WO2018047970A1 - Precoated fin material and heat exchanger using same - Google Patents

Precoated fin material and heat exchanger using same Download PDF

Info

Publication number
WO2018047970A1
WO2018047970A1 PCT/JP2017/032782 JP2017032782W WO2018047970A1 WO 2018047970 A1 WO2018047970 A1 WO 2018047970A1 JP 2017032782 W JP2017032782 W JP 2017032782W WO 2018047970 A1 WO2018047970 A1 WO 2018047970A1
Authority
WO
WIPO (PCT)
Prior art keywords
mass
fin
brazing
less
coating film
Prior art date
Application number
PCT/JP2017/032782
Other languages
French (fr)
Japanese (ja)
Inventor
幸平 塩見
涼子 藤村
貴彦 水田
Original Assignee
株式会社Uacj
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Uacj filed Critical 株式会社Uacj
Publication of WO2018047970A1 publication Critical patent/WO2018047970A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K1/00Soldering, e.g. brazing, or unsoldering
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K1/00Soldering, e.g. brazing, or unsoldering
    • B23K1/19Soldering, e.g. brazing, or unsoldering taking account of the properties of the materials to be soldered
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K1/00Soldering, e.g. brazing, or unsoldering
    • B23K1/20Preliminary treatment of work or areas to be soldered, e.g. in respect of a galvanic coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/28Selection of soldering or welding materials proper with the principal constituent melting at less than 950 degrees C
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/053Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/12Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
    • F28F1/24Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely
    • F28F1/32Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely the means having portions engaging further tubular elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F19/00Preventing the formation of deposits or corrosion, e.g. by using filters or scrapers
    • F28F19/02Preventing the formation of deposits or corrosion, e.g. by using filters or scrapers by using coatings, e.g. vitreous or enamel coatings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F21/00Constructions of heat-exchange apparatus characterised by the selection of particular materials
    • F28F21/08Constructions of heat-exchange apparatus characterised by the selection of particular materials of metal

