WO2018047971A1 - Precoated fin material and heat exchanger using same - Google Patents

Precoated fin material and heat exchanger using same Download PDF

Info

Publication number
WO2018047971A1
WO2018047971A1 PCT/JP2017/032783 JP2017032783W WO2018047971A1 WO 2018047971 A1 WO2018047971 A1 WO 2018047971A1 JP 2017032783 W JP2017032783 W JP 2017032783W WO 2018047971 A1 WO2018047971 A1 WO 2018047971A1
Authority
WO
WIPO (PCT)
Prior art keywords
mass
less
aluminum alloy
fin
alloy plate
Prior art date
Application number
PCT/JP2017/032783
Other languages
French (fr)
Japanese (ja)
Inventor
幸平 塩見
涼子 藤村
貴彦 水田
Original Assignee
株式会社Uacj
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Uacj filed Critical 株式会社Uacj
Publication of WO2018047971A1 publication Critical patent/WO2018047971A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K1/00Soldering, e.g. brazing, or unsoldering
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K1/00Soldering, e.g. brazing, or unsoldering
    • B23K1/20Preliminary treatment of work or areas to be soldered, e.g. in respect of a galvanic coating
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/02Alloys based on aluminium with silicon as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/10Alloys based on aluminium with zinc as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/04Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/12Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
    • F28F1/24Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely
    • F28F1/32Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely the means having portions engaging further tubular elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F19/00Preventing the formation of deposits or corrosion, e.g. by using filters or scrapers
    • F28F19/02Preventing the formation of deposits or corrosion, e.g. by using filters or scrapers by using coatings, e.g. vitreous or enamel coatings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F21/00Constructions of heat-exchange apparatus characterised by the selection of particular materials
    • F28F21/08Constructions of heat-exchange apparatus characterised by the selection of particular materials of metal

