中,所述方法还包括:所述基站将多个调度子帧划分为所述第一子帧集合和所述第二子帧集合。
结合第一方面,在第一方面的某些实现方式中,所述基站将多个调度子帧划分为所述第一子帧集合和所述第二子帧集合,包括:所述基站获取多个调度终端的应答ACK/否定应答NACK信息;所述基站根据所述多个调度终端的ACK/NACK信息,将所述多个调度子帧划分为所述第一子帧集合和所述第二子帧集合。
在该方案中,基站可以根据调度终端的ACK/NACK信息,将多个调度子帧划分为第一子帧集合和第二子帧集合,不需要从与终端所在服务小区的邻小区获取邻小区子帧的承载数据状态,提高了系统的灵活性和方案的实用性。
结合第一方面,在第一方面的某些实现方式中,所述基站根据所述多个调度终端的ACK/NACK信息,将所述多个调度子帧划分为所述第一子帧集合和所述第二子帧集合,包括:所述基站根据所述多个调度终端的ACK/NACK信息,统计所述多个调度子帧的每个调度子帧的误块率Bler;所述基站根据所述多个调度子帧的每个调度子帧的Bler,将所述多个调度子帧划分为所述第一子帧集合和所述第二子帧集合。
结合第一方面,在第一方面的某些实现方式中,所述基站根据所述多个调度子帧的每个调度子帧的Bler,将所述多个调度子帧划分为所述第一子帧集合和所述第二子帧集合,包括:当调整时刻到达时,所述基站获取所述多个调度子帧的每个调度子帧在调整时刻前的Bler;所述基站根据所述多个调度子帧的每个调度子帧在调整时刻前的Bler,对调整时刻前的第一子帧集合和第二子帧集合中的子帧进行调整,得到所述第一子帧集合和所述第二子帧集合。
在该方案中,基站可以通过统计调整时刻前的调整周期内每个调度子帧的Bler,根据该调度子帧的Bler,对调整时刻前的调整周期内第一子帧集合和第二子帧集合进行调整,从而可以动态的变更调度子帧所属的子帧集合,提高了系统的灵活性。
结合第一方面,在第一方面的某些实现方式中,所述调整时刻前的第一子帧集合包括第一调度子帧,所述基站根据所述多个调度子帧的每个调度子帧在调整时刻前的Bler,对调整时刻前的第一子帧集合和第二子帧集合进行调整,得到所述第一子帧集合和所述第二子帧集合,包括:当调整时刻到达时,所述基站获取调整时刻前的第一子帧集合的Bler;如果调整时刻前的第一子帧集合的Bler大于第一阈值,且所述调整时刻前的第一子帧集合中的第一子帧的Bler大于第二阈值,所述基站在调整时刻将所述第一子帧从调整时刻前的第一调度子帧集合更改至调整时刻前的第二子帧集合,得到所述第一子帧集合和所述第二子帧集合。
结合第一方面,在第一方面的某些实现方式中,所述调整时刻前的第二子帧集合包括第二调度子帧,所述基站根据所述多个调度子帧的每个调度子帧在调整时刻的的Bler,对调整时刻前的第一子帧集合和第二子帧集合进行调整,得到所述第一子帧集合和所述第二子帧集合,包括:当调整时刻到达时,所述基站获取调整时刻前的第二子帧集合的Bler;如果调整时刻前的第二子帧集合的Bler大于第三阈值,且所述调整时刻前的第二子帧集合中的第二子帧的Bler小于等于第四阈值,所述基站在调整时刻将所述第二子帧从调整时刻前的第二子帧集合更改至调整时刻前的第一子帧集合,得到所述第一子帧集合和所述第二子帧集合。
结合第一方面,在第一方面的某些实现方式中,所述基站根据所述多个调度终端的ACK/NACK信息,统计所述多个调度子帧的每个调度子帧的误 块率Bler包括:所述基站利用如下公式统计所述多个调度子帧的每个调度子帧的Bler:
Figure PCTCN2016098859-appb-000002
其中,Bler(i)表示所述多个调度子帧中的第i个子帧在预设时间内的Bler;NNACK(i)表示在预设时间内,终端基于所述第i个子帧上传输的下行数据反馈的NACK的个数;NACK(i)表示在预设时间内,终端基于所述第i个子帧上传输的下行数据反馈的ACK的个数;NDTX(i)表示在预设时间内,终端基于所述第i个子帧上没有发送信号的非连续发送DTX状态的个数。
结合第一方面,在第一方面的某些实现方式中,所述第一终端为每秒接收的到达无线电链路控制(Radio Link Control,RLC)的数据量大于预设门限的终端。
第二方面,提供了一种基站,包括用于执行第一方面或第一方面的任意一种实现方式所描述的方法的单元或模块。
第三方面,提供了一种基站,包括接收器、存储器和处理器,所述存储器用于存储程序,所述处理器用于执行程序,当程序被执行时,所述处理器具体用于执行第一方面或第一方面的任意一种实现方式所描述的方法。
第四方面,提供了一种计算机可读介质,所述计算机可读介质用于存储程序代码,所述程序代码包含用于执行第一方面或第一方面的任意一种实现方式所描述的方法的指令。
附图说明
为了更清楚的说明本发明实施例的技术方案,下面将对本发明实施例中需要使用的附图进行简单介绍,显而易见地,下面所描述的附图仅仅是本发明的一些实施例,对于本领域普通技术人员而言,在不付出创造性劳动的前提下,还可以根据这些附图获得其他附图。
图1是本发明实施例的通信系统示意图;
图2是导频呼吸打开后轻载下服务小区干扰变化示意图;
图3是本发明实施例的自适应调制编码方法的示意性流程图;
图4是本发明另一实施例的自适应调制编码方法的详细流程图;
图5是本发明实施例的基站的示意性框图;
图6是本发明另一实施例的基站的示意性结构图。
具体实施方式
下面将结合本发明实施例的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明的一部分实施例,而不是全部实施例。基于本发明中的实施例,本领域技术人员在没有做出创造性劳动的前提下所获得的所有其他实施例,都应属于本发明保护范围。
应理解,本发明的技术方案,可以应用于各种通信系统,例如:长期演进(Long Term Evolution,简称“LTE”)以及未来5G通信系统等。
应理解,对于LTE系统而言,针对不同的双工方式定义了不同的帧结构。例如,在时分双工通信系统(Time Division Duplexing,TDD)无线帧的长度是10毫秒(ms),有两个长度为5ms的半帧组成,每个半帧包括5个长度为1ms的子帧,也就是说整个无线帧被分成了10个长度为1ms的子帧。再例如,在频分双工通信系统中(Frequency Division Duplexing,FDD)中,每个10ms的无线帧被分为10个1ms的子帧,每个子帧包括两个时隙,每个时隙为0.5ms,每个时隙可以由若干资源块(Physical Resource Block,PRB)。
图1是能够应用本发明实施例的通信系统示意图100。该通信系统100可以包括至少一个网络设备1101,如基站或基站控制器等。每个网络设备110可以为特定的地理区域提供通信覆盖,并且可以与位于该覆盖区域(小区)内的终端(例如UE)进行通信。该网络设备110可以是是LTE系统中的演进型基站(evolved Node B,简称为“eNB”或“eNodeB”),或者是云无线接入网络(Cloud Radio Access Network,简称为“CRAN”)中的无线控制器,或者该网络设备可以为中继站、接入点、车载设备、可穿戴设备、未来5G网络中的网络侧设备或者未来演进的公共陆地移动网络(Public Land Mobile Network,简称为“PLMN”)中的网络设备等。
该无线通信系统100还包括位于网络设备110覆盖范围内的多个终端120。该多个终端可以是不同制式的终端,例如图1中所示的两个终端可以分别为4G终端和5G终端。图1示例性地示出了一个网络设备和两个终端,可选地,该通信系统100可以包括多个网络设备并且每个网络设备的覆盖范围内可以包括其它数量的终端,本发明实施例对此不做限定。
还应理解,终端可以包括用户设备(User Equipment,简称“UE”),也 可称之为移动终端(Mobile Terminal)、移动用户设备等,可以经无线接入网(例如,Radio Access Network,简称“RAN”)与一个或多个核心网进行通信,用户设备可以是移动终端,如移动电话(或称为“蜂窝”电话)和具有移动终端的计算机,例如,可以是便携式、袖珍式、手持式、计算机内置的或者车载的移动装置,它们与无线接入网交换语言和/或数据。
可选地,该无线通信系统100还可以包括网络控制器、移动管理实体等其他网络实体,本发明实施例不限于此。
图2是本发明实施例的自适应调制编码的方法的示意性流程图。图2的方法可以由基站执行。该方法包括:
S210,基站接收第一终端发送的CQI。