Definitions

  • the present invention relates to, for example, a precoated fin material having a brazing sheet and a coating film, and a heat exchanger using the same.
  • an all-aluminum heat exchanger has an aluminum tube through which a refrigerant flows and an aluminum fin for exchanging heat between air outside the tube, and the tube and the fin are joined to each other. ing. Since the hydrophilicity of the fin greatly affects the heat exchange performance of the heat exchanger, a fin having a hydrophilic coating film formed on the surface is often used. For joining the fin and the pipe having such a hydrophilic coating film, a method of mechanically joining the two by expanding the pipe inserted into the hole provided in the fin (patent) Reference 1 and Patent Reference 2).
  • brazing joining is assumed.
  • a general resin-based or inorganic coating film is altered or decomposed at the heating temperature at the time of brazing, it cannot sufficiently exhibit hydrophilicity after brazing.
  • flux action is hindered by the presence of the coating film, and brazing joining may be insufficient. Therefore, when manufacturing a heat exchanger by brazing, the coating film is generally formed after brazing (refer patent document 3).
  • the manufacturing cost increases because a dedicated coating film forming facility is required. In this case, it is difficult to cope with an increase in the size of the heat exchanger.
  • a fin material having a coating film mainly composed of silicate has been proposed as a fin material having a coating film pre-coated before brazing (see Patent Document 4). Further, in the production of a heat exchanger, a method for producing a fin in which a film containing a support such as xylene or a silicon-based binder such as silicone oil is formed before brazing has been proposed (Patent Document 5). reference).
  • fin films pre-coated with conventional coatings and films have insufficient hydrophilic sustainability after brazing and insufficient brazing function. That is, the conventional fin material did not have excellent hydrophilic sustainability and excellent brazing function. Therefore, it is necessary to supply a brazing material separately when manufacturing the heat exchanger using the fin material. As a result, a decrease in manufacturability due to an increase in the manufacturing process and an increase in manufacturing cost due to member procurement are expected.
  • the pre-coated coating film or coating film adversely affects the brazing joint between the fin using the brazing material and the aluminum tube, and there is a possibility that the joining property is insufficient. Therefore, development of a pre-coated fin material that can maintain a superior hydrophilic sustainability and can produce a heat exchanger that can be joined without using a brazing material and has excellent joining properties between the fin and the aluminum tube. Is desired.
  • the present invention has been made in view of such a background, and is excellent in the hydrophilic sustainability of the fins, can be joined between the fins and the aluminum pipe without separately supplying a brazing material, and has excellent joining properties.
  • An object of the present invention is to provide a pre-coated fin material capable of producing an exchanger, and a heat exchanger using the pre-coated fin material.
  • One aspect of the present invention is a brazing sheet having a core material made of an aluminum alloy, and a brazing material laminated on the core material, A coating film formed on the surface of the brazing sheet,
  • the brazing material contains Si: 5 to 10% by mass, and the balance has a chemical component consisting of Al and inevitable impurities,
  • the pre-coated fin material has a Si content in the coating film of 10 to 300 mg / m 2 .
  • Another aspect of the present invention resides in a heat exchanger having a core portion made of a fin made of the pre-coated fin material and an aluminum tube joined to the fin.
  • the pre-coated fin material has a brazing sheet having a core material made of an aluminum alloy and a brazing material laminated on the core material, wherein the brazing material contains Si in the specific range, with the balance being Al and inevitable impurities. It has a chemical component consisting of Therefore, the pre-coated fin material can be joined to another member such as an aluminum tube by the brazing material laminated on the core material. Therefore, it is possible to join without using a separate joining member such as a brazing material, and it is possible to ensure sufficient joining properties. Furthermore, since it is possible to join without separately using a joining member such as a brazing material, it is possible to prevent an increase in the manufacturing process, and it is not necessary to procure a joining member separately, thereby meeting the demand for cost reduction. Moreover, the brazing material having the specific composition can prevent the performance of the coating film formed on the brazing sheet from being impaired.
  • the coating film in which the Si amount is adjusted as described above is unlikely to deteriorate in coating film performance due to heating or the like. Therefore, the coating film can exhibit excellent hydrophilicity even after heating at the time of joining with another member such as an aluminum tube, and can maintain the initial excellent hydrophilicity for a long period of time. Moreover, a coating film hardly inhibits joining with other aluminum members, such as an aluminum pipe, and a precoat fin material, for example. Therefore, although the said precoat fin material has a coating film, sufficient joining with an aluminum pipe, for example is possible.
  • the components of the coating film and the brazing material are optimized as described above. Therefore, it is possible to manufacture a heat exchanger that is excellent in hydrophilic sustainability of the fins, can join the fins to the aluminum pipe without separately supplying a brazing material, and has excellent joining properties.
  • the said heat exchanger has a core part which consists of the fin which consists of a precoat fin material excellent in the above-mentioned hydrophilic sustainability and joining property, and the aluminum pipe joined to the fin. Therefore, in the heat exchanger, since fins exhibit excellent hydrophilic sustainability, an increase in ventilation resistance can be suppressed, and good heat exchange performance can be stably exhibited for a long period of time. Further, in the heat exchanger, for example, an aluminum tube and a fin are sufficiently joined, so that the heat exchange performance between the aluminum tube and the fin is improved.
  • FIG. 8 Sectional drawing of the precoat fin material in Example 1.
  • FIG. 8 The perspective view of the core part (specifically minicore) of the heat exchanger in Example 1.
  • FIG. 8 is a cross-sectional view taken along line III-III in FIG.
  • the pre-coated fin material is used for joining a fin made of the pre-coated fin material and an aluminum tube to obtain a heat exchanger.
  • the “aluminum tube” is a concept including not only a pure aluminum tube but also an aluminum alloy tube. Specifically, A1000 series pure aluminum, A3000 series aluminum alloy, or the like can be used.
  • the pre-coated fin material has a brazing sheet having a core material made of an aluminum alloy and a brazing material laminated on the core material.
  • the brazing sheet is, for example, a clad material, and an aluminum alloy (ie, core material) is clad with an Al—Si alloy (ie, brazing material).
  • the thickness of the brazing sheet is preferably, for example, 0.15 mm or less from the viewpoint that the precoat fin material is used for fins that require heat exchange performance.
  • the thickness of the brazing sheet is, for example, from the viewpoint that the fin material remains large even when the corrosion rate is high, and the sacrificial anode effect continues for a certain period of time, so corrosion resistance is not a problem. 0.05 mm or more is preferable.
  • the chemical component of the core aluminum alloy is selected from the group consisting of Si, Fe, Mn, Zn, Mg, Cu, In, Sn, Ti, V, Zr, Cr, and Ni in addition to Al and inevitable impurities. At least one additional element can be further contained.
  • the chemical composition of the core aluminum alloy contains, for example, Si: 0.05 to 0.8 mass%, Fe: 0.05 to 0.8 mass%, and Mn: 0.8 to 2 mass%, with the balance being It preferably consists of Al and inevitable impurities.
  • Mn content of the core exceeds the above range, coarse crystallized products are generated during casting, rolling workability is impaired, and the production of the clad material tends to be difficult.
  • Si in the core material forms fine precipitates with other additive elements such as Mn or Fe, improving the strength of the core material, and reducing the solid solution amount of Mn to reduce thermal conductivity (electrical conductivity).
  • the Si content of the core material is preferably 0.05 to 0.8% by mass as described above. When the Si content is less than 0.05% by mass, the effect of addition becomes insufficient. When the Si content exceeds 0.8% by mass, the melting point of the core material is lowered, and deformation during brazing and local melting occur. It tends to occur. From the viewpoint of sufficiently obtaining the effect of addition of Si and sufficiently preventing deformation and local melting, the Si content is more preferably 0.1 to 0.8% by mass, and still more preferably 0.3 to 0%. 0.5% by mass.
  • the Fe content of the core material coexists with Mn and improves the strength of the fin material before and after brazing.
  • the Fe content of the core material is preferably 0.05 to 0.8% by mass as described above. If the Fe content of the core material is less than 0.05% by mass, the effect of addition becomes insufficient, and if it exceeds 0.8% by mass, the crystal grains become fine and the molten brazing core material It becomes easy to erode inside, the high temperature buckling resistance tends to decrease, and the self corrosion property tends to increase. From the viewpoint of sufficiently obtaining the effect of addition of Fe, further suppressing the decrease in high-temperature buckling resistance and further suppressing the increase in self-corrosion, the Fe content is more preferably 0.1 to 0.00. It is 8% by mass, more preferably 0.3 to 0.5% by mass.
  • Mn in the core material functions to improve the strength of the core material and improve high temperature buckling resistance.
  • the Mn content of the core material is preferably 0.8 to 2% by mass as described above.
  • the Mn content of the core material is less than 0.8% by mass, the effect of addition becomes insufficient, and when it exceeds 2% by mass, a coarse crystallized product is generated at the time of casting, and the rollability is low.
  • the clad material is likely to be difficult to manufacture.
  • the Mn content is more preferably 0.9 to 2% by mass, and still more preferably 1 to 1.7% by mass. It is.
  • the core material may further contain Zn: 0.3 to 3% by mass. That is, the chemical component of the core aluminum alloy contains, for example, Si: 0.05 to 0.8 mass%, Fe: 0.05 to 0.8 mass%, Mn: 0.1 to 2 mass%, Further, Zn: 0.3 to 3% by mass, the balance being Al and inevitable impurities.
  • Zn in the core material can lower the potential and increase the sacrificial anode effect, and can improve the corrosion resistance of the pre-coated fin material.
  • the Zn content of the core material is less than 0.3% by mass, the effect of addition becomes insufficient.
  • the Zn content exceeds 3% by mass the self-corrosion resistance of the core material itself tends to be deteriorated, and it is susceptible to intergranular corrosion. It becomes easy to increase.
  • the Zn content of the core material is more preferably 1 to 2.5% by mass, and further preferably 2 to 2.3% by mass.
  • the core material may further contain at least one of Mg: 1 mass% or less and Cu: 0.5 mass% or less. That is, the chemical composition of the core aluminum alloy is, for example, Si: 0.05 to 0.8 mass%, Fe: 0.05 to 0.8 mass%, Mn: 0.1 to 2 mass%, Zn: 0 3 to 6% by mass, further containing at least one of Mg: 1% by mass or less and Cu: 0.5% by mass or less, with the balance being Al and inevitable impurities.
  • the chemical composition of the core aluminum alloy is, for example, Si: 0.05 to 0.8 mass%, Fe: 0.05 to 0.8 mass%, Mn: 0.1 to 2 mass%, Zn: 0 3 to 6% by mass, further containing at least one of Mg: 1% by mass or less and Cu: 0.5% by mass or less, with the balance being Al and inevitable impurities.
  • Mg in the core material improves the strength of the fin material before and after brazing by forming precipitates with Si.
  • the content of Mg in the core material is preferably 1% by mass or less as described above. When the Mg content exceeds 1% by mass, the melting point of the core material is lowered, and deformation during brazing and local melting are likely to occur. From the viewpoint of sufficiently obtaining the effect of adding Mg, the content of Mg in the core material is more preferably 0.05 to 1% by mass, still more preferably 0.3 to 1% by mass.
  • the Cu in the core material improves the strength of the fin material before and after brazing, but reduces intergranular corrosion resistance.
  • the Cu content in the core material is preferably 0.5% by mass or less as described above. When the Cu content exceeds 0.5% by mass, the potential of the fin material becomes noble and the sacrificial anode effect of the fin material tends to decrease, and the intergranular corrosion resistance also tends to decrease. From the viewpoint of sufficiently obtaining the effect of adding Cu, the content of Cu in the core material is more preferably 0.05 to 0.5% by mass.
  • the core material can further contain at least one of In: 0.3 mass% or less and Sn: 0.3 mass% or less. That is, the chemical composition of the core aluminum alloy is, for example, Si: 0.05 to 0.8 mass%, Fe: 0.05 to 0.8 mass%, Mn: 0.1 to 2 mass%, Zn: 0 3 to 6% by mass, further containing In: 0.3% by mass or less and Sn: 0.3% by mass, with the balance being Al and inevitable impurities.
  • the Sn content of the core material lowers the surface potential and lowers the potential to increase the sacrificial anode effect.
  • the Sn content of the core material is preferably 0.3% by mass or less as described above.
  • the Sn content of the core material exceeds 0.3% by mass, a coarse crystallized product is generated at the time of casting, and the rolling processability is liable to be impaired, and the production of the plate material is likely to be difficult.
  • the Sn content of the core material is more preferably 0.005 to 0.3% by mass.
  • the In content of the core material is preferably 0.3% by mass or less as described above.
  • the In content exceeds 0.3% by mass a coarse crystallized product is generated at the time of casting, and the rolling processability is liable to be impaired, and the production of the plate material is likely to be difficult.
  • the In content of the core material is more preferably 0.005 to 0.3% by mass.
  • the core material is further selected from Ti: 0.3 mass% or less, V: 0.3 mass% or less, Zr: 0.3 mass% or less, Cr: 0.3 mass% or less, and Ni: 2 mass% or less. At least one kind can be contained. That is, the chemical composition of the core aluminum alloy is, for example, Si: 0.05 to 0.8 mass%, Fe: 0.05 to 0.8 mass%, Mn: 0.1 to 2 mass%, Zn: 0 3 to 6% by mass, Ti: 0.3% by mass or less, V: 0.3% by mass or less, Zr: 0.3% by mass or less, Cr: 0.3% by mass or less, and Ni: It contains at least one selected from 2% by mass or less, and the balance is Al and inevitable impurities.
  • Ti in the core material mitigates local corrosion by using the corrosion of the fin material before brazing and after brazing as a layered corrosion form. Moreover, Ti improves the strength of the fin material before and after brazing and improves high temperature buckling.
  • the Ti content of the core material is preferably 0.3% by mass or less as described above. When the Ti content of the core material exceeds 0.3% by mass, a coarse crystallized product is generated at the time of casting, and the rolling processability is liable to be impaired, and the production of the plate material is likely to be difficult. From the viewpoint of sufficiently obtaining the effect of adding Ti, the Ti content of the core material is more preferably 0.01 to 0.3% by mass.
  • V in the core material is dissolved in the matrix of the aluminum alloy structure to improve the strength, and is also distributed in layers to prevent the progress of corrosion in the thickness direction. Further, V improves the strength of the fin material before and after brazing and improves high temperature buckling.
  • the V content of the core material is preferably 0.3% by mass or less as described above. When the V content of the core material exceeds 0.3% by mass, a coarse crystallized product is generated at the time of casting, and the rolling processability is liable to be impaired, and the production of the plate material is likely to be difficult. From the viewpoint of sufficiently obtaining the effect of adding V, the V content of the core material is more preferably 0.01 to 0.3% by mass.
  • the Zr in the core material improves the strength of the fin material before and after brazing and improves the high temperature buckling.
  • the Zr content of the core material is preferably 0.3% by mass or less as described above. When the Zr content of the core material exceeds 0.3% by mass, a coarse crystallized product is generated at the time of casting, and the rolling processability is liable to be impaired, and the production of the plate material is likely to be difficult. From the viewpoint of obtaining a sufficient effect of adding Zr, the Zr content of the core material is more preferably 0.01 to 0.3% by mass.
  • the Cr content of the core material improves the strength of the fin material before and after brazing and improves the high temperature buckling.
  • the Cr content of the core material is preferably 0.3% by mass or less as described above.
  • the content of Cr in the core material is more preferably 0.01 to 0.3% by mass.
  • Ni in the core material improves the strength of the fin material before and after brazing.
  • the Ni content of the core material is preferably 2% by mass or less as described above.
  • the Ni content of the core material exceeds 2% by mass, the crystal grains become fine, and the molten brazing is likely to erode in the core material, high temperature buckling resistance is likely to decrease, and self-corrosion property is likely to increase.
  • the Ni content in the core material is more preferably 0.05 to 2% by mass, still more preferably 0.1 to 2% by mass.
  • the brazing material contains Si: 5 to 10% by mass, and the balance has chemical components composed of Al and inevitable impurities.
  • Si in the brazing material contributes to bonding by increasing the flowability of the molten brazing during brazing heating.
  • the Si content of the brazing material is less than 5% by mass, the effect of addition becomes insufficient.
  • the Si content exceeds 10% by mass, the molten brazing becomes excessive, and the coating is washed away by the molten brazing and becomes hydrophilic.
  • Sustainability decreases. From the viewpoint of obtaining a sufficient effect of adding Si and further suppressing the decrease in hydrophilic sustainability, the brazing filler metal content is more preferably 7 to 9% by mass.
  • the brazing material can further contain Sr: 0.1% by mass or less. That is, the chemical component of the aluminum alloy of the brazing material contains, for example, Si: 5 to 10% by mass, further contains Sr: 0.1% by mass or less, and the balance is Al and inevitable impurities.
  • the Sr content of the brazing material reduces the Si particle diameter in the brazing material after brazing.
  • the Sr content of the brazing material is preferably 0.1% by mass or less as described above.
  • the content of Sr in the brazing material is more preferably 0.001 to 0.1% by mass.
  • the brazing material can further contain at least one of Zn: 0.3% by mass or less and Cu: 0.3% by mass or less. That is, the chemical components of the brazing aluminum alloy include, for example, Si: 5 to 10 mass%, Sr: 0.1 mass% or less, Zn: 0.3 mass% or less, and Cu: 0.3 mass%. It contains at least one of mass% or less, and the balance is Al and inevitable impurities.
  • the Zn in the brazing material functions to enhance the sacrificial anode effect.
  • the Zn content of the brazing material is preferably 0.3% by mass or less as described above.
  • the content of Zn in the brazing material is more preferably 0.05 to 0.3% by mass.
  • the Cu in the brazing material improves the corrosion resistance of the joint by making the potential of the fillet after brazing noble.
  • the Cu content of the brazing material is preferably 0.3% by mass or less as described above.
  • the Cu content of the brazing material exceeds 0.3% by mass, the potential of the fin material becomes noble and the sacrificial anode effect of the fin tends to decrease.
  • the Cu content in the brazing material is more preferably 0.05 to 0.3% by mass, and still more preferably. 0.1 to 0.2% by mass.
  • the thickness of the brazing material is appropriately selected depending on the Si content in the brazing material, the joining shape of the fin and the aluminum tube, the fin pitch, etc., and is preferably 7 ⁇ m or more, more preferably 7 to 30 ⁇ m.
  • the brazing material may be clad only on one side of the core material, or may be clad on both sides.
  • the clad rate of the brazing material is applicable as long as it is in a common sense range and is appropriately selected, but is preferably 3 to 25%. If the clad rate of the brazing material is less than the above range, the amount of the brazing material melted during brazing heating tends to be small, and a fillet may not be sufficiently formed. The core material may melt because there is too much brazing material.
  • the brazing sheet is obtained by cladding a brazing material on one or both sides of the core material.
  • a method of cladding the brazing material on the core material an alloy ingot for the core material having the same composition as each element in the core material or the brazing material and an alloy ingot for the brazing material are cast, and then the alloy for the core material
  • the ingot is homogenized according to the usual method for the ingot, the alloy ingot for the brazing material is hot-rolled, and then the ingot for the core material and the alloy ingot for the brazing material are subjected to the homogenization treatment.
  • a hot rolled product is piled up and hot rolled to produce a clad plate.
  • brazing sheet After finishing cold rolling, it is cut into product widths to form a brazing sheet as a fin material. Before or after the strip cutting, the coating film described later can be formed on the brazing sheet.
  • the coating film formed on the surface of the brazing sheet will be described.
  • the coating film may be formed on one side of the brazing sheet or may be formed on both sides.
  • the coating film is formed of, for example, an oxide containing silicon (Si), a composite oxide, or the like, and contains Si.
  • the amount of Si in the coating film is 10 to 300 mg / m 2 . When the amount of Si is less than 10 mg / m 2 , hydrophilic sustainability may be reduced. From the viewpoint of further suppressing the decrease in hydrophilic durability, the amount of Si in the coating film is more preferably 100 mg / m 2 or more.
  • Si amount is the amount per one side of the coating film. Further, when the Si amount in the coating film is 10 to 300 mg / m 2 , the adhesion amount of the coating film is preferably 20 to 800 mg / m 2 .
  • the coating film preferably contains at least one of silicate and amorphous silica.
  • the hydrophilic durability of the coating film is further improved.
  • the coating film more preferably contains at least silicate.
  • Silicate is, for example, sodium silicate or lithium silicate.
  • the coating film containing silicate can be formed by coating an aqueous solution containing silicate such as water glass on the surface of the brazing sheet and drying. From the viewpoint of further improving the hydrophilic sustainability, the silicate is more preferably derived from water glass.
  • amorphous silica for example, there is an aggregate formed by drying amorphous colloidal silica, and from the viewpoint that hydrophilic sustainability can be further improved, amorphous silica is derived from amorphous colloidal silica. It is preferable.
  • the coating film containing amorphous silica can be formed by coating amorphous colloidal silica on the surface of the brazing sheet and drying.
  • a coating film containing amorphous silica and silicate is formed by coating a mixture of amorphous colloidal silica and an aqueous solution containing silicate on the surface of the brazing sheet and drying. Can do.
  • the coating film can further contain a fluoride flux.
  • the fluoride flux content may be zero.
  • the content of the fluoride flux is preferably 0 or more and 5000 mg / m 2 or less. In this case, the flux effect can be obtained and the hydrophilic sustainability can be further improved. If the content of the fluoride flux is too small, the effect of adding the flux may not be sufficiently obtained. Therefore, the content of the fluoride flux is more preferably 40 mg / m 2 or more, further preferably 500 mg / m 2 or more, and further preferably 1000 mg / m 2 or more. On the other hand, when there is too much content of fluoride flux, there exists a possibility that hydrophilic sustainability may fall.
  • the content of the fluoride flux is preferably 5000 mg / m 2 or less, more preferably 3000 mg / m 2 or less, as described above, and 2000 mg / m 2. More preferably, it is as follows.
  • the coating amount is preferably 50 to 6000 mg / m 2 .
  • the coating film may have a Si content of 10 to 300 mg / m 2 , and may be formed by a single layer containing a fluoride flux. May be formed of a laminate of a layer having a thickness of 10 to 300 mg / m 2 and a layer mainly composed of fluoride flux.
  • the coating film is formed of a layer containing, for example, at least one of silicate and amorphous silica and a fluoride flux.
  • the coating film is formed of, for example, a layer mainly containing at least one of silicate and amorphous silica and a layer mainly containing fluoride flux.
  • the coating film can further contain an organic resin.
  • the coating property at the time of forming the coating film is improved.
  • it can prevent that Si components, such as a silicate and an amorphous silica, fall off from a coating film.
  • the organic resin is preferably made of a water-soluble acrylic resin and / or polyoxyethylene alkylene glycol (PAE).
  • PAE polyoxyethylene alkylene glycol
  • the precoat fin material may have a base treatment layer made of a chemical conversion film formed between the brazing sheet and the coating film.
  • the base treatment layer made of the chemical conversion film can be formed by, for example, phosphoric acid chromate treatment, zirconium phosphate treatment, boehmite treatment, or the like.
  • the ground treatment layer only needs to improve the adhesion between the brazing sheet and the coating film, and may be formed by other treatments.
  • shapes such as insertion fins and corrugated fins can be adopted as the fins made of the pre-coated fin material.
  • the fin material may have a slit.
  • the shape of the aluminum tube is not particularly limited as long as it is a refrigerant passage tube through which a refrigerant flows, and a round tube, a flat tube, or the like can be adopted.
  • An inner column that divides the interior into a plurality of passages may be formed in the pipe. More specifically, for example, a flat multi-hole tube can be adopted as the aluminum tube.
  • the aluminum tube may or may not have a brazing material clad on the surface.
  • the brazing heating temperature is, for example, 590 ° C. to 605 ° C.
  • the brazing heating time is, for example, 1 to 10 minutes.
  • the atmosphere during brazing heating is an inert gas atmosphere such as a nitrogen gas atmosphere, a helium gas atmosphere, or an argon gas atmosphere.
  • the precoat fin material has a brazing material and a coating film on the core material.
  • the coating film can be formed on the core material or can be formed on the brazing material.
  • the brazing material is softened or melted, and a fillet that contributes to joining can be formed at the contact portion with the aluminum tube.
  • the fin of the heat exchanger can exhibit excellent hydrophilic sustainability. This is considered to be because even if the brazing material is softened or melted, Si components (silicate, amorphous silica, etc.) in the coating film are retained on the fin.
  • the heat exchanger has a core portion made of a fin made of a pre-coated fin material and an aluminum tube joined to the fin.
  • a heat exchanger is manufactured by attaching a header, a side support, an entrance / exit pipe
  • the heat exchanger can be used for an air conditioner and a refrigerator, for example. It can also be used for automobile condensers, evaporators, radiators, heaters, intercoolers, oil coolers, and the like. Furthermore, it can also be used for a cooling device for cooling a heating element such as an IGBT (Insulated Gate Bipolar Transistor) provided in an inverter unit for controlling a drive motor of a hybrid vehicle or an electric vehicle.
  • IGBT Insulated Gate Bipolar Transistor
  • Example 1 This example is an example in which a plurality of pre-coated fin materials according to Examples and Comparative Examples are manufactured and their performances are compared.
  • a plurality of pre-coated fin materials (Sample E1-1 to Sample E9-2, Samples C1-1 to C9-2) are prepared. And using each of these precoat fin materials, the core part for heat exchangers is produced, and hydrophilicity sustainability and bondability are compared and evaluated.
  • a test mini-core is manufactured as the core portion.
  • the precoat fin material 1 has a brazing sheet 11 and a coating film 12 formed on the surface thereof.
  • the brazing sheet 11 includes a core material 111 made of an aluminum alloy and a brazing material 112 formed on both surfaces of the core material 111.
  • the coating film 12 is formed on both surfaces of the brazing sheet 11. Specifically, the coating film 12 is laminated on the brazing material 112 via a base treatment layer made of a chemical conversion film (not shown). Yes. The formation of the base treatment layer is optional and may not be formed.
  • the brazing filler metal 112 contains additive components (elements) shown in Table 1 to be described later, and the remainder has chemical components composed of Al and inevitable impurities.
  • the brazing materials of Sample A1 to Sample A10 having different compositions shown in Table 1 are used.
  • the core material 111 contains additive components (elements) shown in Table 2 to be described later, and the remainder has chemical components composed of Al and inevitable impurities.
  • core materials of samples B1 to B34 having different compositions shown in Table 2 are used.
  • the coating film 12 contains Si derived from lithium silicate in the contents shown in Tables 3 to 11 to be described later, and further contains a water-soluble acrylic resin in such an amount that the coating property can be improved.
  • the coating film 12 further contains a flux in an amount shown in a table described later.
  • the mini-core 2 has a fin 3 made of the pre-coated fin material 1 and an aluminum tube 4, and the corrugated fin 3 is sandwiched between the aluminum tubes 4.
  • one of the two aluminum tubes 4 sandwiching the fin 3 is indicated by a broken line in order to clearly show the corrugated shape of the fin 2.
  • the fin 3 is made of a pre-coated fin material 1 formed into a corrugated shape. More specifically, as shown in FIG. 4, the fin 3 has a brazing sheet 11 composed of a core material 111 and a brazing material 112 formed on both surfaces thereof, and a coating film 12 formed on both surfaces thereof.
  • the aluminum tube 4 is a flat multi-hole tube made of an aluminum alloy.
  • the aluminum tube 4 has a large number of refrigerant flow paths 411 for circulating the refrigerant.
  • the corrugated fin 3 is joined to the aluminum tube 4 at each vertex 30.
  • an aluminum alloy for core material having the composition shown in Table 2 and an aluminum alloy for brazing material having the composition shown in Table 1 are ingoted, and homogenized according to a conventional method,
  • the aluminum alloy ingot for brazing material is further hot-rolled and clad at a ratio of 10% brazing filler metal on one side of the aluminum alloy ingot for core material, then hot-rolled, and then cold-rolled.
  • the brazing sheet 11 was manufactured through final cold rolling.
  • Components other than the additive components shown in each table, that is, the balance is Al and inevitable impurities.
  • a base treatment layer made of a chemical conversion film (not shown) was formed on both surfaces of the brazing sheet 11 by performing a base treatment.
  • phosphoric acid chromate treatment was performed.
  • the thickness of the base treatment layer is, for example, about 1 ⁇ m.
  • a predetermined amount of water glass, a water-soluble acrylic resin, and a coating containing KAlF 4 which is a fluoride flux added as needed is applied on the base treatment layer, and the temperature is 200 ° C.
  • the coating film 12 was formed by drying with (refer FIG. 1). In this manner, precoated fin material 1 having coating film 12 containing water glass-derived Si at the contents shown in Tables 3 to 11 on brazing sheet 11 was produced. The coating film 12 was formed on both surfaces of the brazing sheet 11.
  • the amount of Si in the coating film 12 was measured by fluorescent X-ray analysis.
  • the fluorescent X-ray analysis was performed using a ZSX Primus II manufactured by Rigaku under the conditions of atmosphere: vacuum, tube: Rh, output: 50 kV-60 mA.
  • Quantification of Si in the coating film was performed by a calibration curve method using a standard Si sample.
  • the pre-coated fin material 1 was processed into a corrugated shape.
  • a corrugated fin 3 having the coating film 12 formed on both surfaces of the brazing sheet 11 was obtained (see FIGS. 2 to 4). These fins 3 are respectively used for manufacturing the mini-core 1.
  • a flat multi-hole tube made of 3000 series aluminum alloy was produced by extrusion (see FIGS. 2 and 3).
  • a corrugated fin 3 was sandwiched between two aluminum tubes 4 to produce an assembly (see FIGS. 2 and 3).
  • each vertex 30 of the corrugated fin 3 and the aluminum tube 4 were brought into contact with each other.
  • the assembly was held in a furnace at a temperature of 600 ° C. in a nitrogen gas atmosphere for 3 minutes, and then cooled to room temperature (25 ° C.).
  • the brazing filler metal 112 of the fin 3 softens or melts during heating in the furnace, and the brazing filler solidifies during cooling.
  • each vertex 30 of the corrugated fin 3 and the aluminum tube 4 are joined at the contact portion (not shown). In this way, as illustrated in FIGS. 2 and 3, the mini-core 2 in which the fin 3 and the aluminum tube 4 are joined is obtained.
  • the hydrophilic durability was evaluated using the precoated fin material of each sample.
  • Each sample is heated under the assumption of fin bonding performed after the formation of the coating film.
  • the pre-coated fin material was heated for 3 minutes in a furnace having a temperature of 600 ° C. in a nitrogen gas atmosphere.
  • the pre-coated fin material was immersed in pure water for 2 minutes and then air-dried for 6 minutes. This cycle of immersion in pure water and air drying was repeated 300 times.
  • the contact angle of the water droplet on the coating film of each test plate was measured. The contact angle was measured using a FACE automatic contact angle meter “CA-Z” manufactured by Kyowa Interface Chemical Co., Ltd.
  • a water drop was dropped on the coating film at room temperature, and the contact angle of the water drop after 30 seconds was measured.
  • the contact angle is less than 10 °, it is evaluated as “A”, when it is 10 ° or more and less than 20 °, it is evaluated as “B”, and when it is 20 ° or more and less than 30 °, it is evaluated as “C”.
  • the case of 30 ° or more was evaluated as “D”.
  • the strength was measured by a tensile test using the precoated fin material of each sample.
  • Each sample is heated under the assumption of fin bonding performed after the formation of the coating film.
  • the pre-coated fin material was heated for 3 minutes in a furnace having a temperature of 600 ° C. in a nitrogen gas atmosphere.
  • the tensile test was carried out at room temperature according to JIS Z2241 (2011) under the conditions of a tensile speed of 10 mm / min and a gauge length of 50 mm for each sample.
  • ⁇ Deformation rate> The fin height of the mini-core before and after joining was measured and the deformation rate due to fin buckling was also evaluated. That is, the case where the ratio of the fin height change before and after joining to the fin height before joining is 5% or less is evaluated as “A”, and the case where it exceeds 5% and is 10% or less is evaluated as “B”. The case where it exceeded 10% and 15% or less was evaluated as “C”, and the case where it exceeded 15% was evaluated as “D”.
  • Sample E1-1 and Sample E1-2 are superior in hydrophilic sustainability and have a high bonding rate compared to Sample C1-1 and Sample C1-2. Therefore, in the pre-coated fin material 1 having the brazing sheet 11 and the coating film 12, the brazing material 112 of the brazing sheet 11 contains 5 to 10% by mass of Si, and the balance contains chemical components composed of Al and inevitable impurities. It turns out that it is preferable to have.
  • Sample E1-3 and Sample E1-4 are superior in hydrophilic sustainability and have a higher bonding rate than Samples C1-3 and C1-4. Therefore, it can be seen that the Si amount in the coating film 12 is preferably 10 to 300 mg / m 2 .
  • the coating film can contain fluoride flux.
  • the content of to 40 to 5000 mg / m 2 the hydrophilic sustainability can be further improved.
  • the core aluminum alloy contains Si: 0.05 to 0.8% by mass, Fe: 0.05 to 0.8% by mass, and Mn: 0
  • Samples E3-1 to E3-6 containing 0.8 to 2% by mass have higher strength or corrosion resistance than Samples C3-1 to C3-6, respectively, in which the content of these additive components is outside the above range. It was better.
  • Sample E4-1 and Sample 4-2 which contain Zn: 0.3 to 3 mass% in the aluminum alloy of the core material, have Zn content. Compared to Samples C4-1 and C4-2 outside the above range, the corrosion resistance was more excellent.
  • the sample E6-1 containing at least one of In: 0.3% by mass or less and Sn: 0.3% by mass or less in the aluminum alloy of the core material and Sample 6-2 had improved corrosion resistance.
  • the content of these additive components is out of the above range, manufacturability is impaired.
  • the core aluminum alloy includes Ti: 0.3% by mass or less, V: 0.3% by mass or less, Zr: 0.3% by mass or less, Cr : Sample E7-1 to Sample 7-5 containing at least one selected from 0.3% by mass or less and Ni: 2% by mass or less were improved with a reduced deformation rate.
  • the content of these additive components is out of the above range, the manufacturability is impaired or the deformation rate is increased.
  • Sample E8-1 which contains Sr: 0.1% by mass or less in the brazing material aluminum alloy, had a low deformation rate and was improved. On the other hand, when the content of Sr exceeds the above range, productivity was impaired.
  • the heat exchanger 5 has a core portion 2 having a number of configurations similar to those of the mini-core of the first embodiment.
  • the core portion 2 is formed by alternately laminating a large number of fins 3 made of a corrugated pre-coated fin material 1 and aluminum tubes 4, and the fins 3 and the aluminum tubes 4 are the mini-cores of the first embodiment. They are joined in the same way.
  • the header 51 is assembled
  • a tank 53 is assembled to the header 51.
  • These header 51, side plate 52, and tank 53 can be joined by brazing, for example.
  • the precoat fin material 1 similar to the samples E1-1 to E9-2 shown in the above Tables 3 to 11 can be used. That is, the heat exchanger 5 has the core part 2 which consists of the fin 3 which consists of the precoat fin material 1 excellent in the above-mentioned hydrophilic sustainability, joining property, etc., and the aluminum tube 4 joined to the fin 3. Therefore, since the fin 3 exhibits excellent hydrophilic durability, the heat exchanger 5 can suppress an increase in ventilation resistance and can stably exhibit good heat exchange performance for a long period of time. Further, in the heat exchanger 5, for example, the aluminum tube 4 and the fin 3 are sufficiently joined, so that the heat exchange performance between the aluminum tube 4 and the fin 3 is improved.
  • Example 3 This example is an example of a heat exchanger having a configuration in which an aluminum tube made of a flat multi-hole tube is inserted into an assembly hole formed in a fin.
  • the heat exchanger 6 includes an aluminum tube 7 and fins 8.
  • the fin 8 has an assembly hole 81 into which the aluminum tube 7 is inserted.
  • the aluminum tube 7 is in contact with the fin 8 at the contact portion 61.
  • a fillet 600 is formed between the aluminum tube 7 and the fin 8 to join both.
  • the heat exchanger 6 of this example includes a large number of fins 8 arranged at intervals in the plate thickness direction, and a plurality of aluminum tubes 7 extending in the plate thickness direction of the fins 8. And have.
  • the fin 8 has a substantially rectangular shape in plan view as viewed from the thickness direction.
  • the fin 8 is made of the precoated fin material 1 having the same brazing sheet 11 as in Example 1 and the coating film 12 formed on both surfaces thereof, but the brazing sheet 11.
  • the brazing material 112 is formed on one side of the core material 111. More specifically, the brazing material 112 is formed on the abutting portion 61 side with the aluminum tube 7, and the brazing material 112 is not formed on the opposite side.
  • the coating film 12 is laminated on the brazing material 112 on the surface on which the brazing material 112 is formed, and is laminated on the core material 111 on the non-forming surface side of the brazing material.
  • the method for forming the brazing material and the coating film is the same as in Example 1.
  • the assembly hole 81 in the fin 8 is a notch 811 provided in the outer peripheral edge portion of the fin 8.
  • the notch 811 extends in the plate width direction from the outer peripheral edge of the fin 8 and has a U shape in plan view.
  • the notch 811 is configured such that the aluminum tube 7 can be press-fitted from an open portion 812 provided at the outer peripheral edge of the fin 8.
  • the fin 8 has a collar portion 82 protruding from the peripheral edge of the assembly hole 81.
  • the height of the color part 82 is not specifically limited, For example, it can be 200 micrometers or more.
  • the aluminum tube 7 is a flat multi-hole tube in which a cross section in the longitudinal direction has an oval shape and a plurality of flow paths 711 are formed therein.
  • the flat multi-hole tube is arranged so that the width direction thereof is parallel to the plate width direction of the fin plate.
  • the aluminum tube 7 made of a flat multi-hole tube has a collar portion 82 at one end 712 in the width direction, that is, a portion where the surface is curved. Abut.
  • One end portion 712 of the aluminum tube 7 and the tip portion 821 of the U-shape of the collar portion 82 constitute a contact portion 61.
  • the brazing material 112 of the fin 8 joins the fin 8 and the aluminum tube 7 by heating and cooling at the time of joining described later.
  • the heat exchanger 6 of this example can be manufactured as follows, for example. First, the pre-coated fin material 1 is produced in the same manner as in Example 1 except that the brazing material 112 is formed on one side of the core material 111, and the fin 8 is produced by a conventional method using this fin material. Then, the plurality of fins 8 are arranged at intervals in the plate thickness direction. Next, an aluminum tube 7 made of a flat multi-hole tube prepared by a conventional method is press-fitted into the assembly hole 81 of the fin 8, and at least one end 712 of the aluminum tube 7 and the tip 821 of the collar portion 82 are brought into contact with each other. Make contact. Thereafter, for example, the substrate is heated at 600 ° C.