Definitions

  • the present invention relates to a pre-coated fin material having, for example, an aluminum alloy plate and a coating film, and a heat exchanger using the same.
  • an all-aluminum heat exchanger has an aluminum tube through which a refrigerant flows and an aluminum fin for exchanging heat between air outside the tube, and the tube and the fin are joined to each other. ing. Since the hydrophilicity of the fin greatly affects the heat exchange performance of the heat exchanger, a fin having a hydrophilic coating film formed on the surface is often used. For joining the fin and the pipe having such a hydrophilic coating film, a method of mechanically joining the two by expanding the pipe inserted into the hole provided in the fin (patent) Reference 1 and Patent Reference 2).
  • brazing joining is assumed.
  • a general resin-based or inorganic coating film is altered or decomposed at the heating temperature at the time of brazing, it cannot sufficiently exhibit hydrophilicity after brazing.
  • flux action is hindered by the presence of the coating film, and brazing joining may be insufficient. Therefore, when manufacturing a heat exchanger by brazing, the coating film is generally formed after brazing (refer patent document 3).
  • the manufacturing cost increases because a dedicated coating film forming facility is required. In this case, it is difficult to cope with an increase in the size of the heat exchanger.
  • a fin material having a coating film mainly composed of silicate has been proposed as a fin material having a coating film pre-coated before brazing (see Patent Document 4). Further, in the production of a heat exchanger, a method for producing a fin in which a film containing a support such as xylene or a silicon-based binder such as silicone oil is formed before brazing has been proposed (Patent Document 5). reference).
  • fin films pre-coated with conventional coatings and films have insufficient hydrophilic sustainability after brazing and insufficient brazing function. That is, the conventional fin material did not have excellent hydrophilic sustainability and excellent brazing function. Therefore, it is necessary to supply a brazing material separately when manufacturing the heat exchanger using the fin material. As a result, a decrease in manufacturability due to an increase in the manufacturing process and an increase in manufacturing cost due to member procurement are expected.
  • the pre-coated coating film or coating film adversely affects the brazing joint between the fin using the brazing material and the aluminum tube, and there is a possibility that the joining property is insufficient. Therefore, development of a pre-coated fin material that can maintain a superior hydrophilic sustainability and can produce a heat exchanger that can be joined without using a brazing material and has excellent joining properties between the fin and the aluminum tube. Is desired.
  • the present invention has been made in view of such a background, and is excellent in the hydrophilic sustainability of the fins, can be joined between the fins and the aluminum pipe without separately supplying a brazing material, and has excellent joining properties.
  • An object of the present invention is to provide a pre-coated fin material capable of producing an exchanger, and a heat exchanger using the pre-coated fin material.
  • One aspect of the present invention is an aluminum alloy plate; A coating formed on the surface of the aluminum alloy plate, The aluminum alloy plate contains Si: 1 to 5% by mass, and the balance has chemical components composed of Al and inevitable impurities,
  • the pre-coated fin material has a Si content in the coating film of 10 to 300 mg / m 2 .
  • Another aspect of the present invention resides in a heat exchanger having a core portion made of a fin made of the pre-coated fin material and an aluminum tube joined to the fin.
  • the aluminum alloy plate contains Si in the specific range, and the balance has chemical components composed of Al and inevitable impurities. Therefore, for example, by heating at about 600 ° C., a liquid phase is generated from the inside of the aluminum alloy plate and oozes out to the surface, and the liquid phase solidifies during cooling, so that, for example, joining with other aluminum members such as an aluminum tube is possible. It becomes possible. Therefore, it becomes possible to join without separately using a joining member such as a brazing material, and it is possible to ensure a sufficient joining property without using a brazing material. Furthermore, since joining is possible without using a joining member such as a brazing material, it is possible to meet the demand for cost reduction. Moreover, since the components of the aluminum alloy plate itself are used for joining, the performance of the coating film formed on the surface of the aluminum alloy plate by a joining member such as a brazing material is not impaired.
  • the coating film in which the Si amount is adjusted as described above is unlikely to deteriorate in coating film performance due to heating or the like. Therefore, the coating film can exhibit excellent hydrophilicity even after heating at the time of joining with another member such as an aluminum tube, and can maintain the initial excellent hydrophilicity for a long period of time. Moreover, a coating film hardly inhibits joining with other aluminum members, such as an aluminum pipe, and a precoat fin material, for example. Therefore, although the said precoat fin material has a coating film, sufficient joining with an aluminum pipe, for example is possible.
  • the components of the coating film and the aluminum alloy plate are optimized as described above. Therefore, it is possible to manufacture a heat exchanger that is excellent in hydrophilic sustainability of the fins, can join the fins to the aluminum pipe without separately supplying a brazing material, and has excellent joining properties.
  • the said heat exchanger has a core part which consists of the fin which consists of a precoat fin material excellent in the above-mentioned hydrophilic sustainability and joining property, and the aluminum pipe joined to the fin. Therefore, in the heat exchanger, since fins exhibit excellent hydrophilic sustainability, an increase in ventilation resistance can be suppressed, and good heat exchange performance can be stably exhibited for a long period of time. Further, in the heat exchanger, for example, an aluminum tube and a fin are sufficiently joined, so that the heat exchange performance between the aluminum tube and the fin is improved.
  • FIG. 8 Sectional drawing of the precoat fin material in Example 1.
  • FIG. 8 The perspective view of the core part (specifically minicore) of the heat exchanger in Example 1.
  • Example 1 (a) The fragmentary sectional view of the contact part of the fin and aluminum tube before joining, (b) The fragmentary sectional view of the contact part of the fin and aluminum tube after joining.
  • FIG. The perspective view of the principal part of the heat exchanger in Example 3.
  • FIG. 8 is a cross-sectional view taken along line III-III in FIG.
  • the pre-coated fin material is used for joining a fin made of the pre-coated fin material and an aluminum tube to obtain a heat exchanger.
  • the “aluminum tube” is a concept including not only a pure aluminum tube but also an aluminum alloy tube. Specifically, A1000 series pure aluminum, A3000 series aluminum alloy, or the like can be used.
  • the pre-coated fin material has an aluminum alloy plate.
  • the chemical components of the aluminum alloy plate include, for example, Si: 1 to 5% by mass, and the balance is Al and inevitable impurities.
  • Si silicon
  • the Si content is preferably 1.5% by mass or more, and more preferably 2% by mass or more.
  • the Si content exceeds 5% by mass, the amount of Si particles in the aluminum alloy plate is increased, and the amount of liquid phase generated is increased. It becomes difficult to maintain the shape as a material.
  • the Si content is preferably 4% by mass or less, and more preferably 3% by mass or less.
  • the chemical components of the aluminum alloy plate include Fe, Mn, Zn, Mg, Cu, In, Sn, Ti, V, Zr, Cr, Ni, Be, Sr, Bi. Further, at least one element selected from the group consisting of Na, and Ca can be further contained.
  • the chemical components of the aluminum alloy plate include, for example, Si: 1 to 5% by mass, and at least one of Fe: 0.1 to 2% by mass and Mn: 0.1 to 2% by mass, with the balance being Al and inevitable impurities. In this case, the strength as a fin material can be improved.
  • Fe has the effect of dispersing as a crystallized substance and preventing a decrease in strength particularly at high temperatures.
  • the addition amount of Fe is less than 0.1% by mass, not only the above effects are small, but also high-purity ingots need to be used, resulting in an increase in cost.
  • it exceeds 2 mass% a coarse intermetallic compound will produce
  • the fin made of the pre-coated fin material is exposed to a corrosive environment (particularly a corrosive environment in which a liquid flows), the corrosion resistance decreases.
  • the addition amount of Fe is preferably 0.1 to 2% by mass as described above.
  • a more preferable addition amount of Fe is 0.2% by mass to 1% by mass.
  • Mn forms an Al—Fe—Mn—Si based intermetallic compound together with Fe and Si and acts as dispersion strengthening, or it is important to improve strength by solid solution strengthening by solid solution strengthening in the aluminum matrix. It is an additive element.
  • the amount of Mn added is preferably 0.1 to 2% by mass as described above.
  • a more preferable amount of Mn is 0.3 to 1.5% by mass.
  • the chemical component of the aluminum alloy plate can further contain Zn: 0.05 to 6% by mass. That is, the chemical component of the aluminum alloy plate contains, for example, Si: 1 to 5% by mass, and at least one of Fe: 0.1 to 2% by mass and Mn: 0.1 to 2% by mass, Further, Zn: 0.05 to 6% by mass, the balance being Al and inevitable impurities. In this case, the corrosion resistance of the pre-coated fin material can be improved.
  • Addition of Zn is effective in improving corrosion resistance due to sacrificial anticorrosive action.
  • Zn is dissolved almost uniformly in the matrix, but when a liquid phase is generated, it dissolves into the liquid phase and the Zn in the liquid phase is concentrated. When the liquid phase oozes out to the surface, the Zn concentration in the portion increases, so that the corrosion resistance is improved by the sacrificial anodic action.
  • action which prevents an aluminum pipe etc. can also be worked by using a precoat fin material for a fin.
  • the added amount of Zn exceeds 6% by mass, the corrosion rate increases and the self-corrosion resistance decreases.
  • the amount of Zn added is preferably 0.05% by mass or more. Accordingly, Zn is preferably 0.05 to 6% by mass or less as described above.
  • the chemical component of the aluminum alloy plate can further contain at least one of Mg: 2 mass% or less and Cu: 1.5 mass% or less. That is, the chemical component of the aluminum alloy plate contains, for example, Si: 1 to 5% by mass, and at least one of Fe: 0.1 to 2% by mass and Mn: 0.1 to 2% by mass, Zn: 0.05 to 6% by mass, further containing at least one of Mg: 2% by mass or less and Cu: 1.5% by mass or less, with the balance being Al and inevitable impurities. In this case, the strength of the pre-coated fin material can be further improved.
  • Mg undergoes age hardening by Mg 2 Si after bonding heating, and the strength is improved by this age hardening.
  • Mg is an additive element that exhibits the effect of improving the strength.
  • the amount of Mg added exceeds 2% by mass, it reacts with the flux to form a high melting point compound, so that the bondability is significantly lowered. Therefore, the amount of Mg added is preferably 2% by mass or less as described above. A more preferable amount of Mg is 0.05% by mass to 2% by mass.
  • not only Mg but also other alloy components include 0 when the amount is less than a predetermined addition amount.
  • Cu is an additive element that improves the strength by solid solution in the matrix. However, if the amount of Cu added exceeds 1.5%, the corrosion resistance decreases. Therefore, the amount of Cu added is preferably 1.5% by mass or less as described above. A more preferable amount of Cu is 0.05% to 1.5%.
  • the chemical component of the aluminum alloy plate may further contain at least one of In: 0.3% by mass or less and Sn: 0.3% by mass or less. That is, the chemical component of the aluminum alloy plate contains, for example, Si: 1 to 5% by mass, and at least one of Fe: 0.1 to 2% by mass and Mn: 0.1 to 2% by mass, Zn: 0.05 to 6% by mass, further containing at least one of In: 0.3% by mass or less and Sn: 0.3% by mass or less, with the balance being Al and inevitable impurities. In this case, the deterioration of the corrosion resistance of the precoated fin material can be suppressed.
  • the amount of each of these elements added is preferably 0.3% by mass or less as described above.
  • a more preferable addition amount is 0.05 to 0.3% by mass.
  • the chemical components of the aluminum alloy plate are further Ti: 0.3% by mass or less, V: 0.3% by mass or less, Zr: 0.3% by mass or less, Cr: 0.3% by mass or less, and Ni: 2% by mass. % Or less can be contained. That is, the chemical component of the aluminum alloy plate contains, for example, Si: 1 to 5% by mass, and at least one of Fe: 0.1 to 2% by mass and Mn: 0.1 to 2% by mass, Zn: 0.05 to 6% by mass, Ti: 0.3% by mass or less, V: 0.3% by mass or less, Zr: 0.3% by mass or less, Cr: 0.3% by mass or less And Ni: contains at least one selected from 2% by mass or less, with the balance being Al and inevitable impurities. In this case, the strength as a fin material can be improved.
  • Ti and V have the effect of preventing the progress of corrosion in the plate thickness direction by being dissolved in a matrix and being dissolved in a matrix to improve the strength.
  • the added amount exceeds 0.3% by mass, a giant crystallized product is generated, which impairs moldability and corrosion resistance. Therefore, the amount of Ti and V added is preferably 0.3% by mass or less as described above. A more preferable addition amount is 0.05 to 0.3% by mass.
  • the amount of Zr added is preferably 0.3% by mass as described above. A more preferable addition amount is 0.05% by mass to 0.3% by mass.
  • the amount of Cr added is preferably 0.3% by mass or less as described above. A more preferable addition amount is 0.05 to 0.3% by mass.
  • Ni is crystallized or precipitated as an intermetallic compound, and has an effect of improving the strength after bonding by dispersion strengthening.
  • the addition amount exceeds 2% by mass, it becomes easy to form a coarse intermetallic compound, and the workability is lowered.
  • the self-corrosion resistance is also reduced. Therefore, the amount of Ni added is preferably 2% by mass or less as described above. A more preferable addition amount is 0.05 to 2% by mass.
  • the chemical components of the aluminum alloy plate are further Be: 0.1 mass% or less, Sr: 0.1 mass% or less, Bi: 0.1 mass% or less, Na: 0.1 mass% or less, Ca: 0.05 At least 1 sort (s) chosen from the mass% or less can be contained.
  • the chemical component of the aluminum alloy plate contains, for example, Si: 1 to 5% by mass, and at least one of Fe: 0.1 to 2% by mass and Mn: 0.1 to 2% by mass, Zn: 0.05 to 6% by mass, Be: 0.1% by mass or less, Sr: 0.1% by mass or less, Bi: 0.1% by mass or less, Na: 0.1% by mass or less Ca: At least one selected from 0.05% by mass or less, with the balance being Al and inevitable impurities. In this case, the bondability can be further improved by improving the liquid phase characteristics.
  • More preferable ranges of these elements are Be: 0.0001 to 0.1% by mass, Sr: 0.0001 to 0.1% by mass, Bi: 0.0001 to 0.1% by mass, Na: 0.0001. -0.1 mass%, Ca: 0.0001-0.05 mass%.
  • These trace elements have a small effect when the amount is less than the above-mentioned more preferable specified range, and when the amount exceeds the above-mentioned more preferable specified range, adverse effects such as a decrease in corrosion resistance may occur.
  • 1 type, or 2 or more types of Be, Sr, Bi, Na, and Ca it is required that all of the added components are within the above preferable or more preferable component ranges.
  • the aluminum alloy plate is cast using a DC (Direct Chill) casting method, and the casting speed of the slab at the time of casting is controlled as follows, for example. Since the casting speed affects the cooling speed, it is preferably 20 to 100 mm / min. When the casting speed is less than 20 mm / min, a sufficient cooling rate cannot be obtained, and crystallized intermetallic compounds such as Si-based intermetallic compounds and Al—Fe—Mn—Si-based intermetallic compounds are coarsened. On the other hand, when it exceeds 100 mm / min, the aluminum material is not sufficiently solidified during casting, and a normal ingot cannot be obtained. More preferably, it is 30 to 80 mm / min.
  • a casting speed can be adjusted according to the composition of the alloy material to manufacture.
  • the cooling rate depends on the cross-sectional shape of the slab such as thickness and width
  • the cooling rate of 0.1 to 2 ° C./second can be achieved at the center of the ingot by setting the casting rate to 20 to 100 mm / min.
  • the ingot (slab) thickness during DC continuous casting is preferably 600 mm or less. When the slab thickness exceeds 600 mm, a sufficient cooling rate cannot be obtained and the intermetallic compound becomes coarse. A more preferable slab thickness is 500 mm or less.
  • the slab manufactured by the DC casting method is subjected to a heating process before hot rolling, a hot rolling process, a cold rolling process, and an annealing process.
  • a homogenization treatment may be performed after casting and before hot rolling.
  • the slab manufactured by the DC casting method is subjected to a heating process before hot rolling after homogenization or without being homogenized.
  • the heating holding temperature is 400 to 570 ° C. and the holding time is about 0 to 15 hours.
  • holding temperature is less than 400 degreeC, the deformation resistance of the slab in hot rolling is large, and there exists a possibility that a crack may generate
  • holding temperature exceeds 570 degreeC, there exists a possibility that melting may arise locally.
  • the holding time of 0 hour means that the heating is terminated immediately after reaching the heating holding temperature.
  • the hot rolling process includes a hot sparse rolling stage and a hot finish rolling stage.
  • the total rolling reduction in the hot rough rolling stage is 92 to 97%, and each pass of the hot rough rolling includes three or more passes where the rolling reduction is 15% or more.
  • a coarse crystallized product is generated in the final solidified part.
  • the crystallization product is subjected to shearing by rolling and is divided into small pieces, so that the crystallization product is observed in the form of particles after rolling.
  • the hot rolling process includes a hot rough rolling stage for obtaining a plate having a certain thickness from the slab and a hot finish rolling stage for obtaining a thickness of about several mm. In order to separate the crystallized product, it is preferable to control the rolling reduction in the hot rough rolling stage rolled from the slab.
  • the slab thickness is rolled from 300 to 700 mm to about 15 to 40 mm, but the total rolling reduction in the hot rough rolling stage is 92 to 97%, and the hot rough rolling stage By including a pass having a rolling reduction of 15% or more three times or more, a coarse crystallized product can be finely divided.
  • the Si-based intermetallic compound and the Al—Fe—Mn—Si-based intermetallic compound, which are crystallized substances, can be refined, and an appropriate distribution state can be obtained.
  • the total rolling reduction in the hot rough rolling stage is less than 92%, the effect of refining the crystallized product cannot be obtained sufficiently.
  • the thickness of the slab is substantially increased, and the cooling rate during casting is slowed down, so that the crystallized material is coarsened, and the crystallized material is sufficiently refined even when hot rough rolling is performed.
  • the reduction rate in each pass in the hot rough rolling stage also affects the distribution of intermetallic compounds, and the crystallized product is divided by increasing the reduction rate in each pass. If the number of passes with a rolling reduction of 15% or more in each pass in the hot rough rolling stage is less than 3 times, the effect of refining the crystallized product is not sufficient.
  • the reduction ratio is less than 15%, the reduction ratio is not sufficient and the crystallized material is not refined, so that it is not a target.
  • the upper limit of the number of passes at which the rolling reduction is 15% or more is not particularly specified, but it is realistic that the upper limit is about 10 times.
  • the hot rolled material is subjected to a cold rolling process.
  • the conditions for the cold rolling process are not particularly limited.
  • an annealing process is provided in which the cold rolled material is sufficiently annealed to have a recrystallized structure.
  • the rolled material is subjected to final cold rolling to obtain a final thickness. If the processing rate ⁇ (plate thickness before processing ⁇ plate thickness after processing) / plate thickness before processing ⁇ ⁇ 100 (%) in the final cold rolling stage is too large, the driving force for recrystallization during joining heating is too high. By increasing the size and reducing the crystal grains, the deformation during the bonding heating increases. Therefore, as described above, the processing amount in the final cold rolling stage is set so that T / To is 1.40 or less.
  • the processing rate in the final cold rolling stage is preferably about 10 to 30%.
  • the coating film formed on the surface of the aluminum alloy plate will be described.
  • the coating film may be formed on one side of the aluminum alloy plate or may be formed on both sides.
  • the coating film is formed of, for example, an oxide containing silicon (Si), a composite oxide, or the like, and contains Si.
  • the amount of Si in the coating film is 10 to 300 mg / m 2 .
  • the amount of Si in the coating film is more preferably 100 mg / m 2 or more.
  • the amount of Si exceeds 300 mg / m 2 , the bondability may be impaired by the coating film.
  • Si amount is the amount per one side of the coating film.
  • the adhesion amount of the coating film is preferably 20 to 800 mg / m 2 .
  • the coating film preferably contains at least one of silicate and amorphous silica.
  • the hydrophilic durability of the coating film is further improved.
  • the coating film more preferably contains at least silicate.
  • Silicate is, for example, sodium silicate or lithium silicate.
  • the coating film containing a silicate can be formed by coating an aqueous solution containing a silicate such as water glass on the surface of an aluminum alloy plate and drying it. From the viewpoint of further improving the hydrophilic sustainability, the silicate is more preferably derived from water glass.
  • amorphous silica for example, there is an aggregate formed by drying amorphous colloidal silica, and from the viewpoint that hydrophilic sustainability can be further improved, amorphous silica is derived from amorphous colloidal silica. It is preferable.
  • the coating film containing amorphous silica can be formed by coating amorphous colloidal silica on the surface of an aluminum alloy plate and drying. Also, a mixture of amorphous colloidal silica and an aqueous solution containing silicate is applied to the surface of the aluminum alloy plate and dried to form a coating film containing amorphous silica and silicate. be able to.
  • the coating film can further contain a fluoride flux.
  • the fluoride flux content may be zero.
  • the content of the fluoride flux is preferably 0 or more and 5000 mg / m 2 or less. In this case, the flux effect can be obtained and the hydrophilic sustainability can be further improved. If the content of the fluoride flux is too small, the effect of adding the flux may not be sufficiently obtained. Therefore, the content of the fluoride flux is more preferably 40 mg / m 2 or more, further preferably 500 mg / m 2 or more, and further preferably 1000 mg / m 2 or more. On the other hand, when there is too much content of fluoride flux, there exists a possibility that hydrophilic sustainability may fall.
  • the content of the fluoride flux is preferably 5000 mg / m 2 or less, more preferably 3000 mg / m 2 or less, as described above, and 2000 mg / m 2. More preferably, it is as follows.
  • the coating amount is preferably 50 to 6000 mg / m 2 .
  • the coating film may have a Si content of 10 to 300 mg / m 2 , and may be formed by a single layer containing a fluoride flux. May be formed of a laminate of a layer having a thickness of 10 to 300 mg / m 2 and a layer mainly composed of fluoride flux.
  • the coating film is formed of a layer containing, for example, at least one of silicate and amorphous silica and a fluoride flux.
  • the coating film is formed of, for example, a layer mainly containing at least one of silicate and amorphous silica and a layer mainly containing fluoride flux.
  • the coating film can further contain an organic resin.
  • the coating property at the time of forming the coating film is improved.
  • it can prevent that Si components, such as a silicate and an amorphous silica, fall off from a coating film.
  • the organic resin is preferably made of a water-soluble acrylic resin and / or polyoxyethylene alkylene glycol (PAE).
  • PAE polyoxyethylene alkylene glycol
  • the pre-coated fin material has a base treatment layer made of a chemical conversion film formed between the aluminum alloy plate and the coating film.
  • the base treatment layer made of the chemical conversion film can be formed by, for example, phosphoric acid chromate treatment, zirconium phosphate treatment, boehmite treatment, or the like.
  • the ground treatment layer only needs to improve the adhesion between the aluminum alloy plate and the coating film, and may be formed by other treatments.
  • shapes such as insertion fins and corrugated fins can be adopted as the fins made of the pre-coated fin material.
  • the fin material may have a slit.
  • a round tube or a flat tube can be adopted.
  • An inner column that divides the interior into a plurality of passages may be formed in the pipe. More specifically, for example, a flat multi-hole tube can be adopted as the aluminum tube.
  • the joining ability exhibited by the aluminum alloy plate itself of the fin material can be utilized without using a brazing material.
  • the bonding heating conditions can be managed. Specifically, it is above the solidus temperature where the liquid phase is generated inside the aluminum alloy plate and below the liquidus temperature, and the liquid phase is generated on the aluminum alloy plate, the strength is lowered and the shape is maintained. Heating is performed for a time required for bonding at a temperature below the temperature at which it cannot be performed.
  • liquid phase ratio the ratio of the mass of the liquid phase generated in the aluminum alloy plate to the total mass of the aluminum alloy plate. It is preferable to join at a temperature at which Since the bonding cannot be performed unless the liquid phase is generated, the liquid phase ratio needs to be more than 0%. However, if the liquid phase is small, joining may be difficult, so the liquid phase ratio is preferably 5% or more. If the liquid phase ratio exceeds 35%, the amount of the liquid phase to be generated is too large, and the aluminum alloy plate may be greatly deformed during bonding heating, and the shape may not be maintained. A more preferable liquid phase ratio is 5 to 30%, and a further preferable liquid phase ratio is 10 to 20%.
  • the time during which the liquid phase ratio is 5% or more is 30 seconds or more and 3600 seconds or less. Is preferred. More preferably, the time when the liquid phase ratio is 5% or more is 60 seconds or more and 1800 seconds or less, whereby further sufficient filling is performed and reliable bonding is performed. If the time during which the liquid phase ratio is 5% or more is less than 30 seconds, the joint may not be sufficiently filled with the liquid phase. On the other hand, if it exceeds 3600 seconds, the deformation of the aluminum alloy plate may proceed. In the method of joining the fin and the aluminum tube, the liquid phase moves only in the very vicinity of the joint, so that the time required for filling does not depend on the size of the joint.
  • the bonding temperature is 580 ° C. to 640 ° C.
  • the holding time at the bonding temperature is about 0 to 10 minutes.
  • 0 minutes means that the cooling is started as soon as the temperature of the member reaches a predetermined joining temperature.
  • the holding time is more preferably 30 seconds to 5 minutes.
  • the bonding temperature for example, when the Si content of the aluminum alloy plate is about 1 to 1.5%, it is desirable to increase the bonding heating temperature to 610 to 640 ° C.
  • the bonding heating temperature is preferably set to a low value of 580 to 590 ° C.
  • the liquid phase ratio can be usually obtained from the alloy composition and the highest temperature by the lever rule using an equilibrium diagram.
  • the phase diagram can be used to determine the liquid phase ratio using the principle of leverage.
  • the liquid phase ratio can be obtained using equilibrium calculation diagram software.
  • the equilibrium calculation phase diagram software incorporates a technique for determining the liquid phase ratio based on the lever principle using the alloy composition and temperature.
  • Equilibrium calculation state diagram software includes Thermo-Calc; Thermo-Calc Software AB, etc.
  • the heating atmosphere in the heat treatment is preferably a non-oxidizing atmosphere substituted with nitrogen, argon or the like.
  • better bondability can be obtained by using a non-corrosive flux.
  • non-corrosive flux coating method examples include a method in which fins and an aluminum tube are assembled and then sprinkled with flux powder, a method in which flux powder is suspended in water and sprayed, and the like.
  • the adhesion of the coating can be improved by mixing and applying a binder such as an acrylic resin to the flux powder.
  • Non-corrosive fluxes used to obtain normal flux functions include KAlF 4 , K 2 AlF 5 , K 2 AlF 5 .H 2 O, K 3 AlF 6 , AlF 3 , KZnF 3 , K 2 SiF 6 , Examples thereof include Cs 3 AlF 6 , CsAlF 4 .2H 2 O, and Cs 2 AlF 5 .H 2 O.
  • the fin made of the pre-coated fin material can achieve good bonding by the above heat treatment and control of the heating atmosphere.
  • the fin since the fin is thin, the shape may not be maintained if the stress generated inside is too high.
  • the liquid phase ratio at the time of joining becomes large, it is possible to maintain a good shape by keeping the stress generated in the fin at a relatively small stress.
  • P (kPa) and the liquid phase rate is V (%), P ⁇ 460-12V If the conditions are met, a very stable joint can be obtained.
  • the value indicated by the right side (460-12V) of this equation is the critical stress, and if a stress exceeding this value is applied to the fin, there is a possibility that a large deformation will occur.
  • the stress generated in the fin is obtained from the shape and load. For example, it can be calculated using a structural calculation program or the like.
  • the heat exchanger has a core portion made of a fin made of a pre-coated fin material and an aluminum tube joined to the fin.
  • a heat exchanger is manufactured by attaching a header, a side support, an entrance / exit pipe
  • the heat exchanger can be used for an air conditioner and a refrigerator, for example. It can also be used for automobile condensers, evaporators, radiators, heaters, intercoolers, oil coolers, and the like. Furthermore, it can also be used for a cooling device for cooling a heating element such as an IGBT (Insulated Gate Bipolar Transistor) provided in an inverter unit for controlling a drive motor of a hybrid vehicle or an electric vehicle.
  • IGBT Insulated Gate Bipolar Transistor
  • Example 1 This example is an example in which a plurality of precoated fin materials according to examples and comparative examples of the present invention are manufactured and their performance is compared.
  • a plurality of pre-coated fin materials (sample E1-1 to sample E7-5, sample C1-1 to sample) having different compositions of aluminum alloy plates and coating compositions are used. C7-5) is prepared.
  • the core part for heat exchangers is produced, and hydrophilicity sustainability and bondability are compared and evaluated.
  • a test mini-core is manufactured as the core portion.
  • the pre-coated fin material 1 has an aluminum alloy plate 11 and a coating film 12 formed on the surface thereof.
  • the aluminum alloy plate 11 contains additional components (elements) shown in the table below, and the balance has chemical components composed of Al and inevitable impurities.
  • the coating film 12 contains Si derived from lithium silicate at a content shown in the table below, and further contains a water-soluble acrylic resin in such an amount that the coating property can be improved.
  • the coating film further contains a flux in an amount shown in a table described later.
  • the coating film is formed on both surfaces of the aluminum alloy plate.
  • the mini-core 2 has a fin 3 made of the pre-coated fin material 1 and an aluminum tube 4, and the corrugated fin 3 is sandwiched between the aluminum tubes 4.
  • one of the two aluminum tubes 4 sandwiching the fin 3 is indicated by a broken line in order to clearly show the corrugated shape of the fin 2.
  • the fin 3 is made of a pre-coated fin material 1 formed in a corrugated shape, and includes an aluminum alloy plate 11 and a coating film 12 formed on both surfaces thereof.
  • the aluminum tube 4 is a flat multi-hole tube made of an aluminum alloy.
  • the aluminum tube 4 has a large number of refrigerant flow paths 411 for circulating the refrigerant.
  • the mini-core 2 as shown in FIG. 5B, the fin 3 and the aluminum tube 4 are joined, and a fillet 200 is formed at the joint between both.
  • an aluminum alloy plate 11 containing additive components shown in each table was prepared. Components other than the additive components shown in each table, that is, the balance is Al and inevitable impurities.
  • a base treatment layer made of a chemical conversion film was formed on both surfaces of the aluminum alloy plate 11 by performing a base treatment. As the base treatment, phosphoric acid chromate treatment was performed. The thickness of the base treatment layer is, for example, about 1 ⁇ m.
  • a predetermined amount of water glass, a water-soluble acrylic resin, and a coating containing KAlF 4 which is a fluoride flux added as needed is applied on the base treatment layer, and the temperature is 200 ° C.
  • the coating film 12 was formed by drying with (refer FIG. 1). In this way, precoated fin material 1 having coating film 12 containing Si derived from water glass with the contents shown in Tables 1 to 7 on aluminum alloy plate 11 was produced. The coating film 12 was formed on both surfaces of the aluminum alloy plate 11.
  • the amount of Si in the coating film 12 was measured by fluorescent X-ray analysis.
  • the fluorescent X-ray analysis was performed using a ZSX Primus II manufactured by Rigaku under the conditions of atmosphere: vacuum, tube: Rh, output: 50 kV-60 mA.
  • Quantification of Si in the coating film was performed by a calibration curve method using a standard Si sample.
  • the pre-coated fin material 1 was processed into a corrugated shape.
  • a corrugated fin 3 having a coating film 12 formed on the surface of the aluminum alloy plate 11 was obtained (see FIGS. 2 to 4). These fins 3 are respectively used for manufacturing the mini-core 1.
  • a flat multi-hole tube made of 3000 series aluminum alloy was produced by extrusion (see FIGS. 2 and 3).
  • a corrugated fin 3 was sandwiched between two aluminum tubes 4 to produce an assembly (see FIGS. 2 and 3).
  • each vertex 30 of the corrugated fin 3 and the aluminum tube 4 were brought into contact with each other.
  • the assembly was held in a furnace at a temperature of 600 ° C. in a nitrogen gas atmosphere for 3 minutes, and then cooled to room temperature (25 ° C.).
  • a liquid phase is generated from the inside of the aluminum alloy plate 11 of the fin 3 during heating in the furnace and oozes out to the surface, and the liquid phase solidifies during cooling.
  • a fillet 200 is formed between the fin 3 and the aluminum tube 4 as illustrated in FIG. In this way, as illustrated in FIGS. 2 and 3, the mini-core 2 in which the fin 3 and the aluminum tube 4 are joined is obtained.
  • the hydrophilic durability was evaluated using the precoated fin material of each sample.
  • Each sample is heated under the assumption of fin bonding performed after the formation of the coating film.
  • the pre-coated fin material was heated for 3 minutes in a furnace having a temperature of 600 ° C. in a nitrogen gas atmosphere.
  • the pre-coated fin material was immersed in pure water for 2 minutes and then air-dried for 6 minutes. This cycle of immersion in pure water and air drying was repeated 300 times.
  • the contact angle of the water droplet on the coating film of each test plate was measured. The contact angle was measured using a FACE automatic contact angle meter “CA-Z” manufactured by Kyowa Interface Chemical Co., Ltd.
  • a water drop was dropped on the coating film at room temperature, and the contact angle of the water drop after 30 seconds was measured.
  • the contact angle is less than 10 °, it is evaluated as “A”, when it is 10 ° or more and less than 20 °, it is evaluated as “B”, and when it is 20 ° or more and less than 30 °, it is evaluated as “C”.
  • the case of 30 ° or more was evaluated as “D”.
  • ⁇ Deformation rate> The fin height of the mini-core before and after joining was measured and the deformation rate due to fin buckling was also evaluated. That is, the case where the ratio of the fin height change before and after joining to the fin height before joining is 5% or less is evaluated as “A”, and the case where it exceeds 5% and is 10% or less is evaluated as “B”. The case where it exceeded 10% and 15% or less was evaluated as “C”, and the case where it exceeded 15% was evaluated as “D”.
  • Sample E1-1 to Sample E1-4 are superior in hydrophilic sustainability and have a higher bonding rate than Samples C1-1 to C1-4. Therefore, in the pre-coated fin material 1 having the aluminum alloy plate 11 and the coating film 12, the aluminum alloy plate 11 contains 1 to 5% by mass of Si and the balance has chemical components composed of Al and inevitable impurities. Is preferred.
  • the Si content in the coating film 12 is preferably 10 to 300 mg / m 2 .
  • the coating film can contain fluoride flux, and the content of fluoride flux By adjusting the pH to 40 to 5000 mg / m 2 , the hydrophilic sustainability can be further improved.
  • Samples E2-1 to E2-4 which further contain Fe and Mn in the aluminum alloy plate, had a small deformation rate and better strength as a fin material.
  • the aluminum alloy plate contains 1 to 5% by mass of Si, and Fe: 0.1 to 2% by mass and It is preferable that Mn is contained in an amount of 0.1 to 2% by mass, and the balance has a chemical component consisting of Al and inevitable impurities.
  • the aluminum alloy plate contains 1 to 5% by mass of Si, Fe: 0.1 to 2% by mass, and Mn: 0.1 to 2% by mass. %, Further containing Zn: 0.05 to 6% by mass, with the balance having a chemical component consisting of Al and inevitable impurities.
  • the aluminum alloy plate contains 1 to 5% by mass of Si, and Fe: 0.1 to 2% by mass.
  • the balance has a chemical component composed of Al and inevitable impurities.
  • the corrosion resistance of Sample E5-1 and Sample E5-2 which further contained at least one of In and Sn in the aluminum alloy plate, was further improved.
  • the aluminum alloy plate contains 1 to 5% by mass of Si, Fe: 0.1 to 2% by mass, and Mn : 0.1 to 2% by mass, Zn: 0.05 to 6% by mass, and further containing at least one of In: 0.3% by mass or less and Sn: 0.3% by mass or less, It is preferable that the balance has a chemical component composed of Al and inevitable impurities.
  • Samples E6-1 to E6-5 which contain at least one selected from the group consisting of Ti, V, Zr, Cr, and Ni in the aluminum alloy plate, have a small deformation rate. , The strength was more improved.
  • the aluminum alloy plate contains 1 to 5% by mass of Si, Fe: 0.1 to 2% by mass and Mn : 0.1 to 2% by mass, Zn: 0.05 to 6% by mass, Ti: 0.3% by mass or less, V: 0.3% by mass or less, Zr: 0.3% by mass % Or less, Cr: 0.3% by mass or less, and Ni: 2% by mass or less are preferably contained, and the balance has a chemical component composed of Al and inevitable impurities.
  • samples E7-1 to E7-5 which contain at least one selected from the group consisting of Be, Sr, Bi, Na, and Ca in the aluminum alloy plate, have a low deformation rate.
  • the bondability was further improved.
  • the aluminum alloy plate contains 1 to 5% by mass of Si, Fe: 0.1 to 2% by mass, and Mn: 0.1%.
  • Zn 0.05% by mass to 6% by mass
  • Be 0.1% by mass or less
  • Sr 0.1% by mass or less
  • Bi 0.1% by mass or less
  • Na Containing at least one selected from 0.1% by mass or less
  • Ca 0.05% by mass or less, with the balance having a chemical component consisting of Al and inevitable impurities.
  • the heat exchanger 5 has a core portion 2 having a number of configurations similar to those of the mini-core of the first embodiment.
  • the core portion 2 is formed by alternately laminating a large number of fins 3 made of a corrugated pre-coated fin material 1 and aluminum tubes 4, and the fins 3 and the aluminum tubes 4 are the mini-cores of the first embodiment. They are joined in the same way.
  • the header 51 is assembled
  • a tank 53 is assembled to the header 51.
  • These header 51, side plate 52, and tank 53 can be joined by brazing, for example.
  • the precoat fin material 1 similar to the samples E1-1 to E7-5 shown in Tables 1 to 7 can be used. That is, the heat exchanger 5 has the core part 2 which consists of the fin 3 which consists of the precoat fin material 1 excellent in the above-mentioned hydrophilic sustainability, joining property, etc., and the aluminum tube 4 joined to the fin 3. Therefore, since the fin 3 exhibits excellent hydrophilic durability, the heat exchanger 5 can suppress an increase in ventilation resistance and can stably exhibit good heat exchange performance for a long period of time. Further, in the heat exchanger 5, for example, the aluminum tube 4 and the fin 3 are sufficiently joined, so that the heat exchange performance between the aluminum tube 4 and the fin 3 is improved.
  • Example 3 This example is an example of a heat exchanger having a configuration in which an aluminum tube made of a flat multi-hole tube is inserted into an assembly hole formed in a fin.
  • the heat exchanger 6 includes an aluminum tube 7 and fins 8.
  • the fin 8 has an assembly hole 81 into which the aluminum tube 7 is inserted.
  • the aluminum tube 7 is in contact with the fin 8 at the contact portion 61.
  • a fillet 600 is formed between the aluminum tube 7 and the fin 8 to join both.
  • the heat exchanger 6 of this example includes a large number of fins 8 arranged at intervals in the plate thickness direction, and a plurality of aluminum tubes 7 extending in the plate thickness direction of the fins 8. And have.
  • the fin 8 has a substantially rectangular shape in plan view as viewed from the thickness direction.
  • the fin 8 consists of the precoat fin material 1 which has the aluminum plate 11 similar to Example 1, and the coating film 12 formed in the both surfaces.
  • the assembly hole 81 in the fin 8 is a notch 811 provided in the outer peripheral edge portion of the fin 8.
  • the notch 811 extends in the plate width direction from the outer peripheral edge of the fin 8 and has a U shape in plan view.
  • the notch 811 is configured such that the aluminum tube 7 can be press-fitted from an open portion 812 provided at the outer peripheral edge of the fin 8.
  • the fin 8 has a collar portion 82 protruding from the peripheral edge of the assembly hole 81.
  • the height of the color part 82 is not specifically limited, For example, it can be 200 micrometers or more.
  • the aluminum tube 7 is a flat multi-hole tube in which a cross section in the longitudinal direction has an oval shape and a plurality of flow paths 711 are formed therein.
  • the flat multi-hole tube is arranged so that the width direction thereof is parallel to the plate width direction of the fin plate.
  • the aluminum tube 7 made of a flat multi-hole tube has a collar portion 82 at one end 712 in the width direction, that is, a portion where the surface is curved. Abut.
  • One end portion 712 of the aluminum tube 7 and the tip portion 821 of the U-shape of the collar portion 82 constitute a contact portion 61.
  • a fillet 600 is formed in the contact portion 61.
  • the fillet 600 is formed by the liquid phase exuding from the inside of the aluminum alloy plate 1 of the fin 8 to the surface of the fin 8 and solidifying by heating at the time of joining described later.
  • the heat exchanger 6 of this example can be manufactured as follows, for example. First, the precoat fin material 1 is produced in the same manner as in Example 1, and the fin 8 is produced by a conventional method using this fin material. Then, the plurality of fins 8 are arranged at intervals in the plate thickness direction. Next, an aluminum tube 7 made of a flat multi-hole tube prepared by a conventional method is press-fitted into the assembly hole 81 of the fin 8, and at least one end 712 of the aluminum tube 7 and the tip 821 of the collar portion 82 are brought into contact with each other. Make contact. Thereafter, for example, the substrate is heated at 600 ° C. for 3 minutes in a nitrogen gas atmosphere and then cooled.