具体地,在本发明实施例中,当基站有下行数据需要向第一终端发送时,基站可以向该第一终端发送小区特定参考信息号(Cell Specific Reference Signal,CRS),该第一终端可以根据该CRS生成CQI并向基站发送该CQI。
可选地,在一些实施例中,该CQI还可以包括该第一终端推荐的MCS。
可选地,在一些实施例中,基站还可以根据预设的CQI与MCS的映射表获取MCS。
S220,所述基站确定用于调度所述第一终端的子帧。
具体而言,基站在接收到该第一终端发送的CQI之后,可以根据该CQI,通过一定的策略为该第一终端分配下行资源。例如,基站可以根据该第一终端上报的CQI,确定调度该第一终端的子帧(例如帧号为10的帧上的3号子帧)以及适用该信道质量的MCS。
可选地,在一些实施例中,第一终端可以为大包用户终端,基站与该第一终端通过子帧传输的数据可以为大包用户数据。具体地,大包用户终端在线时间长,在传输下行数据时调度的次数多,因此采用本发明实施提供的划分子帧集合,并维护各子帧集合对应的CQI调整量的方案可以获取更高的吞吐率增益。
具体地,在本发明实施例中,基站在与终端进行数据传输之前,可以先识别终端是否为大包用户终端。具体地,在本发明实施例中,当终端每秒达到无线链路控制(Radio Link Control,RLC)的数据量大于预设门限时,基站可以将该终端识别为大包用户终端。应理解,本发明实施例对该预设门限的数值不做具体限定,例如,若待传数据量为0时,该预设门限可以为 1250000字节(byte),即如果终端每秒到达RLC的数据量大于1250000byte时,基站将该终端识别为大包用户终端;又如,若待传数据量不为0时,则该预设门限可以是Min{待传数据量*1000/8byte,1250000byte},其中,Min{待传数据量*1000/8byte,1250000byte}表示预设门限取待传数据量*1000/8byte和1250000byte中的较小值。
S230,所述基站确定所述子帧所属的子帧集合,所述子帧集合为第一子帧集合或第二子帧集合,其中,所述第一子帧集合和所述第二子帧集合分别对应不同的CQI调整量。
本发明实施例中,基站分别维护第一子帧集合和第二子帧集合各自对应的CQI调整量,与现有技术相比,更加灵活,为不同子帧集合维护不同的CQI调整量,提高了网络系统的数据传输效率和吞吐率。例如,在图3所示的高低干扰交替进行的场景下,将高干扰的子帧划分为第一子帧集合,低干扰的子帧划分为第二子帧集合,从而对两种集合中的调度子帧采用不同的CQI调整量进行调整,可以较大程度的提高网络系统的数据传输效率和吞吐率。下文对将此进行详细论述。
由上文给出的AMC机制中的CQI调整算法可知,当基站收到终端发送的一个NACK时,CQI的调整量约是收到ACK的10倍。因此,邻小区发送系统消息子帧的比例大于AMC机制所设置的Bler目标值,也就是说邻小区有大于10%的子帧干扰很强,该AMC机制计算出的CQI调整量主要取决于这部分高干扰子帧上的信道质量,最终基站选取的MCS也将主要取决于这部分高干扰子帧上的信道质量,因此,即使在没有受到干扰的子帧或者低干扰子帧上调度终端时,调度该终端的MCS也会选择偏低,这样就会无法体现低干扰子帧的高信噪比(Signal Noise Ratio,SNR)的特性,降低了服务小区的吞吐率。
因此,在一些实施例中,可以根据邻区干扰情况,将调度子帧划分为第一子帧集合和第二子帧集合,其中,第一子帧集合受到的邻区干扰小于第二子帧集合受到的邻区干扰,因此,第一子帧集合也可称为低干扰子帧集合,第二子帧集合也可称为高干扰子帧集合。基站维护低干扰子帧集合和高干扰子帧集合各自的CQI调整量,避免了现有技术中只采用一套CQI调整量而造成的无法体现低干扰子帧的高信噪比的问题,从而提高了小区的吞吐率。
需要说明的是,本发明实施例对子帧集合的划分时机和划分方式不做具 体限定,例如,可以采用固定划分的方式,直接将子帧划分为第一子帧集合和第二子帧集合。
可选地,在一些实施例中,第一子帧集合和第二子帧集合可以是按照调整周期进行划分,在调整周期到达时刻,基站可以将多个调度子帧重新划分为第一子帧集合和第二子帧集合,对于基站将多个调度子帧划分为第一子帧集合和第二子帧集合的方式将在下面详细介绍,在此不再赘述。
S240,所述基站根据所述子帧的所属的子帧集合对应的CQI调整量,调整所述CQI;
S250,所述基站根据调整的CQI确定调度所述第一终端的调制编码方案MCS。
具体地,在本发明实施例中,基站可以根据调度第一终端的子帧所属的子帧集合对应的CQI调整量,对该第一终端上报的CQI进行调整,从而根据调整后的CQI确定调度该第一终端的调制编码方案MCS。例如,在本发明实施例中,第一子帧集合对应的CQI调整量可以为2,第二子帧集合对应的CQI调整量可以为-1,基站接收第一为终端上报的CQI为3,当基站确定调度第一终端的子帧属于第一子帧集合时,基站可以确定调度第一终端的调整后的CQI为5,基站可以根据调整后的CQI(即取值为5的CQI)来确定调度该第一终端的MCS。当然,如果基站确定调度第一终端的子帧属于第二子帧集合时,基站可以确定调度第一终端的调整后的CQI为2,基站可以根据调整后的CQI(即取值为2的CQI)来确定调度该第一终端的MCS。
本发明实施例提供的自适应调制编码的方法,基站可以根据调度第一终端的子帧所属的子帧集合,从而根据所属子帧集合对应的CQI调整量,对第一终端上报的CQI进行调整,与现有技术相比,更加灵活。
可选地,在一些实施例中,基站可以基于调度第一终端的子帧发送的ACK/NACK信息,对调度该第一终端的子帧所属的子帧集合对应的CQI调整量进行调整。
具体地,在本发明实施例中,当基站确定调度第一终端的子帧所属的子帧集合后,基站通过该子帧与该第一终端进行下行数据的传输,终端可以向基站反馈该子帧中传输的数据的ACK/NACK信息,基站在接收到该ACK/NACK信息后,可以利用AMC机制对该子帧所属的子帧集合对应的CQI调整量进行调整。
可选地,在一些实施例中,本发明实施例的自适应调制编码的方法还可以包括:
所述基站将多个调度子帧划分为第一子帧集合和第二子帧集合。
需要说明的是,在本发明实施例中,该多个调度子帧可以为调度多个终端的子帧,也可以为调度一个终端的子帧。
可选地,在一些实施例中,基站可以接收邻小区对应的基站的指示信息;基站可以根据该指示信息,将多个调度子帧划分为第一子帧集合和第二子帧集合。该指示信息可以指示该邻小区对第一终端所在小区的干扰情况,或者该指示信息指示多个调度子帧的划分方式。本发明实施例直接根据邻小区对应的基站接收指示信息,并基于该指示信息直接对多个调度子帧进行划分,该划分方式实现简单,便于操作。
可选地,在一些实施例中,基站可以接收邻小区对应的基站的指示信息;基站可以根据该指示信息,将多个调度子帧划分为第一子帧集合和第二子帧集合。该指示信息可以指示该邻小区对第一终端所在小区的干扰情况,或者该指示信息指示多个调度子帧的划分方式。本发明实施例直接根据邻小区对应的基站接收指示信息,并基于该指示信息直接对多个调度子帧进行划分,该划分方式实现简单,便于操作。
可选地,在一些实施例中,基站可以根据调度第一终端所在的服务小区的邻小区中子帧的数据承载状态,将该服务小区中的多个调度子帧划分为第一子帧集合和第二子帧集合,或者,基站也可以根据邻小区中各个子帧对服务小区的干扰等级,将服务小区中的多个调度子帧划分为第一子帧集合和第二子帧集合。
应理解,在本发明实施例中,基站确定用于调度第一终端的子帧,该子帧可以称为服务小区中的子帧,该服务小区可以包括至少一个邻小区。
应理解,所述数据承载状态可以包括未承载数据、承载少量数据、承载较多数据等。例如被关断的子帧(例如子帧号2、3)的数据承载状态可以为未承载状态;承载广播消息的子帧号0的数据承载状态可以为承载较多数据;未被关断的子帧号(例如子帧号1、4)的数据承载状态可以为承载少量数据。
还应理解,邻区的子帧的数据承载状态体现出该子帧所承载的数据越多时,则该子帧对服务小区的干扰等级也越高。也就是说,邻区的子帧的数据承载状态也能够间接体现出邻区的该子帧号对服务小区的干扰等级。
例如,对于0~9的10个子帧号,子帧数据承载状态可以为:子帧号0、子帧号5为承载较多数据;子帧号1、子帧号4、子帧号9为承载少量数据;子帧号2、子帧号3、子帧号6、子帧号7、子帧号8为为承载数据。其中,承载较多数据的各子帧对服务小区的干扰等级为高干扰,承载少量数据的各子帧对服务小区的干扰等级为中干扰,为承载数据的各子帧对服务小区的干扰等级为低干扰。