Abstract

Provided are: a precoated fin material which has excellent hydrophilicity sustainability for fins, and which enables a fin and an aluminum pipe to be bonded with each other without separately supplying a brazing material thereto, thereby enabling the production of a heat exchanger that has excellent bonding properties; and a heat exchanger which uses this precoated fin material. A precoated fin material (1) which comprises a brazing sheet (11) and a coating film (12) that is formed on the surface of the brazing sheet (11); and a heat exchanger comprising a fin that is formed from this precoated fin material (1). The brazing sheet (11) comprises: a core material (111) that is formed from an aluminum alloy; and a brazing material (112) that is laminated on the core material (11). The brazing material (112) has a chemical composition that contains 5-10% by mass of Si, with the balance being made up of Al and unavoidable impurities. The amount of Si in the coating film (12) is 10-300 mg/m2.

Description

プレコートフィン材及びこれを用いた熱交換器Pre-coated fin material and heat exchanger using the same
 本発明は、例えば、ブレージングシートと、塗膜とを有するプレコートフィン材、及びこれを使用した熱交換器に関する。 The present invention relates to, for example, a precoated fin material having a brazing sheet and a coating film, and a heat exchanger using the same.
 一般に、オールアルミニウム製の熱交換器は、冷媒が流れるアルミニウム管と、管の外側の空気との間で熱交換を行うためのアルミニウムフィンとを有しており、管とフィンとは互いに接合されている。熱交換器の熱交換性能にはフィンの親水性が大きく影響するため、表面に親水性の塗膜が形成されたフィンがよく用いられている。このような親水性の塗膜を有するフィンと管との接合には、フィンに設けられた孔内に挿入した管を拡管させることによって両者を機械的に接合する方法が用いられている(特許文献1、特許文献2参照)。 Generally, an all-aluminum heat exchanger has an aluminum tube through which a refrigerant flows and an aluminum fin for exchanging heat between air outside the tube, and the tube and the fin are joined to each other. ing. Since the hydrophilicity of the fin greatly affects the heat exchange performance of the heat exchanger, a fin having a hydrophilic coating film formed on the surface is often used. For joining the fin and the pipe having such a hydrophilic coating film, a method of mechanically joining the two by expanding the pipe inserted into the hole provided in the fin (patent) Reference 1 and Patent Reference 2).
 接合方法としては、上述の機械的接合の他にもろう付け接合が想定される。しかし、一般的な樹脂系又は無機系の塗膜は、ろう付け時の加熱温度で変質又は分解してしまうため、ろう付け後に親水性を十分に発揮できない。また、ろう付けにフラックスを用いると、塗膜の存在によりフラックス作用が阻害され、ろう付け接合が不十分になるおそれがある。そのため、ろう付けによって熱交換器を製造する場合には、一般にろう付け後に塗膜が形成されている(特許文献3参照)。しかし、この場合には、専用の塗膜形成設備が必要となるため、製造コストが増大するという問題がある。また、この場合には、熱交換器の大型化への対応が困難になる。 As a joining method, in addition to the above-described mechanical joining, brazing joining is assumed. However, since a general resin-based or inorganic coating film is altered or decomposed at the heating temperature at the time of brazing, it cannot sufficiently exhibit hydrophilicity after brazing. Further, when flux is used for brazing, the flux action is hindered by the presence of the coating film, and brazing joining may be insufficient. Therefore, when manufacturing a heat exchanger by brazing, the coating film is generally formed after brazing (refer patent document 3). However, in this case, there is a problem that the manufacturing cost increases because a dedicated coating film forming facility is required. In this case, it is difficult to cope with an increase in the size of the heat exchanger.
 そこで、ろう付け前に塗膜がプレコートされたフィン材として、ケイ酸塩を主成分とする塗膜を有するフィン材が提案されている(特許文献4参照)。また、熱交換器の作製において、ろう付け前に、キシレン等の支持体やシリコーンオイル等の珪素系結合剤等を含む被膜を予め形成したフィンを作製する方法が提案されている(特許文献5参照)。 Therefore, a fin material having a coating film mainly composed of silicate has been proposed as a fin material having a coating film pre-coated before brazing (see Patent Document 4). Further, in the production of a heat exchanger, a method for producing a fin in which a film containing a support such as xylene or a silicon-based binder such as silicone oil is formed before brazing has been proposed (Patent Document 5). reference).
特開平4-278189号公報JP-A-4-278189 特開2012-052747号公報JP 2012-052747 A 特開2004-347314号公報JP 2004-347314 A 特開2013-137153号公報JP 2013-137153 A 特表2008-508103号公報Special table 2008-508103 gazette
 しかしながら、これまでの塗膜や被膜がプレコートされたフィン材は、ろう付後の親水持続性が不十分であったり、ろう付け機能が不十分であった。すなわち、従来のフィン材は、優れた親水持続性と優れたろう付け機能とを兼ね備えてはいなかった。そのため、フィン材を用いた熱交換器の製造にあたって別途ろう材を供給する必要があり、その結果、製造工程の増加による製造性の低下や、部材調達による製造コスト増加が見込まれる。また、プレコートされた塗膜や被膜は、ろう材を用いたフィンとアルミニウム管とのろう付け接合に悪影響を及ぼし、接合性を不十分にするおそれがある。そこで、優れた親水持続性に保持すると共に、ろう材を用いることなく接合が可能であり、かつフィンとアルミニウム管との接合性に優れた熱交換器を製造することができるプレコートフィン材の開発が望まれている。 However, fin films pre-coated with conventional coatings and films have insufficient hydrophilic sustainability after brazing and insufficient brazing function. That is, the conventional fin material did not have excellent hydrophilic sustainability and excellent brazing function. Therefore, it is necessary to supply a brazing material separately when manufacturing the heat exchanger using the fin material. As a result, a decrease in manufacturability due to an increase in the manufacturing process and an increase in manufacturing cost due to member procurement are expected. In addition, the pre-coated coating film or coating film adversely affects the brazing joint between the fin using the brazing material and the aluminum tube, and there is a possibility that the joining property is insufficient. Therefore, development of a pre-coated fin material that can maintain a superior hydrophilic sustainability and can produce a heat exchanger that can be joined without using a brazing material and has excellent joining properties between the fin and the aluminum tube. Is desired.
 本発明は、かかる背景に鑑みてなされたものであり、フィンの親水持続性に優れ、ろう材を別途供給することなくフィンとアルミニウム管との接合が可能であり、かつ接合性に優れた熱交換器を製造することができるプレコートフィン材、及び該プレコートフィン材を用いた熱交換器を提供しようとするものである。 The present invention has been made in view of such a background, and is excellent in the hydrophilic sustainability of the fins, can be joined between the fins and the aluminum pipe without separately supplying a brazing material, and has excellent joining properties. An object of the present invention is to provide a pre-coated fin material capable of producing an exchanger, and a heat exchanger using the pre-coated fin material.
 本発明の一態様は、アルミニウム合金からなる心材と、該心材上に積層されたろう材とを有するブレージングシートと、
 上記ブレージングシートの表面に形成された塗膜と、を有し、
 上記ろう材は、Si:5~10質量%を含有し、残部がAl及び不可避的不純物からなる化学成分を有し、
 上記塗膜中のSiの含有量が10~300mg/m2である、プレコートフィン材にある。
One aspect of the present invention is a brazing sheet having a core material made of an aluminum alloy, and a brazing material laminated on the core material,
A coating film formed on the surface of the brazing sheet,
The brazing material contains Si: 5 to 10% by mass, and the balance has a chemical component consisting of Al and inevitable impurities,
The pre-coated fin material has a Si content in the coating film of 10 to 300 mg / m 2 .
 本発明の他の態様は、上記プレコートフィン材からなるフィンと、該フィンに接合されたアルミニウム管とからなるコア部を有する、熱交換器にある。 Another aspect of the present invention resides in a heat exchanger having a core portion made of a fin made of the pre-coated fin material and an aluminum tube joined to the fin.
 上記プレコートフィン材は、アルミニウム合金からなる心材と、該心材上に積層されたろう材とを有するブレージングシートを有し、ろう材がSiを上記特定の範囲で含有し、残部がAl及び不可避的不純物からなる化学成分を有する。そのため、心材上に積層形成されたろう材によって、プレコートフィン材を例えばアルミニウム管等の他部材に接合させることができる。したがって、別途ろう材等の接合部材を用いなくても接合が可能になると共に、充分な接合性を確保することが可能になる。さらに、ろう材等の接合部材を別途使用することなく接合が可能であるため、製造工程の増加を防止できると共に、接合部材を別途調達する必要がなくなるためコストダウンの要求に応えることができる。また、上記特定組成のろう材は、ブレージングシート上に形成された塗膜の性能を損ねることを防止できる。 The pre-coated fin material has a brazing sheet having a core material made of an aluminum alloy and a brazing material laminated on the core material, wherein the brazing material contains Si in the specific range, with the balance being Al and inevitable impurities. It has a chemical component consisting of Therefore, the pre-coated fin material can be joined to another member such as an aluminum tube by the brazing material laminated on the core material. Therefore, it is possible to join without using a separate joining member such as a brazing material, and it is possible to ensure sufficient joining properties. Furthermore, since it is possible to join without separately using a joining member such as a brazing material, it is possible to prevent an increase in the manufacturing process, and it is not necessary to procure a joining member separately, thereby meeting the demand for cost reduction. Moreover, the brazing material having the specific composition can prevent the performance of the coating film formed on the brazing sheet from being impaired.
 また、Si量が上記ごとく調整された塗膜は、加熱等により塗膜性能が劣化し難い。そのため、塗膜は、例えばアルミニウム管のような他部材との接合時における加熱後においても優れた親水性を発揮することができると共に、初期の優れた親水性を長期間維持することができる。また、塗膜は、例えばアルミニウム管のような他のアルミニウム部材とプレコートフィン材との接合をほとんど阻害しない。そのため、上記プレコートフィン材は、塗膜を有しているにもかかわらず、例えばアルミニウム管との充分な接合が可能である。 In addition, the coating film in which the Si amount is adjusted as described above is unlikely to deteriorate in coating film performance due to heating or the like. Therefore, the coating film can exhibit excellent hydrophilicity even after heating at the time of joining with another member such as an aluminum tube, and can maintain the initial excellent hydrophilicity for a long period of time. Moreover, a coating film hardly inhibits joining with other aluminum members, such as an aluminum pipe, and a precoat fin material, for example. Therefore, although the said precoat fin material has a coating film, sufficient joining with an aluminum pipe, for example is possible.
 このように、上記プレコートフィン材においては、塗膜及びろう材の成分が上記のごとく適正化されている。そのため、フィンの親水持続性に優れ、ろう材を別途供給することなくフィンとアルミニウム管との接合が可能であり、かつ接合性に優れた熱交換器を製造することが可能になる。 Thus, in the pre-coated fin material, the components of the coating film and the brazing material are optimized as described above. Therefore, it is possible to manufacture a heat exchanger that is excellent in hydrophilic sustainability of the fins, can join the fins to the aluminum pipe without separately supplying a brazing material, and has excellent joining properties.
 また、上記熱交換器は、上述の親水持続性、及び接合性に優れたプレコートフィン材からなるフィンと、フィンに接合されたアルミニウム管とからなるコア部を有している。
したがって、熱交換器は、フィンが優れた親水持続性を発揮するため、通風抵抗の増加を抑制し、良好な熱交換性能を長期間安定して発揮することができる。また、熱交換器においては、例えばアルミウム管とフィンとが十分に接合されるため、アルミニウム管とフィンとの熱交換性能が良好になる。
Moreover, the said heat exchanger has a core part which consists of the fin which consists of a precoat fin material excellent in the above-mentioned hydrophilic sustainability and joining property, and the aluminum pipe joined to the fin.
Therefore, in the heat exchanger, since fins exhibit excellent hydrophilic sustainability, an increase in ventilation resistance can be suppressed, and good heat exchange performance can be stably exhibited for a long period of time. Further, in the heat exchanger, for example, an aluminum tube and a fin are sufficiently joined, so that the heat exchange performance between the aluminum tube and the fin is improved.
実施例1における、プレコートフィン材の断面図。Sectional drawing of the precoat fin material in Example 1. FIG. 実施例1における、熱交換器のコア部(具体的にはミニコア)の斜視図。The perspective view of the core part (specifically minicore) of the heat exchanger in Example 1. FIG. 実施例1における、熱交換器のコア部(具体的にはミニコア)の断面図。Sectional drawing of the core part (specifically minicore) of the heat exchanger in Example 1. FIG. 実施例1における、熱交換器のフィンの拡大断面図。The expanded sectional view of the fin of the heat exchanger in Example 1. FIG. 実施例1における、接合前のフィンとアルミニウム管との当接部の部分断面図。The fragmentary sectional view of the contact part of the fin and aluminum pipe before joining in Example 1. FIG. 実施例2における、熱交換器の正面図。The front view of the heat exchanger in Example 2. FIG. 実施例3における、熱交換器の要部の斜視図。The perspective view of the principal part of the heat exchanger in Example 3. FIG. 図7における当接部近傍の部分拡大断面図。The partial expanded sectional view of the contact part vicinity in FIG. 図7における、III-III線矢視断面図。FIG. 8 is a cross-sectional view taken along line III-III in FIG.
 プレコートフィン材は、このプレコートフィン材からなるフィンとアルミニウム管と接合させ、熱交換器を得るために用いられる。本明細書において、「アルミニウム管」は、純アルミニウム製の管だけでなく、アルミニウム合金製の管を含む概念である。具体的には、A1000系の純アルミニウム、A3000系のアルミニウム合金等を用いることができる。 The pre-coated fin material is used for joining a fin made of the pre-coated fin material and an aluminum tube to obtain a heat exchanger. In the present specification, the “aluminum tube” is a concept including not only a pure aluminum tube but also an aluminum alloy tube. Specifically, A1000 series pure aluminum, A3000 series aluminum alloy, or the like can be used.
 プレコートフィン材は、アルミニウム合金からなる心材と、この心材上に積層されたろう材とを有するブレージングシートを有する。ブレージングシートは、例えばクラッド材であり、アルミニウム合金(すなわち心材)にAl-Si系合金(すなわち、ろう材)がクラッドされている。プレコートフィン材は熱交換性能が要求されるフィンに用いられるという観点から、ブレージングシートの厚みは例えば0.15mm以下が好ましい。また、腐食速度が高くなってもフィン材自体の体積が大きいのでフィン材が残存し、一定の期間、犠牲陽極効果が継続するので耐食性が問題になりにくいという観点から、ブレージングシートの厚みは例えば0.05mm以上が好ましい。 The pre-coated fin material has a brazing sheet having a core material made of an aluminum alloy and a brazing material laminated on the core material. The brazing sheet is, for example, a clad material, and an aluminum alloy (ie, core material) is clad with an Al—Si alloy (ie, brazing material). The thickness of the brazing sheet is preferably, for example, 0.15 mm or less from the viewpoint that the precoat fin material is used for fins that require heat exchange performance. In addition, the thickness of the brazing sheet is, for example, from the viewpoint that the fin material remains large even when the corrosion rate is high, and the sacrificial anode effect continues for a certain period of time, so corrosion resistance is not a problem. 0.05 mm or more is preferable.
 心材のアルミニウム合金の化学成分は、Al、不可避的不純物の他に、Si、Fe、Mn、Zn、Mg、Cu、In、Sn、Ti、V、Zr、Cr、及びNiからなる群から選ばれる少なくとも1種の添加元素をさらに含有することができる。 The chemical component of the core aluminum alloy is selected from the group consisting of Si, Fe, Mn, Zn, Mg, Cu, In, Sn, Ti, V, Zr, Cr, and Ni in addition to Al and inevitable impurities. At least one additional element can be further contained.
 心材のアルミニウム合金の化学成分は、例えばSi:0.05~0.8質量%、Fe:0.05~0.8質量%、及びMn:0.8~2質量%を含有し、残部がAl及び不可避的不純物からなることが好ましい。心材のMn含有量が、上記範囲を超えると、鋳造時に粗大な晶出物が生成して圧延加工性が害され、クラッド材の製造が困難となり易い。 The chemical composition of the core aluminum alloy contains, for example, Si: 0.05 to 0.8 mass%, Fe: 0.05 to 0.8 mass%, and Mn: 0.8 to 2 mass%, with the balance being It preferably consists of Al and inevitable impurities. When the Mn content of the core exceeds the above range, coarse crystallized products are generated during casting, rolling workability is impaired, and the production of the clad material tends to be difficult.
 心材中のSiは、MnあるいはFe等のその他の添加元素と微細析出物を形成して、心材の強度を向上させ、また、Mnの固溶量を減少させて熱伝導度(電気伝導度)を向上させる。心材のSi含有量は、好ましくは上述のごとく0.05~0.8質量%である。Siの含有量が0.05質量%未満の場合には、その添加効果が不十分になり、0.8質量%を超えると、心材の融点が低下してろう付時の変形や局部溶融が生じ易くなる。Siの添加効果を十分に得ると共に、変形や局部溶融を十分に防止するという観点から、Siの含有量は、より好ましくは0.1~0.8質量%、更に好ましくは0.3~0.5質量%である。 Si in the core material forms fine precipitates with other additive elements such as Mn or Fe, improving the strength of the core material, and reducing the solid solution amount of Mn to reduce thermal conductivity (electrical conductivity). To improve. The Si content of the core material is preferably 0.05 to 0.8% by mass as described above. When the Si content is less than 0.05% by mass, the effect of addition becomes insufficient. When the Si content exceeds 0.8% by mass, the melting point of the core material is lowered, and deformation during brazing and local melting occur. It tends to occur. From the viewpoint of sufficiently obtaining the effect of addition of Si and sufficiently preventing deformation and local melting, the Si content is more preferably 0.1 to 0.8% by mass, and still more preferably 0.3 to 0%. 0.5% by mass.
 心材中のFeは、Mnと共存して、ろう付前及びろう付け後のフィン材の強度を向上させる。心材のFe含有量は、好ましくは上述のごとく0.05~0.8質量%である。心材のFeの含有量が、0.05質量%未満の場合には、その添加効果が不十分になり、0.8質量%を超える場合には、結晶粒が細かくなって、溶融ろうが心材中に浸食し易くなり、耐高温座屈性が低下し易くなり、自己腐食性が増大し易くなる。Feの添加効果を十分に得ると共に、耐高温座屈性の低下をより抑制し、自己腐食性の増大をより抑制するという観点から、Feの含有量は、より好ましくは0.1~0.8質量%、更に好ましくは0.3~0.5質量%である。 Fe in the core material coexists with Mn and improves the strength of the fin material before and after brazing. The Fe content of the core material is preferably 0.05 to 0.8% by mass as described above. If the Fe content of the core material is less than 0.05% by mass, the effect of addition becomes insufficient, and if it exceeds 0.8% by mass, the crystal grains become fine and the molten brazing core material It becomes easy to erode inside, the high temperature buckling resistance tends to decrease, and the self corrosion property tends to increase. From the viewpoint of sufficiently obtaining the effect of addition of Fe, further suppressing the decrease in high-temperature buckling resistance and further suppressing the increase in self-corrosion, the Fe content is more preferably 0.1 to 0.00. It is 8% by mass, more preferably 0.3 to 0.5% by mass.
 心材中のMnは、心材の強度を向上させ、耐高温座屈性を改善するよう機能する。心材のMn含有量は、好ましくは上述のごとく0.8~2質量%である。心材のMn含有量が0.8質量%未満の場合には、その添加効果が不十分になり、2質量%を超える場合には、鋳造時に粗大な晶出物が生成して圧延加工性が害され、クラッド材の製造が困難となり易い。Mnの添加効果を十分に得ると共に、圧延加工性の低下をより抑制するという観点から、Mnの含有量は、より好ましくは0.9~2質量%、更に好ましくは1~1.7質量%である。 Mn in the core material functions to improve the strength of the core material and improve high temperature buckling resistance. The Mn content of the core material is preferably 0.8 to 2% by mass as described above. When the Mn content of the core material is less than 0.8% by mass, the effect of addition becomes insufficient, and when it exceeds 2% by mass, a coarse crystallized product is generated at the time of casting, and the rollability is low. The clad material is likely to be difficult to manufacture. From the viewpoint of sufficiently obtaining the addition effect of Mn and further suppressing the reduction in rolling workability, the Mn content is more preferably 0.9 to 2% by mass, and still more preferably 1 to 1.7% by mass. It is.
 心材は、さらにZn:0.3~3質量%を含有することができる。すなわち、心材のアルミニウム合金の化学成分は、例えば、Si:0.05~0.8質量%、Fe:0.05~0.8質量%、Mn:0.1~2質量%を含有し、さらにZn:0.3~3質量%を含有し、残部がAl及び不可避的不純物である。心材中のZnは、電位を卑にして犠牲陽極効果を高めることができ、プレコートフィン材の耐食性を向上させることができる。心材のZn含有量が、0.3質量%未満の場合には、その添加効果が不十分になり、3質量%を超える場合には、心材自体の自己耐食性が悪くなり易く、粒界腐食感受性も増加し易くなる。Znの添加効果を十分に得ると共に、耐食性をより向上させるという観点から、心材のZn含有量は、より好ましくは1~2.5質量%、更に好ましくは2~2.3質量%である。 The core material may further contain Zn: 0.3 to 3% by mass. That is, the chemical component of the core aluminum alloy contains, for example, Si: 0.05 to 0.8 mass%, Fe: 0.05 to 0.8 mass%, Mn: 0.1 to 2 mass%, Further, Zn: 0.3 to 3% by mass, the balance being Al and inevitable impurities. Zn in the core material can lower the potential and increase the sacrificial anode effect, and can improve the corrosion resistance of the pre-coated fin material. When the Zn content of the core material is less than 0.3% by mass, the effect of addition becomes insufficient. When the Zn content exceeds 3% by mass, the self-corrosion resistance of the core material itself tends to be deteriorated, and it is susceptible to intergranular corrosion. It becomes easy to increase. From the viewpoint of sufficiently obtaining the effect of adding Zn and further improving the corrosion resistance, the Zn content of the core material is more preferably 1 to 2.5% by mass, and further preferably 2 to 2.3% by mass.