Abstract

Provided are: a precoated fin material with which a heat exchanger can be produced, said heat exchanger having superior hydrophilic stability of the fins, superior bonding properties, and enabling bonding between fins and aluminum tubing without separately supplying a brazing material; and a heat exchanger that uses the precoated fin material. A precoated fin material (1) comprising an aluminum alloy sheet (11) and a coating film (12) formed on the surface of the aluminum alloy sheet (11), and a heat exchanger using the precoated fin material (1). The aluminum alloy sheet (11) comprises chemical components that contain 1-5 mass% of Si, with the remainder comprising Al and unavoidable impurities. The Si content in the coating film (12) is 10-300 mg/m2.

Description

プレコートフィン材及びこれを用いた熱交換器Pre-coated fin material and heat exchanger using the same
 本発明は、例えば、アルミニウム合金板と、塗膜とを有するプレコートフィン材、及びこれを使用した熱交換器に関する。 The present invention relates to a pre-coated fin material having, for example, an aluminum alloy plate and a coating film, and a heat exchanger using the same.
 一般に、オールアルミニウム製の熱交換器は、冷媒が流れるアルミニウム管と、管の外側の空気との間で熱交換を行うためのアルミニウムフィンとを有しており、管とフィンとは互いに接合されている。熱交換器の熱交換性能にはフィンの親水性が大きく影響するため、表面に親水性の塗膜が形成されたフィンがよく用いられている。このような親水性の塗膜を有するフィンと管との接合には、フィンに設けられた孔内に挿入した管を拡管させることによって両者を機械的に接合する方法が用いられている(特許文献1、特許文献2参照)。 Generally, an all-aluminum heat exchanger has an aluminum tube through which a refrigerant flows and an aluminum fin for exchanging heat between air outside the tube, and the tube and the fin are joined to each other. ing. Since the hydrophilicity of the fin greatly affects the heat exchange performance of the heat exchanger, a fin having a hydrophilic coating film formed on the surface is often used. For joining the fin and the pipe having such a hydrophilic coating film, a method of mechanically joining the two by expanding the pipe inserted into the hole provided in the fin (patent) Reference 1 and Patent Reference 2).
 接合方法としては、上述の機械的接合の他にもろう付け接合が想定される。しかし、一般的な樹脂系又は無機系の塗膜は、ろう付け時の加熱温度で変質又は分解してしまうため、ろう付け後に親水性を十分に発揮できない。また、ろう付けにフラックスを用いると、塗膜の存在によりフラックス作用が阻害され、ろう付け接合が不十分になるおそれがある。そのため、ろう付けによって熱交換器を製造する場合には、一般にろう付け後に塗膜が形成されている(特許文献3参照)。しかし、この場合には、専用の塗膜形成設備が必要となるため、製造コストが増大するという問題がある。また、この場合には、熱交換器の大型化への対応が困難になる。 As a joining method, in addition to the above-described mechanical joining, brazing joining is assumed. However, since a general resin-based or inorganic coating film is altered or decomposed at the heating temperature at the time of brazing, it cannot sufficiently exhibit hydrophilicity after brazing. Further, when flux is used for brazing, the flux action is hindered by the presence of the coating film, and brazing joining may be insufficient. Therefore, when manufacturing a heat exchanger by brazing, the coating film is generally formed after brazing (refer patent document 3). However, in this case, there is a problem that the manufacturing cost increases because a dedicated coating film forming facility is required. In this case, it is difficult to cope with an increase in the size of the heat exchanger.
 そこで、ろう付け前に塗膜がプレコートされたフィン材として、ケイ酸塩を主成分とする塗膜を有するフィン材が提案されている(特許文献4参照)。また、熱交換器の作製において、ろう付け前に、キシレン等の支持体やシリコーンオイル等の珪素系結合剤等を含む被膜を予め形成したフィンを作製する方法が提案されている(特許文献5参照)。 Therefore, a fin material having a coating film mainly composed of silicate has been proposed as a fin material having a coating film pre-coated before brazing (see Patent Document 4). Further, in the production of a heat exchanger, a method for producing a fin in which a film containing a support such as xylene or a silicon-based binder such as silicone oil is formed before brazing has been proposed (Patent Document 5). reference).
特開平4-278189号公報JP-A-4-278189 特開2012-052747号公報JP 2012-052747 A 特開2004-347314号公報JP 2004-347314 A 特開2013-137153号公報JP 2013-137153 A 特表2008-508103号公報Special table 2008-508103 gazette
 しかしながら、これまでの塗膜や被膜がプレコートされたフィン材は、ろう付後の親水持続性が不十分であったり、ろう付け機能が不十分であった。すなわち、従来のフィン材は、優れた親水持続性と優れたろう付け機能とを兼ね備えてはいなかった。そのため、フィン材を用いた熱交換器の製造にあたって別途ろう材を供給する必要があり、その結果、製造工程の増加による製造性の低下や、部材調達による製造コスト増加が見込まれる。また、プレコートされた塗膜や被膜は、ろう材を用いたフィンとアルミニウム管とのろう付け接合に悪影響を及ぼし、接合性を不十分にするおそれがある。そこで、優れた親水持続性に保持すると共に、ろう材を用いることなく接合が可能であり、かつフィンとアルミニウム管との接合性に優れた熱交換器を製造することができるプレコートフィン材の開発が望まれている。 However, fin films pre-coated with conventional coatings and films have insufficient hydrophilic sustainability after brazing and insufficient brazing function. That is, the conventional fin material did not have excellent hydrophilic sustainability and excellent brazing function. Therefore, it is necessary to supply a brazing material separately when manufacturing the heat exchanger using the fin material. As a result, a decrease in manufacturability due to an increase in the manufacturing process and an increase in manufacturing cost due to member procurement are expected. In addition, the pre-coated coating film or coating film adversely affects the brazing joint between the fin using the brazing material and the aluminum tube, and there is a possibility that the joining property is insufficient. Therefore, development of a pre-coated fin material that can maintain a superior hydrophilic sustainability and can produce a heat exchanger that can be joined without using a brazing material and has excellent joining properties between the fin and the aluminum tube. Is desired.
 本発明は、かかる背景に鑑みてなされたものであり、フィンの親水持続性に優れ、ろう材を別途供給することなくフィンとアルミニウム管との接合が可能であり、かつ接合性に優れた熱交換器を製造することができるプレコートフィン材、及び該プレコートフィン材を用いた熱交換器を提供しようとするものである。 The present invention has been made in view of such a background, and is excellent in the hydrophilic sustainability of the fins, can be joined between the fins and the aluminum pipe without separately supplying a brazing material, and has excellent joining properties. An object of the present invention is to provide a pre-coated fin material capable of producing an exchanger, and a heat exchanger using the pre-coated fin material.
 本発明の一態様は、アルミニウム合金板と、
 上記アルミニウム合金板の表面に形成された塗膜と、を有し、
 上記アルミニウム合金板は、Si:1~5質量%を含有し、残部がAl及び不可避的不純物からなる化学成分を有し、
 上記塗膜中のSiの含有量が10~300mg/m2である、プレコートフィン材にある。
One aspect of the present invention is an aluminum alloy plate;
A coating formed on the surface of the aluminum alloy plate,
The aluminum alloy plate contains Si: 1 to 5% by mass, and the balance has chemical components composed of Al and inevitable impurities,
The pre-coated fin material has a Si content in the coating film of 10 to 300 mg / m 2 .
 本発明の他の態様は、上記プレコートフィン材からなるフィンと、該フィンに接合されたアルミニウム管とからなるコア部を有する、熱交換器にある。 Another aspect of the present invention resides in a heat exchanger having a core portion made of a fin made of the pre-coated fin material and an aluminum tube joined to the fin.
 上記プレコートフィン材においては、アルミニウム合金板がSiを上記特定の範囲で含有し、残部がAl及び不可避的不純物からなる化学成分を有する。そのため、例えば600℃程度の加熱により、アルミニウム合金板の内部から液相が生成して表面に染み出し、冷却時に液相が凝固することにより、例えばアルミニウム管等の他のアルミニウム部材との接合が可能となる。したがって、ろう材等の接合部材を別途用いることなく接合が可能になり、ろう材を用いなくても充分な接合性を確保することが可能になる。さらに、ろう材等の接合部材を使用することなく接合が可能であるため、コストダウンの要求に応えることができる。また、接合にアルミニウム合金板自体の成分を利用するため、ろう材等の接合部材によってアルミニウム合金板の表面に形成された塗膜の性能が損なわれることもない。 In the pre-coated fin material, the aluminum alloy plate contains Si in the specific range, and the balance has chemical components composed of Al and inevitable impurities. Therefore, for example, by heating at about 600 ° C., a liquid phase is generated from the inside of the aluminum alloy plate and oozes out to the surface, and the liquid phase solidifies during cooling, so that, for example, joining with other aluminum members such as an aluminum tube is possible. It becomes possible. Therefore, it becomes possible to join without separately using a joining member such as a brazing material, and it is possible to ensure a sufficient joining property without using a brazing material. Furthermore, since joining is possible without using a joining member such as a brazing material, it is possible to meet the demand for cost reduction. Moreover, since the components of the aluminum alloy plate itself are used for joining, the performance of the coating film formed on the surface of the aluminum alloy plate by a joining member such as a brazing material is not impaired.
 また、Si量が上記ごとく調整された塗膜は、加熱等により塗膜性能が劣化し難い。そのため、塗膜は、例えばアルミニウム管のような他部材との接合時における加熱後においても優れた親水性を発揮することができると共に、初期の優れた親水性を長期間維持することができる。また、塗膜は、例えばアルミニウム管のような他のアルミニウム部材とプレコートフィン材との接合をほとんど阻害しない。そのため、上記プレコートフィン材は、塗膜を有しているにもかかわらず、例えばアルミニウム管との充分な接合が可能である。 In addition, the coating film in which the Si amount is adjusted as described above is unlikely to deteriorate in coating film performance due to heating or the like. Therefore, the coating film can exhibit excellent hydrophilicity even after heating at the time of joining with another member such as an aluminum tube, and can maintain the initial excellent hydrophilicity for a long period of time. Moreover, a coating film hardly inhibits joining with other aluminum members, such as an aluminum pipe, and a precoat fin material, for example. Therefore, although the said precoat fin material has a coating film, sufficient joining with an aluminum pipe, for example is possible.
 このように、上記プレコートフィン材においては、塗膜及びアルミニウム合金板の成分が上記のごとく適正化されている。そのため、フィンの親水持続性に優れ、ろう材を別途供給することなくフィンとアルミニウム管との接合が可能であり、かつ接合性に優れた熱交換器を製造することが可能になる。 Thus, in the pre-coated fin material, the components of the coating film and the aluminum alloy plate are optimized as described above. Therefore, it is possible to manufacture a heat exchanger that is excellent in hydrophilic sustainability of the fins, can join the fins to the aluminum pipe without separately supplying a brazing material, and has excellent joining properties.
 また、上記熱交換器は、上述の親水持続性、及び接合性に優れたプレコートフィン材からなるフィンと、フィンに接合されたアルミニウム管とからなるコア部を有している。
したがって、熱交換器は、フィンが優れた親水持続性を発揮するため、通風抵抗の増加を抑制し、良好な熱交換性能を長期間安定して発揮することができる。また、熱交換器においては、例えばアルミウム管とフィンとが十分に接合されるため、アルミニウム管とフィンとの熱交換性能が良好になる。
Moreover, the said heat exchanger has a core part which consists of the fin which consists of a precoat fin material excellent in the above-mentioned hydrophilic sustainability and joining property, and the aluminum pipe joined to the fin.
Therefore, in the heat exchanger, since fins exhibit excellent hydrophilic sustainability, an increase in ventilation resistance can be suppressed, and good heat exchange performance can be stably exhibited for a long period of time. Further, in the heat exchanger, for example, an aluminum tube and a fin are sufficiently joined, so that the heat exchange performance between the aluminum tube and the fin is improved.
実施例1における、プレコートフィン材の断面図。Sectional drawing of the precoat fin material in Example 1. FIG. 実施例1における、熱交換器のコア部(具体的にはミニコア)の斜視図。The perspective view of the core part (specifically minicore) of the heat exchanger in Example 1. FIG. 実施例1における、熱交換器のコア部(具体的にはミニコア)の断面図。Sectional drawing of the core part (specifically minicore) of the heat exchanger in Example 1. FIG. 実施例1における、熱交換器のフィンの拡大断面図。The expanded sectional view of the fin of the heat exchanger in Example 1. FIG. 実施例1における、(a)接合前のフィンとアルミニウム管との当接部の部分断面図、(b)接合後のフィンとアルミニウム管との当接部の部分断面図。In Example 1, (a) The fragmentary sectional view of the contact part of the fin and aluminum tube before joining, (b) The fragmentary sectional view of the contact part of the fin and aluminum tube after joining. 実施例2における、熱交換器の正面図。The front view of the heat exchanger in Example 2. FIG. 実施例3における、熱交換器の要部の斜視図。The perspective view of the principal part of the heat exchanger in Example 3. FIG. 図7における当接部近傍の部分拡大断面図。The partial expanded sectional view of the contact part vicinity in FIG. 図7における、III-III線矢視断面図。FIG. 8 is a cross-sectional view taken along line III-III in FIG.
 プレコートフィン材は、このプレコートフィン材からなるフィンとアルミニウム管と接合させ、熱交換器を得るために用いられる。本明細書において、「アルミニウム管」は、純アルミニウム製の管だけでなく、アルミニウム合金製の管を含む概念である。具体的には、A1000系の純アルミニウム、A3000系のアルミニウム合金等を用いることができる。 The pre-coated fin material is used for joining a fin made of the pre-coated fin material and an aluminum tube to obtain a heat exchanger. In the present specification, the “aluminum tube” is a concept including not only a pure aluminum tube but also an aluminum alloy tube. Specifically, A1000 series pure aluminum, A3000 series aluminum alloy, or the like can be used.
 プレコートフィン材は、アルミニウム合金板を有する。アルミニウム合金板の化学成分は、例えばSi:1~5質量%を含有し、残部がAl及び不可避的不純物である。Siの含有量が1質量%未満の場合には、充分な量の液相を生成することができず、液相の染み出しが少なくなり、接合が不完全となる。接合性をより向上させるという観点から、Si含有量は、1.5質量%以上であることが好ましく、2質量%以上であることがより好ましい。一方、Siの含有量が5質量%を超える場合には、アルミニウム合金板中のSi粒子が多くなり、液相の生成量が多くなるため、加熱中の材料強度が極端に低下して、フィン材としての形状維持が困難になる。また、この場合には、親水持続性に悪影響を及ぼすおそれがある。強度の低下を防止しつつ親水持続性をより向上させるという観点から、Siの含有量は、4質量%以下であることが好ましく、3質量%以下であることがより好ましい。 The pre-coated fin material has an aluminum alloy plate. The chemical components of the aluminum alloy plate include, for example, Si: 1 to 5% by mass, and the balance is Al and inevitable impurities. When the Si content is less than 1% by mass, a sufficient amount of liquid phase cannot be generated, the liquid phase oozes out and bonding becomes incomplete. From the viewpoint of further improving the bondability, the Si content is preferably 1.5% by mass or more, and more preferably 2% by mass or more. On the other hand, when the Si content exceeds 5% by mass, the amount of Si particles in the aluminum alloy plate is increased, and the amount of liquid phase generated is increased. It becomes difficult to maintain the shape as a material. Moreover, in this case, there is a possibility of adversely affecting hydrophilic sustainability. From the viewpoint of improving hydrophilic sustainability while preventing a decrease in strength, the Si content is preferably 4% by mass or less, and more preferably 3% by mass or less.
 また、アルミニウム合金板の化学成分は、Al、Si、不可避的不純物の他に、Fe、Mn、Zn、Mg、Cu、In、Sn、Ti、V、Zr、Cr、Ni、Be、Sr、Bi、Na、及びCaからなる群から選ばれる少なくとも1種の元素をさらに含有することができる。アルミニウム合金板の化学成分は、例えば、Si:1~5質量%を含有すると共に、Fe:0.1~2質量%及びMn:0.1~2質量%の少なくとも一方を含有し、残部がAl及び不可避的不純物である。この場合には、フィン材としての強度を向上させることができる。 In addition to Al, Si and inevitable impurities, the chemical components of the aluminum alloy plate include Fe, Mn, Zn, Mg, Cu, In, Sn, Ti, V, Zr, Cr, Ni, Be, Sr, Bi. Further, at least one element selected from the group consisting of Na, and Ca can be further contained. The chemical components of the aluminum alloy plate include, for example, Si: 1 to 5% by mass, and at least one of Fe: 0.1 to 2% by mass and Mn: 0.1 to 2% by mass, with the balance being Al and inevitable impurities. In this case, the strength as a fin material can be improved.
 Feは、アルミニウム合金組織のマトリックスに若干固溶して強度を向上させる効果があるのに加えて、晶出物として分散して特に高温での強度低下を防ぐ効果がある。Feは、その添加量が0.1質量%未満の場合、上記の効果が小さいだけでなく、高純度の地金を使用する必要がありコストが増加する。また、2質量%を超えると、鋳造時に粗大な金属間化合物が生成し、製造性に問題が生じる。また、プレコートフィン材からなるフィンが腐食環境(特に液体が流動するような腐食環境)に曝された場合には耐食性が低下する。更に、接合時の加熱によって再結晶した結晶粒が微細化して粒界密度が増加するため、接合前後で寸法変化が大きくなる。従って、Feの添加量は上述のごとく0.1~2質量%が好ましい。より好ましいFeの添加量は、0.2質量%~1質量%である。 In addition to the effect of improving the strength by slightly dissolving in the matrix of the aluminum alloy structure, Fe has the effect of dispersing as a crystallized substance and preventing a decrease in strength particularly at high temperatures. When the addition amount of Fe is less than 0.1% by mass, not only the above effects are small, but also high-purity ingots need to be used, resulting in an increase in cost. Moreover, when it exceeds 2 mass%, a coarse intermetallic compound will produce | generate at the time of casting, and a problem will arise in manufacturability. Further, when the fin made of the pre-coated fin material is exposed to a corrosive environment (particularly a corrosive environment in which a liquid flows), the corrosion resistance decreases. Furthermore, since the crystal grains recrystallized by heating at the time of bonding are refined and the grain boundary density increases, the dimensional change increases before and after the bonding. Therefore, the addition amount of Fe is preferably 0.1 to 2% by mass as described above. A more preferable addition amount of Fe is 0.2% by mass to 1% by mass.
 Mnは、Fe、SiとともにAl-Fe-Mn-Si系の金属間化合物を形成し、分散強化として作用し、或いは、アルミニウム母相中に固溶して固溶強化により強度を向上させる重要な添加元素である。Mnは、その添加量が0.1質量%未満では上記の効果が不十分となり、2質量%を超えると鋳造時に粗大な金属間化合物が生成し、製造性に問題が生じる。従ってMn添加量は上述のごとく0.1~2質量%が好ましい。より好ましいMn添加量は0.3~1.5質量%である。 Mn forms an Al—Fe—Mn—Si based intermetallic compound together with Fe and Si and acts as dispersion strengthening, or it is important to improve strength by solid solution strengthening by solid solution strengthening in the aluminum matrix. It is an additive element. When the addition amount of Mn is less than 0.1% by mass, the above effect is insufficient, and when it exceeds 2% by mass, a coarse intermetallic compound is produced at the time of casting, causing a problem in manufacturability. Therefore, the amount of Mn added is preferably 0.1 to 2% by mass as described above. A more preferable amount of Mn is 0.3 to 1.5% by mass.
 また、アルミニウム合金板の化学成分は、さらにZn:0.05~6質量%を含有することができる。すなわち、アルミニウム合金板の化学成分は、例えば、Si:1~5質量%を含有すると共に、Fe:0.1~2質量%及びMn:0.1~2質量%の少なくとも一方を含有し、さらにZn:0.05~6質量%を含有し、残部がAl及び不可避的不純物である。この場合には、プレコートフィン材の耐食性を向上させることができる。 Moreover, the chemical component of the aluminum alloy plate can further contain Zn: 0.05 to 6% by mass. That is, the chemical component of the aluminum alloy plate contains, for example, Si: 1 to 5% by mass, and at least one of Fe: 0.1 to 2% by mass and Mn: 0.1 to 2% by mass, Further, Zn: 0.05 to 6% by mass, the balance being Al and inevitable impurities. In this case, the corrosion resistance of the pre-coated fin material can be improved.
 Znの添加は、犠牲防食作用による耐食性向上に有効である。Znはマトリクス中にほぼ均一に固溶しているが、液相が生じるとその中に溶け出して液相のZnが濃化する。液相が表面に染み出すと、その部分はZn濃度が上昇するため、犠牲陽極作用によって耐食性が向上する。また、上記プレコートフィン材を用いて熱交換器を製造する場合においては、プレコートフィン材をフィンに使うことで、アルミニウム管等を防食する犠牲防食作用を働かせることもできる。Znの添加量が6質量%を超えると腐食速度が速くなり自己耐食性が低下する。また、Znの添加効果を充分に得るためには、Znの添加量は0.05質量%以上が好ましい。従って、Znは上述のごとく0.05~6質量%以下とするのが好ましい。 Addition of Zn is effective in improving corrosion resistance due to sacrificial anticorrosive action. Zn is dissolved almost uniformly in the matrix, but when a liquid phase is generated, it dissolves into the liquid phase and the Zn in the liquid phase is concentrated. When the liquid phase oozes out to the surface, the Zn concentration in the portion increases, so that the corrosion resistance is improved by the sacrificial anodic action. Moreover, when manufacturing a heat exchanger using the said precoat fin material, the sacrificial anticorrosion effect | action which prevents an aluminum pipe etc. can also be worked by using a precoat fin material for a fin. When the added amount of Zn exceeds 6% by mass, the corrosion rate increases and the self-corrosion resistance decreases. Further, in order to sufficiently obtain the effect of adding Zn, the amount of Zn added is preferably 0.05% by mass or more. Accordingly, Zn is preferably 0.05 to 6% by mass or less as described above.
 また、アルミニウム合金板の化学成分は、さらにMg:2質量%以下及びCu:1.5質量%以下の少なくとも一方を含有することができる。すなわち、アルミニウム合金板の化学成分は、例えば、Si:1~5質量%を含有すると共に、Fe:0.1~2質量%及びMn:0.1~2質量%の少なくとも一方を含有し、Zn:0.05~6質量%を含有し、さらに、Mg:2質量%以下及びCu:1.5質量%以下の少なくとも一方を含有し、残部がAl及び不可避的不純物である。この場合には、プレコートフィン材の強度をより向上させることができる。 Moreover, the chemical component of the aluminum alloy plate can further contain at least one of Mg: 2 mass% or less and Cu: 1.5 mass% or less. That is, the chemical component of the aluminum alloy plate contains, for example, Si: 1 to 5% by mass, and at least one of Fe: 0.1 to 2% by mass and Mn: 0.1 to 2% by mass, Zn: 0.05 to 6% by mass, further containing at least one of Mg: 2% by mass or less and Cu: 1.5% by mass or less, with the balance being Al and inevitable impurities. In this case, the strength of the pre-coated fin material can be further improved.
 Mgは、接合加熱後においてMg2Siによる時効硬化が生じ、この時効硬化によって強度向上が図られる。このように、Mgは強度向上の効果を発揮する添加元素である。Mg添加量が、2質量%を超えるとフラックスと反応して、高融点の化合物を形成するため著しく接合性が低下する。従って、Mgの添加量は上述のごとく2質量%以下とするのが好ましい。より好ましいMgの添加量は0.05質量%~2質量%である。なお、本発明においては、Mgのみならず他の合金成分においても、所定添加量以下という場合は0も含むものとする。 Mg undergoes age hardening by Mg 2 Si after bonding heating, and the strength is improved by this age hardening. Thus, Mg is an additive element that exhibits the effect of improving the strength. When the amount of Mg added exceeds 2% by mass, it reacts with the flux to form a high melting point compound, so that the bondability is significantly lowered. Therefore, the amount of Mg added is preferably 2% by mass or less as described above. A more preferable amount of Mg is 0.05% by mass to 2% by mass. In the present invention, not only Mg but also other alloy components include 0 when the amount is less than a predetermined addition amount.