需要说明的是,在本发明实施例中,通过第一终端所在的服务小区的邻小区的子帧承载数据状态或邻小区对服务小区的干扰等级将多个调度子帧划分为第一子帧集合和第二子帧集合时,需要服务小区和邻小区为时间同步小区。
可选地,在一些实施例中,基站将多个调度子帧划分为所述第一子帧集合和所述第二子帧集合,还可以包括:
基站获取多个调度终端的ACK/NACK信息;
所述基站根据所述多个调度终端的ACK/NACK信息,将所述多个调度子帧划分为所述第一子帧集合和所述第二子帧集合。
本发明实施例根据多个调度终端的ACK/NACK信息,直接将多个调度子帧划分为第一子帧集合和第二子帧集合,而无需参考邻区的信息,也就无需要求第一终端的服务小区和邻小区时间同步,增加了系统的灵活性。
具体地,在本发明实施例中,基站通过调度子帧向终端发送数据后,终端可以向基站发送调度子帧中的下行数据的ACK/NACK信息,当终端正确接收基站发送的下行数据时,终端可以向基站发送ACK信息,当终端未正确接收基站发送的下行数据时,终端可以向基站发送NACK信息,基站可以根据该多个调度终端的ACK/NACK信息,将该多个调度子帧划分为第一子帧集合和第二子帧集合。
可选地,在一些实施例中,所述基站获取终端的基于调度子帧的ACK/NACK信息,可以具体为:所述基站获取终端基于调度子帧的码字0上的数据发送的ACK/NACK信息,从而将多个调度子帧划分为第一子帧集合和第二子帧集合。
可选地,在一些实施例中,所述基站获取终端的基于调度子帧的ACK/NACK信息,还可以具体为:基站获取所述终端基于调度子帧的码字1上的数据发送的ACK/NACK信息,从而将多个调度子帧划分为第一子帧集 合和第二子帧集合,但本发明不限于此。可选地,在一些实施例中,所述基站根据所述多个调度终端的ACK/NACK信息,将所述多个调度子帧划分为所述第一子帧集合和第所述二子帧集合,可以包括:
基站统计预设时间内多个调度子帧中的每个调度子帧对应的ACK和NACK个数;
当某个调度子帧的ACK个数大于或等于NACK个数时,将该调度子帧划分至第一子帧集合;
当某个调度子帧的ACK个数小于NACK个数时,可以将该调度子帧划分至第二子帧集合。
可选地,在一些实施例中,所述基站根据所述多个调度终端的ACK/NACK信息,将所述多个调度子帧划分为所述第一子帧集合和所述第二子帧集合,还可以包括:
所述基站根据所述多个调度终端的ACK/NACK信息,统计所述多个调度子帧的每个调度子帧的Bler;
所述基站根据所述多个调度子帧的每个调度子帧的Bler,将所述多个调度子帧划分为所述第一子帧集合和所述第二子帧集合。
应理解,在本发明实施例中,多个调度子帧中的每个调度子帧用于调度终端进行下行数据传输,该调度子帧可以为一个子帧或者一组子帧,对此本发明不做限定。如果每个调度子帧代表一组子帧,则每个调度子帧的Bler可以指该一组子帧的Bler。
可选地,在一些实施例中,所述基站根据所述多个调度子帧的每个调度子帧的Bler,将所述多个调度子帧划分为所述第一子帧集合和所述第二子帧集合,可以包括:
基站将多个调度子帧划分为多个子帧组;
所述基站根据所述多个子帧组的每个调度子帧的Bler,将多个子帧组划分为第一子帧集合和第二子帧集合。
具体地,在本发明实施例中,所述多个调度子帧被划分为多组子帧可以有多种方式,可选地,作为一种实现方式,基站可以将多个调度子帧的帧号作为待取模数据进行取模运算,将子帧的帧号取模后的值相同的子帧划分为一组。例如,在本发明实施例中,基站可以获取非连续接收(Discontinuous Reception,DRX)的长周期的整倍数作为模数对子帧号进行取模运算。
具体地,在本发明实施例中,基站可以获取调度子帧的子帧号n以及该调度子帧所在的无线帧号N,基站可以通过如下公式计算该调度子帧的待取模数据M:
M=N*10+n
基站可以取一个DRX长周期作为模数,例如,DRX长周期一般配置为40ms,在此,基站可以取40作为模数。基站可以将多个调度子帧的待取模数据对40取模,从而将取模后的值相同的子帧作为一组子帧。
应理解,在本发明实施例中,通过取模运算将多个调度子帧划分为多个子帧组仅仅是本发明的一种具体实现方式,但本发明不限于此。
可选地,在一些实施例中,所述基站可以利用如下公式统计所述多个调度子帧中每个调度子帧的Bler:
Figure PCTCN2016098859-appb-000003
其中,其中,Bler(i)表示所述多个调度子帧中的第i个子帧在预设时间内的Bler;NNACK(i)表示在预设时间内,终端基于所述第i个子帧上传输的下行数据反馈的NACK的个数;NACK(i)表示在预设时间内,终端基于所述第i个子帧上传输的下行数据反馈的ACK的个数;NDTX(i)表示在预设时间内,终端基于所述第i个子帧上没有发送信号的非连续发送DTX状态的个数。
可选地,在一些实施例中,所述基站还可以利用如下公式统计所述多个调度子帧中的每组子帧的Bler:
Figure PCTCN2016098859-appb-000004
其中,Bler(i)表示所述多个调度子帧中的第i个子帧在预设时间内的Bler;NNACK(i)表示在预设时间内,终端基于所述第i个子帧上传输的下行数据反馈的NACK的个数;NACK(i)表示在预设时间内,终端基于所述第i个子帧上传输的下行数据反馈的ACK的个数;NDTX(i)表示在预设时间内,终端基于所述第i个子帧上没有发送信号的非连续发送DTX状态的个数。
可选地,在一些实施例中,所述基站根据所述多个调度子帧的每个调度子帧的Bler,将所述多个调度子帧划分为所述第一子帧集合和所述第二子帧集合,包括:
当调整时刻到达时,所述基站获取所述多个调度子帧的每个调度子帧在调整时刻前的Bler;
所述基站根据所述多个调度子帧的每个调度子帧在调整时刻前的Bler,对调整时刻前的第一子帧集合和第二子帧集合中的子帧进行调整,得到所述第一子帧集合和所述第二子帧集合。
具体地,在本发明实施例中,基站可以统计调整时刻前的调整周期内多个调度子帧的每个调度子帧在调整时刻前的Bler,当调整时刻到达时,基站可以根据所述多个调度子帧的每个调度子帧在调整时刻前的Bler,对调整时刻前的第一子帧集合和第二子帧集合中的子帧进行调整,得到所述第一子帧集合和所述第二子帧集合。
可选地,在一些实施例中,基站统计每个调度子帧在调整时刻前的调整周期的Bler,该调整周期可以与基站传输数据的大包用户终端(或称大包用户)的个数有关。例如,在本发明实施例中,基站确定统计每个子帧的Bler的调整周期可以为时间参数*大包用户数,该时间参数可以为320ms。第一子帧集合和第二子帧集合之间的调整周期可以与大包用户终端的个数相关,该调整周期可以采用如下原则选取:当基站与多个大包用户终端进行数据传输时,保证终端基于多个调度子帧上发送足够多的ACK/NACK信息,从而使划分后的每个子帧在调整时刻前的更新周期的误码率更加准确。
可选地,在一些实施例中,所述调整时刻前的第一子帧集合包括第一调度子帧,所述基站根据所述多个调度子帧的每个调度子帧在调整时刻前的Bler,对调整时刻前的第一子帧集合和第二子帧集合进行调整,得到所述第一子帧集合和所述第二子帧集合,包括:
当调整时刻到达时,所述基站获取调整时刻前的第一子帧集合的Bler;
如果调整时刻前的第一子帧集合的Bler大于第一阈值,且所述调整时刻前的第一子帧集合中的第一调度子帧的Bler大于第二阈值,所述基站在调整时刻将所述第一子帧从调整时刻前的第一子帧集合更改至调整时刻前的第二子帧集合,得到所述第一子帧集合和所述第二子帧集合。
应理解,在本发明实施例中,在调整时刻到达前的调整周期内,第一子帧集合可以包括第一调度子帧,在调整时刻到达时,基站可以获取调整时刻前的调整周期内的第一子帧集合的Bler。
可选地,在一些实施例中,多个调度子帧被划分为多个子帧组,在调整时刻前的调整周期内,第一子帧集合可以包括第一子帧组,在调整时刻到达时,基站可以获取该第一子帧组以及该第一子帧集合的Bler,对于具体Bler 的计算方法可以参照前文中每个调度子帧在预设时间内的Bler计算方法,此时预设时间可以是调整周期。
应理解,在本发明实施例中,第一子帧集合的Bler可以为该第一子帧集合中所包括的多个子帧组的Bler的平均值;第二子帧集合的Bler可以为该第二子帧集合中所包括的多个子帧组的Bler的平均值。当然,基站获取第一子帧集合的Bler和/或第二子帧集合的Bler还可以有其他实现方式,例如,基站可以根据所述终端发送的ACK/NACK信息,直接统计第一子帧集合在调整时刻前的调整周期的Bler和/或第二子帧集合在调整时刻前的调整周期的Bler,对于具体统计方法可以与统计每组子帧的Bler的方法相同,对此本发明并不做限定。