 心材は、さらにMg:1質量%以下及びCu:0.5質量%以下の少なくとも一方を含有することができる。すなわち、心材のアルミニウム合金の化学成分は、例えば、Si:0.05~0.8質量%、Fe:0.05~0.8質量%、Mn:0.1~2質量%、Zn:0.3~6質量%を含有し、さらにMg:1質量%以下及びCu:0.5質量%以下の少なくとも一方を含有し、残部がAl及び不可避的不純物である。 The core material may further contain at least one of Mg: 1 mass% or less and Cu: 0.5 mass% or less. That is, the chemical composition of the core aluminum alloy is, for example, Si: 0.05 to 0.8 mass%, Fe: 0.05 to 0.8 mass%, Mn: 0.1 to 2 mass%, Zn: 0 3 to 6% by mass, further containing at least one of Mg: 1% by mass or less and Cu: 0.5% by mass or less, with the balance being Al and inevitable impurities.
 心材中のMgは、Siとの析出物の形成によってろう付け前及びろう付け後のフィン材の強度を向上させる。心材のMgの含有量は、好ましくは上述のごとく1質量%以下である。Mgの含有量が1質量%を超える場合には、心材の融点が低下してろう付時の変形や局部溶融が生じ易くなる。Mgの添加効果を十分に得るという観点から、心材のMgの含有量は、より好ましくは0.05~1質量%、更に好ましくは0.3~1質量である。 Mg in the core material improves the strength of the fin material before and after brazing by forming precipitates with Si. The content of Mg in the core material is preferably 1% by mass or less as described above. When the Mg content exceeds 1% by mass, the melting point of the core material is lowered, and deformation during brazing and local melting are likely to occur. From the viewpoint of sufficiently obtaining the effect of adding Mg, the content of Mg in the core material is more preferably 0.05 to 1% by mass, still more preferably 0.3 to 1% by mass.
 心材中のCuは、ろう付け前及びろう付け後のフィン材の強度を向上させるが、耐粒界腐食性を低下させる。心材のCuの含有量は、好ましくは上述のごとく0.5質量%以下である。Cuの含有量が0.5質量%を超える場合には、フィン材の電位が貴となってフィン材の犠牲陽極効果が低下し易くなるとともに、耐粒界腐食性も低下し易くなる。Cuの添加効果を十分に得るという観点から、心材のCuの含有量は、より好ましくは0.05~0.5質量%である。 Cu in the core material improves the strength of the fin material before and after brazing, but reduces intergranular corrosion resistance. The Cu content in the core material is preferably 0.5% by mass or less as described above. When the Cu content exceeds 0.5% by mass, the potential of the fin material becomes noble and the sacrificial anode effect of the fin material tends to decrease, and the intergranular corrosion resistance also tends to decrease. From the viewpoint of sufficiently obtaining the effect of adding Cu, the content of Cu in the core material is more preferably 0.05 to 0.5% by mass.
 心材は、さらにIn:0.3質量%以下及びSn:0.3質量%以下の少なくとも一方を含有することができる。すなわち、心材のアルミニウム合金の化学成分は、例えば、Si:0.05~0.8質量%、Fe:0.05~0.8質量%、Mn:0.1~2質量%、Zn:0.3~6質量%を含有し、さらにIn:0.3質量%以下及びSn:0.3質量%を含有し、残部がAl及び不可避的不純物である。 The core material can further contain at least one of In: 0.3 mass% or less and Sn: 0.3 mass% or less. That is, the chemical composition of the core aluminum alloy is, for example, Si: 0.05 to 0.8 mass%, Fe: 0.05 to 0.8 mass%, Mn: 0.1 to 2 mass%, Zn: 0 3 to 6% by mass, further containing In: 0.3% by mass or less and Sn: 0.3% by mass, with the balance being Al and inevitable impurities.
 心材中のSnは、表面電位を卑化して電位を卑にして犠牲陽極効果を高める。心材のSn含有量は、好ましくは上述のごとく0.3質量%以下である。心材のSn含有量が、0.3質量%を超える場合には、鋳造時に粗大な晶出物が生成して圧延加工性を害し易くなり、板材の製造が困難となり易い。Snの添加効果を十分に得るという観点から、心材のSnの含有量は、より好ましくは0.005~0.3質量%である。 Sn in the core material lowers the surface potential and lowers the potential to increase the sacrificial anode effect. The Sn content of the core material is preferably 0.3% by mass or less as described above. When the Sn content of the core material exceeds 0.3% by mass, a coarse crystallized product is generated at the time of casting, and the rolling processability is liable to be impaired, and the production of the plate material is likely to be difficult. From the viewpoint of sufficiently obtaining the effect of adding Sn, the Sn content of the core material is more preferably 0.005 to 0.3% by mass.
 心材中のInは、表面電位を卑化して電位を卑にして犠牲陽極効果を高める。心材のIn含有量は、好ましくは上述のごとく0.3質量%以下である。Inの含有量が0.3質量%を超える場合には、鋳造時に粗大な晶出物が生成して圧延加工性を害し易くなり、板材の製造が困難となり易い。Inの添加効果を十分に得るという観点から、心材のInの含有量は、より好ましくは0.005~0.3質量%である。 In in the core material lowers the surface potential and lowers the potential to increase the sacrificial anode effect. The In content of the core material is preferably 0.3% by mass or less as described above. When the In content exceeds 0.3% by mass, a coarse crystallized product is generated at the time of casting, and the rolling processability is liable to be impaired, and the production of the plate material is likely to be difficult. From the viewpoint of obtaining a sufficient effect of adding In, the In content of the core material is more preferably 0.005 to 0.3% by mass.
 心材は、さらにTi:0.3質量%以下、V:0.3質量%以下、Zr:0.3質量%以下、Cr:0.3質量%以下、及びNi:2質量%以下から選ばれる少なくとも1種を含有することができる。すなわち、心材のアルミニウム合金の化学成分は、例えば、Si:0.05~0.8質量%、Fe:0.05~0.8質量%、Mn:0.1~2質量%、Zn:0.3~6質量%を含有し、さらにTi:0.3質量%以下、V:0.3質量%以下、Zr:0.3質量%以下、Cr:0.3質量%以下、及びNi:2質量%以下から選ばれる少なくとも1種を含有し、残部がAl及び不可避的不純物である。 The core material is further selected from Ti: 0.3 mass% or less, V: 0.3 mass% or less, Zr: 0.3 mass% or less, Cr: 0.3 mass% or less, and Ni: 2 mass% or less. At least one kind can be contained. That is, the chemical composition of the core aluminum alloy is, for example, Si: 0.05 to 0.8 mass%, Fe: 0.05 to 0.8 mass%, Mn: 0.1 to 2 mass%, Zn: 0 3 to 6% by mass, Ti: 0.3% by mass or less, V: 0.3% by mass or less, Zr: 0.3% by mass or less, Cr: 0.3% by mass or less, and Ni: It contains at least one selected from 2% by mass or less, and the balance is Al and inevitable impurities.
 心材中のTiは、ろう付け前及びろう付け後のフィン材の腐食を層状腐食形態として、局部的な腐食を緩和する。また、Tiは、ろう付け前及びろう付け後のフィン材の強度を向上させるとともに、高温座屈性を改良する。心材のTi含有量は、好ましくは上述のごとく0.3質量%以下である。心材のTi含有量が、0.3質量%を超える場合には、鋳造時に粗大な晶出物が生成して圧延加工性を害し易くなり、板材の製造が困難となり易い。Tiの添加効果を十分に得るという観点から、心材のTiの含有量は、より好ましくは0.01~0.3質量%である。 Ti in the core material mitigates local corrosion by using the corrosion of the fin material before brazing and after brazing as a layered corrosion form. Moreover, Ti improves the strength of the fin material before and after brazing and improves high temperature buckling. The Ti content of the core material is preferably 0.3% by mass or less as described above. When the Ti content of the core material exceeds 0.3% by mass, a coarse crystallized product is generated at the time of casting, and the rolling processability is liable to be impaired, and the production of the plate material is likely to be difficult. From the viewpoint of sufficiently obtaining the effect of adding Ti, the Ti content of the core material is more preferably 0.01 to 0.3% by mass.
 心材中のVは、アルミニウム合金組織のマトリックス中に固溶して強度を向上させる他、層状に分布して板厚方向の腐食の進展を防ぐ効果がある。また、Vは、ろう付け前及びろう付け後のフィン材の強度を向上させるとともに、高温座屈性を改良する。心材のV含有量は、好ましくは上述のごとく0.3質量%以下である。心材のV含有量が0.3質量%を超える場合には、鋳造時に粗大な晶出物が生成して圧延加工性を害し易くなり、板材の製造が困難となり易い。Vの添加効果を十分に得るという観点から、心材のVの含有量は、より好ましくは0.01~0.3質量%である。 V in the core material is dissolved in the matrix of the aluminum alloy structure to improve the strength, and is also distributed in layers to prevent the progress of corrosion in the thickness direction. Further, V improves the strength of the fin material before and after brazing and improves high temperature buckling. The V content of the core material is preferably 0.3% by mass or less as described above. When the V content of the core material exceeds 0.3% by mass, a coarse crystallized product is generated at the time of casting, and the rolling processability is liable to be impaired, and the production of the plate material is likely to be difficult. From the viewpoint of sufficiently obtaining the effect of adding V, the V content of the core material is more preferably 0.01 to 0.3% by mass.
 心材中のZrは、ろう付け前及びろう付け後のフィン材の強度を向上させるとともに、高温座屈性を改良する。心材のZr含有量は、好ましくは上述のごとく0.3質量%以下である。心材のZr含有量が0.3質量%を超える場合には、鋳造時に粗大な晶出物が生成して圧延加工性を害し易くなり、板材の製造が困難となり易い。Zrの添加効果を十分に得るという観点から、心材のZrの含有量は、より好ましくは0.01~0.3質量%である。 Zr in the core material improves the strength of the fin material before and after brazing and improves the high temperature buckling. The Zr content of the core material is preferably 0.3% by mass or less as described above. When the Zr content of the core material exceeds 0.3% by mass, a coarse crystallized product is generated at the time of casting, and the rolling processability is liable to be impaired, and the production of the plate material is likely to be difficult. From the viewpoint of obtaining a sufficient effect of adding Zr, the Zr content of the core material is more preferably 0.01 to 0.3% by mass.
 心材中のCrは、ろう付け前及びろう付け後のフィン材の強度を向上させるとともに、高温座屈性を改良する。心材のCr含有量は、好ましくは上述のごとく0.3質量%以下である。心材のCr含有量が0.3質量%を超える場合には、鋳造時に粗大な晶出物が生成して圧延加工性を害し易くなり、板材の製造が困難となり易い。Crの添加効果を十分に得るという観点から、心材のCrの含有量は、より好ましくは0.01~0.3質量%である。 Cr in the core material improves the strength of the fin material before and after brazing and improves the high temperature buckling. The Cr content of the core material is preferably 0.3% by mass or less as described above. When the Cr content of the core material exceeds 0.3% by mass, a coarse crystallized product is generated at the time of casting, and the rolling processability is liable to be impaired, and the production of the plate material is likely to be difficult. From the viewpoint of sufficiently obtaining the effect of addition of Cr, the content of Cr in the core material is more preferably 0.01 to 0.3% by mass.
 心材中のNiは、ろう付前及びろう付け後のフィン材の強度を向上させる。心材のNi含有量は、好ましくは上述のごとく2質量%以下である。心材のNi含有量が2質量%を超える場合には、結晶粒が細かくなって、溶融ろうが心材中に浸食し易くなり、耐高温座屈性が低下し易く、自己腐食性が増大し易くなる。Niの添加効果を十分に得るという観点から、心材のNiの含有量は、より好ましくは0.05~2質量%、更に好ましくは0.1~2質量%である。 Ni in the core material improves the strength of the fin material before and after brazing. The Ni content of the core material is preferably 2% by mass or less as described above. When the Ni content of the core material exceeds 2% by mass, the crystal grains become fine, and the molten brazing is likely to erode in the core material, high temperature buckling resistance is likely to decrease, and self-corrosion property is likely to increase. Become. From the viewpoint of sufficiently obtaining the effect of adding Ni, the Ni content in the core material is more preferably 0.05 to 2% by mass, still more preferably 0.1 to 2% by mass.
 ろう材は、Si:5~10質量%を含有し、残部がAl及び不可避的不純物からなる化学成分を有する。ろう材中のSiは、ろう付け加熱時に溶融ろうの流動性を高めて接合に寄与する。ろう材のSi含有量が5質量%未満の場合には、その添加効果が不十分になり、10質量%を超える場合には、溶融ろうが過多となり、溶融ろうによって塗膜が流されて親水持続性が低下する。Siの添加効果をより十分に得ると共に、親水持続性の低下をより抑制するという観点から、ろう材のSi含有量は、より好ましくは7~9質量%である。 The brazing material contains Si: 5 to 10% by mass, and the balance has chemical components composed of Al and inevitable impurities. Si in the brazing material contributes to bonding by increasing the flowability of the molten brazing during brazing heating. When the Si content of the brazing material is less than 5% by mass, the effect of addition becomes insufficient. When the Si content exceeds 10% by mass, the molten brazing becomes excessive, and the coating is washed away by the molten brazing and becomes hydrophilic. Sustainability decreases. From the viewpoint of obtaining a sufficient effect of adding Si and further suppressing the decrease in hydrophilic sustainability, the brazing filler metal content is more preferably 7 to 9% by mass.
 ろう材は、さらにSr:0.1質量%以下を含有することができる。すなわち、ろう材のアルミニウム合金の化学成分は、例えば、Si:5~10質量%を含有し、さらにSr:0.1質量%以下を含有し、残部がAl及び不可避的不純物である。 The brazing material can further contain Sr: 0.1% by mass or less. That is, the chemical component of the aluminum alloy of the brazing material contains, for example, Si: 5 to 10% by mass, further contains Sr: 0.1% by mass or less, and the balance is Al and inevitable impurities.
 ろう材中のSrは、ろう付後のろう材中のSi粒子径を小さくする。ろう材のSr含有量は、好ましくは上述のごとく0.1質量%以下である。ろう材のSr含有量が0.1質量%を超えると、鋳造時に粗大な晶出物が生成して圧延加工性を害し易くなり、板材の製造が困難となり易い。Srの添加効果を十分に得るという観点から、ろう材のSrの含有量は、より好ましくは0.001~0.1質量%である。 Sr in the brazing material reduces the Si particle diameter in the brazing material after brazing. The Sr content of the brazing material is preferably 0.1% by mass or less as described above. When the Sr content of the brazing material exceeds 0.1% by mass, a coarse crystallized product is generated at the time of casting, and the rolling processability is liable to be impaired, and the production of the plate material is likely to be difficult. From the viewpoint of sufficiently obtaining the effect of adding Sr, the content of Sr in the brazing material is more preferably 0.001 to 0.1% by mass.
 ろう材は、さらにZn:0.3質量%以下及びCu:0.3質量%以下の少なくとも一方を含有することができる。すなわち、ろう材のアルミニウム合金の化学成分は、例えば、Si:5~10質量%、Sr:0.1質量%以下を含有し、さらに、Zn:0.3質量%以下及びCu:0.3質量%以下の少なくとも一方を含有し、残部がAl及び不可避的不純物である。 The brazing material can further contain at least one of Zn: 0.3% by mass or less and Cu: 0.3% by mass or less. That is, the chemical components of the brazing aluminum alloy include, for example, Si: 5 to 10 mass%, Sr: 0.1 mass% or less, Zn: 0.3 mass% or less, and Cu: 0.3 mass%. It contains at least one of mass% or less, and the balance is Al and inevitable impurities.
 ろう材中のZnは、犠牲陽極効果を高めるよう機能する。ろう材のZn含有量は、好ましくは上述のごとく0.3質量%以下である。ろう材のZn含有量が0.3質量%を超える場合には、製造時の加工性が低下し易くなるとともに、自然電位が卑となり自己腐食性が増大し易くなる。Znの添加効果を十分に得るという観点から、ろう材のZn含有量は、より好ましくは0.05~0.3質量%である。 Zn in the brazing material functions to enhance the sacrificial anode effect. The Zn content of the brazing material is preferably 0.3% by mass or less as described above. When the Zn content of the brazing material exceeds 0.3% by mass, the workability at the time of production tends to be lowered, and the natural potential becomes base and the self-corrosion property tends to increase. From the viewpoint of obtaining a sufficient effect of adding Zn, the content of Zn in the brazing material is more preferably 0.05 to 0.3% by mass.
 ろう材中のCuは、ろう付後フィレットの電位を貴化して接合部の耐食性を向上させる。ろう材のCu含有量は、好ましくは上述のごとく0.3質量%以下である。ろう材のCu含有量が0.3質量%を超える場合には、フィン材の電位が貴となってフィンの犠牲陽極効果が低下し易くなる。Cuの添加効果を十分に得ると共に、フィンの犠牲陽極効果の低下をより抑制するという観点から、ろう材のCuの含有量は、より好ましくは0.05~0.3質量%、更に好ましくは0.1~0.2質量%である。 Cu in the brazing material improves the corrosion resistance of the joint by making the potential of the fillet after brazing noble. The Cu content of the brazing material is preferably 0.3% by mass or less as described above. When the Cu content of the brazing material exceeds 0.3% by mass, the potential of the fin material becomes noble and the sacrificial anode effect of the fin tends to decrease. From the viewpoint of sufficiently obtaining the Cu addition effect and further suppressing the decrease in the sacrificial anode effect of the fin, the Cu content in the brazing material is more preferably 0.05 to 0.3% by mass, and still more preferably. 0.1 to 0.2% by mass.
 ろう材の厚さは、ろう材中のSi含有量、フィンとアルミニウム管との接合形状、フィンピッチ等との関係で、適宜選択され、好ましくは7μm以上、より好ましくは7~30μmである。 The thickness of the brazing material is appropriately selected depending on the Si content in the brazing material, the joining shape of the fin and the aluminum tube, the fin pitch, etc., and is preferably 7 μm or more, more preferably 7 to 30 μm.
 ブレージングシートにおいて、ろう材は心材の片面のみにクラッドされていてもよいし、両面にクラッドされていてもよい。ろう材のクラッド率は、常識的な範囲であれば適用可能であり、適宜選択されるが、好ましくは3~25%である。ろう材のクラッド率が、上記範囲未満だと、ろう付け加熱時に溶融したろう材が少なくなり易く、フィレットが十分に形成されない場合があり、一方、上記範囲を超えると、ろう付け加熱時に溶融するろう材が多過ぎるために、心材が溶ける場合がある。 In the brazing sheet, the brazing material may be clad only on one side of the core material, or may be clad on both sides. The clad rate of the brazing material is applicable as long as it is in a common sense range and is appropriately selected, but is preferably 3 to 25%. If the clad rate of the brazing material is less than the above range, the amount of the brazing material melted during brazing heating tends to be small, and a fillet may not be sufficiently formed. The core material may melt because there is too much brazing material.
 ブレージングシートは、心材の片面又は両面にろう材をクラッドすることにより得られる。心材にろう材をクラッドする方法としては、心材又はろう材中の各元素の組成と同じ組成を有する心材用の合金鋳塊及びろう材用の合金鋳塊を鋳造し、次いで、心材用の合金鋳塊については常法に従って均質化処理を行い、ろう材用の合金鋳塊については熱間圧延を行い、次いで、均質化処理後の心材用の合金鋳塊とろう材用の合金鋳塊の熱間圧延物を重ね合わせて、熱間圧延を行ってクラッド板を作成する。その後、冷間圧延を行い、必要に応じて中間焼鈍を行い、仕上げ冷間圧延をして、ブレージングシートを得る方法が挙げられる。仕上げ冷間圧延を行った後、製品幅に条切断され、フィン用素材としてのブレージングシートとなる。条切断の前又は後に、ブレージングシートに対して後述の塗膜の形成行うことができる。 The brazing sheet is obtained by cladding a brazing material on one or both sides of the core material. As a method of cladding the brazing material on the core material, an alloy ingot for the core material having the same composition as each element in the core material or the brazing material and an alloy ingot for the brazing material are cast, and then the alloy for the core material The ingot is homogenized according to the usual method for the ingot, the alloy ingot for the brazing material is hot-rolled, and then the ingot for the core material and the alloy ingot for the brazing material are subjected to the homogenization treatment. A hot rolled product is piled up and hot rolled to produce a clad plate. Thereafter, cold rolling is performed, intermediate annealing is performed as necessary, and finish cold rolling is performed to obtain a brazing sheet. After finishing cold rolling, it is cut into product widths to form a brazing sheet as a fin material. Before or after the strip cutting, the coating film described later can be formed on the brazing sheet.
 次に、ブレージングシートの表面に形成される塗膜について説明する。
 塗膜は、ブレージングシートの片面に形成されていてもよいし、両面に形成されていてもよい。塗膜は、例えばケイ素(Si)を含む酸化物、複合酸化物等によって形成され、Siを含有する。塗膜中のSi量は10~300mg/m2である。Si量が10mg/m2未満の場合には、親水持続性が低下するおそれがある。親水持続性の低下をより抑制するという観点から、塗膜中のSi量は100mg/m2以上がより好ましい。一方、Si量が300mg/m2を超える場合には、塗膜によってろう付け時の接合性が損なわれるおそれがある。なお、Si量は塗膜片面当たりの量である。また、塗膜中のSi量が10~300mg/m2である場合において、塗膜の付着量は20~800mg/m2であることが好ましい。
Next, the coating film formed on the surface of the brazing sheet will be described.
The coating film may be formed on one side of the brazing sheet or may be formed on both sides. The coating film is formed of, for example, an oxide containing silicon (Si), a composite oxide, or the like, and contains Si. The amount of Si in the coating film is 10 to 300 mg / m 2 . When the amount of Si is less than 10 mg / m 2 , hydrophilic sustainability may be reduced. From the viewpoint of further suppressing the decrease in hydrophilic durability, the amount of Si in the coating film is more preferably 100 mg / m 2 or more. On the other hand, when the amount of Si exceeds 300 mg / m 2 , there is a possibility that the bondability at the time of brazing may be impaired by the coating film. In addition, Si amount is the amount per one side of the coating film. Further, when the Si amount in the coating film is 10 to 300 mg / m 2 , the adhesion amount of the coating film is preferably 20 to 800 mg / m 2 .
 塗膜は、ケイ酸塩及び非晶質シリカの少なくとも一方を含有することが好ましい。この場合には、塗膜の親水持続性がより向上する。親水持続性をさらに向上させるという観点から、塗膜は少なくともケイ酸塩を含有することがより好ましい。ケイ酸塩とは、例えばケイ酸ナトリウムやケイ酸リチウム等である。ケイ酸塩を含む塗膜は、例えば水ガラスのような、ケイ酸塩を含有する水溶液をブレージングシートの表面に塗装し、乾燥することにより形成することができる。親水持続性をより向上させるという観点から、ケイ酸塩は、水ガラス由来であることがより好ましい。 The coating film preferably contains at least one of silicate and amorphous silica. In this case, the hydrophilic durability of the coating film is further improved. From the viewpoint of further improving hydrophilic sustainability, the coating film more preferably contains at least silicate. Silicate is, for example, sodium silicate or lithium silicate. The coating film containing silicate can be formed by coating an aqueous solution containing silicate such as water glass on the surface of the brazing sheet and drying. From the viewpoint of further improving the hydrophilic sustainability, the silicate is more preferably derived from water glass.