 Cuは、マトリクス中に固溶して強度を向上させる添加元素である。但し、Cu添加量が1.5%を超えると耐食性が低下する。従って、Cuの添加量は上述のごとく1.5質量%以下とするのが好ましい。より好ましいCuの添加量は0.05%~1.5%である。 Cu is an additive element that improves the strength by solid solution in the matrix. However, if the amount of Cu added exceeds 1.5%, the corrosion resistance decreases. Therefore, the amount of Cu added is preferably 1.5% by mass or less as described above. A more preferable amount of Cu is 0.05% to 1.5%.
 アルミニウム合金板の化学成分は、さらにIn:0.3質量%以下及びSn:0.3質量%以下の少なくとも一方を含有することができる。すなわち、アルミニウム合金板の化学成分は、例えば、Si:1~5質量%を含有すると共に、Fe:0.1~2質量%及びMn:0.1~2質量%の少なくとも一方を含有し、Zn:0.05~6質量%を含有し、さらに、In:0.3質量%以下及びSn:0.3質量%以下の少なくとも一方を含有し、残部がAl及び不可避的不純物である。この場合には、プレコートフィン材の耐食性の低下を抑制することができる。 The chemical component of the aluminum alloy plate may further contain at least one of In: 0.3% by mass or less and Sn: 0.3% by mass or less. That is, the chemical component of the aluminum alloy plate contains, for example, Si: 1 to 5% by mass, and at least one of Fe: 0.1 to 2% by mass and Mn: 0.1 to 2% by mass, Zn: 0.05 to 6% by mass, further containing at least one of In: 0.3% by mass or less and Sn: 0.3% by mass or less, with the balance being Al and inevitable impurities. In this case, the deterioration of the corrosion resistance of the precoated fin material can be suppressed.
 In、Snは、犠牲陽極作用を発揮する効果がある。これらの添加量が0.3質量%を超えると腐食速度が速くなり自己耐食性が低下する。従って、これら元素のそれぞれの添加量は、上述のごとく0.3質量%以下とするのが好ましい。より好ましい添加量は0.05~0.3質量%である。 In and Sn have the effect of exerting a sacrificial anodic action. If the amount of addition exceeds 0.3% by mass, the corrosion rate increases and the self-corrosion resistance decreases. Therefore, the amount of each of these elements added is preferably 0.3% by mass or less as described above. A more preferable addition amount is 0.05 to 0.3% by mass.
 アルミニウム合金板の化学成分は、さらにTi:0.3質量%以下、V:0.3質量%以下、Zr:0.3質量%以下、Cr:0.3質量%以下、及びNi:2質量%以下から選ばれる少なくとも1種を含有することができる。すなわち、アルミニウム合金板の化学成分は、例えば、Si:1~5質量%を含有すると共に、Fe:0.1~2質量%及びMn:0.1~2質量%の少なくとも一方を含有し、Zn:0.05~6質量%を含有し、さらに、Ti:0.3質量%以下、V:0.3質量%以下、Zr:0.3質量%以下、Cr:0.3質量%以下、及びNi:2質量%以下から選ばれる少なくとも1種を含有し、残部がAl及び不可避的不純物である。この場合には、フィン材としての強度を向上させることができる。 The chemical components of the aluminum alloy plate are further Ti: 0.3% by mass or less, V: 0.3% by mass or less, Zr: 0.3% by mass or less, Cr: 0.3% by mass or less, and Ni: 2% by mass. % Or less can be contained. That is, the chemical component of the aluminum alloy plate contains, for example, Si: 1 to 5% by mass, and at least one of Fe: 0.1 to 2% by mass and Mn: 0.1 to 2% by mass, Zn: 0.05 to 6% by mass, Ti: 0.3% by mass or less, V: 0.3% by mass or less, Zr: 0.3% by mass or less, Cr: 0.3% by mass or less And Ni: contains at least one selected from 2% by mass or less, with the balance being Al and inevitable impurities. In this case, the strength as a fin material can be improved.
 Ti、Vはマトリクス中に固溶して強度向上させる他に、層状に分布して板厚方向の腐食の進展を防ぐ効果がある。添加量が0.3質量%を越えると巨大晶出物が発生し、成形性、耐食性を阻害する。従って、Ti及びVの添加量は上述のごとく0.3質量%以下とするのが好ましい。より好ましい添加量は0.05~0.3質量%である。 Ti and V have the effect of preventing the progress of corrosion in the plate thickness direction by being dissolved in a matrix and being dissolved in a matrix to improve the strength. When the added amount exceeds 0.3% by mass, a giant crystallized product is generated, which impairs moldability and corrosion resistance. Therefore, the amount of Ti and V added is preferably 0.3% by mass or less as described above. A more preferable addition amount is 0.05 to 0.3% by mass.
 ZrはAl-Zr系の金属間化合物として析出し、分散強化によって接合後の強度を向上させる効果を発揮する。また、Al-Zr系の金属間化合物は加熱中の結晶粒粗大化に作用する。添加量が0.3質量%を超えると粗大な金属間化合物を形成し易くなり、塑性加工性を低下させる。よって、Zrの添加量は上述のごとく0.3質量%とするのが好ましい。より好ましい添加量は0.05質量%~0.3質量%である。 Zr precipitates as an Al—Zr intermetallic compound, and exhibits the effect of improving the strength after bonding by dispersion strengthening. In addition, the Al—Zr-based intermetallic compound acts on the coarsening of crystal grains during heating. When the addition amount exceeds 0.3% by mass, it becomes easy to form a coarse intermetallic compound, and the plastic workability is lowered. Therefore, the amount of Zr added is preferably 0.3% by mass as described above. A more preferable addition amount is 0.05% by mass to 0.3% by mass.
 Crは、固溶強化により強度を向上させ、またAl-Cr系の金属間化合物が析出し、加熱後の結晶粒粗大化に作用する。添加量が0.3質量%を超えると粗大な金属間化合物を形成し易くなり、塑性加工性を低下させる。よって、Crの添加量は上述のごとく0.3質量%以下とするのが好ましい。より好ましい添加量は0.05~0.3質量%である。 Cr improves strength by solid solution strengthening, and Al—Cr-based intermetallic compounds precipitate, which acts on coarsening of crystal grains after heating. When the addition amount exceeds 0.3% by mass, it becomes easy to form a coarse intermetallic compound, and the plastic workability is lowered. Therefore, the amount of Cr added is preferably 0.3% by mass or less as described above. A more preferable addition amount is 0.05 to 0.3% by mass.
 Niは、金属間化合物として晶出又は析出し、分散強化によって接合後の強度を向上させる効果がある。添加量が2質量%を超えると、粗大な金属間化合物を形成しやすくなり、加工性を低下させる。また、自己耐食性も低下する。よって、Niの添加量は上述のごとく2質量%以下するとするのが好ましい。より好ましい添加量は0.05~2質量%である。 Ni is crystallized or precipitated as an intermetallic compound, and has an effect of improving the strength after bonding by dispersion strengthening. When the addition amount exceeds 2% by mass, it becomes easy to form a coarse intermetallic compound, and the workability is lowered. In addition, the self-corrosion resistance is also reduced. Therefore, the amount of Ni added is preferably 2% by mass or less as described above. A more preferable addition amount is 0.05 to 2% by mass.
 アルミニウム合金板の化学成分は、さらにBe:0.1質量%以下、Sr:0.1質量%以下、Bi:0.1質量%以下、Na:0.1質量%以下、Ca:0.05質量%以下から選ばれる少なくとも1種を含有することができる。すなわち、アルミニウム合金板の化学成分は、例えば、Si:1~5質量%を含有すると共に、Fe:0.1~2質量%及びMn:0.1~2質量%の少なくとも一方を含有し、Zn:0.05~6質量%を含有し、さらに、Be:0.1質量%以下、Sr:0.1質量%以下、Bi:0.1質量%以下、Na:0.1質量%以下、Ca:0.05質量%以下から選ばれる少なくとも1種を含有し、残部がAl及び不可避的不純物である。この場合には、液相の特性改善を図ることにより接合性をより向上させることができる。 The chemical components of the aluminum alloy plate are further Be: 0.1 mass% or less, Sr: 0.1 mass% or less, Bi: 0.1 mass% or less, Na: 0.1 mass% or less, Ca: 0.05 At least 1 sort (s) chosen from the mass% or less can be contained. That is, the chemical component of the aluminum alloy plate contains, for example, Si: 1 to 5% by mass, and at least one of Fe: 0.1 to 2% by mass and Mn: 0.1 to 2% by mass, Zn: 0.05 to 6% by mass, Be: 0.1% by mass or less, Sr: 0.1% by mass or less, Bi: 0.1% by mass or less, Na: 0.1% by mass or less Ca: At least one selected from 0.05% by mass or less, with the balance being Al and inevitable impurities. In this case, the bondability can be further improved by improving the liquid phase characteristics.
 これら各元素のより好ましい範囲は、Be:0.0001~0.1質量%、Sr:0.0001~0.1質量%、Bi:0.0001~0.1質量%、Na:0.0001~0.1質量%、Ca:0.0001~0.05質量%である。これらの微量元素は、上記のより好ましい規定範囲未満ではその効果が小さく、上記のより好ましい規定範囲を超えると耐食性低下等の弊害を生じる場合がある。尚、Be、Sr、Bi、Na、Caの1種又は2種以上が添加される場合には、各添加成分のいずれもが上記好ましい又はより好ましい成分範囲内にあることを必要とする。 More preferable ranges of these elements are Be: 0.0001 to 0.1% by mass, Sr: 0.0001 to 0.1% by mass, Bi: 0.0001 to 0.1% by mass, Na: 0.0001. -0.1 mass%, Ca: 0.0001-0.05 mass%. These trace elements have a small effect when the amount is less than the above-mentioned more preferable specified range, and when the amount exceeds the above-mentioned more preferable specified range, adverse effects such as a decrease in corrosion resistance may occur. In addition, when 1 type, or 2 or more types of Be, Sr, Bi, Na, and Ca are added, it is required that all of the added components are within the above preferable or more preferable component ranges.
 次に、アルミニウム合金板の製造方法について説明する。アルミニウム合金板は、DC(Direct Chill)鋳造法を用いて鋳造され、鋳造時のスラブの鋳造速度を例えば下記のように制御する。鋳造速度は、冷却速度に影響を及ぼすので、20~100mm/分とすることが好ましい。鋳造速度が20mm/分未満の場合は、十分な冷却速度が得られず、Si系金属間化合物やAl-Fe-Mn-Si系金属間化合物といった晶出する金属間化合物が粗大化する。一方、100mm/分を超える場合は、鋳造時にアルミニウム材が十分に凝固せず、正常な鋳塊が得られない。より好ましくは、30~80mm/分である。そして、所望の金属組織を得るために、鋳造速度は製造する合金材の組成に応じて調整することができる。冷却速度は厚みや幅といったスラブの断面形状によるが、上記20~100mm/分の鋳造速度とすることで、鋳塊中央部で0.1~2℃/秒の冷却速度とすることができる。 Next, a method for producing an aluminum alloy plate will be described. The aluminum alloy plate is cast using a DC (Direct Chill) casting method, and the casting speed of the slab at the time of casting is controlled as follows, for example. Since the casting speed affects the cooling speed, it is preferably 20 to 100 mm / min. When the casting speed is less than 20 mm / min, a sufficient cooling rate cannot be obtained, and crystallized intermetallic compounds such as Si-based intermetallic compounds and Al—Fe—Mn—Si-based intermetallic compounds are coarsened. On the other hand, when it exceeds 100 mm / min, the aluminum material is not sufficiently solidified during casting, and a normal ingot cannot be obtained. More preferably, it is 30 to 80 mm / min. And in order to obtain a desired metal structure, a casting speed can be adjusted according to the composition of the alloy material to manufacture. Although the cooling rate depends on the cross-sectional shape of the slab such as thickness and width, the cooling rate of 0.1 to 2 ° C./second can be achieved at the center of the ingot by setting the casting rate to 20 to 100 mm / min.
 DC連続鋳造時の鋳塊(スラブ)厚さは、600mm以下が好ましい。スラブ厚さが600mmを超える場合は、十分な冷却速度を得られず金属間化合物が粗大になる。より好ましいスラブ厚さは、500mm以下である。 The ingot (slab) thickness during DC continuous casting is preferably 600 mm or less. When the slab thickness exceeds 600 mm, a sufficient cooling rate cannot be obtained and the intermetallic compound becomes coarse. A more preferable slab thickness is 500 mm or less.
 DC鋳造法で製造したスラブは、熱間圧延前の加熱工程、熱間圧延工程、冷間圧延工程及び焼鈍工程にかけられる。鋳造後、熱間圧延前に均質化処理を施してもよい。 The slab manufactured by the DC casting method is subjected to a heating process before hot rolling, a hot rolling process, a cold rolling process, and an annealing process. A homogenization treatment may be performed after casting and before hot rolling.
 DC鋳造法で製造したスラブは、均質化処理後もしくは均質化処理を施さずに、熱間圧延前の加熱工程にかけられる。この加熱工程では加熱保持温度を400~570℃とし、保持時間を0~15時間程度実施するのが好ましい。保持温度が400℃未満の場合は熱間圧延でのスラブの変形抵抗が大きく、割れが発生する虞がある。保持温度が570℃を超える場合は、局所的に溶融が生じる虞がある。保持時間が15時間を超える場合は、Al-Fe-Mn-Si系金属間化合物の析出が進行し、析出物が粗大になるとともにその分布が疎になり、接合加熱中の再結晶粒の核発生頻度が増加して、結晶粒径が小さくなる。なお、保持時間が0時間とは、加熱保持温度に達した後に直ちに加熱を終了することをいう。 The slab manufactured by the DC casting method is subjected to a heating process before hot rolling after homogenization or without being homogenized. In this heating step, it is preferable that the heating holding temperature is 400 to 570 ° C. and the holding time is about 0 to 15 hours. When holding temperature is less than 400 degreeC, the deformation resistance of the slab in hot rolling is large, and there exists a possibility that a crack may generate | occur | produce. When holding temperature exceeds 570 degreeC, there exists a possibility that melting may arise locally. When the holding time exceeds 15 hours, precipitation of the Al—Fe—Mn—Si intermetallic compound proceeds, the precipitate becomes coarse and the distribution becomes sparse, and the nuclei of the recrystallized grains during bonding heating The frequency of occurrence increases and the crystal grain size decreases. The holding time of 0 hour means that the heating is terminated immediately after reaching the heating holding temperature.
 加熱工程に続いて、スラブは熱間圧延工程にかけられる。熱間圧延工程は、熱間疎圧延段階と熱間仕上圧延段階を含む。ここで、熱間粗圧延段階における総圧下率を92~97%とし、かつ、熱間粗圧延の各パス中において圧下率が15%以上となるパスが3回以上含まれるものとする。 続 い Following the heating process, the slab is subjected to a hot rolling process. The hot rolling process includes a hot sparse rolling stage and a hot finish rolling stage. Here, it is assumed that the total rolling reduction in the hot rough rolling stage is 92 to 97%, and each pass of the hot rough rolling includes three or more passes where the rolling reduction is 15% or more.
 DC鋳造法で製造したスラブには、最終凝固部に粗大な晶出物が生成する。板材とする工程において晶出物は圧延によるせん断を受けて小さく分断されるため、晶出物は圧延後において粒子状に観察される。熱間圧延工程は、スラブからある程度の厚さの板にする熱間粗圧延段階と、数mmほどの板厚にする熱間仕上圧延段階を含む。晶出物分断のためには、スラブから圧延される熱間粗圧延段階での圧下率の制御を行うことが好ましい。具体的には、熱間粗圧延段階ではスラブ厚が300~700mmから15~40mm程度に圧延されるが、熱間粗圧延段階での総圧下率を92~97%とし、熱間粗圧延段階が15%以上の圧下率となるパスを3回以上含むことで、粗大な晶出物を微細に分断することができる。これにより、晶出物であるSi系金属間化合物やAl-Fe-Mn-Si系金属間化合物を微細化することができ、適正な分布状態とすることができる。 In the slab manufactured by the DC casting method, a coarse crystallized product is generated in the final solidified part. In the step of forming the plate material, the crystallization product is subjected to shearing by rolling and is divided into small pieces, so that the crystallization product is observed in the form of particles after rolling. The hot rolling process includes a hot rough rolling stage for obtaining a plate having a certain thickness from the slab and a hot finish rolling stage for obtaining a thickness of about several mm. In order to separate the crystallized product, it is preferable to control the rolling reduction in the hot rough rolling stage rolled from the slab. Specifically, in the hot rough rolling stage, the slab thickness is rolled from 300 to 700 mm to about 15 to 40 mm, but the total rolling reduction in the hot rough rolling stage is 92 to 97%, and the hot rough rolling stage By including a pass having a rolling reduction of 15% or more three times or more, a coarse crystallized product can be finely divided. As a result, the Si-based intermetallic compound and the Al—Fe—Mn—Si-based intermetallic compound, which are crystallized substances, can be refined, and an appropriate distribution state can be obtained.
 熱間粗圧延段階での総圧下率が92%未満では、晶出物の微細化効果が十分に得られない。一方、97%を超えると実質的にスラブの厚さが厚くなり、鋳造時の冷却速度が遅くなるため晶出物が粗大化し、熱間粗圧延をおこなっても晶出物微細化が十分になされない。また、熱間粗圧延段階の各パス中の圧下率も金属間化合物の分布に影響し、各パスにおける圧下率を大きくすることで晶出物が分断される。熱間粗圧延段階の各パス中において圧下率が15%以上であるパスが3回未満では、晶出物の微細化効果が十分ではない。圧下率が15%未満については、圧下率が足りずに晶出物の微細化がなされないので対象とはならない。なお、圧下率が15%以上であるパス回数の上限は特に規定するものではないが、10回程度を上限とするのが現実的である。 If the total rolling reduction in the hot rough rolling stage is less than 92%, the effect of refining the crystallized product cannot be obtained sufficiently. On the other hand, if it exceeds 97%, the thickness of the slab is substantially increased, and the cooling rate during casting is slowed down, so that the crystallized material is coarsened, and the crystallized material is sufficiently refined even when hot rough rolling is performed. Not done. Further, the reduction rate in each pass in the hot rough rolling stage also affects the distribution of intermetallic compounds, and the crystallized product is divided by increasing the reduction rate in each pass. If the number of passes with a rolling reduction of 15% or more in each pass in the hot rough rolling stage is less than 3 times, the effect of refining the crystallized product is not sufficient. When the reduction ratio is less than 15%, the reduction ratio is not sufficient and the crystallized material is not refined, so that it is not a target. The upper limit of the number of passes at which the rolling reduction is 15% or more is not particularly specified, but it is realistic that the upper limit is about 10 times.
 熱間圧延工程終了後は、熱間圧延材を冷間圧延工程にかける。冷間圧延工程の条件は、特に限定されるものではない。冷間圧延工程の途中において、冷間圧延材を十分に焼き鈍して再結晶組織とする焼鈍工程が設けられる。焼鈍工程後は、圧延材を最終冷間圧延にかけて最終板厚とする。最終冷間圧延段階での加工率{(加工前の板厚-加工後の板厚)/加工前の板厚}×100(%)が大き過ぎると、接合加熱中の再結晶の駆動力が大きくなり結晶粒が小さくなることで、接合加熱中の変形が大きくなる。よって、前述のとおり、T/Toが1.40以下となるように最終冷間圧延段階における加工量が設定される。最終冷間圧延段階における加工率は、10~30%程度とするのが好ましい。 After completion of the hot rolling process, the hot rolled material is subjected to a cold rolling process. The conditions for the cold rolling process are not particularly limited. In the middle of the cold rolling process, an annealing process is provided in which the cold rolled material is sufficiently annealed to have a recrystallized structure. After the annealing step, the rolled material is subjected to final cold rolling to obtain a final thickness. If the processing rate {(plate thickness before processing−plate thickness after processing) / plate thickness before processing} × 100 (%) in the final cold rolling stage is too large, the driving force for recrystallization during joining heating is too high. By increasing the size and reducing the crystal grains, the deformation during the bonding heating increases. Therefore, as described above, the processing amount in the final cold rolling stage is set so that T / To is 1.40 or less. The processing rate in the final cold rolling stage is preferably about 10 to 30%.
 次に、アルミニウム合金板の表面に形成される塗膜について説明する。
 塗膜は、アルミニウム合金板の片面に形成されていてもよいし、両面に形成されていてもよい。塗膜は、例えばケイ素(Si)を含む酸化物、複合酸化物等によって形成され、Siを含有する。塗膜中のSi量は10~300mg/m2である。Si量が10mg/m2未満の場合には、親水持続性が低下するおそれがある。親水持続性の低下をより抑制するという観点から、塗膜中のSi量は100mg/m2以上がより好ましい。一方、Si量が300mg/m2を超える場合には、塗膜によって接合性が損なわれるおそれがある。なお、Si量は塗膜片面当たりの量である。また、塗膜中のSi量が10~300mg/m2である場合において、塗膜の付着量は20~800mg/m2であることが好ましい。
Next, the coating film formed on the surface of the aluminum alloy plate will be described.
The coating film may be formed on one side of the aluminum alloy plate or may be formed on both sides. The coating film is formed of, for example, an oxide containing silicon (Si), a composite oxide, or the like, and contains Si. The amount of Si in the coating film is 10 to 300 mg / m 2 . When the amount of Si is less than 10 mg / m 2 , hydrophilic sustainability may be reduced. From the viewpoint of further suppressing the decrease in hydrophilic durability, the amount of Si in the coating film is more preferably 100 mg / m 2 or more. On the other hand, when the amount of Si exceeds 300 mg / m 2 , the bondability may be impaired by the coating film. In addition, Si amount is the amount per one side of the coating film. Further, when the Si amount in the coating film is 10 to 300 mg / m 2 , the adhesion amount of the coating film is preferably 20 to 800 mg / m 2 .
 塗膜は、ケイ酸塩及び非晶質シリカの少なくとも一方を含有することが好ましい。この場合には、塗膜の親水持続性がより向上する。親水持続性をさらに向上させるという観点から、塗膜は少なくともケイ酸塩を含有することがより好ましい。ケイ酸塩とは、例えばケイ酸ナトリウムやケイ酸リチウム等である。ケイ酸塩を含む塗膜は、例えば水ガラスのような、ケイ酸塩を含有する水溶液をアルミニウム合金板の表面に塗装し、乾燥することにより形成することができる。親水持続性をより向上させるという観点から、ケイ酸塩は、水ガラス由来であることがより好ましい。 The coating film preferably contains at least one of silicate and amorphous silica. In this case, the hydrophilic durability of the coating film is further improved. From the viewpoint of further improving hydrophilic sustainability, the coating film more preferably contains at least silicate. Silicate is, for example, sodium silicate or lithium silicate. The coating film containing a silicate can be formed by coating an aqueous solution containing a silicate such as water glass on the surface of an aluminum alloy plate and drying it. From the viewpoint of further improving the hydrophilic sustainability, the silicate is more preferably derived from water glass.
 また、非晶質シリカとしては、例えば非晶質コロイダルシリカを乾燥してなる凝集体があり、親水持続性をより向上できるという観点から、非晶質シリカは、非晶質コロイダルシリカ由来であることが好ましい。非晶質シリカを含む塗膜は、非晶質コロイダルシリカをアルミニウム合金板の表面に塗装し、乾燥することにより形成することができる。また、非晶質コロイダルシリカとケイ酸塩を含有する水溶液との混合物をアルミニウム合金板の表面に塗装し、乾燥することにより、非晶質シリカとケイ酸塩とを含有する塗膜を形成することができる。 Further, as the amorphous silica, for example, there is an aggregate formed by drying amorphous colloidal silica, and from the viewpoint that hydrophilic sustainability can be further improved, amorphous silica is derived from amorphous colloidal silica. It is preferable. The coating film containing amorphous silica can be formed by coating amorphous colloidal silica on the surface of an aluminum alloy plate and drying. Also, a mixture of amorphous colloidal silica and an aqueous solution containing silicate is applied to the surface of the aluminum alloy plate and dried to form a coating film containing amorphous silica and silicate. be able to.
 塗膜は、さらに、フッ化物フラックスを含有することができる。フッ化物フラックスの含有量は0であってもよい。フッ化物フラックスの含有量は、0以上、5000mg/m2以下がよい。この場合には、フラックス効果を得ることが得ることができると共に、親水持続性能をより向上させることができる。フッ化物フラックスの含有量が少なすぎると、フラックスの添加効果が十分に得られなくなるおそれがある。したがって、フッ化物フラックスの含有量は、40mg/m2以上であることがより好ましく、500mg/m2以上であることがさらに好ましく、1000mg/m2以上であることがさらにより好ましい。一方、フッ化物フラックスの含有量が多すぎると、親水持続性が低下するおそれがある。親水持続性の低下を抑制するという観点から、フッ化物フラックスの含有量は、上述のごとく5000mg/m2以下であることが好ましく、3000mg/m2以下であることがより好ましく、2000mg/m2以下であることがさらに好ましい。塗膜が上記範囲でフッ化物フラックスを含有する場合には、塗膜の付着量は、50~6000mg/m2であることが好ましい。 The coating film can further contain a fluoride flux. The fluoride flux content may be zero. The content of the fluoride flux is preferably 0 or more and 5000 mg / m 2 or less. In this case, the flux effect can be obtained and the hydrophilic sustainability can be further improved. If the content of the fluoride flux is too small, the effect of adding the flux may not be sufficiently obtained. Therefore, the content of the fluoride flux is more preferably 40 mg / m 2 or more, further preferably 500 mg / m 2 or more, and further preferably 1000 mg / m 2 or more. On the other hand, when there is too much content of fluoride flux, there exists a possibility that hydrophilic sustainability may fall. From the viewpoint of suppressing a decrease in hydrophilic durability, the content of the fluoride flux is preferably 5000 mg / m 2 or less, more preferably 3000 mg / m 2 or less, as described above, and 2000 mg / m 2. More preferably, it is as follows. When the coating film contains fluoride flux in the above range, the coating amount is preferably 50 to 6000 mg / m 2 .