应理解,如前文所述,基站可以将多个调度子帧划分为第一子帧集合和第二子帧集合,该多个调度子帧可以被划分为多个子帧组,因此在在本发明实施例中,第一子帧集合可以包括多个子帧组中的部分子帧组,第子帧集合可以包括多个子帧组中另一部分子帧组。例如,在本发明实施例中,多个调度子帧可以被划分为40组子帧,第一子帧集合可以包括该40组子帧中的19组子帧,第二子帧集合可以包括该40组子帧中另外的21组子帧。
具体地,在本发明实施例中,第一子帧集合在调整时刻前的调整周期内的Bler的大于第一阈值,该第一阈值可以为目标Bler+5%,目标Bler可以为基站预设的值,例如,在本发明实施例中,目标Bler可以为10%;第一调度子帧在调整时刻前的调整周期的Bler大于第二阈值,该第二阈值可以为30%,但本发明不限于此。因此,作为一种可能的实现方式,在本发明实施例中,当基站统计第一子帧集合在调整时刻前的调整周期内的Bler大于15%,并且该第一子帧集合中的第一子帧在调整时刻前的调整周期内的Bler大于30%时,基站可以将第一子帧从调整时刻前的调整周期内的第一子帧集合从更改至调整时刻前的调整周期内的第二子帧集合中。
可选地,在一些实施例中,第一子帧集合在调整时刻前的调整周期内的Bler大于第一阈值,满足在调整时刻前的调整周期内的Bler大于第二阈值的第一子帧可以包括多个子帧,例如,在第一子帧集合中,可以同时存在4个子帧同时满足Bler大于第二阈值,此时基站可以限制满足Bler条件的多个子帧的个数,例如,当第一子帧集合中同时有4个子帧满足Bler大于第二阈值,此时,基站只将其中两个子帧中的子帧从调整时刻前的调整周期内的第 一子帧集合更改为第二子帧集合。作为一种具体实现方式,如前文所述,当多个调度子帧被划分为40个子帧组,该40个子帧组可以按照取模运算的方式划分,每一组子帧中的子帧的子帧号对40取模后的值相同,基站可以将满足Bler条件的4个子帧组按照取模后的值的大小顺序确定其中两组子帧,并将该两组子帧中从第一子帧集合更改至第二子帧集合,例如,同时有取模后值为3、4、7三个子帧组满足Bler调整条件,基站可以选取模值为3和4的两个子帧组从调整时刻前的调整周期内的第一子帧集合更改至第二子帧集合。
可选地,在一些实施例中,第一子帧集合中所包括的调度子帧的个数不小于第五阈值。作为一种具体实现方式,如前文所述,当多个调度子帧被划分为40个子帧组,该40个子帧组可以按照取模运算的方式划分,每一组子帧中的子帧的子帧号对40取模后的值相同,基站在将满足条件的第一组子帧中的子帧从第一子帧集合更改至第二子帧集合时,必须满足第一子帧集合中剩余的子帧组的个数大于或等于10。当第一子帧集合中剩余的子帧组的个数小于10时,即使该第一子帧集合中包括满足Bler调整条件第一子帧组时,也不允许将该满足条件的第一组子帧从第一子帧集合更改至第二子帧集合。应理解,该第五阈值设为10仅仅是一种具体实现方式,本发明不限于此。
可选地,在一些实施例中,所述调整时刻前的第二子帧集合包括第二调度子帧,所述基站根据所述多个调度子帧的每个调度子帧在调整时刻的的Bler,对调整时刻前的第一子帧集合和第二子帧集合进行调整,得到所述第一子帧集合和所述第二子帧集合,包括:
当调整时刻到达时,所述基站获取调整时刻前的第二子帧集合的Bler;
如果调整时刻前的第二子帧集合的Bler大于第三阈值,且所述调整时刻前的第二子帧集合中的第二子帧的Bler小于或等于第四阈值,所述基站在调整时刻将所述第二子帧从调整时刻前的第二子帧集合更改至调整时刻前的第一子帧集合,得到所述第一子帧集合和所述第二子帧集合。
应理解,在本发明实施例中,基站获取调整时刻前的第二子帧集合的Bler可以与基站获取调整时刻前的第一子帧集合的Bler的方式相同,对此本发明不做限定。
具体地,在本发明实施例中,在调整时刻前的第二子帧集合的Bler大于第三阈值,该第三阈值可以为目标Bler-5%,目标Bler可以为基站预设的值, 例如,在本发明实施例中,目标Bler可以为10%;调整时刻前的第二子帧集合中的第二子帧的Bler小于或等于第四阈值,该第四阈值可以为0,但本发明不限于此。因此,作为一种可能的实现方式,在本发明实施例中,当基站统计调整时刻前第二子帧集合在前一更新周期内的Bler大于5%,并且该调整时刻前的第二子帧集合中的第二子帧的Bler为0时,基站可以将该第二子帧从调整时刻前的第二子帧集合更改至调整时刻前的第一子帧集合,得到所述第一子帧集合和所述第二子帧集合。
可选地,在一些实施例中,在调整时刻前的第二子帧集合的Bler大于第三阈值,该调整时刻前的第二子帧集合中满足Bler大于第四阈值的第二子帧可以包括多个子帧,例如,在调整时刻前的第二子帧集合中,可以同时存在4个子帧同时满足Bler小于或等于第四阈值,此时基站可以限制满足Bler条件的多个调度子帧的个数,例如,在调整时刻前第二子帧集合中同时有4个调度子帧满足Bler小于或等于第四阈值,此时,基站可以只将其中一个调度子帧从调整时刻前的第二子帧集合更改至调整时刻前的第一子帧集合。作为一种具体实现方式,基站可以将多个调度子帧按照取模运算划分为40组子帧,每一组子帧中的子帧号对40取模后的值相同,基站可以将满足Bler条件的4个子帧组按照取模后的值的大小顺序确定其中Bler为0的一个子帧组,并将该子帧组中的调度子帧从调整时刻前的第二子帧集合更改至第一子帧集合,得到所述第一子帧集合和所述第二子帧集合。
可选地,在一些实施例中,在调整时刻前的调整周期内,终端基于第一调度子帧或第二调度子帧传输下行数据反馈的混合自动重传请求(Hybrid Automatic Repeat reQuest,HARQ)的个数大于第五阈值。例如,终端基于第一调度子帧或第二调度子帧传输下行数据反馈的HARQ的个数可以大于4,也就是说,终端基于第一调度子帧或第二调度子帧反馈的HARQ个数大于4时,基站根据调度终端反馈的ACK/NACK信息,统计第一调度子帧或第二子帧的Bler可以是有效的Bler,此时,基站可以将满足Bler条件的第一调度子帧或第二调度子帧所属的集合进行更改。
图4详细描述本发明实施例的自适应调制编码的方法的详细步骤护或操作,在本发明实施例中,这些步骤或操作仅仅是示例,本发明实施例还可以有其他可以执行的操作,或者图4中各操作的变形。此外,图4中个步骤可以按照与图4呈现的不同顺序来执行,并且有可能并非要执行图4中全部操 作。应理解,下文的详细描述只是为了帮助本领域技术人员更好的理解本发明实施例,而不应对本发明的实施例的范围构成限定。
下面将结合附图4详细说明本发明实施例自适应调制编码的方法具体步骤。
S410,基站识别第一终端。
在本发明实施例中,基站可以根据终端每秒接收到达无线链路控制(Radio Link Control,RLC)的数据量来识别第一终端。
作为一种具体的实施方式,基站可以对终端每秒接收到达RLC的数据量设定预设门限,当终端每秒接收到达RLC的数据量超过该预设门限时,可以将该终端识别为第一终端。例如,在本发明实施例中,若待传数据量为0时,则终端接收每秒到达RLC的数据量大于1250000byte时,则基站可以将该终端识别为第一终端;若待传数据量不为0时,则终端接收每秒到达RLC的数据量大于Min{待传数据量*1000/8byte,1250000byte}时,则基站可以将该终端识别为第一终端,因此,第一终端也可以称为大包用户的终端。
应理解,第一为终端为每秒接收到达RLC的数据量大于预设门限的终端,因此,第一终端在与基站进行通信时,在线时间长,调度次数多,采用本发明的技术方案可以获得更大的吞吐率增益,但本发明不限于此。
还应理解,在本发明实施例中,第一终端可以为多个终端,。
还应理解,在本发明实施例中,第一终端仅仅是每秒到达RLC数据量大于预设门限的终端,也就是说,某个时间段内,1号终端满足每秒到达RLC的数据量大于预设门限,则该1号终端可以为第一终端,但在另一时间段内,1号终端不满足每秒到达RLC的数据量大于预设门限,则1号终端不是第一终端。
S420,基站接收第一终端发送的CQI。
S430,基站将多个调度子帧划分为多个子帧组。
具体地,基站可以将一个调整周期内的多个调度子帧按照取模运算进行分组,作为一种具体的实现,在本发明实施例中,基站可以取40作为模数对调度子帧进行取模运算,将模值相同的子帧号对应的子帧划分为一组,从而可以得到40个子帧组,该40个子帧组中的每组子帧可以包括至少一个调度子帧。
进一步地,当基站确定调度第一终端的子帧后,基站可以根据该子帧的 子帧号对40取模,从而可以获取该子帧所属的子帧组,对于具体取模算法可以参见前文所述。
S440,基站将调度子帧的初始化。