 また、非晶質シリカとしては、例えば非晶質コロイダルシリカを乾燥してなる凝集体があり、親水持続性をより向上できるという観点から、非晶質シリカは、非晶質コロイダルシリカ由来であることが好ましい。非晶質シリカを含む塗膜は、非晶質コロイダルシリカをブレージングシートの表面に塗装し、乾燥することにより形成することができる。また、非晶質コロイダルシリカとケイ酸塩を含有する水溶液との混合物をブレージングシートの表面に塗装し、乾燥することにより、非晶質シリカとケイ酸塩とを含有する塗膜を形成することができる。 Further, as the amorphous silica, for example, there is an aggregate formed by drying amorphous colloidal silica, and from the viewpoint that hydrophilic sustainability can be further improved, amorphous silica is derived from amorphous colloidal silica. It is preferable. The coating film containing amorphous silica can be formed by coating amorphous colloidal silica on the surface of the brazing sheet and drying. Moreover, a coating film containing amorphous silica and silicate is formed by coating a mixture of amorphous colloidal silica and an aqueous solution containing silicate on the surface of the brazing sheet and drying. Can do.
 塗膜は、さらに、フッ化物フラックスを含有することができる。フッ化物フラックスの含有量は0であってもよい。フッ化物フラックスの含有量は、0以上、5000mg/m2以下がよい。この場合には、フラックス効果を得ることができると共に、親水持続性能をより向上させることができる。フッ化物フラックスの含有量が少なすぎると、フラックスの添加効果が十分に得られなくなるおそれがある。したがって、フッ化物フラックスの含有量は、40mg/m2以上であることがより好ましく、500mg/m2以上であることがさらに好ましく、1000mg/m2以上であることがさらにより好ましい。一方、フッ化物フラックスの含有量が多すぎると、親水持続性が低下するおそれがある。親水持続性の低下を抑制するという観点から、フッ化物フラックスの含有量は、上述のごとく5000mg/m2以下であることが好ましく、3000mg/m2以下であることがより好ましく、2000mg/m2以下であることがさらに好ましい。塗膜が上記範囲でフッ化物フラックスを含有する場合には、塗膜の付着量は、50~6000mg/m2であることが好ましい。 The coating film can further contain a fluoride flux. The fluoride flux content may be zero. The content of the fluoride flux is preferably 0 or more and 5000 mg / m 2 or less. In this case, the flux effect can be obtained and the hydrophilic sustainability can be further improved. If the content of the fluoride flux is too small, the effect of adding the flux may not be sufficiently obtained. Therefore, the content of the fluoride flux is more preferably 40 mg / m 2 or more, further preferably 500 mg / m 2 or more, and further preferably 1000 mg / m 2 or more. On the other hand, when there is too much content of fluoride flux, there exists a possibility that hydrophilic sustainability may fall. From the viewpoint of suppressing a decrease in hydrophilic durability, the content of the fluoride flux is preferably 5000 mg / m 2 or less, more preferably 3000 mg / m 2 or less, as described above, and 2000 mg / m 2. More preferably, it is as follows. When the coating film contains fluoride flux in the above range, the coating amount is preferably 50 to 6000 mg / m 2 .
 フッ化物フラックスとしては、KAlF4、K2AlF5、K2AlF5・H2O、K3AlF6、AlF3、KZnF3、K2SiF6、Cs3AlF6、CsAlF4・2H2O、Cs2AlF5・H2O等が挙げられる。また、塗膜がフッ化物フラックスを含有する場合には、塗膜は、Si量が10~300mg/m2であり、フッ化物フラックスを含有する単層によって形成されていてもよいし、Si量が10~300mg/m2である層と、フッ化物フラックスを主成分とする層との積層体によって形成されていてもよい。具体的には、単層の場合には、塗膜は、例えばケイ酸塩及び非晶質シリカの少なくとも一方とフッ化物フラックスとを含有する層によって形成される。2層構造の積層体の場合には、塗膜は、例えばケイ酸塩及び非晶質シリカの少なくとも一方を主成分とする層と、フッ化物フラックスを主成分とする層によって形成される。 As fluoride flux, KAlF 4 , K 2 AlF 5 , K 2 AlF 5 .H 2 O, K 3 AlF 6 , AlF 3 , KZnF 3 , K 2 SiF 6 , Cs 3 AlF 6 , CsAlF 4 .2H 2 O , Cs 2 AlF 5 .H 2 O, and the like. When the coating film contains a fluoride flux, the coating film may have a Si content of 10 to 300 mg / m 2 , and may be formed by a single layer containing a fluoride flux. May be formed of a laminate of a layer having a thickness of 10 to 300 mg / m 2 and a layer mainly composed of fluoride flux. Specifically, in the case of a single layer, the coating film is formed of a layer containing, for example, at least one of silicate and amorphous silica and a fluoride flux. In the case of a laminate having a two-layer structure, the coating film is formed of, for example, a layer mainly containing at least one of silicate and amorphous silica and a layer mainly containing fluoride flux.
 また、塗膜は、さらに有機樹脂を含有することができる。この場合には、塗膜形成時の塗工性が向上する。また、ケイ酸塩、非晶質シリカ等のSi成分が塗膜から脱落することを防止できる。 The coating film can further contain an organic resin. In this case, the coating property at the time of forming the coating film is improved. Moreover, it can prevent that Si components, such as a silicate and an amorphous silica, fall off from a coating film.
 有機樹脂は、水溶性アクリル樹脂及び/又はポリオキシエチレンアルキレングリコール(PAE)からなることが好ましい。この場合には、有機樹脂が例えば接合時の加熱により分解され易く、塗膜中から有機樹脂を消失させることが可能になる。その結果、接合後の塗膜中の有機樹脂が少なくなるため、有機樹脂により接合性が阻害されることを防止できる。 The organic resin is preferably made of a water-soluble acrylic resin and / or polyoxyethylene alkylene glycol (PAE). In this case, the organic resin is easily decomposed by heating at the time of bonding, for example, and the organic resin can be lost from the coating film. As a result, since the organic resin in the coating film after bonding decreases, it is possible to prevent the bondability from being inhibited by the organic resin.
 また、プレコートフィン材は、ブレージングシートと塗膜との間に形成された化成皮膜からなる下地処理層を有していてもよい。化成皮膜からなる下地処理層は、例えばリン酸クロメート処理、リン酸ジルコニウム処理、ベーマイト処理などにより形成することができる。下地処理層は、ブレージングシートと塗膜との密着性を向上させることができればよく、その他の処理により形成してもよい。 Moreover, the precoat fin material may have a base treatment layer made of a chemical conversion film formed between the brazing sheet and the coating film. The base treatment layer made of the chemical conversion film can be formed by, for example, phosphoric acid chromate treatment, zirconium phosphate treatment, boehmite treatment, or the like. The ground treatment layer only needs to improve the adhesion between the brazing sheet and the coating film, and may be formed by other treatments.
 熱交換器において、プレコートフィン材よりなるフィンとしては、差し込みフィン、コルゲートフィン等の形状を採用することができる。熱交換性能の向上のため、フィン材はスリットを有していてもよい。 In the heat exchanger, shapes such as insertion fins and corrugated fins can be adopted as the fins made of the pre-coated fin material. In order to improve the heat exchange performance, the fin material may have a slit.
 アルミニウム管の形状としては、冷媒が流れる冷媒通路管であれば、特に制限されず、丸管あるいは扁平管等を採用することができる。管内には、内部を複数の通路に区画する内柱が形成されていてもよい。より具体的には、アルミニウム管としては、例えば扁平多穴管を採用することができる。アルミニウム管は、表面にクラッドされたろう材を有していても、ろう材を有していなくてもよい。 The shape of the aluminum tube is not particularly limited as long as it is a refrigerant passage tube through which a refrigerant flows, and a round tube, a flat tube, or the like can be adopted. An inner column that divides the interior into a plurality of passages may be formed in the pipe. More specifically, for example, a flat multi-hole tube can be adopted as the aluminum tube. The aluminum tube may or may not have a brazing material clad on the surface.
 次に、プレコートフィン材からなるフィンとアルミニウム管との接合方法について説明する。接合においては、ろう材を別途使用することなく、ブレージングシートにおいて心材上に積層形成されているろう材の接合能力を利用することができる。熱交換器のフィンとしての利用を考慮すれば、フィン材自身の変形を避けることが望まれ、そのために接合加熱条件を管理することができる。ろう付け加熱温度は、例えば590℃~605℃であり、ろう付け加熱時間は、例えば1~10分間である。また、ろう付け加熱の際の雰囲気は、窒素ガス雰囲気、ヘリウムガス雰囲気、アルゴンガス雰囲気等の不活性ガス雰囲気である。 Next, a method of joining the fin made of the pre-coated fin material and the aluminum tube will be described. In the joining, the joining ability of the brazing material laminated on the core material in the brazing sheet can be used without separately using the brazing material. Considering the use of heat exchangers as fins, it is desirable to avoid deformation of the fin material itself, and for this reason, the bonding heating conditions can be managed. The brazing heating temperature is, for example, 590 ° C. to 605 ° C., and the brazing heating time is, for example, 1 to 10 minutes. The atmosphere during brazing heating is an inert gas atmosphere such as a nitrogen gas atmosphere, a helium gas atmosphere, or an argon gas atmosphere.
 プレコートフィン材は、上記のごとく、心材上にろう材と塗膜とを有している。塗膜は、上述のごとく、心材上に形成することもできるし、ろう材上に形成することもできる。ろう付け加熱時において、ろう材の少なくとも一部は軟化又は溶融して、アルミニウム管との当接部において接合に寄与するフィレットが形成されうる。このとき、ろう材上に塗膜が形成されていたとしても、熱交換器のフィンは、優れた親水持続性を発揮することができる。これは、ろう材が軟化又は溶融しても、フィン上に塗膜中のSi成分(ケイ酸塩、非晶質シリカ等)が保持されるためと考えられる。 As described above, the precoat fin material has a brazing material and a coating film on the core material. As described above, the coating film can be formed on the core material or can be formed on the brazing material. At the time of brazing heating, at least a part of the brazing material is softened or melted, and a fillet that contributes to joining can be formed at the contact portion with the aluminum tube. At this time, even if a coating film is formed on the brazing material, the fin of the heat exchanger can exhibit excellent hydrophilic sustainability. This is considered to be because even if the brazing material is softened or melted, Si components (silicate, amorphous silica, etc.) in the coating film are retained on the fin.
 熱交換器は、プレコートフィン材からなるフィンと、このフィンに接合されたアルミニウム管とからなるコア部を有する。熱交換器の具体例は、後述の実施例において図面を用いて説明するが、熱交換器は、コア部に、ヘッダ、サイドサポート、出入り口管等を組み付けることにより製造される。 The heat exchanger has a core portion made of a fin made of a pre-coated fin material and an aluminum tube joined to the fin. Although the specific example of a heat exchanger is demonstrated using drawing in the below-mentioned Example, a heat exchanger is manufactured by attaching a header, a side support, an entrance / exit pipe | tube, etc. to a core part.
 熱交換器は、例えば、空調機、冷蔵庫に用いることができる。また、自動車のコンデンサ、エバポレータ、ラジエータ、ヒータ、インタークーラ、オイルクーラ等に用いることもできる。さらに、ハイブリッド自動車や電気自動車の駆動用モータを制御するインバータユニットに備えられたIGBT(Insulated Gate Bipolar Transistor)等の発熱体を冷却するための冷却装置に用いることもできる。 The heat exchanger can be used for an air conditioner and a refrigerator, for example. It can also be used for automobile condensers, evaporators, radiators, heaters, intercoolers, oil coolers, and the like. Furthermore, it can also be used for a cooling device for cooling a heating element such as an IGBT (Insulated Gate Bipolar Transistor) provided in an inverter unit for controlling a drive motor of a hybrid vehicle or an electric vehicle.
(実施例1)
 本例は、実施例及び比較例にかかる複数のプレコートフィン材を作製し、その性能を比較する例である。本例においては、後述の表1~表11に示すごとく、心材の合金の組成、ろう材の合金組成、塗膜の組成が異なる複数のプレコートフィン材(試料E1-1~試料E9-2、試料C1-1~試料C9-2)を作製する。そして、これらのプレコートフィン材をそれぞれ用いて、熱交換器用のコア部を作製し、親水持続性、接合性を比較評価する。本例においては、コア部として試験用のミニコアを作製する。
(Example 1)
This example is an example in which a plurality of pre-coated fin materials according to Examples and Comparative Examples are manufactured and their performances are compared. In this example, as shown in Tables 1 to 11 described later, a plurality of pre-coated fin materials (Sample E1-1 to Sample E9-2, Samples C1-1 to C9-2) are prepared. And using each of these precoat fin materials, the core part for heat exchangers is produced, and hydrophilicity sustainability and bondability are compared and evaluated. In this example, a test mini-core is manufactured as the core portion.
 図1に例示されるように、プレコートフィン材1は、ブレージングシート11と、その表面に形成された塗膜12とを有する。ブレージングシート11は、アルミニウム合金からなる心材111と、この心材111の両面に形成されたろう材112とを有する。塗膜12は、ブレージングシート11の両面に形成されており、具体的には、塗膜12は、ろう材112上に、図示を省略する化成皮膜からなる下地処理層を介して積層形成されている。下地処理層の形成は任意であり、形成されていなくてもよい。 As illustrated in FIG. 1, the precoat fin material 1 has a brazing sheet 11 and a coating film 12 formed on the surface thereof. The brazing sheet 11 includes a core material 111 made of an aluminum alloy and a brazing material 112 formed on both surfaces of the core material 111. The coating film 12 is formed on both surfaces of the brazing sheet 11. Specifically, the coating film 12 is laminated on the brazing material 112 via a base treatment layer made of a chemical conversion film (not shown). Yes. The formation of the base treatment layer is optional and may not be formed.
 ろう材112は、後述の表1に示す添加成分(元素)を含有し、残部がAl及び不可避的不純物からなる化学成分を有する。本例においては、表1に示す組成が異なる試料A1~試料A10のろう材を用いる。心材111は、後述の表2に示す添加成分(元素)を含有し、残部がAl及び不可避的不純物からなる化学成分を有する。本例においては、表2に示す組成が異なる試料B1~B34の心材を用いる。塗膜12は、後述の表3~表11に示す含有量でケイ酸リチウム由来のSiを含有し、さらに塗工性を向上できる程度の量の水溶性アクリル樹脂を含有する。また、本例において作製するプレコートフィン材1のうちの一部において、塗膜12は、後述の表に示す量でさらにフラックスを含有する。 The brazing filler metal 112 contains additive components (elements) shown in Table 1 to be described later, and the remainder has chemical components composed of Al and inevitable impurities. In this example, the brazing materials of Sample A1 to Sample A10 having different compositions shown in Table 1 are used. The core material 111 contains additive components (elements) shown in Table 2 to be described later, and the remainder has chemical components composed of Al and inevitable impurities. In this example, core materials of samples B1 to B34 having different compositions shown in Table 2 are used. The coating film 12 contains Si derived from lithium silicate in the contents shown in Tables 3 to 11 to be described later, and further contains a water-soluble acrylic resin in such an amount that the coating property can be improved. Moreover, in a part of the precoat fin material 1 produced in this example, the coating film 12 further contains a flux in an amount shown in a table described later.
 図2及び図3に示すごとく、ミニコア2は、プレコートフィン材1からなるフィン3と、アルミニウム管4とを有し、コルゲート形状のフィン3がアルミニウム管4に挟まれている。なお、図2においては、フィン2のコルゲート形状を明示するために、フィン3を挟む2つのアルミニウム管4の一方を破線にて示してある。 As shown in FIGS. 2 and 3, the mini-core 2 has a fin 3 made of the pre-coated fin material 1 and an aluminum tube 4, and the corrugated fin 3 is sandwiched between the aluminum tubes 4. In FIG. 2, one of the two aluminum tubes 4 sandwiching the fin 3 is indicated by a broken line in order to clearly show the corrugated shape of the fin 2.
 フィン3は、コルゲート状に成形されたプレコートフィン材1よりなる。より具体的には、図4に示すごとく、フィン3は、心材111と、その両面に形成されたろう材112とからなるブレージングシート11、さらにその両面に形成された塗膜12を有する。 The fin 3 is made of a pre-coated fin material 1 formed into a corrugated shape. More specifically, as shown in FIG. 4, the fin 3 has a brazing sheet 11 composed of a core material 111 and a brazing material 112 formed on both surfaces thereof, and a coating film 12 formed on both surfaces thereof.
 図2及び図3に示すごとく、アルミニウム管4は、アルミニウム合金製の扁平多穴管からなる。アルミニウム管4は、冷媒を流通させるための多数の冷媒流路411を有している。ミニコア2においては、コルゲート状のフィン3は、各頂点30においてアルミニウム管4と接合している。 2 and 3, the aluminum tube 4 is a flat multi-hole tube made of an aluminum alloy. The aluminum tube 4 has a large number of refrigerant flow paths 411 for circulating the refrigerant. In the mini-core 2, the corrugated fin 3 is joined to the aluminum tube 4 at each vertex 30.
 以下、本例のミニコア1の製造方法について説明する。具体的には、まず、連続鋳造により、表2に示す組成を有する心材用アルミニウム合金と、表1に示す組成を有するろう材用アルミニウム合金を造塊して、常法に従って均質化処理し、ろう材用アルミニウム合金鋳塊については更に熱間圧延して、心材用アルミニウム合金鋳塊の片面にろう材が10%となる比率にてクラッドした後、熱間圧延し、次いで、冷間圧延を行い、中間焼鈍を施した後、最終冷間圧延を経て、ブレージングシート11を製造した。各表中に示される添加成分以外の成分、すなわち残部は、Al及び不可避的不純物である。 Hereinafter, a method for manufacturing the mini-core 1 of this example will be described. Specifically, first, by continuous casting, an aluminum alloy for core material having the composition shown in Table 2 and an aluminum alloy for brazing material having the composition shown in Table 1 are ingoted, and homogenized according to a conventional method, The aluminum alloy ingot for brazing material is further hot-rolled and clad at a ratio of 10% brazing filler metal on one side of the aluminum alloy ingot for core material, then hot-rolled, and then cold-rolled. After performing intermediate annealing, the brazing sheet 11 was manufactured through final cold rolling. Components other than the additive components shown in each table, that is, the balance is Al and inevitable impurities.
 次いで、下地処理を行うことにより、ブレージングシート11の両面に、図示を省略する化成皮膜からなる下地処理層を形成した。下地処理としては、リン酸クロメート処理を行った。下地処理層の厚みは例えば1μm程度である。 Next, a base treatment layer made of a chemical conversion film (not shown) was formed on both surfaces of the brazing sheet 11 by performing a base treatment. As the base treatment, phosphoric acid chromate treatment was performed. The thickness of the base treatment layer is, for example, about 1 μm.
 次いで、バーコーターを用いて、下地処理層上に、水ガラス、水溶性アクリル樹脂、及び必要に応じて添加されるフッ化物フラックスであるKAlF4を含有する塗料を所定量塗布し、温度200℃で乾燥させることにより塗膜12を形成した(図1参照)。このようにして、表3~表11に示される含有量で水ガラス由来のSiを含有する塗膜12をブレージングシート11上に有するプレコートフィン材1を作製した。塗膜12は、ブレージングシート11の両面に形成した。 Next, using a bar coater, a predetermined amount of water glass, a water-soluble acrylic resin, and a coating containing KAlF 4 which is a fluoride flux added as needed is applied on the base treatment layer, and the temperature is 200 ° C. The coating film 12 was formed by drying with (refer FIG. 1). In this manner, precoated fin material 1 having coating film 12 containing water glass-derived Si at the contents shown in Tables 3 to 11 on brazing sheet 11 was produced. The coating film 12 was formed on both surfaces of the brazing sheet 11.
 塗膜12中のSi量は、蛍光X線分析により測定した。蛍光X線分析は、Rigaku社製のZSXPrimusIIを用いて、雰囲気:真空、管球:Rh、出力:50kV-60mAという条件で行った。塗膜中のSiの定量は、標準Si試料を用いた検量線法にて行った。 The amount of Si in the coating film 12 was measured by fluorescent X-ray analysis. The fluorescent X-ray analysis was performed using a ZSX Primus II manufactured by Rigaku under the conditions of atmosphere: vacuum, tube: Rh, output: 50 kV-60 mA. Quantification of Si in the coating film was performed by a calibration curve method using a standard Si sample.
 次いで、プレコートフィン材1をコルゲート状に加工した。このようにして、ブレージングシート11の両面に形成された塗膜12を有するコルゲート状のフィン3を得た(図2~図4参照)。これらのフィン3は、ミニコア1の製造にそれぞれ用いられる。 Next, the pre-coated fin material 1 was processed into a corrugated shape. In this way, a corrugated fin 3 having the coating film 12 formed on both surfaces of the brazing sheet 11 was obtained (see FIGS. 2 to 4). These fins 3 are respectively used for manufacturing the mini-core 1.
 次いで、アルミニウム管4として、押出加工により3000系アルミニウム合金製の扁平多穴管を作製した(図2及び図3参照)。2つのアルミニウム管4の間に、コルゲート状のフィン3を挟み込んで組立品を作製した(図2及び図3参照)。このとき、図5に示すごとく、コルゲート状のフィン3の各頂点30とアルミニウム管4とを当接させた。次いで、窒素ガス雰囲気で温度600℃の炉内に、組立品を3分間保持した後、室温(25℃)まで冷却した。この炉内での加熱時にフィン3のろう材112が軟化又は溶融し、冷却時にろう材が凝固する。このろう材の軟化又は溶融、凝固により、コルゲート状のフィン3の各頂点30とアルミニウム管4とが当接部において接合する(図示略)。このようにして、図2及び図3に例示されるように、フィン3とアルミニウム管4とが接合されたミニコア2を得た。 Next, as the aluminum tube 4, a flat multi-hole tube made of 3000 series aluminum alloy was produced by extrusion (see FIGS. 2 and 3). A corrugated fin 3 was sandwiched between two aluminum tubes 4 to produce an assembly (see FIGS. 2 and 3). At this time, as shown in FIG. 5, each vertex 30 of the corrugated fin 3 and the aluminum tube 4 were brought into contact with each other. Next, the assembly was held in a furnace at a temperature of 600 ° C. in a nitrogen gas atmosphere for 3 minutes, and then cooled to room temperature (25 ° C.). The brazing filler metal 112 of the fin 3 softens or melts during heating in the furnace, and the brazing filler solidifies during cooling. By softening, melting, or solidifying the brazing material, each vertex 30 of the corrugated fin 3 and the aluminum tube 4 are joined at the contact portion (not shown). In this way, as illustrated in FIGS. 2 and 3, the mini-core 2 in which the fin 3 and the aluminum tube 4 are joined is obtained.
 次に、上記のようにして得られた各試料のプレコートフィン材1、ミニコア2について、以下のようにして親水持続性、接合性、強度、耐食性、変形率、製造性の評価を行った。その結果を表3~表11に示す。 Next, the precoat fin material 1 and the mini-core 2 of each sample obtained as described above were evaluated for hydrophilic sustainability, bondability, strength, corrosion resistance, deformation rate, and manufacturability as follows. The results are shown in Tables 3 to 11.