 フッ化物フラックスとしては、KAlF4、K2AlF5、K2AlF5・H2O、K3AlF6、AlF3、KZnF3、K2SiF6、Cs3AlF6、CsAlF4・2H2O、Cs2AlF5・H2O等が挙げられる。また、塗膜がフッ化物フラックスを含有する場合には、塗膜は、Si量が10~300mg/m2であり、フッ化物フラックスを含有する単層によって形成されていてもよいし、Si量が10~300mg/m2である層と、フッ化物フラックスを主成分とする層との積層体によって形成されていてもよい。具体的には、単層の場合には、塗膜は、例えばケイ酸塩及び非晶質シリカの少なくとも一方とフッ化物フラックスとを含有する層によって形成される。2層構造の積層体の場合には、塗膜は、例えばケイ酸塩及び非晶質シリカの少なくとも一方を主成分とする層と、フッ化物フラックスを主成分とする層によって形成される。 As fluoride flux, KAlF 4 , K 2 AlF 5 , K 2 AlF 5 .H 2 O, K 3 AlF 6 , AlF 3 , KZnF 3 , K 2 SiF 6 , Cs 3 AlF 6 , CsAlF 4 .2H 2 O , Cs 2 AlF 5 .H 2 O, and the like. When the coating film contains a fluoride flux, the coating film may have a Si content of 10 to 300 mg / m 2 , and may be formed by a single layer containing a fluoride flux. May be formed of a laminate of a layer having a thickness of 10 to 300 mg / m 2 and a layer mainly composed of fluoride flux. Specifically, in the case of a single layer, the coating film is formed of a layer containing, for example, at least one of silicate and amorphous silica and a fluoride flux. In the case of a laminate having a two-layer structure, the coating film is formed of, for example, a layer mainly containing at least one of silicate and amorphous silica and a layer mainly containing fluoride flux.
 また、塗膜は、さらに有機樹脂を含有することができる。この場合には、塗膜形成時の塗工性が向上する。また、ケイ酸塩、非晶質シリカ等のSi成分が塗膜から脱落することを防止できる。 The coating film can further contain an organic resin. In this case, the coating property at the time of forming the coating film is improved. Moreover, it can prevent that Si components, such as a silicate and an amorphous silica, fall off from a coating film.
 有機樹脂は、水溶性アクリル樹脂及び/又はポリオキシエチレンアルキレングリコール(PAE)からなることが好ましい。この場合には、有機樹脂が例えば接合時の加熱により分解され易く、塗膜中から有機樹脂を消失させることが可能になる。その結果、接合後の塗膜中の有機樹脂が少なくなるため、有機樹脂により接合性が阻害されることを防止できる。 The organic resin is preferably made of a water-soluble acrylic resin and / or polyoxyethylene alkylene glycol (PAE). In this case, the organic resin is easily decomposed by heating at the time of bonding, for example, and the organic resin can be lost from the coating film. As a result, since the organic resin in the coating film after bonding decreases, it is possible to prevent the bondability from being inhibited by the organic resin.
 また、プレコートフィン材は、アルミニウム合金板と塗膜との間に形成された化成皮膜からなる下地処理層を有することが好ましい。この場合には、アルミニウム合金板と塗膜との密着性の向上が可能になる。化成皮膜からなる下地処理層は、例えばリン酸クロメート処理、リン酸ジルコニウム処理、ベーマイト処理などにより形成することができる。下地処理層は、アルミニウム合金板と塗膜との密着性を向上させることができればよく、その他の処理により形成してもよい。 Moreover, it is preferable that the pre-coated fin material has a base treatment layer made of a chemical conversion film formed between the aluminum alloy plate and the coating film. In this case, the adhesion between the aluminum alloy plate and the coating film can be improved. The base treatment layer made of the chemical conversion film can be formed by, for example, phosphoric acid chromate treatment, zirconium phosphate treatment, boehmite treatment, or the like. The ground treatment layer only needs to improve the adhesion between the aluminum alloy plate and the coating film, and may be formed by other treatments.
 熱交換器において、プレコートフィン材よりなるフィンとしては、差し込みフィン、コルゲートフィン等の形状を採用することができる。熱交換性能の向上のため、フィン材はスリットを有していてもよい。 In the heat exchanger, shapes such as insertion fins and corrugated fins can be adopted as the fins made of the pre-coated fin material. In order to improve the heat exchange performance, the fin material may have a slit.
 アルミニウム管の形状としては、丸管あるいは扁平管等を採用することができる。管内には、内部を複数の通路に区画する内柱が形成されていてもよい。より具体的には、アルミニウム管としては、例えば扁平多穴管を採用することができる。 As the shape of the aluminum tube, a round tube or a flat tube can be adopted. An inner column that divides the interior into a plurality of passages may be formed in the pipe. More specifically, for example, a flat multi-hole tube can be adopted as the aluminum tube.
 次に、プレコートフィン材からなるフィンとアルミニウム管との接合方法について説明する。接合においては、ろう材を使用することなく、フィン材のアルミニウム合金板自体が発揮する接合能力を利用することができる。熱交換器のフィンとしての利用を考慮すれば、フィン材自身の変形を避けることが望まれ、そのために接合加熱条件を管理することができる。具体的には、アルミニウム合金板の内部に液相が生成する固相線温度以上液相線温度以下であって、かつ、アルミニウム合金板に液相が生成し、強度が低下して形状を維持できなくなる温度以下の温度で、接合に必要な時間加熱する。 Next, a method of joining the fin made of the pre-coated fin material and the aluminum tube will be described. In joining, the joining ability exhibited by the aluminum alloy plate itself of the fin material can be utilized without using a brazing material. Considering the use of heat exchangers as fins, it is desirable to avoid deformation of the fin material itself, and for this reason, the bonding heating conditions can be managed. Specifically, it is above the solidus temperature where the liquid phase is generated inside the aluminum alloy plate and below the liquidus temperature, and the liquid phase is generated on the aluminum alloy plate, the strength is lowered and the shape is maintained. Heating is performed for a time required for bonding at a temperature below the temperature at which it cannot be performed.
 さらに具体的な加熱条件としては、アルミニウム合金板の全質量に対する当該アルミニウム合金板内に生成する液相の質量の比(以下、「液相率」と記す。)が0%を超え35%以下となる温度で接合することが好ましい。液相が生成しなければ接合ができないので液相率は0%より多いことが必要である。しかしながら、液相が少ないと接合が困難となる場合があるため、液相率は5%以上にすることが好ましい。液相率が35%を超えると、生成する液相の量が多過ぎて、接合加熱時にアルミニウム合金板が大きく変形してしまい形状を保てなくなるおそれがある。より好ましい液相率は5~30%であり、さらに好ましい液相率は10~20%である。 As more specific heating conditions, the ratio of the mass of the liquid phase generated in the aluminum alloy plate to the total mass of the aluminum alloy plate (hereinafter referred to as “liquid phase ratio”) exceeds 0% and is 35% or less. It is preferable to join at a temperature at which Since the bonding cannot be performed unless the liquid phase is generated, the liquid phase ratio needs to be more than 0%. However, if the liquid phase is small, joining may be difficult, so the liquid phase ratio is preferably 5% or more. If the liquid phase ratio exceeds 35%, the amount of the liquid phase to be generated is too large, and the aluminum alloy plate may be greatly deformed during bonding heating, and the shape may not be maintained. A more preferable liquid phase ratio is 5 to 30%, and a further preferable liquid phase ratio is 10 to 20%.
 また、液相がフィンとアルミニウム管との間に十分に充填される為にはその充填時間も考慮することが好ましく、液相率が5%以上である時間が30秒以上3600秒以内であるのが好ましい。より好ましくは、液相率5%以上の時間が60秒以上1800秒以内であり、これにより更に十分な充填が行われ確実な接合がなされる。液相率が5%以上である時間が30秒未満では、接合部に液相が十分に充填されない場合がある。一方、3600秒を超えると、アルミニウム合金板の変形が進行する場合がある。尚、フィンとアルミニウム管との接合方法では、液相は接合部の極近傍においてしか移動しないので、この充填に必要な時間は接合部の大きさには依存しない。 Further, in order to sufficiently fill the liquid phase between the fin and the aluminum tube, it is preferable to consider the filling time, and the time during which the liquid phase ratio is 5% or more is 30 seconds or more and 3600 seconds or less. Is preferred. More preferably, the time when the liquid phase ratio is 5% or more is 60 seconds or more and 1800 seconds or less, whereby further sufficient filling is performed and reliable bonding is performed. If the time during which the liquid phase ratio is 5% or more is less than 30 seconds, the joint may not be sufficiently filled with the liquid phase. On the other hand, if it exceeds 3600 seconds, the deformation of the aluminum alloy plate may proceed. In the method of joining the fin and the aluminum tube, the liquid phase moves only in the very vicinity of the joint, so that the time required for filling does not depend on the size of the joint.
 加熱条件の具体例としては、580℃~640℃を接合温度とし、接合温度での保持時間を0分~10分程度とすることが好ましい。ここで、0分とは、部材の温度が所定の接合温度に到達したらすぐに冷却を開始することを意味する。保持時間は、より好ましくは30秒から5分である。一方、接合温度については、例えば、アルミニウム合金板のSi含有量が1~1.5%程度の場合は接合加熱温度を610~640℃と高めにすることが望ましい。逆に、アルミニウム合金板のSi含有量が4~5%程度の場合は接合加熱温度を580~590℃と低めに設定するとよい。また、接合部の金属組織を好適な状態にするために、組成に応じて加熱条件を調整しても良い。 As a specific example of the heating conditions, it is preferable that the bonding temperature is 580 ° C. to 640 ° C., and the holding time at the bonding temperature is about 0 to 10 minutes. Here, 0 minutes means that the cooling is started as soon as the temperature of the member reaches a predetermined joining temperature. The holding time is more preferably 30 seconds to 5 minutes. On the other hand, regarding the bonding temperature, for example, when the Si content of the aluminum alloy plate is about 1 to 1.5%, it is desirable to increase the bonding heating temperature to 610 to 640 ° C. Conversely, when the Si content of the aluminum alloy plate is about 4 to 5%, the bonding heating temperature is preferably set to a low value of 580 to 590 ° C. Moreover, in order to make the metal structure of a junction part into a suitable state, you may adjust a heating condition according to a composition.
 尚、加熱中における実際の液相率を測定することは極めて困難である。そこで、液相率は、通常、平衡状態図を利用して、合金組成と最高到達温度から、てこの原理(lever rule)によって求めることができる。すでに状態図が明らかになっている合金系においては、その状態図を使用し、てこの原理を用いて液相率を求めることができる。一方、平衡状態図が公表されていない合金系に関しては、平衡計算状態図ソフトを利用して液相率を求めることができる。平衡計算状態図ソフトには、合金組成と温度を用いて、てこの原理で液相率を求める手法が組み込まれている。平衡計算状態図ソフトには、Thermo-Calc;Thermo-Calc Software AB社製などがある。平衡状態図が明らかになっている合金系においても、平衡計算状態図ソフトを用いて液相率を計算しても、平衡状態図からてこの原理を用いて液相率を求めた結果と同じ結果となるので、簡便化のために、平衡計算状態図ソフトを利用しても良い。 Note that it is extremely difficult to measure the actual liquid phase rate during heating. Therefore, the liquid phase ratio can be usually obtained from the alloy composition and the highest temperature by the lever rule using an equilibrium diagram. In an alloy system whose phase diagram is already known, the phase diagram can be used to determine the liquid phase ratio using the principle of leverage. On the other hand, for an alloy system whose equilibrium diagram is not disclosed, the liquid phase ratio can be obtained using equilibrium calculation diagram software. The equilibrium calculation phase diagram software incorporates a technique for determining the liquid phase ratio based on the lever principle using the alloy composition and temperature. Equilibrium calculation state diagram software includes Thermo-Calc; Thermo-Calc Software AB, etc. Even in an alloy system whose equilibrium phase diagram has been clarified, calculating the liquid phase rate using the equilibrium calculation phase diagram software is the same as the result of calculating the liquid phase rate using this principle from the equilibrium phase diagram. As a result, equilibrium calculation state diagram software may be used for simplification.
 また、加熱処理における加熱雰囲気は窒素やアルゴン等で置換した非酸化性雰囲気等が好ましい。また、非腐食性フラックスを使用することで更に良好な接合性を得ることができる。更に、真空中や減圧中で加熱して接合することも可能である。 Further, the heating atmosphere in the heat treatment is preferably a non-oxidizing atmosphere substituted with nitrogen, argon or the like. In addition, better bondability can be obtained by using a non-corrosive flux. Furthermore, it is also possible to join by heating in vacuum or reduced pressure.
 上記非腐食性フラックス塗布する方法には、フィンとアルミニウム管とを組み付けた後、フラックス粉末を振りかける方法や、フラックス粉末を水に懸濁してスプレー塗布する方法等が挙げられる。あらかじめ素材に塗装する場合には、フラックス粉末にアクリル樹脂等のバインダを混合して塗布すれば、塗装の密着性を高めることができる。通常のフラックスの機能を得るために用いる非腐食性フラックスとしては、KAlF4、K2AlF5、K2AlF5・H2O、K3AlF6、AlF3、KZnF3、K2SiF6、Cs3AlF6、CsAlF4・2H2O、Cs2AlF5・H2O等が挙げられる。 Examples of the non-corrosive flux coating method include a method in which fins and an aluminum tube are assembled and then sprinkled with flux powder, a method in which flux powder is suspended in water and sprayed, and the like. In the case of coating the material in advance, the adhesion of the coating can be improved by mixing and applying a binder such as an acrylic resin to the flux powder. Non-corrosive fluxes used to obtain normal flux functions include KAlF 4 , K 2 AlF 5 , K 2 AlF 5 .H 2 O, K 3 AlF 6 , AlF 3 , KZnF 3 , K 2 SiF 6 , Examples thereof include Cs 3 AlF 6 , CsAlF 4 .2H 2 O, and Cs 2 AlF 5 .H 2 O.
 プレコートフィン材よりなるフィンは、上記アルミニウム合金板が上記組成を有しているため、上記のような加熱処理及び加熱雰囲気の制御により良好な接合を実現することができる。但し、フィンは薄肉であるので、内部に発生する応力が高すぎると形状を維持できない場合がある。特に接合時の液相率が大きくなる場合、フィン内に発生する応力は比較的小さな応力に留めたほうが良好な形状を維持できる。このようにフィン内の応力を考慮することが好ましい場合、フィン内に発生する応力のうちの最大値をP(kPa)、液相率をV(%)とした場合、P≦460-12Vの条件を満たせば、非常に安定した接合が得られる。この式の右辺(460-12V)で示される値は限界応力であり、これを超える応力がフィンに加わると大きな変形が発生するおそれがある。フィン内に発生する応力は、形状と荷重から求められる。例えば、構造計算プログラム等を用いて計算することができる。 Since the aluminum alloy plate has the above composition, the fin made of the pre-coated fin material can achieve good bonding by the above heat treatment and control of the heating atmosphere. However, since the fin is thin, the shape may not be maintained if the stress generated inside is too high. In particular, when the liquid phase ratio at the time of joining becomes large, it is possible to maintain a good shape by keeping the stress generated in the fin at a relatively small stress. Thus, when it is preferable to consider the stress in the fin, when the maximum value of the stress generated in the fin is P (kPa) and the liquid phase rate is V (%), P ≦ 460-12V If the conditions are met, a very stable joint can be obtained. The value indicated by the right side (460-12V) of this equation is the critical stress, and if a stress exceeding this value is applied to the fin, there is a possibility that a large deformation will occur. The stress generated in the fin is obtained from the shape and load. For example, it can be calculated using a structural calculation program or the like.
 熱交換器は、プレコートフィン材からなるフィンと、このフィンに接合されたアルミニウム管とからなるコア部を有する。熱交換器の具体例は、後述の実施例において図面を用いて説明するが、熱交換器は、コア部に、ヘッダ、サイドサポート、出入り口管等を組み付けることにより製造される。 The heat exchanger has a core portion made of a fin made of a pre-coated fin material and an aluminum tube joined to the fin. Although the specific example of a heat exchanger is demonstrated using drawing in the below-mentioned Example, a heat exchanger is manufactured by attaching a header, a side support, an entrance / exit pipe | tube, etc. to a core part.
 熱交換器は、例えば、空調機、冷蔵庫に用いることができる。また、自動車のコンデンサ、エバポレータ、ラジエータ、ヒータ、インタークーラ、オイルクーラ等に用いることもできる。さらに、ハイブリッド自動車や電気自動車の駆動用モータを制御するインバータユニットに備えられたIGBT(Insulated Gate Bipolar Transistor)等の発熱体を冷却するための冷却装置に用いることもできる。 The heat exchanger can be used for an air conditioner and a refrigerator, for example. It can also be used for automobile condensers, evaporators, radiators, heaters, intercoolers, oil coolers, and the like. Furthermore, it can also be used for a cooling device for cooling a heating element such as an IGBT (Insulated Gate Bipolar Transistor) provided in an inverter unit for controlling a drive motor of a hybrid vehicle or an electric vehicle.
(実施例1)
 本例は、本発明の実施例及び比較例にかかる複数のプレコートフィン材を作製し、その性能を比較する例である。本例においては、後述の表1~表7に示すごとく、アルミニウム合金板の組成、塗膜の組成が異なる複数のプレコートフィン材(試料E1-1~試料E7-5、試料C1-1~試料C7-5)を作製する。そして、これらのプレコートフィン材をそれぞれ用いて、熱交換器用のコア部を作製し、親水持続性、接合性を比較評価する。本例においては、コア部として試験用のミニコアを作製する。
(Example 1)
This example is an example in which a plurality of precoated fin materials according to examples and comparative examples of the present invention are manufactured and their performance is compared. In this example, as shown in Tables 1 to 7 described later, a plurality of pre-coated fin materials (sample E1-1 to sample E7-5, sample C1-1 to sample) having different compositions of aluminum alloy plates and coating compositions are used. C7-5) is prepared. And using each of these precoat fin materials, the core part for heat exchangers is produced, and hydrophilicity sustainability and bondability are compared and evaluated. In this example, a test mini-core is manufactured as the core portion.
 図1に例示されるように、プレコートフィン材1は、アルミニウム合金板11と、その表面に形成された塗膜12とを有する。アルミニウム合金板11は、後述の表に示す添加成分(元素)を含有し、残部がAl及び不可避的不純物からなる化学成分を有する。塗膜12は、後述の表に示す含有量でケイ酸リチウム由来のSiを含有し、さらに塗工性を向上できる程度の量の水溶性アクリル樹脂を含有する。また、本例において作製したプレコートフィン材のうちの一部において、塗膜は、後述の表に示す量でさらにフラックスを含有する。塗膜は、アルミニウム合金板の両面に形成されている。 As illustrated in FIG. 1, the pre-coated fin material 1 has an aluminum alloy plate 11 and a coating film 12 formed on the surface thereof. The aluminum alloy plate 11 contains additional components (elements) shown in the table below, and the balance has chemical components composed of Al and inevitable impurities. The coating film 12 contains Si derived from lithium silicate at a content shown in the table below, and further contains a water-soluble acrylic resin in such an amount that the coating property can be improved. Moreover, in a part of the precoat fin material produced in this example, the coating film further contains a flux in an amount shown in a table described later. The coating film is formed on both surfaces of the aluminum alloy plate.
 図2及び図3に示すごとく、ミニコア2は、プレコートフィン材1からなるフィン3と、アルミニウム管4とを有し、コルゲート形状のフィン3がアルミニウム管4に挟まれている。なお、図2においては、フィン2のコルゲート形状を明示するために、フィン3を挟む2つのアルミニウム管4の一方を破線にて示してある。 As shown in FIGS. 2 and 3, the mini-core 2 has a fin 3 made of the pre-coated fin material 1 and an aluminum tube 4, and the corrugated fin 3 is sandwiched between the aluminum tubes 4. In FIG. 2, one of the two aluminum tubes 4 sandwiching the fin 3 is indicated by a broken line in order to clearly show the corrugated shape of the fin 2.
 フィン3は、図4に示すごとく、コルゲート状に成形されたプレコートフィン材1よりなり、アルミニウム合金板11と、その両面に形成された塗膜12とを有する。 As shown in FIG. 4, the fin 3 is made of a pre-coated fin material 1 formed in a corrugated shape, and includes an aluminum alloy plate 11 and a coating film 12 formed on both surfaces thereof.
 図2及び図3に示すごとく、アルミニウム管4は、アルミニウム合金製の扁平多穴管からなる。アルミニウム管4は、冷媒を流通させるための多数の冷媒流路411を有している。ミニコア2においては、図5(b)に示すごとく、フィン3とアルミニウム管4とは接合されており、両者の接合部にはフィレット200が形成されている。 2 and 3, the aluminum tube 4 is a flat multi-hole tube made of an aluminum alloy. The aluminum tube 4 has a large number of refrigerant flow paths 411 for circulating the refrigerant. In the mini-core 2, as shown in FIG. 5B, the fin 3 and the aluminum tube 4 are joined, and a fillet 200 is formed at the joint between both.
 以下、本例のミニコア1の製造方法について説明する。具体的には、まず、各表に示す添加成分を含有するアルミニウム合金板11を準備した。各表中に示される添加成分以外の成分、すなわち残部は、Al及び不可避的不純物である。次いで、下地処理を行うことにより、アルミニウム合金板11の両面に、図示を省略する化成皮膜からなる下地処理層を形成した。下地処理としては、リン酸クロメート処理を行った。下地処理層の厚みは例えば1μm程度である。 Hereinafter, a method for manufacturing the mini-core 1 of this example will be described. Specifically, first, an aluminum alloy plate 11 containing additive components shown in each table was prepared. Components other than the additive components shown in each table, that is, the balance is Al and inevitable impurities. Next, a base treatment layer made of a chemical conversion film (not shown) was formed on both surfaces of the aluminum alloy plate 11 by performing a base treatment. As the base treatment, phosphoric acid chromate treatment was performed. The thickness of the base treatment layer is, for example, about 1 μm.
 次いで、バーコーターを用いて、下地処理層上に、水ガラス、水溶性アクリル樹脂、及び必要に応じて添加されるフッ化物フラックスであるKAlF4を含有する塗料を所定量塗布し、温度200℃で乾燥させることにより塗膜12を形成した(図1参照)。このようにして、表1~表7に示される含有量で水ガラス由来のSiを含有する塗膜12をアルミニウム合金板11上に有するプレコートフィン材1を作製した。塗膜12は、アルミニウム合金板11の両面に形成した。 Next, using a bar coater, a predetermined amount of water glass, a water-soluble acrylic resin, and a coating containing KAlF 4 which is a fluoride flux added as needed is applied on the base treatment layer, and the temperature is 200 ° C. The coating film 12 was formed by drying with (refer FIG. 1). In this way, precoated fin material 1 having coating film 12 containing Si derived from water glass with the contents shown in Tables 1 to 7 on aluminum alloy plate 11 was produced. The coating film 12 was formed on both surfaces of the aluminum alloy plate 11.
 塗膜12中のSi量は、蛍光X線分析により測定した。蛍光X線分析は、Rigaku社製のZSXPrimusIIを用いて、雰囲気:真空、管球:Rh、出力:50kV-60mAという条件で行った。塗膜中のSiの定量は、標準Si試料を用いた検量線法にて行った。 The amount of Si in the coating film 12 was measured by fluorescent X-ray analysis. The fluorescent X-ray analysis was performed using a ZSX Primus II manufactured by Rigaku under the conditions of atmosphere: vacuum, tube: Rh, output: 50 kV-60 mA. Quantification of Si in the coating film was performed by a calibration curve method using a standard Si sample.
 次いで、プレコートフィン材1をコルゲート状に加工した。このようにして、アルミニウム合金板11の表面に形成された塗膜12を有するコルゲート状のフィン3を得た(図2~図4参照)。これらのフィン3は、ミニコア1の製造にそれぞれ用いられる。 Next, the pre-coated fin material 1 was processed into a corrugated shape. Thus, a corrugated fin 3 having a coating film 12 formed on the surface of the aluminum alloy plate 11 was obtained (see FIGS. 2 to 4). These fins 3 are respectively used for manufacturing the mini-core 1.