在该步骤中,基站可以将S430中划分的40个子帧组全部初始化为第一子帧集合,此时第二子帧集合可以为空集。应理解,在本发明实施例中,第一子帧集合也可以称为低干扰子帧集合,第二子帧集合也可以称为高干扰子帧集合。
应理解,在本发明实施例中,在初始化后,基站将多个调度子帧划分为第一子帧集合和第二子帧集合,该第一子帧集合和第二子帧集合分别对应不同的CQI调整量,作为一种实现方式,在初始后,第一子帧集合的CQI调整量可以用原有的CQI调整量进行初始化,第二子帧集合对应的CQI调整量可以初始化为0。
S450,基站将子帧集合中子帧进行调整。
在该步骤中,基站可以确定子帧集合中子帧的调整周期,该调整周期可以为时间参数*第一终端数,调整周期随着第一终端的数量变化,可以保证第一终端基于调度子帧上有足够多ACK/NACK反馈信息,例如,时间参数可以为320ms,当基站与一个第一终端进行数据传输时,该调整周期可以为320ms,当基站与2个第一终端传输数据时,该调整周期可以为640ms。
在该步骤中,基站在调整时刻到达前,不断统计终端基于每个调度子帧传输数据后反馈的ACK和NACK信息,从而可以获取调整时刻前的调整周期内40个子帧组的Bler,也可以获取调整时刻前的调整周期内第一子帧集合和第二子帧集合的Bler,具体每个调度子帧的Bler计算方法在前文已有描述,为了申请文件的简洁,在此不再赘述。
应理解,在本发明实施例中,将多个调度子帧划分为40个子帧组,仅仅是本发明的一种具体实现方式,40个子帧组中每个子帧组的Bler,以及第一子帧集合和第二子帧集合的Bler的计算方法可以与每个调度子帧的计算方法相同,也就是说,在计算每个子帧组或子帧组所在的子帧集合的Bler时,也可以是统计该子帧组或子帧集合中所有终端基于调度子帧反馈的ACK/NACK信息,从而计算获取子帧组或子帧集合的Bler。
在调整时刻到达时,如果第一子帧集合的Bler大于目标Bler+5%,可以将该第一子帧集合中Bler大于30%的子帧组从第一子帧集合更改至第二子 帧集合;如果第二子帧集合的Bler大于目标Bler-5%,可以在调整时刻将第二子帧集合中Bler为0的子帧组从调整时刻前的第二子帧集合更改至第二子帧集合。
可选地,在一些实施例中,基站在确定更改子帧组所属的子帧集合时,可以首先判断终端基于子帧组中子帧传输数据后反馈的HARQ个数,当终端基于子帧组中的子帧传输数据后反馈的HARQ的个数小于或等于4时,该子帧组禁止进行所属子帧集合的变更。
可选地,在一些实施例中,基站还可以限制第一子帧集合中子帧组的个数,作为一个具体实现,在调整时刻,基站进行子帧组所属的子帧集合更改时,可以限制第一子帧集合中的子帧组的个数不低于10个,也就是说,当第一子帧集合中的子帧组的个数少于10个时,基站可以在调整时刻禁止将第一子帧集合中的子帧组更改至第二子帧集合中。
可选地,在一些实施例中,基站还可以限制第一子帧集合的子帧组更改为第二子帧集合的个数,例如,在调整时刻,基站可以只允许第一子帧集合中的两个满足Bler条件的子帧组更改至第二子帧集合中。当然,基站也可以限制第二子帧集的子帧组更改为第一子帧集合的个数,例如,在调整时刻,基站可以只允许一个满足Bler条件的子帧组更改至第一子帧集合中。
S460,在调整周期内,基站确定用于调度第一终端的子帧。
S470,基站确定用于调度第一终端的子帧后,确定该子帧所属的子帧集合。
具体地,基站可以将该第一终端的子帧号,以及该子帧所在帧的帧号通过如下公式获取待取模数据:M=10*N+n。
基站根据该待取模数据对40取模,根据取模后的值确定该子帧所在的子帧组。例如,基站确定调度第一终端的子帧号为9,所在的帧号为9,则基站取模后的值为19,因此,基站可以确定该子帧为第19子帧组中的子帧。
基站在确定该子帧为19子帧组中的子帧后,基站可以确定当前调整周期内该19子帧组为第一子帧集合,应理解,该子帧所属的19子帧组在当前周期内也可能为第二子帧集合,本发明实施例在此仅仅是举例说明。
S480,基站根据调度第一终端的子帧所属的子帧集合对应的CQI调整量,调整第一终端上报的CQI。
S490,基站根据调整后的CQI,确定调度第一终端的MCS。
可选地,在一些实施例中,基站可以根据第一终端基于调度第一终端的子帧发送的ACK/NACK信息,对调度该第一终端的子帧所属的子帧集合对应的CQI调整量进行调整。
上文详细描述了自适应调制编码的方法实施例,下面将详细描述本发明实施例自适应调制编码的基站实施例。图5时本发明实施例的基站的示意性结构图。图5的基站500包括:
接收模块510,用于接收第一终端发送的信道质量指示CQI;
第一确定模块520,用于确定用于调度所述第一终端的子帧;
第二确定模块530,用于所述子帧所属的子帧集合,所述子帧集合为第一子帧集合或第二子帧集合,其中,所述第一子帧集合和所述第二子帧集合分别对应不同的CQI调整量;
调整模块540,用于根据所述子帧所属的子帧集合对应的CQI调整量,调整所述CQI;
第三确定模块550,用于根据调整的CQI确定调度所述第一终端的调制编码方案MCS。
本申请中,基站确定调度第一终端的子帧后,基站可以确定该子帧所属的子帧集合,该子帧集合可以为第一子帧集合或第二子帧集合,然后根据该子帧集合所对应的CQI调整量对第一终端发送的CQI进行调整,从而避免了现有技术中只采用一套CQI调整量而造成低干扰子帧的高信噪比浪费的现象,因此,本发明实施例中基站可以有效利用当前小区中低干扰子帧的高信噪比,提高下行数据的传输效率和当前小区的吞吐率。
可选地,在一些实施例中,该CQI还可以包括该第一终端推荐的MCS。
可选地,在一些实施例中,基站还可以根据预设的CQI与MCS的映射表获取MCS。
可选地,在一些实施例中,基站与该第一终端进行下行数据传输时,该下行数据可以为大包用户数据,但本发明不限于此。应理解,在本发明实施例中,大包用户在线时间长,在传输下行数据时调度的次数多,因此采用本发明实施的技术方案可以获取更高的吞吐率增益。
可选地,在一些实施例中,第一子帧集合和第二子帧集合可以是预先划分的集合。
可选地,在一些实施例中,第一子帧集合和第二子帧集合可以是按照调 整周期进行划分,在调整周期到达时刻,基站可以重新划分第一子帧集合和第二子帧集合,对于基站将多个调度子帧划分为第一子帧集合和第二子帧集合的方法将在方法侧实施例已详细介绍介绍,在此不再赘述。
可选地,在一些实施例中,基站可以根据第一终端基于调度第一终端的子帧发送的ACK/NACK信息,对调度该第一终端的子帧所属的子帧集合对应的CQI调整量进行调整。
可选地,在一些实施例中,本发明实施例的自适应调制编码的基站还可以包括:
划分模块,用于将多个调度子帧划分为第一子帧集合和第二子帧集合。
可选地,在一些实施例中,划分模块可以根据调度第一终端所在的服务小区的邻小区中子帧的数据承载状态,将该服务小区中的多个调度子帧划分为第一子帧集合和第二子帧集合,或者,基站也可以根据邻小区中各个子帧对服务小区的干扰等级,将服务小区中的多个调度子帧划分为第一子帧集合和第二子帧集合。
可选地,在一些实施例中,基站还可以包括:
获取模块,用于获取多个调度终端的应答ACK/否定应答NACK信息;
划分模块具体用于根据所述多个调度终端的ACK/NACK信息,将所述多个调度子帧划分为所述第一子帧集合和所述第二子帧集合。
可选地,在一些实施例中,基站还可以包括:
统计模块,用于根据所述多个调度终端的ACK/NACK信息,统计所述多个调度子帧的每个调度子帧的误块率Bler;
划分模块具体用于根据所述多个调度子帧的每个调度子帧的Bler,将所述多个调度子帧划分为所述第一子帧集合和所述第二子帧集合。
可选地,在一些实施例中,所述统计模块具体用于:
利用如下公式统计所述多个调度子帧中每个调度子帧的Bler:
Figure PCTCN2016098859-appb-000005
其中,其中,Bler(i)表示所述多个调度子帧中的第i个子帧在预设时间内的Bler;NNACK(i)表示在预设时间内,终端基于所述第i个子帧上传输的下行数据反馈的NACK的个数;NACK(i)表示在预设时间内,终端基于所述第i个子帧上传输的下行数据反馈的ACK的个数;NDTX(i)表示在预设时间内,终端基于所述第i个子帧上没有发送信号的非连续发送DTX状态的个数。
可选地,在一些实施例中,所述统计模块具体用于:
利用如下公式统计所述多个调度子帧中每个调度子帧的Bler:
Figure PCTCN2016098859-appb-000006