<親水持続性>
 親水持続性の評価は、各試料のプレコートフィン材を用いて行った。各試料に対しては、塗膜形成の後に行われるフィンの接合を想定した加熱が行われている。具体的には、プレコートフィン材を窒素ガス雰囲気で温度600℃の炉内で3分間加熱した。次いで、プレコートフィン材を純水に2分間浸漬した後、6分間風乾した。この純水への浸漬と風乾というサイクルを300回繰り返し実施した。次いで、各試験板の塗膜上における水滴の接触角を測定した。接触角の測定は、協和界面化学株式会社製のFACE自動接触角計「CA-Z」を用いて行った。具体的には、室温で、塗膜上に水滴を滴下し、30秒後の水滴の接触角を測定した。接触角が10°未満の場合を「A」と評価し、10°以上かつ20°未満の場合を「B」と評価し、20°以上かつ30°未満の場合を「C」と評価し、30°以上の場合を「D」と評価した。
<Hydrophilic sustainability>
The hydrophilic durability was evaluated using the precoated fin material of each sample. Each sample is heated under the assumption of fin bonding performed after the formation of the coating film. Specifically, the pre-coated fin material was heated for 3 minutes in a furnace having a temperature of 600 ° C. in a nitrogen gas atmosphere. Next, the pre-coated fin material was immersed in pure water for 2 minutes and then air-dried for 6 minutes. This cycle of immersion in pure water and air drying was repeated 300 times. Subsequently, the contact angle of the water droplet on the coating film of each test plate was measured. The contact angle was measured using a FACE automatic contact angle meter “CA-Z” manufactured by Kyowa Interface Chemical Co., Ltd. Specifically, a water drop was dropped on the coating film at room temperature, and the contact angle of the water drop after 30 seconds was measured. When the contact angle is less than 10 °, it is evaluated as “A”, when it is 10 ° or more and less than 20 °, it is evaluated as “B”, and when it is 20 ° or more and less than 30 °, it is evaluated as “C”. The case of 30 ° or more was evaluated as “D”.
<接合性>
 接合後の各ミニコアにおける接合部をカッターナイフにより切断し、フィンの接合長さL1をフィンの山部の長さL2の総和で割算して100分率で表した値(L1/L2×100)を接合率(%)とした。接合率が90%以上の場合を「A」と評価し、接合率が80%以上かつ90%未満の場合を「B」と評価し、接合率が70%以上かつ80%未満の場合を「C」と評価し、70%未満の場合を「D」と評価した。
<Jointability>
The joined portion in each mini-core after joining is cut with a cutter knife, and the value obtained by dividing the joining length L 1 of the fin by the sum of the lengths L 2 of the ridges of the fin (100/100) (L 1 / L 2 × 100) was defined as a bonding rate (%). The case where the joining rate is 90% or more is evaluated as “A”, the case where the joining rate is 80% or more and less than 90% is evaluated as “B”, and the case where the joining rate is 70% or more and less than 80%. The case was evaluated as “D”, and the case of less than 70% was evaluated as “D”.
<強度>
 強度の測定は、各試料のプレコートフィン材を用いた引張試験により行った。各試料に対しては、塗膜形成の後に行われるフィンの接合を想定した加熱が行われている。具体的には、プレコートフィン材を窒素ガス雰囲気で温度600℃の炉内で3分間加熱した。引張試験は、各試料に対し、引張速度10mm/min、ゲージ長50mmの条件で、JIS Z2241(2011年)に従って、常温にて実施した。
<Strength>
The strength was measured by a tensile test using the precoated fin material of each sample. Each sample is heated under the assumption of fin bonding performed after the formation of the coating film. Specifically, the pre-coated fin material was heated for 3 minutes in a furnace having a temperature of 600 ° C. in a nitrogen gas atmosphere. The tensile test was carried out at room temperature according to JIS Z2241 (2011) under the conditions of a tensile speed of 10 mm / min and a gauge length of 50 mm for each sample.
<耐食性>
 CASS試験を500h行い、フィンの腐食状態を確認した。光学顕微鏡による断面観察においてフィンの残存量が70%以上の場合を「A」と評価し、50%以上かつ70%未満の場合を「B」と評価し、30%以上かつ50%未満の場合を「C」と評価し、30%未満の場合を「D」と評価した。
<Corrosion resistance>
A CASS test was conducted for 500 hours to confirm the corrosion state of the fins. In the cross-sectional observation with an optical microscope, the case where the remaining amount of fin is 70% or more is evaluated as “A”, the case where it is 50% or more and less than 70% is evaluated as “B”, and the case where it is 30% or more and less than 50% Was evaluated as “C”, and the case of less than 30% was evaluated as “D”.
<変形率>
 接合前後のミニコアのフィン高さを測定してフィン座屈による変形率についても評価した。すなわち、接合前のフィン高さに対する接合前後のフィン高さ変化の割合が5%以下の場合を「A」と評価し、5%を超えかつ10%以下の場合を「B」と評価し、10%を超えかつ15%以下の場合を「C」と評価し、15%を超えるものを「D」と評価した。
<Deformation rate>
The fin height of the mini-core before and after joining was measured and the deformation rate due to fin buckling was also evaluated. That is, the case where the ratio of the fin height change before and after joining to the fin height before joining is 5% or less is evaluated as “A”, and the case where it exceeds 5% and is 10% or less is evaluated as “B”. The case where it exceeded 10% and 15% or less was evaluated as “C”, and the case where it exceeded 15% was evaluated as “D”.
<製造性>
 アルミニウム合金の圧延加工時に、例えば表面割れが起こり良好な板材が製造できなかった場合を「×」と評価し、良好な板材が製造できた場合を「○」と評価した。なお、製造性が「×」の場合には上述の他の評価は省略した。
<Manufacturability>
When the aluminum alloy was rolled, for example, a case where surface cracking occurred and a good plate material could not be produced was evaluated as “x”, and a case where a good plate material could be produced was evaluated as “◯”. In addition, when the manufacturability was “x”, the other evaluations described above were omitted.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000011
 表1~表3に示されるように、試料E1-1及び試料E1-2は、試料C1-1及び試料C1-2に比べて、親水持続性が優れ、接合率が高い。したがって、ブレージングシート11と塗膜12とを有するプレコートフィン材1において、ブレージングシート11のろう材112は、Siを5~10質量%を含有し、残部がAl及び不可避的不純物からなる化学成分を有することが好ましいことがわかる。また、試料E1-3及び試料E1-4は、試料C1-3及び試料C1-4に比べて、親水持続性に優れ、接合率が高い。したがって、塗膜12中のSi量は、10~300mg/m2であることが好ましいことがわかる。 As shown in Tables 1 to 3, Sample E1-1 and Sample E1-2 are superior in hydrophilic sustainability and have a high bonding rate compared to Sample C1-1 and Sample C1-2. Therefore, in the pre-coated fin material 1 having the brazing sheet 11 and the coating film 12, the brazing material 112 of the brazing sheet 11 contains 5 to 10% by mass of Si, and the balance contains chemical components composed of Al and inevitable impurities. It turns out that it is preferable to have. Sample E1-3 and Sample E1-4 are superior in hydrophilic sustainability and have a higher bonding rate than Samples C1-3 and C1-4. Therefore, it can be seen that the Si amount in the coating film 12 is preferably 10 to 300 mg / m 2 .
 また、表4における試料E2-1及び試料E-2と、試料E2-3及び試料E-4とを比較してわかるように、塗膜はフッ化物フラックスを含有することができ、フッ化物フラックスの含有量を40~5000mg/m2に調整することにより、親水持続性をより向上させることができる。 In addition, as can be seen by comparing Sample E2-1 and Sample E-2 with Sample E2-3 and Sample E-4 in Table 4, the coating film can contain fluoride flux. By adjusting the content of to 40 to 5000 mg / m 2 , the hydrophilic sustainability can be further improved.
 また、表1、表2、表5より知られるように、心材のアルミニウム合金に、Si:0.05~0.8質量%、Fe:0.05~0.8質量%、及びMn:0.8~2質量%を含有する試料E3-1~試料E3-6は、これらの添加成分の含有量が上記範囲を外れる試料C3-1~試料C3-6にそれぞれ比べて、強度又は耐食性がより優れていた。 Further, as is known from Tables 1, 2 and 5, the core aluminum alloy contains Si: 0.05 to 0.8% by mass, Fe: 0.05 to 0.8% by mass, and Mn: 0 Samples E3-1 to E3-6 containing 0.8 to 2% by mass have higher strength or corrosion resistance than Samples C3-1 to C3-6, respectively, in which the content of these additive components is outside the above range. It was better.
 また、表1、表2、表6より知られるように、心材のアルミニウム合金に、Zn:0.3~3質量%を含有する試料E4-1及び試料4-2は、Znの含有量が上記範囲を外れる試料C4-1~試料C4-2に比べて、耐食性がより優れていた。 Further, as is known from Table 1, Table 2, and Table 6, Sample E4-1 and Sample 4-2, which contain Zn: 0.3 to 3 mass% in the aluminum alloy of the core material, have Zn content. Compared to Samples C4-1 and C4-2 outside the above range, the corrosion resistance was more excellent.
 また、表1、表2、表7より知られるように、心材のアルミニウム合金に、Mg:1質量%以下及びCu0.5質量%以下の少なくとも一方を含有する試料E5-1及び試料5-2は、これらの添加成分の含有量が上記範囲を外れる試料C5-1~試料C5-2に比べて、耐食性、接合性がより優れていた。 Further, as is known from Table 1, Table 2, and Table 7, Sample E5-1 and Sample 5-2 containing at least one of Mg: 1 mass% or less and Cu 0.5 mass% or less in the aluminum alloy of the core material Compared with sample C5-1 to sample C5-2, the contents of these additive components were outside the above range, the corrosion resistance and the bondability were more excellent.
 また、表1、表2、表8より知られるように、心材のアルミニウム合金に、In:0.3質量%以下及びSn:0.3質量%以下の少なくとも一方を含有する試料E6-1及び試料6-2は、耐食性が向上した。一方、これらの添加成分の含有量が上記範囲を外れる場合には、製造性が損なわれた。 Further, as known from Table 1, Table 2, and Table 8, the sample E6-1 containing at least one of In: 0.3% by mass or less and Sn: 0.3% by mass or less in the aluminum alloy of the core material and Sample 6-2 had improved corrosion resistance. On the other hand, when the content of these additive components is out of the above range, manufacturability is impaired.
 また、表1、表2、表9より知られるように、心材のアルミニウム合金に、Ti:0.3質量%以下、V:0.3質量%以下、Zr:0.3質量%以下、Cr:0.3質量%以下、及びNi:2質量%以下から選ばれる少なくとも1種を含有する試料E7-1~試料7-5は、変形率が低下して改良されていた。一方、これらの添加成分の含有量が上記範囲を外れる場合には、製造性が損なわれるか、かえって変形率が増大していた。 Further, as known from Tables 1, 2 and 9, the core aluminum alloy includes Ti: 0.3% by mass or less, V: 0.3% by mass or less, Zr: 0.3% by mass or less, Cr : Sample E7-1 to Sample 7-5 containing at least one selected from 0.3% by mass or less and Ni: 2% by mass or less were improved with a reduced deformation rate. On the other hand, when the content of these additive components is out of the above range, the manufacturability is impaired or the deformation rate is increased.
 また、表1、表2、表10より知られるように、ろう材のアルミニウム合金に、Sr:0.1質量%以下を含有する試料E8-1は、変形率が低く改良されていた。一方、Srの含有量が上記範囲を超える場合には、製造性が損なわれた。 Further, as is known from Tables 1, 2, and 10, Sample E8-1, which contains Sr: 0.1% by mass or less in the brazing material aluminum alloy, had a low deformation rate and was improved. On the other hand, when the content of Sr exceeds the above range, productivity was impaired.
 また、表1、表2、表11より知られるように、ろう材のアルミニウム合金に、Zn:0.3質量%以下及びCu:0.3質量%以下の少なくとも一方を含有する試料E9-1及び試料E9-2は、これらの添加成分の含有量が上記範囲を外れる試料C9-1及び試料C9-2にそれぞれ比べて、耐食性が向上していた。 Further, as is known from Tables 1, 2 and 11, Sample E9-1 containing at least one of Zn: 0.3 mass% or less and Cu: 0.3 mass% or less in the aluminum alloy of the brazing material And sample E9-2 was improved in corrosion resistance as compared with sample C9-1 and sample C9-2, in which the content of these additive components was outside the above range.
(実施例2)
 次に、実施例1において示したプレコートフィン材を用いたコア部を有する熱交換器の例について説明する。図6に示すごとく、熱交換器5は、実施例1のミニコアと同様の構成を多数備えるコア部2を有する。具体的には、コア部2は、コルゲート状のプレコートフィン材1からなるフィン3と、アルミニウム管4とを交互に多数積層してなり、フィン3とアルミニウム管4とが実施例1のミニコアと同様にして接合されている。
(Example 2)
Next, the example of the heat exchanger which has a core part using the precoat fin material shown in Example 1 is demonstrated. As shown in FIG. 6, the heat exchanger 5 has a core portion 2 having a number of configurations similar to those of the mini-core of the first embodiment. Specifically, the core portion 2 is formed by alternately laminating a large number of fins 3 made of a corrugated pre-coated fin material 1 and aluminum tubes 4, and the fins 3 and the aluminum tubes 4 are the mini-cores of the first embodiment. They are joined in the same way.
 アルミニウム管4の両端には、ヘッダ51が組み付けられており、コア部2の積層方向における両端(最外側)には、サイドプレート52が組み付けられている。また、ヘッダ51には、タンク53が組み付けられている。これらのヘッダ51、サイドプレート52、及びタンク53は、例えばろう付けにより接合させることができる。 The header 51 is assembled | attached to the both ends of the aluminum pipe 4, and the side plate 52 is assembled | attached to the both ends (outermost side) in the lamination direction of the core part 2. As shown in FIG. In addition, a tank 53 is assembled to the header 51. These header 51, side plate 52, and tank 53 can be joined by brazing, for example.
 熱交換器5においては、上述の表3~表11に示す試料E1-1~試料E9-2と同様のプレコートフィン材1を用いることができる。すなわち、熱交換器5は、上述の親水持続性及び接合性等に優れたプレコートフィン材1からなるフィン3と、フィン3に接合されたアルミニウム管4とからなるコア部2を有する。そのため、熱交換器5は、フィン3が優れた親水持続性を発揮するため、通風抵抗の増加を抑制し、良好な熱交換性能を長期間安定して発揮することができる。また、熱交換器5においては、例えばアルミウム管4とフィン3とが十分に接合されるため、アルミニウム管4とフィン3との熱交換性能が良好になる。 In the heat exchanger 5, the precoat fin material 1 similar to the samples E1-1 to E9-2 shown in the above Tables 3 to 11 can be used. That is, the heat exchanger 5 has the core part 2 which consists of the fin 3 which consists of the precoat fin material 1 excellent in the above-mentioned hydrophilic sustainability, joining property, etc., and the aluminum tube 4 joined to the fin 3. Therefore, since the fin 3 exhibits excellent hydrophilic durability, the heat exchanger 5 can suppress an increase in ventilation resistance and can stably exhibit good heat exchange performance for a long period of time. Further, in the heat exchanger 5, for example, the aluminum tube 4 and the fin 3 are sufficiently joined, so that the heat exchange performance between the aluminum tube 4 and the fin 3 is improved.
(実施例3)
 本例は、フィンに形成した組み付け孔内に扁平多穴管からなるアルミニウム管が挿入された構成の熱交換器の例である。図7に例示されるように、熱交換器6は、アルミニウム管7と、フィン8とを有している。図7及び図9に例示されるように、フィン8は、アルミニウム管7が挿入される組み付け孔81を有している。図7及び図8に例示されるように、アルミニウム管7は、当接部61においてフィン8に当接している。図7~図9に例示されるように、当接部61においては、アルミニウム管7とフィン8との間に両者を接合するフィレット600が形成されている。
(Example 3)
This example is an example of a heat exchanger having a configuration in which an aluminum tube made of a flat multi-hole tube is inserted into an assembly hole formed in a fin. As illustrated in FIG. 7, the heat exchanger 6 includes an aluminum tube 7 and fins 8. As illustrated in FIGS. 7 and 9, the fin 8 has an assembly hole 81 into which the aluminum tube 7 is inserted. As illustrated in FIGS. 7 and 8, the aluminum tube 7 is in contact with the fin 8 at the contact portion 61. As illustrated in FIGS. 7 to 9, in the contact portion 61, a fillet 600 is formed between the aluminum tube 7 and the fin 8 to join both.
 本例の熱交換器6は、図7に例示されるように、板厚方向に互いに間隔をあけて並べられた多数のフィン8と、フィン8の板厚方向に延びた複数のアルミニウム管7とを有している。フィン8は、板厚方向から視た平面視において略長方形状を呈している。 As illustrated in FIG. 7, the heat exchanger 6 of this example includes a large number of fins 8 arranged at intervals in the plate thickness direction, and a plurality of aluminum tubes 7 extending in the plate thickness direction of the fins 8. And have. The fin 8 has a substantially rectangular shape in plan view as viewed from the thickness direction.
 図8及び図9に例示されるように、フィン8は、実施例1と同様のブレージングシート11と、その両面に形成された塗膜12とを有するプレコートフィン材1よりなるが、ブレージングシート11においては、ろう材112は、心材111の片面に形成されている。より具体的には、ろう材112は、アルミニウム管7との当接部61側に形成されており、反対側にはろう材112は形成されていない。塗膜12は、ろう材112の形成面側においては、ろう材112上に積層形成されており、ろう材の非形成面側においては、心材111上に積層形成されている。ろう材、塗膜の形成方法は、実施例1と同様である。 As illustrated in FIG. 8 and FIG. 9, the fin 8 is made of the precoated fin material 1 having the same brazing sheet 11 as in Example 1 and the coating film 12 formed on both surfaces thereof, but the brazing sheet 11. The brazing material 112 is formed on one side of the core material 111. More specifically, the brazing material 112 is formed on the abutting portion 61 side with the aluminum tube 7, and the brazing material 112 is not formed on the opposite side. The coating film 12 is laminated on the brazing material 112 on the surface on which the brazing material 112 is formed, and is laminated on the core material 111 on the non-forming surface side of the brazing material. The method for forming the brazing material and the coating film is the same as in Example 1.
 フィン8における組み付け孔81は、フィン8の外周縁部に設けられた切り欠き811である。切り欠き811は、フィン8の外周縁部から板幅方向に延びており、平面視においてU字状を呈している。また、切り欠き811は、フィン8の外周縁部に設けられた開放部812からアルミニウム管7を圧入することができるように構成されている。 The assembly hole 81 in the fin 8 is a notch 811 provided in the outer peripheral edge portion of the fin 8. The notch 811 extends in the plate width direction from the outer peripheral edge of the fin 8 and has a U shape in plan view. The notch 811 is configured such that the aluminum tube 7 can be press-fitted from an open portion 812 provided at the outer peripheral edge of the fin 8.
 また、図7及び図9に示すように、フィン8は、組み付け孔81の周縁から突出したカラー部82を有している。カラー部82の高さは特に限定されないが、例えば、200μm以上とすることができる。 7 and 9, the fin 8 has a collar portion 82 protruding from the peripheral edge of the assembly hole 81. Although the height of the color part 82 is not specifically limited, For example, it can be 200 micrometers or more.
 図7に例示されるように、アルミニウム管7は、長手方向の断面が長円形を呈しており、内部に複数の流路711が形成された扁平多穴管である。扁平多穴管は、その幅方向と、フィンプレートの板幅方向とが平行になるように配置されている。また、図7及び図8に例示されるように、扁平多穴管よりなるアルミニウム管7は、その幅方向における一方の端部712、即ち表面が曲面状を呈している部分において、カラー部82に当接している。そして、アルミニウム管7の一方の端部712とカラー部82のU字形状における先端部821とが当接部61を構成している。図示を省略するが、当接部61においては、フィン8のろう材112が後述の接合時の加熱及び冷却によってフィン8とアルミニウム管7とを接合している。 7, the aluminum tube 7 is a flat multi-hole tube in which a cross section in the longitudinal direction has an oval shape and a plurality of flow paths 711 are formed therein. The flat multi-hole tube is arranged so that the width direction thereof is parallel to the plate width direction of the fin plate. As illustrated in FIGS. 7 and 8, the aluminum tube 7 made of a flat multi-hole tube has a collar portion 82 at one end 712 in the width direction, that is, a portion where the surface is curved. Abut. One end portion 712 of the aluminum tube 7 and the tip portion 821 of the U-shape of the collar portion 82 constitute a contact portion 61. Although illustration is omitted, in the contact portion 61, the brazing material 112 of the fin 8 joins the fin 8 and the aluminum tube 7 by heating and cooling at the time of joining described later.
 本例の熱交換器6は、例えば以下のようにして作製することができる。まず、ろう材112を心材111の片面に形成した点を除いて実施例1と同様にしてプレコートフィン材1を作製し、このフィン材を用いて常法によりフィン8を作製する。そして、複数のフィン8を、板厚方向に互いに間隔をあけて並べる。次に、常法により準備された扁平多穴管からなるアルミニウム管7をフィン8の組み付け孔81に圧入し、少なくともアルミニウム管7の一方の端部712とカラー部82の先端部821とを当接させる。その後、例えば窒素ガス雰囲気下、温度600℃で3分間加熱した後冷却させる。加熱によりフィン8のろう材112軟化又は溶融し、冷却によりろう材を凝結させることにより、当接部61においてフィン8とアルミニウム管7とが接合する。このようにして、アルミニウム管7とフィン8とが接合したコア部を有する熱交換器6を作製することができる。本例の熱交換器においても、実施例2と同様の作用効果を奏することできる。 The heat exchanger 6 of this example can be manufactured as follows, for example. First, the pre-coated fin material 1 is produced in the same manner as in Example 1 except that the brazing material 112 is formed on one side of the core material 111, and the fin 8 is produced by a conventional method using this fin material. Then, the plurality of fins 8 are arranged at intervals in the plate thickness direction. Next, an aluminum tube 7 made of a flat multi-hole tube prepared by a conventional method is press-fitted into the assembly hole 81 of the fin 8, and at least one end 712 of the aluminum tube 7 and the tip 821 of the collar portion 82 are brought into contact with each other. Make contact. Thereafter, for example, the substrate is heated at 600 ° C. for 3 minutes in a nitrogen gas atmosphere and then cooled. The fin 8 and the aluminum tube 7 are joined at the contact portion 61 by softening or melting the brazing material 112 of the fin 8 by heating and condensing the brazing material by cooling. In this way, the heat exchanger 6 having a core portion in which the aluminum tube 7 and the fins 8 are joined can be manufactured. Also in the heat exchanger of this example, there can exist an effect similar to Example 2. FIG.
 以上のように、本発明の実施例について詳細に説明したが、本発明は上述の各実施例に限定されるものではなく、本発明の趣旨を損なわない範囲内で種々の変更が可能である。 As mentioned above, although the Example of this invention was described in detail, this invention is not limited to the above-mentioned each Example, A various change is possible within the range which does not impair the meaning of this invention. .