 次いで、アルミニウム管4として、押出加工により3000系アルミニウム合金製の扁平多穴管を作製した(図2及び図3参照)。2つのアルミニウム管4の間に、コルゲート状のフィン3を挟み込んで組立品を作製した(図2及び図3参照)。このとき、図5(a)に示すごとく、コルゲート状のフィン3の各頂点30とアルミニウム管4とを当接させた。次いで、窒素ガス雰囲気で温度600℃の炉内に、組立品を3分間保持した後、室温(25℃)まで冷却した。この炉内での加熱時にフィン3のアルミニウム合金板11の内部から液相が生成して表面に染み出し、冷却時に液相が凝固する。この液相の凝固により、図5(b)に例示されるようにフィン3とアルミニウム管4との間にフィレット200が形成される。このようにして、図2及び図3に例示されるように、フィン3とアルミニウム管4とが接合されたミニコア2を得た。 Next, as the aluminum tube 4, a flat multi-hole tube made of 3000 series aluminum alloy was produced by extrusion (see FIGS. 2 and 3). A corrugated fin 3 was sandwiched between two aluminum tubes 4 to produce an assembly (see FIGS. 2 and 3). At this time, as shown in FIG. 5A, each vertex 30 of the corrugated fin 3 and the aluminum tube 4 were brought into contact with each other. Next, the assembly was held in a furnace at a temperature of 600 ° C. in a nitrogen gas atmosphere for 3 minutes, and then cooled to room temperature (25 ° C.). A liquid phase is generated from the inside of the aluminum alloy plate 11 of the fin 3 during heating in the furnace and oozes out to the surface, and the liquid phase solidifies during cooling. By this solidification of the liquid phase, a fillet 200 is formed between the fin 3 and the aluminum tube 4 as illustrated in FIG. In this way, as illustrated in FIGS. 2 and 3, the mini-core 2 in which the fin 3 and the aluminum tube 4 are joined is obtained.
 次に、上記のようにして得られた各試料のプレコートフィン材1、ミニコア2について、以下のようにして親水持続性、接合性、変形率、耐食性、製造性の評価を行った。その結果を表1~表7に示す。 Next, the pre-coated fin material 1 and the mini-core 2 of each sample obtained as described above were evaluated for hydrophilic sustainability, bondability, deformation rate, corrosion resistance, and manufacturability as follows. The results are shown in Tables 1 to 7.
<親水持続性>
 親水持続性の評価は、各試料のプレコートフィン材を用いて行った。各試料に対しては、塗膜形成の後に行われるフィンの接合を想定した加熱が行われている。具体的には、プレコートフィン材を窒素ガス雰囲気で温度600℃の炉内で3分間加熱した。次いで、プレコートフィン材を純水に2分間浸漬した後、6分間風乾した。この純水への浸漬と風乾というサイクルを300回繰り返し実施した。次いで、各試験板の塗膜上における水滴の接触角を測定した。接触角の測定は、協和界面化学株式会社製のFACE自動接触角計「CA-Z」を用いて行った。具体的には、室温で、塗膜上に水滴を滴下し、30秒後の水滴の接触角を測定した。接触角が10°未満の場合を「A」と評価し、10°以上かつ20°未満の場合を「B」と評価し、20°以上かつ30°未満の場合を「C」と評価し、30°以上の場合を「D」と評価した。
<Hydrophilic sustainability>
The hydrophilic durability was evaluated using the precoated fin material of each sample. Each sample is heated under the assumption of fin bonding performed after the formation of the coating film. Specifically, the pre-coated fin material was heated for 3 minutes in a furnace having a temperature of 600 ° C. in a nitrogen gas atmosphere. Next, the pre-coated fin material was immersed in pure water for 2 minutes and then air-dried for 6 minutes. This cycle of immersion in pure water and air drying was repeated 300 times. Subsequently, the contact angle of the water droplet on the coating film of each test plate was measured. The contact angle was measured using a FACE automatic contact angle meter “CA-Z” manufactured by Kyowa Interface Chemical Co., Ltd. Specifically, a water drop was dropped on the coating film at room temperature, and the contact angle of the water drop after 30 seconds was measured. When the contact angle is less than 10 °, it is evaluated as “A”, when it is 10 ° or more and less than 20 °, it is evaluated as “B”, and when it is 20 ° or more and less than 30 °, it is evaluated as “C”. The case of 30 ° or more was evaluated as “D”.
<接合性>
 接合後の各ミニコアにおける接合部をカッターナイフにより切断し、フィンの接合長さL1をフィンの山部の長さL2の総和で割算して100分率で表した値(L1/L2×100)を接合率(%)とした。接合率が90%以上の場合を「A」と評価し、接合率が80%以上かつ90%未満の場合を「B」と評価し、接合率が70%以上かつ80%未満の場合を「C」と評価し、70%未満の場合を「D」と評価した。
<Jointability>
The joined portion in each mini-core after joining is cut with a cutter knife, and the value obtained by dividing the joining length L 1 of the fin by the sum of the lengths L 2 of the ridges of the fin (100/100) (L 1 / L 2 × 100) was defined as a bonding rate (%). The case where the joining rate is 90% or more is evaluated as “A”, the case where the joining rate is 80% or more and less than 90% is evaluated as “B”, and the case where the joining rate is 70% or more and less than 80%. The case was evaluated as “D”, and the case of less than 70% was evaluated as “D”.
<変形率>
 接合前後のミニコアのフィン高さを測定してフィン座屈による変形率についても評価した。すなわち、接合前のフィン高さに対する接合前後のフィン高さ変化の割合が5%以下の場合を「A」と評価し、5%を超えかつ10%以下の場合を「B」と評価し、10%を超えかつ15%以下の場合を「C」と評価し、15%を超えるものを「D」と評価した。
<Deformation rate>
The fin height of the mini-core before and after joining was measured and the deformation rate due to fin buckling was also evaluated. That is, the case where the ratio of the fin height change before and after joining to the fin height before joining is 5% or less is evaluated as “A”, and the case where it exceeds 5% and is 10% or less is evaluated as “B”. The case where it exceeded 10% and 15% or less was evaluated as “C”, and the case where it exceeded 15% was evaluated as “D”.
<耐食性>
 CASS試験を500h行い、フィンの腐食状態を確認した。光学顕微鏡による断面観察においてフィンの残存量が70%以上の場合を「A」と評価し、50%以上かつ70%未満の場合を「B」と評価し、30%以上かつ50%未満の場合を「C」と評価し、30%未満の場合を「D」と評価した。
<Corrosion resistance>
A CASS test was conducted for 500 hours to confirm the corrosion state of the fins. In the cross-sectional observation with an optical microscope, the case where the remaining amount of fin is 70% or more is evaluated as “A”, the case where it is 50% or more and less than 70% is evaluated as “B”, and the case where it is 30% or more and less than 50% Was evaluated as “C”, and the case of less than 30% was evaluated as “D”.
<製造性>
 アルミニウム合金の圧延加工時に、例えば表面割れが起こり良好な板材が製造できなかった場合を「×」と評価し、良好な板材が製造できた場合を「○」と評価した。なお、製造性が「×」の場合には上述の他の評価は省略した。
<Manufacturability>
When the aluminum alloy was rolled, for example, a case where surface cracking occurred and a good plate material could not be produced was evaluated as “x”, and a case where a good plate material could be produced was evaluated as “◯”. In addition, when the manufacturability was “x”, the other evaluations described above were omitted.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
 表1に示されるように、試料E1-1~試料E1-4は、試料C1-1~試料C1-4に比べて、親水持続性が優れ、接合率が高い。したがって、アルミニウム合金板11と塗膜12とを有するプレコートフィン材1において、アルミニウム合金板11は、Siを1~5質量%を含有し、残部がAl及び不可避的不純物からなる化学成分を有することが好ましい。また、塗膜12中のSiの含有量は、10~300mg/m2であることが好ましい。また、試料E1-5及び試料E1-6と、試料E1-7及び試料1-8とを比較してわかるように、塗膜はフッ化物フラックスを含有することができ、フッ化物フラックスの含有量を40~5000mg/m2に調整することにより、親水持続性をより向上させることができる。 As shown in Table 1, Sample E1-1 to Sample E1-4 are superior in hydrophilic sustainability and have a higher bonding rate than Samples C1-1 to C1-4. Therefore, in the pre-coated fin material 1 having the aluminum alloy plate 11 and the coating film 12, the aluminum alloy plate 11 contains 1 to 5% by mass of Si and the balance has chemical components composed of Al and inevitable impurities. Is preferred. The Si content in the coating film 12 is preferably 10 to 300 mg / m 2 . Further, as can be seen by comparing Sample E1-5 and Sample E1-6 with Sample E1-7 and Sample 1-8, the coating film can contain fluoride flux, and the content of fluoride flux By adjusting the pH to 40 to 5000 mg / m 2 , the hydrophilic sustainability can be further improved.
 表2より知られるように、アルミニウム合金板にさらにFe及びMnを含有する試料E2-1~試料E2-4は、変形率が小さく、フィン材としての強度がより良好であった。表2より知られるように、製造性を損ねることなく、強度を向上させるためには、アルミニウム合金板は、Siを1~5質量%を含有し、さらにFe:0.1~2質量%及びMn:0.1~2質量%を含有し、残部がAl、不可避的不純物からなる化学成分を有することが好ましい。 As can be seen from Table 2, Samples E2-1 to E2-4, which further contain Fe and Mn in the aluminum alloy plate, had a small deformation rate and better strength as a fin material. As is known from Table 2, in order to improve the strength without impairing manufacturability, the aluminum alloy plate contains 1 to 5% by mass of Si, and Fe: 0.1 to 2% by mass and It is preferable that Mn is contained in an amount of 0.1 to 2% by mass, and the balance has a chemical component consisting of Al and inevitable impurities.
 表3より知られるように、アルミニウム合金板にさらにZnを含有する試料E3-1及び試料E3-2は、耐食性が向上していた。表3より知られるように、耐食性を向上させるためには、アルミニウム合金板は、Siを1~5質量%を含有し、Fe:0.1~2質量%及びMn:0.1~2質量%を含有し、さらにZn:0.05~6質量%を含有し、残部がAl、不可避的不純物からなる化学成分を有することが好ましい。 As is known from Table 3, the corrosion resistance of Samples E3-1 and E3-2, which further contained Zn in the aluminum alloy plate, was improved. As is known from Table 3, in order to improve the corrosion resistance, the aluminum alloy plate contains 1 to 5% by mass of Si, Fe: 0.1 to 2% by mass, and Mn: 0.1 to 2% by mass. %, Further containing Zn: 0.05 to 6% by mass, with the balance having a chemical component consisting of Al and inevitable impurities.
 表4より知られるように、アルミニウム合金板にさらにMg及びCuの少なくとも一方を含有する試料E4-1及び試料E4-2は、強度、耐食性がより向上していた。表4より知られるように、耐食性や接合性の低下を抑制しつつ強度を向上させるためには、アルミニウム合金板は、Siを1~5質量%を含有し、Fe:0.1~2質量%及びMn:0.1~2質量%を含有し、Zn:0.05~6質量%を含有し、さらにMg:2質量%以下及びCu:1.5質量%以下の少なくとも一方を含有し、残部がAl、不可避的不純物からなる化学成分を有することが好ましい。 As is known from Table 4, the strength and corrosion resistance of Sample E4-1 and Sample E4-2, which further contain at least one of Mg and Cu in the aluminum alloy plate, were further improved. As is known from Table 4, in order to improve strength while suppressing deterioration of corrosion resistance and bondability, the aluminum alloy plate contains 1 to 5% by mass of Si, and Fe: 0.1 to 2% by mass. % And Mn: 0.1 to 2% by mass, Zn: 0.05 to 6% by mass, Mg: 2% by mass or less, and Cu: 1.5% by mass or less It is preferable that the balance has a chemical component composed of Al and inevitable impurities.
 表5より知られるように、アルミニウム合金板にさらにIn及びSnの少なくとも一方を含有する試料E5-1及び試料E5-2は、耐食性がより向上していた。表5より知られるように、製造性を損ねることなく耐食性をより向上させるためには、アルミニウム合金板は、Siを1~5質量%を含有し、Fe:0.1~2質量%及びMn:0.1~2質量%を含有し、Zn:0.05~6質量%を含有し、さらにIn:0.3質量%以下及びSn:0.3質量%以下の少なくとも一方を含有し、残部がAl、不可避的不純物からなる化学成分を有することが好ましい。 As can be seen from Table 5, the corrosion resistance of Sample E5-1 and Sample E5-2, which further contained at least one of In and Sn in the aluminum alloy plate, was further improved. As known from Table 5, in order to further improve the corrosion resistance without impairing manufacturability, the aluminum alloy plate contains 1 to 5% by mass of Si, Fe: 0.1 to 2% by mass, and Mn : 0.1 to 2% by mass, Zn: 0.05 to 6% by mass, and further containing at least one of In: 0.3% by mass or less and Sn: 0.3% by mass or less, It is preferable that the balance has a chemical component composed of Al and inevitable impurities.
 表6より知られるように、アルミニウム合金板にさらにTi、V、Zr、Cr、及びNiからなる群より選ばれる少なくとも1種を含有する試料E6-1~試料E6-5は、変形率が小さく、強度がより向上していた。表6より知られるように、製造性を損ねることなく強度をより向上させるためには、アルミニウム合金板は、Siを1~5質量%を含有し、Fe:0.1~2質量%及びMn:0.1~2質量%を含有し、Zn:0.05~6質量%を含有し、さらにTi:0.3質量%以下、V:0.3質量%以下、Zr:0.3質量%以下、Cr:0.3質量%以下、及びNi:2質量%以下から選ばれる少なくとも1種を含有し、残部がAl、不可避的不純物からなる化学成分を有することが好ましい。 As is known from Table 6, Samples E6-1 to E6-5, which contain at least one selected from the group consisting of Ti, V, Zr, Cr, and Ni in the aluminum alloy plate, have a small deformation rate. , The strength was more improved. As is known from Table 6, in order to further improve the strength without impairing manufacturability, the aluminum alloy plate contains 1 to 5% by mass of Si, Fe: 0.1 to 2% by mass and Mn : 0.1 to 2% by mass, Zn: 0.05 to 6% by mass, Ti: 0.3% by mass or less, V: 0.3% by mass or less, Zr: 0.3% by mass % Or less, Cr: 0.3% by mass or less, and Ni: 2% by mass or less are preferably contained, and the balance has a chemical component composed of Al and inevitable impurities.
 表7より知られるように、アルミニウム合金板にさらにBe、Sr、Bi、Na、及びCaからなる群より選ばれる少なくとも1種を含有する試料E7-1~試料E7-5は、変形率が小さく、接合性がより向上していた。表6より知られるように、接合性を充分に向上させるためには、アルミニウム合金板は、Siを1~5質量%を含有し、Fe:0.1~2質量%及びMn:0.1~2質量%を含有し、Zn:0.05~6質量%を含有し、さらにBe:0.1質量%以下、Sr:0.1質量%以下、Bi:0.1質量%以下、Na:0.1質量%以下、Ca:0.05質量%以下から選ばれる少なくとも1種を含有し、残部がAl、不可避的不純物からなる化学成分を有することが好ましい。 As is known from Table 7, samples E7-1 to E7-5, which contain at least one selected from the group consisting of Be, Sr, Bi, Na, and Ca in the aluminum alloy plate, have a low deformation rate. The bondability was further improved. As known from Table 6, in order to sufficiently improve the bondability, the aluminum alloy plate contains 1 to 5% by mass of Si, Fe: 0.1 to 2% by mass, and Mn: 0.1%. 2% by mass, Zn: 0.05% by mass to 6% by mass, Be: 0.1% by mass or less, Sr: 0.1% by mass or less, Bi: 0.1% by mass or less, Na : Containing at least one selected from 0.1% by mass or less and Ca: 0.05% by mass or less, with the balance having a chemical component consisting of Al and inevitable impurities.
(実施例2)
 次に、実施例1において示したプレコートフィン材を用いたコア部を有する熱交換器の例について説明する。図6に示すごとく、熱交換器5は、実施例1のミニコアと同様の構成を多数備えるコア部2を有する。具体的には、コア部2は、コルゲート状のプレコートフィン材1からなるフィン3と、アルミニウム管4とを交互に多数積層してなり、フィン3とアルミニウム管4とが実施例1のミニコアと同様にして接合されている。
(Example 2)
Next, the example of the heat exchanger which has a core part using the precoat fin material shown in Example 1 is demonstrated. As shown in FIG. 6, the heat exchanger 5 has a core portion 2 having a number of configurations similar to those of the mini-core of the first embodiment. Specifically, the core portion 2 is formed by alternately laminating a large number of fins 3 made of a corrugated pre-coated fin material 1 and aluminum tubes 4, and the fins 3 and the aluminum tubes 4 are the mini-cores of the first embodiment. They are joined in the same way.
 アルミニウム管4の両端には、ヘッダ51が組み付けられており、コア部2の積層方向における両端(最外側)には、サイドプレート52が組み付けられている。また、ヘッダ51には、タンク53が組み付けられている。これらのヘッダ51、サイドプレート52、及びタンク53は、例えばろう付けにより接合させることができる。 The header 51 is assembled | attached to the both ends of the aluminum pipe 4, and the side plate 52 is assembled | attached to the both ends (outermost side) in the lamination direction of the core part 2. As shown in FIG. In addition, a tank 53 is assembled to the header 51. These header 51, side plate 52, and tank 53 can be joined by brazing, for example.
 熱交換器5においては、上述の表1~表7に示す試料E1-1~試料E7-5と同様のプレコートフィン材1を用いることができる。すなわち、熱交換器5は、上述の親水持続性及び接合性等に優れたプレコートフィン材1からなるフィン3と、フィン3に接合されたアルミニウム管4とからなるコア部2を有する。そのため、熱交換器5は、フィン3が優れた親水持続性を発揮するため、通風抵抗の増加を抑制し、良好な熱交換性能を長期間安定して発揮することができる。また、熱交換器5においては、例えばアルミウム管4とフィン3とが十分に接合されるため、アルミニウム管4とフィン3との熱交換性能が良好になる。 In the heat exchanger 5, the precoat fin material 1 similar to the samples E1-1 to E7-5 shown in Tables 1 to 7 can be used. That is, the heat exchanger 5 has the core part 2 which consists of the fin 3 which consists of the precoat fin material 1 excellent in the above-mentioned hydrophilic sustainability, joining property, etc., and the aluminum tube 4 joined to the fin 3. Therefore, since the fin 3 exhibits excellent hydrophilic durability, the heat exchanger 5 can suppress an increase in ventilation resistance and can stably exhibit good heat exchange performance for a long period of time. Further, in the heat exchanger 5, for example, the aluminum tube 4 and the fin 3 are sufficiently joined, so that the heat exchange performance between the aluminum tube 4 and the fin 3 is improved.
(実施例3)
 本例は、フィンに形成した組み付け孔内に扁平多穴管からなるアルミニウム管が挿入された構成の熱交換器の例である。図7に例示されるように、熱交換器6は、アルミニウム管7と、フィン8とを有している。図7及び図9に例示されるように、フィン8は、アルミニウム管7が挿入される組み付け孔81を有している。図7及び図8に例示されるように、アルミニウム管7は、当接部61においてフィン8に当接している。図7~図9に例示されるように、当接部61においては、アルミニウム管7とフィン8との間に両者を接合するフィレット600が形成されている。
(Example 3)
This example is an example of a heat exchanger having a configuration in which an aluminum tube made of a flat multi-hole tube is inserted into an assembly hole formed in a fin. As illustrated in FIG. 7, the heat exchanger 6 includes an aluminum tube 7 and fins 8. As illustrated in FIGS. 7 and 9, the fin 8 has an assembly hole 81 into which the aluminum tube 7 is inserted. As illustrated in FIGS. 7 and 8, the aluminum tube 7 is in contact with the fin 8 at the contact portion 61. As illustrated in FIGS. 7 to 9, in the contact portion 61, a fillet 600 is formed between the aluminum tube 7 and the fin 8 to join both.
 本例の熱交換器6は、図7に例示されるように、板厚方向に互いに間隔をあけて並べられた多数のフィン8と、フィン8の板厚方向に延びた複数のアルミニウム管7とを有している。フィン8は、板厚方向から視た平面視において略長方形状を呈している。フィン8は、実施例1と同様のアルミニウム板11と、その両面に形成された塗膜12とを有するプレコートフィン材1よりなる。 As illustrated in FIG. 7, the heat exchanger 6 of this example includes a large number of fins 8 arranged at intervals in the plate thickness direction, and a plurality of aluminum tubes 7 extending in the plate thickness direction of the fins 8. And have. The fin 8 has a substantially rectangular shape in plan view as viewed from the thickness direction. The fin 8 consists of the precoat fin material 1 which has the aluminum plate 11 similar to Example 1, and the coating film 12 formed in the both surfaces.
 フィン8における組み付け孔81は、フィン8の外周縁部に設けられた切り欠き811である。切り欠き811は、フィン8の外周縁部から板幅方向に延びており、平面視においてU字状を呈している。また、切り欠き811は、フィン8の外周縁部に設けられた開放部812からアルミニウム管7を圧入することができるように構成されている。 The assembly hole 81 in the fin 8 is a notch 811 provided in the outer peripheral edge portion of the fin 8. The notch 811 extends in the plate width direction from the outer peripheral edge of the fin 8 and has a U shape in plan view. The notch 811 is configured such that the aluminum tube 7 can be press-fitted from an open portion 812 provided at the outer peripheral edge of the fin 8.
 また、図7及び図9に示すように、フィン8は、組み付け孔81の周縁から突出したカラー部82を有している。カラー部82の高さは特に限定されないが、例えば、200μm以上とすることができる。 7 and 9, the fin 8 has a collar portion 82 protruding from the peripheral edge of the assembly hole 81. Although the height of the color part 82 is not specifically limited, For example, it can be 200 micrometers or more.
 図7に例示されるように、アルミニウム管7は、長手方向の断面が長円形を呈しており、内部に複数の流路711が形成された扁平多穴管である。扁平多穴管は、その幅方向と、フィンプレートの板幅方向とが平行になるように配置されている。また、図7及び図8に例示されるように、扁平多穴管よりなるアルミニウム管7は、その幅方向における一方の端部712、即ち表面が曲面状を呈している部分において、カラー部82に当接している。そして、アルミニウム管7の一方の端部712とカラー部82のU字形状における先端部821とが当接部61を構成している。図8及び図9に例示されるように、当接部61においては、フィレット600が形成されている。フィレット600は、後述の接合時の加熱により、フィン8のアルミニウム合金板1の内部から液相がフィン8の表面に染み出して凝固することによって形成されている。 7, the aluminum tube 7 is a flat multi-hole tube in which a cross section in the longitudinal direction has an oval shape and a plurality of flow paths 711 are formed therein. The flat multi-hole tube is arranged so that the width direction thereof is parallel to the plate width direction of the fin plate. As illustrated in FIGS. 7 and 8, the aluminum tube 7 made of a flat multi-hole tube has a collar portion 82 at one end 712 in the width direction, that is, a portion where the surface is curved. Abut. One end portion 712 of the aluminum tube 7 and the tip portion 821 of the U-shape of the collar portion 82 constitute a contact portion 61. As illustrated in FIGS. 8 and 9, a fillet 600 is formed in the contact portion 61. The fillet 600 is formed by the liquid phase exuding from the inside of the aluminum alloy plate 1 of the fin 8 to the surface of the fin 8 and solidifying by heating at the time of joining described later.
 本例の熱交換器6は、例えば以下のようにして作製することができる。まず、実施例1と同様にしてプレコートフィン材1を作製し、このフィン材を用いて常法によりフィン8を作製する。そして、複数のフィン8を、板厚方向に互いに間隔をあけて並べる。次に、常法により準備された扁平多穴管からなるアルミニウム管7をフィン8の組み付け孔81に圧入し、少なくともアルミニウム管7の一方の端部712とカラー部82の先端部821とを当接させる。その後、例えば窒素ガス雰囲気下、温度600℃で3分間加熱した後冷却させる。加熱によりフィン8のアルミニウム合金板の内部から液相が染み出し、冷却により液相を凝結させることにより、当接部61においてフィレット600が形成される。このようにして、アルミニウム管7とフィン8とが接合し、アルミニウム管7とフィン8とが接合したコア部を有する熱交換器6を作製することができる。本例の熱交換器においても、実施例2と同様の作用効果を奏することできる。 The heat exchanger 6 of this example can be manufactured as follows, for example. First, the precoat fin material 1 is produced in the same manner as in Example 1, and the fin 8 is produced by a conventional method using this fin material. Then, the plurality of fins 8 are arranged at intervals in the plate thickness direction. Next, an aluminum tube 7 made of a flat multi-hole tube prepared by a conventional method is press-fitted into the assembly hole 81 of the fin 8, and at least one end 712 of the aluminum tube 7 and the tip 821 of the collar portion 82 are brought into contact with each other. Make contact. Thereafter, for example, the substrate is heated at 600 ° C. for 3 minutes in a nitrogen gas atmosphere and then cooled. The liquid phase oozes out from the inside of the aluminum alloy plate of the fin 8 by heating, and the liquid phase is condensed by cooling, whereby the fillet 600 is formed at the contact portion 61. In this way, the heat exchanger 6 having a core portion in which the aluminum tube 7 and the fin 8 are joined and the aluminum tube 7 and the fin 8 are joined can be manufactured. Also in the heat exchanger of this example, there can exist an effect similar to Example 2. FIG.
 以上のように、本発明の実施例について詳細に説明したが、本発明は上述の各実施例に限定されるものではなく、本発明の趣旨を損なわない範囲内で種々の変更が可能である。 As mentioned above, although the Example of this invention was described in detail, this invention is not limited to the above-mentioned each Example, A various change is possible within the range which does not impair the meaning of this invention. .