其中,Bler(i)表示所述多个调度子帧中的第i个子帧在预设时间内的Bler;NNACK(i)表示在预设时间内,终端基于所述第i个子帧上传输的下行数据反馈的NACK的个数;NACK(i)表示在预设时间内,终端基于所述第i个子帧上传输的下行数据反馈的ACK的个数;NDTX(i)表示在预设时间内,终端基于所述第i个子帧上没有发送信号的非连续发送DTX状态的个数。
可选地,在一些实施例中,所述基站的获取模块还用于:
当调整时刻到达时,获取所述多个调度子帧的每个调度子帧在调整时刻前的Bler;
所述划分模块具体用于根据所述多个调度子帧的每个调度子帧在调整时刻前的Bler,对调整时刻前的第一子帧集合和第二子帧集合中的子帧进行调整,得到所述第一子帧集合和所述第二子帧集合。
可选地,在一些实施例中,基站统计每个调度子帧在调整时刻前的调整周期的Bler,该调整周期可以与基站传输数据的大包用户的个数有关。
可选地,在一些实施例中,所述调整时刻前的第一子帧集合包括第一调度子帧,基站的获取模块还用于:
当调整时刻到达时,获取调整时刻前的第一子帧集合的Bler;
划分模块具体用于如果调整时刻前的第一子帧集合的Bler大于第一阈值,且所述调整时刻前的第一子帧集合中的第一调度子帧的Bler大于第二阈值,所述基站在调整时刻将所述第一子帧从调整时刻前的第一子帧集合更改至调整时刻前的第二子帧集合,得到所述第一子帧集合和所述第二子帧集合。
可选地,在一些实施例中,所述调整时刻前的第二子帧集合包括第二调度子帧,基站的获取模块还用于:
当调整时刻到达时,获取调整时刻前的第二子帧集合的Bler;
划分模块具体用于如果调整时刻前的第二子帧集合的Bler大于第三阈值,且所述调整时刻前的第二子帧集合中的第二子帧的Bler小于或等于第四阈值,所述基站在调整时刻将所述第二子帧从调整时刻前的第二子帧集合更改至调整时刻前的第一子帧集合,得到所述第一子帧集合和所述第二子帧集 合。
图6示是根据本发明实施例的基站的示意性框图。图6所示的基站600包括:接收器620,接收器620可以通过总线640和处理器610相连。其中,接收器620用于接收数据或信息,存储器630存储执行指令,当装置运行时,处理器610与存储器630之间通信,处理器610调用存储器630中的执行指令。
接收器620,用于接收第一终端发送的信道质量指示CQI;
处理器610,用于确定用于调度所述第一终端的子帧;
处理器610,还用于所述子帧所属的子帧集合,所述子帧集合为第一子帧集合或第二子帧集合,其中,所述第一子帧集合和所述第二子帧集合分别对应不同的CQI调整量;
处理器610,还用于根据所述子帧所属的子帧集合对应的CQI调整量,调整所述CQI;
处理器610,还用于根据调整的CQI确定调度所述第一终端的调制编码方案MCS。
本申请中,基站确定调度第一终端的子帧后,基站可以确定该子帧所属的子帧集合,该子帧集合可以为第一子帧集合或第二子帧集合,然后根据该子帧集合所对应的CQI调整量对第一终端发送的CQI进行调整,从而避免了现有技术中只采用一套CQI调整量而造成低干扰子帧的高信噪比浪费的现象,因此,本发明实施例中基站可以有效利用当前小区中低干扰子帧的高信噪比,提高下行数据的传输效率和当前小区的吞吐率。
可选地,在一些实施例中,该CQI还可以包括该第一终端推荐的MCS。
可选地,在一些实施例中,基站还可以根据预设的CQI与MCS的映射表获取MCS。
可选地,在一些实施例中,基站与该第一终端进行下行数据传输时,该下行数据可以为大包用户数据,但本发明不限于此。应理解,在本发明实施例中,大包用户在线时间长,在传输下行数据时调度的次数多,因此采用本发明实施的技术方案可以获取更高的吞吐率增益。
可选地,在一些实施例中,第一子帧集合和第二子帧集合可以是预先划分的集合。
可选地,在一些实施例中,第一子帧集合和第二子帧集合可以是按照调 整周期进行划分,在调整周期到达时刻,基站可以重新划分第一子帧集合和第二子帧集合,对于基站将多个调度子帧划分为第一子帧集合和第二子帧集合的方法将在方法侧实施例已详细介绍介绍,在此不再赘述。
可选地,在一些实施例中,基站可以根据第一终端基于调度第一终端的子帧发送的ACK/NACK信息,对调度该第一终端的子帧所属的子帧集合对应的CQI调整量进行调整。
可选地,在一些实施例中,处理器610还用于:
将多个调度子帧划分为第一子帧集合和第二子帧集合。
可选地,在一些实施例中,划分模块可以根据调度第一终端所在的服务小区的邻小区中子帧的数据承载状态,将该服务小区中的多个调度子帧划分为第一子帧集合和第二子帧集合,或者,基站也可以根据邻小区中各个子帧对服务小区的干扰等级,将服务小区中的多个调度子帧划分为第一子帧集合和第二子帧集合。
可选地,在一些实施例中,处理器610还用于获取多个调度终端的应答ACK/否定应答NACK信息;根据所述多个调度终端的ACK/NACK信息,将所述多个调度子帧划分为所述第一子帧集合和所述第二子帧集合。
可选地,在一些实施例中,处理器610还用于根据所述多个调度终端的ACK/NACK信息,统计所述多个调度子帧的每个调度子帧的误块率Bler;根据所述多个调度子帧的每个调度子帧的Bler,将所述多个调度子帧划分为所述第一子帧集合和所述第二子帧集合。
可选地,在一些实施例中,处理器610利用如下公式统计所述多个调度子帧中每个调度子帧的Bler:
Figure PCTCN2016098859-appb-000007
其中,其中,Bler(i)表示所述多个调度子帧中的第i个子帧在预设时间内的Bler;NNACK(i)表示在预设时间内,终端基于所述第i个子帧上传输的下行数据反馈的NACK的个数;NACK(i)表示在预设时间内,终端基于所述第i个子帧上传输的下行数据反馈的ACK的个数;NDTX(i)表示在预设时间内,终端基于所述第i个子帧上没有发送信号的非连续发送DTX状态的个数。
可选地,在一些实施例中,处理器610利用如下公式统计所述多个调度子帧中每个调度子帧的Bler:
Figure PCTCN2016098859-appb-000008
其中,Bler(i)表示所述多个调度子帧中的第i个子帧在预设时间内的Bler;NNACK(i)表示在预设时间内,终端基于所述第i个子帧上传输的下行数据反馈的NACK的个数;NACK(i)表示在预设时间内,终端基于所述第i个子帧上传输的下行数据反馈的ACK的个数;NDTX(i)表示在预设时间内,终端基于所述第i个子帧上没有发送信号的非连续发送DTX状态的个数。
可选地,在一些实施例中,处理器610还用于:当调整时刻到达时,获取所述多个调度子帧的每个调度子帧在调整时刻前的Bler;根据所述多个调度子帧的每个调度子帧在调整时刻前的Bler,对调整时刻前的第一子帧集合和第二子帧集合中的子帧进行调整,得到所述第一子帧集合和所述第二子帧集合。
可选地,在一些实施例中,基站统计每个调度子帧在调整时刻前的调整周期的Bler,该调整周期可以与基站传输数据的大包用户的个数有关。
可选地,在一些实施例中,所述调整时刻前的第一子帧集合包括第一调度子帧,处理器610还用于:
当调整时刻到达时,获取调整时刻前的第一子帧集合的Bler;
如果调整时刻前的第一子帧集合的Bler大于第一阈值,且所述调整时刻前的第一子帧集合中的第一调度子帧的Bler大于第二阈值,所述基站在调整时刻将所述第一子帧从调整时刻前的第一子帧集合更改至调整时刻前的第二子帧集合,得到所述第一子帧集合和所述第二子帧集合。
可选地,在一些实施例中,所述调整时刻前的第二子帧集合包括第二调度子帧,处理器610还用于:
当调整时刻到达时,获取调整时刻前的第二子帧集合的Bler;
如果调整时刻前的第二子帧集合的Bler大于第三阈值,且所述调整时刻前的第二子帧集合中的第二子帧的Bler小于或等于第四阈值,所述基站在调整时刻将所述第二子帧从调整时刻前的第二子帧集合更改至调整时刻前的第一子帧集合,得到所述第一子帧集合和所述第二子帧集合。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方 法来实现所描述的功能,但是这种实现不应认为超出本发明的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本发明各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本发明的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本发明各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应以所述权利要求的保护范围为准。