Claims (12)

  1.  アルミニウム合金からなる心材と、該心材上に積層されたろう材とを有するブレージングシートと、
     上記ブレージングシートの表面に形成された塗膜と、を有し、
     上記ろう材は、Si:5~10質量%を含有し、残部がAl及び不可避的不純物からなる化学成分を有し、
     上記塗膜中のSi量が10~300mg/m2である、プレコートフィン材。
    A brazing sheet having a core made of an aluminum alloy and a brazing material laminated on the core;
    A coating film formed on the surface of the brazing sheet,
    The brazing material contains Si: 5 to 10% by mass, and the balance has a chemical component consisting of Al and inevitable impurities,
    A pre-coated fin material, wherein the amount of Si in the coating film is 10 to 300 mg / m 2 .
  2.  上記塗膜は、ケイ酸塩及び非晶質シリカの少なくとも一方を含有する、請求項1に記載のプレコートフィン材。 The pre-coated fin material according to claim 1, wherein the coating film contains at least one of silicate and amorphous silica.
  3.  上記塗膜は、ケイ酸リチウムを含有する、請求項1又は2に記載のプレコートフィン材。 The pre-coated fin material according to claim 1 or 2, wherein the coating film contains lithium silicate.
  4.  上記塗膜は、さらにフッ化物フラックスを40~5000mg/m2含有する、請求項1~3のいずれか1項に記載のプレコートフィン材。 The precoated fin material according to any one of claims 1 to 3, wherein the coating film further contains 40 to 5000 mg / m 2 of a fluoride flux.
  5.  上記心材は、Si:0.05~0.8質量%、Fe:0.05~0.8質量%、及びMn:0.8~2質量%を含有し、残部がAl及び不可避的不純物からなる化学成分を有する、請求項1~4のいずれか1項に記載のプレコートフィン材。 The core material contains Si: 0.05 to 0.8% by mass, Fe: 0.05 to 0.8% by mass, and Mn: 0.8 to 2% by mass with the balance being Al and inevitable impurities. The precoated fin material according to any one of claims 1 to 4, which has a chemical component:
  6.  上記心材は、さらにZn:0.3~3質量%を含有する、請求項5に記載のプレコートフィン材。 The precoated fin material according to claim 5, wherein the core material further contains Zn: 0.3 to 3% by mass.
  7.  上記心材は、さらにMg:1質量%以下及びCu0.5質量%以下の少なくとも一方を含有する、請求項5又は6に記載のプレコートフィン材。 The pre-coated fin material according to claim 5 or 6, wherein the core material further contains at least one of Mg: 1 mass% or less and Cu: 0.5 mass% or less.
  8.  上記心材は、さらにIn:0.3質量%以下及びSn:0.3質量%以下の少なくとも一方を含有する、請求項5~7のいずれか1項に記載のプレコートフィン材。 The precoated fin material according to any one of claims 5 to 7, wherein the core material further contains at least one of In: 0.3 mass% or less and Sn: 0.3 mass% or less.
  9.  上記心材は、さらにTi:0.3質量%以下、V:0.3質量%以下、Zr:0.3質量%以下、Cr:0.3質量%以下、及びNi:2質量%以下から選ばれる少なくとも1種を含有する、請求項5~8のいずれか1項に記載のプレコートフィン材。 The core material is further selected from Ti: 0.3 mass% or less, V: 0.3 mass% or less, Zr: 0.3 mass% or less, Cr: 0.3 mass% or less, and Ni: 2 mass% or less. The precoated fin material according to any one of claims 5 to 8, comprising at least one selected from the group consisting of:
  10.  上記ろう材は、さらにSr:0.1質量%以下を含有する、請求項1~9のいずれか1項に記載のプレコートフィン材。 The pre-coated fin material according to any one of claims 1 to 9, wherein the brazing material further contains Sr: 0.1% by mass or less.
  11.  上記ろう材は、さらにZn:0.3質量%以下及びCu:0.3質量%以下の少なくとも一方を含有する、請求項1~10のいずれか1項に記載のプレコートフィン材。 The precoated fin material according to any one of claims 1 to 10, wherein the brazing material further contains at least one of Zn: 0.3% by mass or less and Cu: 0.3% by mass or less.
  12.  請求項1~11のいずれか1項に記載のプレコートフィン材からなるフィンと、該フィンに接合されたアルミニウム管とからなるコア部を有する、熱交換器。 A heat exchanger having a core portion made of a fin made of the pre-coated fin material according to any one of claims 1 to 11 and an aluminum tube joined to the fin.
PCT/JP2017/032782 2016-09-12 2017-09-12 Precoated fin material and heat exchanger using same WO2018047970A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-177996 2016-09-12
JP2016177996A JP7096638B2 (en) 2016-09-12 2016-09-12 Pre-coated fins and heat exchangers using them