Claims (11)

  1.  アルミニウム合金板と、
     上記アルミニウム合金板の表面に形成された塗膜と、を有し、
     上記アルミニウム合金板は、Si:1~5質量%を含有し、残部がAl及び不可避的不純物からなる化学成分を有し、
     上記塗膜中のSi量が10~300mg/m2である、プレコートフィン材。
    An aluminum alloy plate,
    A coating formed on the surface of the aluminum alloy plate,
    The aluminum alloy plate contains Si: 1 to 5% by mass, and the balance has chemical components composed of Al and inevitable impurities,
    A pre-coated fin material, wherein the amount of Si in the coating film is 10 to 300 mg / m 2 .
  2.  上記塗膜は、ケイ酸塩及び非晶質シリカの少なくとも一方を含有する、請求項1に記載のプレコートフィン材。 The pre-coated fin material according to claim 1, wherein the coating film contains at least one of silicate and amorphous silica.
  3.  上記塗膜は、ケイ酸リチウムを含有する、請求項1又は2に記載のプレコートフィン材。 The pre-coated fin material according to claim 1 or 2, wherein the coating film contains lithium silicate.
  4.  上記塗膜は、さらにフッ化物フラックスを40~5000mg/m2含有する、請求項1~3のいずれか1項に記載のプレコートフィン材。 The precoated fin material according to any one of claims 1 to 3, wherein the coating film further contains 40 to 5000 mg / m 2 of a fluoride flux.
  5.  上記アルミニウム合金板は、さらにFe:0.1~2質量%及びMn:0.1~2質量%の少なくとも一方を含有する、請求項1~4のいずれか1項に記載のプレコートフィン材。 The precoated fin material according to any one of claims 1 to 4, wherein the aluminum alloy plate further contains at least one of Fe: 0.1-2 mass% and Mn: 0.1-2 mass%.
  6.  上記アルミニウム合金板は、さらにZn:0.05~6質量%を含有する、請求項1~5のいずれか1項に記載のプレコートフィン材。 The precoated fin material according to any one of claims 1 to 5, wherein the aluminum alloy plate further contains Zn: 0.05 to 6 mass%.
  7.  上記アルミニウム合金板は、さらにMg:2質量%以下及びCu:1.5質量%以下の少なくとも一方を含有する、請求項1~6のいずれか1項に記載のプレコートフィン材。 The precoated fin material according to any one of claims 1 to 6, wherein the aluminum alloy plate further contains at least one of Mg: 2 mass% or less and Cu: 1.5 mass% or less.
  8.  上記アルミニウム合金板は、さらにIn:0.3質量%以下及びSn:0.3質量%以下の少なくとも一方を含有する、請求項1~7のいずれか1項に記載のプレコートフィン材。 The precoated fin material according to any one of claims 1 to 7, wherein the aluminum alloy plate further contains at least one of In: 0.3 mass% or less and Sn: 0.3 mass% or less.
  9.  上記アルミニウム合金板は、さらにTi:0.3質量%以下、V:0.3質量%以下、Zr:0.3質量%以下、Cr:0.3質量%以下、及びNi:2質量%以下から選ばれる少なくとも1種を含有する、請求項1~8のいずれか1項に記載のプレコートフィン材。 The aluminum alloy plate further includes Ti: 0.3 mass% or less, V: 0.3 mass% or less, Zr: 0.3 mass% or less, Cr: 0.3 mass% or less, and Ni: 2 mass% or less. The precoated fin material according to any one of claims 1 to 8, comprising at least one selected from the group consisting of:
  10.  上記アルミニウム合金板は、さらにBe:0.1質量%以下、Sr:0.1質量%以下、Bi:0.1質量%以下、Na:0.1質量%以下、Ca:0.05質量%以下から選ばれる少なくとも1種を含有する、請求項1~9のいずれか1項に記載のプレコートフィン材。 The aluminum alloy plate further has Be: 0.1 mass% or less, Sr: 0.1 mass% or less, Bi: 0.1 mass% or less, Na: 0.1 mass% or less, Ca: 0.05 mass% The precoated fin material according to any one of claims 1 to 9, comprising at least one selected from the following.
  11.  請求項1~10のいずれか1項に記載のプレコートフィン材からなるフィンと、該フィンに接合されたアルミニウム管とからなるコア部を有する、熱交換器。 11. A heat exchanger having a core part composed of a fin made of the pre-coated fin material according to claim 1 and an aluminum pipe joined to the fin.
PCT/JP2017/032783 2016-09-12 2017-09-12 Precoated fin material and heat exchanger using same WO2018047971A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-177997 2016-09-12
JP2016177997A JP2018044694A (en) 2016-09-12 2016-09-12 Precoat fin material and heat exchanger prepared therewith