Claims (18)

  1. 一种自适应调制编码的方法,其特征在于,包括:
    基站接收第一终端发送的信道质量指示CQI;
    所述基站确定用于调度所述第一终端的子帧;
    所述基站确定所述子帧所属的子帧集合,所述子帧集合为第一子帧集合或第二子帧集合,其中,所述第一子帧集合和所述第二子帧集合分别对应不同的CQI调整量;
    所述基站根据所述子帧所属的子帧集合对应的CQI调整量,调整所述CQI;
    所述基站根据调整的CQI确定调度所述第一终端的调制编码方案MCS。
  2. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    所述基站将多个调度子帧划分为所述第一子帧集合和所述第二子帧集合。
  3. 根据权利要求2所述的方法,其特征在于,所述基站将多个调度子帧划分为所述第一子帧集合和所述第二子帧集合,包括:
    所述基站获取多个调度终端的应答ACK/否定应答NACK信息;
    所述基站根据所述多个调度终端的ACK/NACK信息,将所述多个调度子帧划分为所述第一子帧集合和所述第二子帧集合。
  4. 根据权利要求3所述的方法,其特征在于,所述基站根据所述多个调度终端的ACK/NACK信息,将所述多个调度子帧划分为所述第一子帧集合和所述第二子帧集合,包括:
    所述基站根据所述多个调度终端的ACK/NACK信息,统计所述多个调度子帧的每个调度子帧的误块率Bler;
    所述基站根据所述多个调度子帧的每个调度子帧的Bler,将所述多个调度子帧划分为所述第一子帧集合和所述第二子帧集合。
  5. 根据权利要求要求4所述的方法,其特征在于,所述基站根据所述多个调度子帧的每个调度子帧的Bler,将所述多个调度子帧划分为所述第一子帧集合和所述第二子帧集合,包括:
    当调整时刻到达时,所述基站获取所述多个调度子帧的每个调度子帧在调整时刻前的Bler;
    所述基站根据所述多个调度子帧的每个调度子帧在调整时刻前的Bler, 对调整时刻前的第一子帧集合和第二子帧集合中的子帧进行调整,得到所述第一子帧集合和所述第二子帧集合。
  6. 根据权利要求5所述的方法,其特征在于,所述调整时刻前的第一子帧集合包括第一调度子帧,
    所述基站根据所述多个调度子帧的每个调度子帧在调整时刻前的Bler,对调整时刻前的第一子帧集合和第二子帧集合进行调整,得到所述第一子帧集合和所述第二子帧集合,包括:
    当调整时刻到达时,所述基站获取调整时刻前的第一子帧集合的Bler;
    如果调整时刻前的第一子帧集合的Bler大于第一阈值,且所述调整时刻前的第一子帧集合中的第一子帧的Bler大于第二阈值,所述基站在调整时刻将所述第一调度子帧从调整时刻前的第一子帧集合更改至调整时刻前的第二子帧集合,得到所述第一子帧集合和所述第二子帧集合。
  7. 根据权利要求6所述的方法,其特征在于,所述调整时刻前的第二子帧集合包括第二调度子帧,
    所述基站根据所述多个调度子帧的每个调度子帧在调整时刻前的Bler,对调整时刻前的第一子帧集合和第二子帧集合进行调整,得到所述第一子帧集合和所述第二子帧集合,包括:
    当调整时刻到达时,所述基站获取调整时刻前的第二子帧集合的Bler;
    如果调整时刻前的第二子帧集合的Bler大于第三阈值,且所述调整时刻前的第二子帧集合中的第二子帧的Bler小于或等于第四阈值,所述基站在调整时刻将所述第二调度子帧从调整时刻前的第二子帧集合更改至调整时刻前的第一子帧集合,得到所述第一子帧集合和所述第二子帧集合。
  8. 根据权利要求4至7中任一项所述的方法,其特征在于,所述基站根据所述多个调度终端的ACK/NACK信息,统计所述多个调度子帧的每个调度子帧的误块率Bler包括:
    所述基站利用如下公式统计所述多个调度子帧的每个调度子帧的Bler:
    Figure PCTCN2016098859-appb-100001
    其中,Bler(i)表示所述多个调度子帧中的第i个子帧在预设时间内的Bler;NNACK(i)表示在预设时间内,终端基于所述第i个子帧上传输的下行数据反馈的NACK的个数;NACK(i)表示在预设时间内,终端基于所述第i个子帧上传输的下行数据反馈的ACK的个数;NDTX(i)表示在预设时间内,终端 基于所述第i个子帧上没有发送信号的非连续发送DTX状态的个数。
  9. 根据权利要求1至8中任一项所述的方法,其特征在于,所述第一终端为每秒接收的到达无线电链路控制RLC的数据量大于预设门限的终端。
  10. 一种基站,其特征在于,包括:
    接收模块,用于接收第一终端发送的信道质量指示CQI;
    第一确定模块,用于确定用于调度所述第一终端的子帧;
    第二确定模块,用于确定所述子帧所属的子帧集合,所述子帧集合为第一子帧集合或第二子帧集合,其中,所述第一子帧集合和所述第二子帧集合分别对应不同的CQI调整量;
    调整模块,用于根据所述子帧所属的子帧集合对应的CQI调整量,调整所述CQI;
    第三确定模块,用于根据调整的CQI确定调度所述第一终端的调制编码方案MCS。
  11. 根据权利要求10所述的基站,其特征在于,所述基站还包括:
    划分模块,用于将多个调度子帧划分为所述第一子帧集合和所述第二子帧集合。
  12. 根据权利要求11所述的基站,其特征在于,所述基站还包括:
    获取模块,用于获取多个调度终端的应答ACK/否定应答NACK信息;
    所述划分模块具体用于根据所述多个调度终端的ACK/NACK信息,将所述多个调度子帧划分为所述第一子帧集合和所述第二子帧集合。
  13. 根据权利要求12所述的基站,其特征在于,所述基站还包括:
    统计模块,用于根据所述多个调度终端的ACK/NACK信息,统计所述多个调度子帧的每个调度子帧的误块率Bler;
    所述划分模块具体用于根据所述多个调度子帧的每个调度子帧的Bler,将所述多个调度子帧划分为所述第一子帧集合和所述第二子帧集合。
  14. 根据权利要求13所述的基站,其特征在于,所述获取模块还用于:当调整时刻到达时,获取所述多个调度子帧的每个调度子帧在调整时刻前的Bler;
    所述划分模块具体用于根据所述多个调度子帧的每个调度子帧在调整时刻前的Bler,对调整时刻前的第一子帧集合和第二子帧集合中的子帧进行调整,得到所述第一子帧集合和所述第二子帧集合。
  15. 根据权利要求14所述的基站,其特征在于,所述调整时刻前的第一子帧集合包括第一调度子帧,
    所述获取模块还用于当调整时刻到达时,获取调整时刻前的第一子帧集合的Bler;
    所述划分模块具体用于如果调整时刻前的第一子帧集合的Bler大于第一阈值,且所述调整时刻前的第一子帧集合中的第一子帧的Bler大于第二阈值,所述基站在调整时刻将所述第一调度子帧从调整时刻前的第一子帧集合更改至调整时刻前的第二子帧集合,得到所述第一子帧集合和所述第二子帧集合。
  16. 根据权利要求15所述的基站,其特征在于,所述调整时刻前的第二子帧集合包括第二调度子帧,
    所述获取模块还用于当调整时刻到达时,获取调整时刻前的第一子帧集合的Bler;
    所述划分模块具体用于如果调整时刻前的第二子帧集合的Bler大于第三阈值,且所述调整时刻前的第二子帧集合中的第二子帧的Bler小于或等于第四阈值,所述基站在调整时刻将所述第二调度子帧从调整时刻前的第二子帧集合更改至调整时刻前的第一子帧集合,得到所述第一子帧集合和所述第二子帧集合。
  17. 根据权利要求13至16中任一项所述的基站,其特征在于,所述统计模块具体用于:
    利用如下公式统计所述多个调度子帧的每个调度子帧的Bler:
    Figure PCTCN2016098859-appb-100002
    其中,Bler(i)表示所述多个调度子帧中的第i个子帧在预设时间内的Bler;NNACK(i)表示在预设时间内,终端基于所述第i个子帧上传输的下行数据反馈的NACK的个数;NACK(i)表示在预设时间内,终端基于所述第i个子帧上传输的下行数据反馈的ACK的个数;NDTX(i)表示在预设时间内,终端基于所述第i个子帧上没有发送信号的非连续发送DTX状态的个数。
  18. 根据权利要求10至17中任一项所述的基站,其特征在于,所述第一终端为每秒接收的到达无线电链路控制RLC的数据量大于预设门限的终端。
PCT/CN2016/098859 2016-09-13 2016-09-13 自适应调制编码的方法和基站 WO2018049562A1 (zh)