Publications (1)

Publication Number Publication Date
WO2018047970A1 true WO2018047970A1 (en) 2018-03-15

Family

ID=61562547

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/032782 WO2018047970A1 (en) 2016-09-12 2017-09-12 Precoated fin material and heat exchanger using same

Country Status (2)

Country Link
JP (1) JP7096638B2 (en)
WO (1) WO2018047970A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110066945A (en) * 2019-05-07 2019-07-30 安徽普瑞普勒传热技术有限公司 A kind of fin material for heat exchanger

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102155804B1 (en) * 2019-10-11 2020-09-15 구일공조(주) Manufacture method of heat-exchanger

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6466067A (en) * 1987-09-04 1989-03-13 Furukawa Aluminium Production of heat exchanger excellent in pitting corrosion resistance
JPH11237195A (en) * 1998-02-23 1999-08-31 Sky Alum Co Ltd Precoat fin material
JP2002066786A (en) * 2000-09-01 2002-03-05 Furukawa Electric Co Ltd:The Manufacturing method of high corrosion resistant aluminum alloy matching material
JP2004025297A (en) * 2001-09-28 2004-01-29 Furukawa Electric Co Ltd:The Brazing method for aluminum or aluminum alloy material and brazing sheet made of aluminum alloy
WO2007087822A1 (en) * 2006-01-31 2007-08-09 Norsk Hydro Asa A process for making a heat exchanger
JP2011000594A (en) * 2009-06-16 2011-01-06 Furukawa-Sky Aluminum Corp Aluminum alloy brazing sheet for vacuum brazing
JP2012224923A (en) * 2011-04-21 2012-11-15 Mitsubishi Alum Co Ltd Plate fin material for heat exchanger and method of manufacturing the plate fin material, and the heat exchanger using the plate fin material and method of manufacturing the heat exchanger
JP2013507258A (en) * 2009-10-13 2013-03-04 エスアーペーアー・ヒート・トランスファー・アーベー High temperature high strength sandwich material for thin sheet in heat exchanger
JP2013137153A (en) * 2011-12-28 2013-07-11 Mitsubishi Alum Co Ltd All-aluminum heat exchanger using precoat fin material
JP2014055338A (en) * 2012-09-13 2014-03-27 Uacj Corp Aluminum clad-plate for heat exchanger and method for manufacturing the same, and aluminum heat exchanger employing clad-plate and method for manufacturing the same

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3815576B2 (en) * 1995-07-25 2006-08-30 三菱アルミニウム株式会社 Brazing flux composition, Al material, and heat exchanger manufacturing method
JP3595067B2 (en) * 1995-07-27 2004-12-02 三菱アルミニウム株式会社 Aluminum alloy braze, heat exchanger manufactured using the same, and method of manufacturing the same
EP1306207B2 (en) * 2001-10-26 2011-05-25 Furukawa-Sky Aluminum Corporation Fluxless brazing process in an inert gas
JP4088887B2 (en) * 2002-06-17 2008-05-21 株式会社デンソー Aqueous aluminum brazing composition and brazing method
KR101216820B1 (en) * 2004-10-19 2012-12-31 알레리스 알루미늄 캐나다 엘.피. Method of producing an aluminium alloy brazing sheet and light brazed heat exchanger assemblies
JP2006348372A (en) 2005-06-20 2006-12-28 Mitsubishi Alum Co Ltd High strength aluminum alloy material for automobile heat-exchanger
JP6001897B2 (en) 2012-03-28 2016-10-05 株式会社ティラド Tank material and heat exchanger with excellent pressure strength
JP6002583B2 (en) 2013-01-08 2016-10-05 株式会社ケーヒン・サーマル・テクノロジー Evaporator
WO2015001725A1 (en) * 2013-07-05 2015-01-08 株式会社Uacj Aluminum alloy brazing sheet and method for producing same
DK3150327T3 (en) * 2014-05-26 2018-10-08 Uacj Corp Coated heat exchanger tube, method of making a heat exchanger and solder paste used for coating on the heat exchanger tube

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6466067A (en) * 1987-09-04 1989-03-13 Furukawa Aluminium Production of heat exchanger excellent in pitting corrosion resistance
JPH11237195A (en) * 1998-02-23 1999-08-31 Sky Alum Co Ltd Precoat fin material
JP2002066786A (en) * 2000-09-01 2002-03-05 Furukawa Electric Co Ltd:The Manufacturing method of high corrosion resistant aluminum alloy matching material
JP2004025297A (en) * 2001-09-28 2004-01-29 Furukawa Electric Co Ltd:The Brazing method for aluminum or aluminum alloy material and brazing sheet made of aluminum alloy
WO2007087822A1 (en) * 2006-01-31 2007-08-09 Norsk Hydro Asa A process for making a heat exchanger
JP2011000594A (en) * 2009-06-16 2011-01-06 Furukawa-Sky Aluminum Corp Aluminum alloy brazing sheet for vacuum brazing
JP2013507258A (en) * 2009-10-13 2013-03-04 エスアーペーアー・ヒート・トランスファー・アーベー High temperature high strength sandwich material for thin sheet in heat exchanger
JP2012224923A (en) * 2011-04-21 2012-11-15 Mitsubishi Alum Co Ltd Plate fin material for heat exchanger and method of manufacturing the plate fin material, and the heat exchanger using the plate fin material and method of manufacturing the heat exchanger
JP2013137153A (en) * 2011-12-28 2013-07-11 Mitsubishi Alum Co Ltd All-aluminum heat exchanger using precoat fin material
JP2014055338A (en) * 2012-09-13 2014-03-27 Uacj Corp Aluminum clad-plate for heat exchanger and method for manufacturing the same, and aluminum heat exchanger employing clad-plate and method for manufacturing the same

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Q & A: "Joining of light metal", JOURNAL OF LIGHT METAL WELDING, vol. 46, no. 8, August 2008 (2008-08-01), pages 376 - 378 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110066945A (en) * 2019-05-07 2019-07-30 安徽普瑞普勒传热技术有限公司 A kind of fin material for heat exchanger

Also Published As

Publication number Publication date
JP2018044693A (en) 2018-03-22
JP7096638B2 (en) 2022-07-06

Similar Documents

Publication Publication Date Title
JP6186239B2 (en) Aluminum alloy heat exchanger
JP4825507B2 (en) Aluminum alloy brazing sheet
US20190323788A1 (en) Method for producing aluminum alloy clad material
US7989087B2 (en) Brazing fin material for heat exchangers, heat exchanger, and method of manufacturing same
JP6115892B2 (en) Aluminum alloy brazing sheet for fins, heat exchanger and heat exchanger manufacturing method
US20110240280A1 (en) Aluminum alloy brazing sheet and heat exchanger
JP5188115B2 (en) High strength aluminum alloy brazing sheet
JP4702797B2 (en) Manufacturing method of aluminum alloy clad material excellent in surface bondability by brazing of sacrificial anode material surface
WO2015104760A1 (en) Aluminium-alloy clad material and production method therefor, and heat exchanger using said aluminium-alloy clad material and production method therefor
JP4993440B2 (en) High strength aluminum alloy clad material for heat exchangers with excellent brazeability
JP2007092101A (en) Aluminum alloy clad material excellent in surface joinability on sacrificial anode material surface, and heat-exchanger
JP5710946B2 (en) Flat tubes and heat exchangers for heat exchangers
JP5192890B2 (en) Extruded flat multi-hole tube and heat exchanger for heat exchangers with excellent corrosion resistance
JP6106530B2 (en) Method for preventing corrosion of heat exchange pipe outer surface made of extruded aluminum and method for producing heat exchanger
JP2014114475A (en) Aluminum alloy brazing sheet, method of producing the same, and heat exchanger employing the aluminum alloy brazing sheet
WO2018047971A1 (en) Precoated fin material and heat exchanger using same
WO2018047970A1 (en) Precoated fin material and heat exchanger using same
JP2012057183A (en) Aluminum alloy clad material and heat exchanging device using the same
JP2017020108A (en) Aluminum alloy clad material and manufacturing method therefor and heat exchanger using the aluminum alloy clad material
JP5396042B2 (en) Aluminum alloy brazing sheet with excellent brazeability
JP6576055B2 (en) Pre-coated fin and heat exchanger using the same
JP5599131B2 (en) Aluminum alloy brazing material and method for producing aluminum alloy brazing sheet
JP6351205B2 (en) High corrosion resistance aluminum alloy brazing sheet
JP5159709B2 (en) Aluminum alloy clad material for heat exchanger tube and heat exchanger core using the same
JP5279279B2 (en) Blazing sheet for fin material of heat exchanger, heat exchanger and manufacturing method thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17848908

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17848908

Country of ref document: EP

Kind code of ref document: A1