Publications (1)

Publication Number Publication Date
WO2018047971A1 true WO2018047971A1 (en) 2018-03-15

Family

ID=61562478

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/032783 WO2018047971A1 (en) 2016-09-12 2017-09-12 Precoated fin material and heat exchanger using same

Country Status (2)

Country Link
JP (1) JP2018044694A (en)
WO (1) WO2018047971A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210116189A1 (en) * 2019-08-01 2021-04-22 Hangzhou Sanhua Research Institute Co., Ltd. Heat exchanger, method for making heat exchanger, and heat exchange system
WO2023243630A1 (en) * 2022-06-17 2023-12-21 株式会社Uacj Single-layer aluminum alloy material for brazing, method for producing same, aluminum structure, and heat exchanger

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7376700B2 (en) * 2020-04-22 2023-11-08 Maアルミニウム株式会社 Hydrophilic paint composition, aluminum parts, aluminum plates, aluminum tubes, and heat exchangers

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01159343A (en) * 1987-12-16 1989-06-22 Mitsubishi Alum Co Ltd Al alloy clad fin material for heat exchanger having superior brazability and corrosion resistance
JPH06145861A (en) * 1992-10-30 1994-05-27 Mitsubishi Alum Co Ltd Heat exchanger made of al alloy constituted of high strength fin material
JPH07102337A (en) * 1993-09-30 1995-04-18 Furukawa Electric Co Ltd:The Production of aluminum alloy fin material for brazing and heat exchanger made of aluminum alloy
JP2009162450A (en) * 2008-01-09 2009-07-23 Sumitomo Light Metal Ind Ltd Aluminum heat exchanger and its manufacturing method
JP2012112000A (en) * 2010-11-25 2012-06-14 Mitsubishi Alum Co Ltd Flat tube for heat exchanger, and heat exchanger
JP2012126950A (en) * 2010-12-14 2012-07-05 Mitsubishi Alum Co Ltd Aluminum alloy fin material for heat exchanger and heat exchanger using the fin material
JP2012224923A (en) * 2011-04-21 2012-11-15 Mitsubishi Alum Co Ltd Plate fin material for heat exchanger and method of manufacturing the plate fin material, and the heat exchanger using the plate fin material and method of manufacturing the heat exchanger
JP2013137153A (en) * 2011-12-28 2013-07-11 Mitsubishi Alum Co Ltd All-aluminum heat exchanger using precoat fin material
WO2014196183A1 (en) * 2013-06-02 2014-12-11 株式会社Uacj Heat exchanger, and fin material for said heat exchanger
WO2015182318A1 (en) * 2014-05-26 2015-12-03 株式会社Uacj Heat exchanger tube, heat exchanger, and brazing paste
JP2016164479A (en) * 2015-03-06 2016-09-08 株式会社Uacj Precoated fin and heat exchanger using the same

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01159343A (en) * 1987-12-16 1989-06-22 Mitsubishi Alum Co Ltd Al alloy clad fin material for heat exchanger having superior brazability and corrosion resistance
JPH06145861A (en) * 1992-10-30 1994-05-27 Mitsubishi Alum Co Ltd Heat exchanger made of al alloy constituted of high strength fin material
JPH07102337A (en) * 1993-09-30 1995-04-18 Furukawa Electric Co Ltd:The Production of aluminum alloy fin material for brazing and heat exchanger made of aluminum alloy
JP2009162450A (en) * 2008-01-09 2009-07-23 Sumitomo Light Metal Ind Ltd Aluminum heat exchanger and its manufacturing method
JP2012112000A (en) * 2010-11-25 2012-06-14 Mitsubishi Alum Co Ltd Flat tube for heat exchanger, and heat exchanger
JP2012126950A (en) * 2010-12-14 2012-07-05 Mitsubishi Alum Co Ltd Aluminum alloy fin material for heat exchanger and heat exchanger using the fin material
JP2012224923A (en) * 2011-04-21 2012-11-15 Mitsubishi Alum Co Ltd Plate fin material for heat exchanger and method of manufacturing the plate fin material, and the heat exchanger using the plate fin material and method of manufacturing the heat exchanger
JP2013137153A (en) * 2011-12-28 2013-07-11 Mitsubishi Alum Co Ltd All-aluminum heat exchanger using precoat fin material
WO2014196183A1 (en) * 2013-06-02 2014-12-11 株式会社Uacj Heat exchanger, and fin material for said heat exchanger
WO2015182318A1 (en) * 2014-05-26 2015-12-03 株式会社Uacj Heat exchanger tube, heat exchanger, and brazing paste
JP2016164479A (en) * 2015-03-06 2016-09-08 株式会社Uacj Precoated fin and heat exchanger using the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210116189A1 (en) * 2019-08-01 2021-04-22 Hangzhou Sanhua Research Institute Co., Ltd. Heat exchanger, method for making heat exchanger, and heat exchange system
EP3982077A4 (en) * 2019-08-01 2022-07-27 Hangzhou Sanhua Research Institute Co., Ltd. Heat exchanger and manufacturing method therefor, and heat exchange system
WO2023243630A1 (en) * 2022-06-17 2023-12-21 株式会社Uacj Single-layer aluminum alloy material for brazing, method for producing same, aluminum structure, and heat exchanger

Also Published As

Publication number Publication date
JP2018044694A (en) 2018-03-22

Similar Documents

Publication Publication Date Title
KR101581609B1 (en) Aluminum alloy for heat exchanger fin and manufacturing method therefor, as well as heat exchanger using said aluminum alloy
US20110240280A1 (en) Aluminum alloy brazing sheet and heat exchanger
EP3029169B1 (en) Aluminum-alloy clad member and method for producing the same
JP5188115B2 (en) High strength aluminum alloy brazing sheet
JP4822277B2 (en) Aluminum alloy brazing sheet for heat exchanger tubes with excellent brazing and corrosion resistance and heat exchanger tubes with excellent corrosion resistance
WO2014065355A1 (en) Aluminum alloy brazing sheet for fin, heat exchanger, and method for producing heat exchanger
JP2004084060A (en) Aluminum alloy fin material for heat exchanger and heat exchanger including the fin material
JP6315365B2 (en) Brazing sheet for heat exchanger and method for producing the same
JP5188116B2 (en) High strength aluminum alloy brazing sheet and method for producing the same
WO2017141921A1 (en) Aluminum alloy brazing sheet, manufacturing method therefor, and manufacturing method for vehicle heat exchanger using said brazing sheet
JP6372950B2 (en) Aluminum alloy clad material and manufacturing method thereof
EP3121301A1 (en) Cladded aluminium-alloy material and production method therefor, and heat exchanger using said cladded aluminium-alloy material and production method therefor
WO2014157116A1 (en) Brazed structure
JP5192890B2 (en) Extruded flat multi-hole tube and heat exchanger for heat exchangers with excellent corrosion resistance
JP5279278B2 (en) Brazing sheet for tube material of heat exchanger and method of manufacturing heat exchanger using the same
WO2018047971A1 (en) Precoated fin material and heat exchanger using same
JP5279277B2 (en) Brazing sheet for tube material of heat exchanger, heat exchanger and manufacturing method thereof
JP6713861B2 (en) Aluminum alloy clad material, manufacturing method thereof, and heat exchanger using the aluminum alloy clad material
US9999946B2 (en) High corrosion-resistant aluminum alloy brazing sheet, method of manufacturing such sheet, and corrosive-resistant heat exchanger using such sheet
JP2012057183A (en) Aluminum alloy clad material and heat exchanging device using the same
JP2017066494A (en) Aluminum alloy material for heat exchanger and manufacturing method therefor
JP6233916B2 (en) Aluminum alloy brazing material and aluminum alloy composite material
WO2018047970A1 (en) Precoated fin material and heat exchanger using same
JP5279279B2 (en) Blazing sheet for fin material of heat exchanger, heat exchanger and manufacturing method thereof
JP4485671B2 (en) Anti-corrosion aluminum alloy brazing material for heat exchanger and high corrosion resistance aluminum alloy composite for heat exchanger

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17848909

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17848909

Country of ref document: EP

Kind code of ref document: A1