Priority Applications (6)

Application Number Priority Date Filing Date Title
EP16915948.0A EP3503655B1 (en) 2016-09-13 2016-09-13 Adaptive modulation and coding method and base station
PCT/CN2016/098859 WO2018049562A1 (zh) 2016-09-13 2016-09-13 自适应调制编码的方法和基站
KR1020197009332A KR102231454B1 (ko) 2016-09-13 2016-09-13 적응적 변조 및 코딩 방법 및 기지국
CN201680088954.XA CN109644477A (zh) 2016-09-13 2016-09-13 自适应调制编码的方法和基站
JP2019513981A JP6779373B2 (ja) 2016-09-13 2016-09-13 適応変調符号化方法および基地局
US16/351,085 US10924206B2 (en) 2016-09-13 2019-03-12 Adaptive modulation and coding method and base station

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/098859 WO2018049562A1 (zh) 2016-09-13 2016-09-13 自适应调制编码的方法和基站

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/351,085 Continuation US10924206B2 (en) 2016-09-13 2019-03-12 Adaptive modulation and coding method and base station

Publications (1)

Publication Number Publication Date
WO2018049562A1 true WO2018049562A1 (zh) 2018-03-22

Family

ID=61619331

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/098859 WO2018049562A1 (zh) 2016-09-13 2016-09-13 自适应调制编码的方法和基站

Country Status (6)

Country Link
US (1) US10924206B2 (zh)
EP (1) EP3503655B1 (zh)
JP (1) JP6779373B2 (zh)
KR (1) KR102231454B1 (zh)
CN (1) CN109644477A (zh)
WO (1) WO2018049562A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113922925A (zh) * 2021-10-09 2022-01-11 中国联合网络通信集团有限公司 数据传输调制等级的处理方法、基站和存储介质

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11617192B2 (en) * 2019-09-30 2023-03-28 Qualcomm Incorporated Neighbor cell TCI signaling for interference coordination
CN115694717A (zh) * 2021-07-23 2023-02-03 中兴通讯股份有限公司 自适应调制编码方法、装置、电子设备及存储介质
US11882081B2 (en) * 2021-09-30 2024-01-23 Motorola Solutions, Inc. Intelligent interference mitigation for time division duplexing broadband networks

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102098147A (zh) * 2011-02-01 2011-06-15 上海华为技术有限公司 Cqi调整方法、用户设备、基站及系统
CN102265696A (zh) * 2011-06-03 2011-11-30 华为技术有限公司 传输资源调度方法、装置和系统
WO2014023963A2 (en) * 2012-08-08 2014-02-13 Vodafone Ip Licensing Limited Cqi adjustment
CN103828415A (zh) * 2012-03-14 2014-05-28 日电(中国)有限公司 用于通信系统中的数据传输的方法和装置

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20050029082A (ko) * 2003-09-20 2005-03-24 삼성전자주식회사 직교 주파수 분할 다중 접속 방식을 사용하는 이동 통신시스템에서 동적 자원 할당 시스템 및 방법
KR100742127B1 (ko) * 2004-06-25 2007-07-24 삼성전자주식회사 직교 주파수 분할 다중 접속 이동통신시스템에서 상향링크 랜덤 접속 채널을 송수신하기 위한 장치 및 방법
WO2007044281A1 (en) * 2005-10-06 2007-04-19 Interdigital Technology Corporation Method and apparatus for controlling downlink transmission power for ofdma based evolved utra
CN101132227B (zh) * 2006-08-23 2012-01-25 电信科学技术研究院 一种无线通信信道质量的监控方法及系统
JP5031009B2 (ja) * 2009-09-15 2012-09-19 株式会社エヌ・ティ・ティ・ドコモ 無線基地局及び移動通信方法
US9515773B2 (en) * 2010-04-13 2016-12-06 Qualcomm Incorporated Channel state information reporting in a wireless communication network
WO2012118357A2 (ko) * 2011-03-03 2012-09-07 엘지전자 주식회사 무선 통신 시스템에서 제어 정보의 전송 방법 및 장치
CN102790654A (zh) * 2011-05-16 2012-11-21 普天信息技术研究院有限公司 一种确定下行传输mcs的方法
CN102368697B (zh) * 2011-09-30 2018-04-03 中兴通讯股份有限公司 干扰测量信令通知、干扰测量及反馈方法及其装置
US9008585B2 (en) * 2012-01-30 2015-04-14 Futurewei Technologies, Inc. System and method for wireless communications measurements and CSI feedback
CN104106279B (zh) 2012-02-10 2018-01-02 日本电气株式会社 无线电通信系统、基站和通信方法
CN103259611B (zh) * 2012-02-17 2017-12-01 中兴通讯股份有限公司 调制编码方式自适应调整的方法及系统
EP2639983A1 (en) * 2012-03-16 2013-09-18 Panasonic Corporation MCS table adaptation for low power ABS
US9686800B2 (en) * 2012-08-03 2017-06-20 Qualcomm Incorporated Methods and apparatus for reporting channel quality indicator (CQI)
EP3883170B1 (en) * 2012-09-28 2022-11-30 BlackBerry Limited Methods and apparatus for enabling enhancements to flexible subframes in lte heterogeneous networks
US9713189B2 (en) * 2012-11-07 2017-07-18 Telefonaktiebolaget Lm Ericsson (Publ) Multiple outer loop link adaptation
US9680522B2 (en) * 2013-05-09 2017-06-13 Texas Instruments Incorporated Dynamic reconfiguration of uplink transmission in a TDD wireless communication system
JP6422129B2 (ja) * 2013-07-19 2018-11-14 シャープ株式会社 端末装置、方法、および集積回路
US10609691B2 (en) * 2013-12-27 2020-03-31 Sharp Kabushiki Kaisha Terminal device and base station device
WO2016172897A1 (zh) * 2015-04-30 2016-11-03 华为技术有限公司 信道质量指示的调整方法及装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102098147A (zh) * 2011-02-01 2011-06-15 上海华为技术有限公司 Cqi调整方法、用户设备、基站及系统
CN102265696A (zh) * 2011-06-03 2011-11-30 华为技术有限公司 传输资源调度方法、装置和系统
CN103828415A (zh) * 2012-03-14 2014-05-28 日电(中国)有限公司 用于通信系统中的数据传输的方法和装置
WO2014023963A2 (en) * 2012-08-08 2014-02-13 Vodafone Ip Licensing Limited Cqi adjustment

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3503655A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113922925A (zh) * 2021-10-09 2022-01-11 中国联合网络通信集团有限公司 数据传输调制等级的处理方法、基站和存储介质

Also Published As

Publication number Publication date
US20190215097A1 (en) 2019-07-11
EP3503655A4 (en) 2019-07-31
KR102231454B1 (ko) 2021-03-23
US10924206B2 (en) 2021-02-16
EP3503655A1 (en) 2019-06-26
KR20190042708A (ko) 2019-04-24
CN109644477A (zh) 2019-04-16
EP3503655B1 (en) 2021-11-24
JP2019531650A (ja) 2019-10-31
JP6779373B2 (ja) 2020-11-04

Similar Documents

Publication Publication Date Title
CN101911567B (zh) 无线通信网络中的方法和装置
US20220400402A1 (en) Apparatus and methods for user device buffer management in wireless networks
US10659205B2 (en) Method and apparatus for separate scheduling of uplink data and reference signal transmissions in a communication network
EP3360353A1 (en) Ptt network with radio condition aware media packet aggregation scheme
WO2021022408A1 (zh) 随机接入消息发送方法、装置及存储介质
WO2013059978A1 (en) Downlink-uplink configuration determination
JP7262591B2 (ja) 無線通信方法及び装置
US10924206B2 (en) Adaptive modulation and coding method and base station
US20190254043A1 (en) Apparatuses, methods and computer programs for implementing fairness and complexity-constrained a non-orthogonal multiple access (noma) scheme
CN112997433B (zh) 用于harq传输的方法以及通信设备
CN110024452B (zh) 用于调整发送功率的方法和装置
KR20190100042A (ko) 통신 시스템에서 bwp 운용을 위한 방법 및 장치
EP3512261B1 (en) Data sending method and apparatus
CN107615814A (zh) 上行数据传输的方法、基站和终端
KR102372488B1 (ko) 무선 패킷 네트워크를 위한 스케줄링 방법 및 장치
US20230021043A1 (en) HANDLING OVERLAPPING OF MULTIPLE PHYSICAL UPLINK SHARED CHANNELS (PUSCHs)
TW201840217A (zh) 週期上行訊息/訊號的傳輸方法、裝置及系統
US11503493B2 (en) Enhanced traffic capacity in a cell
CN115918241A (zh) 用于多播通信的方法和装置
WO2018000247A1 (zh) 一种数据传输方法及装置
CN114338839B (zh) 基于tcp的数据传输方法、装置、电子设备及存储介质
Tian et al. PCTO: An Easily-Configured Enhancement Scheme for Real-Time Communication Over 5G Network
JP2022043154A (ja) 周期的アップリンク情報/信号伝送方法、装置及びシステム
WO2024165147A1 (en) Low latency low loss scalable throughput (l4s) congestion indication for wireless networks
TW202333476A (zh) 基於ue回饋的快速bwp切換

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16915948

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019513981

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2016915948

Country of ref document: EP

Effective date: 20190320

ENP Entry into the national phase

Ref document number: 20197009332

Country of ref document: KR

Kind code of ref document: A